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Abstract

Scveral new computational algorithms arc presented to compute the deadbeat predictive
control law that brings the output response to rest after a finite number of time steps. The
first algorithm makes use of a multi-step-ahcad output prediction to compute the control law
without cxplicitly calculating the controllability matrix. The system identification must be
performed first and then the predictive control law is designed. The second algorithm uses
the input and output data directly to compute the feedback law. It combines the system
identification and the predictive control law into one formulation. The third algorithm uses
an obscrvable-canonical form rcalization to design the predictive controller. The relationship
between all three algorithms is established through the use of the state-space representation.
All algorithms arc applicable to multi-input multi-output systems with disturbance inputs.

In addition to the fcedback terms, feedforward terms may also be added for disturbance
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inputs if they arc measurable. Although the feedforward terms do not influence the stability

of the closed-loop feedback law, they enhance the performance of the controlled system.

1 Introduction

The traditional approach for active control of mechanical and aerospace systems involves
four key steps including system modecling, system identification testing, controller design
and verification tests. The procedure is very time consuming and costly. In many cascs,
such as the acoustic noise reduction for aircraft and vibration suppression for spacecraft,
the approach cannot be quick enough to catch up with the system changes. On-linc system
identification and adaptive controller design become the only solution for the controlled
system. Advanced algorithms must be developed for autonomous dynamic response and
uncertainty characterization, and the controller design directly from input and output data.

There is a great amount of literature on the subject of adaptive control.!~!° Most of
them use a linear input-output model that describes the current output prediction as a linear
combination of past input and output measurements. The finite difference model, which is
commonly called the Auto-Regressive moving average model with eXogenous input (ARX),
is the one used most often by researchers for the adaptive control design. For example,
the Generalized Predictive Control (GPC)?® starts with the ARX model with the absence of
the direct transmission term and builds a multi-step ahead output predictor by solving the
Diophantine equation recursively. The predictive control law is then computed using the
Toeplitz matrix formed from the step response time history of the system in conjunction
with a cost function with weighted input and output. There are three design parameters
involved including the control weight, the prediction horizon and the control horizon. A

proper combination of these parameters is required in order to guarantee stability of the
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predictive control law. In contrast to the conventional approach, a novel approach has
been introduced by the authors!? integrating a state-space based modern control into its
corresponding ARX model. It cxploits the use of the relationship between the state-space
model and the ARX model. The predictive controller thus derived has the same form as
those derived from classical input-output models with the direct transmission term. Yet it
may also be implemented as an observer-based full-state feedback controller. This provides
flexibilities for control engineers to perform their job in a way that they prefer. Similar
to GPC, the approach has one control design parameter and onc identification paramecter
related to the order of the system. The control design parameter, which is similar to the GPC
control horizon, gives the number of time steps for the system to become deadbeat (rest).
For convenience, the approach described in Ref. [12] is referred to as the Deadbeat Predictive
Control (DPC). The DPC guaranteces closed-loop stability for a controllable system regardless
of minimum or non-minimum phase. No special treatment is required when the system has
a dircct transmission term.

This paper develops several new deadbeat control algorithms to compute the dcadbeat
predictive control law. The feedback law is supposed to bring the output response to rest
after a few specific time steps. The first algorithm makes use of a multi-step-ahead output
prediction to compute the DPC without cxplicitly computing the controllability matrix as
shown in Ref. [12]. Given the cocfficient matrices of an ARX modecl, a recursive formulation
for computing the multi-step-ahcad output prediction is presented. The recursive formula
is somewhat different from the one described in Ref. [5] for the Diophantine equation. The
sccond algorithm uses the input and output data directly to compute the DPC without

using the ARX coefficient matrices. It combines the system identification and the predictive



control law into one formulation. The third algorithm uses an observable-canonical form
realization from an ARX model to derive the DPC. The approach is similar to that used in
Ref. [12]. However, it has a different form of companion matrix for the state matrix. The
relationship between all threc algorithms is established through the use of the state-space
representation. All three algorithms are applicable to multi-input multi-output systems with
disturbance inputs. In addition to the feedback terms for DPC, feedforward terms may also
be added for disturbance inputs if they are mcasurable. Although the feedforward terms do
not influence the stability of the closed-loop feedback design, they enhance the performance
of the controlled system. All good features for the method described in Ref. [12] remain true

for the algorithms developed in this paper.
2 Multi-Step Output Prediction

The input output relationship of a linear system, even a nonlinear system, is commonly
described by a finite difference model. Given a system with r inputs and m outputs, the

finite difference equation for the 7 x 1 input u(k) and the m x 1 output y(k) at time k is

y(k) = awy(k— 1)+ aylk —2) +--- + opy(k — p)

+ Bou(k) + Brulk — 1) + Bpu(k — 2) + - - + Byu(k ~ p) (1)

It simply mcans that the current output can be predicted by the past input and output
time histories. The finite difference model is also often referred to as the ARX model where
AR refers to the AutoRegressive part and X refers to the eXogeneous part. The coefficient
matrices, ; (1 = 1,2,...,p) of mxmand §; (i =0,1,...,p) of mxr, are commonly referred
to as the observer Markov paramecters (OMP) or ARX parameters. The matrix 3, is the

direct transmission term.



