NASA-CR-204606 /o

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 39, 17611774 (1996)

COMPARATIVE EVALUATION OF DIFFERENT
OPTIMIZATION ALGORITHMS FOR STRUCTURAL oG

DESIGN APPLICATIONS L .
Y VAR
SURYA N. PATNAIK ('“'// Z A A
Ohio Aerospace Institute Cleveland, OH 44142, U S.A. B

= R R Ve

RULA M. CORONEOS, JAMES D. GUPTILL AND DALE A. HOPKINS
NASA Lewis Research Center, Cleveland, OH 44135, U.S.A.

SUMMARY

Non-linear programming algorithms play an important role in structural design optimization. Fortunately,
several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was
initiated to assess the performance of eight different optimizers through the development of a computer code
CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to
solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-
YMPSE/8128 computer. The reliability and efficiency of the optimizers were determined from the perfor-
mance of these problems. For small problems, the performance of most of the optimizers could be
considered adequate. For large problems, however, three optimizers (two sequential quadratic programming
routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations
Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of
active displacement and frequency constraints but the number of active stress constraints differed among the
optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the
alleviation of this discrepancy can improve the efficiency of optimizers.

KEY WORDS: optimization; algorithms; structural; design; comparative; evaluation

INTRODUCTION

Non-linear programming algorithms play an important role in structural design optimization.
Fortunately, several algorithms with computer codes have been developed during the past few
decades. To assess the performance of different optimizers, a project was initiated at NASA Lewis
Research Centre and a computer code called CometBoards, which is an acronym for Compara-
tive Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures! has
been developed. CometBoards incorporates eight popular optimization codes: the Sequential
Unconstrained Minimizations Technique (SUMT);? the Sequential Linear Programming method
(SLP);? the Feasible Directions method (FD);* the Sequential Quadratic Programming technique
(SQP of IDESIGN);* the DNCONG of the IMSL routine;’ NPSOL, which is available in the
NAG library;® the Reduced Gradient method (RG);” and the Optimality Criteria methods (0C).8
CometBoards was employed to solve a set of 41 structural problems by using its optimizers on
a Cray-YMPBE/8128 computer. The reliability and efficiency of the eight optimizers were
ascertained on the basis of the performance of these problems. The problems were solved for

CCC 0029-5981/96/101761-14 Received 13 May 1995
© 1996 by John Wiley & Sons, Ltd. Revised 29 August 1995

1762 C. N. PATNAIK ET AL.

multiple load conditions, and behaviour constraints were imposed on stresses, displacements and
frequencies. The examples were selected so that at optimum, numerous stress, displacement and
frequency constraints were active. Initial design, upper and lower bounds and convergence
parameters were specified to ensure that the evaluation had no bias towards any particular
optimizer or any particular problem. The eight optimizers might have been updated during the
time CometBoards was developed, but any such improvements were not accounted for.

Evaluations of optimizers that are available in the literature®~ ' deal broadly with individual
code validation by their developers. The studies lack uniformity because problems and computa-
tional platforms differ and the evaluations are over a decade old. For example, Arora, the
developer of SQP of IDESIGN, compared his algorithm to the NAG/NPSOL optimizer.® !
Most of Arora’s problems were trusses for stress and displacement constraints and were solved on
a PRIME 750 computer. Schittkowski, who is the developer of the DNCONG optimization
routine in the IMSL library, essentially validated his code'?~'* by solving many theoretical
examples. Venkayya, one of the developers of ASTROS in which OC and FD optimizers are
used,'S attempted an evaluation of a few practical problems on a VAX 11/785 computer.!® An
intermediate complexity wing problem, used by Venkayya with stress and displacement con-
straints,!? is also included in our test bed with the addition of frequency constraint. Ragsdell’s
evaluation,!”" '® includes mostly simple mechanical application problems. The current paper
differs from those available in the literature in several respects: (1) a single tool, CometBoards,
evaluates all eight optimizers on a common Cray-YMP computer; (2) solutions to a set of
problems, which were grouped into categories of small, medium and large, are used; and (3) design
parameters were selected to ensure that the evaluation had no bias towards problems or optimizers.
In brief, the comprehensive evaluation presented in this paper does not duplicate previous work.
This paper presents a brief theory of optimization methods, a description of CometBoards,
a summary of the numerical examples and their solutions, discussion and conclusions.

THEORY OF OPTIMIZATION METHODS

Structural design can be formulated as: Find the n design variables X within the prescribed upper
and lower bounds (x* < x; < xY,i=1,2,...,n) which make a scalar objective function f(X) an
extremum (here, minimum weight) subject to: a set of m; inequality constraints g,(%) >0,
(j=1,2,...,m;)and m, equality constraints g;m, @=0(=12...,m)

Stress, displacement and frequency behaviour constraints were considered in this study.
A cursory account of the different optimization methods available in CometBoards is provided
herein. Readers may refer to specified references for details.

SUMT, as implemented in the code NEWSUMT, is available in CometBoards. In NEWS-
UMT, the penalty function has been modified to improve efficiency and a modified Newton’s
approach is used to calculate the direction vector while a golden section technique is used to
determine step length. SLP, as implemented in the Design Optimization Tools (DOT 2.0),
is available in CometBoards. From the original non-linear problem, a linear programming
subproblem is obtained by linearizing a set of critical constraints and the objective function
around a design point. The linearization process and linear solution sequence is repeated until
convergence is achieved. FD, as implemented in DOT 2.0, is available in CometBoards. In FD,
a direction is obtained that is both usable and feasible. A minimum along the search direction is
generated by polynomial approximation. Three implementations of the sequential quadratic
programming technique, SQP of IDESIGN, DNCONG of IMSL and NPSOL in NAG, are
available in CometBoards. In this technique, the original non-linear problem is solved
through a sequence of quadratic subproblems. In SQP of IDESIGN, a Lagrangian function is

