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Abstract

Mesh adaption is a powerful tool for efficient un-

structured grid computations but causes load imbal-

ance on multiprocessor systems. To address this prob-

lem, we have developed PLUM, an automatic portable

framework for performing adaptive large-scale numer-

ical computations in a message-passing environment.

This paper makes several important additions to our

previous work. First, a new remapping cost model is

presented and empirically validated on an SP2. Next,

our load balancing strategy is applied to sequences of

dynamically adapted unstructured grids. Results indi-

cate that our framework is effective on many proces-

sors for both steady and unsteady problems with sev-

eral levels of adaption. Additionally, we demonstrate
that a coarse starting mesh produces high quality load

balancing, at a fraction of the cost required for a fine

initial mesh. Finally, we show that the data remapping

overhead can be significantly reduced by applying our

heuristic processor reassignment algorithm.

1 Introduction

Dynamic mesh refinement/coarsening on unstruc-

tured grids is a powerful tool for computing large-scale
problems that require grid modifications to efficiently

resolve solution features. Unfortunately, the adaptive

solution of unsteady problems causes load imbalance

among processors on a parallel machine because the

computational intensity is both space and time depen-

dent. Various dynamic load balancing methods have

been reported to date; however, most of them lack a

global view of loads across processors.

Our goal is to build a portable system for effi-

ciently performing adaptive large-scale numerical cal-

culations in a parallel message-passing environment.

Figure 1 depicts our framework, called PLUM, for such

an automatic system. The mesh is first partitioned and

mapped among the available processors. A solver then

runs for several iterations, updating solution variables.

Once an acceptable solution is obtained, a mesh adap-

tion procedure is invoked. It first targets edges for

coarsening and refinement based on an error indicator
computed from the numerical solution. The old mesh

is then coarsened, resulting in a smaller grid. Since

edges have already been marked for refinement, it is
possible to exactly predict the new mesh before actu-

ally performing the refinement step. Program control

is thus passed to the load balancer at this time. A

quick evaluation step determines if the new mesh will

be so unbalanced as to warrant a repartitioning. If

the current partitions will remain adequately load bal-
anced, control is passed back to the subdivision phase

of the mesh adaptor. Otherwise, a repartitioning pro-

cedure is used to divide the new mesh into subgrids.

The new partitions are then reassigned to the proces-
sors in a way that minimizes the cost of data move-

ment. If the remapping cost is less than the compu-

tational gain that would be achieved with balanced

partitions, all necessary data is appropriately redis-

tributed. Otherwise, the new partitioning is discarded.

The computational mesh is then actually refined and
the numerical calculation is restarted.

Extensive details of the parallel mesh adaption
scheme, called 3D_TAG, that is used in this work is

given in [6]. The parallel version consists of C++ and
MPI code wrapped around the original serial mesh

adaption program [3]. An object-oriented approach
allowed the distributed-memory implementation to be

performed in a clean and efficient manner. Notice from

the framework in Fig. 1 that splitting the mesh refine-

ment step into two distinct phases of edge marking and

mesh subdivision allows the subdivision phase to oper-
ate in a more load balanced fashion. In addition, since

data remapping is performed before the mesh grows
in size due to refinement, a smaller volume of data is

moved. This, in turn, leads to significant savings in
the redistribution cost.

2 Dynamic Load Balancing

PLUM is a novel method to dynamically balance
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Figure 1: Overview of PLUM, our framework for parallel adaptive numerical computation.

the processor workloads with a global view. Results re-

ported earlier either focused on fundamental load bal-

ancing issues [7] or various refinement strategies [2,5]
to demonstrate the viability and effectiveness of our

framework. This paper presents, for the first time,

the application of PLUM to sequences of dynamically

adapted unstructured grids. We also present a data

remapping cost model that can accurately predict the
total cost of data redistribution on an SP2 given the
number of tetrahedral elements that have to be moved

among the processors.
Our load balancing procedure has five novel fea-

tures: (i) a dual graph representation of the initial
computational mesh keeps the complexity and connec-

tivity constant during the course of an adaptive com-

putation; (ii) a parallel mesh repartitioning algorithm
avoids a potential serial bottleneck; (iii) a heuristic

remapping algorithm quickly assigns partitions to pro-
cessors so that the redistribution cost is minimized;

(iv) an efficient data movement scheme allows remap-

ping and mesh subdivision at a significantly lower cost

than previously reported; and (v) accurate metrics es-
timate and compare the computational gain and the

redistribution cost of having a balanced workload after

each mesh adaption step.

