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ABSTRACT

Hybrid grids, composed of structured and unstructured grids, combines best

features of both. The chimera method is a major stepstone toward a hybrid grid

from which the present approach is evolved. The chimera grid composes a set of

overlapped structured grids which are independently generated and body-fitted,

yielding a high quality grid readily accessible for efficient solution schemes. The

chimera method has been shown to be efficient to generate a grid about complex

geometries and has been demonstrated to deliver accurate aerodynamic prediction

of complex flows. While its geometrical flexibility is attractive, interpolation of

data in the overlapped regions--which in today's practice in 3D is done in a

nonconservative fashion, is not. In the present paper we propose a hybrid grid

scheme that maximizes the advantages of the chimera scheme and adapts the

strengths of the unstructured grid while at the same time keeps its weaknesses

minimal. Like the chimera method, we first divide up the physical domain by a

set of structured body-fitted grids which are separately generated and overlaid

throughout a complex configuration. To eliminate any pure data manipulation

which does not necessarily follow governing equations, we use non-structured grids

only to directly replace the region of the arbitrarilly overlapped grids. This new

adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured

grid region sandwiched between the structured grids is limited in size, resulting in

only a small increase in memory and computational effort. The DRAGON method

has three important advantages: (1) preserving strengths of the chimera grid,

(2) eliminating difficulties sometimes encountered in the chimera scheme, such

as the orphan points and bad quality of interpolation stencils, and (3) making



grid communication in a fully conservativeand consistent manner insofar as the
governingequations are concerned.

To demonstrateits use, the governingequationsare discretizedusing the newly
proposedflux scheme,AUSM+, which will be briefly describedherein. Numerical
tests on representative 2D inviscid flows are given for demonstration. Finally,
extension to 3D is underway,only paced by the availability of 3D unstructured
grid generator.

1 INTRODUCTION

We argue that an effective practical CFD method must pass certain criteria such as:

(1) fast turnaround, and (2) accurate and reliable solution for routine calculations

of engineering problems, which in general involve complex geometry. The first

point entails a short setup time for calculation, minimal memory requirement,

and efficient and robust solution algorithm. The second point requires a judicious

choice of discretization procedure. Choice of grids will greatly influence whether

the above two criteria are met satisfactorily. Recent progress toward generating

grids about a complex geometry, supporting the above criteria, is the subject of

this paper.

During the last decade both structured and unstructured grid techniques have

been developed and applied to solution of various CFD problems. To deal with

situations in which complex geometry imposes great constraints and difficulties in

generating grids, composite structured grid schemes and unstructured grid schemes

currently are the two mainstream approaches.

The chimera grid scheme[BSDB86, SB87, BCM+89], like similar methods[ArtS1,

CH90, BCH89], uses overset grids to resolve complex geometries or flow features

and is generally classed into the composite structured grid catagory. In [Ste90],

Steger further elaborates the versatility of the chimera method and indicates

areas for refinement. To set a proper perspective and allow comparison with the

unstructured grid method, we summarize first the strengths and weaknesses of the
chimera method.

1. It is an easy, versatile, and most general way of generating structured grids about

a complex geometry. Techniques for generating structured grids are mature and

robust; several highly developed grid packages are available.

2. Each individual grid is of high quality--body-fitted and mostly orthogonal,

which is a very desirable feature for accurate and efficient viscous calculations.

3. It allows efficient solution algorithms for both steady and unsteady calculations.

4. It is a proven and relatively mature technique for solving flows over complex

configurations[SB87, BCM+89] and even those in motion[MS89].

5. Solution adaptation procedures[KLC94] can be applied by simply setting grids

over regions with interesting flow characteristics.
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Figure 1 Chimera grid used for flow in a turbine coolant passage in which pins axe placed to promote

mixing. Cbrculax grids attached to the pin axe overset on the background rectangular grid on which

holes (whose precise meaning is given later in §4.3) axe created. Pins and their grid can be deleted and

added easily to aid design analysis.