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS 1763

approximated. The step length is obtained by minimizing a composite descent function.
DNCONG of IMSL uses quasi-Newton updates for the Hessian of the Lagrangian function while
the constraints are linearized.'? '*!® The step length for an augmented Lagrangian is calculated
using a bisection method.?° NPSOL in NAG also uses an augmented Lagrangian. The search
direction is generated through a quadratic subproblem while step length is calculated using an
augmented Lagrangian, which is designed to avoid discontinuities as much as possible. RG, as
implemented in the code OPT,”* 2! =23 has been incorporated into CometBoards. This method
partitions the design variable into decision and slave variables and a reduced gradient is used to
generate a search direction. A line search is carried out by bounding the minimum and then
calculating the minimum within some tolerance.?*~2¢ OC, available in CometBoards, can be
considered as a variant of the Lagrange multiplier approach applied to structural design problems.
In OC, an iterative scheme is followed to update the multipliers and the design variables separately.

In addition to the eight popular optimizers (SUMT, SLP, FD, SQP in IMSL, SQP of
IDESIGN, NPSOL in NAG, RG and OC) considered in this paper, there are other routines
which can be used for design applications. These other routines include, mFD (modified FD),?’
GRG2 (Generalized Reduced Gradient method),?® CONLIN,?> MOM (Method Of Multi-
pliers),*® Genetic,*' Convex,>? Asymptotes,*® dual methods,>* etc. Mention has been made
regarding the potential of genetic and asymptote algorithms. However, to date, the merits for
both of these algorithms have been shown for only rather modest problems. For example, the
potential of the asymptote algorithm?? is shown through solutions for a determinate cantilevered
beam with a single displacement constraint and for two simple trusses with only a few bars for
stress limitations. In brief, the maturity and applicability of some of these algorithms for complex
structural systems, under static and dynamic constraints, still remain to be proven, and at this
time these algorithms have not been incorporated into the CometBoards test bed.

DESCRIPTION OF COMETBOARDS

The basic organization of CometBoards is depicted in Figure 1. The central executive with
command level interface (Figure 1) links the three modules (optimizer, analyser and data input)

CometBoards
- SuMT - Displacement - Analysis Deta
- 5Lp L Force (1FM) - Design Data
-FD | Others - Optirnization Data
- IMSL (sqp)
- sap
-0C ’
- NPSOL

-Ra Central executive via
command levet interface,
/
Resuits

Figure 1. Comparative evaluation test bed of optimization and analysis routines for the design of structures (CometBoards)

C. N. PATNAIK ET AL.

1764

qaz'sge —u S91» ar ‘si¢ ay ‘S6ls —a ass ar‘sze A1°ay'ssai (AQ1 91) siudwdpa
vn:cuﬁo 05«.580_.: IaAgmue)) 81d

qaz 'sgl Sts S8 ar ‘sst avy ‘stls —a —x ar ‘sel AT ‘ar ‘S96 (AQT 91) s1uawa3pd
vﬁsv-mv auviquIdw .—0>u__=mmU h?m

ar St S64 ar ar —a —x arsi A1°ay ‘sy9 (AQT 91) swmowap
UN:U‘NM suelquiswl ao>o—5=uU Oﬁ&

as SSe Sta ar —e ag ‘st ar ar si 41°ay ‘STe (AdI 91) siuswap
Umsvnoﬁ uﬂmuQEoE .—o>o=u=NU m?—
St S1 S1 SI S1 St SI St A1ay ‘s91 (AQT 1) PUEBIQUDW JIAIHUED vid
Sy 9 $9 S9 S9 S9 $9 S9 11°ay ‘s (AQI 8) sueIqUIBW JIAI[NUED) £id
Y4 Al ST ST ST 4 ST ST A1 Ay ‘89¢ (AQIT 7) ssna 1eq-Q] pauagns d
sS Sla S6 S8 S6 $6 S6 S8 41°ay ‘s9¢ (AQI 81) ssnx) 1Bq-Q] pauayns 11d
A1°ATS9« AT 'SEs dr'ag’sy 41'az'sy 41'Ar’s9 —a — A1‘dzs9 41°av‘soc (AQ'T §) ssnn Jeq-0] 01d
A1°AT *SS« dls Ji‘ge'ss d1‘ar'ss A1'Ar’ss —a — Jr'azse A1°ar‘sor (A 01) ssn11 1eq-01 6d

— SLe« Stle —u A1°d1 ‘'S66« SElx Stle dr‘dr'seinr A1°aysoie LdOa$-0 = Al ‘AQT LS)
Juim Kxopduwiod sjerpsuLINuf P8d

—u Sla STa AT1°A1‘S88+ A1'AT‘SS11a Sl A1°S9S ar‘seol A1°ay‘s9ic (LdOaS 1 = dI ‘AQT LS)
Summ Lxadwos aerpownrdlu] agd

SThs 016901 AT 'QI‘SLIT JA1°QI‘SLIT I ‘S901 ai ‘s9ot ai ‘seor —a A1°Ay ‘s91€ (LdO = A1 ‘AQT LS)
Fum Lirxojdwod arerpouLIdIUf q8d

