
NASA-CR-205233 _"

State University of New York Report

Numerical Simulation of High-Speed

Turbulent Reacting Flows

by

F.A. Jaberi, P.J. Colucci, S. James, and P. Givi

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, NY 14260-4400

Annual Report Submitted to

The NASA Langley Research Center

Progress Report on Activities Supported Under Grant NAG 1-1122

for the Period

August 1_ 1996 - July 31, 1997



Contents

1 Summary of Achievements 1

2 Introduction 2

3 Governing Equations 3

3.1 Modeling ...................................... 5

4 The Filtered Mass Density Function (FMDF)

5 Lagrangian Stochastic Solution of the FMDF

6 Numerical Solution Procedure

7 Results

7

11

12

17

7.1 Flows Simulated .................................. 17

7.2 Reaction Mechanisms ...................... ......... 20

7.3 Numerical Specifications ............................. 23

7.4 Consistency of FMDF .............................. 27

7.5 Validations via DNS ............................... 31

7.6 Validations via Laboratory Data ......................... 36

8 Concluding Remarks 41

9 Personnel 42



Numerical Simulation of High-Speed

Turbulent Reacting Flows

F.A. Jaberi, P.J. Colucci, S. James and P. Givi

Department of Mechanical and Aerospace Engineering

State University of New York at Buffalo

Buffalo, NY 14260-4400

Abstract

The purpose of this research is to continue our efforts in advancing the state of

knowledge in large eddy simulation (LES) methods for computational analysis of high-

speed reacting turbulent flows. We have just completed first year of Phase III of this

research. This annual report provides a brief and up-to-date summary of our activities

during the period: August 1, 1996 through July 31, 1997.

Technical Monitor

Dr. J. Philip Drummond (Hypersonic Propulsion Branch, NASA LaRC, Mail Stop 197, Tel:

757-864-2298) is the Technical Monitor of this

1 Summary of Achievements

We are now in Year 1 of the Phase III activities on this NASA LaRC sponsored project. The

total time allotted for this phase is three years; this phase was followed at the conclusion

of Phase II activities (also for three years). In total we have completed 7 years of LaRC

supported research, and two years are remaining.

Our efforts in the past year have been particularly fruitful. We developed a new methodology

termed the "filtered mass density function" (FMDF) and implemented it for LES of variable



density chemically reacting turbulent flows at low Mach numbers. The FMDF represents the

single point joint probability density function of the subgrid scale (SGS) scalar quantities

and is obtained by solution of its modeled transport equation. In this equation, the chemical

reactions appear in closed form but the influences of scalar mixing and convection within the

subgrid are modeled. The stochastic differential equations (SDEs) which yield statistically

equivalent results to that of the FMDF transport equation are derived and are solved via

a Lagrangian Monte Carlo scheme. The consistency, convergence, and accuracy of FMDF

and the Monte Carlo solution of its equivalent SDEs are assessed via comparison with data

generated by direct numerical simulation (DNS) and with experimental data. In nonreacting

flows, it is shown that the filtered values of temperature, density and scalars compare very

well with those obtained by "conventional" LES procedure in which the finite difference

solution of the transport equations governing these filtered quantities is obtained. The

advantage of the FMDF is demonstrated in reacting flows. In the absence of closures for the

subgrid scalar, density and temperature correlations, the results based on the conventional

LES methods are significantly different from those based on DNS. The FMDF results show

a much closer agreement with DNS data. The FMDF results also compare favorably with

laboratory data of reacting turbulent shear flows, and correctly portrays several important

features observed experimentally.

A detailed description of the FMDF is provided in this report.

2 Introduction

As indicated in our last year report, (also prepared in the form of a paper by Colucci el al.

(1997)), we have previously developed a methodology termed the "filtered density function"

(FDF) for LES of chemically reacting flows. This methodology is based on the idea originally

proposed by Pope (1991). The fundamental property of the FDF is to account for the effects

of subgrid scale (SGS) scalar fluctuations in a probabilistic manner. Colucci et al. (1997)

developed a transport equation for the FDF in which the effects of unresolved convection and

subgrid were modeled similarly to those in conventional LES and Reynolds averaging iRA)

procedures. This transport equation was solved numerically by a Lagrangian Monte Carlo
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procedureand the resultswerecomparedwith thoseobtainedby direct numericalsimulations

(DNS) and by the conventionalLES in different free shearflows. It wasshownthat in non-

reactingflows, the first moment of the FDF asobtained by the Monte Carlo solution is the

sameasthat obtained by the finite differencesolution of the transport equation governing

the mean scalarvalue (LES-FD). The advantageof the FDF wasdemonstratedin reacting

flows in which its results wereshownto deviate significantly from those basedon LES-FD.

Detailed comparisonwith DNSdata indicated clear advantageof FDF over LES-FD.

The encouragingresults generatedby FDF warrants its extensionsand applications to more

complexflows. Further assessmentof its predictive capability arealsoin order. The objective

in this work is to extendthe methodologyfor treatment of reactiveflowswith variabledensity

flows so that exothermic chemical reactions can be simulated. For that, we introduce the

"filtered massdensity function" (FMDF) which essentiallyis the density weighted PDF of

SGSscalar variables. With the definition of the FMDF, the mathematical framework for

its implementation in LES of reacting flows is established. The results obtained by FMDF

are scrutinized by detailed comparisonswith DNS and laboratory data. The FMDF deals

only with scalar quantities; the hydrodynamic field is obtained via the conventionalLES

procedure. Probability treatment of the SGSvelocity fluctuations is postponed for future

work. Also, the formulation is basedon the assumptionof low Mach number. Thus while

exothermicity and variable density effectscanbe studied, high speedflowscannot be treated

by the formulation presentedhere.

3 Governing Equations

The primary transport variables in a compressible flow undergoing chemical reaction are the

density p, the velocity vector ui along the xi direction, the total specific enthalpy h, the

pressure p, and the species mass fractions Y,_ (vl = 1,2,..., N,). The conservation equations

governing these variables are the continuity, momentum, enthalpy (energy) and species mass

fraction equations, along with an equation of state relating thermodynamic variables. These

equations are expressed as (Williams, 1985):
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Op Opui
O'--t+ Oxi -- O (1)

Opuj Opuiuj Op Orij

at + ozi - ozj + oz--[ (2)

OpCa OpuiCa OJ?
O'----i-+ Oxi Oxi + pSa, a = 1,2,..., a = N, + 1 (3)

Nj

p = pR°T _ Y:/At: = pTtT (4)-
a=l

where t represents time, R ° is the universal gas constant and A4a is the molecular weight

of species a. Equation (4) effectively defines the mixture gas "constant" _. Equation (3)

represents the mass fraction and enthalpy equations in a common form with

in which:

Ca-=Y_, _= 1,2,...,Ns,

N_

a=l

(5)

ha = h ° + cp,,(T')dT' (6)

where T denotes the temperature, To is the reference temperature and h ° and cpo denote

the enthalpy of formation and constant pressure specific heat of species a respectively.

At low Mach numbers, by neglecting the viscous dissipation and thermal radiation, the

=:D__ lo_e
source terms in the enthalpy equation becomes So = Sh pot _ "; or" The chemical source

terms (Sa = Sa(¢), ¢ = []I1, Y2,..., YN., h]) are functions of the composition variables (¢).

For a Newtonian fluid with zero bulk viscosity and Fickian diffusion, the viscous stress tensor

2 i)uk 6,j
3 _ " ] (7)

(8)

tO, mass and heat flux (J_, a = 1,2, .... ,a) are given by:

( Ou, Ouj
rij = # \Ox_ + Ozi

OCa
g_ = -'Y-8-_,
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where /z is the dynamic viscosity and 7 = pF denotes the thermal and mass molecular

diffusivity coefficients. In the present work, the Lewis number is assumed to be unity.

Large eddy simulation involves the use of the spatial filtering operation (Aldama, 1990):

(f(x,t))t = f?5 f(x',t)_(x',x)dx' (9)

where G denotes the filter function, (f(x, t))t represents the filtered value of the transport

variable f(x,t), and f'= f- (f)t denotes the fluctuations of f from the filtered value. For

variable density flows it is more convenient to consider the Favre filtered quantity defined

as:

= (pf)_____t
(f(x,t))L (P)t

and the fluctuation about this filtered value f" = f - (f)L.

For a spatially and temporally invariant filter function, G(x', x) _= G(x' - x), the application

of the filtering operation to the transport equations yields:

o<p> O(p>d ,>L
0--_ + Oxi -- 0 (10)

O(p>, OTiS
Ot + i)xi - ;)xj + Oxi Oxi (11)

o<p),<¢o)L
Ot + Oxi - Oxi Oxi + (pSo)t, a = 1,2, ..... ,a (12)

where Tij = (P>e((uiuj>L -- (Ui>L(Uj)L ) and M_ = (p)t((ui¢_,)L- (Ui)L(¢_,)L) denote the

subgrid stress and the subgrid mass flux, respectively, (pS,_)e = <p)t<S,_)L (a = 1,2, ..., N,)

are the filtered reaction rates and (pSh)t = °_-_t t. In this work the contribution < Sh >L is

assumed to be negligible.

3.1 Modeling

In LES of non-reacting flows the closure problem is associated with Tij and M_ (Erlebacher

et al., 1992; Salvetti and Banerjee, 1995). In reacting flows, an additional model is required

for the filtered reaction rate (S,_)L. Here, modeling of (S_)L is the subject of the probability
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formulation asdescribedin the next section. For the former two, we makeuseof currently

available and well-established closures. The subgrid stress is modeled via two different eddy

viscosity closures. The first is the compressible form of the Smagorinsky model (Erlebacher

et al., 1992):

T,_ = -2Cm(p)tA_n_/2 ((&i)L g (13)

where (_j)L is the resolved scale strain rate tensor, 1-Is = (Sij)L(Sij)L, AG is the charac-

teristic size of filter and Cm, Cn are empirical constants. The drawbacks of this closure

are well-recognized (Zang and Piomelli, 1993; Kerr et al., 1996). In an attempt to overcome

some of these drawbacks, we also make use of a second closure which is the variable density

form of the model that has been used in our previous work (Colucci et al., 1997) and is given

as:

2

T,j = -2CR.(p).AGE 1/' ((Sij)L -- 3 (Skk)L_ij) -4- -_Ci2(p)tE6ij (14)

where E = ](U_)L(U*)L--( (U_)L)t,( (U*)L)e,], u_ = Ui--Ui and Hi is a reference velocity in the xl

direction. The subscript 2' denotes the filter at the secondary level which has a characteristic

size (denoted by Ac,) larger than that of grid level filter. This model is essentially a modified

version of that proposed by Bardina et al. (1983), which utilize equal sizes for the grid and

secondary filters. We refer to this as the modified kinetic energy viscosity (MKEV) closure.

Accordingly, the subgrid eddy viscosity, vt for these two closures are expressed as:

i 2 (15)

and

respectively.

