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Abstract

Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air
mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models
are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the
modeling of these flows, a second order closure scheme should be considered because of its ability
in the modeling of rotational and curvature effects. However, this scheme will require solution
of many complicated second moment transport equations (six Reynolds stresses plus other scalar
fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will
require a large amount of computer resources for a general combustor swirling flow.

This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent
swirling flows, and was inspired by the work of Launder’s group at UMIST. Using this type of
model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k
and the other for the dissipation rate . The cubic model developed in this report is based on a
general Reynolds stress-strain relationship (Shih and Lumley, 1993). Two flows have been chosen
for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex
flow with swirl and recirculation.
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For better fuel-air mixing and flame stabilization in a combustor, a swirl is generally asso-
ciated with the flows. Therefore, accurate modeling of turbulent swirling flows is important
in engine combustor design. Common turbulence models used in engineering calculations
are eddy viscosity models which include zero-equation and two-equation models (e.g., mix-
ing length models and k-¢ models). However, it has long been recognized that this type of
eddy viscosity model is not appropriate for predicting swirling flows. In fact, the deficiency



of eddy viscosity models for swirling flows can be analytically demonstrated by modeling
a fully developed rotating pipe flow (Fu, 1995). Measured swirl velocity in the pipe varies
approximately as the square of the normalized radius (r2), however, eddy viscosity models
produce an exact linear profile of the swirl velocity, which describes a solid body rotation.

To avoid this kind of deficiency of eddy viscosity models, a second order closure scheme
has been suggested for modeling of swirling flows because of its ability to simulate the
effects of mean rotation and curvature. However, this requires solving many complicated
second moment transport equations, which involve six Reynolds stresses plus other scalar
fluxes and variances. Because of this complexity and because of the large computer resources
required, second moment transport equation models have not been successfully implemented
in combustor swirling flows.

Recent developments in nonlinear Reynolds stress-strain models bring a practical method
for combustion flow calculations because of their potential in simulating turbulent swirling
flows with only two modeled turbulence transport equations (Craft et al, 1993). Further
development and evaluation of these models are of great interest to both CFD development
and modern aircraft engine combustor design.

The model developed in this report is based on a general Reynolds stress-strain relationship
which is an explicit expression for the Reynolds stresses in terms of a tensorial polynomial
of mean velocity gradients. It is derived from a generalized Cayley-Hamilton relation. This
general formulation contains terms up to the sixth power of the mean velocity gradient with
eleven undetermined coefficients. Obviously, for any practical application, we need to trun-
cate this polynomial. Shih, Zhu and Lumley (1995) suggested a quadratic formulation and
determined the three relevant coefficients by using the realizability constraints of Reynolds
stresses and a result from rapid distortion theory analysis. This quadratic model works quite
successfully for many complex flows including flows with separation. However, our recent
calculations of swirling flows show that the swirl velocity is not appropriately predicted,
which verifies the finding from Launder’s group at UMIST. Launder (1995) pointed out that
“the weaknesses of the linear eddy viscosity model can not be rectified by introducing just
quadratic terms to the stress-strain relation.”

In this report, we retain the cubic terms from a general Reynolds stress-stain formulation
and determine the coefficients by using a similar method used in Shih et al’s quadratic model
and the measured data from rotating pipe flows. Modeled k-¢ equations are used together
with the cubic Reynolds stress-strain model for mean flow calculations. The first test flow is
that of fully developed pipe flow rotating about its own axial axis with various rotation rates
(Imao, Itoh and Harada, 1996). The second test flow is a more complex flow with swirl and
recirculation (Roback and Johnson, 1983). These two flows both have detailed experimental
data on mean velocity components. The comparisons between the experimental data and
computational results from models will be reported in detail.

In this report, there are four appendices. In Appendix A, the derivation of the proposed cubic
model is described. Appendix B gives the equations in a general coordinate system, which



will be useful for studying flows in various curvilinear coordinate systems. For example,
axisymmetric flows will be most conveniently studied in a cylindrical coordinate system.
Therefore, in Appendix C and Appendix D, we write the equations for a general flow and
an axisymmetric low respectively in a cylindrical coordinate system.

