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ABSTRACT

The NASA Propagation Experimenters (NAPEX) meeting is convened each year to

discuss studies supported by the NASA Propagation Program. Representatives from the

satellite communications industry, academia and government who have an interest in

space-ground radio wave propagation are invited to NAPEX meetings for discussions and

exchange of information. The reports delivered at this meeting by program managers and

investigators present recent activities and future plans. This forum provides an

opportunity for peer discussion of work in progress, timely dissemination of propagation

results, and close interaction with the satellite communications industry.

NAPEX XXI took place in El Segundo, California on June 11-12, 1997 and consisted of

three sessions. Session I, entitled "ACTS Propagation Study Results & Outcome ,"

covered the results of 20 station-years of Ka-band radio-wave propagation experiments.

Session II, "Ka-band Propagation Studies and Models," provided the latest developments

in modeling, and analysis of experimental results about radio wave propagation

phenomena for design of Ka-band satellite communications systems. Session III,

"Propagation Research Topics," covered a diverse range of propagation topics of interest

to the space community, including overviews of handbooks and databases on radio wave

propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997

and consisted of a technical session in the morning and a plenary session in the afternoon.

The morning session covered updates on the status of the ACTS Project & Propagation

Program, engineering support for ACTS Propagation Terminals, and the Data Center. The

plenary session made specific recommendations for the future direction of the program.
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PREFACE

The NASA Propagation Experimenters (NAPEX) meeting is convened each year to

discuss studies supported by the NASA Propagation Program. The reports delivered at

this meeting by program managers and investigators present our recent activities and

future plans. Representatives from the satellite communications industry, academia and

government who have an interest in space-ground radio wave propagation are invited to

NAPEX meetings for discussions and exchange of information. This forum provides an

opportunity for peer discussion of work in progress, timely dissemination of propagation

results, and close interaction with the satcom industry. NAPEX XXI took place at

Embassy Suites Hotel in El Segundo, California on June 11-12, 1997 and consisted of

the welcome, opening remarks, and three sessions. Steve Townes, the Manager of Space

Communications Technology Program at JPL, welcomed the participants on behalf of our

NASA sponsor, Ramon Depaula. Townes commended the close interaction between the

program and industry, and called for an even closer partnership and sharing of resources.

N. Golshan, the JPL technical manager for the Propagation Program, made the opening

remarks, recognizing the outstanding work of the NASA Propagation Experimenters

community, excellent participation by the U.S. satellite communications industry, and

NASA's foresight for timely investment in this critical technology for utilization of the

Ka-band.

Session I, entitled " ACTS Propagation Study Results & Outcome" was chaired by

L. Ippolito of Stanford Telecom and covered the results of 20 station-years of Ka-band

radio wave propagation experiments. Session II, "Ka-band Propagation Studies and

Models" was chaired by F. Davarian of Hughes Space and Communications; it addressed

the latest developments in modeling, and analysis of experimental results about radio

wave propagation phenomena for design of Ka-band satellite communications systems.

Session III, "Propagation Research Topics" was chaired by W. Vogel of University of

Texas at Austin, and covered a diverse range of propagation topics of interest to the

space community including overviews of handbooks and databases on radio wave

propagation. The ACTS Propagation Studies miniworkshop was held on June 13, 1997
and consisted of a technical session in the morning and a plenary session in the afternoon.

The morning session was chaired by R. Bauer of NASA LeRC; it covered updates on the

status of the ACTS Project & Propagation Program, engineering support for ACTS

Propagation Terminals, and the Data Center. The plenary session was chaired by D.

Rogers of Communications Research Center and W. Vogel. The plenary session made

important recommendations for the future direction of the program.

The success of the meeting owes a lot to the speakers and session chairs and the active

participation of all attendees. Special thanks are due S. Townes of JPL and R. Depaula of

NASA HQ for the programmatic support of the NASA Propagation Program. I would

like to express my thanks to R. Bauer, my counterpart at NASA LeRC for his support of

the NASA Propagation Program through the ACTS Project. Last but not least, I would

like to thank Mardy Wilkins of JPL for meticulously taking care of many administrative

details of the meetings and to C. Cordaro of JPL Technical Information Section for

coordinating the publication of this document.



The next ACTS workshop will be held in Boca Raton, Florida on or around November

18,19, 1997. The Next NAPEX meeting will take place in late May or early June of 1997

in Austin,Texas; the exact time and location will be announced by December 1997.

-N. Golshan
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Three Years of Propagation Studies in Alaska

BRADLEY E. JAEGER, DONALD L. HOPKINS, CHARLES E. MAYER

I. INRODUCTION

fe •

f
' t e.;

This report surveys some of the comparisons being made between analyzed propagation

data for Fairbanks and established models. Of prime importance to the ACTS propagation

campaign is the total attenuation measurements (AFS). Figures 1 and 2 show the yearly
attenuation curves versus percentage time for each of the three years of the experiment, for

measurement frequencies of 20.2 and 27.5 GHz respectively. Figures 3 and 4 compare the

measured attenuation with respect to clear air (ACA = AFS - gaseous absorption) to the predicted

attenuation values from the Crane global model and the ITU model.

II. SEVERELY ERRORED SECONDS (SES)

The ITU-T has laid out objectives for digital transmission quality for a hypothetical

reference connection (longest length) in recommendation G821. These are in place to suit the needs

of high demand services in ISDN. For high grade transmission systems, operating at 64 kbits/s,

the severely errored seconds (SES) allocation to a satellite link is 0.03% of available time[l]. The

preliminary results in this discussion focus on the propagation effects contribution to predictable
severely errored seconds. In particular, three yearly rates of severely errored seconds in Fairbanks

are compared to the Matsudo-Karasawa model for the rate of SES due to tropospheric

scintillations[2].
The Matsudo-Karasawa model has S(1%) and Pt as arguments. S(1%) is the ratio

of fading due to tropospheric scintillations at 1%, A,(l%), over approximate total fading at 1%,

A,(1%),
S(1%)=A,(a%)/A,(1%)

where

A,(1%)- 4A,=(1%)+ A,=(1%) •

A,(1%) is the fading due to rain. Pt is the percentage of time for which the signal is below a

threshold. The model predicts the percentage of severely errored seconds in available time, P,la,

p,,o = 10 a . 19n (2)

where

A = 1.42 "S(1%) - 1.29 + APs/._

B=-0.61" S(1%) + 1.46---(&P,,,,lo- &P,,,,)

&/:'./,,m "0379"41"1 + (S(1%)- 0"459) 2/0.452

AP,ox - 0.357" 41.1 * (S(1%) - 0.459) = / 0.452.

The ± signs are for computing 95% confidence intervals. It should be noted that Pc, represents the
time below a threshold and does not have to be equal to the percentage time of SES. This is

because a severely errored second is a one second interval for which the BER exceeds 103. For

any particular system, the model can still be used to predict SES but the signal level, noise

temperature characteristics, modulation, and coding of the communication system must be taken
into account.

J
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Figures 5 through 10 show 20.185 GHz or 27.505 GHz P,/, at Fairbanks along with

predictions from the Matsudo-Karasawa model. Bias was taken as the natural logarithm of

measured P,/, over predicted P,/_. Errors are given in table I.

Table I.

20.185 GHz Avg Bias
20.185 GHz RMSD Bias

27.505 GHz Avg Bias
27.505 Ghz RMSD Bias

1994 1995 1996

-0.48238 0.857016 1.731565

1.437727 1.159328 2.19551

-0.37284 1.207129 0.867589

1.312866 1.390923 1.329941

Within each figure is given a hypothetical table. These tables are intended to illustrate the

application of P_/,. If a hypothetical receiver has a BER of 10 .3 with 0 dB fade margin then the

tables indicate the availability and P./o achieved with several low fade margins. As can be seen

from the tables such a hypothetical receiver would need a fade margin exceeding 3 dB to meet the

I'IU-T objective of 0.03% SES in available time.

IlL INSTANTANEOUS ATTENUATION RATIO

Attenuation scaling in rain is affected by many things. It is affected by the drop size

distribution[3]. Scaling is also a function of temperature because changes in scattering are related

to changes in the refractive index of water. The refractive index of water is a function of

temperature[4]. It is also affected by the wave polarization since falling rain drops form oblate

spheroidal shapes [5]. The terminal velocity of rain drops is important for attenuation scaling with

rain rate[6]. Finally, the statistical distribution of rain rate with time along the path is important if

scaling is derived from an attenuation prediction model.

In order to eliminate fluctuation due to scintillations, the instantaneous attenuation ratio is
calculated as:

<ACA27 > 2-m'm/<ACA20> 2-rain. (3)

Most models of rain attenuation scaling are statistical in nature and somehow describe the rain

profile along the path, using one or two model parameters

The Hodge modal makes the assumption that the rainfall along the path is a Gaussian

function of position, R(x)=Ro.exp-(x/10) 2 [7]. Using the power law and integrating over the path

(over x) Al=alRobl.10.x/(x/bt). Solving for Re and substituting into A:=a2Rob2.1o-_/(_t/b2) with the

assumption 100"b2/bX)--isimplifies to the result:

A"'-L2-a2[Al",t/-_(_h-1) _22" . (4)
A1 al _ al '4_,1

The Kheirallah model assumes the extent of the rain is given by an apparent rain rate and

apparent path length, independent of frequency [8]. This approximation was later shown to have a
quantifiable error which could be removed by introducing a two frequency scaling relation. Using

the power law, At=at.Rbl.li =at.Rm, bl.l_ and A2=a2.Rb2-12 =a2"Rm, b2"lm,. Solving for 12=ltb2_t'l,p_1"

hub2and making the assumption lm, l"b_'2--1 then 12- 11b_2. Substituting R=(A1/al) Cvb_)and 12- !1bvb2

in A2, the one frequency scaling relation is:

(a_/_1A 2 - a 2 • (5)

1-6



TheRue model assume a single rain cell with an core of intense rain surrounded by a much

larger body of light rain [9]. The core is assumed to be d=3 km, the body of light rain is assumed

to be at R,,_=5 mm/hr and the path length parameter, D, is 27 km or L-3 km which ever is smaller.

Using the power law, AI=kl.R,_,_I.D+kI.R_I.d. Solving for R and substituting into

A2=k2"Rr_,_2"D+kE'Ra2"d, the scaling relation is:

a2

t -°}.• -2 A 1 - k 1 R,_

A 2 - k 2 R,,,. D + I:2 • d I:1 •d (6)

The Bothias or ITU model is intended to be independent of drop size distribution.

It was derived by making an empirical fit to all available data [9]. The scaling relation is:

A2 A1 (q°__) 1-"(_''2'A')= • (7)

with

1+ 0.0001. f 2

O.5

The Fedi model is equivalent to assuming a constant path length of 4 km [9]. Using the

power law, A_=klR"_.4. Solving for R and substituting into A2-k2R"2.4, the scaling relation is:

= • • (8)

Figures 11 through 13 show 27.505/20.185 GHz instantaneous attenuation ratio by base

attenuation at Fairbanks. Bias calculations are shown with each chart. Over three years, the data

shows the least RMSD variation about the Rue (50%) model.

IV. ATI'ENUATION WITH RESPECT TO CLEAR AIR (ACA)

To do justice to the variety of models for rain attenuation is beyond the scope of this
report. Suffice it to say these models are vital for constructing link budgets and evaluating

transmission quality as in the SES model discussed earlier. Electromagnetic Wave Propagation

Through Rain explains the foundations of rain attenuation models and the Global model and the

Two Component model are well developed [10]. The Simple Attenuation Model can be found in

Radio Science [11]. The ITU-R and COMSAT models are available from JPL [12].

Figures 14 and 15 show yearly cumulative distributions at Fairbanks compared to the

models listed above. Bias calculations are given with each chart. The data shows the least RMSD
variation about the CCIR '90 model.

A. WORST MONTH

Electromagnetic Wave Propagation Through Rain explains the basis for models for the

worst month [10]. The ITU-R model is given in the Green Book [13].

Figures 16 and 17 show worst months for 1994 through 1996 at Fairbanks along with the

ITU-R and Two Component Models. The measured average year was used as input to the ITU-R

model. Average and RMSD bias values are given in the charts. Figures 18 and 19 show an

1-7



alternatepresentationof the ITU-R model. These figures show Q, the ratio of worst month to

average year. Measure values of Q diverge for average year time percentages less than about

0.01% due to dynamic range limitations.

V. RAIN RATE

Rain rate distributions form an integral part of most attenuation prediction models. The
Global rain rate distribution is a fit to available rain rate distributions within each Global model

climate zone. It can be found in Electromagnetic Wave Propagation Through Rain [10]. The

Rice-Holmberg model uses the sum of exponential distributions. Parameters for the Rice-

Holmberg model are available from NTIS [14]. The ITU-R model describes the tail of the rain

rate distribution given the rain rate at 0.01% of the time and can be found in the Green Book [15].

Figures 20 and 21 show yearly cumulative distributions of rain rate with model
distributions. The measured rain rate at 0.01% was used as the input for the ITU-R model. Bias

calculations are shown for each model. Figures 18 and 19 show worst month distributions against

the ITU model. Model values were calculated by multiplying the average year exceedances by Q

[13].

VI. GASEOUS ABSORPTION

In addition to rain, gaseous absorption is needed for link budgets. The ITU-R model for

gaseous absorption is an approximation to more complicated calculations. The approximation

employs the surface water vapor density and the frequency as inputs [16]. Figures 24 and 25 show

3 year cumulative distributions of gaseous absorption. The differences between measured values

and ITU model values probably arise from two sources. First, some error is likely incurred from

not precisely calculating absorption from a profile of temperature, pressure, and water vapor

density with height. Second, some error likely arises from using the ITU- R approximation at

water vapor densities above 12 g/m 3.

VII. SUMMARY

This report has explored SES, instantaneous attenuation ratio, and distributions important

for modeling rain attenuation. The application of P,/, has been demonstrated. The three years of

instantaneous attenuation ratio showed the least variation about the Rue (50%) model. Yearly
cumulative distributions of attenuation showed the least variation about the CCIR '90 model.

REFERENCES

[11 R. W. McLintock and B. N. Kearsey, "Error Performance Objectives for Digital

Networks," British Telecommunications Engineering, vol. 3, pp. 92-98, Jul. 1984.

I21 T. Matsudo, and Y. Karasawa, "Characteristics and Predictions Methods for the

Occurrence Rate of SES in Available Time Affected by Tropospheric Scintillations,"

Electronics and Communications in Japan, vol. 74, no. 8, pp. 89-100, 1991.

I31 T. Ihara, and Y. Furuhama, "Frequency Scaling of Rain Attenuation at Centimeter and

Millimeter Waves Using a Path-averaged Drop Size Distribution," Radio Science, vol. 16,

no. 6, pp. 1365-1372, Nov.-Dec. 1991.

t-8



[41

[51

[61

[71

181

[9]

[10]

[111

[12]

[131

[14]

[15]

[161

P. Ray, "Broadband Complex Refractive Indices of Ice and Water," Applied Optics, vol.

11, no. 8, pp. 1836-1844, Aug. 1972.

T. Oguchi, "Scattering Properties of Pruppacher-and-Pitter Form Raindrops and Cross
Polarization Due to Rain: Calculations at 11, 13, 19.3, and 34,8 GHz," Radio Science,

vol. 12, no. 1, pp. 41-51, Jan.-Feb. 1977.

G. B. Foote and P. S. Du Toit, "Terminal Velocity of Raindrops Aloft," Journal of

Applied Meteorology, vol. 8, pp. 249-253, Apr. 1969.

D. Hodge, "Frequency Scaling of Rain Attenuation," IEEE Transactions on Antennas and

Propagation, pp. 446-447, May 1978.

H. Kheirallah et al., "Frequency Dependence of Effective Path Length in Prediction of

Rain Attenuation Statistics," Electronics Letters, vol. 16, no. 12, pp. 448-450, Jun. 1980.

J. E. Allnutt, Satellite-to-ground Radiowave Propagation, London: Peregrinus, 1989, pp.

219.

R. K. Crane, Electromagnetic Wave Propagation Through Rain, New York: Wiley-

Interscience, 1996.

W. L. Stutzman and K. M. Yon, "A Simple Rain Attenuation Model for Earth-space

Radio Links Operating at 10-35 GHz," Radio Science, vol. 21, no. 1, pp. 65-72, Jan.-Feb.
1986.

A. Kantak, K. Suwitra, and C. Le, "Database Software for Propagation Models,"

Reference Manual-Version 3.0, JPL D-11843, Jun. 1995.

"Worst-Month Statistics," Recommendations and Reports of the CCIR-Volume V

Propagation in Non-ionized Media, XVIth Plenary Assembly, Dubrovnik, 1986,

pp. 231-239.

E. J. Dutton, "Prediction Variability in the U.S.A. for Microwave Terrestrial System

Design," OTR 77-134 (NTIS, Springfield, VA 22151), Aug. 1974.

"Radiometeorological Data," Recommendations and Reports of the CCIR-Volume V

Propagation in Non-ionized Media, XVlth Plenary Assembly, Dubrovnik, 1986, pp. 132.

"Propagation Data and Prediction Methods Required for Earth-space Telecommunication

Systems," Recommendations and Reports of the CCIR-Volume V Propagation in Non-
ionized Media, XVIth Plenary Assembly, Dubrovnik, 1986, pp.392-393.

1-g



Fig. 1 - Alaska 20 GHz Yearly Attenuation EDF's
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Fig. 3 - Alaska 3-Year 20 GHz Attenuation EDF vs. Models
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I Outline [

CSU-APT Status Report

- Terminal Update

Brief Description of Two New Case Studies for 1997

- Radar data available from Wyoming King Air

CSU-APT Attenuation Data

- 1996 Data

- Comparisons with 1994 and 1995 data
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-APT Site Location]

CSU-APT is located about 30 km southeast of Fort

Collins near LaSalle, Colorado (approx. 13 km south

of the CSU-CHILL radar)

APT elevation angle - 43 deg

APT azimuth angle - 173 deg
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-APT Hardware Status I

Severe hail storm directly hit APT site on May 27, 1997

- Radar reported +60 dBZ near the ground at APT site.

- Ground observers at site reported hail stones on

ground were approximately 2.5 cm in diameter.

Damage to APT system

- Feed horn membrane destroyed

- Heat exchanger fins flattened

- 20 GHz LNA out of commision
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[Current Research Projects]

Two case studies with concurrent CSU-CHILL radar data

and Wyoming King Air cloud probe and polarimetric
radar data

- Wyoming King Air data

• Various cloud probes and weather
instrumentation

• 95 GHz polarimetric airborne radar- can be

either vertically pointing or horizontally pointing

- CSU-CHILL radar data

• 3 GHz polarimetric radar data

March 13, 1997 stratiform event

- Wyoming King Air made a pass along the ACTS

slant path with radar in a vertically pointing mode

- CSU-CHILL radar scanning along slant path

April 2, 1997 event

- Layer of ice crystals aloft (high Zdr's seen by

CHILL and King Air on the order of 4 dB)

- Scintillation effects and small fades (< ldB) are

noted in ACTS data (no precipitation at ground level)
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Statistics]

Cumulative Distribution Function (CDF)

- For both AFS and ARD data at 20 and 27 GHz

- No average applied to the data

- Data is binned from -3.0 to 30.0 dB in 0.1 dB steps

Attenuation Ratio (RA)

- 30 second moving average is applied to the data

- Divide the 27 GHz AFS by the 20 GHz AFS

- RA values binned from 0 to 10 in 0.05 steps for base

attenuation levels greater than 1 dB

- RA values are also binned from different base

attenuation levels ranging from 1 to 30 dB in 1 dB

steps
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Statistics]

Fade Duration (FD) and Inter-Fade Duration (IF)

- 30 second moving average is applied to the AFS data

- threshold levels range from 0 to 30 dB in 1 dB steps

- fade duration (nonfade duration) bins include 0-1,

1-2, 2-3, 3-5, 5-6, 6-10, 10-15, 15-18, 18-20, 20-30,

30-60, 60-120, 120-180, 180-300, 300-600, 600-

1200, 1200-1800, and 1800-3600 seconds

Fade Slope (FS)

- 10 second moving average applied to AFS data

- defined only if attenuation level corsses a threshold

for more than 10 seconds (above or below)

- threshold values range from 0 to 30 dB in 1 dB steps

- FS data are binned from -1.25 to 1.25 dB/sec in 0.0d

dB/sec steps

US i : (mFSi+ 5 - A_i_5) / 10.0
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3 Years of ACTS Propagation Studies in Florida_

Space Communication Technology Center

(SCTC)

PROPAGATION MEASUREMENTS IN

FLORIDA

HENRY HELMKEN

FLORIDA ATLANTIC UNIVERSITY (FAU)

&

RUDY HENNING

UNIVERSITY OF SOUTH FLORIDA (USF)

June 11, 1997

e-:"-

3 Years ofA CTS Propagation Studies in Florida_

ACTS PROPAGATION MEASUREMENTS

° NASA Propagation Terminal in Tampa, Florida:

University of South Florida (USF) Campus

• CCIR Rain Zone N

• Global Rain Region E

• ACTS Elevation Angle: 52.1 Degrees

ACTS Azimuth Angle: 214.0 Degrees

• Longitude: 82.42 Degrees W

Latitude: 28.06 Degrees N
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The following comments are applicable to the data/illustrations on the next pages:

Figure 1: The ACTS Propagation Terminal (APT) is physically located on the roof (4th

Floor) of the University of South Florida's College of Engineering Building. The university is

located in Northeast Tampa (upper right hand comer of Figure la) between Interstate 275 and

Interstate 75 and between Fowler and Fletcher Avenues (Figure lb). Site diversity experiments

involve a second terminal 42 km away at a cooperating industry's location - Raytheon's E-

Systems division in St Petersburg (Figure la) and further include a transportable terminal

intermittently at two locations, 1.2 km and 4.3 km from the APT. The first is in the "Village", a

university dormitory area, and the second at a cooperating industry, GTE Data Services (Figure

lb).