(16)

A similar diffusivity model is used for the closure of the subgrid mass flux (Eidson, 1985):

0<¢o), (17)
M_ =-Tt 0zi

where "Yt = (p)eFt, Ft = vt/Sct, and Sct is the subgrid Schmidt number, assumed to be

constant and equal to subgrid Prandtl number.
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4 The Filtered Mass Density Function (FMDF)

Let ¢(x, t) denote the scalar array. We define the "filtered mass density function" (FMDF),

denoted by FL, as:

x.t)= f+oo°°,(x'.t)¢[¢.¢(x'.O]O(x'- x)ax' (18)

O* '

(: [¢, ¢(x, t)] = 6[¢-¢(x,t)]- IT _[¢, - ¢o(x,t)] (19)
a=l

where _ denotes the delta function and ¢ denotes the composition domain of the scalar array.

The semicolon indicates that Fn(¢;x,t) is the FMDF with regards to the compositional

variables _/, only. The term _[¢, ¢(x,t)] is the "fine-grained" density (O'Brien, 1980; Pope,

1985), and Eq. (18) implies that the FMDF is the mass weighted spatially filtered value of

the fine-grained density. The integral property of the FMDF is such that

/+_ FL(¢;x,t)d¢ =/;_ p(x',t)G(x'- x)dx' = (p(x,t))t. (20)

The FMDF is related to the FDF (fL(¢; x, t)) ((Colucci et hi., 1997)) through the density:

fi(¢)fL(¢;x,t) = FL(¢;x,t). Additionally, it is useful to define the Favre-weighted FDF

.T'L(¢;x,t) through (p)t.T'L(¢;x,t)= fi(¢)fL(¢;x,t)= FL(¢;x,t).

For further developments, it is useful to define the mass weighted conditional filtered mean

of the variable Q(x, t) as:

(Q(x,t)l¢)e f+_ p(x',t)Q(x',t)¢[¢,¢(x',t)]G(x'- x)dx'
= FL(¢;x,t) (21)

Equation (21) implies the following properties:

(i) For Q(x,t) = c, (Q(x,t)l¢), = c (22)

(ii) For Q(x,t) - @(¢(x,t)), (Q(x,t)l¢)t = (0(¢) (23)

F(iii) Integral property: _ (O(x,t)l_b)tFL(¢;x,t)d ¢

= (p(x,t))t(Q(x,t))L (24)



wherec is a constant, and _)(¢(x,t)) - Q(x,t) denotes the case where the variable Q can

be completely described by the compositional variable ¢(x,t) = [¢1, ¢2,..., ¢_]. From these

properties, it follows that the filtered value of any function of the scalar variables (such as

p = _[¢(x,/)] and So = S,_[¢(x, t)] ) is obtained by integration over the composition space.

To develop a transport equation for the FMDF, first the transport equation for fine-grained

density is derived. By applying the method developed by Lundgren (1969) and others (Pope,

1976; O'Brien, 1980) to Eq. (3) it can be shown that the fine-grained density evolves according

to the following equation:

oz(¢)¢(¢,_)ot+ oz(¢)u,(x,t)¢(¢,¢)ox,- °¢(¢'¢)°J;_0¢_ox, P(¢̂)b-_° [$_(¢)¢(¢,¢)] . (25)

The transport equation for FL(¢;x,t) is obtained by multiplying Eq. (25) with the filter

function G(x' - x) and integrating over x' space. The final result after some algebraic

manipulation is

OFL(¢;x,t) O[(ui(x,t)]_l,}eFL(¢;x,t)] 0 [{ 1 cgJ_ \ ]Ot + Ox, = 0¢---_ _(-¢) _l¢/<FL(¢;x,t)

0[_(¢)FL(¢; x, t)]
- 0¢_ (26)

The unclosed nature of convection and mixing is indicated by the conditional filtered value

of the velocity and gradient of scalar flux. These unclosed terms can be further simplified.

The convection term is decomposed into resolved and subgrid scale components as:

(uii¢}tFL "- (Ui}LFL + [(Uil¢}t- (?.ti)LIFL. (27)

With the assumption of constant property Fickian diffusion, the conditional scalar flux gra-

dient term may be decomposed into diffusive and dissipative parts:

1 ( 0¢o o (O(FLI_) [/ a¢o0¢_1¢
i

(28/
The first term on the right hand side of this equation represents the effect of molecular

diffusion on the spatial transport of the FMDF. The second term represents the dissipative
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nature of subgrid mixing. Upon substitution of Eqs. (27) and (28) in Eq. (26):

OFL O(ui)LFL
gt " + cOxl

o[(u,l¢)<- (U,)L]FL ¢3[,_.(¢)fL1

cOzl 0¢_, (29)

This is an exact transport equation for the FMDF. The last term on the right hand side

of this equation is due to chemical reaction (and also reference pressure for a = or) and is

in a closed form. The first term on the right hand side represents the effects of molecular

diffusion of FDF in physical space and is closed. The second term on the left hand side

represents convection of the FDF in physical space and is also closed provided <Ui)L is

known. The unclosed terms are associated with the second and third terms on the right

hand side representing the influences of molecular mixing and the unresolved subgrid scale

convection, respectively.

The unclosed terms in Eq. (29) are modeled in a fashion consistent with conventional LES.

The subgrid convective flux is modeled via:

[<_,1¢>_- @,)LIFL= -_,
O(FLI(p)<)

_xi
(30)

The advantage of the decomposition (Eq. (27)) and the subsequent model (Eq. (30)) is

that they yield results similar to that in conventional LES. The first two Favre moments

corresponding to Eqs. (27) and (30) are:

(31)

0<¢<,)L (32)<P)<[(_'¢")_- <_')'(¢°)L] = -')" 0_---T

The term within brackets in Eq. (31) is the generalized scalar flux in the form considered

in conventional LES (Germano, 1992; Salvetti and Banerjee, 1995). Consequently, Eq. (32)

becomes identical to Eq. (17).

The closure for the conditional subgrid diffusion is based on the linear mean square estimation

(LMSE) model (O'Brien, 1980; Dopazo and O'Brien, 1976), which is also known as the IEM



(interaction by exchangewith the mean) closure (Borghi, 1988):

82 r/ 8¢_.8¢_i¢_ Fr.l_]= 8a¢=a¢_[\'Y_,_,a_-_ /t a¢=[a_(¢o- <¢_)L)FL], (33)

where fl,_ is the "frequency of mixing within the subgrid" which is not known a priori. This

frequency can be related to the subgrid diffusion coefficient and the filter length: f/,_ =

Ua(7 + 7t)/((p)tA_) • The second moment of Eq. (33) provides an expression for the subgrid

scalar dissipation of species a:

/7 0¢<°)°¢(°)_ = 2am(p)t((¢_)L-- (¢=)_)
_.. = 2 \ Ozi Ozi It (34)

where the subscripts in parenthesis are excluded from the summation convention.

To establish consistency between the FMDF and conventional moment closure approaches

we make use of the assumption:

Note that this assumption is not necessary to evaluate the FMDF and is only adopted to

establish consistency.

In the general case that the molecular diffusivity is a function of the scalar variables, the

decomposition of the conditional scalar flux gradient takes on the form:

(36)
Note that the diffusive term is in a form that accounts for the correlations between the

scalars and the molecular diffusivity. This term may be approximated by:

Oz----_pr_ t_-_z_ (p)t(r)L Ox, J=_z_ (p)t(r)L (37)

where (F)L = r((¢)L).This neglects these correlations and allows one to work directly with
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Favrefiltered quantities. This is madeclear through examination of the first moment:

pr _ (p>t(r>L

For the remainder of this work, the molecular diffusivity is assumed constant.

With the closures given by Eqs. (30) and (33) and also the approximation made in Eq. (35),

the modeled FMDF transport equation takes on the form:

OFL O[<u,>LFL] 0 [ a(FL/<p),)"
Ot + Oxi - Oxl [(7 + 7t) Ozi

0

+ b-b7[fire(¢_ - (¢o>L)FL] (38)

This equation may be integrated to obtain transport equations for the SGS moments. The

equation for the first subgrid Favre moment, (¢_)L, and the generalized subgrid variance,

(¢_>L <¢o>L_a a = -- are:

o((p>_<¢.>L) 0(<p>,(u_>L<¢o>L)a .0(¢o)L
Ot + Ox, -- Ox,(7 + "_') _ + <p)t(S_>L (39)

at + Ox, -- Oz, L(_ + _')b-_,] + 2(_ + _,) L _ Ox,

- 2fl.-,<p>_ro] + 2<p>e(<¢,_Sc,)L -- <¢a)L<S_>L). (40)

These equations are identical to those which can be derived by filtering Eq. (3) directly, and

adopting Eqs. (32) and (34) for the subgrid flux and dissipation. In such direct moment

closure formulation, however, the terms involving (So)L remain unclosed.

5 Lagrangian Stochastic Solution of the FMDF

The Lagrangian Monte Carlo procedure (Pope, 1985) is employed for the solution of the

FMDF transport equation (Eq. (38)). In this procedure, each of the Monte Carlo elements

(particles) obeys certain equations which govern its transport. These particles undergo

motion in physical space by convection due to the filtered mean flow velocity and diffusion

due to molecular and subgrid diffusivities. For each particle, the compositional values of the

11



scalarsare changeddue to mixing and reaction.

The spatial transport of the FMDF is represented by the general diffusion process in a

stochastic manner using the following stochastic differential equation (SDE): (Pope, 1985;

Risken, 1989; Gardiner, 1990)

dXi(t) = Di(X(t),t)dt + E(X(t),t)dWi(t) (41)

where Xi is the Lagrangian position of a stochastic particle, Di and E are known as the

"drift" and "diffusion" coefficients, respectively, and Wi denotes the Wiener-Levy process

(Karlin and Taylor, 1981). The drift and diffusion coefficients are obtained by comparing

the Fokker-Plank equation corresponding to Eq. (41) with the spatial derivative terms in the

FMDF transport equation (Eq. (38)),

E = + 1 0(7 + 7t) (42)
Di =- (Ui>L + (P>t Oxi

The subgrid mixing and reaction terms are implemented by altering the compositional

makeup of the particles according to the following equation,

0¢+
-- = -_m(¢ + - (¢.)L) + $4(¢ +) (43)

Ot

where ¢+ = ¢,(X_(t), t) denotes the scalar value of the particle with the Lagrangian position

vector Xi. The solutions of Eqs. (41) and (43) yield the same statistics as those obtained di-

rectly from the solution of FMDF transport equation according to the principle of equivalent

systems (Pope, 1985; Pope, 1994).

6 Numerical Solution Procedure

The numerical solution of the large eddy equations is based on a hybrid procedure in which

the hydrodynamic Favre-filtered equations (Eqs. (10) and (11)) are integrated by a finite

difference (F.D.) method and the filtered scalar field is obtained by the Monte Carlo (M.C.)

solution of the FMDF transport equation. The F.D. and M.C. solvers are coupled through

12



the resolvedthermodynamic variables. In the presentation below, the results obtained via

this procedure are identified by the abbreviation FMDF-1.

For comparison, the "conventional" LES procedure is also considered. In this procedure,

the modeled transport equations for the filtered scalar and the generalized subgrid scalar

variance are simulated with the F.D. scheme. The hydrodynamic solver and the models for

the subgrid stress and mass flux are identical to those in FMDF-1, but the effects of SGS

fluctuations in the filtered reaction rate are ignored. That is, Eqs. (39)-(40) are solved via

F.D. with the assumption (S_(¢)>L = S_((¢>c). The results based on this procedure are

referred to as LES-FD.