2 Cubic Reynolds stress model

A cubic Reynolds stress model, used in this study for modeling of turbulent swirling flows,
is developed in Appendix A. The resultant cubic model can be expressed in terms of mean
velocity gradients, U; ;, or in terms of mean strain and rotation rates, S;; and £;;. Here, we
list both forms for convenience of their applications.

In terms of mean velocity gradients, the cubic model for Reynolds stresses is
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where “;” means a tensorial derivative with respect to j. Is is the first principal invariant of
S;j, 1.e., Sex. The invarints II;, IT, and II3 (which appear in Eq.(A.1)) are defined as follows
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The model coefficient C,, is also constrained by the following conditions:
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where I is defined in Eq. (12).

In terms of mean strain and rotation rates, Eq. (1) can be written as
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Note that in the above equations, Si; means S;; + Sz + S33 and S2, means S1pSp1 + S2pSp2 +
S3p5ps in which each term contains a summation operator on the subscript “p”.

It should also be mentioned that the eddy viscosity ur in Eq. (3) will become the standard
2 2

k
form of ur = pC,,? for high turbulent Reynolds number flows (-l’j—g >>1).



3 Modeling of turbulent swirling flows

The model proposed in the previous section will be used for modeling of swirling flows in
this study. The first flow is a fully developed rotating pipe flow (Imao, Itoh and Harada,
1996). This flow was used for model development; however, a pipe flow with various axial
rotating rates is still a critical test case for the model. The second flow is a more complex
swirling flow with recirculation and separation (Roback and Johnson, 1983), which is often
encountered in an aircraft engine combustor.

3.1 Rotating pipe flow

A fully developed rotating pipe flow provides a very clean test case for checking the turbu-
lence model’s ability to model swirling flows. As mentioned previously, commonly used eddy
viscosity models fail to predict this flow. In fact, one can show that any eddy viscosity model
will produce a solution of solid body rotation for a rotating pipe flow, while experimental
data shows that the flow is not a solid body rotation. Experiments further demonstrate
that the characteristics of a pipe flow changes significantly with the axial rotation rate. For
example, for a fixed mass flux, the axial rotation will strongly reduce the pressure drop. In
other words, for a fixed pressure drop, the axial rotation will increase the total mass flux.
However, standard eddy viscosity models show no such changes at all.

In a fully developed turbulent pipe flow, all the axial gradients, 3/0z, and the azimuthal
derivatives, 8/06, are zero, and so is the radial velocity V' = 0. The non-zero velocity
components are the axial velocity U and the tangential (or swirl) velocity W = 72, where
Q is the angular velocity. Equations for this flow are
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where § = ,/25;;S;; = \/(%—3)2 + (Q}:’— — E)2. The nonlinear parts of turbulent stresses, 7,,
and 7y,, from the proposed cubic model, Eq. (1) or Eq. (10), are
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The production rate of turbulent kinetic energy P is
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and a; = 1.7%107%, a3 = 1% 107°, a; = 5 * 101°, R, = pv/ky/p. Other model constants
used in this report are standard: 0, = 1, 0, = 1.3, C,; = 1.44 and C., = 1.92. Depending on
particular modeled k-¢ equations, the model coefficients and damping function f, may have
different formulations proposed by various researchers. For example, if Eq. (17) (Shih et al,
1995) is used together with
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f2=Eq.(23) (28)
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From Eq. (14), it is easy to show that any eddy viscosity model will produce a solution of
solid body rotation, i.e., W/Wyay = 7/R, where W,q is the swirl velocity of the wall and R
is the radius of the pipe. It can also be shown that any quadratic Reynolds stress models will
have no contributions to the component 7, for a fully develed rotating pipe flow. Therefore,
they will also produce a solution of solid body rotation, just like an eddy viscosity model
does. Equations (13)-(17) can be easily and accurately solved by a parabolic code. Figures
1 - 3 show the results of the present cubic model with Eqs. (15) and (17) compared with
the measurements by Imao, et al (1996). The results from the standard k-¢ eddy viscosity
model are also included for comparison. In the figures, the rotation parameter N is defined
as N = Wyau/Un, where U, is the average velocity of the pipe. The Reynolds number based
on U,, and R is 20000. As shown in these figures, the standard k-¢ eddy viscosity model has
totally missed the effect of axial rotations on the pipe flow. In contrast, the present cubic
Reynolds stress model can capture all the effects of the axial rotation on the pipe flow: it
increases the centerline velocity and changes the axial velocity profile towards a parabolic