S61+ S Jrarssy A1'aresLIr Av'dr'scir drseé SLbs ai‘seol d1°‘dy s9te (01 =dl‘AdTLS)
Sum Lixadwos 3jeIpauLIIU] esd
Stle AT'S8Te ‘A1°CI‘'STOT AT ‘G ‘SSST A1 ‘A1 'S891 AT ‘Al ‘S9§Ta A1 ‘A1 ‘S8¥Is A1°AL'STOI Al1°dl ‘§TST (AQ'T T1) dwop dIs3poan) Ld
A1'SOTe A1°AI‘S8Is AT'AI'S61 d1°Ai‘SIz A1‘@i'siz dr'ai‘'soc dr'ar'see di1'ds ‘S1z Al ‘dg ‘sosl (AQT §7) Buu passni) 1eq-09 9d
—a Al A1'az1 ‘s A1°Ari‘sy J1°ATISy A1°ATI'S9 ATATIS9 A1'ATI'SLe A1 'AYT 'SYOS (AQ19) 1m0} EUUUE [[B1-Y-G9T sd
— ate ar ar ar ar as ar ase ‘sos (AQT 8) ssnn Jeq-c7 vd
St $9 S9 S9 S9 s9 $9 S9 d1‘ay's9n (AQII 8) Wwedq 19A9nuod pasade], td
A1'Azsss Jdi‘Ste d1'dz‘ss d1°de'ss A1°AT’S8 —u — drazse A1°aysoc (AQII O1) S50y Jeq-0] paredel ud
Al dldis] di'di'st o di'dr'st o drar'st o drigi'st drar’st odv'ar’'st o di ‘az ‘se (LdO 50 = I ‘AdI ¢) ssnn Jeq-¢ pid
Als dr@r'st drar'si didaist o drar'st drar'st o cdrar'st o odr'dr’st o A1 ‘Az se (LdO +§-1 = AI ‘AdI €) ssTU1 Jeq-¢ o1d
Als qAIS] drdist o ditar'st drar'st di'ar'st o dr'ar'sy de'ar'sy 41r'az ‘S¢ (LdO = dl ‘Ad1] €) ssnh Ieq-¢ qid
Ale diarst Ai‘Qist o didist o drar'st o odirar’st o Ar'arst oAr'ar'st Jrac ‘S¢ (1 = a1l ‘AdI ¢) ssna Jeq-g eld
20). | TOSIN TSI d0Ss ad d1s LNNS payioads sajqeLrea udisop ON
SIUTRIISUOD) Jo ou pue uondudsap wajqold unqoid

SIUTRIISUOD IATDY

swajqoid paqisal [y 3oy Areunung ‘[S|qeL

1765

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS

(1 sdua1ajay 235) Juad 1ad | URY) A10W WONE[OIA JUIRIISUOD 10 U0 1ad ¢ uey) atow Aq s1agrp paureiqo 1ydom wnumdQ ,
SIUTRIISUOD
Kouanbayy : ‘syurensuoos juswaoeidstp ‘syuresisuod ssaxs ;g ‘udisop wnwndo JNNS (LJO ‘s2[qeuea uBisap paxur] (AT ‘udisap [eunur (g ‘sajqenrea uBisap juapuadspur (A

A1 °691a A1 °SLT ‘A1 'SLT d1°SL1 E IR A R AT°SL1 ATSL1 A1 °dg ‘StL (AQI +7) 3uu pausgug sed
dr‘ar d1‘ai aze d1‘ar dr‘air dr‘ai d1'ay dr'at dv‘aye (AQI t7) 8uu pausgng ved
ai‘ssla i sst i ‘ssz Qi ‘ssT at ‘sz ar ‘se ar ‘sst an ‘st arc ‘'stL (AdI +7) 3uur pausgus ted
A1 Al —e A1 A1 Al Al Al A1 (AQI ¢7) 3uu pausgng ed
ar air —u ai ait ar at ar as (AdI +7) 8uu pauagng 1€d
S8¢ SLT S8 S8 S8 SET SST S8T STL (A1 +?) 3uu pauagng otd
St AT Sty A1 ‘S9v A1 'sop A1 °S9v A1 °Si€s A1°S6T+ At'syyr d1°A€'SIST {AQT 6v) Buu passnyy Jeq-g9 pauagng 67d
drar A1 ‘arn Al dr‘art d1art A1‘Ale A1 °dla Ararn d1'ayt (AQ'T 6P) Suur passnIy 1BQ-(9 paUdPHS 8td
LA an‘'s9L ai sst ain ‘ssL ar ‘ss. al ‘'ST9 SLTs ai ‘ssL avz‘sest (AQT 6p) 8ul passnay Jeq-(9 PIUAPNS Lzd
A1 At e 41 el Als Ala 41 A1 (AQ1 6p) 8uur passny) 1eq-09 pauagng 9zd
at ar —e ar als ar Als ai agc (AQ1 6p) 3uu passni) Ieq-()9 pausgng std
S6S SSL SSL SSL SSL ST94 SLTs SSL 1744 (AQT 6¥) Buu passnay Jeq-09 pauagus vzd
Ar‘dle Al A1°dls dr‘aix dr‘ar drar A1 Al A1l AT1'a¥g (AQT §7) uu passnyy 1eq-09 €2d
ai ‘ss1 S0Za ai ‘set ait ‘stz Al ‘SOts ar ‘st ai 'se i ‘ssz art 'sost (AQ1 §7) Buu passnny Jeq-09 wd
Al Al 1 el 41 A1 dle —e A1 (AQ71 s2) 8uu passnn 1eq-09 1Zd
ai ais ar at ai ai ar ar ag (AQ1 §7) 3uu passniy req-09 0zd

SoY Stl« S8¢ S8¢ SSEx SEE STi« S8¢ SO8t (AQT §7) Buu passnn 1eq-(9 61d

1766 C. N. PATNAIK ET AL.

of the code to formulate and solve an optimization problem. Note that there are eight choices
for optimizers. The analyser options are the displacement method,® 33 the integrated force
method, #3¢ the simplified force method,® etc. There are three input data files, one for analysis
(anldat), one for design (dsgndat) and one for optimization (optdat). CometBoards has consider-
able flexibility in solving a design problem by choosing any one of the eight optimizers and any
one of the three analysers. A more detailed description of CometBoards can be found in Reference 1.