Using the dual of the initial computational mesh
for the purpose of dynamic load balancing is one of

the key features of this work. Each dual graph ver-

tex has two weights associated with it. The computa-

tional weight, Weomp, models the workload for the cur-
responding element. The remapping weight, Wremap,

models the cost of moving the element from one pro-

cessor to another. The weight Wcomp is set to the num-
ber of leaf elements in the refinement tree because only

those elements that have no children participate in the

numerical computation. The weight Wrem_p, however,

is set to the total number of elements in the refine-

ment tree because all descendants of the root element

must move with it from one partition to another, if

so required. Every edge of the dual graph also has

a weight, Wcomm, that models the runtime interpro-
cessor communication. The value of Wcomm is set to

the number of faces in the computational mesh that

corresponds to the dual graph edge. The mesh con-

nectivity, Wcornp, and Wcomm together determine how

dual graph vertices should be grouped to form par-
titions that minimize both the disparity in the par-

tition weights and the runtime communication. The

Wremap determines how partitions should be assigned
to processors such that the cost of data redistribution

is minimized. New computational grids obtained by

adaption are translated to Wcomp and Wremap for every

vertex and to Wcomm for every edge in the dual mesh.

If a preliminary evaluation step determines that

the dual graph with a new set of Wcomp is unbalanced,
the mesh needs to be repartitioned. A good partitioner

should minimize the total execution time by balancing

the computational loads and reducing the interproces-
sor communication time. In addition, the repartition-

ing phase must be performed very rapidly for our load

balancing framework to be viable. For the test cases
in this paper, an alpha version of ParMeTiS [4], a

parallel multilevel algorithm, was used as the repar-

titioner. Results indicate that this partitioner can be

effectively used inside PLUM; however, any other al-

gorithm can also be used as long as it quickly delivers

partitions that are reasonably balanced and require
minimal overhead.

Once new partitions are obtained, they must be

mapped to processors such that the redistribution cost

is minimized. In general, the number of new partitions
is an integer multiple F of the number of processors.



Eachprocessoris then assigned F unique partitions.

The first step toward processor reassignment is to com-

pute a similarity measure S that indicates how the

remapping weights Wremap of the new partitions are

distributed over the processors. It is represented as

a matrix where entry Sij is the sum of the t/_rema p

of all the dual graph vertices in new partition j that

already reside on processor i. A similarity matrix for

P = 4 and F = 2 is shown in Fig. 2. Only the non-zero
entries are shown.

New Partitions

New Processors

Figure 2: A similarity matrix after processor reassignment

using the heuristic algorithm and the TotalV metric.

The goal of the processor reassignment phase is

to find a mapping between partitions and processors
such that the data redistribution cost is minimized.

Various cost functions are usually needed to solve this

problem for different architectures. In [5], we investi-
gated two general metrics: TotalV, that minimizes the

total volume of data moved among all processors, and

MaxV, that minimizes the maximum flow of data to or

from any single processor. TotalV assumes that by

reducing network contention and the total number of

elements moved, the remapping time will be reduced.

Both an optimal and a heuristic greedy algorithm have

been implemented for solving the processor reassign-

ment problem using TotalV [5]. Applying the heuristic
procedure to the similarity matrix in Fig. 2 generates

the processor assignment shown in the bottom row.