The LES of the hydrodynamic variables, which also determines the subgrid viscosity and

scalar diffusion coefficients, is conducted with the "compact parameter" F.D. scheme of Car-

penter (1990). This is a variant of the MacCormack (1969) scheme in which fourth order

compact differences are used to approximate the spatial derivatives, and a second order sym-

metric predictor-corrector sequence is employed for time discretization. The computational

scheme is based on a hyperbolic solver which considers a fully compressible flow. Here, the

simulations are conducted at a low Mach number (M ,_ 0.3) to minimize compressibility

effects. All the F.D. operations are conducted on fixed and equally sized grid points. Thus,

the filtered values of the hydrodynamic variables are determined on these grid points. The

transfer of information from these points to the location of the Monte Carlo particles is

conducted via interpolation. Both fourth-order and second-order (bilinear) interpolations

schemes were considered, but no significant differences in SGS statistics were observed. The

results presented in the next section are based on simulations with fourth- and second-order

interpolations in two-dimensional (2D) and 3D, respectively.

The FMDF is represented by an ensemble of Monte Carlo particles, each with a set of scalars

¢(_n)(X(")(t),t) and Lagrangian position vector X (_). A splitting operation is employed in

which the transport in the physical and the compositional domains are treated separately.

The simplest means of simulating Eq. (41) is via the Euler-Maruyamma approximation

(Kloeden and Platen, 1995):

X':(tk+l) = X'_(tk) + D':(tk)At + E"(tk)(At)I/2_':(tk) (44)

13



where D'_(tk) = D,(X(")(tk)) and E"(tk) = E(X00(tk)). This formulation preserves the

Markovian character of the diffusion process (Billingsly, 1979; Helfand, 1979; Gillesple, 1992)

and facilitates affordable computations. Higher order numerical schemes for solving Eq. (41)

are available (Kloeden and Platen, 1995), but one must be very cautious in using them

for LES. Since the diffusion term in Eq. (41) depends on the stochastic process X(t), the

numerical scheme must preserve the ItS-Gikhman (ITS,1951; Gikhman and Skorokhod, 1972)

nature of the process. Equation (44) exhibits this property. The coefficients Di and E

require the input of the filtered mean velocity and the diffusivity (molecular and subgrid

eddy). These are provided by F.D. solution of Eqs. (10)-(11).

The compositional values are subject to change due to subgrid mixing and chemical reaction.

Equation (43) may be integrated numerically to simulate these effects simultaneously. Alter-

nately, this equation is treated in a split manner. This provides an analytical expression for

the subgrid mixing. Within a time step, At, the compositional change for the n th particle

due to mixing is:

((_:)mix ._ (_)na> L nl- ((_n a __ (¢n)L) exp [__mAt]. (45)

Subsequently, the influence of chemical reaction is determined by evaluating the fine grain

reaction rates S_ and modifying the composition of the elements:

q):(t -_- At)= (_)mix ___ snmt. (46)

The implementation of Eq. (45) requires the Favre-filtered mean scalar values. These and

other higher moments of the FMDF at a given point are estimated by consideration of

particles within a volume centered at the point of interest. Effectively, this finite volume

constitutes an "ensemble domain" characterized by the length scale AE (not to be confused

with Aa) in which the FMDF is discretely represented. This is necessary as, with probability

one, no particles will coincide with the point (Pope, 1994). Here, a box of size As is used

to construct the statistics at the finite difference nodes. These are then interpolated to

the particle positions. Since the mixing model only requires the input of the filtered scalar

value, and not its derivative, this volume averaging procedure is sufficient. From a numerical

standpoint, determination of the size of the ensemble domain is an important issue (Colucci

et al., 1997). Ideally, it is desired to obtain the statistics from the Monte Carlo solution
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when the size of sample domain is infinitely small (i.e. AE --_ 0) and the number of particles

within this domain is infinitely large. With a finite number of particles, if AE is small

there may not be enough particles to properly construct the statistics. A larger ensemble

domain decreases the statistical error, but increases the dispersion errors which manifests

itself in "artificially diffused" statistical results. This compromise between the statistical

accuracy and dispersive accuracy as pertaining to Lagrangian Monte Carlo schemes implies

that the optimum magnitude of AE cannot, in general, be specified a priori (Pope, 1985;

Colucci et al., 1997). This does not diminish the capability of the procedure, but exemplifies

the importance of. the parameters which govern the statistics.

In an attempt to reduce computational overhead, a procedure involving the use of non-

uniform weights is implemented. This approach allows a small number of particles to be

imposed in regions where the behavior exhibits a low degree of variability. Conversely, in

regions where the phenomena exhibits highly variable character, a large number of particles is

desired to accurately represent the FMDF. This procedure is akin to grid compression in finite

difference or finite volume approaches: whereas grid compression is a utility in increasing the

spatial resolution in areas of interest, the application of variable weights allows for an increase

in the resolution of the FMDF in selected regions. This is exemplified in the case of a reactive

mixing layer. In the freestream regions where the composition is essentially described by a

delta function, a low number of particles (in fact a single particle) is adequate to quantify

the FMDF. In contrast, in the vicinity of the reaction zone it is desirable to impose a high

number of particles as the composition takes on a wide range of values and the subgrid PDF

in this region is more broad banded. In a slight generalization of that developed by Pope

(1985), the particles evolve with a discrete Lagrangian FMDF Fk(¢, x; t):

F;,(¢,x;t)= Am
nE_E

(47)

where Am is the mass of a particle with unit weight and w" is the weight of the n th particle.

Note that the semicolon is placed after the position vector x since position constitutes a

random variable for this Lagrangian FMDF. With integration of this expression over the
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composition domain it is possible to demonstrate:

.EAE

and the Favre filtered value of a transport quantity (_(¢) is constructed by the weighted

average

(Q)L = _.ea_ w"(_(¢") (49)
_]nE_Z wn

Equation (48) implies that the filtered fluid density must be directly proportional to the

sum of the weights in the ensemble domain. In the event of uniform weights, these expres-

sions reduce to familiar forms (P)L (x NE and (Q)L = -_E2(_(dPk) (Pope, 1985) where AlE is

the number of particles in the ensemble domain. Hence, with uniform weights, the particle

number density decreases significantly in regions of high temperature. This is particularly

important because high temperature regions are typically associated with the reaction zones

where proper estimation of the FMDF is critical. The application of variable weights allows

the particle number density to be increased in the high temperature reaction zones without

having to increase the number density outside this zone. At the initial time, the number den-

sity per grid cell of dimension A x A, (denoted NPG) is invoked. For a given value of initial

filtered density, the particle weights can then be assigned. Similarly, at an inflow boundary,

the weights of the particles can be assigned based upon a specified particle number density

and mass flux. The particle weight remains fixed during its life within the computational

domain.

The chemical source terms in scalar equations are complex nonlinear functions of the ther-

modynamic and compositional variables. To evaluate these source terms in the M.C. solver,

the fine grain values of the temperature (T n) for all particles are calculated from the com-

position variable ¢" =- [Y_'_,Y_',...,Y_o,h n] and the fine grain values of density (p") axe

determined from evaluation of the equation of state at a reference pressure p0 (= pnT4."T").

The filtered pressure, (p)t is obtained by the filtered equation of state, (P)t = (p)_(TC.T)L.

In this equation (p)t is obtained from the F.D. solver and the correlation (T_T)L is obtained

by ensemble averaging of T_nT n in the M.C. solver. In this procedure, the coupling between

the hydrodynamic and the scalar fields is taken into account and allows the investigation of

the effects of variable density.
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The pressure ((p)t) field as determined by the above procedure exhibits some spatial os-

cillations. It is known that in PDF methods mean quantities calculated from particles are

accompanied by statistical noise due to the finite sample size (Pope, 1985). Since spatial

derivatives of (p)e are required in the F.D. hydrodynamic solver, the oscillations can result in

numerical difficulties. This is exacerbated by the nature of the fully compressible hydrody-

namic code utilized in this work which allows these oscillations to propagate throughout the

computational domain as spurious acoustic waves. Our results below show that while noise

in the pressure field is noticeable, that of the compositional variables is not very significant.

The amplitudes of the oscillations can be decreased by smoothing of the (TiT)L field. An

alternate procedure is to evaluate the correlation (TiT)L by F.D. solution of its transport

equation. The general form of this equation is complicated, involving two point correlations

of scalars and temperature. At present this approach is investigated only for the case in

which T¢ is constant. With this restriction, only the solution of the Favre filtered tempera-

ture equation is required. The reaction source term in this equation is evaluated from the

M.C. solution. It is shown below that the statistics as determined by this procedure exhibit

almost no spatial oscillations thus no smoothing is required. The results obtained from this

procedure are identified by the label FMDF-2.

7 Results

7.1 Flows Simulated

The FMDF is employed for the simulations of the following flow configurations:

1. A two-dimensional (2D) temporally developing mixing layers.

2. A 3D temporally developing mixing layer.

3. A 2D spatially developing planar jet.

4. A 2D spatially developing mixing layer.

The two-dimensional simulations are conducted to allow extensive computations for assess-

ing the consistency and accuracy of the FMDF and the convergence of the Monte Carlo
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results. Both non-reacting and reactingflowsare considered.Both the FMDF and LES-FD

approachesareapplied to the cases itemized in (1)-(3). Some of these cases are also treated

by DNS, the results of which are used to assess the performance of the FMDF and LES-FD.

Further appraisal is made by comparison with laboratory data for the flow under item (4).

The temporal mixing layer consists of two co-flowing streams traveling in opposite directions

with the same speed (Riley et al., 1986). The reactants A and B are introduced into the

top and the bottom streams, respectively. The length in the streamwise direction is large

enough to to allow for the rollup of two large vortices and one (subsequent) pairing of these

vortices. In 3D simulations, the length of the domain in spanwise direction is 60% of that

in streamwise direction (Moser and Rogers, 1991). The layer is forced via both 2D and

3D forcing functions(Moser and Rogers, 1991; Miller et al., 1994). The initial values of the

reactants .A and B at each spanwise location in 3D simulations are identical to those in

the 2D simulations. In the figures presented below, x, y, z correspond to the streamwise,

cross-stream and spanwise directions, respectively.

In the planar jet, the reactant A is injected with a high velocity from a jet of width D

into a co-flowing stream with a lower velocity carrying reactant B (Steinberger et al., 1993).

The size of the domain in the jet flow is 0_< x < 14D, -3.5D < y < 3.5D. The ratio of

the co-flowing stream velocity to that of the jet at the inlet is kept fixed at 0.5. A double-

hyperbolic tangent profile is utilized to assign the velocity distribution at the inlet plane. The

formation of the large scale coherent structures are expedited by imposing low amplitude

perturbations at the inlet. The frequency of these perturbations correspond to the most

unstable mode and subharmonics of this mode as determined by linear stability analysis of

spatially evolving disturbances (Michalke, 1965; Colucci, 1993). The characteristic boundary

condition procedure developed by Poinsot and Lele (1992) was used at the inlet. In this

approach, the velocity and temperature variables are held fixed while the density is solved via

its transport equation. The characteristic procedure facilitates evaluation of incoming waves

which are necessary for the solution to the continuity equation. Zero derivative boundary

conditions were used at the freestreams and the pressure boundary condition of Rudy and

Strikwerda (1980) was used at the outflow.