By shifting a time step, one obtains

y(k+1) = ayy(k) + apy(k — 1) +--- +opy(k —p+ 1)

+ Bou(k + 1) + Bru(k) + Boulk — 1) +--- + Bpulk —p + 1)

Define the following quantitics

(1) (1)

= 101 + Q3 1 = a0 + B
agl) = a0+ o3 él) = a1+ B33
1 1
04;(;—)1 = 0op_1t+op 5;(;—)1 = a1fp-1+ 06p
al(,l) = muo, ﬂ,(,l) = af,

and
ﬁ(gl) = o100 + B1
Substituting y(k) from Eq. (1) into Eq. (2) yields
yk+1) = aVy(k - 1)+ aiy(k —2) + - + aVy(k - p)
+ Boulk + 1) + BVu(k)

+80ulk — 1) + B ulk — 2) + - - + BDu(k — p)

(3)

(5)

The output measurement at time step k£ + 1 can be expressed as the sum of past input and

output data with the absence of the output measurement at time step k. By induction, one

may cxpress the output measurement at the time step & + 5 by
yk+35) = a’ylk—1) +ay(k —2) +-- + afy(k — p)
+ Boulk + 5) + B ulk + 7 — 1) + -+ 65 u(k)

+80u(k — 1) + 8 u(k — 2) + - + 8P u(k — p)



where

agj) _ agj—l)al + agj—l) ﬂ%j) _ agj—l)ﬁl + I@éj-‘l)
o) = o Vg, ol 49 = ol Vg, 1 pdY
: : (7)
a;j—)1 _ agj—l)ap_l + a}()j—l) ﬂéj—)1 _ agj—l)ﬁp_] + B;j—l)
af) = o Vo, BY = o Vg,
and
85 = o’ V8o + B (®)

Note that al(o) = a; and 550) = f3; for any possible integer 1,2, ... including 0 if applicable.
With some algebraic operation, Eq. (8) can also be expressed by

(()0) = o

P = Gt Eafl for k=1,..p (9)

d —i
ﬁ((]k) = Zazﬂék ) for k=p+1,...,0
i=1

Similar to Eq. (9), o) = o/ Vo, + o™V can also be written as

a§°’ =
k ,
agk) = Q41+ ._Zlaiagk“’) for k=1,...,p—1 (10)
p —_,'
aik) = Zaiagk ) for k=p,...,00
i=1

Observation of Eq. (9) and (10) reveals that 8§ ) and o\? for j > p is a lincar combination
of its past p parameters weighted by the parameters oy, @y, ..., o, This property is very
useful in developing predictive control designs. The quantities ﬁ(()i) (i=0,1,...) are, in fact,
the pulsc response sequence which will be shown later. On the other hand, the quantities
agi) (¢ =0,1,...) are the observer gain Markov parameters which can be used to compute
an observer for state estimation.
Let theindex j be j = 1,2,...,¢,9+1,...,s— 1. Equation (7) produces the following
matrix equation,
Ys(k) = Tuy(k) + Buy(k — p) + Ayy(k — p) (11)
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where

ys(k)

yp(k - p)

and

[ y(k)
y(k+1)
y(k +q)
y(k+g+1)
L y(k+s—1) |
y(k — p)
y(k—p+1)
y(k —1)
Bo
1
B
a0 Y
1
[()q+) ﬁ((]Q)
s—1 s§—2
B o
ﬁp ﬁp—l
1
g
go g,
1
ﬁz()q-!-l) ﬁ(q_t)
_ﬁz()s—l) /6[()8—_11)
[ Oy Qp_1
1
a;l) aé—)l
a;q) a;q_)l
aéq-i—l) a’()qj—ll)
az(;“‘l) ai,s__ll)

_ u(k) -
u(k + 1)
, uslk) =1 wulk+gq)
u(k+qg+1)
L u(k+s—1) |
u(k — p)
u(k—p+1)
u(k — 1)
Bo
A" Bo
(()s-—q-l) (()s-q—2) ,80
o
(1)
1
&q)
1
(g+1)
1
(s-1)
1
(03] 1
of?
01(1(1)
O[(1q+1)
a(ls—l)

(12)

(13)

The quantity ys(k) represents the output vector with a total of s data points for cach scnsor

from the time step & to k+ s — 1, whereas y,(k — p) includes the p data from k —p to k — 1.



Similarly, u,(k) has s input data points starting from the time step k and w,(k — p) has p
input data points from k — p. The matrix 7 is commonly called the Toeplitz matrix which is
formed from the parameters, (g, ,B(()l), ..., and ﬁés_l) (the pulse response sequence). Indeed,
assume that before time step &, the system is at rest, i.c., up(k — p) =0 and y,(k — p) = 0.
At time step k, onc applies to the system an unit pulse onc at a time for each input, i.c.,
u(k) = 1 for a single input and u(k + 1) = u(k + 2) = ... = 0. Equation (11) shows that
u(k) = Bo, ylk+1) =557, .., ylk+5-1) =550,

The vector ys(k) in Equation (11) consists of three terms. The first term is the input
vector uy(k) including future inputs from time step k& to k + s — 1. Relative to the same
time k, the second and third terms, u,(k — p) and y,(k — p), are input and output vectors,
respectively, with past known quantities from & — p to k — 1. The future input vector wu,(k)

is to be determined for feedback control.
3 Deadbeat Predictive Control Designs

There are two predictive control designs to be shown in this section. The first design is based
on Eq. (11) with the assumption that the paramecters aq, @y, ..., a, and Gy, i, ... , Bp, are
given a priori. The sccond design uses the input and output data directly without explicitly

involving the parameters oy, o, ..., ap and Gy, 531, . .., G,

3.1 Indirect Algorithm

Consider the question: what should the future input signal u(k), u(k+1),---,u(k+g—1) be
to make the futurc output sequence y(k + ¢),y(k + ¢+ 1), -, 00 equal to zero (deadbeat)?
Here we have assumed that the control action starts at time step k. Before time k, the

system is open-loop.