EXAMPLE PROBLEMS

The numerical testbed of CometBoards includes over 41 problems, most of which were taken
from the literature.': % 1337742 Minimum weight was the objective and a linking strategy was
followed to reduce the number of design variables. Stress, displacement and frequency behaviour
constraints were considered. Multiple static load conditions and consistent elemental mass for
dynamic analyses were also considered. The load conditions, mass distributions, and behaviour
limitations were selected to ensure that several types of behaviour constraints were active at the
optimum. The initial design of unity was considered for all problems unless otherwise specified.
A consistent set of upper and lower bounds was specified for each problem. Typically, default
optimization parameters and convergence criteria specified in the individual codes were used.
These parameters, however, were changed when convergence difficulty was encountered. Results
for all 41 examples are summarized in Table I. The normalized optimum weight and the
normalized Cray-YMPSE/8128 CPU time for a select set of 14 examples are given in Table II and
depicted in Plates 1 through 4. The weight was normalized with respect to the optimum weight
obtained for the best feasible design. A brief description of the 14 examples follows.

Examples (Pla—P1d). Three-bar truss

The popular three-bar truss® 37 *! (with modulus E = 30000 ksi and density p = 0-11b/in>)
was subjected to a single load condition. It had three design variables and six constraints (three
stress, two displacement and one frequency). Optimum weight and CPU time are depicted in
Table II (Pla, P1b, Plc, P1d) and Plates 1 and 4. The optimum weight was 92:87 Ib and three
constraints (one stress, one displacement and one frequency) were active. Seven optimizers
(SUMT, SLP, FD, SQP, IMSL, NPSOL and RG) performed satisfactorily. OC was inadequate,
yielding a 386 per cent overdesign. The problem was solved again for three different initial
designs (the SUMT optimum design, 150 per cent of SUMT optimum and 50 per cent of SUMT
optimum). Results followed the earlier pattern where the initial design was unity. The CPU times
on the Cray-YMP computer required for different optimizers are depicted in Plate 4. For unit
initial design, SLP required the least CPU time of 0-07 s, while RG was most expensive at 3:18s.

Example P2. Tapered 10-bar truss

A tapered 10-bar aluminum truss® was subjected to two load conditions. It had 10 design
variables and 25 behaviour constraints (20 stress, four displacement and one frequency). The
optimum weight was 3326-741b with 11 active constraints (eight stress, two displacement, and one
frequency). Four optimizers (SUMT, SQP, IMSL and NPSOL) converged for this example. SLP
and FD converged to an 82-4 per cent under-design condition. Optimizer RG failed and OC was
marginal at a 5-6 per cent over-design. Cray-YMP CPU time varied between 1-28 s for NPSOL
and 1-91s for SUMT.

Problem set

<
—_
-

[ria
O e
. Plc
B ra
B »
B
[J pa
O s
O e
1 »
O ru
W re
O e
B r
O ris
P16
B o
B rs

RG

NPSOL

IMSL

SQP

SLP

SUMT

3) 1) J T
~ 0 Q < & - ®© ©
—_ - —_ —_ s P

0.4
0.2~

(wnumndo = 1) WYBrem pazieuLION

Plate | Performance of difterent optimizers for small problems

Problem set

O es

0 e

B ro

B r
B r
W o

(umupdo = 1) 1yBrom poziBUIION

NPSOL RG

IMSL

SQP

SLP

SUMT

Plate 2 Performance of different optimizers tor medium problems

optimum)

Normalized weight (1

Normalized cpu time (1 = optimum)

0.8

0.6 1

0.4 -

02-

1.5

i
: i i : H i 1
(AN g l l
i : : H I - |
i ; ; | i | ;
; : ‘ ! § i : :
i i : i
8L |
i I i : | N H a R i
SUMT SLP FD SQP IMSL NPSOL RG oc
Plate 3 Performance of different optimizers for large problems
!
i
|

SUMT SLP FD SQP IMSL NPSOL RG oC

Plate 4 Cray-YMP CPU time for different optimization methods for 14 problems

Problem set

O

OCO0OECEERENENO

P8a

P8b

P8c

P8d

P24

P25

P27

P28

P29

Problem set

Om@aetc0CoOenRReR0O0O

Pla

Plb

Plc

P1d

P2

P3

P4

P5

Pé6

P?

P8a

P8y

1767

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS

Y31M PIZIEULION 4,

uBisop oqiseajul,

9LZ0 0001 — (pored) 8200 1050« — (PR PPZO 1860« ££00 [TS0s ITEO Z0S0« 0001 0001 p8d
9990 0001 1290 Iyl w0 91 2090 LLOTe ILSO 8660« ISHO Sl 9T0 S601 0001 0001 o8d
9L08 0SE1 6800 PO0-1 €TEE 000-1 $88S 0001 0001 0001 S€90 001 P10 $OOT 0891 06L0 q8d
151 1021 — (parred) ZiLL LEOT $69T 000-T 0001 0001 0167 6201 6T0 EPIT 9ITT $OO-1 egd
9Py 9L6T 9900 WOT 8590 9101 0ss0 SIOT 0001 0001 S8€0 0TIl L8T0 LU0 8650 1201 Ld
6L78 I¥0-1. 91L0T T€81 668€ 000-1 0zl 0001 0001 0001 9201 6660 0 L660 S091 0001 9d
9r €T — (pIRd) 970§ L1OT LT 6101 0001 6101 990 SI101 1650 ZIOT S90T 0P60 sd
— (popred) — (parred) 6$L€ 000-1 6£S-1 0001 000-T 0001 P81-T 1001 965€ 9660 £€ST 0001 vd

