
,,_4s ¢/ s p - _ 7 - 206188 11i7_-_-i.-<<;i.

October 1997 UILU-ENG-97-2230
CRHC-97-17

University of Illinois at Urbana-Champaign

Hierarchical Simulation to Assess Hardware

and Software Dependability

Gregory Lawrence Ries

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801

i
°

j Form ApprovedREPORT DOCUMENTATION PAGE OMBNO0704-0188

PuOli¢ tlloortulg O_jtOett for g/is COILnl_l Ot k_lormalJon ul 0stJmall_l to avora_ I Ilour p_' tolkooflse, =3¢du¢1i1_ 1110 time lot tIIV.NlWW_ _SttUClJO_$. _NItCP, i_ I=olltzttg ¢l&ta IOulC_lk
gamonng _ mit_ntame'_ the .data oedod, and ccmplecrDg _ rev,4wmg I/'1o ¢_4_Jon of information. Sen_ ccn_nent rogsn_n 9 mls t_n:lcm estk, nltms or Imy o6_er 8skoect o¢ _1$

¢olle¢1_ O_ infofrtlitlllOrl. IR_lUdll_g SR._AIt_IS fOr re(l_ ttuJ I_gtt_.41ft. Io WIMII_tO_I He4(klult_¢Nll Sefvlcei, 0lrlctOtairo for unformilm_l Ogerationj and Rel0ons, t215 Jeffer_n
Oz_8 Hi_q=y, State 1204. Artington, 22202-4302. end to me ,,.mtce of Manzgement =rod Budge(. Psaerwork Reduction Prolect (0704-O188). Wlshmgton, DC 20503.

1. AGENCY USE ONLY (Leave blank) J 2. REPORT DATE
I

4. TITLE AN0 SUBTITLE
Hierarchical Simulation to

Dependability

16. AUTHOR(S k
L;regory Lawrence Ries

3. REPORT TYPE AND DATES COVERED

Assess Hardware and Software

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

NASA NAG-I-613

DABT63-94-C-0045

Coordinated Science Laboratory

University of lllinois

1308 W. Main St.

Urbana, IL 61801

_9. SPONSORING/MONITORING AGENCY NAME(S)ANDADORESS(ES)
NASA Langley Research Center

8. PERFORMING ORGANIZATION
REPORT NUMBER

UILU-ENG-97-2230 (CRHC-97-1D

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Hampton, VA 23681

_ DARPA/ITO
3701N. Fairfax Dr.

11. UPPLEMENTARY NOTES
The views, opinions and/or findings contmned in this report are those of the author(s) and should not be const_ed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

r12a. DISTRIBUTION /AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

[Approved for public release; distribution unlimited.

i-13. ABSTRACT (Maximum 200 words)

This thesis presents a method for conducting hierarchical simulations to assess system hardware and software dependability.

The method is intended to model embedded microprocessor systems. A key contribution of the thesis is the idea of using

- fault dictionaries to propagate fault effects upward from the level of abstraction where a fault model is assumed to the system
level where the ultimate impact of the fault is observed. A second important contribution is the analysis of the software

behavior under faults as well as the hardware behavior. The simulation method is demonstrated and validated in four case

studies analyzing Myrinet, a commercial, high-speed networking system. One key result from the case studies shows that the
simulation method predicts the same fault impact 87.5% of the time as is obtained by similar fault injections into a real

Myrinet system. Reasons for the remaining discrepancy are examined in the thesis. A second key result shows the reduction

in the number of simulations needed due to the fault dictionary method. In one case study, 500 faults were injected at the

chip level, but only 255 to the level. Of these 255 110 sharedpropagated system faults, identical fault dictionary entries at the

system level and so did not need to be resimulated. The necessary number of system-level simulations was therefore reduced

from 500 to 145. Finally, the case studies show how the simulation method can be used to improve the dependability of the

target system. The simulation analysis was used to add recovery to the target software for the most common fault propaga-

tion mechanisms that would cause the software to hang. After the modification, the number of hangs was reduced by 60% for

fault injections into the real system.

14. SUBJECT TERMS
fnul_ dzc_ionary, hierarchical

software dependability

7
!_7 SECURITYCLASSiFiCATIONI_8.SECURITYCLASSiFiCATiON

OR REPORT I OF THiSPAGE-t UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500

simulation, hardware dependaoilzty

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSITIED

15. NUMBERIFPAGES
7g

I

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Pre_._)ed by ANSt S|d. 239-18

HIERARCHICAL SIMULATION TO ASSESS HARDWARE

AND SOFTWARE DEPENDABILITY

BY

GREGORY LAWRENCE .RIES

B.S., Case Western Reserve University, 1992

M.S., University of Illinois, 1995

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois

°..

111

HIERARCHICAL SIMULATION TO ASSESS HARDWARE

AND SOFTWARE DEPENDABILITY

Gregory Lawrence Ries, Ph.D.

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1997

Ravishankar K. Iyer, Advisor

This thesis presents a method for conducting hierarchical simulations to assess sys-

tem hardware and software dependability. The method is intended to model embedded

microprocessor systems. A key contribution of the thesis is the idea of using fault dictio-

naries to propagate fault effects upward from the level of abstraction where a fault model

is assumed to the system level where the ultimate impact of the fault is observed, and

a second important contribution is the analysis of the software behavior under faults as

well as the hardware behavior.

The simulation method is demonstrated and validated in four case studies that analyze

a commercial, high-speed networking system called Myrinet. One key result from the case

studies shows that the simulation method predicts the same fault impact 87.5% of the

time, as is obtained by similar fault injections into a real Myrinet system. Reasons for

the remaining discrepancy are examined in the thesis. A second key result shows the

reduction in the number of simulations needed due to the fault dictionary method. In

one case study, 500 faults were injected at the chip level, but only 255 propagated to

the system level. Of these 255 faults, Ii0 shared identical fault dictionary entries at the

system level and so did not need to be resimulated. The necessary number of system-level

simulations was therefore reduced from 500 to 145. Finally, a third result in the case

iv

studies shows how the simulation method can be used to improve the dependability of the

target system. The simulation analysis was used to add recovery to the target software for

the most common fault propagation mechanisms that would cause the software to hang.

After the modification, the number of hangs was reduced by 60% for fault injections into

the real system.

V

ACKNOWLEDGEMENTS

I would like to thank my advisor, Ravi Iyer, for his guidance throughout this work. I

would also like to acknowledge the contributions of Zbigniew Kalbarczyk, Jagdish Patel,

and Myeong Lee to the hierarchical fault model case study, and those of David Stott

to the validation case study, both of which are presented in this work. I would like to

thank my thesis committee, Bill Sanders, Bharghavan Vaduvur, and Sharad Mehrotra,

for their input into this work. Finally, I would like to thank my parents for their help

and support, especially during the hectic times of my preliminary and final exams.

TABLE OF CONTENTS

Page

1. INTRODUCTION .
1.1 Related Work and Motivation .
1.2 Contributions .
1.3 Additional Background .

2. MULTILEVEL SIMULATION VIA FAULT MODEL ABSTRACTION . .
2.1 Fault Dictionaries .

2.1.1 Problems with the fault-dictionary method
2.2 Trace-Driven Execution .
2.3 Special Techniques .

2.3.1 Process-interaction simulation
2.3.2 Object encapsulation .
2.3.3 Operator overloading .
2.3.4 Variable reference mapping .
2.3.5 Custom pointer class .
2.3.6 Backwards and forwards translation

3. BRIEF DESCRIPTION OF MYRINET
3.1 Myrinet Switches .
3.2 Myrinet Host Interfaces .
3.3 Myrinet Control Program .

4. CASE STUDIES .
4.1 Modeling a Single Host Interface .

4.1.1 System model .
4.1.2 Fault model .
4.1.3 Results.

4.2 Modeling an Entire Myrinet LAN With Validation

vii

.

4.3

4.4

4.2.1 System model

4.2.2 Fault model

4.2.3 Results

4.2.4 Discussion

Inclusion of Recovery to Improve Dependability

4.3.1 Recovery added

4.3.2 Results

Incorporation of a Device-Level Fault Model

4.4.1 Fault dictionary hierarchy

4.4.2 Results

CONCLUSIONS

5.1 Summary

5.2 Future Work

REFERENCES

47

48

51

54

58

58

60

62

63

66

70

70

71

75

VITA 78

Vlll

LIST OF TABLES

Table Page

4.1: A sample set of fault dictionary entries

4.2: Number of errors by category for simulation and SWIFI

4.3: Comparison of errors before and after recovery was added

4.4: Breakdown of number of errors by category

4.5: Breakdown of number of errors by category and instruction type. . .

38

51

60

67

68

ix

LIST OF FIGURES

Figure Page

2.1: Example of hierarchy of simulation abstraction levels
2.2: Picture of the trace-based method

3.1: Block diagram of host interface

4.1: Picture of the simulated network :

4.2: A block diagram of the MCP showing the "send message" module...

4.3: Number of faults leading to given number of corrupt words

4.4: Effect on messages sent during fault lifetime

4.5: Target system for fault injection (simulation and SWIFI)

4.6: Diagram of fault injection region

14

2O

28

33

36

41

45

49

49

1. INTRODUCTION

This thesispresentsa hierarchicalsimulation method to assesshardwareand software

dependability that usesa detailed, low-levelfault modelwhilestill producingsystem-level

results. The method is basedon the key ideaof usingfault dictionariesto propagatefault

effectsfrom onelevelof abstractionto another,from lowestto highest, and on techniques

to model the systemsoftwarebehaviorunder faults aswell asthe hardware. Using these

ideas,a fault model may beassumedat a very low level,for instancethe transistor level,

but the impact of faults may be evaluated at the system level, including modeling the

changein the systemsoftwarebehaviordue to the fault.

The techniqueis intended to help closethe loop in a design-for-dependabilityprocess

in computer systems. In sucha process,a systemdesignis developedto provide a given

levelof dependability aswell asperformance.Ideally, the performanceand dependability

of the designareevaluatedbeforea prototype is constructedin order to correct deficien-

ciesin the design. Without this early evaluation,costly redesignmay be necessaryafter

a prototype hasbeenbuilt. In order to closethis design-evaluate-redesignloop, however,

analytical or simulation techniquesare required that can predict system dependability

in the absenceof a prototype. Becausethe techniquepresentedin this work is basedon

simulation, it can be applied to dependability evaluation in the designphase.

At this point, the meaningof the term fault dictionary as it is usedin this work will

be defined. A fault dictionary details the impact or faults on the behavior of some subset

of the target system in terms of the change in that subsystem's behavior due to the fault

as seen from outside the subsystem. As implied by the word dictionary, a fault dictionary

contains many entries, and each entry details the impact of one fault (or of a set of faults

with identical impacts) on the behavior of the chosen subsystem. The dictionary is used

to model the faulty behavior of the subsystem by considering the subsystem as a black

box and modifying its fault-free behavior according to the dictionary entry for the desired

fault. In this way, the impact of the fault is raised from the detailed level under which it

was described in the subcircuit to the more abstract level in which the subcircuit is only

a component. Further details and examples of the use of fault dictionaries in this work

will be given in Chapter 2.

The remainder of this chapter will discuss related work in this area and provide some

motivation for the development of the method presented here. The next chapter discusses

the method in more detail. Chapter 3 describes Myrinet, which is a commercial network

that is used as a target system in the case studies presented in this work. Chapter

4 discusses those case studies, including demonstrating the use of fault dictionaries,

validating the simulation model of the Myrinet, and showing how the analysis provided

3

by the tool can be used to improve the target system.

presentssomeconclusionsand future work.

And, finally, the last chapter

1.1 RelatedWork and Motivation

There are a number of ways to analyze the dependability of a system. A general

overview of measurementtechniquesfor dependability evaluation, including simulated

fault injection, physical fault injection, and measurement-basedanalysis, is given in [1].

More detail on physical fault injection can be found in [2],while softwaretechniquesfor

fault injection aredescribedalongwith the FERRARI project in [3].

Both physical fault injection and softwareimplementedtechniques,however,require

at leasta prototype systemto analyze.Thesemethodsare thereforenot well suited to the

designphaseof a product, wheresucha prototype is not available. Instead, simulation

or analytical techniquesareusedin this phase.