It was proved in [5] that a processor assignment ob-
tained using the heuristic algorithm can never result

in a data movement cost that is twice that of the op-

timal assignment. NaxV, on the other hand, considers

data redistribution in terms of solving a load imbal-

ance problem, where it is more important to minimize

the workload of the most heavily-weighted processor
than to minimize the sum of all the loads. An optimal

algorithm for solving the assignment problem using

NaxV has also been implemented [5].

3 Remapping Cost Model

Once the reassignment problem is solved, a model

is needed to quickly predict the expected redistribu-

tion cost for a given architecture. Accurately estimat-

ing this time is very difficult due to the large number

and complexity of the costs involved in the remapping

procedure. The computational overhead includes re-

building internal data structures and updating shared

boundary information. Predicting the latter cost is

particularly challenging since it is a function of the

old and new partition boundaries. The communication

overhead is architecture-dependent and can be difficult

to predict especially for the many-to-many collective

communication pattern used by the remapper.

Our redistribution algorithm consists of three ma-

jor steps: first, the data objects moving out of a par-

tition are stripped out and placed in a buffer; next,

a collective communication appropriately distributes

the data to its destination; and finally, the received

data is integrated into each partition and the bound-

ary information is consistently updated. Performing

the remapping in this bulk fashion, as opposed to send-

ing individual small messages, has several advantages

including the amortization of message start up costs

and good cache performance. Additionally, the total

time can be modeled by examining each of the three
steps individually since the two computational phases

are separated by the implicit barrier synchronization of

the collective communication. The computation time

can therefore be approximated as:

a x max(ElemsSent) + fl x max(ElemsRecd) + 6,

where _ and _ represent the time necessary to strip

out and insert an element respectively, and 6 is the

additional cost of processing boundary information.
The maximum values of glemsSent and ElemsRecd

can be quickly derived from the solved similarity ma-

trix. Since the value of _ is difficult to predict exactly

and constitutes a relatively small part of the computa-
tion, we assume that it is a small constant. To simplify

our model even further, we assume that a -- ft.
Much work has been done to model communica-

tion overhead including LogGP [1] and BSP [9]. Both

models make the following assumptions which hold

true for most architectures including the SP2: a receiv-

ing processor may access a message or parts of it only

after the entire message has arrived; and, at any given

time a processor can either be sending or receiving a
single message. Our redistribution procedure closely

follows the superstep model of BSP. An advantage of
the SP2 interconnection mechanism is that all nodes

can be considered equidistant from one another. This

allows us to predict communication overhead without

the need to model multiple hops for individual mes-

sages. We approximate our communication cost as:

g x max(ElemsSent) + g × max(ElemsRecd) + 1,

where g is a machine-specific cost of moving a single
element and 1 is the time for barrier synchronization.



Thetotal expected time for the redistribution pro-
cedure can therefore be expressed as:

7 x HaxSR + O,
where MaxSR = max(glemsSent) + max(ElemsRecd),

7 = a+g, and O = 6+!. In order to compute the

slope and intercept of this linear function, several data

points need to be generated for various redistribution

patterns and their corresponding run times. A simple
least squares fit can then be used to approximate 7

and O. This procedure needs to be performed only

once for each architecture, and the values of 7 and O

can then be used in actual computations to estimate
the redistribution cost. Note that there is a close rela-

tionship between MaxSR of the remapping cost model
and the theoretical metric MaxV. The optimal similar-

ity matrix solution for Max-_R is provably no more than
twice that of _laxV.

The computational gain due to repartitioning is

proportional to the decrease in the load imbalance

achieved by running the adapted mesh on the new

partitions rather than on the old partitions. It can be
old new

expressed as TlterNadapt(W°ax -- Wmnax), where _/_ter

is the time required to run one solver iteration on

one element of the original mesh, Nadapt is the num-
ber of solver iterations between mesh adaptions, and

newW °ld and Wm_x are the sum of the Wcomp on the most
• " rfl&X

heavily-loaded processor for the old and new partition-

ings, respectively. The new partitioning and processor

reassignment are accepted if the computational gain is

larger than the redistribution cost. In that case, all
data is appropriately redistributed.