To demonstrate the effectiveness of the FMDF approach under more realistic conditions,

simulations of the laboratory experiments conducted By Mungal and Dimotakis (1984) were
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performed. In theseexperiments, the turbulent combustion processwas studied utilizing

a planar shear layer to sustain a diffusion flame with one freestreamcontaining diatomic

hydrogen and the other containing diatomic fluorine. In both streams, the reactant gas

was diluted in nitrogen. The intention of such simulations is to verify the ability of the

FMDP approachto handlemore complexchemicalkinetic mechanismsand increasedvalues

of the physical parameterssuchasthe Reynolds number. While the nature of turbulence is

inherently three-dimensional, the present simulations are restricted to two spatial dimensions.

This assumption is not too severe since the larger, resolved scales of the flow exhibit less

three-dimensionality than the unresolved scales (Brown and Roshko, 1974).

In the hydrogen-fluoride mixing layer simulations, treatment of the hydrodynamic flow vari-

ables at all of the computational boundaries is similar to that of the spatially evolving planar

jet as described earlier. In order to mimic a naturally developing shear layer, a modified

variant of the forcing procedure suggested by Sandham and Reynolds (1989) was utilized.

The cross-stream velocity component at the inlet is forced at the most unstable mode as

well as 4 harmonics (both sub- and super-) of this mode. A spatial linear stability analy-

sis was performed to determine the most unstable mode of the hyperbolic velocity profile

imposed at the inlet. Sandham and Reynolds (1989) used a random phase shift to 'jitter'

the layer. The form of this phase shift was applied by generating a uniform random number

-qom_ < A_ < _'ma_: at each timestep and incrementing the phase by this amount. The

effect of such a procedure is to preventperiodic behavior in the pairings of the large scale

structures and allows the layer attain a higher degree of similarity downstream. The present

approach considers a similar random phase shift, however, instead of utilizing a uniform dis-

tribution for the phase shift at each time increment, a discrete approximation of the Weiner

process was applied:

_(t n+') = _(t n) + 2fifij_t_n, (50)

2where r/n is a Gaussian random variable with zero mean and unit variance. The quantity a_

is the variance of the random process per unit time and controls the 'drift' of the process

over time (the variance per timestep is a_At).
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7.2 Reaction Mechanisms

For the flow configurations (1)-(3), the reaction scheme is of the type .,4 + B --_ P with an

Arrhenius expression for the reaction rate:

S.A = SB = -AI(pA)(pB)exp(-E,./RT), (51)

where A! is the pre-exponential factor, E, is the activation energy, and A, B denote the

mass fractions of species .A, B, respectively. This reaction rate may be expressed in non-

dimensional form as:

S_ = S; = -Da(p*A)(p*B)exp(-Ze/T*). (52)

The asterisk denotes the non-dimensionalized variable normalized by its reference value.

This effectively defines the Zeldovich and DamkShler numbers, Ze and Da, respectively:

= Eo/RT , (53)

Da- AIP_f*
Ur/L,. ' (54)

where p_, T_, ?Jr and L_ are reference density, temperature, velocity and length scale, re-

spectively. Combustion exothermicity is parameterized by the non-dimensional heat release

parameter Ce, defined as:

Ce - -Ah°
%T,. (55)

where Ah_, is the heat of formation for the product 7_. We note here that Ze and Ce are

defined based on T_, the same quantity used to non-dimensionalized the temperature field

such that T_" = 1. Other authors have chosen an alternate convention (such as the adiabatic

flame temperature) which results in a different numerical value of Ce and Ze for the same

flow. Both constant rate (Ze = 0) and temperature dependent (Ze _ 0) reactions are

considered. The species .A, B,'P are assumed thermodynamically identical and the fluid is

assumed to be calorically perfect.

The reaction mechanism associated with the experiment is more complicated and requires

relaxation of some of the restrictions noted in the previous paragraph. The hydrogen-fluoride
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reaction could be representedby the reaction (Mungal and Dimotakis, 1984)

H2 + F2 ----,2HF, AQ = 65 kcal/mol, (56)

where AQ is the heat of reaction. The heat released in a mixture containing 1% mole fraction

of F_ and 1% mole fraction of//2 diluted in nitrogen results in an adiabatic temperature rise

of 93K above ambient (Mungal and Dimotakis, 1984). This reaction belongs to the more

general family of hydrogen-halogen reactions:

H2 + Ha2 _ 2H Ha, (57)

in which Ha represents either F, C1 (chlorine), Br (bromine) or I (iodine). This group of

flames has been extensively studied in the past (Chelliah, 1989) and has previously been

used to test numerical methods for laminar flows undergoing combustion (Spalding and

Stephenson, 1971).

The global representation Eq. (56) is composed of a pair of second-order chain reactions

(Mungal and Dimotakis, 1984):

H2 + F --_ HF + H, AQ = 32 kcal/mol, kl = 2.6 x 1012T °'5 exp -610
ROT '

(58)

-1680 (59)H+F2--_HF+F, AQ=98kcal/mol, k2=3 × 109T l"Sexp ROT '

where the reaction rate constants kl and k2 are given in units of cma/(mol s), T in K, and

the universal gas constant R ° in cal/(mol K). At low concentrations of the H atom, the

reverse of the first of these two reactions is negligibly slow (Williams, 1985). Additionally,

the rate data suggests that the reverse of the second reaction is also negligible as compared

to the forward reaction (Chelliah, 1989).

The explosion limits for the hydrogen-fluorine reaction indicate that a mixture of these two

gases at typical ambient conditions is stable (Chen et al., 1975; Gmelin, 1980). Therefore, in

order to initiate the reaction, a source of F atoms must be provided (Mungal and Dimotakis,

1984). Experimentally, this was accomplished by uniformly mixing a small amount of nitric
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oxidewith the hydrogen-nitrogenmixture. The nitric oxidemixesand reactswith the fluorine

stream to produce free fluorine atoms:

NO + F_ --_ NOF + F, AQ = 18 kcal/mol, k3 = 4.2 x 1011 exp -1150 (60)
T

The reverse of this reaction may be neglected (Rapp and Johnston, 1960). An additional

reaction serves to limit the nitric oxide concentration (Banlch et al., 1981; Cool et al., 1970):

F + NO + M --_ NOF + M, AQ = 57 kcal/mo l, k4 _ 3 × 1016 cmS/(mol2s) (61)

While it is necessary to add nitric oxide to initiate reaction, the addition of excessive amounts

would deplete the availability of the free F atoms. Mungal and Dimotakis (1984) experi-

mentally concluded that keeping the product of nitric oxide and diatomic fluorine molar

concentrations to 0.03% resulted in rapid combustion. It was also noted by the authors that

an increase of 50% in the nitric oxide concentration resulted in no appreciable changes in

the temperature measurements. This suggests that for the conditions encountered in the

experiment, the hydrogen-fluoride reaction can be well approximated by the limit of infinite

rate chemistry.

Both finite and infinite rate FMDF calculations were undertaken. For the finite rate cal-

culations, the 8 species, 4 reaction model based on Eqs. (58)-(61) was utilized. Due to

the very fast rate of the hydrogen-fluoride reaction, compositional change due to reaction

was implemented in 10 chemical timesteps for every hydrodynamic timestep. The computa-

tional cost associated with the high dimensionality as well as the large number of chemical

timesteps motivated the investigation of infinite rate calculations. The application of infi-

nite rate chemistry is a powerful tool in the analysis of LES flows in those cases in which

it is justified. For a general nonlinear reaction mechanism, solution of a filtered conserved

scalar alone is not sufficient to determine the filtered reactive scalars since the knowledge

of the subgrid PDF of the conserved scalar is required to determine these quantities. The

demonstrated utility of the FMDF approach coupled with infinite rate chemistry is an added

objective of the present work.
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7.3 Numerical Specifications

The results of numerical simulations are presented in three different sections. In section 7.4,

the simulation results of the temporally developing mixing layer are used to demonstrate the

consistency of the solution procedure for FMDF and the convergence of the Monte Carlo pro-

cedure for the solution of FMDF. In section 7.5, the simulation results of the 3D temporally

developing layer and those of the 2D planar jets are used to appraise the performance of the

FMDF in predicting DNS data. In section 7.6, the simulation results of the spatially evolving

shear layer is used to assess FMDF via comparison with experimental data. All results in

sections 7.4 and 7.5 are presented in non-dimensional form with normalization to reference

quantities. In all temporal flows, the reference quantities are taken to be the freestream val-

ues, while in the spatially evolving flows, normalization is performed with regard to the high

speed stream. The results in section 7.6 are presented in terms of dimensional quantities. In

the presentation of the non-dimensional results the asterisks are dropped for brevity.

The magnitude of the flow parameters considered in DNS are dictated by the resolution

which can be afforded. The primary parameters are the flow Reynolds number (Re), the

DamkShler number (Da), the molecular Schmidt number (Sc) and the molecular Prandtl

number (Pr). In all simulations Sc = Pr = 1. All finite difference simulations (in both

DNS and LES) are conducted on equally-spaced, square (Ax = Ay = A) grids. The highest

resolution in DNS of the 2D temporal mixing layer consists of 433 x 577 grid points which

allows reliable calculations at Re = 11,200 (based on the velocity difference and initial

vorticity thickness), Ce = 5, Ze = 8, and Da = 11.92. The DNS of the 3D temporal shear

layer is conducted with a resolution of 217 × 289 x 133 with Re = 2,240, Da = 1 and

Ce = Ze = 0. The DNS of the planar jet is performed on a 1201 × 601 grid and allows

accurate simulations with Re = 10,000 (based on the centerline velocity at the inlet and the

jet width), Ce = 2.5, Ze = 8 and Da = 119.2.

The FMDF and LES-FD are conducted on lower resolution than those used in DNS. The

LES of the temporal mixing layer is conducted on a 55 x 73 grid for 2D simulations while

resolutions of 37 x 49 x 23 and 55 x 73 x 34 are utilized in 3D. The LES of the spatial jet

and hydrogen-fluoride mixing layer are conducted on a 201 x 101 grid. In addition to those

cases which are assessed via comparison with DNS, several other temporal mixing layer cases
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are considered to demonstrate the consistency between FMDF and LES-FD approaches as

well as convergence of the Monte-Carlo methodology. These simulations are conducted using

the same grid resolution and Reynolds number as outlined above. A top-hat filter function

(Aldama, 1990) of the form:

a(,,' - x) = 1"I
i----1

1 a_a
Ix;- x,I < 2 (62)

xi) = 0 Ix; >
2

is used with Aa = 2A. No attempt is made to investigate the sensitivity of the results to

the filter function (Vreman et al., 1994) or the filter size (Erlebacher et al., 1992).

In both FMDF and LES-FD simulations, the subgrid stresses are modeled via the MKEV

closure (Eq. (14)) unless specified otherwise. In the implementation of the MKEV, the

magnitude of the reference velocity Ui is set to zero in the cross-stream and spanwise di-

rections and to the average of the high and low speed streams in the streamwise direction.