Let the control action be turned on at time step & and ended at £+ q. In other words,
the control action occurs only from u(k) to u(k + ¢ — 1), i.c., u(k + ¢) and beyond the step

k + q arc all zero. Under this condition, Eq. (11) produces the following cquation,

Yp(k +q) = T'ug(k) + B'uy(k — p) + A'y,(k — p) (14)
where
y(k+q) u(k)
ylk +q+1) u(k + 1)
Yp(k +q) = : , ug(k) = ; (15)
yk+g+p—1) u(k+g-1)
and
49 @ g
@) gl g
T'=T(gm+1:pm-+qgm,1:qr)= 0 7o 0
5((;;%—1) Bé‘”.”“?) o [(;p>
A < N
(g+1) (¢+1) . q+1
B=Blgm+ 1 pm+qn=| 7 & (16)
5l(lq+p—1) ﬁ(qjlp—l) o B§q+p—1) |
aéq) a;‘l_)l .. agq)
alatD) a(a+1) . agqﬂ)
A'=A(lgm+1:pm+gm,:)= P -1
a}()q-f—p—l) O[}(;J_w“lp-l) . a(1q+p—1)

Equation (14) is a reduced version of Eq. (11) by cutting its first ¢ equations and the equations
beyond ¢ + p — 1. The matrix 7" of dimension pm x g¢r is formed from the pulse response
(system Markov paramecters). Note that m is the number of outputs, p is the order of the
ARX model, r is the number of inputs, and q is the number of control steps. If one flips the

columns in the left/right direction and preserves the rows of 77, it becomes a Hankel matrix



of the pulse response, i.e.,

O g0 L e g
(2) 3 () {g+1)
ﬁép) ﬂ(()l’+1) . ﬁ[()qup—?) (()tH-p—l)

The Hankel matrix is known to have maximum rank of n which is the order of the system
if pm > n. Choosing any number which is larger than pm does not increase the rank of 77.
That is why the number of rows for 77 is chosen to be pm even though any number greater
than pm may be used to form Eq. (14). The intcger ¢ must also be chosen such that gr > n
to make sure that the Hankel matrix has rank n.

The output vector y,(k + ¢) in Eq. (14) includes the output sequence from the time
step k+q to k+ ¢+ p— 1. It depends on the input vector u,(k) for the input sequence
from the time step k to k& + ¢ — 1 which is one step behind the step k + ¢ for the first output
in y,(k + ¢). It also relies on u,(k — p) and y,(k — p) consisting of the input and output
sequences from the time step £ — p to & — 1. The significance of Eq. (14) is that the input
and output relation has been rewritten so that the output at time k£ + g and beyond can be
computed from the input sequence from k& — p to k + g — 1 and the output sequence from
k —pto k — 1. In other words, the output sequence from & to k 4 g — 1 is not required to
be known for the prediction of the output at the time k + q and beyond. This prediction
characteristic can be capitalized on for the feedback design shown below.

From Eq. (14), it is clear that the following equality

ug(k) = —[T"]' [B'up(k ~ p) + A'yp(k — p)] (18)
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will bring y,(k + q) to rest, i.e.,

y(k+q)
y(k+q+1)
yplk +q) = . =0
ylk+q+p—1)
The first 7 rows of Eq. (18) thus gives
u(k) = ~first r rows of{[T'}T} [B'up(k — p) + A'yp(k — p)]

= afy(k — 1) +asy(k —2) + -+ + aly(k — p)
Bk — 1) + Bu(k = 2) + -+ Bulk ~ p) 19)

where the superscript ¢ significs the control paramecters. The feedback control paramecters
af,...,a; and 35,55, ..., 35 arc to be used to compute the current control signal u(k) using
the past p input and output measurcments. The control action is supposed to bring the
output to zero for all time steps larger than k+¢q. Along with the desired zcro input u(k + ¢)
and beyond, the system should be at rest, i.c., deadbeat, beyond time step k£ +¢. That is in
theory. In practice, when the system has input and output uncertainties, the control action

can only bring the output down to the the level of uncertainties.

3.1.1 Computational Steps
The indircet method for predictive control design is summarized as follows.

1) Usc any system identification (batch or recursive) technique to determine the open-loop
obscrver Markov parameters (ARX) parameters ag, ..., o, and Gy, 51, ..., Bp, before

the control action is turned on.

2) Computc the system Markov parameters (pulse response sequence) with the recursive

formula, Eq. (8), and form the Toceplitz matrix 7’ shown in Eq. (16). The integer g
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must be properly chosen such that the rank of 7' is n or pm whichever is the least

where n is the order of the system and m is the number of outputs.

3) Form matrices A" and B’ shown in Eq. (16) with their clements computed using the

recursive formula, Eq. (7).

4) Use Eq. (19) to compute the feedback control parameters of, . . . ,op and 87, 35, .. ., B;.
3.2 Direct Algorithm

One may be interested in computing the feedback control parameters shown in Eq. (19)
dircctly from input and output data. That is to bypass the first three steps of the indirect
method for a predictive control design. To achieve the goal, first start with Eqs. (12) and

(13), and form the following input and output matrices.

Yi(k) = [yS(k) ys(k+1) yS(k+N_1)]
y(k) y(k+1) -+ ylk+N-1)
_ ylk+1)  ylk+2) --- y(k+ N)
y(k+'s—1) y(k;l-s) y(k+sleN—2)
(20)
Us(k) = [us(k) u(k+1) --- US(k+N—1)]
u(k) wk+1) -+  wk+N-1)
_ uwk+1)  uk+2) .- u(k+ N)
u(k+.s—1) u(k+s) u(k—l—s—'irN—Q)

12



and

Yok —p) =(yplk —p) wk—p+1) - yolk—p+N-1)]
yk—p) ylk-p+1) - ylk—-p+N-1)
_|yk—p+1) yk—p+2) --- ylk—p+N)
k-1 yk) e y(k+N-2)
(21)

Up(k—p):[up(k_p) up(k“p"”l) u,,(k—p—f—N—l)]
u(k — p) wk—-p+1) - ulk—p+N-—-1)

_ wk—-p+1) uk-p+2) -+ wk-p+N)

u(k —1) wk) o u(k+N—2)

where N is an integer. The data matrices Ug(k) and Y;(k) include the input and output
data information up to the data point k& + s + N — 2, whereas U,(k — p) and Y,(k — p) have
data up to k + N — 2.