There are somestudies that concentrateprimarily on modeling the systems at a

softwarelevel. Modelsat this levelareoften graph-based,andmay usestochasticactivity

nets (SANs), similar to [4], or are analytic in nature and are usedto predict software

reliability under software faults basedon testing data [5]. The difficulty with these

methodsis that somehigh-levelfault modelmust be assumed.For the analytic methods

to predict software reliability from testing data, these fault modelscome from failures

observedduring the test phase.In othercases,thesetechniquesareusedafter a prototype

4

of the systemisavailable,and sofault modelscanbetaken from observationof the system

in the field. Suchdata is not availableduring the designphaseof the system,however.

Both simulation and analytical techniqueshavetheir placein dependability analysis.

In this study, however,we concentrateon simulation techniquesbecauseof their capa-

bility to handle high levelsof complexity, to employ generalizeddistributions for fault

arrival or other processes,and to expresshardware designsand softwareprotocols very

naturally. It should benoted,however,that employingsimulated fault injection to study

dependability, as opposedto analytical techniques,meansconfronting the problemsof

repeatedexperiments,fault coverage,and confidenceintervals.

There are severalsystem-levelsimulation tools that can model the hardware of a

system. REACT is an exampleof one such tool that operatesonly at high levels of

abstraction, modeling CPU's and memoriesas either good or faulty [6]. ADEPT and

MEFISTO are examplesof simulation tools that useVHDL to allow analysis from the

logic level to the system level [7, 8]. Someof these tools can also model the software

executing on the systemin an abstract way. Noneof these tools, however,models the

changein the softwarebehaviordue to a fault.

Finally, manydifferent algorithms for simulating the impact of faults at the gate level

havebeendeveloped.Thesetools are typically designedto determinethe fault detection

coverageof a set of test vectors. Someof the strategiesemployedin thesealgorithms

include concurrent fault simulation [9], parallel fault simulation [10], deductive fault

simulation [11], or a combination of the three [12]. While thesestrategieshave been

shown to be very effective in accelerating fault simulation a t the gate and switch levels,

they are not easily applied to system-level simulations, particularly when modeling the

detailed behavior of the software as is done in this thesis. However, this thesis does make

use of multiple simulation levels, and where gate-level simulations are done, techniques

such as concurrent or parallel simulation could be applied t o that part of the overall

method. An example of combining concurrent fault simulation with a fault dictionary

analysis is described in 1131.

The difficulty in modeling software under faults is that the software behavior must

be tied to the hardware architecture. Very abstract views of the software lack these

connections and require the use of abstract fault models. Low-level views of the software,

which allow more detailed fault models, are costly to simulate, however. Thus, a tool

is needed that can simulate a high-level view of the hardware and software in a system

and yet still maintain the connections between that behavior and views of the system a t

lower abstraction levels. Through these connections, a detailed fault model that changes

the state of the hardware can be mapped to a change in the state of the software.

1.2 Contributions

Four key contributions to the state of the art are made in this thesis. The first is

the idea of using fault dictionaries to raise fault abstraction levels from the level where

a fault model is assumed to the system level where the impact of the fault is observed.

The second contribution is a technique to assess the behavior of the system software

under faults as well as assessing the hardware dependability. Third, four case studies are

presented to demonstrate the use of the hierarchical simulation method and particularly

how the fault dictionary idea is applied to a real system. Finally, the fourth contribution

is a validation of the simulation method by comparison to software-implemented Fa~l t

injections into a real system.

1.3 Additional Background

This work builds upon the previous research in the areas of system-level ~imulat~ion,

multiple simulation levels, and fault dictionaries to provide such a tool that can connect

hardware and software behavior in the presence of low-level faults. Some of the related

work on these basic methods is presented in the following paragraphs.

The system-level simulation environment this thesis makes use of is called DEPEND

[14]. This simulation environment makes use of a process-oriented simulation strategy and

the power of C++ to allow a very natural description for computer systems and software.

DEPEND has a library of high-level system components from which simulations can be

constructed, such as CPUs or disks.

There is support within DEPEND for an abstract model of software behavior repre-

sented by a probabilistic control flow graph [15]. Faults are modeled abstractly according

to the corruption they cause in memory, but only the good or faulty states of memory

words are tracked, not their actual values. Such a flow-graph model is therefore best

suited to abstract simulation of highly reliable systems for long periods of time as opposed

to the detailed software behavior that is analyzed in this thesis. This thesis therefore ex-

tends DEPEND with a new technique for simulating software behavior in detail, as well

as providing the fault dictionary mechanism by which the impact of detailed, low-level

faults may be propagated up to the system level for evaluation.

The use of multiple simulation levels has been explored for fault simulation a t the

logic level. One technique, called mixed-mode simulation, represents a subset of a circuit

where faults will be injected a t the electrical level while the outputs from that subset are

propagated a t the gate level [16]. Another more efficient technique dynamically switches

the subcircuit where faults are being injected from the logic level to the electrical level

for only the period surrounding fault injection [17].

The term fault dictionary was first coined in the context of raising fault abstraction

levels in a description of a tool called FOCUS [13, 161. In FOCUS, a fault dictionary

was used to reduce the resource requirements of multilevel simulation and to propagate

fault effects from transistor-level models of CPU subcircuits up to a gate-level model of

the entire CPU. A similar use of fault dictionaries to go between the transistor and gate

levels was made in [18].

One of the major contributions of this work is the extension of the idea of fault dictio-

naries to a generalized mechanism to propagate fault effects between any two neighboring

levels of abstraction of a system. In particular, the application of fault dictionaries to

modeling software behavior and the representation of fault dictionaries a t the system

level as a list of corrupted software variables and the corrupted program control flow due

to a fault in a given program module is new to this work. Also defined by this thesis

are four simulation levels where the fault dictionary technique can be effectively applied,

allowing fault effects to be propagated upwards from the device-physics level to the tran-

sistor level. Finally, the structure of the fault dictionary between each of the four levels

is also described.

2. MULTILEVEL SIMULATION VIA FAULT MODEL ABSTRACTION

The simulated fault injection method presentedhere is designedto achievetwo key

goals. First, it should simulate the system at a high level of abstraction to provide a

very fast simulation of the systemhardwareand softwareat the sametime that it injects

detailed faults and obtains the proper responseof the system to those faults. This goal

is achievedby conducting multiple levelsof simulation and propagating fault effectsup

through eachsimulation level through the useof fault dictionaries. The secondgoal is

to avoid simulating the systemwhen it is fault free. This goal is met by performing the

simulation in a trace-drivenmannerwhereuninterestingportions of systemexecutioncan

be skippedby jumping aheadto a newstate taken from a trace of the fault-free system.

Both of theseaspectsof the systemwill be describedin their own sectionsbelow.

In addition, a number of techniquesare used to allow the real code of the system

software to be usedin the highestof the simulation levels. Usingthe real codeallows the

softwarebehavior to be describedin a very natural wayand ensuresthat the simulation

takes into accountthe specificimplementationdetails of the software. It also allows the

10

softwarebeingmodeledto gothrough severalversionswithout painstakingredevelopment

of a new model or extensivemodification of the old one. However,becausethe system

software may rely on direct communication with special-purposehardware in the real

system (as the software in our casestudies does), it is necessaryto use a number of

techniquesto provide a similar environment in the simulation so that this codecan be

usedwith minimal modification. Thesetechniquesare describedin the sectionfollowing

the fault dictionaries and trace-drivenexecution.

Finally, although the expositionof thefault dictionary methodis a major contribution

of this thesis, the real test of the method describedhereis its application to the analysis

of a real system. For that reason,another important contribution of this thesis is the

presentation of the casestudies in chapter four that show the hierarchical simulation

method works on a real system and validate it against fault injections done on real

hardware.

2.1 Fault Dictionaries

A definition for fault dictionary hasalready beengivenin the introduction chapter,

but for convenience,that definition is repeatedhere. A fault dictionary details the irr_pact

of faults on the behavior of some subset of the target system in terms of the change in

that subsystem's behavior due to the fault as seen from outside the subsystem.

The key function of the fault dictionaries is to raise the abstraction level of faults

so that their impact at the system-level can be determined. The abstraction level of a

fault is raised by carefully choosing the subsystems for which a fault dictionary will be

generated. The boundaries of the subsystem are placed so that information specific to

the abstraction level of the subsystem is naturally contained within that subsystem while

the outputs of the subsystem can be easily represented a t a higher abstraction level.

As an example, consider a stage in a microprocessor pipeline. The stage consists,

basically, of some latches a t the input that contain the outputs of the previous pipe

stage, a block of logic that computes the outputs for the current stage, and latches a t the

stage outputs to hold those outputs for use in the next stage. This pipeline stage could

be used to generate a fault dictionary for use between the transistor and gate levels.

Faults would be injected into a transistor-level model of the pipe stage. Within one clock

cycle, the faults would either have made a difference in the value of the output latches

or have died out. The fault dictionary entry for each fault would store which outputs

were different. Because of the latches a t the outputs, the timing, voltage, and current

details of the pipeline stage logic block are contained within the subsystem. Outside

the subsystem, only the latched values are important, and these values can be easily

converted to digital logic values and propagated through a gate-level model of the rest

of the system (which is fault free).

There is a second advantage to using a fault dictionary. A fault dictionary can also

help t o reduce the number of simulations that must be done. Many of the faults injected

into the transistor-level pipeline stage mentioned above may not propagate to the outputs

and cause a latch error. All of these faults will produce no fault dictionary entry and will

proceed no further up the hierarchy of simulations. As well, many faults may produce

identical patterns of latch errors and, therefore, identical fault dictionary entries. In this

case, it is only necessary to note the number of faults represented by the dictionary entry.

Only one simulation will have to be run at the higher simulation levels in the hierarchy

to determine the impact of all of the represented faults.

An ideal fault dictionary wouldn't loose information in the transition from one ab-

straction level to another higher one. In practice, however, there is some information

lost. Consider again the pipeline stage mentioned above. While the latch filters out most

of the timing and voltage information in the transistor-level model, it doesn't filter all of

it. In most cases, the latch will end the cycle with a solid one or zero and no information

will be lost. In some cases, however, the latch may come to some intermediate value

or continue to settle to a one or zero after the latch has closed. In these cases, there

is still some information in the voltage or timing of the latch value that will be lost by

considering the latch voltage as a digital logic value that stays constant for the entire

cycle as is assumed in the gate-level model.

The fault dictionaries are used by conducting multiple independent simulations at the

different abstraction levels. One fault dictionary is generated through repeated simulation

of the chosen subsystem for many different faults. The dictionary is then used to represent

the subsystem's faulty behavior in a simulation at the next higher abstraction level. In the

pipeline example, for instance, assume the microprocessor had five pipeline stages. Each

stage could be considered as a subsystem, and a fault dictionary could be generated

13

for each,beginning with transistor-level fault models and ending with gate-level latch

errors. These fault dictionaries would then be used in a gate-level simulation of the

entire pipeline. Whena fault occurredinsideoneof the pipe stages,the inputs of the pipe

stagewould be examinedand a suitable dictionary entry would be chosenrepresenting

the gate-levelimpact of onefault in that pipe stage.The latch outputs of that pipe stage

would bemodified accordingto the dictionary entry, and the gate-levelsimulation would

continue. Thus, the simulationsthat generatea fault dictionary and the simulations that

use it run independently.

In this work, four simulation levelshave beendefinedwhere the concept of a fault

dictionary canbe effectivelyapplied to raisethe abstraction levelof faults. A diagramof

the hierarchyof thesesimulation levelsis givenin Figure 2.1. In the figure, fault models

are representedby the rounded rectangles. The rounded rectangle in the upper left,

labeled "Heavy Ion Particle Impact," representsthe assumedfault model of a heavy-ion

particle striking a transistor junction in a microprocessor.The remaining three rounded

rectanglesrepresentfault dictionarieswhich canbe viewedas abstractionsof the heavy

ion fault modelat highersimulation levels. Eachof the three fault dictionaries represents

a translation of fault effectsbetweentwo simulation levelsasdenotedby the arrows. For

instance, the "Output Current Surge" dictionary translates betweenthe device-physics-

level representationof faults and the transistor-levelrepresentation.

There are four basic simulation steps depicted in the figure. In the first step, two

simulations,one at the device-physicsleveland one at the transistor level, are combined

Gate in Adder

Transistor-Level Adder Circuit

Second Level oooooooo ooool 20%

Software Module Execution 00010 3%
00011 1 %
00100 5%

Message 1 hostSendDm

Interface Program
Trace

L 1

I Ox14b14 0x1
next module "hostSendDmaU

2 Oxl3e04 Ox13cfO
Ox14b10 Ox0
Ox14b14 Ox0
Ox14b18 Ox8
next module "event loop"

3 0 x 3 ~ ~ 5 8 Oxddc0009c
next module "hostSendDma"

Figure 2.1: Example of hierarchy of simulation abstraction levels.