Figure 2: The APT's roof location is shown in figure 2a. Also shown, shaded, is an

experimental antenna measurement area currently being added to increase the university's ability

to carry out specialized supporting studies such as "wet antenna" research. Figure 2b shows the

APT terminal and the FAU-developed transportable terminal used for close-in site diversity

measurements next to each other during site diversity equipment calibration tests.

Following Figure 2 is a list of FAU/USF authored papers and presentations relating to this

project. This list is followed by a table identifying students who have been/are affiliated with this

program. This table also identifies their Thesis topics.

Figure 3 presents a sample of results from a thesis of Eric Wolfe, directed by Dr. Paul Flikkema.

This study explored correlation between ApT-determined Ka band propagation attenuation data

along the ACTS satellite beam's path and S-band doppler radar reflectivity data gathered by a

NEXRAD radar located at Ruskin, FL, along the same path. (See figure la for geographical

positions.) A more detailed report on this study is presented elsewhere in these Proceedings.

Figure 4 portraits the percent operational "on"-time of the APT terminal on a monthly basis for

each of the first three years (Dec. 1 1993 to Nov. 30, 1996). Please note that events beyond the

control of the Florida APT site, such as loss of beacon signals due to the ACTS satellite switching

power during solar eclipse, are excluded from this data. The data does include equipment outages

caused by such events as halting data during routine maintenance, hardware failure problems (for

example: low noise amplifier failure), power outages beyond the control of the UPS system, data

corruption, solar interference with the APT's fiber-optic data link, failure of normal calibrations,

etc.

Figure 5 presents the same information on an annual and 3-yr basis.

Figure 6 shows the buildup of additional path attenuation when a layer of dew forms on the

antenna during the night. This is determined by increased beacon signal loss as well as by a

radiometer-measured increase in sky temperature. Note that the peak of this buildup occurred at

13:00 GMT or 8:00 am local time, shortly after sunrise. Thereafter the dew rapidly evaporated

and as a result performance returned to "normal".
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Figure 7 presents CDF's for rain-rate on an annual basis for two years, and for the two years

(1995 and 1996) combined. Data is based on "tipping bucket" rain gauge measurements. The

Florida site's capacitive rain gauge measurements, while giving better instantaneous

measurements when the equipment is working, were not used for this statistical data

determination due to the gauge's many outages and at times erroneous readings.

Figure 8a presents annual total rainfall for the Tampa location. Due to the number of on-site rain

gauge outages, official data taken at Tampa International Airport is judged to give the most

dependable monthly and annual data in this case. Winter and summer data shown in Figure 8b is

also based on Tampa International Airport data. Note that the precise division into winter and

summer intervals is somewhat arbitrary at this point and deserves further study; however the

large difference in rainfall appears to make it desirable to separately identify these two periods.

Figure 9 Presents the annual and three-year free space attenuation (AFS) CDFs for the program's

20.185 GHz and 27.5 GHz frequencies for the first three years of the program. Note that in

general these CDF's tracked closely from year to year despite significant differences in weather

patterns.

Figure 10 presents initial results in CDF format for the site diversity studies of this program.

These studies are focusing on the benefits that can be derived even when short site separation

distances are used. Note that at smaller fade levels (for example 5 db) a gain of about 1.5 db is

realized, while at larger fade levels (for example 15 db or more) this increases to 5 db or more.

Figure 11 illustrates the frequency response of several filters used to remove rapid scintillations
from the beacon data measurements.

Figure 12 presents the results of using different filters when processing the experimental data into

a statistical format. It reveals that the processing is only affected in a very minor way (if at all) by

the type of filtering used. (Observe only the effect for fade depths greater than 3 db, since fades

smaller than 3db are often caused by non-rain (scintillation clouds, etc) effects.)

Figure 13 presents results of analyzing fade duration statistics. Figure 13a presents information

on the relation of fade duration to fade level on a log-normal basis using 3 years' fade data.

(Data for fade durations below 30 seconds is influenced by filter averaging, Low level fades (e,g,

2 db) are driven by variations in AGA and hence not representative of weather phenomena.

Figure 13b presents a least squares fit of some of the data when short duration fades are filtered

out.

Figure 14 plots 3 years' data of relative occurrence of fade slope (db/sec). Data is normalized

to 0 db/sec and taken over a 10 second interval. As fade level increases, occurrence of higher

fade slopes becomes more frequent.

file: napexrpt.697
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.... 3 Years of ACTS Propagation Studies in Flori

OUTLINE

• FLORIDA PROGRAM OVERVIEW

• OPERATION PERFORMANCE

• ANTENNA MOISTURE

• CDF RESULTS

• DIVERSITY PROGRAM

• DATA FILTER STUDIES

• CONCLUSIONS

3 Years ofA CTS Propagation Studies in Florida_

FLORIDA PROGRAM GOALS

• Generate CDF's for a Sub-tropical Region

• Sub-tropical Fade Duration Statistics

• Radiometer Development

• Diversity Gain Measurements

• Sub-tropical Rain Models
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3 Years of ACTS Propagation Studies in Florida_ 0 _

Figure la: Tampa Bay Area, Showing Locations of USF, NOAA Radar, and E-Systems

Years of A CTS Propagation Studies in Florida--\3
_j

GTE Data

Services

Figure lb: USF Area, Showing Locations of the APT, the Village, and GTE Data Services

1-79



93' 8"

1
New Concrete

Surface f¢¢

Existing Igt_rumentatlma

C_e

Existing Roof Surface (not suitable for instrumentation)

/ New AJumlztum
Curb aad gxbt_ag Curb to
Cop4ing /-- be Removed

/

M. A T "i:.....................i
[] L. _, T6' lo

120'

$

N

Microwave

Research

Laboratory

Figure 2a: East Roof of USF's Electrical and CS&E Engineering Building

Figure 2b:

3 Years ofA CTS Propagation Studies in Fiorid_

Main APT and FAU Diversity Terminal on Roof of

USF's Electrical and CS&E Engineering Building
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A CTS Propagation Program Papers
by Henry Heimken, Florida Atlantic University & Rudy Henning, University of South Florida

1997 (accepted) "Filter Influence on ACTS Fade Duration and Fade Slope Statistics", H. Helmken, R.

Henning, J. Feil, C. Mayer, Third Ka-Band Utilization Conference, Sorrento, Italy

1997 (accepted) "ACTS Ka-Band Propagation Measurements in Florida", H. Helmken and R. Henning, 1997
IEEE AP-S International Symposium and URSI North Americal Radio Science Meeting, Montreal,

Canada, July 1997

1997 "A Three Site Comparison of Fade Duration Measurements", H. Helmken, R. Henning, J. Feil, L.

Ippolito and C. Mayer, Accepted for publication in the Proceedings of the IEEE.

1997 "ACTS Ka-Band Fade Slope Statistics", J. Feii, L. Ippolito, H. Helrnken, R. Henning, and C. Mayer,

accepted for publication in the Proceedings of the IEEE

1996 "Ka-Band ACTS Propagation Measurements in Florida", H. Helmken and R. Henning, Proceedings of

the Second European Workshop on Mobile/Personal SATCOM, Rome, Italy, October 11, Springer, pgs.
433-442.

1996 "Ka-Band Site Diversity Research in a Subtropical Region Utilizing the ACTS Satellite", R. Henning,

S.K. Park and G.M. Szldarz, IEEE Southeastcon '96 Conference Proceedings, Tampa, FL, April 1996.

1996 "Effects of Dew on Millimeter-Wave Propagation", R. Henning and JR. Stanton, IEEE Southeastcon

'96 Conference Proceedings, Tampa, FL, April 1996.

1996 "Florida Propagation Results", H. Helmken and R. Henning, URSI National Radio Meeting, Boulder,

CO, January 1996.

1995 "Ka-Band Propagation Results From "Sub-Tropical" Florida", H. Helmken and R. Henning, presented
at 20th International Conference on Infrared and Millimeter Waves, Orlando, FL, December 1995.

1995 "Satellite K/Ka-Band Propagation Measurements in Florida", H. Helmken and R.Henning, International

Mobile Systems Communications (IMSC) Conference, JPL 95-12, Ottawa, June, 1995 pgs. 140-144.

1995 "Millimeter Propagation Research Using ACTS - A Look At First Year Findings", R. A. Bauer, F.

Davarian, H. Helmken and R. Henning, 1995 IEEE National Telesystems Conference Proceedings,

Orlando, FL, May 1995.

1995 "ACTS Propagation Measurements in Florida",lnternational Union ofRadio Science(URSI), Boulder,

January, pg. 27, Jan1995.

1994 "ACTS Propagation Research - A Key to Increased Satellite Communications Capacity", R.A. Bauer,
F. Davarian, H. Helrnken and R. Henning, 1994 IEEE National Telesystems Conference Digest, San

Diego, CA, May 1994.

1994 "ACTS Propagation Measurements in Florida", Invited Paper, URSI National Radio Science Meeting,

January, pg. 27.
File: reh\prop-ppr.597

1-81



< '

<

8

L_

, _ - . oO
(SP) N_I?J_V CI3^I_I_O

E

c

lop) NOI I.V f_N '_ I_V

z

----r

J

m

0_

E

u_

Eo

E

(Jq_u._) _IV_ NlVff

u

- -- UJ

m

• ._ _

lgl "

_Z _ _'_'

o .=

1-82



Years of ACTS Propagation Studies in Florida_

[ Ilze (_@[z 0 z'_ c-_z )

100 Oe%

_ OO'A. i_!i

7o 00%

eo 0o%

Figure 4a: First-Year (12/93-11/94) Operational Statu_ of Receiver/Radiometer
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Figure 4b: Second-Year (12/94-11/95) Opeeational Status of Receiver/Radiometer

8C O_'_

Figure 4c: Third-Year (12/95-11/96) Operational Status of Receiver/Rad|ometer
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1994 1995 1996 Th nee-Yr. Average

December (of previous year)

January

February
March

April

May
June

July

August

September

October

November

Total

1.28

3.9

0.42

0,66

3.43

0.06

5.98

11.3

8.37

9.16

3.29

0.24

1.57 1.02

3.51 5.52

2.02 3.04

2.02 4.65

1.48 4.2

1.67 1.45

9.79 8.96

2.72

7.39

5.44

3.12

0.91

Winter Summary (Nov-Apt)

Summer Summary (May-Oct)

10.22

13.75

2.8

4.71

1.16

1.29

4.31

1.83

2.44

3.04

1.06

8.24

8.08

9.84

5.80

3.71

0.77

50.40

13.68

36.73

source: Tampa International Airport Weather Data

Figure 8a: Tampa Bay Area Annual Rainfall Statistics (1994-1996)

3 Years of ACTS Propagation Studies in Fiorida_"_
%

December

January

February
[March

April

May

June

July

August

September
October

November

Total

Winter Summer

1994 1995 t 996 1994 1996

1,28

3.9

0.42

0.66

3.43

1.57

3.51

2.02

2.02

1.48

1.16

11,76

1.02

5.52

3.04

4.65

4.2

0.91

19,34

1995

0.06

5.98

11.3

8.37

9.16

3.29

38.16

1.67

9.79

10.22

13.75

2.8

4.71

42.94

Winter Summary 13.68

Summer Summary 36.73

Three-Year Average 50.40

1.45

8.96

2.72

7.39

5.44

3.12

29.08

souroe: Tampa International Airport Weather Data

Figure 8b: Tampa Bay Area Seasonal Rainfall Statistics (1994-1996)
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DIVERSITY PROGRAM

° Diversity Improvement in the Florida Sub-tropical Region
Focus on short baseline Diversity Improvement

< 5 km -- greatest commercial interest

• 20 GHz Transportable Terminal
1.2m APT Dish

Downconvert to 70 MHz at Feed

APT Digital Receiver
Thermal Control

Easily Replicated

• Operation Validated Adjacent to APT Terminal

• To Continue for Duration of ACTS Program

_) lo

i -

i '
1 , -

0 1 2 3 4 5 6 7 8 9 10 11 12 t3 14 _S 1(5 17 18 19 20 21 22 23 24 25

Attenuotlon (dB)

Figure 10: Diversity Enhancement at 1.2 km for May-June, 1996
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DATA FILTER STUDIES

• Analyze Beacon and Radiometer Data via FIR Filter Approach

• Filter Options
Data Representation: Log (dB), Power, or Voltage

• Filter Length
User-Defined

• Filter Shapes
Average, Low Pass, Triangular, Cosine Squared,

McClellan-Parks FIR Design

• Applied to
CDF Statistics, Fade Duration, Time Duration and

Fade Slope Statistics

lO

i

W

.-

£

"6

g

-lO

-20

-30 1

_ 4o

_..so

.50

-7O

.gO

,90

001

30 seC •Aven_ojng

75 $e¢ -MCPk$ 001-0 02

109 se= Cos Squared

,ooq

q

I - IQ.

01 .....

001 --

0 01

FrL.quer_'-f (Hz)

Figure I 1: Data Filter Frequency Responses

i
i

D
[]

0 _] OG D 0 0 G G nO 0

i _ m

-I- 10 av.db

-e- 30 av voll

-A-- 30 avdb

100 cos volt

-0- 100 cos db

-O- 75av.db

--A-- 75 mcpk.voll

O-. 100mcpk db

aa_goaoD oo4_

0 1 2 3 4 5 6 7 B 9 1011 12131415161718192021222324252627282930

Fade Depth (dB)
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3 Years of ACTS Propagation Studies in Fiorida_
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3 Years ofA CTS Propagation Studies in Florida.S.
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CONCLUSIONS

• SUCCESSFUL 3.5 + Year Operational Period

Uniform, Expanding Data Base

• Robust Analysis Software

Extending Analysis to Other Sites

• Continuing Diversity Program

• Data Filter Studies

Negligible Effect on CDF's

Quantifiable on Fade, Time, and Slope Statistics

• All Systems "GO" for Continued Operation
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ACTS Propagation Measurements

7;, ,.

¢ 11

ACTS Propagation Measurements in

Maryland and Virginia

Asoka Dissanayake and K. T. Lin

ACTS Propagation Measurements

Introduction

- ACTS propagation measurements are being conducted

at three sites in Washington DC area.

- Main objectives of the measurements are:

• collect long-term propagation data

• investigate multiple site diversity

• development of propagation models

• investigation of fade mitigation techniques
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e_J ACTS Propagation Measurements

Measurement Site Configuration

Laurel, MD
Clarksburg, MD 33 km

e_J ACTS Propagation Measurements

Program Status

- Data collection:

Clarksburg: 43 months complete

Reston: 39 months complete

Laurel: 33 months complete

- Data analysis:

Clarksburg: 33 months

Reston: 24 months
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ACTS Propagation Measurements

Attenuation Statistics

- Single site attenuation statistics for the two years from

March 1994 through February 1996 are presented.

- For the same 12 month period distribution of attenuation

for the two sites are very similar.

- Considerable year-to-year variability seen in the data.

- Model predictions fall within the annual variation.

ACTS Propagation Measurements

Cumulative Distribution of Rain Rate: Clarksburg
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ACTS Propagation Measurements

Cumulative Distribution of Attenuation: Reston
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ACTS Propagation Measurements

Cumulative Distribution of Attenuation: Clarksburg
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ACTS Propagation Measurements

Cloud Attenuation

- Cloud attenuation can be identified from the dual frequency

fade measurements. Simultaneous rain measurements are

also required.

- Cloud attenuation does not appear to vary appreciably

from year to year.

- At 27.5 GHz cloud attenuation levels up to 2 dB have
been observed.

ACTS Propagation Measurements

Cloud Attenuation Distribution at Clarksburg
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ACTS Propagation Measurements

Diversity Analysis

- Diversity statistics derived for the two site configuration

Clarksburg and Reston.

- Very little variation between joint statistics for the

two measurement years.

- Diversity prediction model appears to under estimate

diversity gain.

ACTS Propagation Measurements

Joint Attenuation Statistics at 20.2 GHz
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ACTS Propagation Measurements

Joint Attenuation Statistics at 27.5 GHz
275(1tz

$
il,

I

- i

*'_ 6 nt- __ -A

- _, tl-

• Ycarl

* Year2

* flu Mill

150 5 I0 20

_tm_im(_

ACTS Propagation Measurements

Fade Slopes

- Fade slopes calculated after removing scintillation effects

using a 20 s moving average filter.

- Positive and negative going slopes symmetrically distributed.

- Fade slopes appear to be relatively insensitive to fade

threshold.

- 1 dB/s represents a reasonable upper bound to fade slopes.
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ACTS Propagation Measurements

Fade Slope Histogram: 20.2 GHz
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ACTS Propagation Measurements

Fade Slope Distribution: 20.2 GHz
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ACTS Propagation Measurements

Fade Slope Distribution: 27.5 GHz
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ACTS Propagation Measurements

Antenna Wetting

- Experiment conducted by using two closely spaced antenna

systems. One of the antenna reflectors covered with a water

repellant cloth cover. Two systems used to receive the 20 GHz

ACTS beacon signal.

- Under test conditions the covered antenna fared significantly

better than the uncovered antenna.

- Under rainy conditions the covered antenna produced slightly

more attenuation than the uncovered antenna.
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ACTS Propagation Measurements

Reflector Wetting Loss: 20 GHz Feed Wetting Loss: 20 GHz
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ACTS Propagation Measurements

8

20 GHz Spgnal Attenuation Observed With and Wlhout De-ice Sh=eld

Rain Evenl on 3/1/97 at Clarksburg, MD
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ACTS Propagation Measurements

Conclusions

- ACTS beacon data from Maryland and Virginia used to

derive long-term statistics of attenuation and parameters

required for the design of fade mitigation techniques.

- Further analysis required to validate/improve propagation

models.

- Fourth year of data collection in progress.
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ACTS PROPAGATION MEASUREMENTS AT OTTAWA, CANADA

D.V. Rogers and K.S. McCormick"
Communications Research Centre

Industry Canada
Ottawa, Ontario, Canada K2H 8S2

1. INTRODUCTION

Measurements of the signal strengths of the Advanced Communications Technology Satellite

(ACTS) beacons are being made at the Communications Research Centre to enlarge the Canadian Ka-

band rain attenuation data base, to support propagation modeling and mode[ evaluation at these

frequencies, and to acquire data needed to investigate propagation features (such as fade dynamics)

expected to be important for the design of newer satellite communication systems and for the

development of adaptive impairment-mitigation technologies. Ka-band propagation data are also

necessary to permit efficient utilization of the spectrum at these frequencies.

Path signal-level data at 20.2 and 27.5 GHz have been collected since August 1995 at Ottawa,
Canada, using earth terminals located at 45.35°N and 75.89°W. The path elevation angle is 32.6 ° and

azimuth angle is 212.2 ° CWN to the geostationary ACTS satellite at 100°W longitude. The tilt angle

of the received linear polarization is 22 ° CW from vertical. Radiometric sky noise data are also

collected at 12, 20 and 29.5 GHz for use in supplemental analyses.

The ACTS beacon signals are received using 2.4 m diameter Cassegrain antennas, and the signal

power measurements are accomplished by monitoring the level of the down-converted signals with

programmable HP Selective Level Meters, under control of a personal computer. The 12, 20 and
29.5 GHz sky noise data are obtained with "dual-slope" radiometers manufactured by Diversitel Inc.,

using a focus-fed antenna of 1.2m and Cassegrain antennas of 0.6m and 0.5m, respectively. Data are
retrieved from the beacon and radiometer receivers with the same PC that is used for system control,

and stored for subsequent analysis.

Thus far, the analysis has concentrated on path rain attenuation statistics as measured with the
beacon receivers and the 12-GHz radiometer. A variety of techniques has been developed to display,

edit and process the data, including methods to select/edit arbitrary segments of the data time series,

establish a signal level baseline to remove diurnal variations, and treat questionable data. This paper
describes the data processing and analysis procedures, and presents some typical results, including

monthly and annual cumulative statistics of 12/20/30-GHz rain attenuation. (In the paper,

frequencies are often given as 20 or 30 GHz, instead of their more precise values.)

' Retired
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. EXPERIMENTAL CONFIGURATION

The ACTS experiment configuration at CRC is depicted in Fig. 1. The beacon receivers are

designed to track and monitor the ACTS beacon transmitters, while the radiometers supply

supplementary remotely-sensed data, independent of the satellite, that can enhance the propagation

analyses. The 12-GHz radiometer data also provide a good indication of path attenuation at Ku-band

to assist in comparing the Ka-band results with existing Ku-band propagation data.

The down-converters for the beacon receivers, designed and fabricated at CRC, use mixers with an

integral local-oscillator frequency doubler (20.2 GHz) or triplet (27.5 GHz), and low-noise IF

preamplifiers. As the cross-polar isolations of

the ACTS beacon antennas are generally poor

Clear-Sky Link Budgets (Ottawa) 20 GHz 30 GHz (likely worse than 22 dB for both beacons

when viewed from Ottawa [1]), and as

Beacon EIRP (dBW), nominal 16.6 15.1 previous analyses at CRC [2] indicate that

Free-space Loss (dB) - 210.2 - 212.9 systems operating at frequencies above 20

Clear-sky Loss (dB), nominal - 0.8 - 0.7 GHz will typically be attenuation dominated,

Polarization Loss (dB) - 0.2 - 0.1 cross-polarization measurements are not

Earth Terminal Pointing Loss (dB) - 0.2 - 0.4 attempted in the experiment.

