
NASA-CR-205479

A Study of Convergence of the PMARC Matrices applicable to WICS

Calculation_

by

• /

//

Amitabha Ghosh

Department of Mechanical Engineering

Rochester Institute of Technology

Rochester, NY 14623

/

¢/

Final Report

NASA Cooperative Agreement No: NCC 2-937

Presented to

NASA Ames Research Center

Moffett Field, CA 94035

August 31, 1997

Table of Contents

Abstract
• o • • o , • • ° • • _ • • • • • • ° ° • ° ° • • • • • • • • • • • • • • • • o • • • °

Introduction ..

Solution of Linear Systems

Direct Solvers ..

Gaussian Elimination:

Gauss-Jordan Elimination:

L-U Decompostion:

Iterative Solvers ..

Jacobi Method:

Gauss-Seidel Method:

Successive Over-relaxation Method:

3

3

4

5

5

5

6

6

7

7

8

Conjugate Gradient Method: 9

Recent Developments: 9

Computational Efficiency 10

Graphical Interpretation of Residual Correction Schemes 11

Defective Matrices 15

Results and Discussion 16

Concluding Remarks 19

Acknowledgements 19

References ... 20

Appendix .. 20

Table 1: Comparison of Various Methods for Small Matrices 21

Table 2: Comparison of the Methods applied to Hilbert Matrices of different sizes... 22

Table 3: Comparison of Various Methods for a PMARC Matrix of Size 2004 x 2004..23

Program Listings: •................. 23

2

Abstract

This report discusses some analytical procedures to enhance the real time solutions of PMARC

matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented

at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably

speedy manner necessitating exploring further improvement in solution time. This paper therefore

presents some of the associated theory of the solution of linear systems. Then it discusses a

geometrical interpretation of the residual correction schemes. Finally some results of the current

investigation are presented.

Introduction

WlCS is a combined experimental and computational approach to correct for the wall intert_rence

effects in wind tunnel testing. The procedure involves replacing the test model by a combination of

mathematical singularities. The use of the model force and moment measurements together with the

wind tunnel wall pressure measurements facilitate calculation of the unknown strengths of sources

and doublets representing the model and the support system The main benefit of the WICS procedure

is in the pare-calculation of a database using the PMARC influence coefficient matrices. Often this

process takes several days depending upon the number of singularities and panels in the model

Moreover the influence coefficient matrices arising from WICS calculations are neither sparse nor

symmetric. Thus exploring a better linear solver would be a worthwhile effort. With this objective in

mind, this investigation attempted to answer some of the related issues of the solution of linear

systems.

This report re-visits some popular direct and iterative methods of solution of linear systems and

systematically compares their performance for solution of large systems. For some time the

convergence difficulties of PMARC matrices applicable to WICS calculation was believed to be ill-

conditioning of the influence coefficient matrices. Thus the early part of this research was devoted

to the study of ill-conditioning. As explained later, this issue was resolved by using double precision
arithmetic, after it had also been established that the WICS matrices were indeed well-conditioned.

There is no reason to suspect that such issues will arise again in WICS calculations. Thus the present

focus is the speed of calculation.

As a preliminary set of geometrical ideas was developed, the interpretation of iterative solution

procedure was attempted on small matrices. Preliminary results were not very promising when applied

to typically large systems however. Computational efficiency was hampered in large matrices due to

a large number of error-accumulating procedures. The tests finally suggested exploring the current

linear solver in PMARC [1] in conjunction with the developed geometrical ideas, which resulted in

improved performance.

Thequestionsof solvinglargelinearsystemswill alwaysariseinour applicationssinceinternalflow
modelsinvolvingPMARCwill typicallygrid themajorportionsof a wholewind tunnel.However,
theissuesarisingfromsupercomputingandparallelprocessingwill not beattemptedheresincethey
involvedifferentstrategies.

Thebasiclayoutof this reportcoversboth theoryandcomputationalexperiments.Thetheoretical
ideasaresubstantiatedby geometricalinterpretationsfor smallmatrices.Howeverlargematrices
involving very largesolutiondatafilesarenotpresentedasoutputs.Instead,their performanceis
comparedwith respectto computationalrun time usingdoubleprecisionarithmetic.Theseare
presentedin a tabularfashionanddiscussedin theresultssection.Theactualfortran programsthat
weredevelopedunderthisprojectareavailableon thesr71 and ra-iris systems at NASA-Ames and

the author's home directory at Rochester Institute of Technology. Some sample fortran programs are

attached herewith in the appendix.

Solution of Linear Systems

This field of study is very old and practically arises in any area of mathematical interest. The basic

techniques of linear algebra are learnt in a variety of ways from high school mathematics through

higher levels involving ideas from topology. The characteristic of all linear systems consists of a

set of coefficients and unknowns related by a system of equations which never involve any powers

of the unknowns more than one, neither do any of the equations involve any products of two

unknown quantities. In a basic appearance we shall call such a set of equations an n-dimensional

linear system, given by

art xt + at2 x2+ at3 x3 + + at., xn = b t

a21 xt + a22 x2 + a23x3 + + a2, x, = b2

a3tx t+a32x 2+a33x 3+ +a3, x,=b 3

° , ° ° • . • • ° ° • • . • ° ° . . ° . ° . . .

°° .°.°o°° °°°°°..o°°...°°o° ° • • o ° • °

a,t xt + a,2x2 + a,3 x3 + +a** x,=b,

(1.1)
(1.2)
(1.3)

(1.n)

In the above system, the right hand terms b_ through b, are all known, as well as, any terms involving

the letter "a '° with subscripts. The right hand known constants are expressible by a column vector b

of size n, and the unknown variables x_ throughx, may be expressed by another column vector x. Thus

the linear system may be expressed in a more compact form by A x = b, such that A is a matrix of size

(n x n) [i.e., n rows and n columns].

There are various questions of to answer about the existence of solutions and solvability which

involve the matrix A of different numbers of rows and columns. However in our applications database

no such cases will arise. Thus we shall always focus on a linear system that poses a unique solution

and all the solutions arrived at by various means will involve real numbers. Also our system of

4

equationswill be non-homogeneous,ie., the vector b will never be a null vector. When a

homogeneous system of n linear equations are solved, the determinant of A must be zero. Although,

such systems involving eigenvalues and eigenvectors will be discussed later, the main thrust of the

solution will involve numerical procedures adopted for non-homogeneous systems.

The focus of this investigation is in developing and understanding computational approaches. Thus

traditional solutions of non-homogeneous linear systems given by Cramer's rule, cofactors and

evaluation of determinants will be omitted here since these techniques are very expensive

computationally. The traditional direct solvers include the Gaussian elimination technique, Gauss-

Jordan technique and the L-U decomposition technique.

q;aussian Elimination:

In this approach the idea is to triangularize the matrix A through a set of algebraic reductions such

that the resulting matrix A' is a strictly upper triangular form. There are different ways to achieve

this. The most popular technique yields the diagonal elements of A' as one. The corresponding

right hand column vector b ° after the reductions are utilized in a back substitution process to

solve for the unknown vector x. The reason Gaussian elimination is claimed as a direct solver is

because, with sufficient accuracy, the calculations need to be performed only once. With single

precision arithmetic however, on some limited memory computers, the calculations may need to

be iterated using an error equation technique.

Although the process of Gaussian elimination is simple, it does not involve the least amount of

calculational efforts. It may be shown that the calculations involved in such processes are of the

order of n 3 operations. There are some associated computational questions to produce robustness

in such calculations for a general matrix. These involve rearranging the equations so that the

diagonal elements of A are always the largest. These are called the row pivoting and the column

pivoting operations. The examples quoted for comparisons later in this report always involved a

partial row pivoting strategy (for example, see the 9 x 9 truss problem later).

Gauss-Jordan Elimination:

This is a step further from the Gaussian elimination process. In this method the eliminations of the

coefficients are carried out not only below the diagonal but above the diagonal also. The

advantage of this method is that the reduced matrix A' is a diagonal one, eliminating the need for

the back substitution process, which is a characteristic of the previous technique. The choice to

use the Gaussian elimination or the Gauss-Jordan elimination is a personal one since the

associated procedures involve the same amount of computational efforts. Thus Gauss-Jordan

technique is not claimable as an improvement over the Gaussian elimination process. For example,

5

thesubroutinegss in the current solver in PMARC is a Gauss Jordan one.

L-U Decompostion:

The ideas of Gaussian elimination is extended another step in the L-U decomposition process. There

are different authors for such methods (for example Crout's method, Doolittle's method, etc).The idea

is to obtain a simultaneous upper and lower trianguladzation of the original coefficient matrix A, such

that A = L.U. There is again no direct advantage of adopting this procedure for computational

efficiency over the Gaussian elimination technique. However such decomposition ideas are

worthwhile to understand the direct and iterative numerical techniques presented later. Thus although

no separate consideration of this technique will be presented in this report, note that the QR

decomposition technique quoted later to check the ill-conditioning of the PMARC coefficient

matrices involved such triangularization ideas.

In summary, the direct solvers available in literature today are all variations of the Gaussian

elimination process. There are several different methodology to obtain solutions of linear systems by

direct solvers. However since all direct solvers involve associated computations with the whole

coefficient matrix A, there is no apparent computational benefit over the original Gaussian

elimination, since all involve n _ arithmetic operations.

Iterative Solvers

Iterative solvers became more popular with the advent of high speed computers. There are several

benefits of choosing an iterative solver over a direct solver. Simple iterative solvers invariably

reduce the programming efforts. However the more sophisticated ones may involve considerable

amount of complex programming since they can act as a black box for the end user. The

development of a robust calculation procedure has its roots in the linear algebraic techniques far

beyond the reach of the end user. We however will-develop some geometrical approaches here in

an effort to understand the basic iterative techniques. There is a difficulty in presenting

geometrical ideas beyond three dimensions. The visualization handicap will be supplemented by

algebraic reasoning. The sections below present the basic and the more recent iterative solution

procedures.

