Spherical Harmonics Analysis of the ECMWF Global Wind Fields at the 10-Meter Height Level During 1985: A Collection of Figures Illustrating Results

Braulio V. Sanchez
Goddard Space Flight Center
Greenbelt, Maryland

Masahiro Nishihama
Hughes STX
Greenbelt, Maryland

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland
1997
ABSTRACT

Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January.

A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components.

The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.
ACKNOWLEDGMENTS

We express our appreciation to Dr. Nikolaos K. Pavlis of Hughes STX for providing the Fast Fourier Transform software. We give thanks to Dr. Andrew Y. Au of Hughes STX for facilitating access to the ECMWF data set. This work was supported by the Space Geodesy Branch at the Goddard Space Flight Center and the TOPEX/POSEIDON project.
Table of Contents

Introduction .. 1

Global Wind Fields ... 3
 Figures 1–10 ... 5

Time Variability of Selected Spherical Harmonics Coefficients .. 17
 Figures 11–45 ... 19

References .. 57

Appendix I .. 59

Appendix II ... 61
INTRODUCTION

The general circulation of the ocean is driven by various types of forces, including surface wind stress. The results presented in this publication were obtained as part of an investigation of the wind-driven variability of the ocean circulation. It is possible that these results might be of interest to other investigators, not only in the limited context of ocean circulation, but also from the larger perspective of geodynamics, Earth rotation, and space geodesy. With such possibility in mind, it was decided to document the results. However, the intention is only to present the results obtained in graphical form; no interpretation is attempted here.

Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. The original global grid is 2.5° latitude by 2.5° longitude, and the data set used in this investigation has been reprocessed and interpolated onto a 2° latitude by 2.5° longitude grid, as described by Schubert et al. (1990).

A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The formal validity of this procedure was established by Simmonds (1974). Formal developments are given in Appendix I.

The software used in the analysis implements a technique developed by O. L. Colombo (1981), based on the Fast Fourier Transform.
GLOBAL WIND FIELDS

Figures 1-10 show the vectors for the wind fields corresponding to various cases. With the exception of figures 7 and 8, the time epoch is January 1, 0 hour GMT, 1985. This is the time of the first data entry for 1985.

Figure 1 shows the wind field as obtained from the ECMWF data files, the maximum magnitude is 22 meters/second. This wind field was fitted by means of an expansion in spherical harmonics including coefficients up to degree and order 10. The resulting field is shown in figure 2; maximum wind speed is 12 meters/second. The difference between the data and the fit is displayed in figure 3; the largest discrepancy has a magnitude of 16 meters/second.

Figure 4 exhibits the wind field obtained by fitting the data with spherical harmonics up to degree and order 50, note the improvement as compared to the degree-10 fit; the maximum wind speed is now 20 meters/second. The residuals are shown in figure 5; the maximum error has a magnitude of 4.5 meters/second. Note that the largest discrepancies are concentrated around the poles.

Figures 6 and 7 exhibit the wind fields from the ECMWF data files at January 1, 0 hour GMT, 1985 and at July 1, 0 hour GMT, 1985; the wind vectors are plotted with equal length in order to show clearly the wind direction, the magnitudes are indicated by the shading, the lower (higher) wind speeds corresponding to the darker (brighter) shades. Figure 8 depicts the average wind field for 1985.

Figures 9 and 10 are included to display the effect of some of the coefficients in the spherical harmonic expansion. Figure 9 brings to view the wind field corresponding to the C_{10} coefficient by itself. Figure 10 makes apparent the wind field produced by the sum of the C_{11} and S_{11} coefficients.
FIGURES 1–10
WIND VELOCITY YEAR 1985: JAN 1 00 DATA

Figure 1. Wind Field at 1985, January 1, 00: As Obtained from the ECMWF Data Set.
Figure 2. Wind Field at 1985, January 1, 00. As Obtained from the Spherical Harmonic Expansion to Degree and Order 10.
WIND VELOCITY YEAR 1985: JAN 100 FIT (10X10) - DATA