Additionally, the ratio of the filter size at the secondary level to that at the grid level is

Ae,/Aa = 3. The subgrid mass flux is modeled via Eq. (17). In all cases except that

of the hydrogen-fluoride mixing layer, Prt = Sct = 0.7. No attempt is made here to de-

termine the magnitudes of the constants appearing in these models in a dynamic manner

(Germano, 1992). In all simulations CI1 = CI2 = 0.006. The magnitudes of Cm and CR2

are given below. The subgrid mixing model requires the input of the constant Ca in the

mixing frequency which also determines the SGS variances. A value of Ca = 4 is used in

most simulations. Application of these values for Sct, Prt and Cn in the hydrogen-fluoride

configuration resulted in a notably low temperature rise compared to the results observed

in the experiment. To increase the subgrid diffusion and mixing, a slightly lower value of

Sct = Prt = 0.5 and increased value of Ca = 6 were invoked. This set of constants yield

a more favorable temperature rise. At this point, it is unclear whether these modifications

indicate a lack of robustness in the estimation of the mixing frequency or if the low temper-

ature rise is due to the lack of three dimensionality and small scales in the two-dimensional

simulation. Additionally, it is noted that the mean temperature rise was found be sensitive

to the forcing at the inlet.
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In the FMDF of temporal mixing layer, the particles are initially distributed throughout

the computational region. In the FMDF of the jet, the particles are supplied only in the

region -1.75D < y < 1.75D. For the temporal shear layer, the initial value of NPG

(defined earlier) is varied to assess its affect on statistical convergence. The size of the

"ensemble domain" is also varied to assess its influence. The following sizes are considered:

A E = 2A, A. The number of samples used to construct the FMDF is thus controlled by

selection of NPG and AE. In some of the planar jet simulations and all of the hydrogen-

fluoride mixing layer simulations, variable weights (as outlined earlier) are employed to

decrease the overall computational expense. All other simulations utilize uniform weights. In

the temporal mixing layer, due to flow periodicity in the streamwise and spanwise directions,

if the particle leaves the domain at the right or the left boundary, new particles are introduced

at the other boundary with the exact same compositional values. In the spatially evolving

jet and mixing layer, new particles are introduced at the inlet at a rate corresponding to

the desired (imposed) local particle number density and fluid velocity. With prescription of

the filtered fluid density, the particle weight is adjusted to yield the proper mass flux across

the boundary. Finally, the compositional makeup (reactant mass fractions and enthalpy) is

imposed with a hyperbolic tangent dependence on the cross-stream coordinate.

In application of the FMDF approach to the experimental _:onfiguration, the length scale

used in the non-dimensionalization is taken to be 45.7 cm, corresponding to the distance

from the virtual origin to the position downstream at which the experimental measure-

ments were taken. The computational domain encompassed a rectangular region 1.2 by 0.6

nondimensional units so as to decrease the effect of the outflow boundary condition at the

(non-dimensional) position x = 1.0 coinciding with the location of the measurement appara-

tus in the experiment. Initial discretization of the FMDF was accomplished with 5 particles

per grid cell in the freestreams, peaking to a value of 30 at the level of the splitter plate

(y = 0), corresponding to a initial number density from 20 to 120 sample points per ensemble

for an ensemble domain size of AE = 2A. The composition (reactant mass fractions and

enthalpy) of incoming particles was set according to composition of the fluid at the point

of entry with a hyperbolic tangent profile used to assign the inlet composition variables.

The velocity scale was taken to be that of the fast stream (22 m/s), with a velocity ratio of

0.4. The Reynolds number based on the downstream measurement location was taken to be

4.0 x 105, consistent with the experimental value.
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Due to the low Mach number of the experiment, very small timesteps are required to satisfy

the CFL condition required by the compressible hydrodynamic solver. Additionally, such

compressible solvers become sensitive to numerical instabilities at low Mach numbers. In

order to alleviate these problems, the Mach number in the simulation was artificially in-

creased by a factor of 5 while holding the Reynolds and Damk6hler numbers fixed. This

was accomplished by increasing the velocity reference scale by a factor of 5 and decreasing

the reference length scale by a factor of 5. In order for the nondimensional reaction rate

to be the same, the reaction rate constants kl through k4 were increased by a factor of 59-.

The result is an increase of the Mach number from 0.07 to 0.35 while maintaining the same

Reynolds and Damk6hler numbers. Since the experimental Mach number as well as the

simulated Mach number are low enough such that compressibility effects on the flowfield are

negligible, this procedure is justified. Any wave related phenomena is of course not properly

simulated, however they have little effect on the hydrodynamics and are not of any interest

in the present work. Dilatational effects due to heat release are not affected by this approx-

imation and are properly accounted for. Furthermore, the filtered pressure was obtained by

measuring the subgrid Favre correlation (T¢.T)L from the M.C. solver and multiplying by the

filtered density provided by the F.D. solution to the continuity equation. A minimal degree

of smoothing of (7"¢T)L consisting of a local box filter 3 x 3 grid points with equal weights

was used to minimize the magnitude of pressure oscillations throughout the flowfield. Only

the FMDF-1 formulation was utilized in the experimental comparison.

The simulated results are analyzed both "instantaneously" and "statistically." In the for-

mer, the instantaneous contours (snap-shots) and the scatter plots of the scalar values are

considered. In the latter, the "Reynolds-averaged" statistics constructed form the instan-

taneous data are calculated. In 2D temporal mixing layer, the flow is homogeneous in the

z-direction; thus the statistics are constructed by the ensemble from all the grid points in

the streamwise direction. These statistics are y dependent. In 3D shear layer the flow is

homogeneous in x and z directions therefore statistical are evaluated by averaging in both

these directions. In some cases, the z-averaged statistics are presented at several different z

locations to illustrate the three dimensional effects. In the spatially developing mixing layer

and jet flows the averaging procedure is conducted via sampling in time. These statistics

are y - t dependent. All Reynolds averaged results are denoted by an overbar.
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7.4 Consistency of FMDF

The objective in the results presented in this subsection is to demonstrate the consistency

of the FMDF formulation. For this purpose, the LES results via FMDF and LES-FD are

compared against each other in 2D and 3D temporal mixing layers under different conditions.

Since the accuracy of the finite difference procedure is well-established, this comparative

analysis provides a means of assessing the performanc e of the Monte Carlo solution of the

FMDF.

In all simulations MKEV model is'used to calculate the eddy viscosity with Ca2 = 0.02.

Unless otherwise mentioned, in 2D simulations NPG = 50 and in 3D simulations NPG = 20

at locations that (P)t = 1. Also, in all 2D simulations A E = A and in all 3D simulations

A E = 2A unless specified otherwise.

2D Simulations

Simulations of 2D layers are conducted in which the flow is initiated with a nonuniform

distribution of density and temperature. The initial filtered density is distributed as a

"spike" in the middle of the layer (Fig. l(a)). The reaction rate in this simulation is zero.

The flow that starts with this condition evolves quite differently in comparison to one which

starts with a uniform density distribution (Colucci, 1993). With uniform weights assigned

to the Monte-Carlo particles, the particle number density must remain proportional to the

fluid density. This is observed in Fig. l(a) where it is demonstrated that the filtered density

calculated from the Monte-Carlo particles ((p)t = ((1/p)L) -1 = 1/(_---_E_net, s _), where

NE is the total number of particles involved in ensemble averaging) matches exactly with

that of finite difference values calculated at the Eulerian grid points. Figure l(b) shows

that at the final time of the simulation (when the flow has experienced the pairing of two

neighboring vortices) the Reynolds averaged filtered density calculated from finite difference

and Monte-Carlo approaches are very close. While there are some oscillations in the particle

number density due to finite number of particles and the stochastic nature of the Monte

Carlo procedure, this quantity is still highly correlated with the fluid density.

Figure 2 shows the temporal evolution of the vorticity thickness (/_) for the cases in which the

values of the filtered density are either initially uniform or distributed as a spike. When the
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flow starts with uniform density,the effectof thermodynamicquantities on the hydrodynam-

ics is negligible and 6. asobtained by FMDF-1 and FMDF-2 are identical. Comparatively,

with an initial density spike, the growth of the layer is damped. Nevertheless,the results

obtained by FMDF-1 are very closeto those obtained by FMDF-2. The slight difference

betweenthe resultspredicted by thesetwo methodsare attributed to the differencesin the

numerical procedures. The results obtained from high resolution DNS indicate that the

growth of layer is reasonablywell predicted by the LES schemes.

In Fig. 3, the contour plots of the resolvedvorticity and temperatureat the final time (t = 44)

as obtained by FMDF-1 and FMDF-2 are shown. Figure 3 provides a visual demonstration

of the consistency of the FMDF as the results via the hybrid F.D. - M.C. scheme (FMDF-1)

are in agreement with those obtained by F.D. (FMDF-2). There are some oscillations in

the results obtained by FMDF-1. Comparatively, these oscillations are nearly eliminated in

FMDF-2. An interesting observation in Fig. 3 is that there are significant positive vorticity

values in the flow field. These positive values are created by the baroclinic term and are also

observed in DNS.

To determine the extent of noise accompanying the statistical quantities, the Reynolds av-

eraged values of the resolved pressure, temperature, energy and conserved scalar are shown

in Fig. 4. This figure indicates that the results based on FMDF-1 are very close to those

obtained via FMDF-2. The most significant difference between these results is in filtered

pressure which exhibits appreciable oscillations in FMDF-1 (Fig. 4(a)). To reduce the pres-

sure fluctuations, a local least square filter function is applied to smooth the (T)L values

as obtained from the Monte Carlo particles. This operation reduces the oscillations in (P)t

noticeably as shown in Fig. 4(a) and does not have a significant influence on the other statis-

tical quantities. Figures 4(b)-4(d) show that the filtered values of the resolved scale energy,

temperature and conserved scalar as obtained by FMDF-1 are very close to those predicted

by FMDF-2. Several other filter functions has also been employed to smooth (T)L. The

effect of these filter functions on the flow field is demonstrated in Fig. 5, where the difference

between calculated values of (p)t via FMDF-2 and FMDF-1 with smoothing are shown. In

all cases, the difference in (P)t is very small (less than 2%). The most significant differ-

ence between the pressure fields occurs when no smoothing operation is applied to (T)L in

FMDF-1. The results in Fig. 5 also show that the difference between the pressure fields is
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significantly decreased as the number of employed particles is increased.

To demonstrate the consistency between the FMDF and moment closure (LES-FD) ap-

proaches, comparison between the moments of a conserved scalar calculated from the Monte-

Carlo particles and those generated by LES-FD is made. This is observed in Fig. 6 where

contour plots of the Favre-filtered value of scalar .A are presented. In the results presented in

Fig. 6 and also in those in Figs. 7 and 8, the Favre filtered temperature in FMDF is calculated

from Monte Carlo particles (FMDF-1) and no smoothing operation is performed. Figure 6

clearly indicates the results obtained by FMDF are strikingly similar to those obtained by

LES-FD. Similarly, Fig. 7 is a plot of the Reynolds averaged first and second subgrid Favre

moments. Figure 7(a) shows the comparison of FMDF and LES-FD results for (A)L for

different values of AE and NPG. The agreement in the first moment is quite good even for

large values of AE. This is particularly important as the Favre-filtered scalar is required in

the mixing model. The difference between the FMDF and LES-FD results is more apparent

in Fig. 7(b) where the cross-stream variation of a_ for different AE and NPG are consid-

ered. It is observed that FMDF overpredicts the values of the second moment. However,

the difference between FMDF and LES-FD diminishes as AE decreases. This is consistent

with the results obtained in constant density flows (Colucci et al., 1997).