To give an example of an iterative process, let us assume an equation: ax _ + bx + c = 0, where, a,

b and c are constants and x is the unknown variable. We wish to determine the unknown variable

x by repetitive calculations called iterations. Note that the equation's solution can be determined

by the quadratic formula x = {-b ± _/(b 2 - 4 a c)}/(2a). However that will be considered a direct

analytic solution. Instead an iterative procedure may be set up by casting the above equation into

the following form x(ax+b) = -c, followed by, x = -c/(ax+b). Thus a new value of x may be

determined from a guessed value of x by the last equation. This is formalized by writing the

6

equation as xc'+_)= -c/(ax c') +b), where (k) represents the iteration number. In this process, the

guessed solution will be changed and hopefully will be converged to the analytic solution of the

equation. The theory behind solution of linear equations by iterative processes involves study of

the procedures and errors associated with iterations and whether or, how quickly the calculated

solution can be converged to the analytic solution. Note that contrary to this non-linear example,

our system of equations is linear and associated unknown x is a vector with n components. Given

below are the popular iterative solvers for linear systems.

Jacobi Method:

This technique is the most basic form of relaxation methods and is listed here for reference. The

actual procedures adopted in this report did not employ this except to calculate part of the solution

in the successive over-relaxation scheme. The point Jacobi technique involves decomposing A as
follows.

The matrix A may be decomposed into a diagonal matrix D, an upper triangular U and a lower

triangular matrix L. Then the resulting linear system may be written as

D x °'÷t) = -(L + U) x °° + b,

where, (k) is the iteration number.

Thus the solution of the point Jacobi scheme may be sought using

Xfk+l)= - D "I(L + U) xe')+ D "Ib

In the above equation, the matrix, T_ = - D _ (L + U), is called the associated point Jacobi iteration

matrix of the linear system A x = b. Note that the second matrix D _ b of the right hand side of the

above equation is a known static vector, which will not change during the solution process. Whether

the solution of the point Jacobi method converges to the analytical solution of the linear system

depends on the norm of the iteration matrix being less than one. It may be shown that this condition

on the norm is satisfied if the coefficient matrix A is strictly diagonally dominant.

The speed of calculation in a point Jacobi scheme is slow compared to the processes discussed below

since the iteration vector x °'÷1)gets modified only once in each iteration.

Gauss-Seidel Method:

If the same decomposition that was used in the point Jacobi scheme is organized a little differently,

the speed of calculations can be considerably improved. This method upgrades the vector x

continuously within a single iteration using the most recent values of the components of x that are

7

available.The resultingschemeiscalledthepointGauss-Seidelscheme,where,

x °'÷1) = - (D + L) "l (U) x c') + (D + L) "l b

where, the iteration matrix is "los = - (D + L) "l (U).

The point Gauss-Seidel scheme is convergent if and only if IH'osll _ 1. This condition may again be

guaranteed if the matrix A is strictly diagonally dominant. The Stein-Rosenberg theorem relates the

convergence and the matrix norms of the Jacobi and Gauss-Seidel iteration matrices [2].

Successive Over-relaxation Method:

The best speed of calculations utilizing the ideas of the point Jacobi and Gauss-Seidel schemes may

be derived by a linear combination of those two solutions. The resulting scheme is called the point

successive over-relaxation scheme (or, simply S.O.R scheme). Here the linear combination of the

point Jacobi solution, xj and the point Gauss-Seidel solution, xca is achieved to yield Xsoa as

Xsoa = O Xos + (1 - w) xj

In the above equation, co is called the relaxation parameter. It ranges in values typically between 0

and 2. However, higher values are possible to yield a convergent solution. When the value of co is

less than 1 the process is called under-relaxation and when co is greater than one the process is called

over-relaxation. Although co is typically a constant, it may be chosen as a variable too. In each

problem an optimum value of the relaxation parameter may be found analytically as well as by

performing computational experiments. The iteration matrix of the point S.O.R scheme is given by

Tso R = - (D + coL) "t [6o L + (I - co) U] .

Using the substitutions of P = D "t L and Q = D _ U, we may re-write the above as

Tso a = - (I + cop).l [Q + (1 - co) 1]

where, I s the identity matrix of size n x n.

Two important theorems by Ostrowski and Reich relate the iteration matrices of Gauss-Seidel and

S.O.R. processes [2]. The important condition which guarantees convergence of the above matrices

in the complex space is that the component matrices L, U and D be Hermitian and positive definite.

In the applications of our interest, a real, symmetric and diagonally dominant matrix A would meet

all the conditions above if the acceleration parameter may be maintained in the range 0 to 2.

Con iugate Gradient Method:

All relaxation processes have the basic idea of reducing the residual vector r [= b - A x] as the

calculation proceeds from iteration to iteration. There are different procedures defined dependent on

the search direction to modify the trial vector for x. One of the most successful procedures is called

the conjugate gradient method. In this process, the trial vector, v is modified as follows:

v'=v+tp

where, t is a scalar, v' is the new trial vector and p is the direction vector in which the new solution

vector, v' must be searched. The direction of p must not he chosen perpendicular to the error vector

because then there will be no improvement in the solution vector v'. If the direction of p is chosen

same as the error vector the previous iteration step, we get the steepest descent method. If the

direction of p is chosen as same as a weighted constant factor times the previous step's error vector

the resulting procedure is called the simultaneous displacement or the Jacobi iteration procedure. The

best selection of p comes from satisfying the relationship

A pC,). pc`-t) = pC,). A pC-l) = 0

This is the basis of the so called conjugate gradient method. In the above relation, the dot indicates

the inner product of two vectors. The vector pC,) is taken as a linear combination of ra') and pC,-,).

In this procedure, the residual vectors and p with Ap form two orthogonal systems, hence the name

conjugate gradient method.

The conjugate gradient method is by far the best relaxation method among the traditional iterative

procedures. The convergence in this process is quadratic and is guaranteed within n iterations where

n x n is the size of the matrix A. The only drawback is that the matrix to analyze is required to he

symmetric. There are variations of the conjugate gradient method possible for asymmetric matrices.

However, as mentioned in the section below and substantiated by the results later, the best scheme

tested in this investigation is a variant of the Lanczos method.

Recent Developments:

As we shall see in the graphical interpretations of the program gsol later, the search of the solution

vector is facilitated by a choice of an orthonormal basis. QR factorization schemes and procedures

associated with the Gram Schmidt orthogonalization yield such orthormal bases. However, if the basis

can be established in an elegant way there are significant computational advantages.

In any iterative solution the Markov chain converges depending on the eigenvalues of the iteration

matrix. If the largest eigenvalue is less than one convergence is assured. However the speed of

convergence is also associated with the closeness of the eigenvalues. These ideas prompted a host

of procedures [3, 4, 5, 6] related to the determination of eigenvalues. For large matrices the speed

of calculationisof primeimportance.If there is a way to determine search directions while the matrix

sizes are relatively small and self-correct the process while progressively larger matrices are handled,

the process will surely be more desirable. The basis of the current solver in PMARC has this structure

in the subroutine lineq. This procedure is based upon Davidson's method [7] of determination of a

few of the smallest eigenvalues and eigenvectors of a large matrix.

Comnutational Effi¢iency

There are several ways computational efficiency is measured in solving linear systems. Most

computational processes are dictated by the accuracy in calculations. This is very important in

both direct and iterative solution methods. However accuracy plays different roles in these two

methods. While direct solvers must be very accurate because calculations are performed only

once, iterative solvers can handle more errors in early iterations if they can be annihilated rapidly.

There is also the question of conditioning of matrices. If a matrix is well conditioned, any small

perturbation in the coefficients will not produce large perturbations in the solution vector.

Assuming the matrices to explore are well conditioned, errors can only be of one kind - rounding

errors. Unless any solution scheme models after application of some series, there is no concern

about truncation errors. Rounding errors can be measured as local and global. Local errors that

take place during each iteration become of global nature when all iterations cumulatively affect

calculations. A classic example of sensitivity of a solution scheme on global errors is the Lanczos

scheme. For quite some time, this elegant method was overlooked because the failures were not

pegged down to cumulative errors. This important lesson that the author learnt is reflected in the

design of gsol.

The speed of calculations is reflected in the number of arithmetic operations that each scheme is

required to perform. The analytical estimate is typically related to the size of the matrix, n. For

example, a scheme requiring n 3 operations would take approximately 8 times the computational

effort if the size of the matrix is doubled. The other measure of speed as discussed before (for an

iterative process) is going to be reflected in how rapidly the residuals are annihilated. This is

typically measured by the ratio of the absolute values of the residual norms between two

successive iteration steps. This can also be assessed by the Euclidean norm of the iteration matrix.

Another measure of computational efficiency is given by robustness. A robust calculation

procedure will normally not fail if the conditions of matrix coefficients, the right hand side column

vector, the starting guess solution, etc. change. This was the focus in the early part of this work.

Finally, modem linear algebra has been tremendously impacted by the architecture of computers.

As the demand of speed increases, the concepts are modified to suit the need. Today the product

of two matrices are done by block concepts much more than the conventional earlier methods, ff a

matrix is symmetric, half data storage is exploited. These and parallel architecture are keys of

modem computing. This work exploited some storage optimization for 2004 x 2004 matrices

primarily from the need to save memory on the sr7I machine. Also some modularization was

10

adoptedfor programmingease.Other concepts of modem architecture were not exploited.

Graphical Interpretation of Residual Correction Schemes

In this section we shall explore the geometrical ideas associated with residual correction methods.

The ideas will be developed from geometrical to algebraic reasoning for higher dimensions. Let A

x = b be represented for a planar case first. Let a11 x_ + at2 x2 = bl and all X_ + at2 x2 = b_ represent

two straight lines in the x-y plane given by OP and OQ, with O as their point of intersection. The

point O's coordinates are the so called solution of this system of equations which we wish to

arrive at iteratively. Let the point S represent the coordinates of the starting guess solution. To

reach the point O from S, let us first drop a perpendicular on OP from S. Let the point of

intersection be A. Subsequently another perpendicular may be dropped on OQ from A. Let that

point of intersection be B. With the knowledge of the points A and B we may drop one last

perpendicular from B on OP to obtain C. Then the solution O of the system may be arrived at

from A in one movement along AC by the amount AO, where, AO = AB_/AC.