6. It is just as easy to add/delete components to/from the configuration. This

flexibility clearly has great potential for design purposes. Figure 1 shows rows

of pins placed in a turbine coolant passage to promote mixing. Once a circular

grid is generated for a pin, a duplication of it can be added and moved to

anyplace to assess the effect on performance.

7. Problems can arise in the current practice for interpolating data in the

overlapped region of grids, leading to spurious and even incorrect solutions.

On the other hand, the unstructured grid method has the following strengths

and weaknessess.

1. It is very flexible to generate an unstructured grid around a complex body, e.g.,

[JBW86, BS93, Pro93].

2. The solution adaptivity is perhaps its biggest strength[LSh87, PVMZ87].

3. It has been shown to be extremely memory and computation intensive[Gha94].

4. It is not suitable to resolve regions with a dominant direction gradient

such as viscous layers near the body insofar as accuracy arid efficiency are

considered[HC89, SIR94].
5. Choices of efficient flow solvers are limited, thus further affecting efficiency of

the method.

From the above comparison, we conclude that both methods complement each



other on strengths and weaknessesand any pure-strain approachmay not achieve
the criteria set forth in the beginning. Hence, a method that properly employs

a hybrid of structured and unstructured grids may prove to be fruitful. In fact

some hybrid schemes have already appeared[NO87, Wea88, HC89, SIR94] and have

shown promising features. Interestingly enough, researchers from each camp have

infused ideas from the other to appraoch a hybrid grid: a sturtured grid is embedded

underneath an otherwise unstructured grid in order to better resolve the viscous

region[HC89, SIR94], or an unstructured grid is used to enhance structured grid's

flexibility for handling complex geometries[NO87, Wea88]. Nevertheless, there is

an important difference between the above two approaches toward hybrid grids.

On the one hand, a majority of region is filled with unstructured meshes, while on

the other the region is mostly structured. Hence, the latter has more efiicent flow

solvers and more storage space at disposal, thereby resulting in fast turnaround.

Closer examination of the chimera method reveals that item 7 is the only serious

problem challenging current practice---the nonconservative interpolation of data

belonging to different grids. Our experiences have indicated that the interpolation

error can become globally significant if numerical fluxes are not fully conserved,

in particular when a discontinuity runs through the interpolated region. Also this

error can be strongly affected by the underlying flux schemes, such as central

vs. upwind schemes. We point out, however, that this difficulty is not inherent

to the chimera method itself. It must be noted that conservative interpolation

schemes in 2D[ML89, WY94] have been shown to be relatively easy. Extension to

3D in determining the volume weights for irregular polyhedra however is not all

that straightforward. Even if 3D conservative interpolation proves to be feasible, a

fundamental difficulty exists because how the fine-grid data is distributed to coarse

grid is nonunique.

An alternative way to ensure interface conservation and avoid uncertainty on

interpolation scheme altogether would be to introduce an unstructured flow solver

in the vicinity of the interface boundaries, as proposed in[NO87, Wea88]. In

this paper a different approach is presented which uses non-structured mesh to

replace the overset region in the chimera embedded grids. We believe that this

approach not only eliminates the shortcoming of the current chimera method

but also preseves its advantages. The extension of the present method to three

dimensions is straightforward and only paced by the capability of 3D unstructured

grid generation techniques.

We will begin with the premise that the chimera grid is a formidable choice for

dealing with a multi-component, complex geometry. It is difficult to argue against

this method because, aside from many desirable features discussed above, it has

a convincing list of successful Navier-Stokes solutions of very complex problems.

This choice leaves us a clear task to tackle for our research: preserve/maximize

desirable features of the method and eliminate shortcomings associated with the



current practice. This is the path and objective taken in the present paper.

2 CHIMERA GRID

Since the chimera method is a major stepstone in our development, including it

in our presentation is necessary and it is useful to farniharize the reader with the

chimera method. We will only highlight key elements used in the method, the

interested reader should consult the literature on the subject and the interesting

thoughts pondered in [Steg0].