15

to determine the appropriate current burst at a gate output due to a heavy ion par-

ticle impact. The simulations at this level produce the "Output Current Surge" fault

dictionary representing current surges due to ion impacts in different types or sizes of

gates. Each dictionary entry models one ion impact as a piecewise-linear analog current

waveform recorded at periodic timesteps throughout the fault's lifetime.

The current burst fault dictionary becomes the fault model for the next step, a

transistor-level simulation of a subsystem of the processor, perhaps the adder. In this

second step, the operation of the adder is simulated for one cycle while the current burst

propagates. During this time, the current burst will either die out or affect one or more

output latches of the circuit. Any errors on the output latches at the end of the cycle are

recorded as the new gate-level fault model for the original particle impact. The resulting

fault dictionary, represented by the "Latch Error Pattern" box in the figure, actually

represents the impact of faults in the subcircuit probabilistically. For a given input com-

bination, the probability of observing a given latch error pattern will be recorded in the

dictionary. Functional decomposition is used to prevent the number of inputs from over-

whelming the simulation effort, and any symmetry present in the subcircuit may be used

as well.

The latch error fault dictionary is used in the third step where the entire micropro-

cessor is simulated running one module of its software in a cycle-accurate simulation.

During the execution of the module, the operation of a microprocessor subcircuit, an

adder in the example thus far, is corrupted by modifying its outputs according to the

16

latch error pattern selectedprobabilistically from the appropriate dictionary entry. At

the end of the module'sexecution, the memoryand processorstate are then examinedfor

changesin the softwarestate or control flow. The corrupted memoryand control flow are

recordedin the third fault dictionary, representedby "Memory Error Pattern and Er_ors

in Control Flow" in _hefigure. In this fault dictionary, the memory locationscorrupted

due to the fault are enumeratedalong with their faulty values, and the next module

that will be executedis alsolisted in casethe control flow betweensoftwaremoduleswas

changedby the fault.

The corrupted memory and control flow becomethe fault model for the particle

impact at the system-level.During the simulationof the softwareexecutionat the system

level, the fault model is injectedby modifying the softwarestate and control flow at the

end of the appropriate module (the samemodule simulated when the dictionary was

computedin the previousstep). The errorsare then propagatedthroughout the software

by simulating its executionuntil the ultimate impact of the fault is known.

While it makessenseto follow the path of a singlefault aswasdonein the description

above,the actual simulation proceedsdifferently. Insteadof eachsimulation level being

invokedone at a time, the simulation levelsoperateconcurrentlybut on different faults.

For example, imaginethat onesimulation hasbeenconductedat the device-physicslevel,

resulting in a current burst fault model. That fault model is storedasthe first entry in a

fault dictionary betweenthe device-physics-levelstepand the transistor-levelstep. Next,

the device-physicssimulation may pick up a new fault and begin a secondsimulation.

17

At the sametime, the transistor-levelsimulation may pick up that current burst in the

first fault dictionary entry and begin the correspondingtransistor-level simulation.

Note that it is not necessaryto alwaysbeginwith a device-levelfault model. If less

accuracyis desired, fault injection could beginat levelsabovethe device level, such as

a bit-flip fault model at the logic level. If this is the case,however, then the impact

of implementation details such as supply voltage levels, accurate circuit timing, and

transistor sizing will not be consideredin the final results.

2.1.1 Problemswith the fault-dictionary method

There is one major problem that must be overcomein applying the fault dictionary

method. That problem is the fact that the entries in the fault dictionary depend not

only on the fault that is being injected but also on the inputs to the chosensubsystem.

For example, the impact of a fault in the instruction decodeunit may depend on the

instruction being decodedaswell asthe fault injected.

At the transistor and gate levels,the solution to this problem is to carefully choose

the subsystemfor which a fault dictionary will be generatedso as to keepthe number

of inputs down to a manageablelevel. For example, rather than choosing the entire

instruction decodestageof a pipeline asa block for a fault dictionary, it may be more

manageableto look at the instruction decodestageas being a combination of several

circuits. One examinesthe highestopcodebits to decodethe instruction type. Another

examinesthe middle bits to decodesourceregisters.Finally, a third examinesthe lowest

18

bits to determine the result register. Symmetry may be used in addition to the functional

decomposition to further reduce the number of inputs that must be considered.

At the upper simulation levels, though, the different input states that must be con-

sidered are the different states of the software when it enters the chosen module for which

a fault dictionary will be developed. In this case, it is not so clear how to reduce the

number of software states that will be considered in forming the fault dictionary. A

claim is made here that, for the types of systems for which this technique was developed,

embedded microprocessor systems, the state of the software upon entering a block is not

as important in determining the impact of a fault as is the particular fault itself or the

design of the module. In other words, the impact of many faults within the module will

be independent of the software state when entering the module or will be dependent on

only a couple variables which are major inputs to the module. If such is really the case,

then only a sampling of the software states upon entering a module need be considered

when developing a fault dictionary for that module. This claim will be substantiated in

the second case study.

Finally, note that all fault injection methods, including measurement, must deal with

this problem of the impact of different software states during fault injection. The problem

is not further exacerbated by the use of fault dictionaries. Thus, similar techniques can

be applied with fault dictionaries as are applied elsewhere.

19

2.2 Trace-DrivenExecution

A trace-drivenmodelof the softwareis usedat the system-levelto allow the simulation

to skip over uninteresting periods of the software'sexecution (when the system is fault

free). The trace consistsof a seriesof snapshotsof the softwarestate at different points

throughout its workload. In the casestudies that are presentedlater, thesesnapshots

are taken from anactual fault-free run of the softwarefor the network workload that was

used.

The trace is usedin the followingway. Whena fault is to be injected, the state of the

softwareis initialized to the latest point that the state is known beforethe fault occurs.

The softwarecode is then simulated from that point up until the fault injection. The

fault is injected by corrupting the softwarestate as dictated by a fault dictionary entry

for the module of the softwarewhich is beingexecutedwhenthe fault occurs. Execution

of the program code then continuesuntil the outcome of the fault injection is known

and the softwarecan be said to be in a good state. This may mean that the software is

simulated until it crashesand is reloadedin a good state,or it may mean the simulation

continuesuntil it is feasibleto comparethe state to that of the goodprogram, and those

states are the same. In either case,the next step is to determine the time of the next

fault and repeat the processof initializing the programstate. A picture of the trace-based

simulation method is given in Figure 2.2.

2O

Software Execution

Send message module

fault occurs here

Picture of the real software execution

fault effect known here

Picture of simulated software execution

Send message module

Initialize software state from trace

simulate execution of software to propagate errors

I I

t I

, j s_tp to
I I

i , next
I I

' ' fault
I I

I I

corrupt sw state to model fault

(model comes from dictionary)

Figure 2.2: Picture of the trace-based method.

2.3 Special Techniques

All of the special techniques that are described in this section are used only in the

system-level simulation to allow the real code of the software to be used in modeling the

system's software behavior. It is not necessary to use these techniques in any of the lower

simulation levels that were described in the fault dictionary section. The first of these

techniques is provided by using the DEPEND simulation engine and environment. The

middle four techniques are all provided by using an advanced C++ compiler (and thus

are only directly applicable to system software written in C or C++, although it may

be possible to modify them for software in other languages). Finally, the last technique

is is provided outside of the simulation environment to transfer system state between

the system-level simulation and the next lower level (behavioral level in the case studies

presented later).

21

2.3.1 Process-interaction simulation

Process-interaction is a strategy for representing a discrete event simulation [19]. In

this strategy, the discrete events are grouped together in a sequence according to the

process they are part of. For example, a database search could be considered as a

process containing a sequence of many discrete events each of which access a database

to read some keys. All of the processes in a simulation are executed together, much as

a multitasking operating system executes many program tasks together. However, when

a process is waiting for the simulation time that its next event should be executed, it is

temporarily blocked.

This type of representation allows a very natural representation of computer systems

and is one of the core features of the DEPEND simulation engine and environment

used in this work. The strategy was key to allowing the use of the real software code

in modeling the software behavior of the target system. With the process-interaction

strategy, the software behavior could be simply represented as one process which executed

the real program code instrumented with occasional time delay statements (representing

the passage of time as the code was executed).

2.3.2 Object encapsulation

The process-interaction strategy allowed the easy representation of one copy of the

software, but it was not sufficient by itself to allow the representation of multiple copies.

This is because the software may make use of global variables which would be incorrectly

22

shared by all of the copiesof the softwareexecuting in the simulation. In order to

avoid this collision for global variableswithout extensivemodification of the software,

the object-orientednature of C++ wasused.A C++ object wascreatedto representone

copy of the software,and all of the global variablesusedby the softwarewereallocated

in that object. In this way, each copy of the softwarehad its own copy of the global

variables,and the C++ compiler would automatically ensurethat the code associated

with one particular object would accessthe variablesalsoassociatedwith that object.

2.3.3 Operator overloading

After using the above two techniques, it is possible to simulate the execution of

multiple copiesof the system software. Onefurther problem with using the real code,

however,is the fact that the simulation environment may be different than the environ-

ment in which the codewould normally execute. In the real environment, there may be

memory-mappedI/O or other specialpurposehardware. In order to provide a similar

environment in the simulation, extra simulation processeswere created to perform the

functions of the missinghardware,and C++ operator overloadswereused to direct the

C++ compiler to automatically generatethe necessarycommunicationbetweenthe real

code and the new processesthat simulate the special hardware,avoidingany necessary

modification of the real code.

23

2.3.4 Variable referencemapping

The remaining techniquesare all used to help model the behavior of the software

under a fault. Variable referencemapping is used to arrange the software variables

for one simulation copy of the system software into a memory map that matches the

arrangementfor the real system. This arrangementis done by using a feature in C++

called references.A referenceassociatesa new variable name with an already existing

variable. This feature was used to create the desiredmemory map by first allocating

a large array to model the system memory. Then, the normal global variables of the

program are changedto referenceswhich are mapped to the appropriate locations in

the already existing array. In this way,a duplicate of the real system'smemory map is

created in the array modeling the systemmemory.

2.3.5 Custom pointer class

Another techniquethat wasusedto provide moreaccuratesoftwareexecutionin the

presenceof a fault and aneasiertranslation for fault modelswasthe creation of a custom

classto representpointers in the simulatedsystem. This custom pointer classacted, as

muchaspossible,the sameasa standard C++ pointer with the exception that it always

pointed within the memoryarrayallocatedfor the simulatedsystem.This custompointer

classprovided two functions. It helpedto preventthe simulatedsystemfrom overwriting

regionsof memory in the simulator that were not part of the memory of the simulated

system. It alsoallowedthe custompointers to havethe samevalueasthe pointer in the

24

real system would have. For example, if the array modeling the system memory were

allocated at address500, the valueof a normal pointer for the first word of the memory

would be500,not 0 as it would havebeenin the real system. By usinga custom pointer

class,the classcould take care of dealing with this offsetof 500, so the custom pointer

valuecould be storedas0.

2.3.6 Backwardsand forwards translation

The last technique,backwardsand forwardstranslation, is usedto translate the soft-

ware state from the system-levelsimulation to the next lower level (backwardstransla-

tion) or from the lower level to the systemlevel (forwards translation). Providing t,his

translation allows a state from the system-levelsimulation to be usedfor fault dictio-

nary generationin the next lower level (behaviorallevel in the casestudies). The forward

translation then allowsthe fault modelcomingout of that fault dictionary to be included

back in the system-levelsimulation. Becauseof all the techniquesdescribedabovethat

are used to make the simulation executionenvironmentand the real executionenviron-

ment for the system codeto be the same,the two translation stepsfor the casestudies

wereassimple ascopying the memoryarray from onemodel to the other.

25

3. BRIEF DESCRIPTION OF MYRINET

All of the casestudies in the following chapter that demonstrate the simulation

method discussedin this thesis usea Myrinet as the target system. For this reason,

a description of the Myrinet hardwareand softwareis providedbelow. Additional details

canbe found in the referencesor at Myricom's website (http://www.myricom.com) [20].