Y
Q

B

$

Fl_re 1.

This may be shown easily from the similar triangles OAB and ABC where the angle CAB is

common. Instead of using the direct value from this formula for AO, suppose there is a multiplicating

factor _ used with AO to reach O from A. This may be viewed upon as an accelerating factor in

higher dimensions. For a set of n equations in n unknowns,

resl = b_ - [a_ a_2 at3 at.] • xs, represents the residue from the first equation, which also

represents the perpendicular distance of the point O from the hyperplane:

atx xt + a_ xz + at3 x3 + + atu x, = b_

Now this distance can be used to arrive at the point A if a component can be used in the direction

toward A to obtain the position vector XA. ThUS,

x t " x# + r,zl [a n at2 at3 ... a_l r

latt at2 a13 al,,I 2

11

In asimilarmanner,xs maybewrittenfrom XAas

xs'x,4+
ros2

I_1 _2 _ a'_.l2
[%t %, ---

where, res2 = b2 - [a21 a_ a_ a,_]. XA. Similarly Xc may be obtained from xs by projecting into

the first hyperplane again. After C is obtained a single evaluation of O is made with the relaxation

factor o. Then the resulting point becomes a new point O and the process keeps repeating. In this

manner, each new equation is selected from a set of n equations and the projections are made on the

first hyperplane. This is the basis of the program qmconj given in the appendix.

An alternate to the above program will be instead of projecting each new residue onto the first

hyperplane, each two new residues are formed from the sequence of equations (1.1,1.2), (1.2,1.3),

(1.3,1.4), etc. This process works faster with larger values of o and is the basis for program simconj

given in the appendix. A proof of convergence for the above procedures is given below.

Let Xo* be the new guess point arrived at after one iteration of the qmconj process. Since the vectors

AB, BC and AC may written as

ab = x s - XA,

bc = x c - xB_

ac = x c - XA,

abl = _/(ab.ab)

acl = ,/(ac.ac)

adl = _ abl2/acl

Thus, Xo* = XA + (0 abl 2 (xc - xA) / acl 2 = f_ xc + (1 - f_) xA, where, f_ = (o abl2/acl 2.

Note the structure of the acceleration in the last step above emerges exactly like the point successive

over-relaxation scheme, where the position vectors for points C and A serve the replacement for the

Gauss-Seidel and Jacobi iterations before. With the matrices substituted for a 4 x 4 system the three

basic steps to the solution of the new guess vector would he given by

bl b2 bl
- + M, xo, x. - + A, xc- + %.

(°,, .,,)'" (.,, ,,.),"

where, the repeated index i indicate summations over i =1,4 and the matrices Mt and M2 are

12

and,

2

(I- a_) -_tan -_a_ -a_t_(

]
-_,,% =_._ (i _.,) =_-_4

Similarly, M3 and M, matrices may be written following similar structures as M_ and M2. Thus the

f'mal expressions for the three steps Xo', Xo" and Xo°" before arriving at the upgraded initial guess

may be derived. Finally the iteration matrix for the program qmconj may be obtained as

Tq,_ = (1 - _).-t (M_M,M_)(M_M3M_)(M_M2MI). In a similar manner the iteration matrix for the

program simconj may be written as T,,,, = (1 - f2)*_ (M3M4M3)(M2M3M2)(M_M2M 0.

Several computational experiments were performed to claim the convergence of the above iterative

processes. It was shown that in each case the matrices were convergent. The norms of T_ and T,,,,

were very small indicating rapid reduction of the residuals. Thus the procedures qmconj and simconj

could be applied for small matrices fairly reliably, each time converging. Another advantage of these

schemes over other previously discussed iterative methods was they could be applied for ill-

conditioned ma_ (see next section) as well as general solution procedures, where typically Gauss-

Seidel type methods would fail due to the lack of diagonal dominance and conjugate gradient type

13

methods would fail due to the lack of symmetry. However, the procedures are not very efficient

computationally specially for large matrices. Thus although the schemes were robust they were also

computationally expensive. Nonetheless there was an important lesson to be learnt from these

exercises, which reflected in basic geometrical interpretations of the convergence processes in a
relaxation method.

Returning to the planar case of the above methods, we may obtain another arrangement by this

process to reach O. Instead of obtaining the point A and then using it to obtain point B, let SA and

SB be two perpendiculars from S onto OP and OQ. Then the arrangement would look like

y

Q

B

1)

1)lira) 2.

Note that the distance SA represents the perpendicular distance of a point from a line. In higher

dimensions, the corresponding distance represents the perpendicular distance of the point S from the

n-dimensional hyperplane. If the figure 2 is interpreted another way, one would discover a nice

geometrical feature imbedded in it. The perpendiculars SA and SO tend to suggest that OS resides

on the diameter of a circle. In fact the points S, A, B and O are all on this circle with the diameter OS.

If there was a way to quickly obtain the center C of this circle, obtaining the solution O is just a

matter of doubling the distance from S to C. This also raises the question that although the above

geometric reasoning holds for a circle, will it also hold for a sphere in n-dimensions. It turns out that

the point C would become the circumcenter for the n-dimensional solid. The name circumcenter

arises from the fact that, for a triangle, the circumcenter is the perpendicular bisector of all the three

sides, and is at an equal distance from all the three vertices. The process to obtain C in n-dimensions

was first implemented in the program gsol2v as a direct solver. There are two options to solve for the

circumcenter. The first one is using the orthonormalization process as mentioned above. An alternate

procedure is to calculate the Menger's detemainant [8]. This process determines the circumradius first.

However the solution of the resulting system must again be carried out using some speedy iterative

procedure. Thus the direct solver was later modified as an iterative process in the program gsol to

obtain the circumcenter using the current solver in PMARC.

The direct solution of the circmrr.enter C is found by going to the midpoints of each segment SA, SB,

14

etc.for then perpendiculars to the hyperplanes for which linear system the solution is sought. This

resulted in a Gram-Schmidt type orthogonalization procedure. The equations can be cast into a simple

form starting from the point S. If the base points of perpendiculars to all the hyperplanes are

obtained, each two new basepoints will make a triangle with the first basepoint of which the

circumcenter is equidistant from the vertices. However for storage purposes of the large matrices,

all basepoints are not calculated upfront. First the perpendiculars to the first two hyperplanes, A and

B are obtained. Starting from A, the midpoint of segment AB is calculated. As each new base point

C is introduced with the two original basepoints A and B, a scalar multiple _. is used to determine the

proportional distance of the circumcenter on the normal to AB by the formula

U

- Cx.x,)J- Cx."x,).,,,c

(Xa-dl_'/lil

where, me and nu are the midpoint of segment ab and unit normal to segment ab. The process is

repeated as new points are read in. The total amount of computational effort is minimized by the

nested looping in the program.

Defective Matrices

As mentioned in the introduction, the difficulties of the PMARC convergence was believed to be

the ill-conditioning of the coefficient matrices. It was proved later that the WICS calculations will

always involve diagonally dominant coefficient matrices. Such matrices will not typically have

small determinants. Thus the small perturbations in the coefficients will not produce large

perturbations in the solution vector. However, since this research started before the stage when

the well-conditioning could be claimed, the schemes developed under this research were tested

with Hilbert matrices. A Hilbert matrix is very ill-conditioned and solutions are almost impossible

for larger systems. The tests with Hilbert matrices were performed for a maximum of 20 x 20 size.

It was believed that if a solution scheme successfully performed with a Hilbert matrix, it probably

was very robust.

The Hilbert matrix has A's coefficients of the following form: a_ = l/(i+j-1), [Ix Lj x n] with the

right hand vector b varied differently for different computational experiments. Three categories of

the b vector was tested - i) larger terms toward the top of the column, ii) even size terms in the

column and iii) larger terms toward the bottom of the column. It was found that the last category

was the most difficult to solve in most of the cases. Both the routines simconj and congrad

performed better than the Gauss Seidel technique when the matrix sizes increased. In this context

it may also be mentioned that simconj or qmconj type approach has an additional advantage.

These procedures will hold even if the linear system is over-determined, meaning that there are

more number of equations than the number of unknowns. Then although standard reduction

15

processeswould not work, theseprocedureswill producea "limit cycle"solutionwithout much
difficulty. Note that the conjugategradientmethodis especiallysuitablefor a symmetricmatrix
even though the matrix is ill-conditioned.In the caseof an asymmetricmatrix, the conjugate
gradientmethodfails.TheresultsaresummarizedinTable2 in theappendix.

Results and Discussion

As mentioned previously, this work was started as the current solver in PMARC produced

difficulty in convergence in certain configurations of WICS calculations. The nature of the current

solver in PMARC was not known to the author. WICS calculations are based upon a procedure

similar to the error equation approach mentioned earlier in the section discussing direct solvers.

Thus it was important to test the convergence when the parameter solres was tightened. This

action typically produced oscillatory behavior and no convergence for certain singularities. The

first part of this investigation was therefore to determine the cause of the failure in the WICS

computations. This was done by extracting a typical coefficient matrix that was utilized during the

WICS calculations with doublets. This matrix was subsequently subjected to a direct Gaussian

elimination technique and the QR decomposition technique outside the PMARC set of

calculations. The prescription of the gridding and section definitions in PMARC were changed

and a double precision arithmetic was used. From these actions the convergence difficulties were

overcome. An independent look at the structure of the coefficient matrices showed that the

diagonal dominance can always be guaranteed in such calculations. The difficulties experienced

earlier can be ascribed to the loss of orthogonalization typical to a Lanczos process.

The appendix lists samples of the programs conj, qconj, qmconj, simconj, gsol2v and gsol. The

results produced by these programs are compared with the Gauss-Seidel iterative technique and

the conjugate gradient method (see congrad in the appendix) for small matrices. Also tests were

performed for some sparse (9 x 9) planar truss problems, the ill-conditioned Hilbert matrices and

some medium size [(79 x 79) and (84 x 84) respectively] external flow calculations over NACA

0012 and NACA 2412 airfoils. Finally some solutio_ on the PMARC calculations with a (2004 x

2004) matrix are presented. Then the comparisons are made of the Gauss-Seidel method, the

S.O.R method, the conjugate gradient method, the direct solver gsol2v, the direct solver in Gauss-

Jordan method, the iterative solver gsol and the current PMARC solver.