The chimera and other like methods have two principal elements: (1)

decomposition of a chosen computation domain into subdomains, and (2)

communications of solution data among these subdomains. Software is needed to

automaticMly interconnect grids of subdomains, define the holed region, and supply

pointers to facilitate communication among grids during the solution process. Two

major codes, namely PEGSUS[BSDB86, ST91] and CMPGRD[CH90, BCH89],

using different algorithms have been developed. We have used the PEGSUS

codes[BSDB86, ST91] to perform the above task. CMPGRD is also a general

3D software and has an interactive capability for 2D grids. Hereafter, we will

specifically discuss the chimera grid within the capability of the PEGSUS

codes. PEGSUS 4.0[ST91] is the latest release and executes four basic tasks:

(1) process the grids and user inputs for all subdomains, (2) identify the hole

and interpolation boundary points, (3) determine the interpolation stencil and

interpolation coefficients for each interpolation boundary point, and (4) supply

diagnostic information on the execution and output the results for input to the

flow solver. The reader are encouraged to find the details in [BSDB86, ST91] about

PEGSUS.

2.1 Generation of Body-Fitted Grids

The chimera grid method makes use of body-fitted grids which we emphasize are an

essential asset known to give viscous solutions accurately and economically, see for

example [HC89, SIR94]. In the gridding process, the complete geometrical model is

divided up into subdomains, which in general can be associated with components

of a configuration. Each subdomain is gridded independently and is overset onto

each other. The grid boundaries are not required to join in any special way. A

number of grids can be introduced to focus on interesting geometrical or physical

features. Figure 2 illustrates the chimera grid for the complex geometry of the

integrated space shuttle vehicle, in which three grids conforming respectively the

orbiter, external tank and solid rocket booster together with the associated hole

boundaries are shown, representing a triumphant case for the method. A common

or overlapped region is always required to provide the means of matching solutions



(b).

Figure 2 Chimera grid used for integrated space shuttle geometry consisting of orbiter, external tank

(ET), and solid rocket booster (SRB) [MS89]: (a) SRB grid with ET and orbiter holes, (b) ET grid

with SRB and orbiterholes,mad (c)orbitergridwith ET and SRB holes.
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across boundary interfaces.

2.2 Definition of Hole Boundary & Outer Boundary

Hole boundaries and outer boundaries are the two ways through which information

is communicated from one grid to another. A novel approach used in the chimera

method to distinguish a hole point and an outer boundary point from a field point

is to flag the array IBLANK, which is dimensioned identically to the number of

points in each grid, to either 1 for a field point or 0 otherwise. The boundary points

with IBLANK-0 are to be updated by interpolation, while points with IBLANK=I

are updated as usual for the interior points.

2.2.1 Hole Boundary

Whenever points of a grid, say G1, falls within the body boundary of another grid,

say G2, these points of G1 are cut out to make a "hole" in G1, as displayed earlier

in Fig. 2. These hole points must also fall in the domain of G2 to guarantee that

a proper set of data from Gz be communicated to G1. Typically, a hole is defined

through a hole creation boundary which consists of a surface or a group of surfaces.

The purpose of a hole creation boundary is to identify points that are within this

boundary. A grid point is considered to be inside a hole creation boundary if it is

inside all surfaces that define the boundary.

Figure 3 illustrates how hole points are located using three surfaces, $1, $2, andSs,

as the hole creation boundary. PEGSUS first puts the indices of all points of the

grid in which the hole is to be created into a list. Then all points that fall outside

surface $1 are eliminated from the index list (as indicated by the shaded region).

Then all points contained in the shortened list that are outside the surface $2 are

eliminated, resulting in an even shorter list. As the process is repeated for surface

$3, the points remaining in the list are the hole points of the grid in which the hole
is created.

As noted earlier, the hole points are excluded from the solution (with

IBLANK=0) and are not usable as boundary points for performing solution on

the grid in which the hole is made. Therefore, grid points surrounding holes will

be identified as fringe points which then constitute the hole boundary, see Fig. 4.

To find hole boundary points, each point in the holed-grid is checked. If the point

is a hole point, nothing is done. If the point is a field point and is next to a hole

point, it is identified as a hole boundary point.