The consistency between FMDF and LES-FD as established above is only valid in nonre-

acting flows. In reacting flows, the reaction term in FMDF transport equation is closed but

the corresponding terms in the moment equations require modeling. This lack of consis-

tency is demonstrated in Fig. 8 where simulations of a uniform density reacting temporal

mixing layer with Da = 2 and Ce = Ze = 0 are considered. In these simulations, the LES

resolution is lowered to 37 x 49 and Re = 2,800. The product thickness (6p) from FMDF

and Favre-filtered DNS are nearly identical. Comparatively, in the absence of a reaction

closure, the product formation in LES-FD is significantly higher. Also shown in Fig. 8 are

the results calculated from the filtered density function (FDF) (Colucci et al., 1997). The

results obtained from FMDF and FDF are quite close, indicating the consistency of FMDF

with FDF formulation in the limit of zero density variations.

3D Simulations

To further demonstrate the consistency between the FMDF and LES-FD methodologies,
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large eddy simulations of 3D temporal shear layers are conducted. In these simulations the

initial density and temperature profiles are distributed as a "spike", similar to that in the

previous 2D simulations.

The results of 3D simulations with 2D forcing are similar to those obtained via 2D simu-

lations. To demonstrate this similarity, in Fig. 9 the cross-stream variation of the filtered

density averaged over the x direction at several different z locations as obtained by FMDF-2

is shown. The values are calculated from the Monte- Carlo particles (M.C.) and finite differ-

ence procedure (F.D.). Figure 9 demonstrates that the filtered density profiles at different

spanwise locations are similar to each other and to the results shown in Fig. l(b) for 2D

simulations. All other statistics were observed to exhibit similar two-dimensional behavior.

Consistent with the 2D simulations, Fig. 9 further indicates that there is an excelient agree-

ment between the filtered density calculated from M.C. and F.D. The agreement obtained

by the different methods is better illustrated in Fig. 10, where scatter plots of (T)L and (A)L

as calculated by M.C. and F.D. are shown. It is observed that the local values of (T)L and

(A)L calculated from Monte Carlo particles are highly correlated with those calculated by

the finite difference method. The correlation coefficients among the data presented in Figs.

10(a) and 10(b) are 0.998 and 0.993, respectively.

The statistics calculated from simulations with 3D forcing exhibit significant variations along

the spanwise direction. This is observed in Fig. 11, where the cross-stream variation of the

x-averaged streamwise vorticity and pressure at several z locations obtained by FMDF-1 and

FMDF-2 are shown. The results in Fig. ll(a) indicate that the filtered vorticity calculated

by FMDF-1 is very close to that calculated by FMDF-2. The filtered pressure obtained from

FMDF-1 also exhibits similar trends to that obtained from FMDF-2, however, the noise in

the pressure field as calculated by FMDF-1 is appreciable. Despite the obvious effect of this

noise on the pressure field, the filtered scalar and temperature values as calculated by M.C.

are consistent with those calculated by F.D. This is illustrated Fig. 12 in which scatter plots

of (T)L and (A)L are shown. The results in Fig. 12(a) indicate that the local values of (T)L

calculated from Monte Carlo particles are very close to those calculated by finite difference

method. Furthermore, there is a high correlation between the local values of (A)L calculated

from the Monte-Carlo particles and finite difference (Fig. 12(b)). The correlation coefficients

among the data presented in Figs. 12(a) and 12(b) are 0.999 and 0.999, respectively.
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7.5 Validations via DNS

The objective of this section is to assess the overall performance of FMDF methodology, to

appraise the validity of the submodels employed in the FMDF transport equation, and to

demonstrate the capabilities of FMDF for LES of complex exothermic chemically reacting

turbulent flows. For this objective, the FMDF results are compared against DNS of the

same flow configuration with the same magnitudes of the physical parameters (Re, Da

etc...). For meaningful comparison, the DNS data is filtered and down-sampled onto coarse

grids corresponding to the resolution used in FMDF. At this point it should be emphasized

that FMDF is not intended to be an alternative to DNS, rather the comparison is made to

assess the performance of the FMDF approach. The value in the FMDF approach lies in

its applicability to more "practical" systems which are incapable to be treated by DNS. To

illustrate the capability of the FMDF, the results are also compared with LES-FD in which

the effects of SGS fluctuations on the filtered reaction rate are ignored. The results of two-

and three-dimensional simulations are discussed in different subsections. First the results

for the 2D temporal shear layer and 2D planar jet are presented. This is followed by the 3D

temporal shear layer results. Unless otherwise specified, all FMDF calculations presented in

this section utilize the FMDF-2 formulation.

2D Simulations

To quantify the performance of the FMDF methodology in the case of heat release, simula-

tions of a temporal mixing layer undergoing exothermic chemical reaction are conducted. In

Fig. 13(a), the FMDF predictions of the product thickness are compared with DNS results.

The cross-stream variation of the product mass fraction averaged over streamwise direction

at t = 44 are shown in Fig. 13(b). The FMDF results are calculated with both AE = A

and AE = 2A. The results obtained by LES-FD are also presented to demonstrate the

importance of the SGS scalar fluctuations. Figure 13(a) indicates that the values of the

product thickness predicted by FMDF are reasonably close to those of DNS. The size of the

ensemble domain used to calculate the Favre-filtered statistics from particles does not have

significant influence on the magnitude of the product thickness. Additionally, the results in

Fig. 13(a) illustrate that the neglect of SGS correlations results in significant overpredictions

of the product mass fraction. This behavior is observed at all times and and is consistent
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with that in Reynolds averaging (Libby and Williams, 1980). The results shown in Fig.

13(b) further illustrate these trends. While the cross-stream product distribution obtained

in DNS and FMDF with either AE ----A or AE = 2A are in good agreement, that predicted

by LES-FD is significantly higher. It is expected that the deviation between DNS and LES-

FD results would increase as the magnitude of the Damk6hler number and/or Reynolds

number increases (Colucci et al., 1997). In the majority of "practical" reacting systems,

the magnitudes of the DamkShler and Reynolds numbers are considerably large. Therefore

it is expected that the effects of the SGS correlations would be highly pronounced in such

applications.

In combusting flows, the reaction rate is typically a strong function of temperature. Therefore

accurate prediction of the scalar field relies on the proper assessment of the temperature. In

Fig. 14 the cross-stream variation of the filtered temperature (averaged over the x direction)

for DNS, FMDF and LES-FD at t = 44 are shown. This figure shows that for this flow with

significant variations in temperature due to heat release, the averaged filtered temperature is

reasonably well predicted by FMDF. In contrast, LES-FD yields a significant overprediction

in the product formation, indicating the importance of the SGS scalar and temperature

fluctuations. Furthermore, it is demonstrated in Fig. 14 that the filtered temperature as

obtained from M.C. particles is nearly identical with that obtained by the F.D. solution.

Accurate prediction of the filtered temperature field is also critical in evaluation of the

velocity field. In the cases considered here the heat release associated with the reaction has

a significant influence on the hydrodynamics. This is observed in Fig. 15 where it is shown

that the vorticity thickness (_,) calculated by DNS is significantly decreased due to heat

release. Figure 15 also shows that the vorticity thickness obtained from FMDF exhibits

similar trends to those of DNSI Nevertheless, in both heat releasing and non-heat releasing

cases, FMDF underpredicts the DNS values due to inaccuracy of the models for SGS stresses.

The inaccuracy of the SGS stress models has a noticeable effect on the development of the flow

in the transitional period of its evolution and is the primary reason for the slight differences

between the DNS and FMDF results in Figs. 13 and 14.

The effectiveness of the FMDF to predict the slightly more complex jet flow is summarized

in Figs. 16-21. As described above, in the treatment of exothermic flows, 3 different method-

ologies for dealing with the filtered pressure are employed. In each procedure, the filtered
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density obtained from the finite difference solution of the filtered equations is used in the

equation of state. In the first approach, the Favre-filtered temperature obtained by ensemble

averaging over the Monte-Carlo particles is used to evaluate the filtered pressure (FMDF-

1). Due to the statistical noise of the finite samples utilized to calculate mean quantities,

the resulting pressure field suffers from oscillations. This is .demonstrated by a snapshot of

the flowfield in Figs. 16(a) and 17(a) in which contours of the pressure and temperature

for exothermic reacting simulations are displayed. This behavior is amplified by the fact

that the resulting pressure field is differentiated in the momentum equations and the finite

difference solver is acoustic in nature. In an attempt to reduce this oscillatory behavior, a

local box filter is applied to smooth the temperature. Figure 16(b) demonstrates that the

pressure fluctuations in the resulting flowfield are reduced significantly. Furthermore, addi-

tional diffusion due to the smoothing nature of the box filter is apparent, especially in the

temperature contours (Fig. 17(b)). The third approach considers the evaluation of the Favre

filtered temperature by considering its transport equation (FMDF-2). The subgrid corre-

lations appearing as the source term in this equation are obtained from the FMDF solver.

The resulting pressure field, depicted in Fig. 16(c), is nearly free of pressure oscillations.

The temperature values evaluated via this procedure are also free of noise (Fig. 17(c)). It

is to be noted that in the present simulations, the gas constant of the mixture is assumed

constant and any mass fraction-temperature correlations in the filtered equation of state are

identically zero. The numerical treatment of these correlations due to variable mixture gas

constant is the focus of our current investigation.

It has been shown in Fig. 1 that in the nonreacting density-stratified mixing layer, the

Reynolds averaged values of the particle number density correlate with the filtered fluid

density. Similarly, Fig. 18 shows that in reacting planar jet simulations the instantaneous

particle number density and the filtered fluid density as calculated by FMDF are reasonably

correlated. The results considered in Figs. 1 and 18 correspond to cases in which the particles

have uniform weights. Of particular interest in Fig. 18 is that the particle number density

is lowest in the high temperature reaction zones. To assess the effectiveness and accuracy

of the variable weight procedure, simulations of a reacting planar jet identical to that in

Figs. 16-18 but with variable particle weights are conducted. Particles are introduced at

the inlet based on a specified number density which is lowest in the freestreams and peaks

at the reaction zones. The resulting particle number density, sum of particle weights, and
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filtered fluid density calculated by FMDF are shown in Fig. 19. It is observed in Fig. 19(a)

that downstream there is a higher proportion of particles in the reaction zones relative to

the case with uniform weights. The sum of the particle weights as shown in Fig. 19(b) is

reasonably correlated with the filtered fluid density (Fig. 19(c)). A comparison between

Figs. 18(b) and 19(c) indicate that despite the significant difference in the total number of

particles and particle weighing procedures, the filtered density fields are nearly identical in

the two simulations. The computational time in the case with variable weights is lower than

that in the case with equal particle weighting by nearly a factor of two.

The similarity of the results obtained with uniform and variable particle weighting procedures

is further demonstrated in Fig. 20(a) where the variation of the integrated product thickness

with the downstream coordinate is shown. Also shown in this figure is the product thickness

as obtained from DNS and LES-FD. It is observed that LES-FD substantially overpredicts

the amount of product in comparison to the filtered DNS data. The FMDF results are much

closer to those of DNS. Further comparison between DNS, FMDF and LES-FD results is

made Fig. 20(b) where the time-averaged profile of the product variation in y direction at

x/D = 14 is shown. Similar to the conclusions drawn from Fig. 20(a), it is observed that

the amount of product predicted via LES-FD is significantly higher than that of DNS while

the FMDF results are close to DNS values.