First consider the Table 1 in the appendix. The reason 4 x 4 matrices were chosen for most of the

testing in this table is because a size 4 x 4 is general enough for the theory to hold even in higher

dimensions and yet the calculations are not time consuming. Thus many comparisons could be

made. Also note that the calculations presented in the tables are a subset of the case fries available

in the author's directory with more details. In all calculations in this section, the convergence
criterion was chosen to be 0.5 x 105 in the 2-norm of the residual vector. Also smaller matrices

were run with single precision arithmetic whereas, the large matrix in Table 3 results below were

all run with a double precision arithmetic.

16

As one cansee from Table 1, the number of iterations taken by the examples of 4 x 4 matrices

simconj and qmconj performed better than the number of iterations taken by the Gauss-Seidel method

in most of the cases. These routines also performed much better than simple relaxation method conj

and an early variant of the geometrical approach, qconj. The rapidity with which these calculations

were achieved could be compared with the conjugate gradient method if proper acceleration

parameters were selected. Best acceleration parameter choices were dependent on the type of the

mat_r_..s selected. In general, for the 4 x 4 cases the _ selection was around 1.2 - 1.3 for qmconj and

around 1.6 - 1.7 for the program simconj. Exact values for each case is included in the casefiles.

The off-diagonally dominant matrices did not yield solutions by the conventional iterative methods

such as Gauss-Seidel and S.O.R. methods, whereas these two routines consistently produced

solutions. Also note that qmconj and/or simconj typically take fewer iterations to converge than

Gauss-Seidel method even for the 4 x 4 diagonally dominant matrices. As the matrix became sparse

though, the Gauss-Seidel method yielded better performance (see the 9 x 9 planar truss example). An

interesting case applies to the diagonally dominant Hilbert type 20 x 20 matrix, where the original

diagonal elements of the Hilbert matrix was modified to maintain diagonal dominance. In this case,

the best performance was by the use of the conjugate gradient method confLrming the superiority of

this method for symmetric systems. Another interesting case was that of the under-determined system.

In such situations, the matrix reductions produce a null row suggesting no unique solution of the

system. Thus conventional methods would not work again. However these geometry based methods

did not produce a division by zero, and quickly produced a solution satisfying the equations.

For the external panel method solution applied to the NACA 0012 airfoil the best performance was

from using the qmconj matrix among the geometry based methods. For some reason, believed to be

rounding errors, the program simconj did not perform very well. Also note that for the well

conditioned matrices the Gauss-Seidel method performed better. For the corresponding cases of the

asymmetric NACA 2412 airfoil, qmconj arrived at the solution with fewer iterations in both 0 ° and

90 ° orientations. In summary, the routines qmconj or simconj achieved the objectives of robust

calculations typically for the off-diagonally dominant cases when the conventional iterative methods

had either no solutions or, had difficulty in arriving at them.

Table 2 quotes the results for some Hilbert matrices. As mentioned before, these matrices were run

with three different choices of the right hand vector. The reason for this choice was to effect the ill-

conditioning from mild to severe. In mild ill-conditioning the right hand column vector had larger

elements toward the top rows and for the severe conditions the larger elements were toward the

bottom rows. The tight convergence criterion was relaxed a decimal digit (i.e., e = 0.5 x 10 -4) to

allow faster convergence in the matrix sizes larger than 2 x 2. Also the larger matrices were run with

mild ill-conditioning to speed up calculations. The calculations showed an advantage of using the

qconj and qmconj routines. The routine qconj is clearly the best performer in all computations except

the case 4 for a 3 x 3 matrix. This success may be attributed to the structure of the cycling in this

program. All the geometry based routines suffer error accumulation and this routine helps reducing

it through cycling. As the matrix sizes grew much bigger with ill-conditioning, these routine suffered

17

larger round-off and took too long to converge.This promptedthe strategychangeand the
developmentof thesecondgeometrybasedsolvergsol2v (see Table 3).

gsol2v is called a direct solver because the determination of circumcenter and the circumradius are

obtained by direct application of Gram-Schmidt type orthogonalization process. This method was

sought as a new approach to obtain solution of linear systems. Although the picturization of the

circumcenter concept is not possible for higher dimensions, the success of the approach shows that

the low dimensional geometric reasoning can be extended algebraically to higher dimensions. Several

issues of convexity must be discussed to obtain the algebraic proof of concepts for conventional

iterative methods. The attempt here was to bypass these by the current geometrical approach. From

this standpoint, this approach was successful. A new correlation between the geometry of spheres and

solution of linear system was obtained. In planar dimensions, the nine-point circle establishes the link

between the centroid, the orthocenter and the circumcenter. In higher dimensions, the distances and

scalar products were needed instead of angles.

The use of gsol2v required much larger solution time compared to the direct solvers like Gauss-

Jordan method. It may be mentioned here that among all direct solvers simultaneously involving the

complete set of coefficients in the matrices, the Gaussian elimination or Gauss-Jordan methods are

the most economical. Thus it was expected to be slower than those methods. However the argument

in favor ofgsol2v was that it could be applied without pivoting strategies. To improve the speed of

this solver, the geometrical concepts in this method were combined with an excellent iterative solver.

This is the idea behind the program gsol. Also note that although the direct solver gsol2v took more

time than the program impjord, it was less time consuming than both point iterative methods such

as Gauss-Seidel or the S.O.R. method (with the optimum acceleration parameter = 1.6).

The algebraic iterative solver used in the lineq routine of PMARC has an excellent structure. It

requires very little storage and is computationally very efficient. Whereas a traditional Gauss-Seidel

method took over 15 hours for solving the 2004 x 2004 matrix, this solver obtained the solution in

4 minutes. The secret of this solver drew the author to study the eigenvalue based methods after

Nesbet, Shavitt, Bender and Davidson [3 - 6]. There are a set of programs nesbet, nespy, nesl, nes2,

etc. and the resulting output fries available for these methods in the authors directories. These

programs calculate the lowest eigenvalues and eigenvectors for large symmetric and asymmetric

matrices. However the current solver fills the voids suffered in all those earlier programs. All of those

[3 - 6] started the search for eigenvalues from the Raleigh quotient approach. However considerable

difficulty was experienced trying to simultaneously change all components of the search vector. The

current program can also handle asymmetric matrices. It starts from small matrices and applies

corrections to the search direction as the matrix grows. It is also fully optimized for large matrix

calculations. Note that although it uses the Gauss-Jordan method internally to invert matrices, the

calculations take practically no time (see the impjord results in Table 3) since the main time

consuming calculations are performed on much smaller matrices. The design of this procedure even

offers advantages in restarting the unconverged solutions. Combining the geometrical approach in

gsol2v therefore with this solver yielded the apparent benefits. The resulting process took just one

more iteration to converge the 2004 x 2004 matrix. Also the calculation time to converge was

18

reducedfrom morethan3 hoursfor gsol2v down to 4 minutes in gsol.

Note the contrasted results by the conjugate gradient method in Table 3. Since the PMARC matrices

are not symmetric for WICS calculations, conjugate gradient method could not be applied directly.

The program mixcon therefore modified the solution approach by premultiplying the system A x =

b by A r. This resulted in a symmetric system which could then be solved by the conjugate gradient

method. This approach yielded the results of the matrix in 1 hour and 47 minutes and using 99

iterations. However if we subtract the time required to obtain the products ArA and Arb, the basic

conjugate gradient process took only 12 minutes. Thus calculations of such large matrices proved to

be extremely sensitive to arithmetic operational counts. This also shows that besides the current

solver, the next best approach in solving large systems will perhaps have to be based upon the

conjugate gradient method. The program gsol offers the quickest alternate solution (in a single step)

as long as the circumcenter could be obtained quickly. Further expansions are possible for this idea.

Concludin_ Remarks

The current investigation was prompted by a difficulty in convergence of PMARC matrices when

applied for WICS calculations. The objective was to develop a robust solver that would work

typically when other iterative methods failed to produce solutions. This objective was fulftlled by

developing a geometry based solver in the approaches of conj, qconj, qmconj and simconj. There

was an alternate geometrical approach developed parallel to the conventional algebraic

approaches for iterative methods in the programs gsol2v and gsol. Throughout this investigation,

an attempt was made to re-visit geometrical topics as a means to enhance physical and intuitive

understanding of the convergence processes. The most recent and more complex methods are

perhaps more sophisticated computationally. However a renewed exploration of geometrical

concepts probably contributes to a much better understanding than abstract ideas offered in them.

Acknowledgements

This work was supported in part by the NASA cooperative agreement NCC 2-937. The author is

grateful to Alan Boone for acting as the technical monitor and for introducing him to the WICS

project. He is also thankful to Robert McMann and David Banducci for providing help in

financial matters, Dale Ashby and Charles Bauschlicher for helpful discussions, Linda Thompson

for providing excellent support of computer accounts and Charles Haines for providing the release
time.

19

References

1. Ashby, D. L., Dudley, M. R., Iguchi, S. K., Browne, L. and Katz, J., "Potential Flow Theory

and Operation Guide for the Panel Code PMARC," NASA TM 102851, NASA Ames Research

Center, Moffett Field, California, January 1991.

2. Varga, R. S., "Matrix Iterative Analysis," Prentice Hall Inc., New Jersey, 1962.

3. Nesbet, R.K., "Algorithm for Diagonalization of Large Matrices," Journal of Chemical Physics,

volume 43, pp. 311-312, 1965.

4. Shavitt, I.., "Modification of Nesbet's Algorithm for the Iterative Evaluation of Eigenvalues and

Eigenvectors of Large Matrices," Journal of Computational Physics, volume 6, pp. 124-130,

1970.

5. Shavitt, I., Bender, C.F., Pipano, A. and Hosteny, R.P., "The Iterative Calculation of Several of

the Lowest or Highest Eigenvalues and Corresponding Eigenvectors of Very Large Symmetric

Matrices," Journal of Computational Physics, volume 11, pp. 98-108, 1973.