Figure 3. Vector Difference Between the ECMWF Wind Field, and the Wind Field from the Spherical Harmonic Expansion to Degree and Order 10.
Figure 4. Wind Field at 1985, January 1, 00. As Obtained from the Spherical Harmonic Expansion to Degree and Order 50.
Figure 5. Vector Difference Between the ECMWF Wind Field, and the Wind Field from the Spherical Harmonic Expansion to Degree and Order 50.
Figure 6. Wind Field Directions at 1985, January 1, 00. As Obtained from the ECMWF Data Set.
Figure 7. Wind Field Directions at 1985, July 1, 00. As Obtained from the ECMWF Data Set.
Figure 8. Average Wind Field Directions for 1985. As Obtained from the ECMWF Data Set.
Figure 9. Wind field at 1985, January 1, 00, as obtained from the Spherical Harmonic Expansion, using only the C_{00} coefficient.
WIND VELOCITY YEAR 1985: JAN 1 00 C11.S11

Figure 10. Wind Field at 1985, January 1, 00. As Obtained from the Spherical Harmonic Expansion, Using Only the Cn and Sn Coefficients.
TIME VARIABILITY OF SELECTED SPHERICAL HARMONIC COEFFICIENTS

Figures 11–26 portray the time variability of the spherical harmonic coefficients up to degree and order 3. Each figure shows the results for the east-west (u) and north-south (v) velocity components. There are 730 values over the course of a year for each spherical harmonic coefficient. These time series were analyzed by means of Fourier expansions in sine and cosine terms, as presented in Appendix II. Plots of power as a function of frequency are given in figures 27–34. In general, most of the power is concentrated in the low frequency terms, especially the zero frequency component. The east-west velocity component predominates over the north-south, with the exception of the coefficients C_{00}, C_{30}, and S_{32}.

The time series analysis was applied also to the power associated with degrees 0-10, as given by the last equation in Appendix I. The results are displayed in figures 35-45. Each figure presents the results for the east-west (u) and north-south (v) velocity components. As shown in part (a) of the figures, most of the power is contained in the zero-frequency term. Part (b) makes evident the power in the other frequencies by setting the constant part equal to zero.
Figure 11a. The Coefficient C_{00}, Year 1985. The East-West Velocity Component (u).

Figure 11b. The Coefficient C_{00}, Year 1985. The North-South Velocity Component (v).
Figure 12a. The Coefficient C_{10}, Year 1985. The East-West Velocity Component (u).

Figure 12b. The Coefficient C_{10}, Year 1985. The North-South Velocity Component (v).
Figure 13a. The Coefficient C_{11}, Year 1985. The East-West Velocity Component (u).

Figure 13b. The Coefficient C_{11}, Year 1985. The North-South Velocity Component (v).

"U10M COEFFICIENT C11 IN 1985"

"V10M COEFFICIENT C11 IN 1985"
Figure 14a. The Coefficient S_{11}, Year 1985. The East-West Velocity Component (u).

Figure 14b. The Coefficient S_{11}, Year 1985. The North-South Velocity Component (v).
Figure 15a. The Coefficient C_{20}, Year 1985. The East-West Velocity Component (u).

Figure 15b. The Coefficient C_{20}, Year 1985. The North-South Velocity Component (v).
Figure 16a. The Coefficient C_{21}, Year 1985. The East-West Velocity Component (u).

Figure 16b. The Coefficient C_{21}, Year 1985. The North-South Velocity Component (v).
Figure 17a. The Coefficient S_{21}, Year 1985. The East-West Velocity Component (u).

Figure 17b. The Coefficient S_{21}, Year 1985. The North-South Velocity Component (v).
Figure 18a. The Coefficient C_{22}, Year 1985. The East-West Velocity Component (u).

Figure 18b. The Coefficient C_{22}, Year 1985. The North-South Velocity Component (v).
Figure 19a. The Coefficient S_{22}, Year 1985. The East-West Velocity Component (u).

Figure 19b. The Coefficient S_{22}, Year 1985. The North-South Velocity Component (v).
Figure 20a. The Coefficient C_{30} Year 1985. The East-West Velocity Component (u).

Figure 20b. The Coefficient C_{30} Year 1985. The North-South Velocity Component (v).
Figure 21a. The Coefficient C_{31}, Year 1985. The East-West Velocity Component (u).

Figure 21b. The Coefficient C_{31}, Year 1985. The North-South Velocity Component (v).
Figure 22a. The Coefficient S_{31}, Year 1985. The East-West Velocity Component (u).