Myrinet is a commercial, high-speed, local area network. It is based on packet-

switched, point-to-point communicationtechnologythat was first developedfor deploy-

ment in system area networks, such as in the Mosaic multicomputer. Information can

flow along the links in a Myrinet at 1.2 Gb/s in both directions, and the total peak

bandwidth availablein a Myrinet scalesupward with the number of hostsconnectedto

the network.

A Myrinet is made up of combinationsof three key components. The first, a host

interface, is an expansionboard that connectsa host computer to the network. Second,

the Myrinet Control Program (MCP) is the control softwarethat runs on eachhost in-

terfaceboard and performs the network control functions, routing, and messagetransfer.

26

The third component,a switch, is usedto connectmultiple host interfaces(and thus host

computers) together for topographiesother than two directly connectedhosts. Eachof

thesecomponentswill be describedin further detail in the sectionsbelow,beginningwith

the switches.

3.1 Myrinet Switches

Each of the switchesin a Myrinet is a perfect crossbar.At the time of this writing,

there exist Myrinet switcheswith from 4 to 10 bidirectional ports. That meansa 10-

port Myrinet switch really has 10 input ports and 10 output ports and can form any

permutation of connectionsfrom input to output with nomore than oneinput connected

to eachoutput.

Switchescan beconnectedto other hostsor other switchesin an arbitrary, multilevel

topography. Theremay beonly oneroutebetweeneachpair of hosts,or redundantroutes

may be provided by connectingmore than the minimally necessarynumber of switches.

Connections may be added or removed from the Myrinet at any time, and the network

will automatically adapt to the new configuration.

Information flows through a switch in atomic packets. When a packet enters a switch,

the first byte of the packet designates the output port through which the packet should

leave. The switch will attempt to make that connection and will hold it until the entire

packet travels through the switch. After the packet leaves, the switch tears down that

connection and can allow some other input port to access that same output port.

27

Eachswitchprovidesonly enoughbufferingto store information in transit on an input

port should the selectedoutput port for that packetbe blocked. If such is the case,tile

switch will senda flow control messagebackalong the reversechannelfor the input that

is blockedto inform the transmitting host to stop transmission.Oncethe selectedoutput

is no longerblocked,another flow control signalwill be sent to the transmitting host to

notify it to continue transmission.Messagesare thereforebufferedin the host interfaces,

not in the switches.

3.2 Myrinet Host Interfaces

Anywherea host computer is to beconnectedto the Myrinet, a host interface board

is insertedto form the connection.The host interface board sits on the host computer's

expansionbus (suchas a PCI bus) and connectsto another host computer or network

switch through a multiconductor cable link. A block diagram of the host interface is

shownin Figure 3.1.

Each host interface board is an embeddedcomputer system. It contains a custom,

32-bit microprocessor,256K of static RAM, and additional hardwarethat connectsit to

the host computer expansionbus and the network links. The Myrinet Control Program

is executedon this custom processoron eachinterface board, and its binary image is

stored in the static RAM. The static RAM is also usedto buffer incoming and outgoing

messages.

28

32-bit, fast, static memory

(SRAM)

In

LANai Processor

Address bus

_Data bus

I r

Myrinet _"-"P_I Packet Processor DMA

interface I._.. [nterface Core engine

Timing and control signals I

I Extra logicpeculiar to the bus

Figure 3.1: Block diagram of host interface.

e_

o

o
_9

o

The custom processor on each interface board is called the LANai processor and was

designed by Myricom. It is a RISC processor with multiple general-purpose registers and

a load/store instruction set. In addition, the processor makes use of memory-mapped [/O

to provide hardware interfaces to the host computer expansion bus, the outgoing network

link, and the incoming network link. Each of these interfaces can operate concurrently

with the processor, allowing the generation of up to five simultaneous memory accesses

(instruction, data, expansion bus, incoming link, outgoing link) of which two can be

satisfied by the memory in one cycle. The processor operates at a speed of 40 MHz, and

each of the hardware interfaces can transmit one 32-bit word on each cycle.

The memory on the host interface board is accessible by the host computer as one

contiguous chunk. This feature is used both to allow the host computer to download the

29

MCP software to the interface board and to allow the host computer to communicate

with the interface by writing signals into the interface's memory.

3.3 Myrinet Control Program

The MCP is the brains of a Myrinet. It performs nearly all of the network control

functions-only simple flow control is performed by the switches. In particular, the MCP's

functions can be broken down into the following three classes: sending messages out onto

the network, receiving messages from the network, and cooperating to map the network

and determine proper routes.

The MCP sends a message by programming the memory-mapped I/O interfaces of

the LANai processor. When the host informs the interface board that a message is

ready to be sent, the MCP will perform the following steps. First, it will allocate a

buffer in its static RAM to hold the message. Next, it will construct the header of the

message, including such details as the message type, length, and destination. The MCP

then initiates a DMA transfer to get the message data from the host computer into its

buffer in static RAM through the host's expansion bus. The correct route will then be

prepended to the message from the routing table. Finally, the memory-mapped interface

for the outgoing network link will be programmed to initiate the transfer of the message

onto the network.

A receive operation contains many similar steps to a send, performed in the reverse

order. The incoming network link is first programmed to accept a message from the

3O

network into abuffer in the static RAM. Next, the messageheaderand CRC areexamined

to be sure the messageis valid and without error. (Invalid or erroneousmessagesare

dropped.) A messagebuffer on the host is then allocated for the receivedmessage,and

the expansionbusmemory-mappedinterfaceis programmedto transfer the messagefrom

the interface's static RAM to the buffer in the host computer.

The last function of the MCP, cooperating to map the network, is slightly more

complicated and will only be summarizedhere. Each interface has a unique ID, and

in mapping, this ID is used to selectone interface as the mapper. This interface will

initiate network mapping periodically, send mapping requests,collect replies, and dis-

tribute completedmaps to all other interfaces.The mapping interfaceforms its map by

sending "areyou there" type messagesexhaustivelyto the possibleports in the network.

Unconnectedports are detectedby a lack of responseto the inquiry for some timeout

period. The other interfacesin the network will only respond to mapping requestsand

periodically compute routing tableswhen a completedmap is received.In the casethat

a timeout period occurswith no responsefrom the mappinginterface,a newmapper will

bechosenfrom amongthe remainingMCPs. With this mapping protocol, a Myrinet can

dynamically adjust to changesin the network topography.

31

4. CASE STUDIES

Four casestudies were done to demonstratethe simulated fault injection method

presentedin this thesis. All four of the casestudiesuseda Myrinet asthe target system,

but each study had a different focus. In the initial casestudy, the main goal was to

demonstrate how the fault injection method could be applied to the Myrinet system.

This casestudy was thereforelimited to modelingonly a singlehost interface in detail,

anda behavioralfault modelwasused.The secondstudy built upon the first by extending

the system model to an entire Myrinet LAN and doing someverification against a real

Myrinet. The third study added somerecovery code to the Myrinet MCP software,

basedon the results of the secondstudy, in an attempt to reducethe tendency of the

host interface to hangunder fault injection. Finally, in the fourth casestudy, the focus

was on the useof the fault dictionaries to raise the abstraction level of an input fault

model from the devicelevel to the systemlevel.

32

4.1 Modeling a SingleHost Interface

This study wasdone asan initial demonstrationof the fault-dictionary-based simu-

lated fault injection method. It wasthereforelimited to modelingonly a single interface

in detail and using a behavioral-levelfault model to reducethe implementation time of

the study. As a result, the specialsystem-levelsimulation techniquesof object encapsu-

lation and custom pointer classwere not necessaryin this study. This casestudy was

first presentedin [21].

In this study, the simulated hardware consistsof the LANai processorand 256K

of memory, and the simulated softwareconsistsof the majority of the MCP program.

One function of the MCP, the network mapping, is not simulated in this casestudy

becausea full Myrinet is not simulated-a predefinednetwork workload is used rather

than simulating the behavior of multiple nodeson the network in addition to the node

undergoingfault injection. A pictorial representationof the simulatedsystemis givenin

Figure 4.1.

4.1.1 Systemmodel

There aretwo simulation levelsin this casestudy. First, a cycle-accuratesimulation of

the LANai chip and memory is usedto dodetailed simulation of onemoduleof the NICP

for the short period surrounding a fault injection, creating a fault dictionary. Second,

a system-levelsimulation is done, using the real C++ sourcecode of the software and

33

Address 3

Host 1Interface

input

workload

simulated

in

workload

simulated

Address 2

Host

Interface

Address

Host

Interface

Host
0

Interface

_Detailed simulation

of this part, only

LAN node
output workloads

(workstation) checked for correctness

Figure 4.1: Picture of the simulated network.

34

additional softwareobjects to emulateLANai specifichardware,to propagatethe errors

from the fault dictionary anddeterminetheir ultimate effectunderthe specifiedworkload.

Only a singlenodeof a Myrinet LAN is simulated in detail. A predefinedworkload is

injected at the interfaceboundary betweenthe host interface and the network and also

at the boundary betweenthe host interface and the host computer. These workloads

representarriving messagesthat are to be receivedfrom the network or sentout to the

network. The effect of a fault is determinedby examiningthe messagesoutput by the

interface to thosesameboundaries. If one of these messagesis corrupted, the proper

responseof the network to the corrupted messageis recorded (i.e., a messagewith an

illegal route will be dropped). In determining these responses,an LAN with 4 nodes

connectedto a single4-port switch is assumed,with the nodeundergoingfault injection

consideredasnode0.

Each of the simulated workloads containsa set of messagesthat arrive at specified

times during the simulation for either receivingor sendingrespectively.A pattern similar

to a parallel computation on the LAN is assumed,so the messagesfollow a repeating

pattern of sendingto all nodesand then receivingfrom all nodesa fixed-length message

with a simulatedperiod of 0.1 seconds.For this study, the data in eachmessagewasset

to an arbitrary length of 52 bytes.

35

4.1.2 Fault model

Finally, in this casestudy, faults wereinjected into the LANai processorduring only

a single module of the MCP program, although their propagation was unconstrained.

By injecting to only a singlemodule,wewereable to minimize the time spent on imple-

menting the fault dictionary simulation and concentrateinstead on modeling issues. In

this study weconstructedonly a singlefault dictionary, correspondingto the effect of a

fault in the processorduring its executionof the "sendmessage"module. SeeFigure 4.2

for a picture of someof the tasks of the "sendmessage"module. Someadditional details

of the fault injection arementionedbelow.

The module that wasselectedwas the code responsiblefor sendinga messagefrom

the LAN nodeout onto the LAN. This codehad to perform threemajor functions: trans-

ferring the messagefrom the LAN nodeto the interfacememory,preparing the message

to go out on the network, including generatinga correct route, and then transferring the

completed messagefrom the interface memory to the LAN. Execution of this module

took approximately 540cyclesof usefultime from the LANai processor,not countingcy-

clesspent in DMA transfers. For eachfault dictionary entry, a single fault was injected

during this time, uniformly distributed acrossthe 540 cycle period. At the end of the

execution of the module,all persistentvariableswerewritten out into memory,and the

contentsof the memory werecomparedto thoseof a good program run in order to find

the corrupted variables.

36

Map

Network

Functions

- M_nEvent_/

Total Send

Code Size

- 1000 lines

Faults

Injected

I Find route in route 1Here table]

_F--
I 1
f--

Receiv

Message [

Functions J

Figure 4.2: A block diagram of the MCP showing the "send message" module.

37

The faults that wereinjected in this study camefrom a behavioral-levelfault model

similar to that describedin [22].This behavioral-levelmodelwaschosenbecausea gate

or lower-levelview of the LANai microprocessorwasnot availableat the time of the

study. The fault model involves changingthe assemblyinstruction executing on the

microprocessorduring the fault in a numberof different waysto model faults in different

parts of the microprocessor.Someof the possibleeffectsof a fault in this model, selected

with equal likelihood in this study, are: wrong sourceoperandselected,sourceoperand

is corrupted, wrong destination operand is selected,additional destination operand is

selected,and destination operand is corrupted. For additional details on the possible

changesto an instruction to model different processorfaults, consult [22].

4.1.3 Results

This section will describethe resultsof the host interface simulations in two parts:

the fault dictionary generationand the system-levelsimulation.

Fault dictionary results

The first results we obtained for the host interface came from the behavioral-level

simulations that formed the fault dictionary. These results consistedof a set of zeroor

morememorywords that werecorrupted at the end of the sendmessagecodeasa result

of a single fault injection.

An exampleof a small set of dictionary entries pulled out from the 1000entries that

were computed is given in Table 4.1. Each entry consistsof a location where the fault

38

Table 4.1: A sample set of fault dictionary entries.