6. Hestenes, M.R. and Karush, W., "Method of Gradients for the Calculation of the Characteristic

Roots and Vectors of a Real Symmetric Matrix," Journal of Research of the National Bureau of

Standards, volume 47, no. 1, pp. 45-61, 1951

7. Davidson, E.R., "The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding

Eigenvectors of Large Real-Symmetric Matrices," Journal of Computational Physics, volume 17, pp.

87-94, 1975.

8. Berger, M., "Geometry I & Ir' (2 volumes), Springer Verlag Inc., New York, 1980.

This appendix contains tables used for comparing results and samples of 7 fortran programs conj,

qconj, qmconj, simconj, gsol2v, congrad and gsol. The solvers for Gaussian elimination, all of the

eigenvalue based methods, lineq, QR Decomposition method, Gauss-Seidel and S.O.R. methods

are not presented here for compactness and are available in the author's directories. Also all the

details of the caseftles reported in the tables below may be found there.

20

Table 1

Comparison of Various Methods for Small Matrices

In the following results, the matrices are specified by their coefficients. The strategy was to

compare the number of iterations to convergence and typically choose off-diagonally dominant
matrices so that the robustness of calculations could be tested. Most cases started with the same

starting solution: x t = x 2 = = x, = 1.0 (unless specifically mentioned in the casef'tles). The
convergence criterion was 0.5 x 10 .5 in the 2-norm of the residual Also the acceleration

parameters used in these were near optimal and mentioned in the caseflles.

Size Coefficients of A and b

(Comments)

4x4

4x4

4x4

4x4

4x4

4x4

4x4

4x4

9x9

9x9

20 x

20

2,1,-3,1;1,2,5,-1;-1,1,1,4;2,-3,2,-5

1,7,5,-4 (off-diagonal dominance)

1,1,1,1;2,1,-1,1;-1,2,3,1;3,2,-2,-1

2,2,1,8 (similar to above)

-1,-4,2,1;2,-1,7,9;-1,1,3,1;1,-2,1,-4

-32,14,11,-4 (mild off-diag dom.)

1,1,1,0;-3,- 17,1,2;4,0,8,-5 ;0,-5,-

2,1

3,1,1,1 (mild off-diag, dominance)

2,- 1,0,0;- 1,3,- 1,0;0,- 1,3,- 1;0,0,- 1,2

- 1,4,7,0 (diagonally dominant)

2,- 1,0,0;- 1,4,- 1,0;0,- 1,4,- 1;0,0,- 1,2

3,5,- 15,7 (diagonally dominant)

2,-2,- 1,3;- 1,0,- 1,1;3,-6,2,4;I,-4,3,1

5,0,7,2 (under-determined system)

1,1,1,1;1,1,-1,1;-1,2,3,1;3,2,-2,-1

3,2,-2,- 1 (off-diagonal dominance)

Truss Problem (no re-

arrangement)

Truss Problem (eqns. re-arranged)

Re-arranged Hilbert Matrix

No. of Iterations to Converge Method

conj qmconj simconj G.S. C.G.

n.a.

208

42

97

30

30

22

52

148

139

n.a°

28

38

15

27

13

13

8

24

117

127

large

12

70

9

33

5

33

145

53

large

failed

failed

failed

failed

15

10

failed

failed

failed

16

n°a°

failed

n.a.

failed

failed

5

5

failed

failed

n.a.

n.&

21

21

79x
79

79 x
79

84 x
84

NACA 00l 2 Airfoil (Panel
Method for ExternalFlows)

NACA 0012Airfoil (Panel
Methodwith tz = 90*)

NACA 2412 Airfoil (Panel

Method)

568

906

856

72

83

103

400

938

880

44

53

n.a.

n°c°

n°c°

n°c.

n.a. = not available, n.c. = non-convergent

Table 2
Comparison of the Methods applied to Hilbert Matrices of different sizes

Size

(Comments) G.S.

2x2 type 1 37

2x2 type2 34

2x2 type3 36

Iterations to converge method to specified criterion

conj qconj qmconj

624 13 5

559 17 7

3x3 199

4 x 4 126 n.c. 14 203

6 x 6 427 n.c. 27 129

10 x 10 261

20 x 20 515

simconj

18

16

697 21 7 20

n.c. > 10,000 49 104

n.c. 70 75

n.c. 52 512

n.c. means no convergence was achieved in 10,000 iterations.

109

1048

423

1722

22

Table 3
Comparison of Various Methods for a PMARC Matrix of Size 2004 x 2004

Program Name Method Used Number of Iterations Solution Time

to convergence

gssd Gauss-Seidel Method 6936 15 hours 11 min.

sor S.O.R. (¢o = 1.6) 5554 6 hours 22 min.

gsol2v Finding Circumcenter Direct Solver 3 hours 37 min.

mixcon Conjugate Gradient 99 1 hour 47 min (*)

impjord Gauss-Jordan Meth. Direct Solver 1 hour 55 min.

gsol Circumcenter Method 41 - 4 minutes

lineq Davidson's Approach 40 ~ 4 minutes

* The time taken by the iteration portion only was 12 minutes.

program Listings:

1) cam/

C

3

l0
C

cl
1
101
100

4

program conj
p_ame_ n = 20
dimension a(n,n), b(n), x(n), y(n), res(n)
OPEN0.IN1T= 13,FILE='a.daI',STATUS='OL13")
OPEN(UNIT= 14,FILE='o.dat',STATUS='OLD3
read (13,*) ((a(ij), j = Ion), i = l,n)
read (14,*) (b(i). i = l,n)
write(6,3)((a(ij), j= l.n),i=l,n)
forn_(1x, 91'8.3)

write(6,3) (b(i), i=l.n)

The above line f_ml must be ehansed

write(6,10)

format(//' Results using the Program conjJ :' //)
imtialguess
itr=O

do li=l,n
x(i)=0 0
x(i)=l.0
k=l
colltillue

sum=O.
ysq=O.
do4 i=l,n

y(i)=a(k,i)
do5 i-- l,n

23

5

6

c8

c8

c

8

II

12

13

2)

c

3

c

c

21

c

c

cc

2

I00

i

cl

c

¢

¢

ysq=ysq+ y(i)*y(i)

sum=sum+y(i)*x(i)
res(k)--b(k)-sum

do 6 i=l,n

x(i)=x(i)+res(k) *y(i)/ysq

if(k._.n)go to8
k=k+ I

goto I00

if(itr.eq.1000) write(&*)(x(i),i=l,n)

write(6,*) (re_i),i= 1 ,n)

wrtte(6,12) (x(i),i= 1,n)

resmx=O.

do 11 i---10n

resmx=fesmx.res(i) *r_(i)

continue

re,m_=sqn(re,mu)
itr=-itr+ I

if(itr.ILI0) write(6,*)itr,resmx

iffresmx.gt.O.O0005.and.itr.ILlO000)goto I01

write(&!2) (x(i),i=l,n)

f_-naff2x,'solutioe: ',5fl 2.5)

write(6,13) ier

format(" The above was obtained m ',i6,' itefatioes_

stqp
end

c

4

programqcouj
patamete¢ n= 20
dimension xO(a), xa(a),xb(u).xc(a).ab(a).bc(n),ac(a),a(n,a),b(a),

y(n) xes(n),err(n)
OPEN(UNIT= 13, F[LE='a.daI',STATUS='OLD')

OPEN0.rNIT= 14, FR.E=_o.daf, STATUS='OLD3

read(13, *)((a(i,j)j= l,u),i= 1 ,n)
read(l 4,*)(b(i),i= ! ,n)

wnte(6,3)((a(id)j= 1,a),i= I ,n)
format(i x, gf8.3)

write(6,3)(b(i),i= 1 ,n)

write(6,21)

format(l/Sx,'Results with Program qcouj.f//)

a and b store the original Ax = B

initial guess
om=i.6

om=!.333

om=l.6

do ! i=l,n

x0(i)=0.0

x0(i)= 1.0

if n is even, proceed exactly. If n is odd, set last cycle steep descent

_=n/2

iodd=n - 2*ist

write(6,2) i._,iodd

format(' ist, iodd=',2i5)
continue

do 200 i_l,_

k=2*(ic- 1)+ I

kpl =k+ !

write(6,*)itr,k. kpl
do4 i=l,n

y(i)=a(k.i)
sum=O.

ysq=O.

24

5

¢

6

41

51

C

61

42

52

62
C

43

53

63
c 46
c 47
C

2OO
C

C

C

44

54

64

do 5 i=l,n
y_l=ysq+y(i) *Y(i)
sum=sum+y(i)*xOO)
res_)--b(k)-sum
write(6,*)(xO(i),i= l,n)
do6 i=l,n
xa(i) =xO(i)÷resO0 *y(i)/ysq
do41 i=l,n
y(i)=a(kp l,i)
sum=O.

ysq--O.
do51 i=l,a
ysq=ysq+y(i)*y(i)
sum=sum+y(i)*xaO)
re,_kpl)=bOcpt)-aun
write(6,*)(xa(i),i= 1.u)
do61 i=l.n
xb(i)=xa(i)+res(Iq_ l)*y(i)/ysq
do 42 i=l.n
y(i)=a(k,i)
sui_F=O.

mr--O.
do 52 i=l,n
ysq=ysq+y(i)*y(i)
sura=._m, yO)*x_)
re._)---.b(k)-sum
do 62 i=l,n
xc(i)=xb(i)+ _'k) *y(i)/ysq
calculate ab, bc. and ac (vectors & lengths)
do43 i=l,n
ab(i)=xb(i)-xa(i)
bc(i)=xcO)-x_i)
ac(i)=xc(i)-_(i)
s'um=O.
ysq=O.
do 53 i=l,n
ysq=ysq+ac(i)*ac(i)
surn=_m._ab(i)*ab(i)
abl=sqr_(sum)
acl=s_(ysq)
adl=c_n*abl*abl/ad
do63 i=l,n
xO(i)=xa(i)+ adl*acO)/acl
do 47 i=l,a
xO(i)=xb(i)

mn_nue

now store the odd-balls

ifficricLeq.1) rhea
do44 i=l,a
y(i)=a(n,i)
suttl=O.
ysq=O.
do 54 i=l,n
ysq=ysq+y(i)ey(i)
summ-sum+y(i)*xO(i)
res(n)=b(u)-sum
do 64 i= l,n
xO(i)=xO(i)+res(n) *y(i)/ysq
end if