Application of Eq. (11) yiclds

Yi(k) = TUL(k) + BU,(k — p) + AV (k — p) (22)
or Us(k-)
Yik)=[T B A || Up(k-p) (23)
Yok —p)

Let the integers s and N be chosen large cnough in the sensc that the matrix Us(k) of
dimension st x N with st < N has rank sr, the matrix U,(k — p) of dimension pr x N with
pr < N has rank pr, and the matrix Y,(k — p) of dimension pm x N with pm < N has
rank pr. Again, r mecans the number of inputs and m represents the number of outputs.

Equation (22) produces the following least-squares solution

Uy(k)
[T B A|=Y.(k)| Up(k —p) (24)
Y,(k —p)

13



where 1 means the pseudo-inverse. From the triple [ 7, B, A, it is casy to extract the
triple [ 7/, B', A'] defined in Eq. (16) for computing the control parameters of, .. ., aj
and 07, 35, .., B; using Eq. (19).

Equation (22) has some redundant equations which may be eliminated to directly

compute the triple [ 7', B’, A’ ] without computing [ 7, B, A ]. Indeed, let us sct
§s=q+p

and delete the first gm rows of Eq. (24). Equation (24) reduces to
N
Ugtp(K)
| 7" B A |=Y,(k+q) | Upk~p) (25)
Yo(k —p)
where 7", B', and A’ arc obtained by deleting the first gm rows of 7 and B, and A respec-

tively. The matrices B’ and A’ are identical to those defined in Eq. (16). The matrix 7” has

more columns than 77 defined in Eq. (16), i.c.,

T =T"(:,1:qr) (26)
Now, the data matrices become
Yik+q)=[yplk+q) ylk+g+1) - ylk+g+N-1)]
y(k +q) yk+q+1) -+ ylk+g+N-1)
| ylk+ge+1)  ylk+qg+2) - y(k+q+ N)
yk+qg+p—1) ylk+qg+p) - ylk+g+p+N-2)
(27)
Ugtp(k) = [tgrp(k) ugip(k +1) - wugyp(k+ N —1)]
u(k) ulk+1) --- ulk+ N —1)
u(k + 1) uk+2) --- u(k + N)
uk+qg+p—1) ulk+s) - uk+q+p+N-2)

At this moment, all input and output data arc measured from the open-loop system, before
any control action begins.

14



From the triple [T7”, B, A’], the control law from Eq. (19) can be applied to computed

the control gain parameters,
uwk) = —first v rows of{[T"(:, l: qr)]T} B'u,(k — p) + A'y,(k — p)]

= ofylk — 1)+ agy(k —2) + - + agy(k — p)

+Biulk — 1) + Bou(k —2) +--- + Bou(k — p) (28)

3.2.1 Computational Steps

The computation steps involved in the direct method for predictive control design are:

1) Form the data matrices Y,(k + ¢) and Uyi,(k) defined in Eq. (27), and Y,(k — p) and
U,(k — p) defined in Eq. (21). The integer p must be chosen such that pm > n where
m is the number of outputs and n is the anticipated system order. The integer ¢ > p

is chosen such that the Hankel matrix defined in Eq. (17) has rank n.
2) Compute the least-squares solution, Eq. (25), to determine 77, B’, and A’.

3) Usec Eq. (28) to compute the feedback control parameters of, . . ., aj and 37, 55, . . ., B;.

The direct method scems simpler in computation. Nevertheless, it by no means implies
that the direct method will save time in computation compaired to the indirect method which
includes the computation of the observer Markov (ARX) parameters. The reason is that the
direct method involves a larger matrix manipulation in computing 7", B’, and A’ from
Eq. (25). In addition, there is no theoretical proof that the direct method is more robust

than the indircct method with the presence of system uncertaintics.
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4 Observable-Canonical Form Representation

Some rescarchers may be interested in knowing the corresponding state-space representation
for the techniques described earlier. There are cases where a state-space model is very useful
in conducting controller designs particularly for those engineers who have strong background
in modern control theory. It also provides them with flexibilities for real-time implementa-
tion.

Given Eq. (1) or equivalently Eq. (6), therc is a direct way of determining the system

matrices for a state-space representation. Let us choosc the state variables as
z1(k) = y(k) — Bou(k)
za(k) = y(k + 1) — Boulk + 1) — 55 u(k)
z3(k) = ylk + 2) = Bou(k +2) — 85 u(k + 1) ~ 557 u(k)

(29)
Tp(k)=ylk+p—1)
—Boulk +p 1) = G5 u(k +p— 2=, ~B7 u(k)
where cach vector z;(k), ¢ = 1, 2, ..., p, has length m, which is the number of outputs.
The set of equations in Eq. (29) yields
21 (k + 1) = zo(k) + BV u(k)
zo(k + 1) = z3(k) + 8P u(k)
z3(k + 1) = z4(k) + B u(k)
(30)

zp(k + 1) = y(k + p)
~Bou(k +p) — B ulk +p— 1)~ -, —6F Vulk + 1)
= a17p(k) + agzp_1 (k) + - - - + 0pz1 (k) + AP u(k)

wherc the last equation is obtained by using Egs. (1) and (9). The above equations can be
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arranged in matrix form as

z(k + 1) = Az(k) + Bu(k) (31)
y(k) = Cz(k) + Du(k) (32)
where i
(k) 0o I 0 0 0
(k) 0 0 I 0 0
z(k) = , A= ;
21 (k) 0 0 0 0 I
x,(k) Qp Qp_1 Qp_3 ay
[ ﬁé;) ] (33)
a5
B =| : |, c=[I 0 0 0],
(p-1)
0
L
D =5

Recall that p is the number of available observer Markov paramecters, m the number of
outputs and 7 the number of inputs. The state vector £ becomes an mp x 1 vector, the
statc matrix A an mp X mp matrix, the input matrix B an mp X r matrix, and the output
matrix C' an m X mp matrix. A state-spacc model in the form of Eq. (33) is said to be in
the canonical-form.