Figure 22b. The Coefficient S_{31}, Year 1985. The North-South Velocity Component (v).
Figure 23a. The Coefficient C_{32}, Year 1985. The East-West Velocity Component (u).

Figure 23b. The Coefficient C_{32}, Year 1985. The North-South Velocity Component (v).
Figure 24a. The Coefficient S_{32}, Year 1985. The East-West Velocity Component (u).

Figure 24b. The Coefficient S_{32}, Year 1985. The North-South Velocity Component (v).
Figure 25a. The Coefficient C_{33}, Year 1985. The East-West Velocity Component (u).

Figure 25b. The Coefficient C_{33}, Year 1985. The North-South Velocity Component (v).
Figure 26a. The Coefficient S_{33}, Year 1985. The East-West Velocity Component (u).

Figure 26b. The Coefficient S_{33}, Year 1985. The North-South Velocity Component (v).

38

DEGREE 0 POWER SPECTRUM FOR 1985

References

APPENDIX I

HARMONIC ANALYSIS OF FUNCTIONS DEFINED ON THE GLOBE

Let \(f(\theta, \lambda) \) represent a function defined globally at a set of discrete points, that is,

\[
f(\theta, \lambda) = f(\theta_i, \lambda_j)
\]

\[i = 0, 1, \ldots, n-1\]
\[j = 0, 1, \ldots, m-1\]

\(\lambda_j\) : longitude \hspace{1cm} \lambda_{j+1} - \lambda_j = 2\pi/m

\(\theta_i\) : colatitude \hspace{1cm} \theta_{i+1} - \theta_i = \pi/n

Assume that \(f(\theta, \lambda) \) can be expanded in a series of spherical harmonics,

\[
f(\theta, \lambda) = \sum_n \sum_m \left\{ (C_{nm} \cos(m\lambda) + S_{nm} \sin(m\lambda)) \right\} P_{nm}(\theta)
\]

where,

\(P_{nm}(\theta)\) : fully normalized Legendre functions of degree \(n\), order \(m\), i.e.

\[
\int \int P_{nm}(\theta) \left\{ \cos(m\lambda), \sin(m\lambda) \right\} P_{kl}(\theta) \left\{ \cos(l\lambda), \sin(l\lambda) \right\} \sin(\theta) \, d\theta \, d\lambda = (4\pi) \delta_{nk} \delta_{ml}
\]

Then,

\[
C_{nm} = \frac{1}{4\pi} \int \int f(\theta, \lambda) P_{nm}(\theta) \cos(m\lambda) \sin\theta \, d\theta \, d\lambda
\]

\[
S_{nm} = \frac{1}{4\pi} \int \int f(\theta, \lambda) P_{nm}(\theta) \sin(m\lambda) \sin\theta \, d\theta \, d\lambda
\]

The power associated with the terms of degree \(n\) is given by,

\[
W_n = \sum_m (C_{nm})^2 + (S_{nm})^2
\]
APPENDIX II

POWER SPECTRUM OF FUNCTIONS DEFINED ON THE GLOBE

Let F denote a function such as C_{nm}, S_{nm}, or W_n, as defined in Appendix I. If certain basic conditions are satisfied, then F can be expanded in a Fourier series:

$$F = a_0 + a_1 \cos(t) + b_1 \sin(t) + a_2 \cos(2t) + b_2 \sin(2t) + \ldots + a_{365} \cos(365t) + b_{365} \sin(365t).$$

for $0 \leq t \leq 2\pi$

If the data covers a time span of one year, then the zero frequency term corresponds to the average over the year, frequency 1 corresponds to a periodicity of one year, frequency 2 corresponds to a periodicity of 6 months, and so on. The power corresponding to each frequency is given by:

$$P_i = (a_i)^2 + (b_i)^2$$
Spherical Harmonics Analysis of the ECMWF Global Winds Fields at the 10-Meter Height Level During 1985: A Collection of Figures Illustrating Results

Braulio V. Sanchez and Masahiro Nishihama

Goddard Space Flight Center
Greenbelt, Maryland

National Aeronautics and Space Administration
Washington, DC 20546-0001

Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January.

A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components.

The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.

Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January.

A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components.

The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.

Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January.

A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components.

The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.