Error Calculatiou

do 65 i=l,n
sum=O.

do55j=l,n

25

55
65

¢

56

66

c

67
68

69

sum=._urn+all,i) *x0(i)
err(i)nl_(b(i)-sum)
writef6,56)(e_r(i),i= 1.n)
format(' Errors:',5 fl 0.5)
efftot=0.

do 66 i--i,n
errtot=eXTtOt+err(i) *exT(i)

if(errt_t.lt.0.00005 .or. iu.gt. 100000) go to 67
wine(6,*) itr, errtot
itr=-itr+1
8oto 100
write(6,68)(x0(i).i= 1.n)
formatC Solution:',Sfl 1.5)
write(6,69) itr,om
format(Sx,'Obtained in ',i5,' iteratioe& with om=',fl0.3)
aop
end

2
c

¢

case4
chilb4
casel

ccqm

cpan
¢

1
cl
c

c

10(3

5

c

lxogram qmconj
paramaer n= 20
dimension x0(n), xa(n),xb(n),xc(e),ab(n),bc(u),ac(a),a(n,n),b(n),
y(n),res(n),e_T(n)
real*8 sum,ysq, on_abl,acl,adl
OPEN(UNIT= 13, FILE='a.dat',STATUS='OLD3
OPEN(UNIT= 14, FU.._'b.daf,STATUS='OLD')
OPEN(UNIT= 15, FIL_'xin. dat',I_ORM='FORMA'FI'ED',STATUS='OLD ')
read(l 3,*)((a(i,j),j=l.n),i= l,n)
read(l 4,*)(b(i),i= 1.n)
write(6,3)((a(ij)j= I ,n),i= 1,n)
format(l x.9f&3)
write(6,3)(b(i),i= l,n)

write(6,2)
format(//Sx,'Results using the Program qmo3nj.f//)

a and b store the original Ax = B
imtial guess
ore= 1.22
om=1.97
ore= 1.68
om=1.29
ore=l.3
om=1.75
om=l.0
ilr=-I
read(l 5,*)(x0(i),i= 1.a)
do 1 i=l,n
xO(i)=O.
xO(i)= I.
write(6,3)(x0(i),i= l,n)

oDiltintle

do 200 k=2,n
write(6,') itr, k
do4 i=IJl
y(i)=a(l,i)
s'um=O.

ysq=O.
do 5 i=l,n
ysq=ysq.+y(i)*y(i)
sum=sum+y(i)*x0(i)
res(l)=b(l)-sum
write(6,*)(x0(i),i= l,n)
do6 i=l,n

26

6

c

41

51

c

61

c

42

52

62

c

c

43

53

63

c

c

2OO

c

c

c

55
65

¢

c
56

66

c

67

68

xaCO=xO(i)+res(l)*y(i)/ysq

do41 i=l,n

y(0=a(k_i)
sun_-O.

ysq--0.

doS1 i=l,n

ysq=ysq+ y(i)*y(i)

sum=sum+y(i)*xa(i)
res(k)--b(k)-_m

,,_te(6,*)(xa(i),i= l,n)

do61 i=l,n

xb(i)= xa(i)+res(k) *yfi)/ysq
writ_(6,*)(xb(i)3= l,n)

do42 i=l,n

y(i)=a(l,i)
som_0.

ysq=0.
do 52 i=l,n

ysq=ysq+y(i)*y(i)

s'um=sum+y(i)*xb(i)
re_ l)--b(l)-sum

do 62 i= 1,n

xc(i)=xb(i)+r¢_ 1) *y(i)/y_

write(6, *)(xcO),i= ! ,n)

calculate ab, bc, and ac (vectors & lengths)

do 43 i=l,n

ab(i)=xb(i)-xa(i)

bc(i)fxc(i)-xb(i)
ac(i)=xc(i)-xa(i)

sum=O.

ysq=O.
do 53 i=l,n

ysq=ysq+ac(i)*ac(i)

sum=sum+ab(i)*ab(i)

abl=sqrt(sum)

acl=sq_(ysq)
adl=om*abl*abFacl

do63 i=l,n

x0(i) =xa(i)+ adl *ac(i)/ad

wnte(6,*)(xO(i),i= 1,n)

continue

Error Calculation

do65 i=l,n
sum=O.

do 55 j= l,n

su nw-sum+ a(i_j) *xO¢_)
efr(i)=ab_'b(i)-sum)

write(6,*)(xO(i),i= I ,n)

wnte(6,56)(en'(i),i= I ,n)

forn_t(' Errors:',5 fl 0.5")
exrtot=0.

do 66 i= l,n

emcx-----------------_mcx+en-(i)*re(i)

m't_(m'toO
if(it,r.lt.lO) write(6,*) i_, ex't'tot

iffemot.lc0.OO005 .or. itx.gt 100000) 8 o to 67

tf(emot.lt.O.O00005 .or. itr.gl. 100000) go to 67

ff(errtocgt. IO(K_.) go to67
itr=itr+ [

if(rood(lit, I O00).eq.O) write(& _ i_,en't_

goto 100

write(6,68)(xO(i),i= I,n)

format(' Solution:',5 fl 4.5)

wnte(6,69) etrtot, iU',om

27

69 fom_t(3 x.'Err=',fl0.6,' Obtained m',i7,' itefatiom, on_'.fS.3)
slop
end

4_

C

3
¢

¢

2
c

C

ccgm

cbl2

C

c5
C

chilb4
chilb3
case4
c20tr

cl
l

C

c

100

¢

4

5

C

6

c

41

51

C

proem sin_oej
iawameua"n= 20
dirnension x0(n), xa(n),xb(n),xc(n),ab(n),bcfn),ac(n),a(n.n),b(n).
y(n)xes(n),en'(n)
reaJ"8 sum, ysq,abl,acl,adl,bci
OPF__N(UN1T=13, FR.E='a.dar,STATUS='OLD3
OPEN(UNIT= 14, FILE_'o.dar,STATUS='OLD')
OPEN(UNIT= 15, FR._'xin.dat',FORM=T'ORMATTED',STATUS='OLD3
read(13,*)((a(id)_j= 1,n),i= l,n)
read(14,*)(b(i),i= 1.n)
write(6,3)((a(i,j),j = ! ,n),i= 1,n)
format(! x,9fS.3)
write(6,3)(b(i),i= i ,n)

write(6,2)
fomuR(//Sx,'Resulls using the Program sirr_oej._f//)

a and b store the original Ax = B
initial gue_
om=l.2
ora=l.6
om=l.6
omffi.05
om=l.2
om=l.3
om=!.78
om=!.95
om=1.89
om=2.9
om=2.368
do 1 i= l.n
x0(i)=O.
x0(i)=l.
read(15,*)(x0(i),i= 1,n)
itrffil

continue
do 200 k= i,n- 1
kpl =k+ 1
write(6,*) itr, k
do4 i=l,a
y(i)ffia(k.i)
sumffiO.

ysqffio.
do 5 i= 1,n
ysqffiysq+y(i)*y(i)
sum=sum+y(i)*xO(i)
res(X)fb(k)-sum
write(6,*)(x0(i),i=l,n)
do 6 i= 1,n
u(i)= x0(i)+res_) *y(i)/ysq

do41 i=l,a
y(i)=a(kpl ,i)
surr_0.
ysq=0.
doSl i=l,n
ysq=ysq+y(i)*y(i)
sam=sum+y(i)*xa(i)
res(kpl)=b(kpl)-sum
wnte(6,*)(xa(i),i= I,n)

28

61

42

52

62

c

43

53

63

c

2OO

c

c

c

55

65

c

56

66

67

68

69

do61 i=l,n

xb(i)=xa(i)+re_(kpl)*y(i)/ysq
do 42 i=l.n

y(i)=afk,i)
Ir-O.

ysq=0.

do 52 i=l,n

ysq=ysq+y(i)*y(i)

sum=sum+ y(i) *xb(i)

resfk)=b(k)-sum

do 62 i=l,n

xc(i)=xb(i)+ res(k) *y(i)/ysq

calculate ab, bc, and ac (vectors & lengths)
do43 i=l.n

ab(Dfxb(i)-xa(i)

bc(i)fxc(i)-xb(i)

ac(i)=xc(i)-xa(i)
sum=0.

ysq=O.
do 53 i=l,n

ysq=ysq+ac(i) *ac(i)
sumfsum+ab(i)*ab(i)
abl=sqrt(sum)
acl=sqrt(ysq)
adl=om*abl*zbl/ad

do 63 i= l,n

x0(i)= xa(i)+ adl *ac(i)/ad

_tinue

Ernx Calculation

do65 i=l,n

sum=O.

do 55 j=l,n

sur_-su m+ a(i_j) *x0Q-)

err(i)=abs(b(i)-_am)

wnte(6,56)(en'(i),i= I ,n)

format('ExTors:',Sfl0.5)

emot=0.

do 66 i= l,n

emot =eXTtOt+ e_T(i) *en'(i)

emot=.ulrt(art_)

if(errtoclt.0.00005.or.itr.gt.1000000)go to67

if(ernot.gtI0000.)go to67

if(itr.ILI0) write(6,*)ilr,errtot

if(mod(itr,1000).eq.O)write(6,*)itr,errtot
ilr=m'+ I

goto I00
write{6,68)(x0(i),i= l,n)

format(' Solutioe:',5fl 1.5)

wnI_'(6,69)ernot, itr,om
format(5x,'Exr='J'l 0.6,' Obtained in ',i7,' iteration, with om='.flO.3)

stop
end

111

program congrad

peramet_ n = 20

dimension a(n,n), b(n). e(n), rO(n),pl(n), pk(n), r l(n),x(n)

dimension ap(n)

open (umt = 3, file = 'a.dat', status = 'old3

open (unit = 4, file = _.dat', status = 'old')

read(3,*)((a(id), j= I ,n),i= 1,n)

read(4,*)(b(i),i= 1 ,n)

write(6,11 i)

format(//reaults obtained by congrad.f:'/)