Loc: setup route lookup

START

28f08 0 8182

END
corrupt start of route

Loc: find route in route table

START

dd38 3 2

28f08 8183 8182

END

corrupt cached address

corrupt start of route

Loc: copy route to message

START

28f0c 0 I0000

END
corrupt end of route

Loc: set DMA parameters

START

28f30 0 54686973

28f34 0 20697320

28f38 0 736f6d65

28f3c 0 20646174

28f40 0 6120666f

28f44 0 72206120

28f48 0 6d657373

28f4c 0 61676520

28f50 0 77652077
28f54 0 696c6c20

28f58 0 73656e64

28f5c 0 2e202e20

28f60 0 2e202e00

END

Corrupt message data

(all of these entries)

39

occurred and a list of memory words that were found to have corrupted values at the

end of the simulation of the given software module. For each of these corrupted words,

the address, corrupted value, and good value are listed (in hex). (For example, in the

first entry, the variable residing at address 0x28f08 was found to have a corrupted value

of 0 rather than the correct value of 0x8182.) This information is used to identify the

corrupted software variables so that the same corruption can be simulated at the software

level as occurred at this behavioral level. In the table shown, the location of the fault is

given in terms of what the program was doing when the fault occurred, and the meaning

of the corrupted memory is given to aid the reader in understanding the character of the

dictionary-normally the location would be in hex just like the memory addresses. The

effects of four faults are depicted in the table. As a single fault may propagate to corrupt

more than one variable, the second and fourth faults have multiple entries, notable by

their multiple lines between the START and END commands.

Following is an incomplete list of possible effects to the software state that were

observed in the generated fault dictionary:

1. Corrupt start of message route

2. Corrupt end of message route/message type

3. Corrupt cached address in routing table

4. Corrupt message data element

5. Corrupt all message data

4O

6. Corrupt interrupt state machine (softwareobject)

7. Corrupt messageaddress

8. Corrupt messagechannel

9. Corrupt messagelength

10. Corrupt route in routing table

11. Corrupt pointer to message (move message in memory)

More than one of these effects may occur together from a single fault. For example,

if the message address is corrupted by a fault before the route is looked up, the wrong

route may also be written to the message, causing it to have both a corrupt address and

route.

The effect of a fault as recorded in the dictionary was found to be strongly correlated

with what the software was doing at the time of the fault injection for these behavioral-

level faults. For instance, if the software was searching the routing table to find the

correct destination and route, a fault was very likely to cause an invalid or incorrect

route. This correlation occurred because, even though a fault can cause corruption to

random memory words by corrupting the address of a load or store, the fault is much

more likely to affect the variables that are currently being computed when the fault

occurs due to the many references to these variables. Even if a fault corrupts a load or

store, resulting in corrupting a random part of memory, the variables that were b_dng

41

1200

1000

800

m

600

400

2OO

0

corrupted words

Figure 4.3: Number of faults leading to given number of corrupt words.

computed at the time are also likely to be corrupted because that load or store did not

write the correct value to those variables but wrote to the wrong destination instead.

A graph of the number of faults which caused a given number of memory words to

be corrupted is shown in Figure 4.3. The X axis of the graph is the number of corrupted

words resulting from a single fault, and the y axis is the number of faults that caused the

given number of corrupted words. As can be seen on the graph, the great majority of

fault injections lead to no change in the program behavior or the corruption of a single

memory word. The next peak in the graph is for faults that caused approximately 11

memory words to be corrupted, and the final peak is for approximately 27 corrupt words.

Some reasons for these peaks are described below.

42

Just overhalf of the injected faults leadto no changein the program behavior. This

result is due to a number of different effects. The first is that a fault injected during a

NOP cycle wasunlikely to causeany corruption in our model. Becausethe pipeline in

this processoris softwarescheduledwith respectto dependenciesbetweeninstructions,

a significant number of NOP's are generatedin the compiled code to insert the proper

delays betweendependent instructions. Another reasona fault may have no effect is

becausethe result it corrupts is not used. Sometimesa fault may lead to corrupting a

register that containsa deadvariable or corrupting the target addressfor a branch that

is not taken. Finally, a third reasonthe programbehavior may remain the samewith a

fault is that the effectof the fault is functionally masked.This meansthat the instruction

had the sameresult with the fault as without. An examplewould be multiplying the

wrong sourceregister by zero. The result is still zeroeventhough the choiceof a source

registerwasfaulty. The combinationof thesethreeeffectsis what leadsto somany faults

causingno corruption.

The next largest group of faults leadto the corruption of a singleword. The sizeof

this group can be attributed to the fact that a corrupt instruction could directly cause

only a single memoryword to be corrupted. For further corruption to occur, the result

of the corrupt instruction had to be used multiple times. Becausethe send message

codeto which we injected wasvery sequentialwith almost no loops, most variableswere

computed onceand then written out to memorywithout being reused.Thus, the largest

43

groupof faults that leadto a programchangewerethosethat corrupted a singlememory

variable.

The third and fourth largestpeaksaccountedfor about 11and 27wordsrespectively.

Thesetwo peakswere causedby faults that corrupted the pointers in the sendmessage

codeusedin an array computation that wrote to 10words.The first set is characterized

by two different kinds of faults. The first kind changeda pointer to the input data,

causinga significant number of variablesto be miscomputed. The secondkind changed

the output pointer, but only slightly, sothat the correct resultswereoutput to memory

but offset one or two locations, again leading to many corrupt words. The peak at 27

was similar to that second kind of fault in that the output pointer was changed. This

time, though, it was changed to point to a significantly different part of memory. So, not

only were the original 10 array words corrupted, but at least an additional 10 words in

another part of memory were corrupted by writing the output results there instead.

The computation of the fault dictionary here was interesting because it showed that

each software module will have its own characteristic faulty behavior, and that faulty

behavior can be characterized by the way in which the variables in that module were

used. The generation of the fault dictionary was only an intermediate step in this analysis,

however. The use of the fault dictionary in a system-level simulation of the host interface

to determine the ultimate effect of the fault is described in the next subsection.

44

System-level simulation results

Once the fault dictionary was computed, it was used as a fault model at the system

level. Here, the host interface was simulated handling a predefined message workload-

both sends and receives. When it was determined that a transient fault occurred within

the LANai processor, the fault dictionary was used to determine what errors would occur

in the executing software as a result of the fault. These errors were then injected into

the software state, and the execution of the software continued, typically with a change

in behavior because of the fault injection.

At this level, we were interested in the ultimate effect the fault would have on the

software behavior in terms of things visible to the user. For that reason, the results here

are in terms of the effect on the messages that were to be sent or received by the interface.

If all of these messages were sent and received correctly, then the fault was said to have

no effect at this level.

We injected 1000 sets of errors, each set corresponding to the impact of one fault

on the send message module of the MCP, from our fault dictionary into the running

software. Each time we performed an injection, it was assumed that a long enough time

had passed since the last fault that the system was fault free. This assumption seems

reasonable because the host interface regularly updates its persistent variables, such as

network routes, and an interface that doesn't respond for a significant period of time

will be reset. Note, however, that there is nothing preventing us from considering the

impact of near-coincident faults on a software module in forming our fault dictionalies;

45

Illegal
PacketType

2%

Unaffected
40% Illegal Route

39%

Wrong
Channel

1% Data Illegal
Misrouted ChannelCorrupted

12% 1%5%

Figure 4.4: Effect on messagessentduring fault lifetime.

they simply weren't consideredin this examplestudy. In addition, the period between

network route updateswasmodeledsothat faults that causedchangesto network routes

would be able to effectmessagesonly until the next route update.

Figure 4.4 showsa breakdownof the errorsseenin the messagesworkload. Of the

faults injected, 40% causeno errors in the transmissionof the network workload. Of

those messagesthat were affectedby faults, it can be seenthat the majority of them

endedup with illegal routes and were dropped in the LAN. The next largest group of

errant messagesweremisroutedwith a legal route, and the third largest group consisted

of messageswith corrupteddata. For those60%of faults that did leadto an error, 95.5%

of them affectedonly a single message,and the other 0.5% affectedmultiple messages

(all the messagesto the samedestination until a mapping update wasdone).

46

4.2 Modeling an Entire Myrinet LAN With Validation

This second case study built upon the work in the first with the goals of modeling an

entire Myrinet and verifying the results against a real system. The system model for the

simulation was therefore extended to modeling in detail all of the interfaces in the four-

node LAN from the first study, and the object encapsulation and custom pointer class

special techniques were added. A behavioral-level fault model was still used, however,

to facilitate the fault injections into the real system that would be necessary to do the

validation. This comparison study first appeared in [23].

Before describing the simulation models that were used and the results, however, it is

important to understand the way in which the simulation was to be validated against the

real system and why this way was chosen. The validation was done by choosing a fault

model that could be injected into both systems (real and simulated) and then injecting

identical faults from this model into both systems and comparing the fault impacts. The

same fault model was used in each system to eliminate potential differences in the results

due to differences in the fault models. The impacts from identical faults were compared

in order to avoid the large number of injections that would be necessary to compare

distributions from two different fault lists.

There were two further reasons for comparing the fault impacts on a fault-by-fault

basis. First, the comparison was more precise than just comparing the distributions. For

example, the simulation could show the same number of system reset results as the real

system but not be 100% accurate because some of the reset results were attributed to

47

different fault injections than in the real system. Thus, someof the faults that caused

resetsin the real systemdidn't causeresetsin the simulation. The simulation was then

saidto predict the wrong behaviorfor thosefaults. Second,the fault-by-fault comparison

allowedthe percentageof faults for which the real and simulatedsystemsmatchedto be

examinedby result category.A low percentageof matchesbetweenthe two methods for

any one category showeda weaknessof the simulation at modelingfaults with impacts

in that category.

In this casestudy, the two claimsthat weremadeabout the fault dictionary method in

the secondchapter will also be revisited. In particular, the first claim said that the fault

dictionary helped reducethe number of faults that must be consideredat higher levels

becausemany of those faults would result in no error or in errors identical to an entry

already in the fault dictionary. The secondclaim was that the behavior of the majority

of faults would be independentof the softwarestate when the fault was injected.

4.2.1 Systemmodel

As in the first study, the systemmodel consistedof a four-node Myrinet LAN with

faults being injected into the host interface of only one of the nodes. For this study,

however,eachof the four host interfaceswasmodeledin detail, including executing its

own copy of the MCP, and the interfacescommunicatedthrough a simulated Myrinet

switch. The full MCP softwarewas modeledin this study, including the cooperative

mapping functions. The host workstations connectedto eachof the four interfaceswere

48

not modeled in detail. Instead, only the application (a synthetic workload described

below) wasmodeled.

A real Myrinet testbedwasset up, aswell, to allow fault injections to be duplicated

on a real Myrinet. Fault injection wasdoneto oneof the interfaceson this real network

usingSoftware-ImplementedFault Injection (SWIFI). The testbedand simulation model

were made to be as similar as possibleto facilitate the comparisonof fault injection

results from the two injection methods. Thus, the testbed alsoconsistedof a four-node

Myrinet connectedthrough a switch. The sameaddressesand switch ports wereassigned

in the simulation and testbed. A secondnetwork, an Ethernet that wasnot undergoing

fault injection, wasusedin the testbed to providecontrol and monitoring functions. A

picture of the systemconfiguration is shownin Figure 4.5.

4.2.2 Fault model

A simplified fault model was chosenthat would allow fault injections to be easily

duplicated for the two fault injection methods. Faults were injected as transient single

bit flips of oneof the instructions to be executedin the "host send" messagemodule. A

diagram of the "host send" messagemodule of the MCP is given in Figure 4.6. (This

module is similar to the sendmodule usedin the first study, but due to revisionsof the

MCP betweenstudies, the samesendmoduleno longerexisted.)

In the simulation experiments,faults wereinjected by corrupting oneof the instruc-

tions in the givenmoduleat the start of eachof the behavioralcycle-accuratesimulations.

49

/
!

I

I
I
I

Ethernet (used to control and monitor SWIFI experiments)

Host

interface

Host

interface

\

I

I

I

--I
I
I
I

I
I_

Host

interface

Myrinet Switch

Host

interface

1

I

I

I

I

Ortho

(Remote workstation

for monitoring and data

collection in SWIFI)

Figure 4.5: Target system for fault injection (simulation and SWIFI).

I host sendmdule--fault injection

.......................................'
Figure 4.6: Diagram of fault injection region.