Earth Terminal Antenna Gain (dBi) (51.6 (54.3) The consequent simplification to

Earth Terminal G/T (dB/K), nominal 20.0 20.0 monopolarized reception allows the use of
commercial programmable Selective Level

Modulation Loss (dB), nominal - 3.2 0.0 Meters (HP 3586C) as frequency-tracking IF

Received Power(dBW) -177.8 -179.0 receivers [3], under control of a personal

1/k (dB-Hz K/W) 228.6 228.6 computer deployed at the site. The SLMs
have an effective detection bandwidth of 65

C/N0 (dB-Hz) 50.8 49.6
Hz, and thus the carrier frequency must be

C/N in 65 Hz (dB) 32.7 31.5 tracked fairly carefully to maintain the carrier

Table 1. Link budgets for the ACTS beacon within this passband. In general, updates of

measurements, the frequency are performed every 2 minutes,

except during the vernal and autumnal

equinoxes, when large frequency excursions

of the beacons are encountered due to switches to and from the onboard batteries. During

equinoctial periods, carrier frequency updates are performed every 30 sec.

The radiometers were manufactured by Diversitel Communications Inc. and use the "dual-

slope" technique, originally developed at CRC, to estimate sky noise. In this implementation, the

noise power received by the radiometer antenna is accumulated for a fixed time period, which is then

compared to the time required to accumulate the same power from a noise diode reference. It can be

shown that the ratio of these time periods is proportional to the antenna temperature. These same

devices were used in prior Olympus Ka-band measurements at CRC [41, [51. The 12-GHz radiometer

has operated almost continuously during the measurement period. A failed PIN-diode switch caused

some loss of data for the 20-GHz radiometer. Early in the measurements, the 29.5-GHz radiometer

malfunctioned, and has only recently been returned to service after repair by the manufacturer. At

present, all units are operating normally.

The 2.4 m beacon receive antennas have on-axis gains of 51.6 dBi at 20.2 GHz and 54.3 dBi at

27.5 GHz, with respective half-power beamwidths (HPBWs) of 0.44 ° and 0.32 °. The nominal satellite

range is 38,400 km. Link budgets for the beacon receive paths are supplied in Table 1. The HPBWs
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of the radiometer antennas are: 1.5° for the 1.2 m antenna used at 12-GHz;
antenna at 20-GHz; and 1.5 ° for the 0.46 m antenna at 29.5-GHz.

1.75 ° for the 0.6 m

. DATA COLLECTION, PROCESSING AND ANALYSIS

The beacon signal level data are sampled at 1 Hz by interrogating the SLMs at this rate. The data

are stored on the computer hard disk for subsequent retrieval and processing. Radiometer data are

sampled every 0.5 sec, then integrated and stored every 2 sec. The radiometer data can be further

filtered during data sampling by creating a setectable running average of 1 to 30 samples. Presently,
a 10-sample (5 sec) running average is used for each radiometer. Sky noise data are accumulated

and blocked into l-h records by a microprocessor in the radiometer for later retrieval.

Data processing activities to date have built on software developed for a Ku-band radiometer

experiment previously performed jointly with several ASEAN countries [6]. As an example of the

processing capabilities, Fig. 2 shows time series of both beacon signal levels over a period of 24

hours. In order to reduce the effects of system noise, the signals were low-pass filtered with a cutoff

of 0.2 Hz at processing time. At 30 GHz, a diurnal variation of received signal strength is clearly

visible. The solid lines superimposed on the plot are sine curves with a period of 24 hours. The

average level, phase and amplitude of these sine waves has been adjusted visually to establish a

reference baseline for the derivation of signal attenuations. (This was done using the two small

squares, or "handles", which may be visible on each sine curve.) Fig. 3 shows the resulting event
structure, with the baseline removed, for the period 12 to 17 hours. The satisfactory performance of

this approach is quite evident.

Due to the several judgments required during the data editing and processing, as well as expected
contributions to the statistics caused by equipment noise that gets reflected in the recorded data, it is

prudent to verify that the net effect on the propagation statistics is essentially unbiased. For these

data, this aspect was checked by computing "attenuation densities" for each data channel, defined as

the number of seconds observed in a specified 0.1 dB attenuation bin over the course of a month.

Such a presentation is given in Fig. 4, upon which 30-GHz beacon attenuation densities are plotted
for August, September and October of 1995. The peaked shape of the densities at zero decibels

provides evidence that there is negligible net bias in the data processing procedures.

. EXAMPLE RESULTS

Fig. 5 illustrates concurrent time series plots of measured signal attenuations for the beacon

signals and derived attenuation values for the 12- and 20-GHz radiometer channels for a 12-hour

period, collected on 19 January 1996. Just before 1400 GMT (0900 Eastern Standard Time), rain

began and was registered in each of the channels. The behavior among the channels approximately

follows the expected frequency dependence for rain, and individual features among the time series
are observed to be well correlated.

At about 1900 GMT (1400 EST), the precipitation changed to snow, and divergence among the
channels increased. For example, very little correlation is observed between the 12- and 20-GHz
radiometers at about 2000 GMT. This behavior has been noted several times and is attributed to the

different antenna feed types: The 12-GHz focus-fed feed is protected from accumulations of
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precipitation on the feed window, while the 20-GHz Cassegrain feed is very susceptible to such

effects. Precipitation is also observed on the beacon receive antenna surfaces and feed windows, but a

feed-blower assembly keeps the beacon antenna feed windows generally free of precipitation. The

corresponding apparent path losses can be relatively large for wet snow, but appear to be less severe

for water droplets.

As already noted, the time series outputs of the various sensors are edited and processed to obtain

cumulative fade statistics. Table 2 gives the percentage uptimes for each of the three equipments by

month. This table should be taken into account in assessing the likely validity of the attenuation

distributions which are discussed below. Fig. 6 shows cumulative path attenuation statistics as derived
from the 20-GHz beacon data for the first few

months of operation, August - September 1995,

Time Period 12 GHz 20 GHz 30 GHz as well as annual statistics for the one-year period

Radiom Beacon Beacon comprised of the months November 1995

August 1995 0.0 45.5 46.4 through October 1996. Experiment uptime for
the first couple of months was poor, but the

September 1995 0.0 38.6 38.6
fading activity for the last three months of 1995

October 1995 33.5 95.8 95.7 was modest in any case.

November 1995 64.3 85.5 85.5
Fig. 7 displays a similar plot derived from the

December1995 78.1 85.7 85.7 30-GHz beacon data, with very similar general

January 1996 92.1 95.0 95.1 features (and experiment uptimes) as those of

February1996 97.8 92.1 92.1 Fig. 6 for the 20-GHz channel, except that the

March 1996 80.1 74.6 74.2 monthly distributions for September 1995 do not
appear to be consistent with respect to fading at

April 1996 94.0 0.0 97.9
the smallest time percentages. Such discrepancies

May 1996 97.6 0.0 80.1 are investigated by reviewing the time series data,

June 1996 96.7 0.0 96.4 especially after editing, to determine the events

July 1996 74.2 16.7 67.3 that cause the observed features.

August1996 96.8 96.6 96.6 By way of example, Fig. 8 displays the

September1996 80.0 62.6 68.9 cumulative fade distributions derived from the
12-GHz sky noise data for the months July-

October 1996 96.8 94.2 94.2
October 1996, along with annual statistics for

Nov 1995 - Oct 1996 87.4 51.6 86.1 November 1995 through October 1996. The

behavior of the monthly distribution for August

Table 2. Monthly time percentages that 1995 appears somewhat unusual (though within

valid data were obtained for the 12-GHz bounds for a single month of data). By reviewing

radiometer and the 20- and 30-GHz ACTS time series data for the month, it was established

signal beacons, for the period November that the monthly distribution is an accurate

1995 to October 1996. representation of the fading that occurred during

the time period under review.

Fig. 9 supplies distributions for the 12, 20 and 30 GHz channels for the month of August 1996,

each based on very similar equipment uptimes. Significant fading was experienced during this

month, as reflected in the individual distributions. Furthermore, the individual curves are observed to

display broad agreement with the expected characteristics of rain attenuation at the different

frequencies.

Fig. 10 provides cumulative distributions of measured 20- and 30-GHz attenuation and 12-GHz

derived attenuation for the 12 month period November 1995 to October 1996. The derived 12-GHz

attenuation distribution is observed to intersect the 20-GHz curves at a time percentage just below
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0.01%, which is clearly unlikely. This discrepancy is likely due to differences in the uptimes for

these two channels, plus possibly a nonoptimal choice of the effective medium temperature required
to transform the sky noise data into a rain attenuation distribution. Identification and evaluation of

such features in the results are necessarily continuing as the experiment progresses.

Also shown in Fig. 10 are 12- and 20-GHz distributions which were frequency scaled from the

30-GHz data using the method of Rec. ITU-R P.618-4 [7]. The 30-GHz data were chosen as the

baseline because they form a better statistical data set than the 20-GHz data. The scaled distribution

at 20 GHz compares very well with the measured distribution down to a time percentage of 0.01%.

The scaled 12-GHz distribution shows poor agreement with the measured data, likely for the same

reasons as noted in the previous paragraph.
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Fig. 1. Experimental configuration for the ACTS beacon measurement program at CRC.
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Fig. 2. Signal strength recordings for Oct. 21, 1995.
The upper curve is for the 20 GHz beacon, the
lower curve for the 27 GHz beacon. Also shown

are sine curves with a period of 24 hours used to
remove variations in the baseline. The small

squares (two on each sine curve) are handles which
are used to adjust the average level, the phase and
the amplitude of the sine curves.
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Fig. 3. A portion of the rain attenuation data
extracted from the signal strength recordings
shown in Fig. 2. The 30 GHz data are offset by 5
dB for clarity.
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Fig. 4. Density functions of the extracted 30 GHz
attenuations for the months of August, September,
and October, 1995. The attenuation data were
quantized to 0.1 dB, and the plots show the number
of seconds the signal was observed in each 0.1 dB
bin. The peak in the data at 0 dB gives confidence
in the method used to extract the attenuations. The

data spread, particularly below 0 dB, is due mainly
to signal noise.
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Fig. 6. Monthly cumulative distributions of
attenuation derived from the 20 GHz ACTS bea-
con for: 1 - August; 2 - September; 3 - October;
4 - November; and 5 - December, 1995. The
heavy dashed line is the distribution for the year
November 1995 through October 1996.
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Fig. 5. Concurrent time series plots of measured
signal attenuations for the beacon signals and for
the derived attenuation values for the 12 and 20
GHz radiometer channels. Data collected on
January 19, 1996.
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Fig. 7. Monthly cumulative distributions of
attenuation beacon derived from the 30 GHz
ACTS for: 1 - July; 2 - August; 3 - September;
and 4 - October, 1996. The heavy dashed line is
the distribution for the year November 1995
through October 1996.
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EERL/ Univ. of Texas J

ACTS Propagation Data Base
Status

Wolf Vogel

Electrical Engineering Research Laboratory

The University of Texas at Austin

Presented at NAPEX XXl

El Segundo, CA
June 11, 1997

J1

EERL / Univ. of Texas J
Raw Data Received (06/04/97)-' 

Year Month AK BC CO FL MD NM OK

..............................

93 Sep 03 i0 ........ 29

93 Oct 31 26 .... _. 30 31

93 Nov .. 27 .. 28 .. 15 29

93 Dec _ 31 30 29 .. 29 31

31 31 31 31 ,. 31 31

28 28 28 2£ . 25 28

31 31 31 29 17 31 31

30 30 30 30 30 30 30

31 31 25 30 31 31 31

30 30 30 30 30 30 30

31 31 31 31 31 31 31

31 31 31 31 31 31 31

30 30 29 30 30 30 30

31 31 29 31 31 31 31

27 30 30 30 30 30 30

94 Jan

94 Feb

94 Mar

94 Apr

94 May

94 Jun

94 Jul

94 Aug

94 Sep

94 Oct

94 Nov

31 31 31 28 22 31 31

31 31 31 31 19 31 31

2£ 2£ 28 28 28 28 28

31 31 31 31 31 31 31

30 30 30 30 28 30 30

31 31 31 31 31 31 ]l

30 30 30 30 30 30 30

31 31 31 31 31 31 31

31 31 31 31 31 31 31

30 30 30 30 30 30 30

31 31 31 31 31 31 31

30 30 30 30 30 30 30

94 Dec

95 Jan

95 Feb

95 Mar

95 Apt

95 May

95 Jun

95 Jul

95 Aug

95 Sep

95 Oct

95 Nov

Year Month AK BC CO FL MD NM OK

............................

95 Dec

96 Jan

96 Feb

96 Mar

96 Apt

96 May

96 Jun

96 Jul

96 Aug

96 Sep

96 Oct

96 Nov

31 31 31 31 31 31 31

31 31 31 31 31 31 31

29 29 27 29 29 27 29

31 31 30 31 31 24 31

30 30 30 30 20 30 30

31 31 31 31 31 31 31

30 30 30 30 30 30 30

31 31 23 31 31 31 31

31 31 31 31 31 31 31

30 30 29 28 30 30 30

31 31 28 31 30 31 31

30 30 30 30 23 30 30

96 Dec

97 Jan

97 Feb

97 Mar

97 Apt

97 May

97 Jun

31 31 31 31 31 26 31

31 31 31 . 31 29 . .

28 28 28 28 28 28 ,.

31 .... 31 31 31 ,,

........ 30 27 ,,

Total Daily RV0 Files: 8448

Total Compressed MegaBytes: 5755
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ff_EERL I Univ. of Texas J

PV2 Data Received (06/04/97)

Year Month AK BC CO FL MD him OK

......................................

93 Sep

93 Oct

93 Nov

93 Dec

94 Jan

94 Feb

94 Mar

94 Apr

94 May

94 Jun

94 Jul

94 Aug

94 Sep

94 Oct

94 Nov

94 Dec

95 Jan

95 Feb

95 Mar

95 Apr

95 May

95 Jun

95 Jul

95 Aug

95 Sep

95 Oct

95 NOv

27 ........ 29

5i 31 30 2B .. 29 31

31 31 31 31 .. 31 31

28 28 28 28 .. 25 28

31 31 31 29 17 31 31

30 30 30 30 30 30 30

31 31 25 30 31 31 31

30 30 30 30 30 30 30

31 31 31 31 31 31 31

31 31 31 31 30 31 31

30 30 29 30 30 30 30

31 31 29 31 31 31 31

27 30 30 30 30 30 30

31 31 31 28 22 31 31

31 31 31 31 19 31 31

28 28 28 28 28 28 28

31 31 31 31 31 31 31

30 30 30 30 28 30 30

31 31 31 31 31 31 31

30 30 30 30 30 30 30

31 31 31 31 31 31 31

31 31 31 31 31 31 31

30 30 30 30 30 30 30

31 31 31 31 31 31 31

30 30 30 30 30 30 30

Year Month AK BC CO FL MD NM OK

..........................

95 Dec

96 Jan

96 Feb

96 Mar

96 Apt

96 May

96 Jun

96 Jul

96 Aug

96 Sep

96 Oct

96 Nov

31 31 31 31 31 31 31

31 31 31 31 31 31 31

29 29 27 29 29 27 29

31 31 30 31 31 24 31

30 30 30 30 20 30 30

31 31 31 31 31 31 31

30 30 30 30 30 30 30

31 31 23 31 31 31 31

31 31 31 31 31 31 31

30 30 29 28 30 30 30

31 31 28 31 30 31 31

30 30 30 30 23 30 30

96 Dec

97 Jan

97 Feb

97 Mar

97 Apt

97 May

97 Jun

............ 31

.. 31 ..........

Total Daily PV2 Files: 7591

Total Compressed MegaBytes: 2915

I_EERL / Univ. of TexasJ ' --_

1-202



IfflEERL I Univ. of TexasJ

Methods for Submitting Data
in order of preference

• ftp to cancan.eerl.utexas.edu

- zip monthly files into one -20 MB file

- takes -20 minutes

- ftp is down during CD-ROM burning

• mail on ZIP drive cartridge

- zipped or not; cartridges will be returned

• mail on CMS tape

- arrgghhh

'_ _"-YEARPP CD-ROM

Organization

Mary
/

\ /
\

J
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ff_EERL / Univ. of Texas J

CD-ROM Directory

CD-ROM Volume

YYMM (Year-Month)

PC2 files for month

EDF file for month

misc. files for month

YYMM (Year-Month)

PC2 files for month

EDF file for month

misc. files for month

and so on ....

If_EERL / Univ. of TexasJ

PP File Compression & Decompression

ii!iiiiiiiiiiiiiiiiiiiiiii!ii_iiiiiii!iiiiii!!i'
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EERL/ Univ. of TexasJ

Methods for Submitting Data
in order of preference

• ftp to cancan.eerl.utexas.edu

- zip monthly files into one -20 MB file

- takes -20 minutes

- ftp is down during CD-ROM burning

• mail on ZIP drive cartridge

- zipped or not; cartridges will be returned

• mail on CMS tape

- arrgghhh

EERL / Univ. of TexasJ

3-YEAR PP CD-ROM

Organization

/

Alaska Colorado
Columbia

Maryland t New Oklahoma )Mexico
'\ /

\
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EERL I Univ. of Texas JCD-ROM Directory

CD-ROM Volume

YYMM (Year-Month)

PC2 files for month

EDF file for month

misc. files for month

YYMM (Year-Month)

PC2 files for month

EDF file for month

misc. files for month

and so on ....

DEERL/ Univ. of TexasJ

iskette Miscellaneous Files

• Information on data file structure and installation

- Format.txt

• Program installation batch file

- Run Me.bat

• Programs for uncompressing data (16 bit OS)

- directory doswin 16

,, dc.bat, decomp.exe, pkunzip.exe

• Programs for uncompressing data (32 bit OS)

- directory win32uti

_ ACTSInst.exe, decomp.exe, pkunzip.exe
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EERL / Univ. of TexasJ ,

Suggested Directory Structure

(created by Run_Me.bat)

.C:\

- ACTS\

_ EXE\

* doswin 16\

, win32util\

_ TMP\

_EERL / Univ. of TexasJ

Using ACTSPP Program

to Decompress Data
• The ACTSPP program is also available to decompress

the data. In addition, this program can produce monthly

EDF files using operator-selectable criteria for various

20/27 GHz levels of fade simultaneity definitions and

outputs much diagnostic information. This program was

used by all seven stations to convert raw data files (RV0

files) to calibrated PV2 files and to produce the monthly

EDF files.

• It can be obtained from and is supported by Dave

Westenhaver, E-mail: wwwinc@crl.com, Westenhaver

izard Works, Inc., Tel: 770-925-1091.
_0

1-205



f_EERL / Univ. of TexasJ

PP File Compression & Decompression

f_EERL / Univ. of TexasJ

CD-ROM distribution

• Made 14 sets, of which we distributed:

- 9 Industry/Academic Requests

- 1 JPL

- 1 LeRC

- 1 WWW Inc.

- 2 ACTS Propagation Data Center

• 1 left to distribute

• More can be made if requested

-N

J 12
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CD-ROM Requests
EERL / Univ. of Texas Filled

Ashok Mathur, DirecTV

[_ David V Rogers, CRC

[_ Zlata Koro, Teledesic

[_ Faramaz Davarian, Hughes Space & Communications

Rick Leacock, Spaceway

Fred I Shimabukuro, The Aerospace Corporation

Frederick Solheim, Radiometrics Corporation

_] Hans Kruse, Ohio University

[] Norbert Kleiner, Motorola
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2. Ka Band Propagation Studies and Models





Industry Needs

F. Davarian,

Hughes Space and Communications Division

Special Issue on Ka-Band Propagation

Effects on Earth-Satellite Links

Proceedings of the IEEE, June 1997

1. System Requirements for Ka-Band Earth-Satellite Propagation Data

2. Ka-Band Earth-Space Propagation Research in Japan

3. European Research on Slant Path Propagation

4. Ka-Band Propagation Measurements: An Opportunity with the
Advanced Communications Technology Satellite (ACTS)

5. ACTS Propagation Experiment: Experiment Design, Calibration, Data

Preparation and Archival

6. ACTS Propagation Experiment: Attenuation Distribution Observation
and Prediction Model Comparisons

7. The Application of S-Band Polarimetric Radar Measurements to Ka-
Band Attenuation Prediction

8. Cumulative Fade Distributions and Frequency Scaling Techniques at 20
GHz from the Advanced Communications Technology Satellite and at

12 GHz from the Digital Satellite System

9. Comparison of Fade Duration Statistics with Model Prediction

10. Fade Slope Analysis for Alaska, Florida, and New Mexico

11. Ka-Band Scintillations: Measurements and Model Predictions

12. ACTS Propagation Experiment: Rain-Rate Distribution Observation and
Prediction Model Comparisons

13. Application of Open Loop Uplink Power Control in Ka-Band Satellite
Links

14. Three-Site Space Diversity Experiment at 20 GHz Using ACTS in
Eastern United States

15. Channel Characterization and Modeling for Ka-Band Very Small

Aperture Terminals
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Abstract

The two-component model provides a rain-rate distribution prediction that is based on
five parameters. The Crane-Global rain climate zone model provided the five parameters
for each rain zone. The new, revised model provides a means to set the five parameters
using locally available climate data. This report is preliminary because the procedure
developed for setting the parameters requires data that are only available at slightly over 200
stations in the United States. Extension to other climate regions is still required. Because
the locations within the United States that have data, have long records, the new model
provides a large data base for use in the search for statistical relationships between the
model parameters and climate data that are available world wide.