4 Results

The 3D_TAG parallel mesh adaption procedure

and the PLUM global load balancing strategy have

been implemented in C, C++, and MPI on an SP2.

The computational mesh for the test cases in this pa-

per is one used to simulate an acoustics experiment

where a 1/7th-scale model of a UH-1H helicopter rotor
blade was tested over a range of subsonic and transonic

hover-tip Mach numbers. Detailed numerical results of

the simulation are given in [8]. A cut-out view of the

initial tetrahedral mesh is shown in Fig. 3.

In the first set of experiments, a total of three

adaptions are performed in sequence on this initial

mesh. Table I lists the size of the computational mesh

after each level of adaption. Notice that the final mesh

is more than an order of magnitude larger than the
initial mesh. This is a steady-state calculation where

mesh adaption is used to resolve the leading edge com-

pression and capture both the surface shock and the

acoustic wave that propagates to the far field.

Figure 4 shows how the execution time is spent

during the adaption and the subsequent load balanc-

Figure 3: Cut-out view of the initial tetrahedral mesh.

Vertices Elements Edges

Initial 13,967 60,968 78,343

Level 1 35,219 179,355 220,077

Level 2 72,123 389,947 469,607
Level 3 137,474 765,855 913,412

Table I: Progression of grid size through a sequence of
three levels of adaption for a steady-state computation.

ing phases for the first and third levels. Our heuristic

greedy algorithm is used to perform the processor re-

assignment. The reassignment times are not shown

since they are several orders of magnitude smaller

than the other times. The repartitioning curves, using

ParMeTiS [4], are almost identical for the three lev-
els because the time to repartition mostly depends o,

the initial problem size. The repartitioning times ar, _

also almost independent of the number of processors

The mesh adaption times increase with the size of th, _

mesh; however, they consistently show an efficiency of

about 85% on 64 processors for all three levels. In
fact, the efficiency increases with the mesh size be-

cause of a larger computation-to-communication ratio

The remapping times gradually decrease as the num-

ber of processors is increased. This is because even

though the total volume of data movement increases
with the number of processors, there are actually more

processors to share the work. The remapping time in-

creases from one adaption level to the next because of

the growth in the mesh size. However, as shown later

in this paper, the remapping times stabilize when the
mesh size remains approximately constant. More im-

portantly, the remapping overhead always dominates

and is generally about four times the adaption cost on

64 processors. This is not unexpected since remapping

is considered the bottleneck in dynamic load balancing.

It is for this reason that the remapping cost needs to
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be predicted accurately before a load balancing phase
to be certain that the data redistribution cost will be

more than compensated by the computational gain.

The second set of experiments is performed

to compute the slope 7 and the intercept O of our

redistribution cost model. Experimental data is gath-

ered by running various redistribution patterns. The

remapping times are then plotted against two metrics,

Tota.lV and MaxSR, in Fig. 5. Results demonstrate
that on an SP2, there is little obvious correlation be-

tween the total number of elements moved (Total'C)

and the expected run time for the remapping proce-

dure. On the other hand, there is a clear linear correla-
tion between the maximum number of elements moved

(llaxSR) and the actual redistribution time. There are
some perturbations in the plots resulting from factors

such as network hotspots and shared data irregulari-

ties, but the overall results show that our redistribu-

tion model successfully estimates the data remapping

time. This important result indicates that reducing
the bottleneck overhead, rather than the aggregate,

guarantees a reduction in the redistribution time.
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The third set of experiments is performed to

evaluate the efficacy of PLUM in an unsteady envi-

ronment where the adapted region is strongly time-

dependent. To achieve this goal, a simulated shock

wave is propagated through the initial mesh shown in

Fig. 3. The test case is generated by refining all ele-

ments within a cylindrical volume moving left to right

across the domain with constant velocity, while coars-

ening previously-refined elements in its wake. The

performance of PLUM is measured at nine successive

adaption levels. Note that because these results are

derived directly from the dual graph, mesh adaption

times are not reported, and remapping overheads are

computed using our redistribution cost model.