5O

The executionof the module with the fault was then simulated, and at the end of the

module, a fault dictionary entry wasmaderecordingthe corrupted control flow and vari-

ablesdue to the fault. The dictionary was then later usedin system-levelsimulations to

determine the ultimate impact of eachfault.

In the SWIFI experiments,faults wereinjected in asimilar way. The executionof the

MCP on the interfaceundergoingfault injection waspausedat thestart of the "host send"

module. Then, the selectedinstruction wascorrupted by the interface's host computer.

Note that the sameinstruction and samebit would becorrupted for the SWIFI as in the

simulation for a duplicate fault. The interfacewould then continueexecuting the MCP

modulewith the fault. At the end of the module,executionwould pauseagainwhile the

original instruction wasrestored.

Each of the fault injections was repeated 10 times in the SWIFI experiments to

ascertain the repeatability of the result. Faults that showedonly one error behavior

and did so for at least 6 of the 10 injections were used in the validation comparison.

Other faults that showedmultiple error behaviorsfor different fault injections or that

only rarely causederrorswerethrown out.

In this way, faults whosebehaviorwashighly dependenton the softwarestate when

they wereinjected wereidentified and removedfrom the comparison.Thesefaults would

complicate the comparisonbetweenthe simulation and SWIFI experimentsbecauseit

would bedifficult to makethe softwarestatesexactly the samebetweenthe two. For the

51

remaining faults, however,that showedvery little dependenceon the softwarestatesthe

two systemsshould beeasily comparable.

4.2.3 Results

In the comparison,study betweenthe simulation and SWIFI on the real systemeach

method injected the sameset of 500 faults. Someof these injections (4 injections) had

to be discardedbecausethey causedthe simulator to crash. Of the remaining faults,

423 were found to causevery repeatableresults and so to be fairly independent of the

The breakdownof the comparisonfor these423 faults is presentedinsoftwarestate.

Table 4.2.

Table 4.2: Numberof errorsby categoryfor simulation and SWIFI.

Fault injection result I Simulation
MCP hang

MCP restart
Messagedropped

Data corrupt

61
6
58
19

SWIFI
82
16
55
19

Match
62.2% (9.4%)
37.5% (20.9%)
94.5% (6.0%)
84.2% (16.4%)

No error 279 251 97.6% (1.9%)

Total II 423 423 87.5% (3.2%)

The leftmost column of Table 4.2 shows the fault injection results. Faults in the

MCP hang category caused one interface's MCP to stop performing some or all of its

functions. Faults in the MCP restart category cause one MCP to reset, momentarily

disrupting communication and causing it to drop all the messages currently in its buffer.

Those in the message dropped category caused one message being transmitted on the

the Myrinet to be dropped. The data corrupt category was used when the only impact

52

of a fault wasto corrupt someof the data in oneof the messagesbeing transmitted, and

all of the remaining faults fell into the no error category,signifying all messagesin the

workload weresent and receivedcorrectly,evenwith the fault.

The secondcolumn showshow frequently the selectedresult category was observed

in the simulations. The SWIFI column shows the frequencywith which the selected

result category appearedin the real system. Finally, the match columnshowshow often

the simulation and the real fault injection results were identical, and the number in

parenthesesgives the 95% confidenceinterval. In computing the value for the match

column, the SWIFI method was consideredto give the "gold" result. If for a given

injection, the simulation result agreedwith the SWIFI result, a match wassaid to occur.

The value in the match column is the numberof matchesthat fell into a given category

divided by the total numberof SWIFI resultsin that category.Forexample,the simulator

and SWIFI results matched for 52 injections in the message dropped category. The

maximum possible number of matches for this case would be 55 (100%). Thus, for the

message dropped category the simulator accuracy was 94.5% (52/55), plus or minus 6.0%

for the 95% confidence interval.

Table 4.2 shows that the simulation does extremely well at detecting when no error will

occur (matching SWIFI for over 97% of the faults) and reasonably well at predicting the

less severe injection results (e.g., the simulation correctly identified a dropped message for

about 95% of the faults where SWIFI determined that result). The simulation, however,

has relatively low accuracy in predicting severe fault results, such as host interface hang

53

where 62% of the injections match. One reasonfor the low level of accuracy is that

the simulation doesnot fully model the interaction betweenthe host and the interface.

Factors affecting this accuracyrate are addressedin detail in the following subsection.

The two claims madein the secondchapter will now briefly be revisited. The first

claim was that the fault dictionary would help reducethe number of simulations that

were necessaryat higher levelsby removing many faults that didn't propagate or had

identical error patterns to another fault alreadyconsidered.For the 500faults presented

above,injected at the chip level assinglebit flips of instructions, 245did not propagate

to the systemlevel becausethey causedno changein the softwarestate of the host send

module. The remaining 255 faults can be divided into three categories. One-hundred

ten faults had identical error patterns to another fault in the dictionary and could be

discarded. Sixty five faults had error patterns that were similar to another fault in the

dictionary, but not identical. That is, thesesimilar faults corrupted exactly the same

softwarevariablesbut the corrupted valuefor one or moreof the variableswasdifferent.

With no further analysis, these65 faults did have to be simulated at higher levels to

be sure of their impact. However, faults with similar error patterns were very likely to

cause identical results, and further analysis may have been able to identify faults with

significant differences from those without. Finally, 80 of the 500 faults caused unique

error patterns. In this study, therefore, one would have had to simulate at the system

level the 80 unique faults plus the 65 similar faults in the worst case, for a total of 145

54

faults (out of the original 500). With further analysis, it may have been possible to

reducethis number by eliminating someof the 65similar faults.

The secondclaim wasthat for embeddedmicroprocessorsystemswith control software

like the oneexaminedin this study, the majority of the fault impactswouldbedependent

only on the fault injected and the designof the hardwareand softwaremodules,not on

the particular state of the softwarewhen the fault was injected. The abovecasestudy

supports the claim becauseof the 500 faults injected, 423 faults had a very repeatable

behavior that was independentor nearly independentof the softwarestate. For these

423 faults, it was only necessaryto considera small set of representativestates of the

software to obtain the correct behavior.

4.2.4 Discussion

The initial weeksof our comparisoneffort turned out to be a learning process. A

numberof problemsassociatedwith our simulation effortsmadeit difficult to match the

behavior of the simulation to that of the real device. Those problemsare discussedin

this subsection,including limitations in the simulator model, specificationproblems,and

effectsof the simulation environment.

Cycle-Accurate Simulator Limitations

The cycle-accurate simulator had three basic limitations for our purposes. First, the

standard version supplied by Myricom simulates only the CPU core of the LANai chip.

None of the memory-mapped I/O on the real chip is implemented. As a result, we were

restricted from simulating certain regions of the MCP code a t the cycle level and so could

not inject faults into these regions. The simulator could be extended to model the entire

LANai chip; however, we chose instead to find an important region of code (the "focused

send" region) that could be simulated in the cycle simulator without modifications. In

this way we were able to make a convincing argument for the validation of the simulation

without bringing in the additional issues of developing and testing new features in the

cycle simulator.

The second limitation in the cycle simulator was that it was not guaranteed to match

the host interface behavior for certain error conditions, such as the response to an illegal

instruction or invalid memory access. One particular difference we noted was that the

simulator did not implement memory protection of the low memory segment, where

the MCP is stored, as was done in the real host interface. Some faults were observed to

attempt writes t o this region. While these writes would be discarded in the real interface,

they were allowed to proceed in the cycle simulation. In the examples we observed, the

lack of memory protection did not appreciably alter the results of the simulation, but

the potential certainly exists.

The third limitation applies to cycle-accurate simulation in general. Such simulators

are typically thousands of times slower than the real device they simulate. For most

faults, this simulation time was very short because we could quickly translate the fault

effect to the software level. There were rare faults, however, that would change the

program counter to a random value. In these cases, execution would be outside of typical

program paths, and thus the effect of the fault could not be translated to the software

level right away. If execution never returned to normal, a hang could be assigned to these

cases. However, this random code could lead to a reset of the LANai chip or a return

to normal execution. The only way to be sure of the result was to continue simulation.

Due to the cost of simulating at this level, however, an arbitrary limit of 80,000 cycles

was set. If the program had not reset or resumed normal execution within this period,

the result was marked as a hang.

Specification Problems

Another problem we encountered in the development of our simulations was that the

response of the LANai device to various error cqnditions was very vague or missing in

the official device specification. One example of unspecified behavior was the response

to an unaligned memory access. A 32-bit memory access has to be aligned to a 32-bit

boundary (the memory address must be evenly divisible by 4) in the LANai device. This

information is clearly stated in the specification. However, the behavior when accesses

are not aligned is not specified. While it is understandable that such information is

unnecessary for programmers, it is necessary for the proper simulation of the device,

particularly when such error conditions are likely to occur due to fault injection.

Some of the unspecified behavior we came across was cleared up through discussion

with Myricom. In other cases, however, we did not even realize we had overlooked some

57

error condition until we observedit to causea differencebetweenthe SWIFI and simu-

lation experiments. A particular exampleinvolved a fault that changedthe DMA_DIR

register. This register holds a one bit value specifying the direction of DMA transfers

betweenthe host (workstation) and LANai chip. In our simulations,weconsideredonly

the lowest bit of this register to be valid, and so writing a five or a one to this register

would give the sameresult. Experimentson the real deviceshowed,however,that values

other than zeroor onewritten to this register could causea hang. Experienceslike this

oneled to a period wherewe, in essence,trained our simulator by correcting its behavior.

Effectsof Simulation Environment

Oneproblem in simulation is decidingwhereto draw the boundariesof the simulated

system. Interaction betweenobjects inside the boundariesand thoseoutside that have

beenabstracted away may causethe simulation to act differently than the real device.

One casewhere this problem appearedin our study involved a fault in the real host

interface that causedthe reset of its host workstation. Becausethe host was outside

our simulation boundaries,we did not model any of the interaction betweenhost and

interface. Therefore,we werenot ableto predict this occurrence.

Another effectof the environmentwasdueto our executionof the MCP codenatively

on a workstation (for the software-levelmodel). While this approachallowedthe simu-

lation of the MCP to be very fast, it posed a problem. The LANai chip itself has only

a limited memory protection that simply discards illegal accesses, but on a workstation,

58

illegal memoryaccessescancausethe termination of an application. While everyattempt

wasmadeto avoid crashingof the simulationsdue to memoryaccessviolations, 48such

crashesstill occurred (seeSection6.1).

Finally, becausethe simulation engineand the MCP sharedone userprocessin our

software-levelsimulation and had to communicatewith each other, it was possiblefor

an errant MCP to corrupt variablesbelongingto the simulation engine. In the runs we

recorded, this behaviorwasnot observed,but it wasconsideredin our design. Avoiding

this problem, at least in part, would have meant distributing our simulation among

multiple processesso as to provide the operating system'smemory protection to each

simulation process.Sucha designwasbeyond the scopeof this study.

4.3 Inclusion of Recoveryto Improve Dependability

In the third casestudy, the resultsof the validation study wereanalyzedin anattempt

to improve the behavior of the MCP softwareunder faults. One key result from the

validation study was the high number of fault injections that lead to an MCP hang. As

this result category wasalso the most severe,it wastargeted for recovery.

4.3.1 Recoveryadded

Three of the most common mechanismsthat causedan MCP hang were identified

from the simulation results. Here, the behavioral-levelfault dictionary wasvery useful

sinceit gavea breakdownof how different faults affectedthe MCP softwarevariablesand

59

control flow. From this dictionary, typical patterns for erroneousvariables and control

flow could be identified sothat recoverycould be added.

The first of the three mechanismswashole in the receivedmessageacceptancetests

that passederroneousmessageswith data lengths of zero bytes. Thesemessageswere

invalid, and handling them causedthe receiving MCP to hang. The recoveryfor this

mechanismjust plugged the hole in the acceptancetests by adding a check for zero-

length data messages.

The secondmechanismthat wastargeted for recoveryinvolved the state of the send

messagebuffer called NetSendQueue.A large number of faults could causethe MCP

to erroneouslydetermine that this queuewas full when there wasstill spaceremaining.

Oncethe MCP decidedthe queuewasfull, it would acceptnomore messagesfor sending

until the queuemade a transition from full to not full. Becausethe queuewas really

not full already, though, this transition would neveroccur, and the MCP would sendno

more messages.The recovery for this mechanismaddeda timeout to the wait for the

queueto transition to not full. If the timeout expired without the not full notification,

the MCP would recheckthe state of the queue.Typically, this secondcheckwould allow

it to make the correct determination and resumenormal behavior.