1. Introduction

Models for the prediction of the statistics of attenuation by rain for a particular site

and propagation path are based on the predictions of an underlying rain-rate probability

distribution model for the site location. Two types of rain-rate distribution prediction

models am now available, 1) rain climate zone models for regions of the globe with an

expected similarity in rain-rate distribution and 2) parameterized rain-rate distributions with

explicit instructions for the use of local climate data to calculate the required distribution

parameters. The climate zone was used to collect empirical distributions which were

combined to establish the predicted distribution for that region. A climate region (or zone)

model does not need an explicit representation for the rain-rate distribution; the tabulated

median distribution of the observed distributions is sufficient. Parametedzed distributions

require the use of either a well defined probability model or a curve-fit model to represent

the distribution over a limited probability or rain-rate range.

Early work in rain-rate distribution analysis had suggested the possible use of the

following models to represent a rain-rate distribution: 1) a sum of exponential distributions

(Rice and Holmberg, 1973), 2) a lognormal distribution (Lin, 1978; Morita and Higuti,

1978), 3) a gamma distribution (Morita and Higuti, 1971) and 4) a power-law distribution

(Segal, 1979). In 1982, Crane suggested a two-component model that was the sum of an

exponential and a lognormal distribution (Crane, 1982). Since then, the "log-gamma"

(Maupfuma, 1985; Flavin, 1994) and Poisson (Tattelman, 1989) distributions have also

been proposed.

The earliest distributions were constructed on the basis of simple hypotheses about

the statistics of rain intensity. Empirical distribution functions (edfs) were not available for

use in curve fitting or in testing the proposed model against observations. Rice and

Holmberg used excessive precipitation data to fix one of the exponential distributions (for

high rates) and hourly rain-rate accumulation data to fit another of the exponential
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distributions (for low rates) and provided a smoothed connection between the high and low

intensity regimes. Their distribution was engineered to depend on two climate parameters,

the mean annual precipitation accumulation, M, and the ratio of the rain accumulation in the

high rain-rate component of the distribution to M, the "thunderstorm" ratio, 13. Lin argued

for the lognormal distribution on the basis of a multiplicative model for rain production.

He used excessive precipitation data to calculate two of the three parameters required for the

model and M to establish the third parameter. The recently proposed parameterized

distributions generally employ curve-fitting to rain-rate edfs to estimate the distribution

parameters and a smoothed mapping to interpolate the parameters to other locations.

In this report, a new model is proposed for the determination of the parameters of the

two-component model from locally available climate data. The earlier Rice-Holmberg and

Lin models are revisited to explore the utility of those models and of the parameter

estimation techniques used to complete each model. When these models were developed,

adequate data were not available for model testing and validation. Over the past two

decades a considerable body of annual empirical distribution functions have been gathered

for use in model validation (ITU-R, 1994a). Sufficient data are now available to test these

and other models and to provide a recommendation for the best model to use for rain-rate

distribution estimation and in attenuation distribution prediction. This report is preliminary

because the model development for the prediction of an annual rain-rate distribution is now

complete for over 200 stations in the United States but the extension of the model to cover

the rest of the United States and other countries is not finished. Also, a full test of the

model using annum edfs from the available data banks must be performed.

2 Early Models

The parameterized Rice-Holmberg and Lin models and the climate zone Crane-Global

and ITU-R (1995)models are generally used in attenuation modeling. The first two years

of attenuation and rain-rate measurements from the ACTS Propagation Experiment has

been used for the testing of the Rice-Holmberg, Crane-Global, and ITU-R models (Crane

and Robinson, 1997). Testing results showed that "not one of the model combinations

provided good predictions". This result supplies the impetus for this work.

The ACTS Propagation Experiment site with the largest collection of empirical rain-

rate distribution functions (rain-rate edfs) for the site and nearby area is Reston, VA. Only

one year of data is available from the tipping bucket gauge at the Reston site but three years

of data are available from the earlier CTS measurement program at the nearby NASA

Goddard Space Flight Center in Greenbelt, MD (Ippolito, 1981) and four more years of
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4

observations are available from measurements at the COMSAT Laboratories in Clarksburg,

MD (Kumar, 1984). These annual rain-rate edfs are presented in Figure 1 together with the

predictions of the Crane-Global model. While, with the exception of Reston, VA for rain

rates less than 5 mm/h and one of the Clarksburg edfs at the highest rain rate, the edfs lay

between the upper and lower bounds (expected to enclose 90% of the edf observations) the

observations at higher rain rates generally reveal a higher probability of occurrence than

predicted. The DAH (Dissanayake et. al., 1996) and ITU-R (1995) attenuation prediction

procedures use only the expected rain-rate value at 0.01% of a year. At this probability

level, the edfs show higher rain-rate values than predicted. The median of the observed

edfs at 0.01% of a year was 61 mm/h while the predicted median value was 49 mm/h.

While there is a random, year-to-year variation in rain rate at a fixed probability level, a

good model would pass through the center of the distributions (the median value).

2.1 The Rice-Holmberg Model

Rice and Holmberg did not have access to rain-rate edfs constructed from short term

(one-minute average)observations (Rice and Holmberg, 1971). They did have the houdy

precipitation data and excessive precipitation data from the National Climate Data Center.

They used the hourly data to generate a model for the low rain-rate regime and the

excessive precipitation data for high rain rates to engineer a plausible rain-rate distribution.

They postulated that the highest 5-, 10-, 15-, 20-, 30-, 45- and 60-minute observations in a

single excessive precipitation event were obtained from nested time intervals. They could

then construct a segment of the rain-rate distribution for each year of observations that

could be valid over the 0.001 to 0.01% of a year range. They analyzed more than 20 years

of observations at 48 sites. They found 1) the high rain-rate distribution segments that they

constructed could be modeled as exponential distributions and 2) the average rain-rate for

the exponential distributions could be approximated as 33.3 mm/h for all the sites they

considered.

Rice and Holmberg constructed empirical distributions from the hourly observations

available at a large number of sites. They also modeled these low rain-rate (hourly)

distributions by a second exponential distribution. Between the high and low rain-rate

regimes, they fit a third exponential which would combine with the other two to produce a

smooth distribution estimate. The average annual integrated rain accumulation produced by

the highest rain-rate exponential distribution was identified as "thunderstorm" rain and the

average annual accumulation produced by the triple exponential distribution was the

average annual attenuation. With the average rain rate for each exponential segment fixed

to either their average value for a number of sites and years or to an intermediate value that
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smoothlyinterpolated between the high and low rain-rate regimes, only two parameters are

needed to completely determine the entire distribution, M and ]3. For the sites and years

used in constructing the distribution model, each of the exponential distributions could be

set from the observations. Rice and Holmberg (1971) calculated the average M and [_

values for each of these sites. Figure 2 displays the result for Washington, DC together

with the observations depicted in Figure 1.

The Rice-Holmberg model performs better that the Crane-Global model for this set of

observations. At 0.01% of a year, it predicts a slightly higher rain rate than observed. The

median of the observed edfs at 0.01% of a year was 61 mm/h while the predicted median

value was 64 mm/h. Considering that the model was developed without the wealth of short

term rain-rate edfs now available, it was a remarkable achievement.

A problem with this model is making predictions at sites different from any of the 48

sites used in generating the model. Rice and Holmberg sought proxy variables that could

be used in the estimation of M and _ without requiring the long (and generally unavailable)

data records needed to generate the model. For world-wide application of the model, data

available from national weather record centers would be needed. The average annual

precipitation accumulation, M, is available in most countries but the thunderstorm ratio, I],

is not generally available. They first tried the ratio of thunderstorm to rainy days. The

thunderstorm day and rainy day statistics are available for many countries. Unfortunately

the ratio did not prove to provide a good estimate of _. They found that they required an

additional climate parameter, the largest monthly precipitation accumulation in 30 years to

improve the estimate. The latter can be found in the Global Historical Climatology

Network (GHCN) Global Climate data base available from the National Climate Data

Center.

2.2 The Lin Model

Lin and his colleagues at Bell Laboratories also made use of the excessive

precipitation data for the estimation of the expected rain-rate distribution. Lin used some of

the same high rain-rate data as employed by Rice and Holmberg but applied a different

methodology. The excessive precipitation data contains observations of the highest 5-

minute precipitation values for each year. Extreme value statistics can be used to analyze

such data (Gumbel, 1958). The high value extremes of observations from exponential,

normal, or lognormal distributions, the highest value for each observation interval (i.e. a

year or month), follow a type I extreme value distribution. If the number of samples in



.__

each interval is known, the parameters of the distribution within an interval can be

established. Lin used the properties of the type I extreme value distribution and the

assumption of a lognormal distribution within an interval to obtain the parameters of the

average rain-rate distribution within a year interval. The average number of samples in a

year was obtained iteratively by requiring the average rain rate computed from the

lognormal distribution times the number of samples to equal M, the annual average

precipitation accumulation.

The results presented in Figure 3 were obtained using the procedure described by Lin

(1978) and a 31-year excessive precipitation data set for Washington, DC. In this case, the

model does not fit the observations. The median of the observed edfs at 0.01% of a year

was 61 mm/h while the predicted median value was 77 mm/h. It produced a good fit to the

data for rain rates above 80 mm/r but did poorly at lower rates. The problem is that the

underlying probability distribution model for the higher rain-rate values is not lognormal.

As used by Lin, the modeling errors were not important because, for the design of

terrestrial radio relay systems, all but the extreme values of attenuation would be within the

large system margins needed to accommodate atmospheric multipath. The Lin model

cannot be used in the design of lower margin satellite communication systems.

3. The Revised Global Rain-Rate Model

The two-component model uses an exponential probability distribution model to

provide predictions at high rain rates and a lognormal model for predictions at low rates.

Extreme value statistics were used to set the parameters of the exponential component of the

two-component model, the cell component.

3.1 The Cell Component, Predictions at High Rain Rates

Figure 4 presents the ordered distribution of the highest 5-minute accumulation in a

year for two data sets from Washington, DC. The long record spans 31 years while the

shorter record is for the last 8 years in the 31 year record. For this figure, the accumulation

scale is linear as required to represent the extreme value distribution for either an

exponential or a normal distribution (or a Weibull or a gamma distribution). The reduced

variate is for the type I extreme value (double exponential) distribution. If the type I

extreme value distribution were the correct distribution for the accumulation values, the

ordered distribution would lie along a straight line. The ordered distribution is itself a

random variable. To help judge agreement with the hypothesized distribution, the expected

median (50%), upper (95%) and lower (5%) bounds for edfs drawn from the extreme

value distribution are also plotted. The parameters for the extreme value distribution (or and
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U of Gumbel, 1958; o E = 1/o% laE = U of Bury, 1984) were computed using the unbiased

estimation procedure developed by Kimball as reported by Bury. The upper and lower

bounds can be used for a hypothesis test at the 0.1 significance level. If the 31-year

ordered distribution lies entirely within the upper and lower bounding curves the

hypothesis that the proposed model is the correct model cannot be rejected at the 0.1

significance level. The bounding curves for the 8-year distribution are further apart so, the

correct model hypothesis cannot be rejected for either distribution.

The curve marked "Fit" in Figure 4 is the result of a linear regression analysis of

accumulation on the reduced variate. The best "Fit" parameters were not used in the

calculation of the median and bound curves. If the data had been censored the "Fit"

parameters would have been used. The reporting procedures for excessive precipitation

data were changed in 1973. Prior to 1973, the maximum observed accumulations in the

several time intervals were reported for each excessive precipitation event. After 1972, the

tabulated data were the maximum short duration precipitation observations, the highest

accumulation values for each 6rne interval in each month and year. The yearly extreme

values used in this analysis can be obtained from either data set as long as an excessive

precipitation event occurs every year. In the older data, no data were recorded if an

excessive precipitation event did not occur. The observations were then censored at the

low accumulation end of the extreme value distribution.

The two data points labeled NWS HYDRO-35 were extracted from maps of the

extreme values expected with 2- and 100-year return periods for the central and eastern

United States (Frederick et. al., 1977). The 100-year return period value is within the

expected bounds for Washington, DC but the 2-year return period is not within bounds.

The mapped values were averaged over a 4 ° latitude by 4* longitude region before the

contour lines were drawn. The mapped values cannot be used to estimate the parameters of

the underlying distribution.

Parameter estimation for the exponential model component of the annual distribution

is straight forward. The slope of the Est. curve, when expressed as the average rain rate

over a 5-minute interval rather than the accumulation within the interval, o E = 26.4 mm/h,

is the average rain rate for the cell component, Rc, of the two-component model. It is also

the best estimate of the average rain rate for the high rain-rate exponential distribution of the

Rice-Holmberg model. The intercept, when expressed in mm/h, is the expected rain rate at

5-minutes per year (~0.001% of a year). From the exponential distribution assumption, the

probability of a cell, Pcell, can be calculated from the slope, intercept and the ratio of 5-

minutes to the length of an average year in minutes. Using Pcell and Rc, the
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"thunderstorm" accumulation can be calculated and, given the annual accumulation, M, an

improved estimate of _ for the Rice-Holmberg model can also be calculated.

The extreme value distribution also applies if the underlying distribution is the

lognormal distribution. In this case, the ordered distribution of the logarithm of the 5-

minute accumulations must be plotted. Figure 5 presents the results. The 31-year ordered

distribution strays outside the upper and lower bounds. Therefore, use of this model can

be rejected at the 0.1 significance level. For this site, the lognormal model should not be

used to represent the high rain-rate observations.

3.3 Predictions at Low Rain Rates

The two-component model uses the lognormal distribution for predictions at low rain

rates. Rice and Holmberg employed the hourly data for the construction of the low rate

distribution. Recently, 15-minute accumulation data have become available for over 4000

NWS and cooperative observer sites. These data were used to estimate the parameters of

the lognormal component of the two-component distribution. Three parameters are needed,

the median rain rate, the standard deviation of the logarithm of the rain rate and the

probability of occurrence of this component of the two-component model. These

parameters were calculated from the average rain accumulation in a 15-minute interval for

an integral number of years, the standard deviation of the 15-minute accumulation values

for an integral number of years and the average annual count of the number of 15-minute

intervals that contain an accumulation value (one or more rain gauge tips). In determining

the fraction of time it rains, the result must be adjusted for the quantization of the

observations in tips per 15-minute interval. The lowest rain rate that can be observed is 1

mm/h so that only the fraction of time with rates greater than 1 mm/h can be obtain from the

average count value. Using the lognormal model hypothesis, the total time that it rains can

be obtained from the time with rain greater than 1 mm/h and the time with rain in the cell

component of the model.

The spatial correlation function for the logarithm of the rain rate (the lognormal

component of the rain-rate process) was obtained from weather radar observations (Crane,

1989). This component of the rain process is highly correlated over distances measured in

kilometers. The correlation coefficient for the logarithm of rain rate is higher than 0.8 for

distances less than 10 km. At normal rain translation velocities, the temporal correlation

function remains high over intervals of 5 to 15 minutes. Therefore, the 15-minute

accumulation values provide good estimates of the average and standard deviation values

for the lognormal component of the process.

2-12
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3.3 The Complete Model

Figure 6 presents the results of using the excessive precipitation and 15-minute

accumulation data to provide the local climate information needed to calculate the

parameters of the two-component model. The new model prediction compares favorably

with the observed rain-rate edfs over the entire range of rain-rate values. At 0.01% of a

year it predicted the median value for the edfs with an error of 1 mm/h.

4.0 Conclusions and Future Work

The new procedure for estimating the parameters of the two-component model

provides a good estimate of the expected rain-rate distribution for a small area about

Washington, DC. This is but one site in the United States. Next, the model must be tested

against the rest of the ACTS Propagation Experiment data and data in the ITU-R rain-rate

data base.

To extend the model for use at locations far from a first order NWS observing station

within the United States, a set of proxy variables must be established that can be used to

calculate the two-component model parameters. This problem is simplified because the

maximum short duration precipitation data are now available for monthly intervals from

over 200 sites in the United States and the 15-minute accumulation data are available from a

denser network of gauges. These data can be used to estimate the two-component model

parameters for each location with data and to determine statistical relationships between

these parameters and the long-term climate data that are available world wide.
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FADE DYNAMICS AND ITS EVOLUTION: THE OTHER PART OF THE

ACTS RAIN PREDICTION MODEL _

Robert M. Manning

Space Communications Office

National Aeronautics and Space Administration
Cleveland, OH 44135

Introduction

The inception of the Advanced Communication Technology

Satellite (ACTS) Project has required a similarly advanced statistical

mathematical modeling formalism to describe the behavior of the

30/20 GHz links emanating to and from the earth terminals through

the deleterious effects of the earth's atmosphere. The resulting ACTS

Rain Attenuation Prediction Model has been thoroughly described in

]Manning, 1990]. In the present paper, the basic rudiments of this

model will be reviewed; Section 1 covers the static or time-

independent portion of the model and Section 2 covers the dynamic

or time-dependent portion. The results of Section 2 are then applied

to a new approximate solution of the famous problem of the time

duration _" of a fade of a random process below some threshold. This

is known as the fade duration. The new approximate solution was

published in Russian [Denisenko, 1975] and, unfortunately, was never

published into English. Hence, this work is restated following

[Denisenko, 1975] in Section 3 which is immediately applied to the

random rain fade process. The results for all five ACTS propagation

sites as well as Tampa, FL are then given.

lo A Brief Review of the Description of Time-Independent Rain

Attenuation

As discussed in the original work [Manning, 1990], appeal is

made to physical considerations that dictate a conditional log-normal

probability density function governing the log-rainrate:

p(ln R Rain at Point) = j1 12 n'O'_n R exp 2 O'ln R
(1)
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for the occurrance of rain at a point on the ground. Hence, the corre-

sponding cumulative probability distribution for the rainrate r being

less then a given rainrate R is given by

P(r<R)=P o 1 - -_-erfc _f2--G_ R
(2)

Here, P0 is the probability of rain occurring at the point, R m is the

mean rainrate, and (rln n is the standard deviation of the logarithm of

the rainrate; all three of these quantities ate strongly dependent on

the location of interest. The analogous description for the specific at-

tenuation is easily found to be

P(y < F)= Po 1- erfc ._-O._r

where the associated mean and standard deviation are

F m = aRbm (4)

and

(Tin F = b(Yln R (51

where a and b are the frequency dependent quantities that originate

in the "aR b relationship" for specific attenuation. Finally, one can ob-

tain the associated probabilistic description for total path attenuation.

It has the form of the foregoing, viz.,

E'e c 'nA AmllP ( a < A ) = Po ( L, O ) 1- -_ _, _f_--GI_ A
(6)

where P0(L,O) is the probability of rain on the extended propagation

path and is given by

Po(L,O):I-(1-Po)[1

t 2 cos 2 0 q-o.o14

+ J (7)21.5

where 0 is the elevation angle of the link. The variance of the log-at-

tenuation is related to previously defined quantities by
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[ ( lexpI° Fll)lG2nA(L,O)=ln Po(L,O) K(L,O) PO0 -1 +1
(8)

which also employs K(L,O), the spatial correlation coefficient for rain

cells,

K(L'O)=(-_)LcsecO[L-LcsecO{1-exp( Lc°sO)ll_c)J.]
(9)

where the fundamental correlation length is L c = 4.0km. Finally, the

mean attenuation is related to previously defined quantities by

eOLrm (
exp 2 )Am(L,O)- Po(L,O ) / O'lnr

(10)

Equations (2)-(10) essentially constitute the time-independent

(or static) rain attenuation prediction model developed for the ACTS

Project. The model yields excellent results with observation

[Manning, 1990]. The parameters, P0, Rm, and Gin n are all location-

dependent and must be extracted from the long-term meteorological

record [Manning, 1990]. Such a situation prevents the ability to obtain

the temporal evolution of rain fade on a link; that is, the temporal
evolution of rainrate (and thus attenuation) on time scales of seconds

or minutes is lost due to the climatological record-keeping process

that has been used in this country for over 80 years.

e A Brief Review of the Description of Time-Dependent Rain

Attenuation

It is assumed that the random process that 'drives' the rainrate is

a Markov process (or a process without aftereffect). Thus, assuming

that the time dependent rainrate R(t) observed at a point is a first or-

der Markov process allows one to write the following first order

stochastic differential equation governing the process at this point:

dR(t) = f(R,t)+ g(R,t)_(t) (1 1)
dt
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Here, the deterministic functions f(R,t)and g(R,t_ commonly known

as the drift and diffusion coefficients, respectively, are in the most

general case, functions of both R and t. The function_(t) is taken to

be a Gaussian random process that satisfies the conditions

(_(t)) = O, (_(tl)_(t2))=6(tl-t2) (12)

which def'me a white noise process. Since R(I) in Eq.(11) is also a

random function, one can only deal with statistical parameters that

describe its behavior. One of the most important of these parameters

is the transition probability density function (TPDF) p(R(t),tlR(to),to)

that describes how R(t) evolves from time t o to the time t, t > t0. As

is well known [Stratonovich, 1963], for a Markov process that is given

by Eqs.(ll)and (12), the associated TPDF p= p(R(t),t R(to),to)is given

by

Op + o__(f(R,t)p ) 1 02Ot 2 o_R 2 (g2(R't)p)=O
(13)

which is the Fokker-P1anck-Kolmogorov equation for the problem. Fi-

nally, the drift and diffusion coefficients are given in terms of the first

two conditional moments of the process R(t) by the relations

f(R,t)= lim ((R(t + At)-R(t)lR(t)))

At_O At

g(R,t)= lim ((R(t +At)-R(t)R(t)) 2)

_t_o At

(14)

Following the procedures as set forth in the original reference

[Manning, 1990], one obtains for the TPDF of R(t)"

°3P _ °32POt 7 (xRP)-- 7 C?X2 =0

p - P(XR(t),t XR(to),to)

(15)

where
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XR(t ) =
ln R ( t ) - ln R m

O'ln R

which is a well known form in the theory of Brownian motion; the cor-

responding stochastic differential equation is

dx___&=
dt -TXR + _-_(t) (16)

Here, 7 is a characteristic temporal decay parameter peculiar to the

rainrate process; base on empirical data, y= 0.111 min -I The solution

of the Kolmogorov equation, Eq.(15), yields for the TPDF of rainrate

events at a point characterized by the parametersR m, Crln R, and 7,

[Stratonovich, 1963]

P(R(t),tlR(to),to)= _ l I2 mr2nR (At) exp

(lnR(t)- lnRm(At)) z

2
2 CrlnR (At)

(17)

where At = t-t o and the time dependent mean Rm(At) and standard

deviation Crlnn(At) are given by

Rm(At)= R(lm-eXp(-TAt))R_ xp(-Tat), R 0 = R(to)

Gin R (At) = trln R _1 -- exp(-2 7At)

{18)

As At-->oo, Rm(At)--->Rm, GInR(At)--->GInR and Eq.(17) becomes the

conditional PDF governing the static rainrate model of Section 1.