shape, it maintains non-solid body swirl velocity profile, and it reduces the relative turbulent
kinetic energy k/UZ.

3.2 Complez swirling flow with recirculation

A confined swirling coaxial jet was experimentally studied by Roback and Johnson (1983).
Figure 4 shows the general features of the flow. At the inlet, an inner jet and an annular jet
are ejected into an enlarged duct. Besides an annular separation due to sudden expansion of
the duct, a central recirculation bubble is created by the swirling flow. This flow feature is
often observed in an aircraft engine combustor. In this figure, calculated velocity vectors in
an axisymmetric plane from the cubic model is compared with the one from the standard k-¢
eddy viscosity model. Solutions were obtained by two Navier-Stokes codes. One is CORSAIR
(Liu et al, 1996) and the other is FAST-2D (Zhu, 1991). Eq. (16) and Eq. (17) are respectively
used in this calculation. Numerical results from the two codes are quite close to each other.
Figure 5 compares the calculations of the centerline velocity using a standard k-¢ eddy



viscosity model (SKE) and the present cubic model with the experimental data. The negative
velocity indicates the central recirculation. It is seen that both models predict the strength
of central recirculation quite well, but the present model predicts the rear stagnation point
much better than does the SKE model. This is also reflected in Fig. 4 that the recirculation
bubble from the cubic model is larger than that from the standard SKE model. Figure 6 shows
the comparison of calculated and measured mean velocity profiles at x=51mm. Both models
give reasonably good profiles which are within experimental scatter. However, significant
differences in the tangential velocity profile between the two models have been found in the
downstream region. For example, Fig. 7 shows the swirl velocity profile at x=305mm. SKE
model predicts a nearly solid body rotation, whereas the cubic model shows a non-solid body
rotation which is consistent with experimental observation.

4 Conclusion and discussion

This study shows that nonlinear cubic Reynolds stress-strain models with modeled k-¢ equa-
tions have the potential to simulate turbulent swirling flows encountered in aircraft engine
combustors. The model proposed in this report appears simple and numerically robust in
CFD applications in which the aircraft engine industry is particularly interested. However,
further evaluations against other flows are needed in order to determine the flow range of
the model’s validity and to seek possible further improvements.

The proposed cubic Reynolds stress model can be combined with existing k-¢ model equa-
tions, yet the best combination needs further studies and evaluations.

The proposed cubic model appears the simplest among other cubic or higher order models;
however it requires about 15% more CPU time than does a linear k-¢ eddy viscosity model for
a general 2D axisymmetric swirling flow. We expect that if a higher order model (e.g., fourth
or fifth order) is used, then the CPU time for calculating Reynolds stresses will significantly

increase and the model may become very costly for the calculation of a general 3D swirling
flow.
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A Appendix: Development of a Cubic Turbulent Model

A truncated general cubic turbulent stress-strain relation from Shih and Lumley (1993) can
be written as