vE891 8701 1219 0001 691€ 100-1 960 0001 0001 0001 91 0001 €880 LL6O 8971 6660 £d
vZE6 9501 — (poped) TTOY 000-1 €ElT 0001 0001 0001 PIPO0 9LI0s 968€ 9L10 0051 0001 ud
$8601 98€-1 P91 0001 #hrvl 0001 €ELT 0001 000-1 0001 €€60 0001 PLPO 6660 9Z61 1001 PId
00001 98€1 000 000-1 8ISIE 0001 7991 0001 0001 0001 0£L0 6660 8LE0 6660 8861 1001 old
£ET6Y 98¢1 L9SS 000-1 L9TSST 0001 €€96 0001 0001 0001 £€90 1001 €€0T 1001 £€8L 1001 qid
LSTOT 98€1 690TT 0001 9L0T 000-1 U6T 0001 0001 0001 STl €001 LOSO 6660 66L1 1001 eld
NdD «sUBBM 1dD »M8PM NdD +MBPM 1dD «IUBPM NdD «IUBPM NdD «UIBM NdD «UTBM 1D «eIYSoM Jaquing
D0 I3} TOSIN ISWI dos ai d1s 1WNS un|qoid

spogaw uoneziamdo

swa[qold aydurexs jo 1as Pajad[as B 10§ swily NdD 8Z18/d8 JINA-ABI) pue 1gSom wnwndQ 11 9|98l

1768 C. N. PATNAIK ET AL.

Example P3. Tapered cantilever beam

The cantilever truss of Example P2 was modelled next using eight triangular membrane
elements.? The loads and constraints were kept identical to those in Example P2. There are eight
thicknesses of the elements which were considered the eight design variables. The problem had 21
constraints (16 von Mises stress, four displacement and one frequency). Optimum results ob-
tained are given in Table II. The optimum weight was 1440-24 Ib with six active stress constraints.
Seven optimizers (SUMT, SLP, FD, SQP, IMSL, NPSOL and RG) performed well while OC
produced a 2-8 per cent over-design (see Table II). Cray-YMP CPU time varied from 1-62 s for
SLP to 11225 for RG.

Example P4. 25-bar truss

A 25-bar aluminum truss®”' *® had eight linked design variables and was subjected to two load
conditions. It had a total of 8 behaviour constraints (50 stress and 36 displacement). Six
optimizers (SUMT, SLP, FD, SQP, IMSL and NPSOL) converged to an optimum weight of
544-731b with four active displacement constraints (Tables I and II). Optimizers RG and OC
failed. Cray-YMP CPU time ranged from 1-64s for SQP to 6:15s for NPSOL.

Example P5. 165-ft-tall antenna tower

A 165-ft-tall steel antenna tower with 252 members®” had six linked design variables and was
subjected to two load conditions. Its overhead dish antenna was modelled as a lumped mass for
frequency calculations. It had a total of 529 behaviour constraints (504 stress, 24 displacement
and one frequency). Five optimizers (SLP, FD, SQP, IMSL and NPSOL) converged to an
optimum solution of 5299-841b with small deviations (Table II). At the optimum, six stress, 12
displacement and one frequency constraints are active. Optimizers RG and OC failed while
SUMT produced a 6 per cent under-design. The Cray-YMP CPU time varied between 222-71s
for SLP and 1893-80s for NPSOL.

Example P6. 60-bar trussed ring

A 60-bar trussed aluminum ring® was subjected to three load conditions and had two lumped
masses. It had a total of 184 constraints (180 stress, three displacement and one frequency) and 25
linked design variables. The optimum weight was 414.51 Ibs, and at optimum, 22 stress, one
displacement and one frequency constraints were active. Six optimizers (SUMT, SLP, FD, SQP,
IMSL and NPSOL) converged (Table II). Optimizer RG failed, whereas OC produced a 41
per cent over-design with a 1-1 per cent constraint violation. Cray-YMP CPU solution time
ranged from 12:67s for SLP to 144-11s for NPSOL.

Example P7. Geodesic dome

A geodesic dome,>® *° with a diameter of 240 in. and a height of 30 in., was subjected to a single
load condition. It was modelled using 156 bars and 96 triangular membrane elements. The bars
were made of a material with modulus E = 30000 ksi, and density p = (-1 Ib/in®. Membranes
were made of aluminum, with modulus E = 10 000 ksi, and density p = 0-1 1b/in3. The bar areas
and membrane thicknesses were grouped to obtain eight and four linked design variables,
respectively. The dome had a total of 254 constraints (156 stresses for bars, 96 von Mises stresses

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS 1769

for membranes, one displacement and one frequency). The optimum weight obtained was
1022-671b with 170 active constraints (168 stress constraints, one displacement and one frequency
(see Table I). Four optimizers (SUMT, SQP, IMSL and NPSOL) converged with small devi-
ations. Optimizers RG and OC failed, while SLP and FD produced over-designs (12-7 and 12-0
per cent, respectively). The Cray-YMP CPU time varied between 448:32s for SUMT and 548-36 s
for NPSOL.

Examples (P8a—P8d). Intermediate complexity wing

An intermediate complexity wing® '* was modelled with a total of 158 elements consisting of

39 bars, two triangular membranes, 62 quadrilateral membranes and 55 shear panels. The wing is
made of aluminum with modulus E = 10500 ksi and density p = 0-11b/in®. The elements were
grouped to obtain 57 linked design variables. The wing, which was subjected to two load
conditions, had a total of 321 behaviour constraints (316 stress, four displacement and one
frequency). The optimum design for this problem was obtained from four different initial points:
(1) initial design of unity; (2) initial design equal to the SUMT optimum design; (3) initial design
equal to 150 per cent of the SUMT optimum design; and (4) initial design which is infeasible at 50
per cent lower than the SUMT optimum design. Results obtained for all four cases are
summarized in Table IT (P8a—P8d). The optimum design was 387-761b and there were a total of
119 active constraints (117 stress, one displacement and one frequency). For initial design equal to
unity (see Table II, Problem P8a), optimizers SUMT, FD, SQP, IMSL and NPSOL reached the
optimum within a 3-7 per cent error margin. Optimizer RG failed to solve the problem.
Optimizers SLP and OC also failed to converge to the optimum (producing 14-3 and 20-1 per cent
over-designs, respectively). Cray-YMP CPU time varied between 1075-21 s for SQP and 829235 s
for NPSOL.