The ability of the FMDF to capture the effects of chemical reaction lies in its ability to resolve

the scalar and temperature correlations without modeling. These correlations constitute an

important contribution to the filtered reaction rate. To demonstrate this, in Fig. 21, contour

plots of the SGS "unmixedness', defined as (S(¢))t - S((_)L), from both DNS and FMDF

are shown. A comparison between the results shown in this figure clearly indicate that

the SGS unmixedness calculated by FMDF is in very good agreement with that of DNS.

Comparatively, this term is effectively ignored in LES-FD. The contribution of the SGS

unmixedness to the total filtered reaction rate is expected to increase as the flow Reynolds

and Damkbhler numbers increases. Therefore, it is expected that the difference between

DNS and LES-FD results increase as Reynolds and/or Damkbhler numbers increase.

3D Simulations

The major conclusions drawn from the 2D results are confirmed in 3D simulations. To
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build upon the results obtained from the two-dimensi_nal simulations, DNS and LES of

three-dimensional temporal shear layer flow are conducted. The temporal evolution of the

product thickness as predicted by FMDF is compared with DNS and LES-FD results in Fig.

22 for both low and high LES resolutions. Figure 22(a) illustrates the importance of the

SGS unmixedness in 3D flows, as the product thickness obtained from LES-FD is appreciably

higher than that predicted by DNS. Consistent with the results of the 2D simulations, the

product thickness predicted by FMDF with MKEV model are close to those of DNS. Also

shown in Fig. 22(a) are the FMDF results obtained using the Smagorinsky model as the

SGS stress closure. The accuracy of the Smagorinsky model for this transitional flow is

less than that of the MKEV model as the product thickness values obtained by FMDF

with Smagorinsky closure compare less favorably to the DNS results than those obtained by

FMDF with the MKEV model. The results shown in Fig. 22(b) for higher LES resolutions

resemble those shown in Fig. 22(a) for lower LES resolution. Again LES-FD significantly

overpredicts the DNS results while the results obtained from FMDF using the MKEV model

yields a more favorable comparison. Expectedly, the difference among DNS, LES-FD and

FMDF results decrease as the resolution in LES increases.

To further demonstrate the capabilities of FMDF, in Fig. 23 the cross-stream variations of

the filtered product mass fractions for DNS, LES-FD and FMDF at t = 44 are shown. The

product values reported in Fig. 23(a) are obtained by averaging the instantaneous results

over x and z directions. To illustrate the three-dimensionality of the flow, the product mass

fractions averaged over x direction at two different z locations are presented in Fig. 23(b).

Consistent with the results shown in Fig. 22, it is observed that the product mass fractions

are significantly overpredicted by LES-FD, again indicating the importance of the SGS scalar

correlations. The product mass fraction predicted by FMDF as shown in Fig. 23(a) are in

agreement with that of DNS. The FMDF reasonably predicts the product mass fractions for

several spanwise locations demonstrating the enormous potential of the FMDF for LES of

three-dimensional complex turbulent reacting flows.

A common feature of the results shown in Fig. 23 is that the dispersion of the product

values along the cross-stream direction is slightly underpredicted by FMDF. The reason for

this behavior is that the SGS stress and scalar flux models are not entirely accurate and

result in underprediction of the growth of the layer. This is illustrated in Fig. 24, where it
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is shown that for different filter sizes(different LES resolution) the temporal evolution of

the vorticity thickness (5_) as predicted by FMDF with the MKEV model are lower than

that that predicted by DNS. Expectedly,as the resolution of FMDF is increased,the results

better comparewith DNS.The vorticity thicknesspredictedby FMDF usingthe Smagorinsky

model are also consideredin Fig. 24. It is shown that the vorticity thicknesspredicted by

FMDF with the MKEV model predicts the DNS data much better than that via FMDF

with the Smagorinskyclosure. It is well establishedthat the Smagorinskyclosuregenerates

excessivedamping on the resolvedscalesin transitional regions (Zang and Piomelli, 1993)

which, consequently,yields wrong prediction of the growth rate of the shear layer. The

improved prediction of the eddy viscosity also results in more accurate prediction of the

product formation by FMDF as illustrated in Fig. 22. This is primarily due to the role of

the eddy viscosity in the determination of the subgridmixing frequency.

Computational Requirements

To evaluate the computational cost of FMDF, the computational times associated with the

simulations of 2D reacting planar jet and 3D reacting mixing layer are shown in tables 1 and

2, respectively. The overhead of the FMDF simulation is somewhat extensive as compared

to LES-FD; nevertheless the running time for FMDF simulation is significantly less than

that of DNS. While this overhead is tolerated in present simulations, there are several means

of reducing it for future applications. For example the Lagrangian procedure would benefit

from the utilization of parallel architecture, since a significant portion of the time is devoted

to computations in large loops dimensioned by the total number of Monte Carlo particles.

This has been discussed for use in PDF methods(Leonard and Dai, 1994) and its utilization

in FMDF methods is encouraged. Again it is emphasized that FMDF is not intended to be

an alternative to DNS. The value in the FMDF approach lies in its applicability to more

"practical" systems which are incapable to be treated by DNS.

7.6 Validations via Laboratory Data

In the experiments of Mungal and Dimotakis (1984), several runs involving different equiv-

alence ratios were undertaken to elucidate the effect of this parameter on the product for-

36



Table 1: The computational times for 2D planar jet simulations.

II Simulation II Grid resolution Normalized CPU timet
DNS 1201× 601 242.5

FMDF 201x 101 7.62
LES-FD 201 x 101 1

Figure
20, 21
19-21

20

t Unit correspondto 760secondson a Cray-C90.

Table 2: The computational times for 3D shearlayer simulations.

II Simulation I[ Grid resolution Normalized CPU timet
DNS 217 x 289 × 133 182.71

FMDF 55 × 73 x 34 7.64
LES-FD 55 × 73 × 34 1

Figure
22(b)
22(5)
22(5)

t Unit correspondto 655 secondson a Cray-C90.

mation. The authors define the equivalence ratio of the low speed freestream reactant con-

centration Co_ to the high speed freestream value c01 divided by the low speed to high speed

stoichiometric ratio:

co2/Coi

¢ - (c02/c0x), - Co2/C01, (63)

noting that the stoichiometric ratio is unity for the hydrogen-fluorine reaction. In all of the

runs, the fluorine mole fraction was kept at 1% while the hydrogen mole fraction was varied

at 1%, 2%, 4% and 8%. With the fluorine on the high speed side, this allows for equivalence

ratios of 1, 2, 4 and 8. 'Flip' experiments were conducted in which runs with inverse values

I and -_). These were carried out by movingof the equivalence ratio were conducted (1, ½,

the 1% fluorine mixture to the low speed stream and the hydrogen mixture to the fast speed

stream.

Figure 25 displays contour plots of (a) the instantaneous temperature field and (b) the time

averaged temperature field for a stoichiometric ratio of unity (1% fluorine on the high speed

side and 1% hydrogen on the low speed side). In this simulation, the 8 species, 4 reaction

finite rate chemical mechanism was utilized. Clearly evident in this figure is the presence

of large scale coherent structures. Note that the peak temperature in the instantaneous

field approaches, but is somewhat lower than the adiabatic flame temperature. Since the
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chemistry is sufficiently fast, finite rate effectsdo not offer anexplanation; rather the causeis

explainedby the nature of the filtering process.In contrast to the instantaneoustemperature

field, the peak valuesof the time averagedfield are considerably lower than that of the

adiabatic flame temperature, an intuitive fact noted previously by the authors as well as

by others (Wallace, 1981). It is noted that a large number of individual particles (i.e.

'realizations') do indeed approachthe adiabatic flame temperature, a result reflectedin Fig.

26 which is a scatter plot of the particle temperature against the mixture fraction Z where

Z _ cH2 ._u CF_¢ _ _ CF2

CH2_ ÷ CF2¢¢
(64)

The presence of large scale structures in shear layers has been widely recognized (Brown

and Roshko, 1974; Papamoschou and Roshko, 1986). Evidence of such structures in the

present experiment is presented in the form of Schlieren photographs as well as temperature

histories at several cross stream positions. Figure 27 is a corresponding time l_istory of

temperature at various cross stream locations calculated by the simulation. Each vertical

increment represents temperatures ranging from ambient to the adiabatic flame temperature.

Qualitatively, these time traces are strikingly similar to those generated in the experiment.

One notable difference is that in the vicinity of the middle regions of the layer, there are points

in time that the simulation exhibits near ambient temperature (cool fluid). While there is

some evidence in the experiment, it is considerably more prevalent in the simulation. This

is partially believed to be a consequence of the two dimensional nature of the simulation.

Comparatively, the true three dimensional behavior exhibits smaller scales which tend to

more effectively homogenize the fluid locally and prevent the presence of purely ambient fluid

in this region. For this reason it is expected that the minimum values of the time averaged

temperature in the vicinity y = 0 are slightly lower than those from the experiment. It is

expected that a fully three dimensional FMDF simulation would alleviate this shortcoming.

Another significant cause of this discrepancy noted by the authors is that the cold wire probes

suffer from appreciable thermal lag and conduction error which tend to cause a 'smoothing'

effect.

In an effort to assess the capability of the simulation to quantitatively predict the experi-

mental results, Fig. 28 shows plots of the time averaged temperature as a function of the
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cross stream coordinate at the downstream measuring station. In this figure, the cross

stream coordinate is normalized with the 1% temperature thickness, _1, defined as the dis-

tance between the points at which the cross stream mean temperature rise is 1% of the

maximum mean temperature rise. The comparison between the experimentally measured

values and those generated by the simulation procedure is favorable. Also in this figure is

a plot of the mean temperature generated by the FMDF approach with the infinite rate

reaction model. As expected, the infinite rate approach agrees quite well with the finite

rate reaction mechanism. A considerable savings in computational time as well as memory

is gained in the infinite rate approach, owing to the fact that only one passive scalar needs

to be transported. Additionally, while 10 chemical time steps per hydrodynamic time step

were required in the finite rate approach, the conserved scalar is not altered by the effects of

reaction, eliminating the necessity for such expensive time splitting. As a result, while the

finite rate code took 12,700 cpu seconds on a Cray C-90, the infinite rate code used only

1,990 cpu seconds on the same machine. With confidence in the infinite rate model, the

remainder of the hydrogen-fluoride simulations were conducted using this approach.

To demonstrate the 'flip' effect noted in the experiment, Fig. 29 shows the cross-stream

1 Two primary observations are consistent withtemperature variation for ¢ = 8 and ¢ = g.

the findings of the experiment: (1) the peak value of the mean temperature differs although

the adiabatic flame temperature is the same and (2) the peak value 'shifts' toward the lean

reactant stream. Clearly, since the only difference between the two runs is the interchange

of the low and high speed reactants, the mechanism for this observation lies in the fluid

mechanics. An explanation is offered by Mungal and Dimotakis (1984) in the context of the

Broadwell-Breidenthal theory (Broadwell and Breidenthal, 1982). This theory based upon

the fact that the entrainment ratio differs from unity due to the non symmetric nature of

the velocity profile (the entrainment ratio is defined as the ratio of the volume of high speed

fluid to the volume of low speed fluid mixed within the layer). An additional explanation

is presented based upon the PDF's of Konrad (Konrad, 1977; Broadwell and Breidenthal,

1982). In this approach, the flipping effect is attributed to the fact that the Konrad PDF's

have peaks near _¢/(1 + £'), where _ is the entrainment ratio. Regardless of the theoretical

explanation, the important feature is that the FMDF simulation is capable of capturing the

phenomena observed in the experiment.
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Absolute temperature profiles for all equivalence ratios are presented in Fig. 30(a). These

results exhibit characteristics similar to those presented in the experimental investigation.