2 k2 2
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The six model coefficients in Eq.(A.1) will be determined by the following procedure. First,
we consider two extreme cases: a pure strain flow and a pure shear flow, and apply realizabil-
ity constraints on the Reynolds stresses to ensure positive energy components and Schwarz’
inequality. This was suggested by Reynolds (1987) and Shih et al (1995), which will allow us
to determine the model coefficients of C,, C;, C; and Cs. The second procedure is to deter-
mine the model coefficients C4 and Cs by using the experimental data of a fully developed
rotating pipe flow. To analize the pure strain and pure shear flows, it is more convenient to
write Eq.(A.1) in terms of mean strain and rotation rates, as in the following:
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Note that S}, .S',(J2 *), QE?') and S,(Jz *) are all traceless tensors. Using Cayley-Hamilton relation,
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S,(J?’ *) can be expressed in terms of quadratic and linear terms as
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where Is, IIs and IIIg are the three principal invariants of S;;:
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Using Eq.(A.5), we may write Eq.(A.2) as
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where
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A result from a rapid distortion theory analysis (Reynolds,1987) states that isotropic tur-
bulence should not be affected by a pure mean rotation. To satisfy this result, the simplest

way is to eliminate the pure rotation term in Eq.(A.7), i.e., A, = 0, which indicates that
201 = Cz + C3.

To determine the model coefficients, let us first consider a pure strain flow, in which ;; = 0.
Under this situation,

2 k2 % k > o
PTG = S8y — (Cu - E—zIIsAs)p—E—ZS;j — (A + ;IsAs)”E—Zzsf,? ) (A.9)

In principal axes of S, we may write (see Shih, Zhu and Lumley, 1995)
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where a and b can take on arbitrary values. Then, one may write
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Therefore, Eq.(A.11) may be written as
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Following Shih, Zhu and Lumley (1995), for simplicity we set § = 0, i.e.,, 4; = —EI sAs,

k .
which indicates C, + C3 = ——IsAs. Then, a must be less than unity, i.e.,
€

k? 1
(C. — ——IIsAs) — (A.19)
kS
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€
where Ag equals ﬂ% and can be calculated using the following relations [see Shih et al

(1995), or Reynolds (1987)):
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From Eq.(A.19), C, can be written as
1 k?
Cp < —%5* + —21I5A5 (A.21)
€
As .

Now, let us consider a pure shear flow, in which there is only one non-zero component, Uy 3,
ie.,

0 Uiz O
U,',j = 0 0 0
0 0 0

In this case, S1p = Q12 = %Ul,z. Under this situation, we obtain from Eq.(A.7)

— 2 pk®
pu % = -3-pk + 2A3——512912 _ (A22)
— 2 k3
pu% gpk 2A3p 512912 (A23)
k2
Pl = —20,,%—5’12 (A.24)

k
Note that in Eqs. (A.22)-(A.24), the condition (A;+ EI sAs) = 0 has been used, and note also

that A; must be positive since the shear U; o will make 2 increase and uZ decrease. Applying
, 1 2
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Schwarz’ inequality, (U1u2)2 < u—’f u_%, to the above equations, we obtain a constraint for Aj:

k2
\/1 - 903—2'512512
A3 < £

k2
3= S12642
£

(A.25)

Noting that (S‘)2 = 2512512 and Q*S* = 20,,5), for the pure shear flow, a generalized
expression for A; may be written as

o 2
l_gcz(ks)

A \ 2 "\« Co>0 A.26
3 — CO+3kZQ*S‘ b) 0= ( * )
2  2¢2
where

Q‘ = \/Qijﬂij (A27)

To ensure a positive real value of A3, the coefficient C, must be also restricted by the
following condition for any large values of S*:

C. < ? (kf*)-l (A.28)

The formulations for C, and As, i.e.,, Egs. (A.21) and (A.26), will ensure realizability of
turbulent stresses. However, A4 and As are left to be further determined, which are related
to the coefficients C, and Cs by Eq.(A.8).