Having secured a temporal description of the rainrate process,

one can continue to obtain specific attenuation time statistics. Thus,

Eqs.(15) - (18) hold with the transcriptions R m-->I" m=aR b and

O'ln R ----> O'ln r --btTln R . In particular, the stochastic differential equation

governing F is

lnF-lnF
dxr _(t), xr= (19)= _ _,XF + _ m
dt (71n F

The transition from the specific attenuation at a point to the at-

tenuation along an extended path can be difficult and must be done

with care. Without the use of a detailed physical description of the

structure of the spatial behavior of rainrate along such a path, one at-
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tempts to build upon previous knowledge with the desire to keep the

prevailing physical assumptions to a minimum. Leaving all essential

details to the original work [Manning, 1990], one has the following de-

scription for attenuation on an extended path. A first-order markov

process is again used that employs an associated temporal parameter

7] that concactenates only the essential factors into it. This results in

dXA =
dt -71XA + 2_-_l_(t) (20)

where the above-mentioned parameter 71 of this one-dimensional

model reflects the smoothing (temporal averaging) process due to the

extended propagation path. The value for 71 is found from the tran-

scendental equation

exp(- 7T) + exp(- 7sT) = exp(-1) (21)

the solution of which gives the value of T, which, in turn, yields the

corresponding value for 71 = I/T. The temporally-smoothed parameter

7s, which connects the relavent link parameters as well as the tempo-

ral parameter 7 = I/7 for the point rainrate process is found from

I(   c°s°l1+ Uec )

where 7s = 1/ _'s .

This finally completes the review of the rain attenuation predic-

tion model formulated seven years ago. It now remains to discuss in

depth the topic of rain fade durations and show how a solution to this

problem issues from a new approximate soluition of the well-known

problem of fades and surges of random processes.

3. Derivation of an Expression for Fade Duration.

As is well-known, the time duration • of a surge or fade of a

random process is a random variable. The calculation of the PDF of

presents severe mathematical difficulties and has a well-known history

[Rice, 1958]; an exact expression for this PDF of "¢ for a general ran-

dom process remaines unknown. An approximation for such a PDF has

been obtained in [Rice, 1958] but a more usefull, general, and in some
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respects, more exact expression has been derived in [Denisenko,
1975].

The basis for Denisenko's work is the ability of finding the

distribution function of the fade duration by using an estimate of an n-
dimentional distribution by the nth power of a one-dimentional

distribution based on n- l conditions. Unfortunately, this reference

never was translated into the English language and remains largly
unknown. Here, this work will be thouroughlly reconstructed with the

application of the results established for the dynamics of rain
attenuation given in Section 2. For those readers who do not want to

pour over such a mathematical discourse, they are referred to the final
result below, Eq.(40).

Let y(t) be a stationary random process and let t r be the time

(as measured from an arbitrary origin) that the magnitude of y ex-

ceeds the level Y, i. e., y(tr)> Y. One can now define the following

problem: given that y(tr)> Y, what is the conditional probability that

y(t) > Y for the times t r < t < t r + 77? Let this conditional probability be

given by P(y(t r + 77)> r(t r > Y)). It is expediant to divide the time in-

terval 77 into n intervals such that

77= nA77 (22)

One can now approximafly write the probability of the single event

that y(t) > Y when tr < t < t r + 77 as a joint probability that the n events

yn(t) > Y occur, each for one of the sub-intervals A77, i.e., yn(t)> Y for

each t such that t = ty + nA77. Thus, one has

P(y(ty + 77)>_Y Y(tr ) >_Y) = P(y(t r + 77)>_Y, y(t r + 2 77)>_Y, ...

• ..,>- y(t r + nA77)lY(t r) >_Y) (23)

Using the simplified notation Yi -Y(tr +iA77), employing the theorem

of joint probability (Bayes' Theorem) gives

P(Y(tr + 77)> Yly(tr)> Y)-- P(Yo >-Y,Yl >-Y, ""Yn >-Y)
_ _ p(yo>_r )

(24)

Considering the limit n _ oo where, necessarily,
comes the equality

At --> 0, Eq.(23) be-
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P(y(tr + r)> Yly(tr)> V)= p(yo >_y ) _+-lim(A,-+O)P(Y° > Y'Y' > Y' "'Yn > Y)

(25)

Since the values of Yi, i = 0,1,.--,n are taken to exceed the level

Y during the time interval _, then the point at which this level Y is

crossed where Yi(tl) < Y will occur at some time t1 >_t r + "¢. Therefore,

the probability P(y(t r + _) >_Y y(ty) _>Y) can be taken to be that of the

time interval • that the random process y remains above some fixed

level Y. Thus, letting Pr(t >_ _y > Y) be the conditional probability that

a level Y is exceeded for a time interval t that is longer than some

given value "C(such an event is called a surge above the level Y), one
has

Pr(t + I: t > Y)= P(y(t + "c) > Y[y(t) >_Y) (26)

In order to determine this function, it is necessary to find the

value of the limit required in Eq.(25). Hence, one needs an expres-

sion that describes the general n-dimensional distribution function for

the Yi quantitues. However, even in the simplest case of a normal

process (which will be dealt with here), such an expression becomes

unwieldy even for n _>3. Another approximate solution must be used.

The right hand side of Eq.(24) can be written as

P(Y° >-Y'Y' >-Y' "'Y" >-Y): P(IIO)P(211,O)...P(nln-1,...1,O ) {27)
P(Yo > Y)

where e(i[i-1,...1,O) is the conditional probability that the event

Yi > Y occurs, given that the events Yi-1 > Y,'"Yo > Y have occurred.

Taking into account that

e(ili- 1,...,1,0)_< e(ili- 1) (28}

one obtains, from Eq.(27),

P(Yo>Y'Yl>Y'"'Yn>Y)<pn(ili-1)=Pn(y(t+'c/n)>Yly(t)>r ) (29)
p(yo > y)

Finally, using equations (251 and (261,
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Pr(t > _y > Y)= lim e[y(t + T/n) > Yly(t) > y]n
ll ---) oo

= lim P[y(t + T/n) > Yly(t) > Y]"

no_* P(y(t)>Y)
(30)

where the last line follows from application of Bayes' Theorm once

again. Equation (30) represents a solution to the problem of the prob-

ability of the time interval T that a random process y remains above

some given level Y. This solution essentially estimates an n-dimen-

sional distribution by the n-th power of a one dimensional distribution

based on n- I conditions; in the limit that n _ oo, the distribution of

Py(t >_ _y >_ Y) is obtained. The statistics of the process y(t) enters

into the problem through the expression for the joint probability dis-

tribution P(y(t >_ T/n) >_ Y, y(t) >_Y). In the case considered here, the

process is the attenuation due to rain that occurs on a communications

link and the prevailing statistics are, as mentioned in Section 1, log-

normal. What is the same thing, the process y(t) can be taken to be

the logarithim of attenuation for which the statistics are normally dis-

tributed. In this later case, one can write, using the well known equa-

tion for the bivariate normal distribution and making the identifica-

tions y(t)=lnA(t) and Y-lnA o, one has

P[a(t + z/n)> Ao,a(t ) > A o ]= Po (L, O)P[a(t + v/n) > Ao,a(t ) > A o Rain on Link]

( ' 1"= Po (L, O) 2 zrCrln2 a4l-- R2(AT )

.ffexpE Xl
In A, In A,

- a) 2 - 2R(AT)(x 1 - a)(x 2 - a) + (x 2 - a) 2.jdxldx 220"?nA 3/1 -- R2 (AT)

(31)

where R(AT) is the temporal correlation coefficient of the attenuation

process that, in general, can be a function of the time interval

AT = T/n and all other parameters that have been previously defined.

If AT is small, the conditional joint probability

-- 2-31
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Pc ( A'c) - P[ a( t + A_')> Ao , a( t ) > AolRain on Link)

can be expanded about the point R(0) in a Taylor series, i.e.,

eC(A )=ec(O)+I.aPdA )dR(AO1
L dR(A'r) d(A'r) -]_,=o

Performing the required calculations, simplifying, and noting that

Pc(O) = e[a(t) > Ao,a(t) > A o Rain on Link] =

= P[a(t) > A o Rain on Link]

one obtains

where R"(A't')

tuUng Eq.132)

simplification,

Pc(Av) P[a(t)> AolRain°nLink]-t (_RO(0))Y 2 ((lnAo-lnAm) 2"11= exp/ --_-- A_
2rr _ 2O'ln A ,

v

132)

denotes the second time-derivative of R(A'¢). Substi-

into (30) and noting the first line of Eq.(31) gives, after

0_-

  -Llimrln

where

= exp(-a_') (33)

Po( L,O)(-R"(o))l/2 exp[-(lnAo - lnAm)2 /2(Y?nA ]

2]rP(a(t) > Ao )

since one has that

P(a(t) > A o)= Po(L,O)P[a(t) > AolRain on Link]

(34)

and, as was shown in Section I,
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P(a(t)>_ Ao[Rain on Link) = lerfc/lnA--0-° - InAm/2 ,_/2-O'ln A

Equation (34) can now also be written as

2 2

(-R"(o))l/2exp[-(lnAo-lnAm) /2aln A ]

a =-- (35}

_erfc[ln A 0 -lnAm/'_l-2CrlnA]

It now remains to find the value for the second derivative of

R(AT) evaluated at AT = 0. For this, one must go back to the stochas-

tic differential equation adopted to describe the attenuation process,

viz., Eq. (20). To find the correlation function of the process defined

by Eq.(20), one makes use of the Wiener-Khintchine Theorem: Taking

the temporal Fourier transform of Eq.(20), forming the normalized

power spectrum and inverse transformong the result yields

R(AT) = exp(-ylAT) (36)

Following the prescription given in [Beckmann, 1967] for obtaining

the second derivative of Eq.(36) and setting AT = 0 finally gives

R"(o)--r,?

Substituting this result into Eq.(35) and using the definitions of Eq.

(20) gives

a_ m

e(xo)

where

_CXo (xg3
F(Xo)= 7redcap] exp[--_-],

Combining Eqs.(33) and (37) gives

PA, (t > Ta > Ao)=exp(

S 0 =

F(Xo))

ln A 0 - ln A m

(Tin A

(37)

(38)

(39)
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It now remains to multiply this conditional probability by the cumula-

tive probability P(a _> A O) to obtain the desired result, i. e.,

e& (t >_ _)= _ o(L,O)erfc exp F(Xo)
(40)

The application of Eq.(40) will be made for six locations in the

continental U.S. This relation is in fact built into the software package

that implements the ACTS Rain Model, viz., the LeRC-SLAM Program

[Manning, 1989]. This program, with some slight modifications, was

used to obtain the graphical results shown in Figures 1 through 6. It is

important to note that, by definition, PA, (t _> 0), i.e., 7=0, is the annual

non-availability that prevails for the particular site. This "annual

distribution" is noted in each case. Fade duration's of 20, 40, and 60

minutes are also displayed.
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Fade Slope Analysis for Alaska,
Florida, and New Mexico A CTS

Propagation Data
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Rudolf Henning
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_'_ Fade Slope Analysis Agenda

........ P,O

Definition & Calculations

_l Time Composite Statistics

Two years of ACTS data from Alaska, Florida, and New Mexico

Q Comparison of fade slope probabilities for rain periods

• > Investigation of dependent parameters

Summary and Future Work

-- 2-63
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[ What is Fade Slope?

[=1 Measurement of the attenuation rate of change with respect

to time (dB/s).

:_ Measurement of slow-varying rain attenuation rather than fast-vary
scintillation

_l System designers utilize fade slope statistics to develop

power control algorithms and forward error correction

techniques to compensate for rain fades.

QI VPI (Nelson and Stutzman) proposed a model based on VPI

Olympus data only.

• > Dependent parameters: transmission frequency and fade level

20 Gllz beacon data from New Mexico ACTS propagation lerminal
September 28, 1995
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_[ Exaggerated Fade Slope Calculation

This data has been created to

illustrate the fade slope calculation;

this data is not actual experimental

data

IIN/AC(X)IO

Relationship between Attenuation and

Fade Slope

[21 Fade slope can be thought of as the first derivative of fade

level with respect to time.

_l Fade slope is dependent on rain dynamics.

_l Sweeney and Bostian (from VPI) proposed that

Fade slope is maximum when first fresnel zone is half full (change

in rain dynamics or greatest change in attenuation).

Fade slope is minimum when first fresnel zone is full (peak rain

and peak attenuation) or empty (clear air or minimal attenuation).
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_'_ Relationship for Idealized Path I

+_l is.<

rom Sweeney and Bo+tiln IEEE APS Trinsactions Much 1992

D Alaska, Florida, New Mexico ACTS propagation Data.

_PT T©rminzl Principle lnvcllil_ltorl

:alrbankl. Univcr$ib of Alliki

qlsk|

rampz FIoridm Alllnli¢ Unlvctzit_ ¸ and

:]orida U nivePlity or $oulh Flol+idl

;v' hilt Sllnds.

_©_ Mexico

[:::)Transmission frequencies are 20.185 and 27.505 GHz.

[:::lTwo years of data: December 1, 1993 to November 30, 1995

Q Data is filtered to remove scintillation effects

2-66



Q Filtering data required to remove scintillation effects.

_l For academic study, each storm filtered separately with its

optimum filter. But this methodology does not make sense

for real-time systems.

_l No standard filter or time constant

Filter shapes: square (moving average), triangle, cos 2
Time constants: i0 seconds to 3 minutes

[=10PEX implemented 100-second cos 2 filter after much

investigation

Q For this analysis implemented both 100-second cos 2 filter

and 30-second moving average. Both filters had similar

results. The 100-second cos 2 filter was implemented similar

to the OPEX analysis.
-9-

P_J21 I rbUACI%)IO

Filter Comparison I

1o

1

ol

ool

oool

O0

• I OOs cos filler
t

• 30s movzng average

01 02 03 04 OS 06 07 as 09 to

Fade Slope (dB/s)

This plot is for Florid 20 GHz Florida data given a I0 dB fade has occurred

This plot is indicative of data for data at other fade levels for all three sites
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I IAnalysis Results

_1 Annual composite distributions (rain and clear air).

0 Probability of occurrence for rain only periods.

>> Comparison between different transmission frequencies for a given
receiver site.

• > Comparison between different receiver sites for given attenuation
level.

-I1-

P_2 ] LrN/AC{X) I0

Alaska Time Composite Results 1
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Florida Time Composite Results

Rate c( F_," (d_s)
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_1 Fade Slope during Rain

[:1 Conditional probabilities: fade slope occurrence given that

it is raining.

[=1 Rain periods determined by clear air (gaseous absorption)

attenuation threshold from annual attenuation cumulative

distributions.

_> Alaska: 4 dB

)> Florida: 3 dB

_> New Mexico: 1 dB

Alaska

• !' ]

J .,4 * ....
J o

L

o_ 0, .2 ol o. os _1 a7 _1 0* ,o

Florida

I'_T . " =1i '°i t

._ °

New Me×leo

'i] .... .:_ooH_!

! J

i Qa,! i _ 4 ,.... L_.i!i ....
.. o, Dl a, OO _S _, O, 0l O*

-16-
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Fade Slope Rain Statistics I

[=1 Fade slope (during rain) is not directly correlated with

transmission frequency.

O Is fade slope correlated with fade level?

1

-17-
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Summary and Future Work

Q Florida and New Mexico data have very similar fade slope

statistics at a given fade level even though the two sites are

located in very different climatic region!

_1 Fade Slope Summary

_> Dependent parameters: elevation angle & fade level.

_> No__ttdependent parameters: Transmission frequency & climatic

region

Future Work

Additional data collection: 3 to 5 years of data collection since not
many fade at l0 and 15 dB.

• > Additional ACTS sites: British Columbia, Colorado, Maryland,
and Oklahoma.

• > Determine elevation angle & fade level relationship to fade slope.

-19-
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Literature Reference [

This presentation is the results from the paper:

"Fade Slope Analysis for Alaska, Florida, and New Mexico

ACTS Propagation Data at 20 and 27.5 GHz"

by Julie Feil, Louis J. Ippolito, Henry Helmken, Charles

Mayer, Stephen Horan, Rudolf Henning

In the IEEE Proceedings for ACTS Propagation Experiment
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CORRELATION OF S-BAND WEATHER RADAR

REFLECTIVITY AND ACTS PROPAGATION DATA IN

FLORIDA*

Eric E. Wolfe! Paul G. Flikkema, and Rudolf E. Henning

Department of Electrical Engineering

University of South Florida

Tampa, Florida USA

Abstract

Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-

band reflectivity are highly correlated. This paper reports on work whose goal is to determine

the feasibility of estimation--and, by extension, prediction--of one parameter from the other

using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler

weather radar facility operated by the National Weather Service. This work is distinguished

from previous efforts in this area by (i) the use of a single-polarized radar, preventing estimation

of the drop size distribution (e.g., with dual polarization) and (ii) the fact that the radar and
APT sites are not co-located.

Our approach consists of locating the radar volume elements along the satellite slant path

and then, from measured reflectivity, estimating the specific attenuation for each associated

path segment. The sum of these contributions yields an estimation of the millimeter-wave

attenuation on the space-&Tound link. Seven days of data from both systems are analyzed using
this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band

attenuation exists even under the restrictions of this experiment.

Based on these results, it appears possible to estimate Ka-band attenuation using widely

available operational weather radar data. Conversely, it may be possible to augment current

radar reflectivity data and coverage with low-cost attenuation or sky temperature data to im-

prove the estimation of rain rates.

"Partial support for this work was provided by NOAA and the University Corporation for Atmospheric Research
under subaward UCAR-S96-75635 and by NASA under contract NAS3-26412.

tNow with Motorola Space and Systems Technology Group, 8201 E. McDowell Road, Mail Drop H2171, Scottsdale,
AZ 85252.

3-17



1 Introduction

The purpose of this research is to study experimentally the relationships between S-band signal

reflectivity and Ka-band propagation attenuation. Both are linked by atmospheric precipitation

with rain rate as the predominant influencing factor. The two systems employed in this study axe

the Advanced Communications Technology Satellite (ACTS) with an associated ground terminal,

and a WSR-88D Doppler weather radar operating in the same vicinity.

The relationship between reflectivity and attenuation is dependent on the drop size distribution

(DSD). Previous work [1, 2] has shown that the DSD can be estimated using a dual-polarized radar.

One goal of this work was to determine the feasibility of estimating reflectivity from attenuation

(and vice versa) using the single-polarized WSR-88D radar employed by the National Weather

Service. Even though thecorrelation of the two can never achieve the accuracy attainable with a

dual-polarized radar, the widespread deployment of the WSR-88D poses intriguing possibilities for

both propagation measurement and prediction and short-term forecasting.

This paper is organized as follows. In Section 2 we review the underlying theory that serves

as the basis for this work. The salient features of the ACTS and WSR-88D systems and the

relationships between the ACTS slant path and WSR-88D radar space axe discussed in Section

3. Section 4 describes the method used to estimate attenuation from reflectivity data. Section 5

presents and analyzes results and discusses various error sources, and Section 6 provides concluding
remarks.

2 Reflectivity and Attenuation

We cite a few well-known results. The rain rate R can be calculated for a given drop size D and

drop velocity Wt(D) by [4]

//R = 6. 105_" D 3. Wt(D)dD mm/hr. (1)

The drop size distribution (DSD) is the core component in determining rain rate R, reflected power

Z, and specific attenuation K [3]. The DSD for rainfall N(D) can be modeled with a gamma

distribution [4]

N(D) = NoD" exp(-hD) m-3mm -t (2)

with parameters No (m-3mm-t), A (mm-t), and #, that vary according to rain rate, drop shape,

and geographic location. Marshall and Palmer [4] determined that by setting # = 0, No -- 8.103,

and A = 4.1R -°'21 a close approximation to measured data can be achieved.