The third mechanismwas very similar to the second,but it involved the host to

LANai DMA rather than a queue. Somefaults would causethe MCP to erroneously

determine this DMA interface was in usewhen it wasnot, and the result was that the

MCP would wait forever for the interfaceto becomefree, similar to the situation with

6O

the sendqueueabove. Again, the solution herewasto add a timeout to this wait period.

If the timeout expired without a notification the DMA wasfree, the MCP would check

the state of the DMA againand typically continuewith normal operation.

4.3.2 Results

After the MCP codewaschangedto addthe three typesof recoverymentionedabove,

a similar set of fault injections was run asin the verification study. That is, the target

systemmodel (asidefrom the softwarechanges)wasthe samefour-nodeLAN, the same

fault list andworkloadwereused,and experimentswererun onboth the simulatedsystem

and the real testbed.

The resultsof the experimentsareshownin Table 4.3. The numberof faults causing

a given impact are listed for eachof the five error categoriesfor the simulation and real

systemas before. This time, however,there are two numbersseparatedby a slash. The

first number is the impact of the fault with the new recovery routines added, and the

second number gives the old behavior.

Table 4.3: Comparison of errors before and after recovery was added.

Fault injection result Simulation SWIFI

MCP hang
MCP restart

Message dropped

Data corrupt

61/36
6/6

58/63

19/19

82/32
16/16
55/67
19/19

No error 279/299 251/289

Total 423 423

61

Experiments were run on the simulatedsystem first to evaluate the effectivenessof

the recoverymechanismsbeforeimplementing them on the real system. The results of

the simulated fault injections showeda drop in the number of faults that causedhangs

from 58 to 29, or a 50%decrease.Note that the recoverythat wasaddedwasall outside

the fault injection region,sothe faults that wereinjectedcould bemadeexactly the same

as in the verification study. Of thosesamefaults, 29no longercauseda hang after the

addition of the recoverycode.

Of the remainingfaults that did causea hang, 15weredue to random changesto the

program counter that put it outside normal program control flow paths. These faults

could not be targeted with simple softwarerecoverymechanisms.The remaining faults

included some that used a variation on the three targeted mechanismsthat could slip

through recovery,and the rest useda mechanismthat wasnot targeted by the recovery.

The next step was to implement the samerecoveryfeatureson the real system and

verify the effectiveness. Of particular interest was whether the recovery would be as

effectiveon the real systemgiventhe difficulty the simulation had in predicting hangson

the real system. While the three mechanismsthat weretargeted for recoverywerevalid

mechanismsfor which the simulation wasknownto simulate the correct behavior, it was

unclear whether they would help for the hangsin the real systemwhich the simulation

didn't predict.

62

The results showedthe recoveryto be everybit aseffectivein the real system asthe

simulation had predicted. The number of faults that causeda hang result in the real

systemdropped from 82 to 32 for the samefaults, a 61%decrease.

This study demonstrated the usefulnessof the simulation method in determining

failure modesfor the systemsoftwareand identifying recoverymechanisms,evenwhen

the simulation model wasnot detailed enoughto model all of the failure modespresent

in the real system. Even though the simulation wasnot ableto identify all of the faults

that would hang the Myrinet system, the simulation analysis was still very useful in

determining what someof the commonfailure modeswereand guiding the development

of recoveryfor thosemodes.

4.4 Incorporation of a Device-LevelFault Model

The final casestudy presentedherewasdesignedto demonstratethe useof the entire

fault dictionary hierarchy,from a device-levelfault modelup to a system-levelresult. To

accomplishthis goal, the samesystem modeland workload wasusedas in the previous

two studies. That is, multiple host interfaceswere simulated in a four-node LAN, and

the interfaceswere logically arrangedin a circle, with eachinterface receiving from its

counterclockwiseneighbor and sendingto its clockwiseneighbor. The fault model and

fault dictionary structure werechanged,however,from atwo-levelto afive-levelhierarchy.

This casestudy wasfirst publishedin [24].

63

Becauseof the unavailability of a gate-levelor transistor-level model for the LANai

chip, however,a specialstrategy had to beusedto allowa demonstration of the full fault

dictionary hierarchy. The solution wasto decideon a subcircuit of the LANai chip that

was frequently used and was visible to the behavioral-levelsimulator and to generate

transistor-level models for that subcircuit. The chosensubcircuit was the ALU 32-bit

adder. Becausethe codesimulating the adderin the behavioral-levelsimulation waseasily

identified and wasa goodmatch to the behaviorof the transistor-leveldescription of the

adder,it waseasyto propagatetheerrorsfrom the adderfaults directly in the behavioral-

level simulation rather than going through an intermediate gate-level simulation step.

Thus, a completegate-levelmodelof the LANai chip wasnot necessary.A full description

of the fault dictionary hierarchy is givenbelowand may better illustrate this strategy.

4.4.1 Fault dictionary hierarchy

The fault dictionaries in this study weredesignedto begin with a device-levelfault

model for a radiation particle impact on the addercircuit and end with the systemlevel

effectof that event. The stepsof this processaredescribedbelow, from the beginning at

the lowest level until the end whenthe systemlevel is reached.

Device level

Fault injection beganat the device level in a two-level simulation step to determine

an appropriate current burst due to a heavyion particle impacting the adder circuitry.

The fault event was the impact of a radiation particle with an energy of 8 MeV at a

64

reverse-biasedtransistor junction at an angleof 45 degreesto the surface. The device

parametersfor this stageweretaken from a 0.25-#mCMOS technology.

The DESSISsimulator was the first levelof this two-levelapproach,and it wasused

to model the MOStransistor that washit by the particle. The DESSISsimulator solved

the coupledPoisson,Electron, and Holeequationsof the transistor in the transient mode

to calculate the resulting current surge.

The second level of this simulation step was the transistor-level simulator called

HSPICE. HSPICE wasusedin an iterative mannerwith the DESSISsimulator to provide

the bias conditions in which the effectedtransistor wasoperating.

Together, the two simulators obtained the model for the particle impact in the fol-

lowing way. First, HSPICE would would simulate a short period of time which would

define the original bias conditions around the MOS transistor. Next, DESSISwould be-

gin simulation of the particle impact for a short period, obtaining the beginning of the

resulting current burst. This current burst wasthen enteredin the HSPICE model, _md

simulation continueda timestep further, resulting in a new bias. The new bias was then

put back in DESSISto generatethe next timestep for the current burst. The back and

forth iteration proceededin this wayuntil the wholeparticle impact completed,resulting

in a time-varying model for the current burst.

65

Logic level

The next fault dictionary levelwas the logic level. Here, the target system wasnow

the whole adder, not just onetransistor. The 32-bit adderwasorganizedaseight 4-bit

Manchestercarry adderstageswith ripple carry betweenthe stages.Faults, in terms of

the current burst derived in the device-levelstep, wereinjected, oneper simulation run,

at reverse-biasedtransistor junctions in the addercircuit as it performeda computation.

The errorslatched at the outputs of the addercircuit werethen recordedasthe logic-level

fault model for the adder.

For eachinput combination, faults were injected exhaustively at all reverse-biased

transistor junctions, and the error patterns observedalong with their frequency were

recorded. Symmetry in the adder, suchas the fact that the 32-bit adder was made of

8 identical 4-bit adderswasusedto reducethe numberof simulations necessaryin this

step. At the end of this step, the output wasa fault dictionary that listed for eachinput

combination the likelihood of observingeachpossibleerror pattern given the occurrence

of a single radiation particle impact on the circuit.

Chip level

The logic-levelfault dictionary wasthen usedasthe fault model in a behavioral-level

simulation of the LANai chip. This step used the samebehavioral-levelsimulator as

wasused in the other three casestudies,and faults were injected into the same "send

message"moduleof the MCP. Insteadof asingle-bit flip of an instruction, however,faults

66

were now injected ascorruption of oneof the add operationsduring the executionof the

module.

More than half of the instructions in the 67 instruction region where faults were

injected usedthe adder. Add operationswererequired by load and store instructions to

computeeffectivememoryaddressaswell asby add andsubtract instructions to compute

arithmetic results. Also note that comparisonsare generally performed by subtracting

one of the numbersto be comparedfrom the other, and thus comparisonsare coded as

subtracts and alsouse the adder. Finally, NOP instructions arecodedasadding zero to

zero and discarding the result, and so they also use the adder. Discarding the NOPs,

there were 22 instructions that actually relied on the resultsof the add operation.

Faults were injected exhaustively during the execution of everyadd operation, in-

cluding all possibleerror patterns in the logic-levelfault dictionary, one per simulation

run. At the end of the executionof the module, the softwarestate of the simulated IvlCP

wasexaminedfor erroneouscontrol flowand variables.Theseerrorswererecordedin the

chip-level fault dictionary asthe chip-levelmodel for the given fault.

4.4.2 Results

Finally, the ultimate impact of eachfault wasdeterminedby asystem-levelsimulation

that incorporated the chip-level fault dictionary. This system-levelstep was identical to

that of the previous two casestudies,and the sameresult categorieswere used. The

overall resultsof the fault injections areshownin Table 4.4.

67

Table 4.4: Breakdownof number of errorsby category.

Fault injection result Simulation

MCP hang
MCP restart

Message dropped

Data corrupt

No error

112

32

134

54

918

Total 1250

One number that stands out in the table is the large number of fault injections that

caused no impact. It is important to note that there are many reasons a corrupt add

operation might not impact the host interface's operation. The most common reason is

that the message buffers are being continually reused, and the new message that is being

written into the buffer may share many header items in common with the past message

in that buffer. If so, then a failure to write some information into the buffer (due to

an address miscalculation) may not have any impact because the correct information

is already there. As long as the failed write does not overwrite some other important

data, it has no effect. Another common reason a fault may have no impact occurs when

the adder is used to compare two unequal numbers. In this case, the adder is used to

subtract one number from the other. A zero result indicates equality. However, a single

fault in the adder is unlikely to change a nonzero result into a zero result. The comparison

decision, then, doesn't change, even though the adder result is wrong, because the result

is still nonzero, indicating unequal numbers.

68

Breakingup the injection resultsby the type of instruction affectedrevealssomemore

interestingpoints. Table 4.5showsthe result categoriesaccordingto whether the affected

instruction wasa load, store, add, or subtract.

Table 4.5: Breakdownof numberof errors by categoryand instruction type.

Fault injection result II Load I Store I Add I Subtract

MCP hang 29 - 19

MCP restart 26 1 5

Message dropped 89 45 -

Data corrupt 27 - 27
No error 223 468 62

Total

64

165

229

As can be seen from the table, the add operations in loads are more important than

those in stores for the code in the fault injection region. (Stores have only a 9% chance

of causing a user-level error whereas loads have a 45% chance.) One reason for this

behavior has already been given above: a given store may be unnecessary because the

correct information is already in memory. Where writing to a wrong address is not so

disruptive for a store, loading from the wrong address is much more likely to cause an

error. The load result is guaranteed to be used in a future computation, while the bad

address to which the store wrote is only sometimes used. Since a load from a wrong

address almost always loads a wrong value, loads are much more likely than stores to

generate a wrong value that will be reused and eventually cause an error at the user level.

Another interesting point from the table is that loads lead to all of the different types

of result categories. Loads are used to begin computations that affect message headers,

and corrupting these loads can cause message drops. Loads also set pointer values for the

69

messagedata, and thus corrupt loadscan causemessagecorruption. Finally, loads are

usedin computations to makedecisionsabout the state of sharedresources.Corrupting

a load that is determining the state of a sharedresourcecan lead to a deadlockfor that

resourceor a crashbecauseof an invalid useof the resource.

Almost half of the subtract instructions can be seento causehangs in the table,

and subtracts causeno other kind of result. Only hangsoccur becausethe only useof

subtracts in the fault injection regionis to makecomparisondecisionsabout the state of

sharedresources.Making the wrong decisionin thesecasestypically causesthe MCP to

hang. Four decisionpoints are affectedin the code, two of them are typically unequal

and two equal. As mentionedabove,comparisonsthat would generatean unequal result

in the fault-free caseare unlikely to be affectedby a single fault in the adder. Equal

comparisonresults arevery likely to be affected,though. As a result, almost half of the

subtracts causean impact at the user level becausehalf of the comparisonsin the fault

injection regionswould normally be equal in the fault-freecase.