Figure 6 shows the progression of grid sizes for
the nine levels of adaption in the unsteady simulation.

Both coarse and fine meshes are used in the experi-

ment to investigate the relationship between load bal-

ancing performance and dual graph size. The initial

fine mesh is eight times the size of the coarse mesh

shown in Fig. 3. Note that although an axisymmetric
cylinder moves through the meshes at constant veloc-

ity, the sizes of the meshes change erratically due to

the nonuniformity of the initial meshes.
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104 i _ _ 4 _ 6 _ _
Adaption level

Figure 6: Progression of grid sizes through nine levels of

adaption for an unsteady computation.

Figure 7 presents the partitioning and remapping
times for both mesh granularities. Two remapping

strategies are used, resulting in different remapping
times at each level. One strategy uses the default pro-

eessor mapping given by ParMeTiS [4], while the other

performs processor reassignment based on our heuris-
tic solution of the similarity matrix. Several obser-

vations can be made from the resulting graphs. First,

our heuristic remapper always outperforms the default

strategy, typically resulting in over a two-fold speedup
of the data remapping phase. This shows that pro-

cessor reassignment must be performed using a proper

metric to minimize the remapping time. Second, when

comparing dual graph granularities, results show that
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Figure 7: Partitioning and remapping times.



the finer mesh increases both the partitioning and the

remapping times by almost an order of magnitude.

This is expected since the larger graph is harder to par-

tition and requires more data movement during remap-

ping. Finally, increasing the number of processors does

not have a major effect on the partitioning overhead,

but causes a noticeable reduction in the remapping

times. This indicates that our load balancing strategy

will remain viable on a large number of processors.

Figure 8 presents the quality of load balancing for

both meshes. Load balancing quality is defined in two

ways: the computational load imbalance factor and the

percentage of cut edges. The load imbalance factor is

the ratio of the sum of the Wcomp on the most heavily-
loaded processor to the average load across all proces-

sors. For all the cases, the partitioner does an excellent

job of reducing the imbalance factor to unity. Using

a finer mesh has a negligible effect on the imbalance

factor after load balancing, but requires a substan-

tially longer repartitioning time. The percentage of cut
edges always increases with the number of processors.

This is expected since the surface-to-volume ratio in-

creases with the number of partitions. Notice that the

percentage of cut edges generally grows with each level

of adaption. This is because successive adaptions cre-
ate a complex distribution of computationally-heavy

nodes in the dual graph, thereby requiring partitions
to have more complicated boundaries to achieve load
balance. This increases the surface-to-volume ratio

of the partitions, resulting in a higher percentage of

cut edges. The finer mesh consistently has a smaller

percentage of cut edges because the partitioner has a

wider choice of edges to find a better cut. However,

we believe that this savings in the number of cut edges

15

!,°

0
15.

P-16;Coarsemesh
• Imbalancefactor
• %Cut edges
.......BeforeLB
--AfterLB

"'-_"_ T'""_-"..--...._-..-..._'""J

P-16; Fine mesh

_',_"-: .:"_,.-..._......._.,._,.......

]:',,,,_1;Comc_

 10t . /

!5__'_/ ""*".../)(*'i/)i

Adaption level

Figure 8: Quality of load balancing.

P-64;Finemesh

_'--,j_. / _.,.
r J"" ",.

Adaptionlevel

does not warrant the significantly higher overhead of
the finer mesh.

5 Conclusions

We have shown in this paper that our load balanc-

ing scheme, called PLUM, works well for both steady
and unsteady adaptive problems with many levels of

adaption, even when using a coarse initial mesh. A

finer starting mesh may be used to achieve lower edge

cuts and marginally better load balance, but is gen-

erally not worth the increased partitioning and data

remapping times. Results have also demonstrated that

our framework scales with the number of processors

and that our heuristic processor reassignment algo-

rithm significantly reduces data remapping times. Fi-

nally, a new remapping cost model was presented and
quantitatively validated. Results indicated that reduc-

ing the bottleneck overhead guarantees a reduction in
the total redistribution time.
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