It must be noted that the PEGSUS code, even though very powerful and general,

should not be taken as error-free. Some problems may arise, for example when the

slope can not be uniquely defined either on a hole creation boundary or on the

grid. Using the PEGSUS, as any other new techniques and softwares, will require

some knowledge about the underlying techniques and experiences. Fortunately,
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Figure 3 Hole creation by boundaries $1, $2, and $3.
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PEGSUS has enough flexibility and some ingenuity on the user's part can usually

resolve difficulties.

2.2.2 Outer Boundary

The outer boundary on which the points are to be either interpolated or specified

as physical boundary is directly input by giving the index range in each dimension.

Then, the interpolation procedure is accomplished in almost exactly the same way

as hole boundary interpolation.

We summarize the grid-related portion of the chimera method in Fig. 5 by

displaying: (1) the overlapping of two grids, respectively designated as major and

minor grids, with the latter being thought of conforming a component, (2) the hole

creation boundary specified as a level surface in the minor grid and the fringe-point

boundary in the major grid, and (3) the outer boundary in the minor grid.

2.3 Interpolation

Since the separate grids are to be solved independently, boundary conditions must

be made available. Boundary conditions on the interpolated hole boundary and

interpolated outer boundary are supplied from the grid in which the boundaries are

contained. There are currently several approaches (e.g., [BSDB86, Ber84, BCH89,

Rai86, ML89, WY94]) to obtain data for these conditions, but all involve some

form of interpolation of data in a grid. Generally they can be grouped into two



Figure 5 Construct of the chimera grid.

categories: nonconservative and conservative interpolations, which are discussed in

the following.

2.3.1 Nonconservative Interpolation

Once the interpolation stencils are searched and identified, PEGSUS employs a

nonconservative trilinear interpolation scheme, whose details are documented in

[BSDB86]. There is much uncertainty as to measuring the local or global effects of

the nonconservative interpolation On the solution, especially when a strong-gradient

region intersects the interpolated region. Study on this subject has been scarce

in the literature. Our experience (unpublished and published[KL94]) indicates

that significant error can appear. For steady problems, a shock may be placed at

incorrect location and noticeable spurious waves can eminate from the boundary

of the interpolated region. For unsteady problems[KL94], the shock strength and

speed is affected as the shock goes through the region of interpolation. In [CH90],

the order of interpolation has been studied in relation to the order of the PDE,

the order of the discretization, and the width of interpolation stencils for a model

boundary value problem. For a second order differential equation discretized with

a second order formula, it was found necessary to use an interpolant at least of

third order, as the overlap width is on the order of the grid size. An assessment of

their proposal's validity for a range of problems is warranted because interpolating

has the advantage of being relatively simple matter to perform.
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2.3.2 Conservative interpolation

It has been asserted that conservation property need be enforced for the

cases in which shock waves or other high-gradient regions cross the region of

interpolation. Several conservative interpolation schemes have been proposed for

patched interfaces[Rai86, BO84] and arbitrarily overlapped regions[ML89]. These

schemes are relatively easy in a 2D domain, but still substantially more complex

than the nonconservative schemes. Their extensions to 3D are extremely difficult, if

not impossible. Simplification is possible[KM91, TWR+89] for patched grids in 3D,

but more restrictions on grid generation, making them less attractive, are placed.

A fundamental deficiency in all these approaches is that a choice has to be made

concerning the distribution of fluxes from one grid to another, even though the

sum of fluxes can be made conservative. Since the overlapped region is necessarily

arbitrary, there will be great disparity in grid density and orientation along the

overlapped region (or hole boundary). The choice of weighting formulas is not

clear and certainly not unique.

3 DRAGON GRID

We conclude from the previous section that (1) maintaining grid flexibility and

the quality of the chimera method are definitely to be preserved and even

maximized (improved), but (2) focusing on improving (choosing) interpolation

schemes perhaps only leads to more complication and does not seem to be a fruitful

way to follow.