DISCUSSION

For the purpose of this discussion, the 41 examples of the CometBoards test bed are grouped as
small, medium and large problems. The number of linked design variables ranged between 3 and
19 for small problems (Group I). Group I contains a total of 19 problems, which are designated as
Pla-P5, P7 and P9-P18. The normalized optimum weight for small problems obtained by each
optimizer is depicted in Plate 1. For medium problems (Group II), the number of linked design
variables ranged between 20 and 39. There are 12 medium problems, which are designated as P6,
P19-P23 and P30-P35. The normalized optimum weight for the medium problems obtained by
each optimizer is illustrated in Plate 2. Problems with more than 40 independent design variables
are referred to as large problems (Group III). There are 10 large problems which are designated as
P8a-P8d, and P24-P29. The normalized optimum weight for large problems obtained by each
optimizer is depicted in Plate 3.

The discussion is separated into the following five categories: (1) convergence to the optimum
weight, (2) number of active constraints at optimum, (3) Cray-YMPS8E/8128 CPU time required
to solve the problem, (4) singularity in structural optimization and (5) default optimization
parameters.

Convergence to optimum weight

The normalized optimum weights for all 41 problems, obtained by the eight optimizers, are
depicted in Plates 1-3 for small, medium and large problems, respectively. In these Plates, unity

1770 C. N. PATNAIK ET AL.

represents optimum weight and more than unity indicates over-design, while less than unity is
infeasible design. For the purpose of comparison, a solution with constraint violation of less than
1 per cent and weight which is within 1 per cent of the best feasible design is considered correct.
A design is acceptable when the constraint violation is less than 1 per cent and the weight is within
50 per cent of the best obtained by the eight optimizers. Convergence to optimum weight for each
of the eight optimizers follows.

(1) SUMT converged to optimum solution for 35 of 41 examples, which consisted of 17 small,
nine medium, and nine large problems. SUMT failed for four problems. These are: one
small problem (P5), two medium problems (P21 and P23) and one large problem (P8b). For
the two medium problems, the SUMT solution was more than 1 per cent infeasible. For the
large problem, SUMT gave an over-design of more than 5 per cent.

(2) SLP of DOT 2.0 successfully solved 19 of 41 examples, which consisted of 11 small, seven
medium, and one large problems. SLP failed for seven small problems (P2, P7, P9, P10 and
P16-P18), three medium problems (P19, P21 and P23) and nine large problems (P8a, P8c,
P8d and P24-P29).

(3) FD of DOT 2.0, successfully solved 16 of 41 examples, which consisted of nine small, six
medium and one large problems. FD produced infeasible designs for six small problems
(P2, P9, P10 and P16-P18) and one large problem (P8d). It produced over-design condi-
tions for eight problems (P7, P8c, P19, P24 and P26-P29).

(4) SQP of IDESIGN successfully solved 32 of 41 examples, which consisted of 15 small, 10
medium and seven large problems. This optimizer failed to give a feasible optimum design
for three small problems (P15, P17 and P18), two medium problems (P19 and P22) and
three large problems (P8c, P8d and P25).

(5) IMSL optimizer DNCONG successfully solved 37 of 41 examples, which consisted of 17
small, 12 medium and eight large problems. DNCONG of IMSL failed to optimize the
intermediate complexity wing (Problems P8c and P8d).

(6) NPSOL successfully solved 25 of 41 examples, which consisted of 13 small, eight medium
and four large problems. This optimizer failed (with a 1 per cent infeasible constraint) for
four small problems (P15-P18), four medium problems (P23, P31, P32 and P34) and four
large problems (P8d, P25, P26 and P28). It produced more than 5 per cent over-design for
large problem P8c.

(7) RG successfully solved 13 of 41 examples, which consisted of seven small, four medium and
two large problems. RG failed for 12 small problems. It also failed for seven medium
problems and three large problems. The optimizer RG failed with well over 100 per cent
error in the optimum weight for 15 problems.

(8) OC successfully solved 16 of 41 examples, which consisted of six small, five medium and five
large problems. OC failed for nine small, two medium and five large problems with an error
in the optimum weight exceeding 5 per cent, as well as for three medium problems with an
infeasible design greater than 1 per cent.

Number of active constraints at optimum

The number of active constraints at the optimum for all examples is given in Table I. Typically,
different optimizers produced identical numbers of active frequency and active displacement
constraints. However, the number of active stress constraints generated depended on the opti-
mizer of choice. For example, with the geodesic dome problem (P7), the number of active stress
constraints produced were 168 by SQP of IDESIGN, 162 by SUMT and NPSOL, and 156 by

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS 1771

IMSL. Consider next the set of five examples depicted in Table III that failed to converge. The
minimum weights ranged between 3-2 and 12-7 per cent over-designs or under-designs. These
examples produced correct numbers of displacement and frequency constraints, but failed to
produce the correct numbers of active stress constraints. The deficiency in the number of active
stress constraints ranged between 3 for Problem P2 and 42 for Problem P8a. For these problems
the failure of the optimizers could be attributed to their inability to produce the correct number of
active stress constraints. This aspect is also described in the section entitled, ‘Singularity in
structural optimization® of this paper.

CPU time required for the solution

The normalized CPU times on a Cray-YMPSE/8128 computer were recorded for a set of 14
examples. The normalization was with respect to SQP of IDESIGN except for Problems P8¢ and
P8d, which were normalized with respect to SUMT (Table II and Plate 4). CPU time required to
solve the same problem differed among optimizers. Even for a small problem (P1a), normalized
CPU time differed from 0-507 for SLP to 22:069 for RG. For a medium problem (P6), normalized
time differed between 0-343 for SLP to 3-899 for NPSOL. For a large problem (P8a), normalized
CPU time varied from 1-695 for IMSL to 1-116 for SUMT and 1-000 for SQP of IDESIGN. It is
observed that variation in CPU time was rather mild for large problems.