The obscrvability matrix of the canonical-form realization is

C I 00 - 0
CA 010 0

o=| car |=|0 0 I 0 (34)
C AP 000 - I

The matrix Q is an identity matrix which is obviously nonsingular. It implies that the ob-
servability matrix @ has a rank of mp and thus all states in the state vector z are obscrvable.

Arc they controllable as well? First, form the controllability matrix

H = (B AB A?B ... A*'B]

17



I R Y ST
S S SRR
3 4 2
B S S ORI s (35)
(()p) ﬂ[gp—H) 18(()1)-0-2) ﬂés+p—1)

where Eq. (9) has been used to form this matrix. The controllability matrix H is a pm x rs
Hankel matrix formed from system Markov parameters (pulse responsc sequence). The
maximum rank of H is n which is the order of the system. Assume that the integer s is
chosen large enough, i.e., rs > pm. If pmm = n, the rank of H is identical to that of Q.
As a result, the state-space representation, Eq. (33), is a minimum realization from given
observer Markov parameters oy, oy, ..., ap, Bo, b1, - .., Bp- A state-space representation is a
minimum realization if and only if it is controllable and observable, i.c., the state matrix is
the minimum order.

The maximum order of the model, Eq. (33), is mp which is the dimension of the
realized state matrix A. If the number p is chosen such that mp is larger than the order of
the system, then the triplet [A, B, C] is not a minimum realization. This is because the
canonical-form, Eq. (33), is observable (the rank of Q is pm), but not controllable (the rank of
H is less than pm). In this case, some of the states in the state vector z are not controllable.
In general, the order of a system under test is not known a priori. The number mp tends to
be chosen significantly larger than the “effective” order of the system to accommodate the
mcasurement noise and system uncertainties. “Effective” here means the part of the model
that can be excited by the inputs and measured by the outputs. A state-space model in the
form of Eq. (33) is thus named to be in the observable canonical-form.

Onc may be interested in knowing the observer which makes the statc matrix become
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decadbeat in certain number of time steps. First, recall the matrices aﬁ"), agl), agz), Ceey a&p -

defined in Eq. (10). The following obscrver gain matrix

r ago) q
oV
G = : (36)
a(lp—Z)
| o™ |
will result in
[ QD I 0 o o]’
oV 0o I 0 0
(A+GC) = z : oo =0 (37)
alP o 0 - 0 I
i aﬁp‘” +Qp, Qp1 OQpg - Qg Qp |

In other words, the observer gain G will bring the observer state matrix A+ GC to zero in p
steps. The matrix G may be used to estimate the state vector x for full state feedback control
designs. For a system with significant uncertainties, the deadbeat observer will converge to
the steady state Kalman filter under certain conditions regarding the data length and the
choice of p.

Carcful examination of the definition for the state vector, Eq. (29), and the predictive

output equation, Eq. (11), reveals that

z(k) = Blup(k — p) + A%yp(k — p) (38)
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where B° is a pm x pr matrix and A° is a pm X pm matrix,

5
g gl 1
B=B(l:pm,)=| 7 T T
| gD gt Y
(39)
ap ap—l s e al)
o ) (1
a a,’ o
A°=A(1:pm,:)= k P :
i az()p_l) a}()p—_ll) P a(lp_l)

Note that the state vector has size pm x 1. Equation (38) signifies the relationship between
the state vector and the input and output data. It implies that the state at time step k can
be estimated from the past p input and output data. This provides the basis for predictive

control designs for a system represented by a state-space model.
4.1 Deadbeat Predictive Control Gain

Given a state-space representation, there are many ways to design a feedback law to control
the system. Common methods include optimal control design, pole placement technique,
virtual passive technique, etc. Here, a deadbeat feedback design similar to that discussed
earlicr will be introduced.

With some algebraic manipulations, Eq. (31) produces

z(k+1) = Az(k)+ Bu(k)

u(k)

z(k+2) = A’x(k)+[AB B] wlk 4+ 1)

z(k+q) = A%z(k)+ T'u,(k) (40)
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wherce

u(k)
u(k+1)
u (k) = (41)
I u(k+q—1) |
and
T = [A7”!B AT*B ... B]

o, D e

g+1 q PN 2
- | ” SO (42)

/B((;H'P—l) IB((;H'P—?) ,6(()’))

The matrix 7’ is an n x gr controllability matrix with n being the order of the system and

7 the number of inputs. The integer ¢ must be chosen such that gr > n to assure that the

matrix 7’ has rank of n. Notec that 7' shown in both Egs. (16) and (42) are identical.
Equation (40) shows that the state z(k +¢) at time k+¢ becomes zero when the input

scrics u(k),u(k +1),...,u(k+ ¢ — 1) is given by
u (k) = - [T "A% (k) = a(k+q)=0 (43)
which clearly implies that the input u(k) at time k is
u(k) = —G.x(k)
= —{first r rows of [T']'} A%z (k) (44)

Equation (44) gives a state-feedback controller that drives the state z(k) at time step & to
zero after g time steps. Onc straightforward method of computing the gain matrix G, is first
to identify the sct of system matrices A, B, C, and D from input and output data, and then

compute the gain matrix from Eq. (44).
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Substituting Eq. (38) for z(k) into Eq. (44) yields
u(k) = —{first r rows of [T'|'}AY{B°u,(k — p) + Ay, (k — p)}
= ajy(k — 1) +agy(k - 2) +--- + apy(k — p)
+oiulk — 1) + Bzu(k — 2) + - + Gu(k — p) (45)
The control laws obtained from Eq. (19) and Eq. (45) should be identical. This implies
B =A8° and A = A%4°

or

Blgm+1:gm+pm,:) = AIB(1:pm,:) )
(46
Algm+1:qm+pm,) = ATA(L:pm,?)