An alternative method which avoids interpolation altogether and strictly enforces

flux conservation for both steady and unsteady problems is to solve the region in

question on the same basis as the rest of the domain.

Since the overlapped region (thus, the hole boundary) is necessarily irregular in

shape, the unstructured grid method is most suitable for gridding up this region.

Furthermore, this region is in general away from the body where the viscous effect

is less important compared to the inviscid effect, the unstructured grid would avoid

penalty from accuracy consideration mentioned earlier. This combination of both

types of grids results in a hybrid grid! In this approach we in effect Directly Replace

Arbitrary Grid-Overlapping by a Non-structured grid. The resulting grid is thus

termed the DRAGON grid. Major differences of our approach from other hybrid

methods are:

• we heavily utilize the proven chimera method and the powerful and versatile

automatic code PEGSUS, thus retaining attractive features listed previously in

the INTRODUCTION,

• we use unstructured grids only in a limited region and located away from viscous-

dominant regions, thus minimizing disadvantages of unstructured grids,
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In addition, for discretizing the flux terms, we use the recently developed upwind

scheme AUSM + [Lio94] which has been shown to be accurate, efficient, and reliable.

In what follows we will separately describe the structured and unstructured grid

features of the DRAGON grid method.

3.1 Structured Grid Region

The PEGSUS code now is used and modified to provide information necessary for

the DRAGON grid. The algorithmic steps are enumerated as follows.

1. As in the chimera grid, the entire computation domain is divided up

into subdomains. We often designate a major grid enclosing the complete

computational domain and the component grids as minor grid.

2. Hole regions are created, see Fig. 6(a), and the IBLANK array generated in

which the elements associated with grid points inside the hole boundary are set

to 0 (default value is 1). For example, the outer boundary of a minor grid is

used as the hole creation boundary.

3. Both fringe points (hole boundary points) and interpolation boundary points

are no longer treated as blanked points. Instead, they are now represented as

interior points, and their IBLANK values are set to 1 (rather than 0) in the

PEGSUS code. A file containing the coordinates of these points is obtained as

output of the PEGSUS and these points will be used as boundaries for the

unstructured grid region. Details for the unstructured grid will be addressed

shortly.

4. Since interpolation process is no longer performed between structured grid

blocks, output files providing interpolation information are deleted from the
PEGSUS code.

It is noted that in step 2 we now have more freedom in defining the hole creation

boundary for there is no need of requiring that grids overlap. When no overlapped

region is found, then the empty space will be filled with an unstructured grid, thus

resulting in a much more robust and flexible procedure.

This completes the portion of structured grid in the DRAGON grid.

3.2 Non-Structured Grid Region

The gap region created by arbitrarily overset grids inevitably is of irregular shape

and would be very difficult to represent it with structured grids. Unstructured

grids are most suitable to fill in this irregular-shaped space. Triangular cells,

especially, can provide a good deal of flexibility to adapt to the odd shape. Recall,

one important feature in the DRAGON grid is to eliminate any cumbersome

interpolation. Unstructured grids alone are not sufficient to do the task. An

additional constraint to the grid generation is imposed to require that the boundary

12



Figure 6 Direct Replacement of Arbitrary Grid-Overlapping by Non-structured gird: (a) chimera

grid, (b) DRAGON grid.

nodes of the structured grid, which are output from the PEGSUS code, coincide

with vertices of boundary triangular cells. Fortunately, this constraint fits well

in unstructured grid generation. The Delaunay triangulation scheme[Bow81] is

applied to generate an unstructured grid in the present paper. Figure 6(b) depicts

the unstructured grid filling up the hole created in the structured grid by the

chimera method. The steps adopting the unstructured cells in the framework of

the chimera grid scheme axe summarized below.

1. Boundary nodes provided by the PEGSUS code axe reordered according to their

geometric coordinates.

2. Delaunay triangulation method is then performed to connect these boundary

nodes based on the Bowyer algorithm[Bow81].

3. In the unstructured grid, since there is no logical ordering of the cells and

their neighbors, connectivity matrices containing the cell-based as well as edge-

based information are introduced. Also the present approach requires additional

matrices to connect the structured and unstructured grids. The connectivity

matrices used in the present 2D version are summerized as follows.