29

C

1
C

12

13

5
4

C

6

C

7

c

c

C

8
c

C

108

C

I00

1Ol
I02

103
104
105
106

dol i=l,a
x(i) = 0.0
x(i) = 1.0
bCi)=- b(i)

do 100 i_1,10000
ff(it.g¢.2) then
sumrO = O.
sumrl = O.

do 12i= l,n
sumrO = mrnrO + rO(i)*rO(i)
sumrl = surnrl ÷ rl(i)*rl(i)
ekml = sumrl/sumrO
do 13i= l,a
pk(i) = -r l(i).+ek.ml*pk(i)
em:li.f
wnw(6,*) ekml
write(6,*) (pk(i),i= l,n)

do2 i=l,n
stlm-- O.

do 3j=l,n
sum = sum*a(i,i)*x(i)
tO(i) = sum + b(i)
if(iteq. 1) pk(i) = - tO(i)
p] (i) = - tO(i)
do4 i=l,n
sum= O.
do 5j =l,n
sum = sum + a(id)*pk(j)
ap(i) = sum
write(6,'9 (apO),i= l,n)
surer = O.

sump = O.
do6 i=l,n
surar = sumr + rO(i)_rO(i)
surap = sump + W(O'Pk(i)
write(6,*) sump
qk = sumr/sump
do7i= l,n
x(i) = x(i) + qk*pk(i)
rl(i) = tO(i) + qk*ap(i)
wn_6,*) qk
write(6,*) (x(i),i= l.n)
write(60*)(r l(i),i= 1j)
_1II!" -- O.

do 8 i= l,n
surer = sung + rl (i)*rl(i)
write(6,*) surar

write(6,1Og)
formic 3
sunw = sqrt(sumO
itr= it
if(mod(itr, lO00).eq.O) write(6,*) m'aumr
if(itr.le. I0) wrile(6,_ iu',sumr

write(6,*) it_aumr
if(surm'.lLO.O0000_ go to lOI
continue
go to 103
write(G, 102) itr
fornm(3x.'solutioo coev_ged in',i4,' iterations')
write(6,105) (x(i),i= l,n)

gore 106
write(6,104) itr
formax(3x,'Solution did not converge in',i6,' iterations')
formal(5f14.6)
stop
end

30

1
c

7
c

C

¢

C

c

i0
C

c

111

19

11
C

12

13
c

C

¢

programgsol2v
l_'am_" n = 2004
dimension b(n), u(n),v(n,n).p(n),po(n)
dimension x(n),a(n),tn(n),fl (n)f2(n),ab(n),bc(n)
x(i), p(i) are the I plus n base projection txxnu

open (unit = 3, fde = "a.dar,status = 'old')
open (unit = 4, file = "b.dar,suwJs = 'old')
open (unit = 7, file = 'gsol2v.cef, s_us = 'new')
read(4,*)(b(i),i=l,n)
wnteO,111)
format(//'results obtained by _ol2v.f:'/)
dol i=l,n
x(i) = l./sqrt(fleat(n+ 1))

p(i) = x(i)

do 9 i= l,n

read(3,')(a(j)jfl,u)
do3 j=l,n

_I ckxp(af2,n_un)
call _u,n,su)
rs=b(i)-suu

_eam p(n) to store _he n base points, ooe at a time

do2j=l,n
po(j)--'pO)
do7j=l,a
pO)=_s*a(i)/su + x(j)
wnu_6,*)(p(i)jfl,n)

Start the nested Looping
Use the variable v(n,n) to store the onY,ouorn_ base

iffi.eq. 1) then
do 8j=l,n
ab(i)--p())-x(i)
_l doq_ab,ab,n,sum)
abl=sq_(sum)
rl=abl/2.

do lOj=l.a
u(j)=e_i)/e_l
tn(j)=x(j)+ri'u(j)

calculate al and use later !
do 19 j=l,a
flO)=x_j)
r2())=xO)
c_l doq_(fl,e,_

do llj=l,n
v(ij)--u(j)

else
j grea_ Omn2 below
do 12j=l,n
bcq)---p(i)-po(i)
_l _b_u, sum)
do 13 j=l,n
uO)=bc(i)/sqn(sum)

wrim(6,*)' u =',(u(j)j=l,n)
Gram-Sdu_dt Ov_ooorn_izatioa

31

15

16
14

17

18
C

C

C

C

2O

21
C

22

23
C

9
C

201
c

C

2O7

I

do 14 k=l,i-I

do 15 j=l.n

nq)=u(j)
f2(j)=v(k,i)
call dotp(fl X2.n.sum)
do 16 j=l.o
v(iO)=v(ij)+sum*v(kd)
continue
do 17j=l,n
v(ij)=uO)-v(id)
fl(j)=v(id)
f20)=v(id)
call dotp(fl J'2,n,sum)
do 18 j=l.n
v(id)= v(i,j)/sqrt(sum)

write(6,*)' v=',(v(ij)j=l,n)
Proceedwiththenew vector

do 20j=i.n
n(j)=p(j)
f2(j)=p(j)
call ck_fl _.a, beO
do 21 j=l,a
fl(j)--p(j)-xO)
t'2(j)--tn(j)
wriw(6,')'m='.(tnO')d= l,n)
call docp(fl.12.a.gam)
rnu=(bet-al)/2. - gain
do 22 j= I.n
f'2(j)=v(id)
call dotp(fl,12,norde)
rl--rnu/rde
do 23 j=l,n
tn(j)=tn(j)+rl*v(id)
wnte(6,*y m=',(tn(j)j= I,n)
end if
continue

do 201 i= l.n
x(i)=x(i)+2.*(tn(i)-x(i))

write('/,*) (x(i),i=l,a)
write(6.20"T) (x(i),i= t,n)
format(2x,5fl 5.5)

saop
end
subroutine dctp(a,b,n.sum)
dimension a(n),b(n)
sum=0.

do 1 i= l,n
sum=sum+a(i)*b(i)
relul_l

end

7) =zcZ_

C
C

Program gsol
Paxamete="n = 2004
Include 'param.daf
Include 'common.f
Dimension x(n),a(n),f2(n),ign)
X(i), p(i) are the 1 plus a base projection points

Open (unit = 3, file = 'a.daf, stam.s = 'old')

32

111

1
C

C
C

12

C
C
C

C

9
C

C

10

!1

Open (umt = 4, file = "o.daf, status = 'old')
Read(3.*)((c_ubicww(i,j)d = 1,n),i= I,u)
Read(4.*)(PAsv(i),i= 1,n)
Write(6,111)

Format(//'results ordained by gsol2Zf:'/)
Do 1 l=l.n
X(i) : 0.

Do 9 i= l,n

Read(3. *)(a(j),j= ! ,n)
Do 12j--l,o
A(j)=dubicww(id)
Call ckxp(a,x,n.sun)
Call (kxp(a,_n,su)
R.s=rhs_i)-sun

Create p(n) to store the u base points, one at a time

Do 7j=l.n
P(j)=rs*a(j)/su
Do 8j=l,n
0)=p(j-xW
Call a_p(t'2,12,n.sup)
Call dcq_x,x.n,sux)

Wriu_(7,*)Co(j),j=l,n),(sup-sux)t2.
Rhsv(i)=(sup-sux)/2.
Do9j=I,n
Dubicww0,j)=p0)
Continue

Call gsoi22

Do 10 i=i,n
X(i_2.0*dub(i)-x(i)
Wfi_(78,1 l)
Fornmt(5x,'with the above cir(mmoentef, the calculated solutioe is:3
Write(78,*) (x(i),i= I,n)
Stop
End

Subroutine do_a,b,a.sum)
Dimensioe a(n),b(n)
Sum=O.
Do I i=l,n
Sum=sum+a(i)*b(i)
Return
End

*deck doublet
Subroutine gso122

C
C.
C

C

Include 'l:aram.daf
Include '_f

Open(unit= !6, fil_'data6'.ftaan='fca'nmued',sxatus='new3
Open(umt=20, form='unformatted'.ganLs='u nknown')

C

I)o2 I= l,nspdim
2 Diag(i) = dubicww(i,i)

C

C Rewind all s(a'at_ file 20 and assign unit number
C

Imu = 20
Rewind imu

C

33

C Check to make surethat if ira"trois not l, thal it isset equalto nslxtim
C

If(inrantne. l)then

If(inra m.ne. nalxfi m) then

Write(16,601)

Stop
Endif

Endif

C

C Start the tirne step loop
C

Tstirne ffi0.0

C

C Write input data to output file
C

Write(16,603)
C

603 format(l x, 10(/),31 x.57('*')//

+ 54x.'program pmarc'/
+ 45x.'rele, a.se version 12.21: 03/04/94'//

+ 51 x.'matrig solver ex_ from pmarc'/)
C

C

Call solver

Open(umt=78. fil_'gsoLout', stares ='new')

Write(78,*) (dub(i)j=l,aspdim)
C

C Clone and delete the scratch files

C

Close(unit_20,stams='delete3

C

Remra

600 forrmt(//l x,_ime step',J4)

601 formal(//lx,'parameter imam not set to 1 or nsixlim in pmarc'/

+ Ix,'source code. Reset this _, recompile code'/

+ IL'and wy again.')
End

C

*deck solver

Subroutine solver
C

C-

c

Include 'param.daf
Include 'common.f

C

C Update the ixlub array so that it always holds the previous step's doublet
C Solution

C

Z_
Span = nspdtm

C

Do 10 i=l,npan

If(itstep.eq.O)then
Pdub(O = rhsv(D

Else

Pdub(i) = dab(i)
Endif

10 continue

Call iineq(it)
Write(6,555) it

555 Format (I x,'number elf iteraxion$ ='i5)

Write(! 6,600)it
C

Retura

600 format(l x.'numberofsolveriteralioea = '.i4)
End

Subroutine lineq(iO

34

C

C Prognuntoso_veline_equ_ions_ on:j.Comp.Phiaics,
C "Theita-a_vecalculationelf....",17.Pp.87-94,1975)
C F.ofinformation:callcharleybausddicher(415)694-6231
C