To determine A4 and As, or C4 and Cj, let us study a fully developed rotating pipe flow.
In this case, only two components of the non-linear part of turbulent stresses, 7,, and 7g,,
appear in the mean flow equations, i.e., Egs. (13) and (14), which are

__o RV (oW _w\au
Ter =TS (81‘ r) or (A.29)
_ L pE W (W W
Tor = = Cs 63W6'r (Br T
pk* auU\® _aw (oW W
- Cs = [W(ar) +War T (A.30)

Now integrate the Eq. (14) for the velocity W component at a steady state to obtain

18



ow W kt OW (oW W
wrwrr (G- 2) e WP (-

or r 67‘ or T
okt [ oW (oW W ou\?| _

Experimental data show that

2
~ (%) for a large range of W,,,;;. Here, R is the radius
wall

of the pipe, Wyan is the wall sw1r1 velocity. Insert this relation into the above equation, we
obtain, for high turbulent Reynolds numbers,

pk4 pk4 U\’
HT — C4 R4W2a" Cs R4W2a" 'a_r ~0 (A.32)
If we write
K k4 U \’?
C4p R4W31all =d pr, Cspe R4W3:all + (—67) =8 ur (A.33)

then from Eq.(A.32), we must require o/ +3' = 1. The coefficients Cy and Cs can be expressed
as

o pr B pr
Ci=—5—=5—, Cs= (A.34)
pk: T o7 Wwall W pk* | TTW2. aUu\?
& Rt = 2 m T\
In a fully developed, rotating, pipe flow, we find that the following relations hold,
‘w2 1
2Tl —g = 5 |5555 — Q4 (A.35)
T W wall oUu 2 _ 1 * O
2— + (-(-97) = 5 (75555 + 259) (A.36)
Finally, we obtain expressions for C4 and Cy as follows
al
Ce= 7 ‘:’ . (A.37)
3|5 = @
B w
Cs = AT T (A.38)

?Z (7(5::)2 + (Q*)z)
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From the calculation of rotating pipe flows, we find that the following coefficients seem

appropriate (i.e., we set o' =0, 8’ = 1.6):

1
C,= +
4.0+ As kg
C4 =
C. = 1.6 HT
*T kA T(S 4 ()
g3 4
where

U™ = /S585 + Qi §* = /5555, Q= /09

Equations (A.40) and (A.8) suggest that Ay = A5 = C;.

Now, we may summarize the cubic model and its coefficients as follows:

3

2 k
— P, = —gpk6ij + pr2S;; + A3p—62_ (SikQ%;j — ik Sk;)

k4
_2A5£.3_.
&€

1
- §leslm9mk6ij + IIsS:;)

where
pr = Eq.(3)
1
Cp=————57+
4.O+A5kU
€
9 ., (kS*\?
1 Y2
) (%)
3:
3k2 x *
0.5+ 55_29 S
A= 1.6ur
5 p_k47(st)2+(9*)2
g3 4

(Q,—,,S,fj - S,-zkﬂkj + Q.-kS,,QO,-

(A.42)

(A.43)

(A.44)
(A.45)

(A.46)

(A.47)

In Eq. (A.43), we have used the fact that S3,Qk; — QuSy; = Siej — uaSi; and QuSEY —

7

Sff')ﬂkj = Qi Si; — S5 Qx;j- In addition, C, must also be constrained by the conditions from

20



Egs. (A.21) and (A.28), i.e.,

x\ —1 2 «\ —1
2 (k

- (A.48)

The cubic model can be directly expressed in terms of mean velocity gradients, i.e., Eq.
(A.1). The corresponding coefficients are

Cl = —-;'lz‘IsAs (A49)
1 k

Cz = —5 (Aa + gIsAs) (ASO)

C3 = ';‘ (A3 - §I5A5> (A51)

C,=0 (A.52)

Cs = As (A.53)

then the cubic model, Eq.(A.43), becomes

2 2
—puU; = — gpk bij + pr (Ui,j +Uji — gUk,k 6:']')

Aj pi?
+ _23116_2 (Uk,iUk,j - UixU. ',k)
pk* 2
+ 42 [UniUgUps + UnsUsgUps = 310 &

1 2
_EIS (Ui,kUk,j + U Ui — §H15ij)

1 2
—§Is (Uk,iUk,j +UinUjp — §H26ij)] (A.54)
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B Appendix: Equations in a General Coordinate System

In this appendix, a set of mean flow equations with a general cubic model will be written in a
general coordinate system. This appendix will be found useful for studying turbulent flows in
a curvilinear coordinate system. We start with the governing equations in general tensorial
form. In Appendix C, we will write these equations in a cylindrical coordinate system as an
example to show how to write the equations and models for a specific curvilinear coordinate

system.