(a) IEDGENODE(I:2, edges) -- 2 nodes for each edge,

(b) ICELLEDGE(I:3, cells)-- 3 edges for each triangular cell,

(c) IEDGECELL(I:2, edges) -- 2 neighboring cells for each edge,

(d) [EDGETYPE(edges) -- edge type (type of boundary condition),

(e) IEDGEFLUX(grids, edges) -- edge number that connects structured and

unstructured grids, where the parameter "grids" identifies which structured

13
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Figure 7 Comparison of the (a) chimera and (b) DRAGON grids for the letter=C _ in a chmnd.

grid,

(f) IFLUXINDX(grids, edges) --/-index of the structured cell that shares the

edge fluxes with the unstructured cell,

(g) IFLUXINDY(grids, edges) -- j-index of the structured cell that shares the

edge fluxes with the unstructured cell.

The first four types of connectivities are standard in unstructured grid codes,

except that we assign "+" and "-" values to IEDGETYPE to indicate whether

the outward normal vector of a triangulr cell face points into or out of the

neighboring structured cell which shares the same face. This information is

needed as the flux on this face, calculated based on the unstructured grid data,

will be used also for the structured cell in order to exactly maintain consistency

(conservation) of fluxes.

Questions concerning triangulr grid quality and improvements are not pursued

for they are beyond the scope of the present paper.

This step completes the specification of the initial grid. Figure 7 now compares

the DRAGON grid and the chimera grid for the letter "C" in a channel. The

chimera method wraps around the "C" with a body-conforming (minor) grid and

oversets it on the background (major) H-type grid. Note that we intentionally make

an unsymmetric "C" to emphasize grid flexibility.
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4 FLOW SOLVER

4.1 Governing Equations

The time-dependent compressible Euler equations, expressed in an integral form

over an arbitrary control volume f_ are:

Ou + f • =O,
t2 Or2

where the conservative-variable vector U = (p, pu, pv, pw, pet) T. The inviscid

flux is written as a sum of the convective and pressure fluxes: F = @V + 15,

where • = (p, pu, pv, pw, pht) T, is the vector containing convected variables and

15 = p(0,_',j, f¢,0) T. The specific total energy is et = e + 1_12/2 = ht - p/p. We

denote with an overhead arrow the vector quantities expressed in terms of Cartesian

coordinates.

4.2 Flux Splitting

Based on the cell-centered finite volume method, the governing equations are

semi-discretized. We use the new flux scheme AUSM +, described in full details

in [Lio94], to express the numerical flux at the cell faces. The basic idea of AUSM +

follows that of its predecessor, AUSM[LS93], but has substantial improvements.

The AUSM +, incurring negligible additional cost over AUSM per flux, allows an

exact capture of a normal shock by using a suitably chosen interface speed of sound,

yields smoother solution by way of including higher-order polynomials, and leads

to faster convergence rate.

The semi-discretized form, describing the rate of time change of U in g_ via

balance of fluxes through all enclosing faces, Sl, l = 1,.--, LX, whether they be in

the structured or unstructured grid regions, can be cast as

OU LX+ • = o.
l=l

The last terms account for only normal components of the flux at the face, of which

the equations are written in terms:

OU dv LX
/ -_- + _ F=,IS, I = 0,
fZ /=1

where F=l = Ft • _l and ffl is the unit normal vector of Sl. The task is then to

represent the numerical flux at the cell interface Sl, which straddles cells denoted

15



by subscripts "L" and "R". The AUSM+ scheme gives the numerical flux in the

following expression.

F,,t = --nrMli2.(_L+ {I_R)_ iMll__hcI_ "It" P_,.
2 Z

In this formula, at is the speed of sound suitably defined at the interface to result

in an exact resolution of a normal shock[Lio94]. The interface Mach number Mt is

an important variable and defined in the following steps.