Singularity in structural optimization

Singularity in structural optimization was identified for three situations:® *! (1) The number of
active constraints exceeds the number of design variables. Out of the 41 test bed problems, the 14
examples listed in Table IV are prone to this type of singularity. (2) Linear functional depend-
encies exist among a small number of active stress constraints. This type of singularity is
suspected to have occurred for some of the examples given in Table III. (3) Linear functional
dependencies exist among a small number of active stress and displacement constraints. The
identification of this type of singularity by mere inspection may be difficult.

Table III. Five examples that failed to reach optimum weight versus best feasible design

Number of active constraints at optimum
versus best feasible design

Problem Optimization Percent over-
number method design Frequency Stress Displacement
P2 ocC 56 1 5 2
vs. SQP 00 1 8 2
P6 RG 832 1 18 1
vs. SQP 00 1 21 1
P7 SLP 127 1 148 1
vs. SQP 00 1 168 1
P8a NPSOL 32 1 75 1
vs. IMSL 00 1 117 1
P8c IMSL 77 1 88 1
vs. SUMT 00 1 109 1

1772 C. N. PATNAIK ET AL.

Table 1V. Problems with active constraints exceeding the number of design variables
(singularity can occur in each of these problems)

Number of design ~ Number of active constraints

Problem number, description variables at optimum
P2, Tapered 10-bar truss 10 11
PS5, Antenna tower 6 20
P7, Geodesic dome 12 170
P8a, Intermediate complexity wing 57 119
P9, 10-bar truss 10 11
P10, 10-bar truss 5 9
P17, Cantilever membrane 16 19
P18, Cantilever membrane 16 35
P19, 60-bar trussed ring 25 38
P22, 60-bar trussed ring 25 30
P24, Stiffened ring 49 75
P27, Stiffened 60-bar trussed ring 49 76
P30, Stiffened ring 24 28
P33, Stiffened ring 24 28

It is suggested that code developers should address the singularity issue. Singularity alleviation as
discussed in References 8, 41 and 42 can reduce computation and improve reliability of optimizers.

Default optimization parameters

Default parameters (such as convergence criteria, step length, stopping criteria, active con-
straint region, iteration limitations, etc.) specified by individual optimization codes were used to
solve the problems. When a problem failed, the default parameters were changed according to the
instructions specified in the user’s manual of individual codes in an attempt to successfully solve
the problem. In the solution of the 41 test bed problems, it was necessary to change the default
optimization parameters quite often in order to reach the correct solution. On an overall basis,
default parameters of SUMT, SLP, FD, SQP and IMSL algorithms were adequate for the
solution of most problems. Most of the default parameters for RG and NPSOL were changed to
improve their performances.

CONCLUSIONS

None of the eight optimizers could successfully solve all the problems. Most optimizers, however,
can solve at least one third of the examples. For large problems, the Cray-YMP CPU time was
comparable among the optimizers that succeeded. Alleviation of singularity that can occur in
structural optimization can improve the optimizer efficiency.

A single winner which can be called most reliable and efficient could not be identified. Overall,
three optimizers (IMSL, SUMT and SQP of IDESIGN) scored high marks. For small problems,
five optimizers (IMSL, SUMT, SQP of IDESIGN, NPSOL and SLP) satisfactorily solved more
than fifty per cent of the problems. For medium problems, six optimizers (IMSL, SQP of
IDESIGN, SUMT, NPSOL, SLP and FD) produced correct solutions for at least half of the
problems. For large problems, three optimizers (IMSL, SUMT and SQP of IDESIGN) were
found to be reliable and efficient.

10.
11.
12.
13.
14,

15.

17.
18.

19.
20.

21.
22.
23.
24.
25.
26.
27.

28.
29.

30.
31
32,
33.
34.

3s.

OPTIMIZATION ALGORITHMS FOR STRUCTURAL DESIGN APPLICATIONS 1773

REFERENCES

. J. D. Guptill, R. M. Coroneos, S. N. Patnaik, D. Hopkins and L. Berke, CometBoards User's Manual, NASA
TM-4537, 1996.

. H. Miura and L. A. Schmit Jr, NEWSUMT: A FORTRAN Program for Inequality Constrained Function Minimiz-
ation, User's Guide, NASA CR-159070, 1979.

- G. N. Vanderplaats, DOT User's Manual, Version 2.04, VMA Engineering, 1989.

- 1. S. Arora, IDESIGN User’s Manual, Version 3.5.2, Optimal Design Laboratory, University of Iowa, 1989.

. IMSL User's Manual, MATH/LIBRARY: FORTRAN Subroutines Sfor Mathematical Applications.Vol. 3, Chapter 8,
1987, p. 903.

. NAG FORTRAN Library Manual-M ARK 15: E04UCF, NAG Fortran Library Routine Document, Vol. 4, 1991.

. G. A. Gabriele and K. M. Ragsdell, OPT-A Nonlinear Programming Code in FORTRAN Implementing the Generaliz-
ed Reduced Gradient Method, User's Manual, University of Missouri-Columbia, 1984.

. 8. N. Patnaik, J. D. Guptill and L. Berke, Merits and Limitations of Optimality Criteria Method for Structural
Optimization, NASA TP-3373, 1993.

. P. B. Thanedar, J. 8. Arora, C. H. Tseng, O. K. Lim and G. J. Park, ‘Performance of some SQP algorithms on

structural design problems—sequential quadratic programming’, Int. j. numer. methods eng., 23, 2187-2203 (1986).

C. H. Tseng and J. S. Arora, ‘On implementation of computational algorithms for optimal design 1: preliminary

investigation’, Int. j. numer. methods eng., 26, 1365-1382 (1988).