B.1 Eguations in tensorial form

pet+ (PUj) =0

"

. . 2
(pU:), + (pUV?) . = —Pit g [u (Ui,j +Uji = §U,’7.gej) - pu_iu_j]

(pk), + (pU'k) = ¢'" [(u + Ez) k,j] + P — pe
o Ok W

R

2
1 ir Ur € €
(pe) . + (PU 5) =9 [(ﬂ + U_e) 5,j] i +CafizPe = Cafopt

+C€3ﬁ%{gj'5 S,

where

P.=g" (~puu;) U, , S =,/25};S}

The turbulent stress is written in the following form:
2

2
—puu; = —Epkg"" + pur (Ui,j + Uj,i — 3U,’,°,g;]-) + Tij

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

where the subscript “;” denotes a tensorial derivative, g/ and g;; are the two metric tensors
of a coordinate system, which are defined in Eq.(B.16). The nonlinear part of the general

cubic model, 7;;, is

pk3 2
Tij = Cl?z— (Ui,ka;- + Uj,ka: - §H1 g,-j)

k3 1
+ G2 (MUl - 5T g5)

1

pk? k
+ 02 (U5 -
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PRE ([ kl 2
+ 04—— ( UipU;pUR + 97 Ui pURUss — 31 gij)

+ 05 3H3 gij)

(U"U U+ ULU,,UE — (B.7)

where,

I, =UU%, M=g"UiU,, Is=g"UiU..UT (B.8)

In addition, the often used scalar parameters S* and Q* defined in Eq.(A.42) and W* in
Eq.(A.20) can be written as

* 1 ij irri 1 i
(5 = 5 (¢7UnUS + USUY) = (U3 (B.9)
1 .
()2 = 5 (g”Uk,iU” - U’,U,’,) (B.10)
g S35t S i
W* — gzggklg'rn.n__(Sl*)T (Bll)

The nonlinear part of turbulent stress 7;;, Eq. (B.7), can also be expressed in terms of mean
strain and rotation rates S;; and §; which will be listed in Eq. (B.33).

B.2 Eguations in a general coodinate system

Let z* represent a general curvilinear coordinate system, then the corresponding contravari-
I ;. det
ant velocity is defined as U* = —— and the covariant velocity is defined as U; = g;;U?. To

write Eqgs. (B.1)-(B.10) in this general coordinate system, we need the following expressions
for various tensorial derivatives:

0A;

Aij=o— —ThA,
A= ZA; + T, A9
Aijp= %A}j T% Ay — Th Ay
= g‘f LAI 4+ 19 A (B.12)

where I}, is a Cristoffel symbol defined in Eq.(B.17). With the above formulations, Eqs.
(B.1)-(B.10) can be written as follows

P

p
oxri

inPU" =0 (B.13)
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dpUUI . ; apP

(PUi),g + L I‘}‘_,-pU,,U-7 + F;-npUU" — ~3m
i 0 ou; ouU; 2
JT — — ..
+g a:z:" [(ﬂ' t uT) ( -+ 3.1," 39911)]
. 6 n n a
=" {2(n + pr)Unz T + 2F=15— (1 + p7)Ua]
g5 (1 + pr) (6 > 3 : 2Un — g@g,-p)
j ou;  oU, 2
TP Ve _ n _ ¢ '
-g I‘.-,(u+wr)(ap+6] 27U, 39911,)
+ gj'r (ZT‘: Fn rTnj — Fn 7':11) (B14)
where
k
©=Ui= ZUk + TLU” (B.15)
and
.. axi axJ axk an
o= ————— —— . T —
T oxtoxr’ 99T 54 Bai (B.16)

here X* denotes the Cartesian coordinte system while z* represents a general coordinate
system. The symbol I‘,k, called the Christoffel symbol, is defined as