1. Project velocity vectors at the cell centers, "L" and "R", to ffl,

2. Define the corresponding Mach numbers,

al al

3. Define the interface convective Mach number by writing

if I/l:/LI > 1, f I(AT/R I/I:/RI), if IMRI> 1,

otherwise, _7/_ = [ _ -M_ (/17/R), otherwise.

where

M'_(I14L),

The formulas for M_: (M) are expressed in terms of eigenvalues of the nonlinear

waves, M + 1 and M - 1[Lio94].

4. Define the interface pressure pt in terms of the above-defined Mach numbers,

P, = Pt(M_) + PT_(MR),

where p+ and p_ are defined in a similar fashion as ML+ and .£/_, and we get

/°)ent = Pl r_ly .

nlz

0

5. Assemble the interface numerical flux by upwind-selecting the convected variable

F,_, = a,(2_l+OL + 217'/t'OR)+ P,_,= 37"/lat(OL2 -4- I tl2/X + P,_,.

16



4.3 Time Integration

The time integration scheme updates the conservative variables at the cell center.

The present method originates from the Taylor series expansion in time, as was

done in the Lax-Wendroff scheme. Then a two-step scheme, called predictor and

corrector steps, with second order time accuracy can be obtained [LH89].

Predictor:

Corrector:

. OU _

u" = u" +/,,t

U** = U* + At OU*
Ot

u,.+,= at ]

It is noted that (1) the predictor step allows a full time step, and (2) like other

2-step integration schemes, only two levels of storage are needed as U _ is absorbed

in forming the residual indicated in the squared bracket, (3) both predictor and

corrector steps are identical, with no need of defining a midpoint for the corrector

step, leading to simplification of coding and the complexity of evaluating the

transport terms.

The stability of the scheme is restricted by the CFL (Courant-Friedrichs-Lewy)

number not exceeding unity. For steady state cases, local time stepping is used to

accelerate convergence.

As in the chimera method, each subdomain grid, including the unstructured

grids, is solved independently, the inter-grid communication, which is vital for

properly propagating flow variations throughout grids, must be established and is

the subject of next section.

4.4 Data Communication Through Grid Interface

In the chimera method, this communication is made through the hole boundary or

the outer boundary. Since the interface treatment methods are not necessarily

satisfying any form of conservative constraints, the solutions on overlaid grids

are often mismatched with each other. More seriously, this may ultimately lead

to spurious or incorrect solutions, especially when a shock wave or high-gradient

region passes through boundaries of overlaid grids, as will be seen later.

In the current work, both the structured and unstructured flow solvers were

based on the cell center scheme in which the quadrilateral and triangulr cells

are used respectively. Figure 8 shows the interfaces connecting both structured
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Figure 8 Fluxes at the cell face connecting the structured a_td unstructured grids.

and unstructured grids. As described earlier, the numerical fluxes, evaluated at

the cell interface, are based on the conditions of neighboring cells ("L" and "R"

cells). For the unstructured grid, the interface flux, Fat, will be evaluated using the

structured-cell value as the right ("R') state and the unstructured-cell value as the

left ("L') state. Consequently, the interface fluxes which have been evaluated in

the unstructured process can now be directly applied in computing the cell volume

residuals for the structured grid.

Thus, the communication in the DRAGON grid is considered seamless in the

sense that no manipulation of data, which introduces uncertainties, is required,
and the solution is obtained on the same basis whether it be in the structured or

unstructured grid region. Consequently this strictly enforces conservation property

locally and globally.

5 TEST CASES

Computational results are presented in this section for two-dimensional, inviscid

problems. The test cases include a 2D shock tube problem and a supersonic flow

past a letter "C" in a channel. Other results can be found in the report[KL94]. Since

our unstructured flow solver is only first-order accurate, the same order of accuracy

was also chosen for the structured solver. Implementation of higher-order accurate

procedure to the unstructured code is currently underway. For the DRAGON

grid approach, both structured and unstructured results can be displayed on the

same plot using the Flow Analysis Software Toolkit (FAST) visualization package

[WCM+93] on an IRIS workstation.
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Figure 9 Grids for moving shock problem (M. -----4): (a) single grid, (b) chimera grid, axtd (c)

DRAGON grid.