C. H. Tseng and J. S. Arora, ‘On implementation of computational algorithms for optimal design 2: extensive

numerical investigation’, Int. j. numer. methods eng., 26, 1383-1402 (1988).

K. A. Schittkowski, ‘A numerical comparison of 13 nonlinear programming codes with randomly generated test

problems’, Numer. Optim. Dyn. Systems, 213234 (1980).

W. Hock and K. Schittkowski, ‘A comparative performance evaluation of 27 nonlinear programming codes’,

Computing, 30, 335-358 (1983).

K. Schittkowski, C. Zillober and R. Zotemantel, ‘Numerical comparison of nonlinear programming algorithms for

structural optimization, Struct. Optim., 7, 1-19 (1994),

R.A. Canfield, R. V. Grandhi and V. B. Venkayya, ‘Optimum design of structures with multiple constraints’, 4744 J.,

26, 78-85 (1988).

- D. J. Neill, E. H. Johnson and D. L. Herendeen, Automated Structural Optimization System (ASTROS).

AFWAL-TR-88-3028, Wright Patterson Air Force Base vol. 11- User's Manual, 1988.

K. M. Ragsdell, ‘A survey of some useful optimization methods’, in A. H. Soni and H. Atmaran (eds.), Proc. Design

Engineering Technical Conference, New York, 1974, pp. 129-135, .

K. M. Ragsdell, ‘The evaluation of optimization software for engineering design’, Lecture Notes in Econom. and Math.

Systems, Vol. 199, 1982.

B. Pshenichny, ‘Algorithms for the general problem of mathematical programming’, Kibernetica, 5, 120-125 (1970).

K. Schittkowski, ‘'NLLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems, Ann.

Oper. Res., 5, 485-500 (1986).

P. Wolfe, in J. Abadie (ed.), Methods Sor Linear Constraints, Nonlinear Programming, North-Holland, Amsterdam,

1967, pp. 99-131.

P. Wolfe, in R. L. Graves and P. Wolfe (ed.), Methods of Nonlinear Programming, Recent Advances in Math.

Programming, McGraw-Hill, New York, 1963, pp. 76-77.

J. Abadie and J. Carpentier, in R. Fletcher (ed.), Generalization of the Wolfe Reduced Gradient Method to the Case of

Nonlinear Constraints, Optimization, Academic Press, New York, 1969, p. 37.

R. Fletcher and C. M. Reeves, ‘Function minimization by conjugant gradients’, Comp. J., 6, No. 2, 163-168 (1963).

R. L. Fox, Optimization Methods for Engineering Design, Addison-Wesley, Reading, MA, 1971,

D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.

A.D. Belegundu, L. Berke and S. N. Patnaik, ‘An optimization algorithm based on the method of feasible directions’,

Struct. Optim. J., 9, 83-88 (1995).

L. S. Lasdon and A. D. Waren, GRG2 User's Guide, University of Texas at Austin, 1986.

C. Fleury, The CONLIN program: a new capability for structural optimization within PERMAS’, Proc. of Finite

Elements in Engineering Applications, Strasbourg, France, 1990.

A. Mifle, P. E. Moseley, A. V. Levy and G. M. Coggins, ‘On the method of multipliers for mathematical programming

problems’, J. Optim. Theory Appl., 10, 1-33 (1972).

D. E. Goldberg, Genetic Algorithms in Search Optimization, and Machine Learning, Addison-Wesley, Reading, MA,

1989.

C. Fleury, ‘Structural weight optimization by dual methods of convex programming’, Int. j. numer. methods eng., 14,

1761-1783 (1979).

K. Svanberg, ‘The method of moving asymptotes—A new method for structural optimization’ Int. j. numer. methods.

eng., 24, 359-373 (1987).

C. Fleury and V. Braibant, ‘Structural optimization: 2 new dual method using mixed variables’, Int. j. numer. methods.

eng., 23, 409-428 (1986).

V.B. Venkayya and V. A. Tischler, ANALYZE: analysis of aerospace structures with membrane elements’, Tech. Rep.

AFFDL-TR-78-170 (1978).

1774 C. N. PATNAIK ET AL.

36

.
38.
39.
40.
41.

42.

43.

_S. N. Patnaik and R. H. Gallagher, ‘Gradients of behaviour constraints and reanalysis via the integrated force
method’, Int. j. numer. methods eng., 23, 2205-2212 (1986).

S. N. Patnaik and N. K. Srivastava, ‘On automated optimum design of trusses’, Comp. Methods Appl. Mech. Eng.,
245-265 (1976).

G. N. Vanderplaats and F. Moses, ‘Automated design of trusses for optimum geometry’, J. Struct. Div. Am. Soc. Civil
Eng. Proc., 98, 671-690 (1972).

L. Berke and N. S. Khot, Use of Optimality Criteria Methods for Large Scale Systems, Air Force Flight Dynamics
Lab., Wright-Patterson Air Force Base, Ohio, 1974.

N. S. Khot, Optimization of Structures for Strength and Stability Requirements, Air Force Flight Dynamics Lab,,
Wright-Patterson Air Force Base, Ohio, 1973.

S. N. Patnaik, J. D. Guptill and L. Berke, ‘Singularity in structural optimization’, Int. j. numer. methods eng., 36,
931-944 (1993).

A.S. Gendy, J. D. Guptill, D. A. Hopkins and S. N. Patnaik, ‘Large scale structural optimization with substructuring
in a parallel computational environment’, 0AI/OSC/N ASA Proc. Symp. on Application of Parallel and Distributed
Computing, 1994, pp. 89-105.

S. N. Patnaik, R. M. Coroneos, J. D. Guptill and D. Hopkins, Performance Trend of Different Algorithms for Structural
Design Optimization, NASA TM-4698, 1995,