The specific attenuation K is a function of the drop size distribution N(D) and the effective

drop cross section (re(D , )_) via

//K = 4.34.10 a N(D)a,(D, )_)dD dB/km. (3)
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where D is the drop diameter and A is the signal wavelength. Similarly, the radar reflectivity factor

Z can be expressed as

/:z = N(D)D6aD. (4)

Since the DSD cannot be determined uniquely from either the reflectivity or the specific attenuation,

we turn to single-parameter approximations. By relating Z to R and then R to K, it is possible

to take full advantage of previous research in both of these areas. Empirically, Z and R have been

shown to be (on average) related by [4]

Z = (_IR_' mm6/m 3 (5)

where al, and f_l axe constants. Some empirically derived values for these constants can be found

in [4]. Likewise, previous investigations have determined an exponential dependence between K

and R [3]
K = a2(f)R _2(I) dS/km (6)

where a2(f), and ]_2(f) are frequency-dependent parameters and K is in dB/km; see [3] for a
review of estimates for these constants.

Since reflectivity and specific attenuation are related to the rain rate R via the DSD, Z and K

can be directly related by solving (5) and (6) for R and then solving for K

K=cl2 _II

Equivalently, we have

(K = (_ 10 dB/Km (8)

after setting a = _2(_L _ and _ = _., and where ZdB = 101ogl0(Z)- A typical plot of specific

attenuation vs. reflectivity using Marshall-Palmer model parameters [4, 3] is shown in Figure 1.

3 Experimental Setup

The ACTS satellite has two Ka-band beacons that transmit at frequencies of 20.185 and 27.505 GHz

which are received at ACTS propagation terminals (APTs) in seven U.S. locations (each located

in a different climate zone). This study is based on data gathered from the APT based at the

University of South Florida (USF) in Tampa, Florida.

The trajectory of the propagating signal between the ACTS and APT is called the slant path.

We define the effective slant path as the portion of the slant path that is susceptible to rain

attenuation. The highest point above the earth's surface in which atmospheric attenuation from

interference can occur is approximately 15 Km. The two end points of the effective slant path
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S-BAND RP.FLECTIVrrY Z (dB)

Figure 1: K vs. Z at 27.5 GHz using Marshall-Palmer parameters for al,/31, a2, and/32.

are located at the APT antenna and the point on the ACTS slant path 15 Km above the ground
respectively.

The NOAA WSR-88D radar used for this study is located in Ruskin FL, approximately 34 Km

south of the USF APT. This radar detects precipitation in the atmosphere by transmitting a

2.7 GHz pulse along a radial (an outward radiating vector at specific azimuth and elevation angles)

and then measuring the backscattered power from volume elements of the atmosphere. The reflected

power received by the radar is measured and averaged over a time interval that coincides with 1,000

meters of range. Thus a volume element is roughly a right circular cone frustum 1,000 m in length
(along its radial axis) with diameter increasing with range.

The radarsweeps through azimuth incrementsof1°whileranginginelevationfrom 0.5°to 19.5°.

Due to the curvatureof the earth,there are undetectableareas below the lowestelevationangle.

There are alsodiscontinuitieswithinthe operationalelevationrange of 0.5° to 19.5° depending on

the scanning strategy,or volume coveragepattern (VCPs), employed. The data forthisstudy was

collectedusing the most commonly used pattern,calledVCP21, which scans 9 elevationangles

(with the lower5 providingcontiguousverticalcoverage)and requires6 minutes to complete a full

pattern.
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4 Approach

In order to relate the two data sets, the effective satellite slant path is located in the radar coordinate

system. Ideally, the APT would be co-located with the WSR-88D radial fixed along the ACTS

slant path. However, the radar is located 32 Km away, and a complete volume scan requires

approximately 6 minutes. Thus temporal and spatial sampling effects are to be expected in rain

events due to storms that are concentrated, highly dynamic, or moving quickly.

In order to develop snapshots of the entire slant path, we have found that two approaches have

worked well. To overcome the temporal sampling, we employ straightforward linear interpolation of

the reflectivity data (at each of the radar volume elements intersecting the slant path). The spatial

sampling derives from the fact that the volume coverage patterns are not vertically continuous at

higher elevations; only cert-aln intervals along the slant path are sampled by the radar. Our approach

to this problem is to divide the effective slant path into contiguous segments each containing a

volume element, and further assume that the reflectivity is piecewise constant along each segment.

Our procedure to estimate the total Ka-band attenuation from the S-band reflectivity can be
summarized as follows:

1. For each radar volume element i in the effective slant path, determine the reflectivity Zi from
the reflectivity associated with the element.

2. Estimate the most probable specific attenuation Ki from the reflectivity using (8).

3. Compute the millimeter wave attenuation A_ for each segment from the product of Kz and

the segment length di, and find the total derived attenuation AT = _z Ai along the slant
path.

The approach requires two passes through the data. The first pass is a parameter estimation

phase and is based on the total available data. More specifically, the model parameters ct and j3

in (8) need to be fitted to the measured data to reduce the estimation error. Ideally, we would

construct a scatter plot of reflectivity Z and the corresponding specific attenuation K, obtaining

a fitted curve parameterized by a and _. Unfortunately, the APT measures total attenuation

along the ACTS slant path, while each measured reflectivity relates only to the specific attenuation

of an effective slant path segment. As an alternate approach we still constructed scatter plots,
but plotted the derived total attenuation as a function of the ACTS measured total attenuation.

The parameters a and 13 were then adjusted so that the slope of the line through the mean of

the scatterplot is unity. Using this heuristic, we obtained the scatter plot for 20.2 CHz shown

in Figure 2. We also used the same approach for the 27.5 GHz beacon. The results for both

frequencies are shown in Table 1. In the second pass, the same procedure outlined above is used,

except that estimation for individual rain events is performed using the parameters determined in

the first pass.
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Figure 2: Scatterplotformodel parameters: a --0.00377,_ = 0.62125.

Frequency a

20.2 GHz 0.00377 0.6213

27.5 GHz 0.01322 0.5235

Table I: EstablishedK - Z model parameters.
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5 Results

Seven days of data were analyzed using the described correlation procedure. These days and times

were chosen to represent various storm intensities and are listed in Table 2. This table also shows the

total duration and number of fades (using 20.2 GHz beacon) for thresholds of 1 and 3 dB. To remove

as much as possible the attenuation effects not due to rain, the data was filtered with a moving

average filter (to smooth scintillations) and thresholds of 1 and 3 dB were applied. Thus the table

shows the average difference in dB between derived and measured attenuation for fades greater than

1 dB and 3 dB. The average difference is calculated by summing the absolute differences between

the derived and measured attenuation and then dividing by the number of samples. A difference is

included in the summation only when at least one of the two values (derived or measured) is above
the threshold value.

Date

(1995)

03 Aug

03 Oct

GMT Time

(min)

0.01-9.27

Total

Time > 1

dB (min)

76.8

# fades

> ldB

10

Avg Dif

(dB)

1.8

Total

Time > 3

dB (min)

28.0

# fades

>3dB

Avg Diff

(dB)

3.5

16.2-24.0 90.5 7 6.3 40.7 5 12.0

04 Oct 13.1-23.9 25.0 4 1.4 3.3 1 9.7

05 Oct 0.1-6.0 62.8 5 2.4 31.0 8 4.8

05 Oct 12.2-16.6 108.5 6 2.2 20.3 3 5.8

08 Nov 0.3-16.0 211.4 13 5.8 57.2 5 13.0

29 Nov 0.3-17.5 214.0 17 1.2 21.3 2

0.29-23.93 15 114.5386.3 1531 Dec 1.6

2.2

2.6

Table 2: Summary of data and results.

The accuracy of the estimation depends on several factors. First, the model parameters are

based on a global curve fit which is then used for correlation of individual events. Since it is well-

known that the parameters vary dramatically even in the same climate zone, some events will be

poorly estimated.

Note that in Table 2 the average difference for fades greater than 3 dB is about twice that of

the fades greater than 1 dB. This larger difference at deeper fades may be due at least in part to

the increased Z-K model sensitivity at higher reflectivities, as shown in Figure 1.

Another effect that has recently become well-known is moisture on the APT antenna surface.

This can cause additional attenuation of the millimeter-wave signal by as much as 4 dB [5, 6,

7], which could cause a large underestimation of the total attenuation by the radar. Though

the additional wetting loss could be deduced using the rain gage data at the APT, this was not

attempted.
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Finally, there are several attributes of the radar that will limit accuracy of the estimation. First, -

as noted earlier, there are elevation gaps in the coverage of the slant path, requiring the piecewise-

constant approximation described earlier. Another effect is that of the large radar element volume,

implying that the average reflectivity over this element is not necessarily a good representation --

of reflectivity along the slant path. Additional degradation can occur due to the high temporal

sampling interval (approx. 6 minutes) of the radar, which can cause errors for fast-moving or

dynamic storms. The radar also does not sample the entire slant path. First, the effective height -

of the atmosphere is approximately 15 Km. The highest elevation angle provided by the radar is

19.5 ° which equates to 9,937 km in altitude. Thus, if there is a precipitation event occurring in the

ACTS slant path beyond this point (e.g., ice), it will not be detected by the radar but will still be -

measured as attenuation st the APT. Similarly, the radar's minimum elevation angle implies that

even in the best case scenario, in approximate terms it cannot sample the lowest 100 m of the slant

path. Finally, though refraction is normally negligible, there can be occasions where it results in -

signiicant ground clutter, corrupting the reflectivity results.

A few cases are discussed here for illustration. Figure 3 shows graphs for November 29, 1995

(20.2 GHz beacon) containing 6 events. The plots consist of the derived attenuation (top), ACTS -

measured attenuation (middle), and rain rate measured at the APT (bottom). These events are

good examples of typical fade scenarios. Figure 4 illustrates event #2. There is a close correlation
in both time and fade levels between the derived and measured data. In this case the rain at the --

APT follows the same pattern implying that most of the attenuation occurred at or near the earth

end-point of the ACTS slant path.

The delay between derived and measured data is related to how fast the storm is moving and -

its direction relative the ACTS slant path. Figure 5 shows event #5, which shows that the radar-

derived data peaks 6 minutes before the measured data. We believe, in this case, that even though

the storm may not appear in the effective slant path until 13.85 GMT it still occupies a large --

percentage of the defined volume elements associated with it. Recall that these volume elements

are extremely large and may be only partially filled and still show reflectivity at the radar. The

low spatial resolution of the radar may also account for the smoothing observed in the derived
attenuation data.

Figure 6 illustrates 3 events for October 3, 1995 (20.2 GHz beacon). Event #2 is a very deep

but short fade. The rain rate is in excess of 100 mm/hr which is typical for a Florida downpour. "....

Figure 7 shows a closer look at this event. Note that again there is a delay of a few minutes between

the detected onset of the rainfall, indicating that the radar volume elements were partially filled

prior to the rain cell entering the effective slant path. Note that, though the clipped measured -

attenuation data appears to indicate APT lost lock at the APT receiver, it was verified that this

was not case and thus this shows the true measured attenuation throughout the event.

As described above, inaccuracies can be attributed to the combination of several factors. Figure -

8 shows two events for December 31, 1995 (27.5 GHz beacon). The measured data indicated 2 minor

fades, one occurring at 7 GMT and the other at 8.5 GMT. The rain gage shows rain for both cases

but the derived data did not detect the fade at 8.5 GMT. While this may be caused primarily by -
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the inability of the radar to samplethecompleteslantpath, further study is warranted.

6 Conclusion

In this study we attempted to determine the feasibility of correlating S-band radar reflectivity with

Ka-Band signal attenuation. The results of this study are very encouraging. Most rain events

occurring along the ACTS slant path are observed in the derived data, though some events in the

derived data appeared earlier or later than the measured data by a few minutes. While many of

the smaller fades are underestimated, they are still detected. Occasionally, events detected by one

instrument were not detected by the other, which we tentatively attriblute in most cases to spatial

and temporal sampling effects at the radar. While these results are only for a small data set, they

strongly suggest further study of both short- and long-term correlations between reflectivity and
attenuation.
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Figure #1 Background

In this talk is presented a discussion of the revised mobile satellite handbook. In 1992, the first

edition of the handbook was published. This document was entitled, "Propagation Effects for

Land Mobile Satellite Systems: Overview of Experimental and Modeling Results," by Julius

Goldhirsh and Wolflaard J. Vogel (NASA Reference Publication 1274, February 1992). The

text of this document may be acquired on the NASA Propagation Studies world wide web

home page (http://propagation.jpl.nasagov/). This document contains the results of published

information up through approximately 1991 and emphasizes the effects of foliage and terrain

for land-mobile satellite scenarios at UHF and L Band. The objective of the revised edition

entitled, "Propagation Effects for Vehicular and Personal Mobile Satellite Systems: Overview

of Experimental and Modeling Results," is to include the results of published information since

1991 and to broaden the scope of the previous document.

Figures #2: Contents of Talk

In this talk, I'll give a brief review of the chapter titles for the revised handbook, an overview of

the status of the text as of this date, followed by a brief description of the contents of each

completed chapter. To provide a flavor of the contents of the revised text, an example of new

results contained in selected chapters will be presented.

Figures #3 and #4: Chapter Titles

The revised docannent contains 12 chapters, the titles of which are included here. The asterisk

next to the chapter number indicates that this chapter has been completed. The chapter titles

are: Chapter 1: Introduction, Chapter 2: Attenuation Due to Individual Trees: Static Case

(completed), Chapter 3: Attenuation Due to Roadside Trees: Mobile Case (completed),

Chapter 4: Signal Degradation for Line of Sight Communications (completed), Chapter 5:

Fade and Non-Fade Durations and Phase Spreads (completed), Chapter 6 Propagation Effects

Due to Cross Polarization, Antenna Gain, and Space Diversity (completed), Chapter 7: Land

and Mobile Measurements from Different Countries (completed), Chapter 8: Personal

Communications Propagation Effects, Chapter 9: Aeronautical and Marine Propagation
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Effects, Chapter 10: Optical Methods for Assessing Shadowing and Blockage, Chapter 11 :

Theoretical Modeling Considerations, and Chapter 12: Recommendatio:as for Further

Investigations. Chapters 8, 9, and 10 represent new subject chapters not contained in the

previous handbook.. Chapter 8 will contain information related to earth-satellite personal

communication scenarios. For example, multipath and attenuation effects from building walls

will be given and associated experiments will be reviewed. Chapter 9 wi}l, for example,

review multipath effects caused by airplane and or ships structure as well as multipath from

the ocean. Chapter 10 will review Wolf Vogel's optical experimental results and

methodology to define hemispherical blockage and shadowing effects for mobile satellite
scenarios.

Figure #5: Status

As mentioned, six chapters have been completed to date and wTitten in the word processing

fbrmat of Microsoft Word for Windows 95. These chapters (as of this writing) are awaiting

processing by JPL for injection onto the NASA Propagation Studies home page. All chapters

should be completed by the fall of 1997.

Figure #6: Chapter 2 Contents: Attenuation Due to Trees: Static Case

In this figure are listed the table of contents for Chapter 2 where the sections marked with an

asterisk denote new sections. Each chapter is designed such that it is for the most part

independent of the results in other chapters For example, each chapter has its own set of

references and its own set of conclusions and recommendations. This particular chapter

primarily deals with single tree attenuation at UHF, L Band and K Band, the effects of foliage

at these frequencies, [bliage versus non-foliage scaling at the different frequencies, and

frequency scaling. In the next figure, we cull out Section 2.6.3 entitled "Effects of Foliage at

K Band," which describes a model to convert equi-probability fades from shadowing to non-

shadowing scenarios, and conversely.

Figure 7: Formulation for Estimating Equal-Probability K-Band Attenuation:

Foliage Versus non- Foliage

In this figure is given the empirical formulation for estimating the eqaal probability

attenuation at approximately 20 GHz relating the foliage and non-lbliage cases. The

static case range of attenuations over which the ibrmulation is valid is given between 5

and 25 dB for the non-foliage case. The formulation is expressed irl terms of the

indicated power expression. This formulation was derived from two mobile runs along a

street in Austin, Texas lined with Pecan Trees. These runs were executed in February and

May during which times the trees were without leaves and in lull blossom, respectively.

The formulation was also found applicable for the static measurement case as is shown in

the next figure.

Figure 8: Measured and Predicted Attenuation Distributions at 19.6 GHz for Foliage

and Non-Foliage Cases

The solid curves in this figure are the static cumulative tiade distributions foi a single Pecan

tree derived from measurements in Austin, Texas. The curves to the left anc right represent

the distributions for the non-tbliage and foliage scenarios. These distributions were derived
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from measurements where a transmitter was placed atop a tower on one side of the tree and

the receiver was placed on the opposite side. The receiver was moved laterally to diflizrent

optically shadowed positions. The dashed distributions correspond to the previously

described estimation formulation The right dashed curve predicts the case of the equi-

probability foliage attenuation using the non-foliage solid curve, and the left dashed curve is

the predicted distribution for the non-foliage case using the foliage solid curve.

Figures 9 and 10: Chapter 3 Contents: Attenuation Due to Roadside Trees: Mobile

Case

In Chapter 3 we examine empirical models associated with land-mobile satellite signal

attenuation for scenarios in which the vehicle is driven along tree-lined roads. Signal

degradation is predominantly due to absorption and scatter from tree canopies. Various

models are compared to one another and with measured distributions Examples of major new

sections are: Section 3.3 and 3.4 which reviews the Extended Empirical Roadside

Shadowing Model and its validation. Section 3.7 (also new) compares the EERS model with

other empirical models. In the next three figures we cull out examples regarding these
sections.

Figure 11 : Features of Extended Empirical Roadside Shadowing Model (EERS)

The Extended Empirical Roadside Shadowing model (EERS) estimates cumulative fade

distributions for mobile satellite scenarios in which roadside shadowing gives rise to

attenuation. This model is an extension of a former model called the Empirical Roadside

Shadowing Model (ERS). The EERS was provisionally accepted by the ITUR on February of

1997. It applies to tree shadowing with a population of trees which range from at least 55% to

75% and is applicable over probabilities from 1% to 80%. It applies to fi'equencies ranging

tTom 870 MHz to 20 Gllz and elevation angles from 7 ° to 60 ° . The recent ITUR

recommendation suggests methods applicable at L and S bands for extending the angular

range to elevation angles above 60 ° .

Figure 12: Family of L-Band (1.5 GHz) Cumulative Fade Distributions Predicted from

Extended Empirical Roadside Shadowing Model

We show here an example of a family of L Band (1.5 Gttz) cumulative fade distributions

predicted from the EERS model. We note the 1% fade has a range from 8 dB at 60 ° to 26 dB

at 20 °. The EERS model states that for angles between 20 ° to 8°, the 20 ° distribution may be

applied at the smaller elevation angles assuming their is no terrain blockage and no multiple

canopy shadowing.

Figure 13: Summary of Empirical Models and Domains of Validity

In this table is given a listing of the major roadside shadowing models and their domains of

validity. The ITU-R model denoted here employs a tabulation of high elevation angle

measurements between 60 ° and 80 ° derived from measurements of Smith, Gardiner and

Barton at L and S Band. The EFM model represents the Empirical Fading Model which has a

tbml similar to the ERS model but is applicable between 60 ° to 80 ° and at frequencies of

1.3 GHz to 10.4 GHz. The MERS model denotes the Modified Empirical Roadside

Shadowing model which gives results that are applicable between 20 ° and 80 ° at tTequencies
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from 1.5 GHz to 2.6 GHz. At L-Band, the MERS model was found to be within 1 dB of the

EERS model values at 30 °, 45 °, and 60 °. The CEFM model which stands for Combined

Empirical Fading Model combines the ERS model with high elevation angle results above

60 °. The CEFM model also agrees with the ERS model to within 1 dB at 30 °, 45 °, and 60 °.

Figure 14: Chapter 4 Contents: Signal Degradation for Line-of Sight Communications

This chapter broaches the question, "What is the LMSS signal degradation for a configuration

in which line-of-sight communications are maintained where there is negligible shadowing.

The muitipath environments may consist of roadside trees, canyon walls, hills, or a body of

water. Low elevation effects, and frequencies between UttF and K band are considered. As

an example, we describe in the next figures Section 4-6 entitled, "Empirical Multipath

Model."

Figures 15 and 16 Empirical Multipath Model (EMM) and Multipath Distributions
Derived from Measurements

In Figure 15 are given 12 multipath fade distributions for cases considered in this chapter.

These figures span canyon, hills, roadside trees, open fields, and near water measurements.

The curves also cover frequencies ranging from 870 MHz to 20 GHz and elevation angles

which range between 7 ° and 45 ° . The thick solid curve represents the median of these

distributions. For probabilities of 2% and greater, the model gives a predictor which is within

+ 2 dB of the measured distributions. In this way, a single simple exponential may be

considered as a general model which gives an estimator of the multipath. Low elevation angle

multipath measurements may give higher values than those shown at 8 °. The indicated "near

water" measurement was an approximate median of measured distributions for clear line-of-

sight scenarios. Figure 16 presents the exponential formulation describing the multipath

model. This equation is applicable between 1% to 60% over a fade range of approximately 1

dB to 5 dB.

Figure 17: Chapter 5 Contents: Fade and Non-Fade Durations and Phase Spreads

This chapter reviews fade duration and ITU-R model results for tree-lined roads at L Band for

measurements in central Maryland and south-eastern Australia. Phase spread results are also

examined. The central Maryland measurements were executed employing a helicopter as the

transmitter platform. The south-eastern Australia measurements were obtained using the

Japanese ETS-V geostationary satellite. High elevation angle fade duration results (at L

Band) of Sforza and Buonomo are described.