; o' 9 (3{1”’)

* = 3xr0x7 \ 9z (B.17)

The equations for the turbulent kinetic energy, k£ = ¢*%;w; = w;ui, and its dissipation rate ¢
can be written as

apUz i n ir 0 Hr ok jrn H#T ok
(oh) + g + ThapkU" =" 5 | (u+ ) axj] -9 (0 )
+ P — pe (B.18)
apUl i n__ j7r a ae T\ HT 66
(pe)s + = + Tiabl" = 0" 5 [(“* o) 5 ] O (64 57)
Ep _c p,PE 4 uur » 05 95
+Celf1kPk Cezf2 % rd 9; oz, (B.19)
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where

, oU?
P, = —g¥ pum; (0 =+ I U”) (B.20)
2 U, oU; ... 2
—puu; = —§pkg,-,- ‘a"—; + '6? ZF,‘jUn - gegij + Tij (B21)

If we decompose P into two parts, one due to the linear part of —pu;u; and the other due
to the nonlinear part, then we may write

P, =P® + PP (B.22)
where
PO =20k 4 1r0)0 + gr (% 4+ Ui _orey, U 1 um (B.23)
3 8zi ' oa az* .
. oU? i rrm
P;EZ) =gt 7; (6 —+ LU ) (B.24)

The nonlinear part of the cubic model, Eq. (B.7), in a general coordinate system is

pk® (8U; OU* 98U, ouU* .
> (axka: ok [aiU? = DUy — — TRLLU,U°

oU;0U*  3U; , oU* . 2

+ amlje ari 8 irquq Fquq oz P #LgUpU? — §H1gij)
okS [ o, (89U, 8U; aU, aU, 1
i [ 52% 9ol ~ ot 10~ Talegyr 311205
ok (8U, 8U*  0U, ou* . 1

(axf o+ SATLUT - T4U, = ~ TATAU,UT — 2Thag

pk4 [ kl (BU, aU] oum™ BU, oum BU ou™

Ti; = Cy—

—TETY U,,U,,) -

+C’3

+C4 .U, - ThU,—=

dxk 9zm 8zl Oz* Azl ™ Pogm Pzl

dU™  8U; 8U; U™  8U; OU™

Pq J i _ b q

A Rl K
rUpama, rrqvvqa, 3;6;1“:;*

gUkrgmur,, gUr U JImU" + T, I, UU”

8U; oU, au; ., aU;
* 52k 9z 1V T B kg*mUF ~ Bgm
+T2,L, TRU,UU") — §H3g,-j}

—iru,rmur

25



+Csy T4 U, - + DU

okt (9U* 9V, 8U' QU , 9U' _, aU, 68U
0zt 8! 8z Oxi Pori ' 9 9zl 9z

oU'  aU*eU, 8U' oU*_,  8U

_TkrP q - -
FalulpU oz ’7 t 927 37 o7 : Oxi k"’ ? ot
oU, oU ou BU U,
krrgZ >k k 1-1 l ryr
U Bzl 8z ~ Ty TuUpU? oz’ 6:1:1 oz Tl
6U T 44 k 1 r k T
— o7 ThleUpU" + 5Tl UTU” — ToTLTL, UpUU
au* au . ou*k . . OU, ,
+55 azfr' U~ =Tk PTLUUT + e ——TErLUw
—I* T3, 0L U, U — -§-H3g,,)
where
ou* ; oU* x
H1=(6k+PkUp) (’5—+I‘ Uq)
ou* ; ov;
I, = "'(a—7+rkm) (al rf,U)
U’ av; oum
— ki 1 1 n
;=g (W+I‘ kUp> (am’" —Pg U) (a 7 + I U )

The scalar strain and rotation rates are

(§°)? = 2[ (é’yi-r U)(BU +TIf U’) (‘—9—U—1+1“Uq

oz oz Bz
(% +niv)
(@) = % [g (aan rz,U) (%ZJ +r{;.U')
(5 o) ()
W* = Eq.(B.39)