This result provides an interesting connection between the state matrix A and the submatri-
ces of A and B defined in Eq. (13). It should be not surprised because they are all computed

from the observer Markov parameters ay, as, ..., &y, Bo, By - - ., Bp-

4.1.1 Computational Steps

The observable-canonical form representation for the predictive control design is summarized

in the following

1) Usc any system identification (batch or recursive) technique to determine the open-loop
observer Markov parameters (ARX) parameters oy, ..., ap, and By, By, ..., B,, before

the control action is turned on.

2) Form the state-space model shown in Egs. (31) and (32) with its system matrices
A, B, C, and D defined in Eq. (33), and the corresponding obscrver gain matrix defined
in Eq. (36).
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3) Compute matrices A4° and B° shown in Eq. (39) with their clements computed using

the recursive formula, Eq. (7).

4) Calculate the control gain matrix G, defined in Eq. (44) using the controllability matrix
shown in Eq. (42) with a given integer ¢. The integer ¢ must be large enough so that

pr > n where r is the number of inputs and n is the order of the system.

5) Usc Eq. (45) to compute the feedback control parameters of, .. ., ag and 5, 03, . . ., O,

Some rescarchers may prefer to use the state-space representation described by the system
matrices A, B, C, D, the observer gain matrix GG, and the control gain matrix G, for real-time
implementation. The control gain G, can be computed using any other existing methods

such as the pole placement techniques, optimal control methods, ctc.
5 Feedback and Feedforward for Disturbance Input

In addition to the control input, there may be other disturbance inputs applied to the system.
Some typc of disturbances comes from the known sources that can be measured. This scction
addresses the predictive feedback designs including feedforward from the disturbance inputs
that arec mcasurable.

With the disturbance input involved, the finite difference model shown in Eq. (1)

becomes

y(k) = awy(k —1)+oy(k —2) + -+ epy(k —p)
+ ﬁc()uc(k) + ﬁcluc(k‘ - 1) + /602uc(k - 2) +---+ 6cpuc(k - p)

+ ,Bdoud(k‘) -+ ﬁdlud(k — 1) —+ ﬂ,mud(k — 2) + -+ ﬂd,,ud(k: - p) (47)
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where the subscripts ¢ and d are used to signify the corresponding quantities associated

with the control input and the disturbance input, respectively. Accordingly, Eq. (11) can be

rewritten as

Uo(k) = Tttea () + Tatas (k) + Botig(k — p) + Batgp(k — p) + Agplk —p)  (48)
where
uc(k) Ud(k)
uc(k +1) ug(k + 1)
ucs(k) = . ) uds(k) = . y
| u(k+s—1) | ug(k+s—1)
(49)
u(k —p) ] uq(k — p)
uc(k —p+1) ug(k —p+1)
uep(k —p) = : , Uap(k —p) = :
uc(k — 1) uga(k — 1)
and
ﬁfo) ﬁ? )
1 1
- | A
BTV Y Beo o gl Buao
(50)
ﬂcp ﬁc(p 1) 661 /de /Bd(p 1) ,Bdl
1 1
ﬂé},) ﬂggg ) R B‘ ) ﬁd(,, ) ﬁ“’
Bc - . . d —
ﬁ(’ 2 ﬂ“,, Ay B8 6“ ) f,z;_‘i) ,g;-“

In Eq. (48), the subscripts ¢ and d mean the quantities resulting from the control input and
the disturbance input, respectively. Equations (49) and (50) show that the mathematical
forms for the control input and the disturbance input arc identical. However, the control
input is changeable but the disturbance input is not.

Using the same concept as discussed carlier, let us assume that the control action starts
at the time step k and hopefully ends at &£+ ¢. This assumption is possible in theory for the

noise-free case without disturbances. It is impossible for the case with random uncorrelated
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disturbances. However, it is used here to obtain a stable feedback design. Equation (48)

thus becomes

Yp(k + @) = T/ucy(k) + Tjugg(k) + Biuep(k — p) + Byuap(k — p) + A'yp(k — p) (51)

where
T, = T(gm+1:gm+pm,1:qr)
7 = T(gm+1:qm+pm,1:qra)
B, = BJgm+1:qm+pm,:) (52)

By = Bilgm+1:gm+pm.:)
A = A(gm+1:gm+pm,:)

Note that 7 is a pm x gr. matrix where . is the number of control inputs and 7 is a
pm X grq matrix where r4 is the number of disturbance inputs. It is unrcalistic to predict
any future disturbance signal beyond time step k + ¢, assume that the disturbance signal is
predictable. This statement can be clearly justified by using the state-space representation
approach similar to that shown in Egs. (40) to (44).

For simplicity, assume that the goal of the control action is to minimize the output due
to the disturbance. From Eq. (51), the control input starting from time k, which satisfies

the following cquation
Ucg(k) = -[zl]T{Ii/udq(k) + Blucy(k — p) + Byuap(k — p) + A'yp(k — p)} (53)

will idcally bring the output to zero after ¢ time steps. This control law requires knowledge
of the future disturbance beyond the current time k, i.c., ug,(k) defined in Eq. (49) with
s = q+p. If the disturbance is uncorrelated, it is impossible to make any precdiction. Thus,

the control action should be
Ueg(k) = —[T1{ Biucp(k — p) + Biuap(k — p) + A'yp(k — p)} (54)
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which will not bring the output response to zero after the g-step control action but minimize
it. That is the best onc can do for a unknown disturbance sequence.