Figure 18: Fade Duration Distributions from Different Countries

In this figure are shown L Band fade duration measured distributions (5 dB threshold) for

central Maryland at 30 °, 45 °, and 60 ° and fade duration distributions (6 dB fade threshold) ibr

measurements made in England by Sforza and Buonoma. Also shown are the ITU-R

distributions (solid curve without data points; 5 dB fade threshold) which is based on the

Australian measurements at 51 °. The durations are expressed in terms of the distance over

which the 5 dB threshold is exceeded. The Sforza and Buonoma time duration results were

converted to the distance case using their stated average vehicle speed of 8.6 m/s. The

differences in the various distributions are due to the foliage characteristics and driving
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scenarios when a 5 (or 6) dB fade is exceeded. We may convert to any time fade duration by

dividing by the desired vehicle speed.

Figure 19: Polarization, Antenna Gain, and Diversity Considerations

This chapter deals with various L Band and UHF propagation effects associated with land

mobile propagation scenarios. These include fading effects related to (1) depolarization,

(2) antenna gain, (3) fade reduction due to lane changing, (4) antenna spacing diversity gain,

and (5) satellite diversity gain. An important section that is culled out as an example is

"satellite diversity."

Figure 20: Imagery Methodology for Determining Satellite Diversity

We briefly describe here a method for determining fade distributions for mobile earth satellite

scenario employing optical measurements. The results are described in detail in recent papers

by Vogel [1997] and Akturan and Vogel [1997]. The method consists of locating a fisheye

lens atop a mobile vehicle and video recording hemispherical scenes. One may then simulate

constellations of potentially visible satellite locations for the region of measurement at

different times of the day. At each time of day, sets of path states associated with the earth to

satellite paths for the satellite constellation may be derived. Each earth-satellite path has

associated with it a path state which may be described as: (1) clear, (2) shadowed, and

(3)blocked. These are respectively defined as: (1) unobstructed line of sight, (2) a path

passing through an attenuating medium such as a tree canopy, and (3) a medium completely

blocking the propagation such as a building. Associated with each path state, there is an

appropriate theoretical density distribution model. These models are then applied to the

measured results and single and joint fade distributions are calculated.

Figure 21: Single and Joint Cumulative Fade Distributions for Tokyo Using Optical

Imagery Analysis, Simulated Globalstar Constellation, and Combining Diversity

This figure shows a series of distributions for different look scenarios to the satellite for

Tokyo assuming the simulated Globalstar constellation of 48 satellites. In deriving these

distributions, 236 images were employed assuming approximately 1000 independent

constellations encompassing a 24 hour period (for each image). Hence, an equivalence of

236,000 sets of path states went into the data base, where approximately 50% of the time,

three satellites were potentially visible. The distribution labeled "Highest Satellite"

represents the distribution associated with the satellite having the greatest elevation angle.

This distribution was derived under the condition the mobile antenna transmits or

receives radiation from a different satellite position every time a new satellite achieves

the highest elevation angle, independent of azimuth. The highest elevation may not

necessarily be a "clear" path state but depending upon the scene at the time may be

representative of a "blocked" situation. The distribution labeled "Best Satellite" is also

derived from multiple satellites where the antenna is pointed to the satellite giving the

smallest fade. In calculating this distribution, a decision for "best satellite" was made

approximately every 20 seconds before "hand over" was executed. The distribution

labeled "2 Best Satellites" represents the joint distribution associated with the two

satellites giving jointly the "smallest fades". At any instant of time, different pairs of

satellites may fall under the "2 Best Satellite" category. The distributions labeled "3 Best
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Satellites" and "4 Best Satellites" are analogously defined. The above joint distributions

were derived assuming "combining diversity" where the signals received are "added," as

opposed to "hand-off' where the satellite with the "highest" signal is processed. It is

apparent that each of the above distributions are calculated from many different satellites

at variable elevation and azimuth angles. Using the "Highest Satellite" distribution as the

reference, the fade is considerably reduced by switching to the other diversity modes. For

example, at the 20% probability, a 17 dB lade for the highest satellite may be compared

to 6 dB for the "Best" satellite scenario, giving rise to an 11 dB diversity gain. We note

that the higher diversity combinations (e.g., 2, 3, and 4 Best Satellites) do not

significantly contribute to an increased diversity gain at percentages greater than 20%.

The figure shows that using the "3 Best Satellite" diversity mode, 1% probability gives

rise to a 20 dB fade margin for an urban environment. This substantially high fade may

preclude voice communications for urban environments at small probabilities even with

satellite diversity.

Figure 22: Chapter 7 Contents: Investigations from Different Countries

This chapter provides a compendium of measured cumulative fade distributions for LMSS

geometries pertaining to significant experiments in various parts of the world. Emphasis is

given to roadside tree environments although suburban environments are also included. Fifty

four distributions are plotted pertaining to diverse shadowing conditions which include

variable foliage conditions, diverse geographic regions (wooded, lbrest, rural, mountainous,

and highway). Many of the original distributions have been extracted from the original plots

using a digitizer and replotted employing the common format of a logarithmic probability

scale as the Y-axis and a linear fade scale as the X-axis. The elevation angle range is 5 ° to 80 °

and frequency range is 870 MHz to 20 GHz.

Figures 23 and 24: Summary of Fade Ranges for Different Elevation Angles and

Frequencies

To provide a further flavor of the diverse results associated with measurements ii'om various

countries, we show a summary table in Figures 23 and 24 where the fade distribution entries

were culled in terms of frequency and elevation angle given in the first and second columns.

The fade range at the 1% and 10% levels are given in the next two columns. The last column

gives the number of distributions from which the fade range was compiled. The numbers in

parenthesis represent the estimated fade employing the EERS model. The system designer

may decide to use the "worst case" fade, the mid-level, or the EERS model which is generally

representative of tree shadowing tbr tree populations which exceed 55%. The EERS model

lies generally within the bounds of the measured distributions or is generally within 5 dB of

the extremes at P = 1%.
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Figure 1

Background

1. First edition of mobile satellite handbook published
in 1992:

"Propagation Effects for Land Mobile Satellite

System: Overview of Experimental and Modeling

Results," Julius Goldhirsh, Wolfhard J. Vogel, NASA

Reference Publication 1274, February 1992 (NASA

Propagation Studies Homepage

http://propagation.jpl.nasa.gov/).

2. Revised document entitled,

"Propagation Effects for

Mobile Satellite Systems:

and Modeling Results"

Vehicular and Personal

Overview of Experimental

1 Objective of revised document is to include

published results since 1991 and to broaden scope.
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Figure 2

Contents of Talk

1. Brief review of chapter titles

2. Overview of status of text

go Brief description of contents of completed chapters

• Example of new results for each chapter
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Figure 3

Chapter Titles

Chapter 1:

Chapter 2:*

Introduction

Attenuation Due to Individual Trees:

Static Case

Chapter 3 :* Attenuation Due to Roadside Trees:

Mobile Case

Chapter 4:*

Chapter 5 :*

Chapter 6:*

Signal Degradation for Line of Sight
Communications

Fade and Non-Fade Durations and

Phase Spreads

Polarization, Antenna Gain, and

Diversity Considerations

Chapter 7:* Land and Mobile Measurements from

Different Countries

Chapter 8: Personal Comm. Propagation Effects
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Figure 4

Chapter Titles (Continued)

Chapter 9: Aeronautical and Marine Propagation
Effects

Chapter 10:

Chapter 1 l"

Optical Methods for Assessing

Shadowing and Blockage

Theoretical Modeling Considerations

Chapter 12" Recommendations for Further

Investigations
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Figure 5

Status

1. Six Chapters Completed to Date

2. Documented in Microsoft Word 95

3. Plans to place in NASA Propagation Studies

home page:

http ://propagation.jpl.nasa.gov/

4. Completion Date Fall, 1997
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Figure 6

Chapter 2 Contents

ATTENUATION DUE TO TREES:
STATIC CASE

2.6

2.7

2.6.1

*2.6.2

*2.6.3

2.7.1

*2.7.2

*2.7.3

Background
Attenuation and Attenuation Coefficient at

UHF.

Single Tree Attenuation at L Band

Attenuation through Vegetation- ITU-R
Results

Distributions of Tree Attenuation at L Band and

K Band

Seasonal Effects on Path Attenuation

Effects of Foliage at UHF

Effects of Foliage at L Band

Effect of Foliage at K Band

Frequency Scaling Considerations

Scaling between 870 MHz and L Band

Scaling between 1 GHz to 4 GHz

Scaling between L Band and K Band
Conclusions and Recommendations

References
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Figure 7

Formulation for Estimating Equal-

Probability K-Band Attenuation:

Foliage Versus non- Foliage

For f _ 20 GHz

For 5 < A(No Foliage) < 25 dB

A(Foliage) - a + b A(No Foliage) _

a- 0.351

b- 6.825

c- 0.578
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Figure 8

Measured and Predicted Attenuation Distributions

at 19.6 GHz for Foliage and Non-Foliage Cases
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Figure 9

Chapter 3 Contents

ATTENUATION DUE TO ROADSIDE TREES:

MOBILE CASE

3.1

3.2

*3.3

Background
Time-Series Fade Measurements

Extended Empirical Roadside Model

3.3.1 Background
3.3.2 EERS Formulation

3.3.3 Step by Step Implementation of the
EERS Model

3.3.4 Example Plots

Validation of the Extended Empirical Roadside

Shadowing Model

3.4.1 Central Maryland at L Band
3.4.2 Australian Fade Distributions at L Band

3.4.3 Austin, Texas at K Band

3.4.4 Low Angle Measurements in

Washington State at L Band

3.4.5 Low Elevation Angle Measurements at
K Band in Alaska

3.4.6 K Band Measurements in Central MD

3.4.7 Comparison with ESA K Band
Measurements
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Figure 10

Chapter 3 Contents (Continued)

3.5 Attenuation Effects of Foliage
"3.5.1 K Band Effects

3.5.2 UHF (870 MHz)

Frequency Scaling Considerations

Comparison of EERS Model with Other

Empirical Models

3.7.1 Modified Empirical Roadside Shadowing

Model (MERS)

3.7.2 Empirical Fading Model (EFM)

3.7.3 Combined Empirical Fading Model

(CEFM)

3.7.4 ITU-R Fade Model at Elevation Angles
above 60 °

3.7.5 Comparative Summary of Model Limits
Conclusions and Model Recommendations

References
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Figure 11

Features of Extended Empirical

Roadside Shadowing Model (EERS)

•

o

Estimates cumulative fade distributions

• Mobile satellite roadside tree shadowing
scenarios

Extension of Empirical Roadside Shadowing
Model

3. Provisionally accepted ITUR Rec. (2/97)

4. Roadside Tree Shadowing POS = 55% to 75%

5. Probabilities from 1% to 80%

e Frequencies from UHF (870 MHz) to

K Band (20 GHz)

7. Elevation Angles from 7° to 60 °

e Higher Elevation Angle Extension (> 60 °)

(L - Band and S - Band; ITUR 2/97)
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Figure 12

Family of L- Band (1.5 GHz)
Cumulative Fade Distributions

Predicted from the

Extended Empirical Roadside Shadowing Model_00___, , _ ......_--_-_-_-I--_....,
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Figure 13

Summary of Empirical Models and

Model

Name

EERS

ERS

ITU-R

EFM

MERS

CEFM

Domains of Validity

%

Range

1-80

1-20

1-30

1-20

1-30

1-20

Elevation

Angle

Range

(deg)

7-60

20-60

60-90

60-80

20-80

20-80

Freq.

Range

(Gaz)

0.87-2O

0.87-3

Reference

Goldhirsh

and Vogel

[1995a],

ITUR [1997]

Goldhirsh

and Vogel

[1992]-

ITUR [1994]

1.6-2.6 ITUR [1997]

1.3-10.4

1.5-2.6

1.5-2.6

Parks et al.

[1993a]

Sforza et al.

[1993a]

Butt et al.

[1995]

3-52



Figure 14

Chapter 4 Contents

Signal Degradation for Line-of-Sight
Communications

*4-5

*4-6

*4-7

*4-8

Background

Multipath for a Canyon and Hilly
Environments

4-2.1 Canyon Environment

"4-2.2 Hilly Terrain

Multipath Due to Roadside Trees

Multipath at 20 GHz Near Body of Water -

Low Elevation Angle Effects

Multipath Versus Driving Directions

Empirical Multipath Model

Summary and Recommendations
References
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Figure 15

Empirical Multipath Model (EMM)
and Multipath Distributions Derived from Measurements
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Figure 16

Empirical Multipath Model (EMM)

1. Median of 12 Multipath Distributions

2. Frequency range 870 MHz- 20 GHz

3. Elevation angle range from 8° to 60 °

For P = 1% to 60%, A = 1 to 5 dB

P = 94.37 exp(- 0.9863 A)
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Figure 17

Chapter 5 Contents

Fade and Non-Fade Durations and Phase Spreads

5.1

5.2

5.3

5.9

Background

Concept of Fade and Non-Fade Durations
Fade Durations Derived from Measurements in

Australia

5.3.1 Experimental Aspects
5.3.2 Fade Duration Model

Fade Duration Measurements in Central

Maryland

Fade Duration Distributions at Higher

Elevation Angles

Summary of Fade Duration Results
Cumulative Distributions of Non-Fade

Durations: Australian Measurements

Cumulative Distributions of Non-Fade

Duration: Central Maryland
Cumulative Distributions of Phase Fluctuations:

Australian Measurements

Summary and Recommendations
References
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Figure 18

Fade Duration Distributions

from Different Investigations
(Fade Thresholds 5 and 6 dB)
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Figure 19

Chapter 6 Contents

Polarization, Antenna Gain and Diversity
Considerations

6.1 Background
6.2 Depolarization Effects

6.3 Distributions from Low and High Gain

Receiving Antennas

6.4 Fade Reduction Due to Lane Diversity

6.5 Antenna Spacing Diversity Operation
6.5.1 Joint Probabilities

6.5.2 Diversity Improvement Factor, DIF

6.5.3 Diversity Gain

*6.5.4 Space Diversity for Expressway and

Trunk Road Driving in Japan

*6.6 Satellite Diversity

6.6.1 Background
6.6.2

6.6.3

6.6.4

Cumulative Distributions

Satellite Diversity Gain

Satellite Diversity Measurements at S

Band Employing TDRSS
Conclusions and Recommendations
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Figure 20

Imagery Methodology for Determining

Satellite Diversity

• Method developed and decribed by:

Vogel, 1997 and Akturan and Vogel, 1997

2. Video Recording of fisheye lens images made

3. Image analysis made of hemispherical scenes

• Simulation of constellation of"potentially visible"

satellite locations (e.g., Globalstar constellation)

• Extraction of path states (clear, shadowed,

blocked)

o Appropriate density distribution model used for

each path state

• Computation of signal and joint cumulative fade
distributions based on model used
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Figure 21

Single and Joint Cumulative Fade Distributions for Tokyo
Using Optical Imagery Analysis, Simulated Globalstar Constellation,

and Combining Diversity (Vogel; 1997)

98 i
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Figure 22

Chapter 7 Contents

Investigations from Different Countries

"7.1

7.2

7.3

*7.4

*7.5

*7.6

*7.7

*7.8

*7.9

Measurements in Australia

Belgium (PROSAT Experiment)
Measurements in Canada

Measurements Performed in England

France and Germany: European K Band

Campaign

Measurements Performed in Japan
Measurements Performed in the United States

Summary Comments and Recommendations
References
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Figure 23

Summary of Fade Ranges Derived from
Measured Distributions
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Figure 24

Summary of Fade Ranges Derived from

Measured Distributions (Continued)
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Characterization of HF Propagation for Digital Audio Broadcasting

A. Vaisnys

Jet Propulsion Laboratory - California Institute of Technology

arvydas.vaisnys @jpl.nasa.gov

Abstract - The purpose of this presentation is to give a brief overview of some

propagation measurements in the Short Wave (3-30 MHz) bands, made in support of a

digital audio transmission system design for the Voice of America. This task is a follow

on to the Digital Broadcast Satellite Radio task, during which several mitigation

techniques were developed to deal with propagation at S-band. It was hoped that these

techniques would be applicable to digital audio in the Short Wave bands as well, in spite

of the differences in propagation impairments in these two bands. Two series of

propagation measurements were made to quantify the range of impairments that could be

expected. An assessment of the performance of a prototype version of the receiver was
also made.

51>//-.g

F/o

I. Introduction

It is well known that propagation in the short wave bands is very variable, with

signal fluctuations and distortions which occur both rapidly and slowly. These bands can

also contain interference from both nearby and very distant co-channel transmitters.

Attempts have been made to produce propagation models, but these can only approximate

whdt really goes on. Propagation prediction programs such as VOACAP are useful in

plalming the proper frequencies to be used for any particular time of day, in any given

month. The fact that VOACAP can produce a 30 dB difference in the predicted mean

SNR vs. the 90 percentile SNR, however, shows the variability of propagation at these

frequencies.

Two sets of propagation related tests have been accomplished so far; one in

October 1996, the other in May 1997. The first one was basically a propagation

measurement, using a series of test signals to measure the channel over several

propagation paths. The second was more of a performance test of the receiver, but

included some test signals to establish the characteristics of the signal path.

1I. Test Configuration

VOA transmission facilities at Delano, California were used to transmit the test

signals. Reception was accomplished at three sites. (Slide 2).

A typical VOACAP median S/No prediction plot is shown in (Slide 3). The

transmit antenna was aimed toward 75 degrees azimuth.
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The receiving equipment consisted of a short wave radio whose IF was modified

to be at 13 kHz center frequency, which could be recorded on a Digital Audio Tape

recorder for post processing. (Slide 4).

III. Propagation Measurement Overview

To stay within the 10 kHz channel, analog test signals (AM modulated) were

limited to a 4.5 kHz baseband, while digital signals were pulse shaped and transmitted at

8 ksps. One of the test signals was a 63 bit PN code (8 milliseconds long) used to

measure the number of signal delay components.

Snapshots of typical cross-correlation peaks for three paths (October 1996) and a

noise free reference are shown in (Slide 5). (Slide 6) shows a 3 minute time segment of

the correlation peaks for a (May 1997) Delano to Washington path. Typically there was

more than one signal component, and the power in these components varied rapidly.

Delay spreads were typically less than 2 milliseconds.

Rapid variations in narrow band fading are illustrated in (Slide 7). (Slide 8) shows

a narrow band signal being tuned over the band.

IV. Summary and Conclusions

The digital audio broadcasting system being developed for the VOA is being

designed to operate with high orders of modulation in order to transmit a sufficiently high

compressed audio data rate through the available 10 kHz channel bandwidth. The receiver

employs an equalizer for mitigation of multipath and narrow band fading effects. Other

mitigation techniques such as interleaving and coding are being evaluated for

effectiveness under short wave propagation conditions. The May 1997 test included a

comparison between double sideband AM and 8PSK at the same power level. Results

with the digital receiver (Audio Tape) were very favorable.

V. Acknowledgment

The research described in this paper was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, and sponsored by the Voice of America

(U.S. Information Agency) through an agreement with the National Aeronautics and

Space Administration. The digital HF broadcasting project is being managed by Dr. H.
Donald Messer of the Voice of America.
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A DATABASE FOR PROPAGATION MODELS

Anil V. Kantak
and

James Rucker

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California 91109

1.0 Introduction

The Propagation Models Database is designed to allow the scientists and

experimenters in the propagation field to process their data through many

known and accepted propagation models. The database is an Excel 5.0

based software that houses user-callable propagation models of

propagation phenomena. It does not contain a database of propagation

data generated out of the experiments. The database not only provides a

powerful software tool to process the data generated by the experiments,

but is also a time- and energy-saving tool for plotting results, generating

tables and producing impressive and crisp hard copy for presentation and

filing.
J

2.0 The Software

The software has Excel 5.0 as the underlying application. Excel was

selected to write the program for two different reasons. Excel software has
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the needed sophistication in mathematical functionality for the database,

and it is the software preferred by the industry. To make the software

useful to the industry in their designs of systems, it was deemed necessary

to generate the entire propagation models database in terms of the Excel-

callable functions, otherwise known as the user-defined functions in Excel.

Originally, it was decided that a combination of C and Excel should be used

to generate the database software so that the high speed of the C compiler

combined with the superior data handling and charting capabilities of the

Excel software can be incorporated in the Propagation Models Software.

Even though it seems to be the best way of using the best of both worlds,

this software has an inherent disadvantage that the user will have to know

the intricate workings of the C compiler and C language to make any

changes/additions to the software. Another consideration is that industry

needs to incorporate the database functions into their own Excel software

and, from the surveys done in the past, it became clear that the industry

does not want the software, or any part of the software, written in C or C++.

Considering all the requirements stated above, a decision was made to

write the software in the Excel user-callable functions alone. The current

version of the tool is self-sufficient and complete in terms of the user help

and the guidance needed for the user to run the program successfully. The

software is subdivided into the following six major categories of functions:

1. Ionospheric propagation models.

2. Tropospheric propagation models.

3. Land-mobile system propagation models.
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4. Effects of small particles on propagation.

5. Rain models.

6. Radio noise models.

The user may select any model desired and compute the respective

numbers. The user may call the model in his / her own program to return a

value to the program.

3.0 Conclusions

It is felt that with industry as a partner, development of the database

software is now on firm footing. It is also felt that proper steps have been

taken that will result in the finished product in the near future. The finished

database will have all the necessary features including a good graphics

capability. Anyone desiring a copy of the software should contact the

authors. Even if the programming is complete, the architecture is open-

ended, easily allowing new additions, such as new models and help

subroutines.
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CD and VIDEO PRESENTATION ON

NASA LEWIS RESEARCH CENTER IN-HOUSE RAIN FADE STUDIES

Jennifer J. Sibits

Two products were presented which resulted from a question posed by NASA

Administrator Dan Goldin. These products are a Video and CD ROM.