Include'l_rarn.daf
Include'cvmmoo.l'

C

Dimensionv(nslxlim,20),w(ns_20).a(20,20),al(20),
+ bu.f(n_dim),gg(20),Im.fl(400),Iml2(nap_, Imf3(nspdim)

C
It=0

Npan-- aspdim
Solres = 0.000005
Ma._t = 200

Thre..sh= solres

Matdim = n[:_n
Ires=0

C

C Imtial gue._ for starting sdu_on veacr
C

If(i_-u_p._O)thea
Do 10 i=l,matdim
nuf2(i)= pdub(i)

lO Coatiaue
Go to800
Endif

Do 20 i=l,maldim
Ahnn = diag(i)
lf(abs(ahnn).lL 1.e-'7')alum= 1.0v-7
Buf2(i)= rhsv(i)/ahnn

20 conlJnue
800 continue

Wr_ 16,600)
Write(16,601)

wn_6,899)
899 _(l x,'solutionimW.ionhistory')
810 continue
lwa= irns+ !
Call normal('0uf2,mmtdim)
It=it+ 1
Call fnmb(lmf2,buf3 ,n-,_.dim,imu)
Do 30 i= I ,rmtdim

w(i,ims) = buf3(i)
V(i.iwa) = Imf2(i)

30 oontinue

Do 40 i=l,ims
Do 50 j= l,matd/m
B_O) = vO,i)
BunO) = w(i,ims)

50 Continue

A(i,ims)= sdo((maldim.lmf,l,lmf2,I)
If(i.eq.ims)go to40
Do 60 j=l,matdim
BufG)= wfj,i)
Buf2(j) = v(j,ims)

60 Continue
A(irm,i) = sdcx(nmdim, buf, l,lml2,l)

40 continue
Do 70 i=l,matdim

Buf2(i) = v(i,in'_)
70 continue

Gg(ims) = sd_(ma_lim,flx_v, 1.Imf2,1)
lq=0
Do 80 i=l,ima

Do 90 j=i,ims
lq=iq+ 1
Buff (iq) = aO,i)

35

90 Continue
Al(i) = gg(i)

80 continue
Call gss(lmfl.al,ims, iex)
lffier.eq, l)then

Stop
Endff

Couy = atx_(al(ims))
ffold = 0

ff(ims.eq.20)then
ffotd = ires
Call mv(b_.mautira)
Do 100 i=l,ims
Do 110 jffil,matdim

Bur0) = wCj,i)
I I0 Continue

Ali= al0)
Call saxpy(matdint ali,buf. 1,Ira/2, I)

I00 Comiaue
Do 120 j=l,matdim
W(j,l) ffibui2(j)

120 Cootinue
X=0.0
Y =0.0
Do 130 i=l,ims
Do 140jfl,imm

X = x + a(i,j) * al(i) * alq-')
140 Cov_inue

Y = y + gg(i) * affi)
130 Continue

A(I,I) = x
Gg(l) ffiy
Ires= 1

Endif
Call zexo(bu/2,nmdim)
Do 150 i=l,ims

Do 160 j= l,matdim
Bur(j) = w(i,i)

160 Continue
Ali = al(i)
[f(ifold.ne.O)ali = 1.0
Call saxpy(matdim,ali,buf, I,but2, I)

150 continue
Coax = 0.0
limnel ffi 1
Do 170 i=l.maulim

Iffabs(rhsv(i)).lL i.e-7) go to 820
Q = abs((tm/2(i) - rhsv(i))h'hsv(i))
lffconx.gq)eza

Ipa_ffi [
Endif
Cooa = anna l(coax.q)

820 Cootiaue
Bun(i) = tsa2O) - rbsv(i)

170 continue
Write(l 6,602)it,amy,coax,ipuei
Nocoav = 0
I.f(conx.lLtl,a-c_and.ifold.eq.0)go to 830
Noc_v = 1
If(iLeq.maxR) go to 830
Do 180 i=l,matdim

Ahnn = diag(i)
[f(abs(ahnn).IL !.0¢-7)ahna = 1.0_-7
Buf2(i) = buf2(i)lalma

180 continue
Call normal(Imf2,rrm_im)
Lp = max0(ifold,ims)
Do 190 i=Lip

36

Do 200 j= l.mmutim

B_fO)= vO_)
200 Coatiaue

X = sdot(nuudim, buf, l,bctf2,1)

Call saxpy(matdim.-x,bcff, l .bu/2, I)
Call na'mal(bu_,rrmdim)

190 continue

If(ifold.eq.0)go to 810
Call zero(bul3,matdim)

Do 210 i= l,ifold

Do 220j= l,matdim

Buftj) = v(j,i)
220 Continue

Ali = al(i)

Call saxpy(matdim,ali,bu£ I ,bur3, I)
210 continue

Do 230 i= I ,matdim

V(i, i) = buf3(i)
230 continue

Al(1) = 1.0
Goto810

830 continue

Call zem(bu.f, mau:lim)
Do 240 i=l,itm

Do 250 j= I ,matdim

Suf2(i) = vCj,_)
250 Continue

Alil = al(i)

Call saxpy(maufim, alil,lmf2, ! ,lxff, 1)
240 continue

Do 260 i= 1,maxdim

Dub{i) = bur(i)
260 c_etinue

ff(ncconv.eq. I) then

Write(16,603)
Endif

600 formtt(lhl)

601 fctmat(lx.'mlution iteration hLctct_/)

602 format(' it=',i5,' al(i) '3"15.8,' hv-g ',fl 5.8,' l:_nel = ',i5)

603 f(rmat(ff_no convergence--------------')
Renan

End

Subroutine _b,matdim,_wm)

C

C

Include 'pm'am.daf
Include 'common.f

Dimension a(mau:lim),b(natdim)
Rewind irawm

Npan = matdim

Do 10 i= I,Kcan
li= !

B(i) = 0.0

If(inram.eq. I)then

Read(ira wm)(du bicww(inranM),j= 1 ,npaa)
Ii= l

Endif

Do 20j=l ,npu

B(i) = b(i) + a(j) * dubicww(iij)
20 Continue

I0 continue

Return

End

Subroutine ze_(a, len)

Dimension a(len)

DO 10 i=l,len

A(i) = 0.0
10 continue

37

Retllm
End
Subroutine n<xmal(a, len)
Dimensoe a(len)
X=0.0
Do I0 i=l,len

X = x + a(i) * a(i)
I0 continue

X = l.O/sq_(x)
Do 20 i=l.lea
A(i)= a(i)* x

20 continue
Renan
End
Subrominegss(b.g.nmix.ieO
Dimension b(umix, mmx),g(nmix)
Data zerol/i .0e- 161
ler=0
Do 10 i=l,nmix

If(abs(b(i.i)).lLzm'ol)go to 800
Fx = IJb(i,i)
C,oto 810

800 Continue
lf(i.eq.nmix)go to820
I1=I+1

C Pivot section
Do 20 j---il,nmix

R'(abs(Nj,i)).lt.za'o 1)go to 20
Fx = IA_(j,i)
Do 30 I=i,nn'/x
Temp = b0,1)
B(i,t)= b(iJ)
B(i,I) = temp

30 Continue

Trap = g0)
GO) = g(i)
G(i)= trap
Goto810

20 Continue
Go to 820

810 Continue
G(i) = g(i) * fx
Do 40j=i.nmix
B(id) = b(ij)"_

40 Continue

Do 50 j= I,nmix
Lf(i.eq.j)go to 50
Y = b(j,i)
o0) = gO)-gO)• y
Do 60 k=i,nmix

B(j,k)= b(j,k)-y * b(i,k)
60 Continue
50 Continue
I0continue

Return
820 oontinue

Write(! 6,600)
600 format(' Abort invert Singular matrix ')

le¢= I
Return
End
Subroutinesaxp_n,sa,sx,iacx,sy,iacy)

Constant times a vector plus a ve_r.
Uses unrolled loops for increments equal to one.
Jack dongan_ linl_ck, 3111178.

Din_nsioas'x(n),sy(a)

38

C

C
C
C
C

If(n.le.0)remra
lf(sa.eq.O.0)reaa-n
If(incx.eq. l.and.incy.eq. I_go to 20

Code for unequal incremen_ or equal inarements
Not equal to 1

Ix=1
ly=l
If(incx.lL0)ix=(-n+ i)*inc_t+ 1
If(incy.R.0)iy=(-a÷ 1)*incy. 1
DO 10 i=l,a

S y(iy)---sy(iy)+ sa *s_t(ix)
Ix=ix+incx

ly=iy+incy
I0 continue

Return

Code for both increments equal to I

Cleaa-up loop

20 re=rood(a,4)
If(m.eq.0)go to 40
Do 30 i=l,m
S y(i)=,sy(i) +sa*sx(i)

30 coetinue
If(n.lL4)return

40 mpl=m+ I
Do .50 i=mp I.aA
Sy(i)=sy(i)+sa*sx(i)
Sy(i+ 1)-_sy(i+ l)+sa*sx(i+ !)
Sy(i+ 2)=sy(i+ 2)+ sa*sx(i+ 2)
Sy(i+3)=sy(i+3)+sa*sx(i+3)

50 continue
Reeara
End
Real functioo sdot(a.s_incx,sy,incy)

Forms the dot product of two vectors.
Uses umolled loops for incitementsequal to one.
Jack dongarra, linpack, 3/11/78.

Dimension sm(n),sy(n)

Stemp=O.OeO
Sdot=O.0eO
If(a.le.Oh'ean
If(incx.eq. l.aad.incy.eq, l)go to 20

Code for unequal ioa"emeo_or equal im'emeots
Not equal to oee.

Ix=l

ly=l
lf(incx.lt.0)ix=(-n+ 1)*incx+ 1
IJ'(incy.lt.O)iy=(-n÷l)*incy+ [
Do i0 i=l,n

Stemp=stemp+sx(ix) *sy(iy)
Ix=ix+inca

ly=iy+incy
10 continue

s&t=stemp
return

C
C Code for both increments equal to I

39