The first 7 rows of Eq. (54) provides the control law for the input at any the time k
uk) = —{first r rows of [77]'}{Bluey(k — p) + Bytiap(k — p) + Ak — p))

= ojy(k—1) +agy(k —2) +--- + agy(k — p)
+0auc(k — 1) + Bauc(k — 2) + -+ - + B uc(k — p)
+Baua(k — 1) + Bpualk — 2) + - - - + Bg,ua(k — p) (55)
In addition to the control feedback, the control law shown in Eq. (55) includes the feedforward
due to the past disturbance time history. Equation (55) may be called the finite-difference
model for the feedback and feedforward predictive controller. Although the control law

developed in this section is for the purpose of damping out the output response, it can be

casily enhanced to follow a desired output response.
6 Computational Steps

The indirect method for the predictive control design with feedback and feedforward is

summarized as follows.

1) Use any system identification (batch or recursive) technique to determinc the open-
loop obscrver Markov parameters (ARX parameters), @y, ..., @y, B, Be, - - - y Bep, and

Bao, Bai, - - - , Bap, before the control action is turned on.

2) Compute the system Markov parameters (pulsc response sequence) for the map from

the control input to the system output with the recursive formula, Eq. (8), and form
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the Toeplitz matrix 7 shown in Eq. (52). The integer ¢ must be properly chosen such
that the rank of 7. is n or pm whichever is the least where n is the order of the system

and m is the number of outputs.

Form matrices A’, B, and B), shown in Eq. (52) with their elements computed using
the recursive formula, Eq. (7). One may first compute the combined B’ from Eq. (7)
which include the control input and the disturbance input, and then separate them

into two picces, i.c., B, and Bj.

Use Eq. (55) to compute the feedback control paramcters af, . . ., af and 35, 85, - - -, 85,

and the feedforward parameters 85, 8%, - - ., 83,

Although this section only describes the indirect method for computing feedback and feed-

forward paramcters for the system with both control and disturbance inputs. The same

approach is applicable for the other methods presented in this paper.

6.1

Closed-Loop Representation

In order to characterize the closed-loop response, the closed-loop frequency response func-

tion or statc-space representation is commonly needed. The first step is to integrate the

two finite difference models for the open-loop system and its predictive controller together.

Equation (47) together with Eq. (55) forms the closed-loop finite difference model,

|

[ ‘ﬁcO y(k) _ xq 6c1 y(k - 1) ] I ap Bcp ] |: y(k - p)
0 I uc(k) af B4 uc(k — 1) oy 8%, uc(k — p)

+Vg"]ud(k)+[g;_ud(k—l)Jr---Jr

ﬂdp
Bap

] ug(k — p)
(56)
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or equivalently,
v(k) = aqqu(k — 1) + agu(k — 2) + - - - + a,v(k — p)
+ Bova(k) + Brua(k — 1) + Boua(k — 2) + - - + Byua(k — p) (57)
where

[ y(k I B ;Do
o(k) = y()J’ a,:{ ﬁHﬁ}
| uc(k) 0 I of G5

[T B[ Ba _ I B | [ Bu
/BO—‘-OI}[O 1/6i-‘ 0o I 5§l

for k=1,2,...,00,and ¢ = 1,2,...,p. The vector v(k) has the length of m + r, where m is

(58)

the number of outputs and r. is the number of control inputs. Each matrix a; has the size of
(m+rc) x (m+7.) and B; is (m +rq) X r4 where 4 is the number of disturbance inputs. A
state-space representation or its corresponding frequency response function can be directly

derived from Eq. (57) for closed-loop analysis by examining its closed-loop poles and zeros.
7 Numerical Example

A simple spring-mass-damper system is used to illustrate various controllers. Several different
cases will be discussed ranging frbm single-input /single-output to multi-input /multi-output.
First, the noise-frece case is shown and then the case with additive measurement noise is
discussed.

Consider a three-degree-of-freedom spring-mass-damper system

Mio+Zw+ Kw=u
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where

[m; 0 O G +GC —C 0
M = 0 my O Z=| -G Ge+@G G|,
0 0 mg 0 -G G
[ Ky + ks —ko 0 wy Uy
K = ko  kot+ks —ks |, w=|w |, u=| u
0 —ks ks w3 u3

where m;, ki, (;,1 = 1,2,3 are the mass, spring stiffness, and damping coefficients, respec-
tively. For this system, the order of the equivalent state-state representation is 6 (n = 6). The
control force applied to each mass is denoted by u;,i = 1, 2,3. The variables w;,7 = 1, 2,3 arc
the positions of the three masses measurcd from their equilibrium positions. In the simula-
tion, m; = my = my = 1Kg, ki = ky = ks = 1,000N/m, {; = (o = (3 = 0.1N — sec/m. The
system is sampled at 50Hz (At = 0.02sec.). Let the measurements y; be the accelerations
of the three masses, y; = w;, 1 = 1,2, 3.