In a conversation Mr. Goldin had with special Projects Manager, Nancy Horton, Mr.

Goldin had expressed knowledge about the in-house Rain Fade studies being done at

Lewis Research Center, and asked what was being done to get the information out to

industry. At that time, there was no deliberate program in place, nor was there a formal

method by which to notify interested parties that such information was available. The

question was enough to stimulate an interest by Ms. Horton to pull together a Product

Development Team to produce a response. Ultimately the response took the form of a

Video and CD.

The video provides and overview of the research being done at Lewis Research Center

and introduces viewers to three areas of technical expertise and knowledge. Presentations

in the video include: Rain Attenuation Modeling by Dr. Robert Manning; System

Performance by Thom Coney; and Compensation Techniques by Dr. Roberto Acosta.

The CD ROM provides in-depth information on these three research areas. Users are

given an opportunity to listen to answers to critical questions, review reports generated on

these topics, and preview seminar work. Additionally, the CD introduces users to other

sources of information generated on the ACTS Propagation and Implementation Program.

Web site addresses, listings of contacts and papers published are a few examples.

Because of the nature of the NAPEX organization, it was deemed appropriate to pre-

view these new products with members of the NAPEX team. Associates of NAPEX

were given opportunity to obtain copies of the finished video and were asked to comment

on the content and use-ability of the CD. The CD was at an 80% completion point when

demonstrated at NAPEX.

Meeting attendees who viewed the video and CD were asked to provide feedback in the

form of survey response cards or email (acts@lerc.nasa.gov). Comments and suggestions

were received and incorporated into the CD. Overall both products were well received.

Twenty-seven copies of the video were provided to NAPEX members at the meeting.

Approximately 30 requests for the finished CD were received and will be processed once

all changes to the CD have been validated.
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4. Workshop No. 1, ACTS Project Propagation Program Update





s

ACTS PROJECT &

PROPAGATION PROGRAM

UPDATE

Robert Bauer

NASA Lewis Research Center

ACTS Propagation Studies Workshop

June 13, 1997

ACTS PROJECT OFFICE

SPACECRAFT STATUS

• Spacecraft operations continue to be
nominal.

• Ka-band license extended through 12/31/98.
Modification to license for inclined orbit
will be needed.

• Failed Telstar 401 missed ACTS in orbit

during close encounter June 05 (by over 7
kin, estimated.)

ACTS PROJECT OFFICE
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c_._

INCLINED ORBIT

• Beginning of inclined orbit operations still

set for July 1998 (through Sept. '00).

• Tracking modifications planned for

T1VSATs, High Data Rate Terminals.

• Both Lockheed Martin and Comsat looking
at needed changes to operations procedures
and software.

ACTS PROJECT OFFICE

OTHER ACTS INFO

• ACTS inducted into US Space Foundation

Space Technology Hall of Fame, Colorado

Springs on April 3, 1997.

- Honors individuals, orgs.& comp.'s responsible

for "remarkable products developed from space

technology."

• Ron Schertler, ACTS Experiments

Manager, retired from NASA Jan. 1997

with 34 yrs. of service.

ACTS PROJECT OFFICE
c_,om
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EXPERIMENTS PROGRAM

• Total proposals received (05/07/97)

• Number of approved experiments:

- Experiments started: 74

- Experiments completed: 46

- Experiments yet to start: 11

157

85

ACTS PROJECT OFFICE
Cl,,_w_, O.

6

ACTS Experiment

Start/Completes _4

ACTS PROJECT OFFICE
tm _mw_ _
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EXPERIMENTS PROGRAM

• ACTS Usage Policy

- All new users must reimburse NASA for its

expenses in operating ACTS & NASA
terminals.

- Based on general govt. policy of reimbursement

to offset operations expenses of govt. facilities.

- Policy effective immediately, evolving. First
used in Jan. '97.

- Current experimenters being worked one-on-

one to transition to new policy.

ACTS PROJECT OFFICE

MAJOR ON-GOING/RECENT

EXPERIMENTS

AT&T first paying experimenter under new

policy.

- Voicespan filing withdrawn the week after

ACTS experiment.

@ ACTS PROJECT OFFICE
L_ _ _
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MAJOR ON-GOING/RECENT

EXPERIMENTS, cont.

HPCC - High Data

Rate (OC-3, OC-12)

- Keck Observatory
between Hawaii and
JPL.

- Goddard Global

Climate Modelling on

hold.
Image of Abell 963 obtained by the Keck II Telescope

the night of February 7, 1997

ACTS PROJECT OFFICE

La,m_ C_r
cw,w_, c_

MAJOR ON-GOING/RECENT

EXPERIMENTS, cont.

Latin America Distance ]

Education

- Program between

Georgetown Univ. and So.
America concludes end of
June.

- Cleveland Clinic and Quito

still hold regular
teleconferences. Interested in

continuing through Dec. '97.

ACTS 2.4m Antenna Installed at )averiana I

University, Bogota, Colombia I

ACTS PROJECT OFFICE
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MAJOR ON-GOING/RECENT

EXPERIMENTS, cont.

"Live from

Antarctica" -

Interactive PBS

broadcast; 3 live dates
in Jan & Feb/97.

- Multi-schools across

the country.

I see web site @: http://quesl.arc.nasa.gov/antarctica2/ I

ACTS PROJECT OFFICE

L J_m

MAJOR ON-GOING/RECENT

EXPERIMENTS, cont.

• AAMNet - Several experiments using HDR
terminals.

- University of Kansas - TCP/IP protocol
evaluation over ATM

- Natl. Library Medicine - TCP data over ATM

in delivery of medical text and imagery

- GSFC - Tuning TCP over high speed sat. links

ACTS PROJECT OFFICE
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MAJOR ON-GOING/RECENT

EXPERIMENTS, cont.

Naval Research &

Development (NRaD)

- Ship-to-shore
communications

including video, voice,

data, and intemet

protocol eval. at T1

(1.544 Mbps).
I U.S.Navy cruiserUSS Princeton(CG 59) [

ACTS PROJECT OFFICE

RECENT DEMOS

Pacific Telecomm. Conf.

- Feb.'97, Waikiki, HI

- Lockheed Martin

AstroLink product

development demo with
USAT.

F c,_i_e tries _e virlual reality demo at

PTC '97

ACTS PROJECT OFFICE
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tm

ACTS USAGE

DEC '93 - MAY '97

INASA-57.3% ]

Industry - 11,1%

Government - Non NASA - 23% ]

ACTS PROJECT OFFICE
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PROPAGATION PROGRAM

• ACTS under considerable fiscal pressure for

FY 98 due mostly to preparation for

inclined orbit operations.

• Contract extensions being worked.

• 6 mos. extension through 3/98 to complete
4th year is well supported.

• Fifth year (collect data through 11/98)
funding TBD.

1o**c ,

ACTS PROJECT OFFICE

Lain mm._c_w

PROPAGATION PROGRAM

TIMELINE

Begin c_a coaedion

93 I I 1994 11_5

,+,l,,],l,l,l,J+l,l.I.N,+,i,_,l,l,iq.l,_

I
EX[_.1K)n9961 _ 1997 11998 , I 1999

#Y..ofD,uCo.,cwn Yellow not yet funded

ACTS PROJECT OFFICE
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PROPAGTION CONTRACTS

OUTLOOK

Every effort being made to fund program's

5th year as best as possible.

Some level of funding will be available!

Must look at options and priorities of data

collection campaign.

ACTS PROJECT OFFICE

PLANNED PATH

• Budget constraints greatest in FY 98.

• Cut of 25% in FY 98 must be worked.

• FORTUNATELY, our contracts will

extend into FY 99.

• Shift FY98 budget shortage into FY 99.

• IMPACT:

- Varying payment schedule.

ACTS PROJECT OFFICE
L m

C .
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L _cuQw

FUNDING PROFILE
FY 99

FY 98

Completes 4th yr.

Final

I/4'ly 1/4'ly I/4'ly 1/4'ly I/4'ly Report

Fundin[_ Milestones

ACTS PROJECT OFFICE

¢_.oH

OPTIONS

• If 5th year funding pinched, what makes the
most sense to do?

• Options I've considered:

1) Terminate program with 4 complete years
of data (Mar. 98).

2) Find outside source to supplement

program, either individually or as a group.

ACTS PROJECT OFFICE
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OPTIONS, cont.

De-scope work

3) No final report.

- Collect data/pre-process/send to TX

only. Analyze later with separate contract?

4) Shorten contract duration (final report

prep. time).

ACTS PROJECT OFFICE

m_¢ .

OPTIONS, cont.

6) Reduce number of sites.

7) Cut all contracts evenly by fixed %.

- Each site finds own ways to reduce costs.

8) Consolidate site operations (one contract

operates multiple sites, or does all

processing.)

I Other options???

ACTS PROJECT OFFICE
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Acts Propagation Terminals

Engineering Support and
Systems Upgrades

David Westenhaver

Westenhaver Wizard Works,

wwwinc@crl.com

Inc.

June 11 - 13, 1997
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Software

Westenhaver Wizard Works, Inc.

Status / Deficiencies and Known

Problems

DRX software status:

Current version 17 of 4/25/96.

Need to open beacon acquisition constraints.

DACS software status:

Current version 10 of 4/01/96.

Need to add force beacon reacquisition.

Need to prevent repeating radiometer setups.

TSR software status:

Current version 11

Testing version 12.

Need clear indication

Works with Zip Drive

Data missing from

of 7/16/96

of DOS Critical-Errors.

except when operator error.

RV0; Defragment Disk.

ActsView software status:

Current version 3 of 9/26/94.

Testing version 4 progress.

Actspp PreProcessing software status:

Current version 7.1 of 4/17/97.

Testing version 7.2.

Fixed minor

Making new

Need input from

defects.

user setup easier.

users.

Page 2

4-28



Westenhaver Wizard Works, Inc.

System Hardware Status / Deficiencies and
Known Problems

LNB Failures.

20 GHz LNB at CSU was replaced March 28,1997.

20 GHz LNB at CSU failed May 27, 1997.

20 GHz LNB at NMSU may be causing data "jumps."

Have no spare 20 LNB.

Radiometer 0.25 -0.5 Volt Jumps

This effect is seen at several sites.

Cause is being investigated, This may be due to LNB.

Feed Horn Widow.

Problem: The windows crack and leak water.

Solution: Replace the feed horn.

Experimenters need to visually check windows often.

-- Page 3
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Westenhaver Wizard Works, Inc.

Summary plots of the Sites System
Calibration to Date

All Sites Data Accumulation Summary

Rain Accumulation Calculated from

Rain-Rate in EDF

Page 4
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REPORT OF ACTS MINIWORKSHOP PLENARY MEETING

• D.V. Rogers and W.J. Vogel

On June 13, 1997, the ACTS Working Groups held the customary joint Plenary meeting in El
Segundo to address issues related to experiments being conducted with the NASA ACTS Propagation
Terminals (APTs). Results of that meeting are reported here.

I. Current Status�Future Focus

N. Golshan, NASA/JPL coordinator for the ACTS Propagation Studies program, briefly
addressed the Plenary at the start of the meeting, and suggested a change in focus is required at the
present time. With the recent distribution of the first three years of preprocessed data for the seven sites,
the emphasis should shift from collection, processing and distribution of data to analysis of these data.
He proposed that experimenters take a more global view of all seven data sets and plan for the "big
picture" with input from both industry and doers to identify concerns, rectify gaps in the data and data
analyses (e.g., low rain rate impairments, infrequent propagation events), etc.

Golshan emphasized the need for peer review of the results, and for a recommendation re
continuity/quality of the results. This requirement will be met in part, of course, with the imminent
publication of the Special Issue of the Proceedings of the IEEE, devoted to Ka-band earth-space
propagation, which contains preliminary results of studies now being conducted with the ACTS data.
There was broad agreement with Golshan's remarks.

II.

A.

Technical Issues in the ACTS Experiments

Rain Rate Data

During the NAPEX/ACTS presentations and discussions, it was observed that some of the rain
gauge statistics in the recently-distributed data CDs were not fully valid. In cases, invalid data that had
been (appropriately) included in the ACTS data archives were inadvertently also included in the
preprocessed files, mainly because data flags were not always properly set in the electronic data (e.g., if
all relevant information had not been transferred from paper logs). Hence, statistics derived from the
preprocessed data occasionally include data segments intended to be marked invalid.

In a wide-ranging discussion, a variety of options were proposed both to resolve the problem of
mismarked data and to provide supporting rain data that might assist users of these data sets. H. Helmken
stated there must be a diligent effort to mark any bad rain gauge data. W. Vogel observed that current
practice is to assume the data are valid unless specifically marked otherwise; he suggested that a more
reliable default procedure, which would also enforce a review of these data, would be to assume the data
are invalid unless specifically marked otherwise. This approach would preserve the original intent that
each experimenter maintain ultimate authority of the data set for the respective experiment site. R.
Henning suggested incorporating auxiliary rain rate data from nearby weather services as available, such
as the 15-min. rainfall accumulations.

D. Westenhaver said this problem is being addressed in the revised version of the processing
software. He also noted that there is a program available now to assist the doers in checking their rain
gauge(s), and further that there is a column in the EDF to enter the daily rainfall accumulation, which
information is saved. In response to a question from J. Fell, he pointed out that the marking of data
validity is independent for each gauge that may be available at a specific experimenter site.

C. Mayer stated that the rain rate data are a small subset of the otherwise excellent database, and
that this issue should not detract from the utility of the other data. He also stated that each site should
have at least one reliable rain gauge to supply data for eventual inclusion in the archives.
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ACTIONS:

D. Westenhaver will address the issues regarding rain gauge data collection and preprocessing
software, allow input of supplementary rain information (as available), and provide instructions for
correct use of the new software. The ACTS Data Center will alert recipients of the latest CDs to the
problem with the rain data, and supply CDs without the rain data to those who may request same.

B. Inclined-Orbit Operation

Several issues related to the anticipated transition to inclined-orbit operation of ACTS were
addressed (contractual ramifications are discussed below). Present plans are to transition to inclined-orbit
operation in July 1998, with a predicted increase in orbital inclination of about 0.8 ° per year in this mode.
B. Bauer reiterated the prior conclusion that operation through the fifth year of data collection (i.e.,
through November 1998) is feasible without antenna tracking. If measurements are pursued into the sixth
year (considered unlikely), some form of tracking will be necessary.

D. Westenhaver remarked that the ACTS preprocessing software is already capable of removal of
diurnal signal-level variations up to 3 dB. N. Golshan asked if the antenna pattern as viewed from each
APT is site-specific; if so, the predicted diurnal variations in signal level are as well, and this fact must be
taken into account.

ACTIONS:

By the time of the next ACTS meeting, B. Bauer will provide predictions of diurnal signal-level
variations specific to each site.

C. Antenna-Wetting Issue

In response to presentations and discussions at this and previous meetings, issues related to
characterizing and accounting for the apparent path losses caused by antenna wetting were once again
deliberated. The discussion was framed by the questions of what are the goals of the effort and how
might aspects such as correction for statistical and dynamic aspects be achieved. It was noted that several
groups are investigating the problem. The dual-antenna investigations at COMSAT and Lewis Research
Center appear promising to establish the practical significance of the effect.

C. Mayer pointed out that the configuration for the LeRC measurements did not include a rain
gauge, and that one is required for that experiment. S. Horan noted the difficulty in reliably replicating
artificial rain rates below 30 to 40 mm/h, an area still under study. J. Goldhirsh stated that the behavior of
the signal level while the antenna surfaces are drying indicates that the loss effect may be important at
lower rates and be intractable, and thus may require a caveat on the fade distributions. D. Rogers
observed the related problem of dealing with fade dynamics.

ACTIONS:

J. Goldhirsh will try to locate a rain gauge and personal computer with software to loan to the
group at LeRC for the antenna-wetting measurements at that location.

III. ACTS Operations�Contract Issues and Concerns

A. Site Support�Maintenance

Concerns were voiced about an apparent reduction in site-support resources. N. Golshan
identified several elements that had indeed contributed to reduced funding: the APTs are aging, and
sometime require more maintenance; as three years of data have been collected, there is a need to
progress to more modeling as well as updating of the NASA handbooks; and the original budget for the
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program was for a 3-year effort, which has now been concluded. He stated that for site-support, the
"glass is 80% full" but there are insufficient resources to do everything. He asked if elements of the
effort might be prioritized to allow some activities to be dropped or deferred.

A wide-ranging discussion followed, where options such as the possibility of discontinuing
measurements at some sites, continuing only partial data collection should, say, a low-noise amplifier fail
at one of the beacon frequencies (perhaps filling the gaps with frequency scaling), etc. J. Beaver noted
that data collection for the fourth year was already more than half completed, and that this phase at least
should be finished. D. Rogers recalled that both the experimenters and the Satellite Industry Task Force
had supported continuity of the measurements. C. Mayer said the goal should remain the collection of
five years of data with full-up capabilities.

There was some brainstorming concerning the potential of seeking additional support from
industry, especially those parties that have recommended continuation of the measurements program. L.
Peronard suggested that those parties that had filed to the FCC for spectrum to offer services at Ka-band
would be good candidates. J. Feil mentioned that at the Fairbanks meeting, some representatives of
industry had indicated that their organizations might contribute, say, a low-noise block. B. Bauer stated
that some industrial organizations might have discretionary funds for such purposes.

It was finally agreed that the preferred approach would probably be for experimenters at the
individual sites to approach potential donors directly, with help from NASA in identifying candidates.

ACTIONS:

N. Golshan and B. Bauer will collaborate to plan an approach and draft an example letter that
might serve to approach industrial organizations.

B. Budget Issues Related to Inclined-Orb# Operation

B. Bauer identified an anticipated experiments funding crunch in 1998 as a result of the need to
prepare for inclined-orbit operation. Funds will likely have to be diverted to operational planning,
revision of control software at the Master Control Station in Cleveland, etc., to support operation in the
inclined-orbit mode. He asked NASA-funded experimenters to consider deferring some contract funding
requirements into the 1999 fiscal year. There is of course some risk, since the 1999 budget has not yet
been finalized nor approved.

The funding of the (fixed-price) contracts would probably remain the same, but the program
would benefit by shifting progress payments into 1999 as feasible. Individual experimenters offered
support in addressing this difficulty.

ACTIONS:

B. Bauer will address the funding details for each site during individual contract negotiations.

C. Project Emphasis

The discussion on 1998 budget issues resurrected a general discussion regarding the priorities of
the measurements and what is of maximum value to users of the information, similar to that reported in
Item III.A above. B. Bauer asked if the current fundamental priority is collection of raw data or
modeling/handbook activities. Z. Koro stated that the long-term benefits are maximized by continuing
the measurements as long as possible.

N. Golshan stated that industry needs models now, and there are a lot of dollars at stake. L.
Peronard concurred, noting that ground-station commitments are now in process, and Ka-band satellites
will be in orbit by the year 2000. Analysis is required to provide results such as dynamics of fading,
seasonal variations, impairment extremes, etc. Z. Koro agreed that numbers are needed at the moment,
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but existing models already provide approximate impairment estimates. More certainty is preferred, but
is only achievable by making long-term measurements, probably the greatest value of this project. As in
previous deliberations, there seemed to be general agreement that additional effort must be applied to
modeling and analysis activities, concurrent with continuation of the ACTS data collection efforts.

D. General Operations

As customary, near the end of the Plenary session the individual experimenters discussed
operational issues at the sites. C. Mayer emphasized that critical spares are becoming more important as
the equipment ages, and offered to purchase a spare feed horn if need be. He also noted that the custom-
design low-noise blocks (LNBs) used in the APTs are critical, expensive long-lead items, and that the 20-
GHz units have not been very reliable (a bench spare 27.5-GHz LNB is maintained by D. Westenhaver,
probably sufficient as these units have been reliable).

B. Dow noted some unusual anomalies at UBC during the last few months which stopped data
collection for over a day, but had not recurred (C. Mayer indicated that defragmenting the hard drive
might fix this problem). He also reported a decrease in LNA gain and faulty siphoning of the capaci-
tance rain gauge. UBC has purchased a new humidity sensor, but the sun shield isn't yet available.

J. Beaver reported that the Colorado 20-GHz LNA has failed, particularly unfortunate because
June is normally the wettest month at his site. He is also using a temporary feedhorn cover to replace one
damaged by hail, and noted this is not really a satisfactory solution.

R. Henning voiced concern about the lack of an on-shelf 20-GHz LNB spare, and stated that the
site-support function had been essential in amalgamating and retaining expertise developed by the ACTS
experimenter group. Similar views were expressed by J. Feil and S. Horan. X. Wang also noted the need
for a spare 20-GHz LNA, although the existing one has been stable for a year.

A general conclusion of the overall discussions seemed to be that at least two spare 20-GHz
LNBs and feedhorns would be needed for the program.

ACTIONS:

At the end of the Plenary session, Golshan remarked, based on overall discussions during the
session, that he was convinced of the urgent need to address the sparing issue, and would request
resources for these requirements, although he could make no guarantee of additional funds.

E. Next Meetings

The next ACTS Propagation Studies Workshop is planned for Boca Raton, Florida, during the
week of November 17, 1996 (the week before U.S. Thanksgiving). The NAPEX XXII meeting is
planned for Austin, Texas, during the first week of June 1998.
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