Most notable is the tendency of the flame to favor the lean reactant side as discussed above.

Additionally, with the exception of the two cases for ¢ = 1, the peak temperature is higher

for equivalence ratios greater than One compared to the reciprocal equivalence ratio, a gen-

eralization of the result discussed in the previous paragraph. Normalized mean temperature

profiles are presented in Fig. 30(b). Consistent with the experiment, the peak normalized

temperature reaches a maximum between the values of 1 and 2 for the equivalence ratio.

These trends are more clearly portrayed in Fig. 31(a), which Mungal and Dimotakis (1984)

refer to as 'inferred' temperature profiles. These plots are modified to reflect the temper-

ature if the high speed reactant was fixed at 1% molar concentration while the low speed

stream was varied from I% through 8% to obtain the desired equivalence ratios. This figure

clearly supports the conclusion drawn by the authors of the experiment that there exists an

asymptotic limit to product formation as the high speed reactant is burned to completion.

Similar behavior is exhibited in Fig. 31(b) in which inferred temperature profiles are shown

for the situation in which the low stream reactant is fixed at 1% and the high speed reactant

is varied to obtain the same equivalence ratios.

Further assessment of the FMDF approach is made in Fig. 32(a) which shows the variation

of the normalized product thickness with the equivalence ratio. In lieu of direct species

measurements, product formation in the experimental investigation was inferred from the

temperature measurements. While the simulation allows direct measurement of the species

mass fractions, the product thickness as defined by Mungal and Dimotakis (1984) was used

for consistency:

5pl = '/f_ G(T(Y)) dy,

f ÷ooCp(T(y))dy$p2
J-oo "

The distinction between these two definitions of product thickness lies in the free stream

concentration used for normalization purposes (Mungal and Dimotakis, 1984). In the def-

inition of 5pl, the high speed mole fraction cm is used, while the low speed mole fraction

Co2 is used in the normalization of 5p2. Figure 32(a) indicates the simulation captures the

proper magnitude of product formation through all ranges of the equivalence ratio. At low
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values of ¢, the amount of product formed varies nearly linearly as the low speed reactant

is consumed in reaction with excessive amounts of the high speed reactant. At high values

of the equivalence ratio, the product thickness approaches an asymptotic value as reaction

progress is inhibited by a lack of the high speed reactant relative to the amount of reactant

in the low speed stream. This figure corresponds to the area under the curves in Fig. 31(a).

Similarly, Fig. 32(b) shows the variation of the normalized product thickness 6p2 with the

inverse equivalence ratio. The corresponding temperature profiles are those of Fig. 31(b).

8 Concluding Remarks

The utility of the filtered mass density function (FMDF) and its application to LES of

variable density chemically reacting flows is explored and demonstrated. The advantage

of FMDF lies in its ability to resolve the correlations of the reactive scalars, density and

temperature at the subgrid scale (SGS) level without resorting to closure models. The

present formulation is developed for treatment of scalar variables only, thus modeling is

required for correlations involving the velocity field (such as the Favre SGS stress and mass

flux). This may be overcome by considering the joint velocity-scalar FMDF. In the present

form the scalar FMDF methodology is capable of treating complex exothermic reacting flows

and is powerful in a sense that it can be added to the existent CFD codes.

The evolution equation for the FMDF is derived. Unclosed terms in this equation are identi-

fied and models are used to represent their effects. The FMDF transport equation is solved

numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equiva-

lent stochastic differential equations (SDEs) are obtained. These solutions preserve the ItS-

Gikhman nature of the SDEs. The consistency of the FMDF approach, the convergence of its

Monte Carlo solution and the performance of the closures employed in the FMDF transport

equation are assessi_d by comparison with results obtained by direct numerical simulation

(DNS) and by conventional LES procedures in which the first two SGS scalar moments are

obtained by a finite difference method (LES-FD). These comparative assessments are con-

ducted by implementations of all three schemes (FMDF, DNS and LES-FD) in temporally

developing mixing layer and spatially developing planar jet under both non-reacting and
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reacting conditions. In non-reacting flows, the Monte Carlo solution of the FMDF yields

results similar to those via LES-FD. The advantage of the FMDF is demonstrated by its use

in reacting flows. In the absence of a closure for the subgrid scalar fluctuations, the LES-FD

results are significantly different from those based on filtered DNS. The FMDF predictions

yield much closer agreement to the DNS. The FMDF methodology is also tested by com-

parative assessment against the experimental data of Mungal and Dimotakis (1984) for a

hydrogen-fluorine reacting mixing layer. It is shown that the FMDF method is able to accu-

rately predict the temperature field. The "flip effect" and and other physical phenomenon

associated with experimental results are also correctly predicted by FMDF.

The results presented in this work demonstrate that FMDF provides a powerful tool for large

eddy simulation of turbulent reacting flows. While the FMDF method is computationally

more expensive than conventional LES method, it provides extensive flexibility for treating

complex reacting flows over that of conventional LES methods without resorting to ad-hoc

assumptions. Additionally, the FMDF approach can be applied to practical combustion

systems where DNS is not feasible. Based on these observations, it is anticipated that LES

of turbulent reacting flows with realistic chemical kinetics to be routinely conducted for

practical applications in the near future.
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Figure captions

Figure 1. Cross-stream variation of the filtered density in temporally evolving mixing layer

obtained by FMDF-1 at (a) t = 0, (b) t -- 44.

Figure 2. Vorticity thickness vs. time in the temporally evolving mixing layer.

Figure 3. Contours of the filtered vorticity and temperature in the temporal mixing layer

obtained by FMDF-1 (right hand side) and FMDF-2 (left hand side) at t = 44. The plots

at the top represent the vorticity field and the bottom plots show the temperature field.

Figure 4. Cross-stream variation of the mean filtered (a) pressure, (b) kinetic energy, (c)

temperature, and (d) scalar at t = 44.

Figure 5. Cross-stream variation of the percentage of the difference in pressure as obtained

by FMDF-2 and FMDF-1 with different smoothing.in temporally evolving shear layer at

t = 44. (I) Long-dashed line: no smoothing, NPG = 50 and A E ---- A; (I) Dotted-dashed

line: smoothed with Gaussian filter, NPG = 50 and _E ---- /k; (I) solid line: smoothed

with box filter, NPG = 50 and AE = A; (I) dashed line: smoothed with local least square

filter, NPG = 50 and AE = A; (I) Long-dashed thick line: smoothed with Gaussian filter,

NPG = 200 and AE = /k; (I) Dotted thick line: smoothed with Gaussian filter, NPG = 50
and AE = 2A.

Figure 6. Contours of the filtered values of the conserved scalar as obtained by (a) LES-FD,

(b) FMDF at t = 44.

Figure 7. Cross-stream variation of (a) filtered scalar, (b) generalized scalar variance in

temporal shear layer at t = 44.

Figure 8. Product thickness variation with time in the temporally evolving mixing layer.

Figure 9. Cross-stream variation of the mean filtered density in 3D temporal shear layer at

several spanwise locations.

Figure 10. Scatter plots of filtered values of (a) the temperature, (b) the conserved scalar

as obtained by M.C. and F.D. with FMDF-2 method in 3D temporal shear layer with 2D

forcing.

Figure 11. Cross-stream variation of the mean filtered (a) vorticity, and (b) pressure in 3D

temporal shear layer at several spanwise locations.

Figure 12. Scatter plots of filtered quantities as obtained by M.C. and F.D. in the 3D

temporal shear layer with 3D forcing: (a) temperature obtained by FMDF-2, (b) conserved
scalar obtained by FMDF-1.

Figure 13. (a) Product thickness variation with time, (b) Cross-stream variation of the

product mass fraction, in the temporally evolving mixing layer.
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Figure 14. Cross-streamvariation of the filtered temperature in temporally evolving mixing
layer at t = 44.

Figure 15. Vorticity thickness vs. time in the temporally evolving mixing layer.

Figure 16. Contours of the filtered pressure in planar jet for different cases, (a) calculated

by FMDF-1 with no smoothing of the filtered temperature, (b) calculated by FMDF-1 with

smoothed filtered tempe_'ature with box filter, (c) calculated by FMDF-2 with no smoothing

of the filtered temperature.

Figure 17. Contours of the filtered temperature in planar jet for different cases, (a) calculated

by FMDF-1 with no smoothing of the filtered temperature, (b) calculated by FMDF-1 with

smoothed filtered temperature with box filter, (c) calculated by FMDF-2 with no smoothing

of the filtered temperature.

Figure 18. Contours of (a) particle number density and (b) fluid filtered density in planar

jet for the case with uniform weights.

Figure 19. Contours of (a) particle number density, (b) particle weighting and (c) fluid

filtered density in planar jet for the case with variable weights.

Figure 20. Temporal evolution of the product thickness, (b) Cross-stream variation of the

product distribution at x/D = 14, in the spatially evolving reactive planar.

Figure 21. Contours of the instantaneous subgrid scale unmixedness for the spatially evolving

planar jet, (a) DNS and (b) FMDF.

Figure 22. Product thickness variation with time in the 3D temporally evolving mixing layer.

(a) low LES resolution, (b) high LES resolution.

Figure 23. Cross-stream variation of the mean product mass fraction. (a) the mean values

are obtained by averaging over streamwise and spanwise directions, (b) the mean values are

obtained by averaging over streamwise direction and are plotted at two different spanwise
locations.

Figure 24. Temporal evolution of the vorticity thickness. The upper curves correspond to

the cases with high LES resolution and the lower curves correspond to the cases with low
LES resolution.

Figure 25. Contour plots of (a) instantaneous Favre filtered temperature and (b) time

averaged temperature fields for ¢ = 1.

Figure 26. Scatter plot of particle temperature versus mixture fraction for ¢ = 1.

Figure 27. Time history of instantaneous Favre filtered temperature at several cross stream
locations.

Figure 28. Cross stream variation of the normalized mean temperature for ¢ = 1.
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Figure 29. Crossstream variation of the normalizedmeantemperature for _b= 8 and _b- 1

Figure 30. Crossstream variation of (a) absolute mean temperature and (b) normalized
meantemperature for all equivalenceratios.

Figure 31. Crossstreamvariation of the 'inferred' meantemperatureprofiles for (a) 1%high
speedmole fraction and (b) 1% low speedmole fraction for all equivalenceratios.

Figure 32. Normalized product thickness variation with equivalenceratio: (a) 5pl versus

equivalence ratio and (b) 5p2 versus inverse equivalence ratio.
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ÎV

_ZI
L#



I ' I ' I

f _- J

Is.U.U.

'I ii
,i

• i I ' i I i I i

0 u') 0

.J

Î
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