Let us consider a single-control-input, single-disturbance-input and single-output casc
where the control input to the system is the force on the first mass (i.e., u, = u;), the
disturbance input is at the second mass (i.c., ug = u2), and the output is the acceleration of
the third mass (i.c., y = w3) (non-collocated actuator-scnsor). Thercfore, the smallest order
of the ARX model p is 6 corresponding to a deadbeat obscrver, and the smallest value for
q is also 6 corresponding to a deadbeat controller which will bring the cntirc system to rest
in exactly 6 time steps if no disturbance input is present. Note that this is a non-minimum
phasc system. The choice of the minimum p = ¢ = 6 is to make the Hankel matrix formed
from the system pulsc responsc (system Markov parameters) to have rank of 6 which is the
order of the system. This deadbeat controller is not practical becausc it needs excessive

control. Instcad, consider the case where the controller is computed with ¢ = 50. The
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controller computed using the indirect algorithm for this system has the form
uc(k) = —0080uc(k — 1) — 0.020u.(k — 2) — 0.023u.(k — 3)
+0.059u.(k — 4) + 0.094u.(k — 5) + 0.010u.(k — 6)
+1.048y(k — 1) — 3.819y(k — 2) + 6.404y(k — 3)
—6.785y(k — 4) + 4.173y(k — 5) — 1.603y(k — 6)
—0.058u4(k — 1) — 0.278uq(k — 2) + 0.254uy(k — 3)
—0.016u4(k — 4) — 0.192y(k — 5) + 0.288uy(k — 6)

In Fig. 1, the open-loop and closed-loop frequency response functions from the disturbance
input to the output are shown. The solid curve is the open-loop response and the dashed
curve is the closed-loop response. The peaks in Fig. 1 of the open-loop response are consid-

crably reduced (> 10 dB).
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Figure 1: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the output

Next, we consider the case where therc is an additional measurement available for
feedback control (unequal number of inputs and outputs). In addition to the acceleration of

the third mass, acceleration measurement of the sccond mass is also available. The direct
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transmission term in this case is non-zero. The minimum order of the ARX model is p = 3.
For comparison purpose, the control parameter is kept at ¢ = 50. The controller in this case

18

uc(k) = —0.080u.(k— 1) — 0.294u.(k — 2) + 0.412u.(k — 3)

vk -

[ —0.456 4805]{ S

—9

)

)

+ [ 0.746 0.233 { ]
ya(k — 2)

+[ —04557 —5.461 ] { k3 ]
Ya\K —

—4.818ug(k — 1) + 8.752uy(k — 2) — 3.8985uq(k — 3)

Note that with the additional measurements, fewer time steps (and fewer controller gains) are
required. This is a reflection of the fact that complete state estimation can now be achicved
faster with the additional sensors. All three algorithms produce identical controllers for
the noise-free cascs. The frequency response functions arc not shown here because they are
similar to the one shown in Fig. 1.

Let the output be added with some measurement noise so that the signal to noise
ratio is 4.5. The noisc is random normally distributed. For the indirect algorithm, sct the
values of p and ¢ to p = 10 and g = 30. Although the minimum order of the the ARX model
is p = 3, the larger valuc is given to accommodate the measurement noise. The open-loop
and closed-loop frequency response functions from the disturbance input to the first and
sccond outputs are shown in Figs. 2 and 3. Again, all the pcaks of the open-loop responsc
function arc considerably reduced. Figure 3 shows the effect of the direct transmission term
at frequencies near the Nyquist frequency.

For the direct algorithm, set the values of p and g as p = 7 and ¢ = 30. The open-loop

and closed-loop frequency response functions from the disturbance input to the first and
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Figure 2: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the first output for the indirect algorithm
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Figure 3: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the second output for the indirect algorithm
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second outputs arc shown in Figs. 4 and 5. Some differences can be scen from Figs. 2 and 3
for the indirect algorithm, and Figs. 4 and 5 for the direct algorithm. Nevertheless, they are
very similar although their input and output gain matrices (not shown) are quite different.
The direct algorithm takes somewhat a less valuc of p to achieve the same control effect.
This does not mecan that the direct algorithm is computationally more cfficient than the

indirect algorithm.
8 Concluding Remarks

Three novel algorithms were developed for deadbeat predictive control designs. These al-
gorithms arc simple and casy to compute and so they arc good candidates to be used for
real-time implementation in a micro-processor. The first algorithm (indirect method) uses
the multi-step-ahcad output prediction to compute the control law. All computations are
performed recursively. The most time consuming task is the computation of the matrix
pseudo-inverse of a Hankel matrix formed by the system pulse response time history. The
Hankel matrix plays the major role of establishing the rule of sclecting the identification
parameter and the control design parameter (i.c., control horizon). It also provides the
basis to establish the uniqueness of the deadbeat predictive control law. Using the multi-
step-ahcad output prediction, the second algorithm (direct method) was developed combing
system identification and control law into one formulation. It computes the Hankel matrix
and other quantities dircctly from input and output data. This by no means implics that the
sccond algorithm is more robust or computationally cfficient than the first one. Nevertheless,
it provides a clear insight into the fundamental structure of the deadbeat predictive control
law. The third algorithm provides the state-space representation of the deadbeat predictive

control law. It computes the deadbeat gain for observer-based full-state feedback that may

33



10?
[
el
2
2
£
<
w
10 ¢
102 -f - Solid line (Open-Loop True FRF) \\\ 4
/ N\
? -- Dashed line (Closed-Loop FRF) ‘\
-3 1 1 L 1
10 0 5 10 20 25

18
Frequency (Hz)

Figurc 4: Open-loop and closed-loop frequency response functions (FRF)
from the disturbance input to the first output for the direct algorithm

10?
10’
-‘k\
u\:;t;'fu.\

_qu) 100 i carre S sttt ]
p=1
£
£
<
w
& 107

102 - Solid line (Open-Loop True FRF)

-- Dashed line (Closed-L.oop FRF)
107 L L

1 1
0 5 10 15 20 25
Frequency (Hz)

Figure 5: Open-loop and closed-loop frequency response functions (FRF)
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then be converted into the input and output gain used in the classical predictive control

designs. The connection between the classical state-space control law and the predictive

control law is clearly identified. Since the control gains arc designed from the input-output

modecls, they may be adaptively tuned from on-line input and output mcasurcments. As a

result, thesc controllers should be able to handle the systems with slowly time-varying dy-

namics, provided that input and output data are sufficiently rich to allow rcasonable system

identification. The system dynamics may be large and complex such as open-loop unstable,

underdamped poles, ctc.

9
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