Case 1: Shock Tube Problem

It has been of concern in CFD community that inaccurate shock speed and

strength may result if the numerical procedure is not fully conserved. This case

serves to show the effect of interpolation in the chimera grid and the validity

of the DRAGON grid method for a transient problem as a plane shock moves

across the embedded-grid region. The shock wave is moving into a quiescent region

in a constant-area channel with a designed shock speed Ms = 4. Solutions were

obtained using three grid systems, namely (1) single grid, (2) chimera grid, and (3)

DRAGON grid, as displayed in Fig. 9. The single grid is dimensioned 801 x 21. The

solution on this grid will be used for benchmark comparison. Figure 9(b) illustrates

the chimera grid which includes a major grid (upstream region) of size 41 × 21,

and a minor grid (downstream region) of dimension 781 × 21. The grid fines in

the overlaid grids are generated in any arbitrary fashion. Upon the replacement of
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Figure 11 Comparison of centerline pressures from the three grids.

grid-overlapping by non-structured grid, the DRAGON grid is shown in Fig. 9(c).

Note that all three grid systems use equivalent grid densities in major portion of

the computation domain, except for that near the interface boundaries.

The initial conditions to the left and right of the shock (marked in Fig. 9) are:

=/1321/ = o.71
L \3o5/' R

6

Figure 10 displays the pressure contours after 500 time steps; all three grids

give similar clean contours after the shock wave has passed through the interface

boundaries. However, a critical comparison of the pressure distributions along the

centerline of the channel, as plotted in Fig. 11, shows that the chimera scheme

predicts a faster moving shock in the tube, while the present DRAGON grid and

the single grid results coincide, indicating that the shock is accurately captured

and conservation property well preserved when going through the region of the

embedded DRAGON grid.
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Figure 12 DRAGON gridforletters_CFD'.

Case 2: Supersonic Shock Passing "C"-Body

This case is intended to show (1) the effectiveness of the DRAGON method for

handling complex geometries involving odd shapes and composites of different grid

topologies, and (2) the performance of the solution near the hybrid grid region.

Figure 12 shows the DRAGON grid generated for the letters "CFD" according to

the procedure outlined in this paper. In this example, we have hybridizations of

"C-H" grids for letters "C" and "F" and "O-H" grids for "D'. In "F", there is also a

hybridization of "C-C" grids. The strength of the chimera and thus the DRAGON

methods is exemplified here since (1) each letter is wrapped (easily) with a body-

conforming grid which also well resolves sharp corners, and (2) each letter-grid is

generated independently and can be moved about at will without affecting other

grids. Furthermore, it can be imagined readily (although not demonstrated here)

that grid enrichment for resolving geometry or flow details can be added on in a

specified region, or vice versa for the reverse process.

Next we show the time evolution of flow as a supersonic shock starts moving

toward the "C'-body. Figure 13 displays pressure-contours snap shots of the flow

at three representative times. It should be noted that the contour lines smoothly

cross the intersection boundaries of the structured and unstructured cells. Figure

14 displays the close-up view of the flow near the corners in "C" at the last

instant. Note in both figures that small gaps interrupting the contour lines are

observed along the interface boundaries because cell center values are displayed

in the structured grid region while in the unstructured grid region variables are

ploted at cell vertices.
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Figure 13 Evolution of flow, as depicted by pressure contours, al)out the =C= at, three representative

times.
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Figure 14 Close-up view o[ pressure contours about the _C _ at t ---- 4.8.
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6 CONCLUSION

In this paper we presented a new approach, termed the DRAGON grid, that uses

non-structured meshes to replace the arbitrarily overlapped structured regions

in the framework of the chimera grid. It is designed to further enhance the

flexibility of the chimera embedded-grids technique and to enforce conservative

grid communication between embedded grids. Numerical results have born out the

validity of the DRAGON method. Currently we are focusing on enhancements for

unstructured grid solver and generation in 3D; results will be reported soon.
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