5. CONCLUSIONS

This chapter summarizes the work that was done in this thesis and then describes

some future work which could be done to improve the method that has been presented.

5.1 Summary

This thesis has presented a new method for simulated fault injection analysis of com-

puter systems. The key points where the method differs from previous work are allowing

detailed fault models, simulating the impact of the faults on system software behavior as

well as hardware behavior, and obtaining the impact of the faults a t the user level.

The key technique applied to meet these goals is the use of fault dictionaries to raise

the abstraction level of faults. A fault dictionary for a given component characterizes

that component's behavior for faults occurring within it. The fault dictionary stores the

change in behavior of the component for many different faults. When a fault is to be

injected in a given component, the dictionary is accessed, and the components behavior

is modified according to one of the appropriate entries in the dictionary.

A fault dictionary used a t one level of abstraction is developed through many simu-

lations of the given component at the next lower level of abstraction. Fault dictionaries

are built from the bottom up. That is, simulations begin a t the level of abstraction of

the primary fault model, for instance a t the transistor level for a transient current burst

model. From there, multiple simulations are run to build up a fault dictionary which can

be used for fault injections a t the next higher level, for instance, the logic level. Simu-

lation then continues a t that higher level, building a new fault dictionary. The upward

propagation continues until fault effects reach the system level and their ultimate impact

on the system, as it is visible to the user, is determined.

Four case studies were presented, demonstrating the use of the method to analyze

a commercial network system called Myrinet. Each case study focused on presenting a

different piece of the method in detail. In the first study, the focus was on the use of

the method to model the behavior of the system software. In the second study, the focus

was validating the simulation method versus similar fault injections into a real Myrinet.

The third study showed how the analysis from the method could be used to improve the

behavior of the Myrinet under faults, and the fourth study demonstrated the use of the

complete fault dictionary hierarchy, from the device level t o the system level.

5.2 Future Work

Two ways in which this work could be extended will be discussed in this section. There

are, of course, improvements that could be made to the case studies presented earlier,

72

but the two ideaspresentedhere are both improvementsto the basic fault dictionary

simulation method.

First, the software-levelfault dictionary representationcould be made moregeneral-

ized. The current fault dictionary recordsthe impact of faults in one module for just

one state of the software. To include additional softwarestates in the study, new fault

dictionaries must be computed,one per eachnewstate. From observationsmadeduring

the casestudies in this thesis,however,the impact of many faults remainsthe samefor

multiple softwarestates. This data suggeststhat the computationsfor many faults need

not be repeated for manysoftwarestates.

Instead, the fault dictionary entry could be modified to describethoseparts of the

softwarestate that the dictionary entry dependson. If those parts of a new software

state match the state for which the dictionary entry wasmade, the sameentry is used

rather than computing a new entry for the new softwarestate. In this way,a fault in a

module that will causea system reset independentof the softwarestate when it enters

that modulewill be computedonly oncein the fault dictionary computations.

Second,the demonstrationspresentedin this thesisand the special techniquesthat

havebeendescribedare all tailored towardssimulations with hardwaretransient faults.

The generalizedfault dictionary method could also be applied to other types of faults,

however. One valuable addition to this work would be its extension to other types of

faults, particularly permanenthardwarefaults.

73

The difficulty in using this method, as is, to model permanent faults is that permanent

faults do not alter the system state at just one point in time. A permanent fault cannot

be modeled, then, by using a single fault dictionary entry to modify the system state

as required by the fault. The easy solution, repeated application of fault dictionaries

at each successive module of software execution, isn't very tractable, either. At each

successive module, the software state may be further corrupted by previous execution

with the permanent fault. If this corruption were not considered in forming the fault

dictionary entries that were used, the entries may not represent the correct module

behavior at the current point in the software's execution. If the previous corruption

of the software is taken into account, however, the fault dictionary computations may

become unmanageable due to the large number of software states that must be considered,

both fault-free and with corruption due to permanent faults.

A good approach to implementing permanent faults may be to combine the idea of

fault dictionaries with a form of hierarchical simulation. The hierarchical simulation

would differ from the normal fault dictionary method in that the faulty behavior of a

module would not be precomputed (in a dictionary) but instead computed on the fly

by dynamically switching simulation execution to the lower level at which the dictionary

would have been made. Fault dictionaries would still be used, but only at the lower levels

of system abstraction where the software state wouldn't impact the dictionary entry.

For example, consider a permanent fault in an adder. Fault dictionaries could be

computed for this fault up to the behavioral level, where the adder takes two inputs and

74

outputs the sum. The softwarestate doesn't impact the operation of the adderhere,only

the inputs. Thus, a fault dictionary can be made for permanent faults in the adder. If a

software module uses the adder, it will find it has no fault dictionary at the system level.

Execution will then dynamically switch down to the behavioral level where the already

computed fault dictionary for the adder can be used. Additional software modules using

the adder will require continued simulation at the behavioral level, but the hope is that

the permanent fault will be quickly detected, ending the need for further simulation.

REFERENCES

[I] R. K. Iyer and D. Tang, Fault-Tolerant Computer System Design, Chapter 5, "Ex-
perimental Analysis of Computer System Dependability." Prentice Hall, 1996.

[2] J . Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins, and
D. Powell, "Fault injection for dependability validation: A methodology and some
applications," IEEE Trans. Software Engineering, vol. 16, pp. 166-182, Feb. 1990.

[3] G. Kanawati, N. Kanawati, and J . Abraham, "FERRARI: A tool for the validation
of system dependability properties," in Proceedings 22nd International Symposium
on Fault- Tolerant Computing, July 1992, pp. 336-344.

[4] K. Prodromides and W. H. Sanders, "Performability evaluation of csma/cd and
csma/dcr protocols under transient fault conditions," IEEE Transactions on Relia-
bility, vol. 42, pp. 116-127, March 1993.

[5] W. H. Farr, "A survey of software reliability modeling and estimation," Tech. Rep.,
Naval Surface Weapons Center, Sept. 1983.

[6] J . A. Clark and D. K. Pradhan, '(REACT: A synthesis and evaluation tool for fault-
tolerant multiprocessor architectures," in Proceedings of the Annual Reliability and
Maintainability Symposium, 1993, pp. 428-435.

[7] A. K. Ghosh and B. W. Johnson, "System-level modeling in the ADEPT environ-
ment of a distributed computer system for real-time applications," in Proceedings
of the IEEE International Computer Performance and Dependability Symposium,
April 1995, pp. 194-203.

[8] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, "Fault injection into VHDL
models: The MEFISTO tool," in Proceedings of the 24th International Symposium
on Fault-Tolerant Computing, June 1994, pp. 66-75.

[9] E. G. Ulrich and T. Baker, "The concurrent simulation of nearly identical digital
networks," in Proceedings of the 10th Design Automation Workshop, June 1973,
pp. 145-150.

[lo] S. Seshu, "On an improved diagnosis program," IEEE Trans. on Electronic Com-
puters, vol. EC-14, pp. 76-79, Feb. 1965.

[ll] D. B. Armstrong, "A deductive method for simulating faults in logic circuits," IEEE
Trans. on Computers, vol. C-21, pp. 424-428, May 1972.

[12] T. M. Niermann, W. T. Cheng, and J . H. Patel, "Proofs: A fast, memory-efficient
sequential circuit fault simulator," IEEE Trans. on Computer- Aided Design, vol. 11,
pp. 198-207, Feb. 1992.

[13] G . L. Ries, G. S. Choi, and R. K. Iyer, "Device-level transient fault modeling,"
in Proceedings of the 24th International Symposium on Fault-Tolerant Computing,
June 1994, pp. 66-75.

[14] K. K. Goswami, R. K. Iyer, and L. Young, "DEPEND: A simulation-based environ-
ment for system level dependability analysis," IEEE Trans. on Computers, vol. 46,
pp. 60-74, Jan. 1997.

[15] K. K. Goswami and R. K. Iyer, "Simulation of software behavior under hardware
faults," in Proceedings of the 23rd International Symposium on Fault- Tolerant Corn-
puting, June 1993, pp. 218-227.

[16] G. Choi and R. K. Iyer, "FOCUS: An experimental environment for fault sensitivity
analysis," IEEE Trans. on Computers, vol. 41, no. 12, pp. 1515-1526, 1992.

[17] F. Yang, "Simulation of faults causing analog behavior in digital circuits," Ph.D.
dissertation, University of Illinois, Urbana, IL, 1992.

[18] G. L. Ries, "Transient fault modeling," Master's thesis, University of Illinois. Ur-
bana, IL, 1995.

[19] J . D. Barnette, "Acceleration techniques for dependability simulation," Master's
thesis, University of Illinois, Urbana, IL, 1994.

(201 N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J . Seizovic, and W.-K.
Su, "Myrinet: A gigabit-per-second local-area network," IEEE Micro, vol. 15-1,
pp. 29-36, Feb. 1995.

[21] G. Ries and R. K. Iyer, "Evaluating the impact of transient faults on software
behavior: Case study of a commercial high-speed network," in Proceedings of the
6th IFIP International Working Conference of Dependable Computers for Critical
Applications (DCCA-6), March 1997. Scheduled to appear.

[22] M. Rimen, J. Ohlsson, and J. Torin, "On microprocessor error behavior modeling,''
in Proceedings of the 24th Internatzonal Symposium on Fault-Tolerant Computing,
June 1994, pp. 76-85.

[23] D. Stott, G. Ries, M. C. Hsueh, and R. K. Iyer, "Fault injection for high-speed
network dependability analysis," IEEE Transactions on Computers Special Issue on
Dependable Computing, 1997. Scheduled to appear.

[24] Z. Kalbarczyk, R. K. Iyer, G. Ries, J. U. Patel, and M. S. Lee, "Hierarchical approach
to accurate fault modeling for system test and evaluation,'' in Proceedings of the 3rd
IEEE International On-line Testing Workshop, 1997. Scheduled to appear.

78

VITA

Gregory Lawrence Ries was born in on He graduated

from Case Western Reserve University, in Cleveland, Ohio, with a B.S.E.E. in 1992,

and in January, 1995, obtained a M.S.E.E. from the University of Illinios at Urbana­

Champaign. His awards include National Science Foundation Scholar, Robert C. Byrd

Scholar, Leonard Case Scholar, and CWRU Alumni Scholar.

Ries was a teaching assistant at the University of Illinois from August, 1992, until

August of 1993, following which he was a research assistant in the Center for Reliable

and High-Performance Computing until May, 1997. He also worked at Rockwell Semi­

conductor Systems as an engineer in the advanced DSP architecture group during the

summer of 1996. Ries is a member of the Tau Beta Pi national honor society. He began

working toward his Ph.D. in the spring of 1995 under Dr. Ravishankar K. Iyer at the

University of Illinois at Urbana-Champaign in the area of dependability modeling.

HIERARCHICAL SIMULATION TO ASSESSHARDWARE
AND SOFTWARE DEPENDABILITY

GregoryLawrenceRies,Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign,1997
RavishankarK. Iyer, Advisor

This thesispresentsa method for conducting hierarchical simulations to assesssys-

tem hardware and softwaredependability. The method is intended to model embedded

microprocessorsystems.A key contribution of the thesisis the ideaof using fault dictio-

nariesto propagatefault effectsupwardfrom the levelof abstractionwherea fault model

is assumedto the system level wherethe ultimate impact of the fault is observed,and

a secondimportant contribution is the analysisof the softwarebehavior under faults as

well as the hardwarebehavior.

The simulation methodis demonstratedandvalidatedin four casestudiesthat analyze

a commercial,high-speednetworkingsystemcalledMyrinet. Onekey result from the case

studies showsthat the simulation method predicts the samefault impact 87.5%of the

time, as is obtained by similar fault injections into a real Myrinet system. Reasonsfor

the remaining discrepancyare examinedin the thesis. A secondkey result shows the

reduction in the number of simulations neededdue to the fault dictionary method. In

one casestudy, 500 faults were injected at the chip level, but only 255 propagated to

the systemlevel. Of these255faults, 110sharedidentical fault dictionary entries at the

systemleveland sodid not needto be resimulated.The necessarynumberof system-level

simulations was thereforereduced from 500 to 145. Finally, a third result in the case

studiesshowshow the simulation method canbe usedto improvethe dependability of the

target system. The simulation analysiswasusedto add recoveryto the target softwarefor

the most commonfault propagationmechanismsthat would causethe software to hang.

After the modification, the numberof hangswasreducedby 60%for fault injections into

the real system.