B.8 Another form of the cubic model

(B.25)

(B.26)
(B.27)

(B.28)

2 i)

(B.29)

(B.30)
(B.31)

In terms of strain and rotation rates, the cubic Reynolds stress model can be written as

. 2 pk? 1
—puU; = —-gp k gi; + C,,TQ (S,'J' - ‘?:@ g,-j) + Tij
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where the nonlinear part, 7;;, is

k3 1 k3 1
=242 (gms,-psq,- - §s<2)gi,‘) 24,2 <gw9,-p9qj - gQ<2>g,-,-)
pk® . kY o e
+43 2 g (SiPQQJ' - QiquJ') + 2A4PE§9 g (Sipsqrﬂsj - Qipsqr55j>
pk4 pq T8 1o—r0 1
—24s5—5 [9 9" QipSgrLsj — EQSQ gij + 1 (Sij - 59 gij)

—Is (quS,-qu]- - %‘S(z)gij)] (B-33)
where
1/0U; 0U; x 1/0U; 0U;
i3 — = | =~ —_— e i1 — =\ - = B.34
Sii 2 (6:v7 t o 2P"Uk> Ly 2 (6337 oz ( )
O = g”S,, , S? = ¢7¢™ 5,5, , P = gPg™ 0,0, (B.35)
— 1
Q50 = ¢797 0" Uy Sulag , Is = © , IIs = 5 (0%~ 5@) (B.36)
and
1
(8%)% = ¢"79"511Spq — 592 (B.37)
(@) = ¢¢" 100y, (B.38)
g S5Stn S
Wi = gt gFlgmn ik Ztm"nj B.39
* =970 9" 5 (B.39)
where,
. 1
Sij = Sij = 39

Note that Eq. (B.33) appears to be more compact than Eq. (B.25) and may bring some
convenience for the CFD implementation.
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C Appendix: Equations in Cylindrical Coordinates

C.1 Mean equations

Now, let us write all equations in a cylindrical coordinate system: z* = (z,r,8). To accomplish
this, we need to calculate the metric tensors g”, g;; and the Christoffel symbol I}, for
cylindrical coordinates. Let X* = (z,y, z) be the cartesian system. The relation between the

two systems is

r==z, y =1 cosl , z=1 sind

or
r=1z, r=4y2 + 22, 6 = arctan (z/y)

We may easily calculate

i 1 0 0 i 1 0 0
33;5 =10 cosf stné ] , %'f; =10 cos§ -7 sine]
0 —sind/r cosb/r z 0 siné r cosf

The metric tensors g and g;; can then be obtained according to Eq. (B.16):

1 0 0 1 0 0
g"-"'z 0 1 0 s g,-,-= 0 1 0

0 0 1/r2 0 0 r?

and the Christoffel symbol I'}; can be obtained from Eq.(B.17)

00 0 00 0 0 0 0
Th=]00 0|, T4=]00 0], T%=[0 o0 1/7']

2
00 0 00 —r 0 1/r 0

The contravariant velocity in the cylindrical coordinates is

Ut=(U,V,9)

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

where U and V' are the axial and radial velocities, (0 is the angular velocity. The corresponding

covariant velocity can be obtained from

Ui = gt][]J = (U7 V’ ,,.29)
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With Egs.(C.1)-(C.7), the equations for turbulent flows in a cylindrical coordinate system
become

Continuity equation

Op 0pU 0pV  0p8  pV
8t+6:c+3r+30+1'_0 (C8)

Momentum equations

0pU  0pU? BpUV 4 GpU Q N pUV oP

t 3::: oz
+— 2(+ — -z a (1 + pr) gg_+6_v
it pr) 61' KT AT or Oz
+ (1 + pr) 3U+6T2Q +1( + pr) a—U+?—K
260 B br o6 oz T prir or Oz
aTzz aTzr 1 ang 1
oz Tor Trae To (C9)
0pV  0pUV  8pV? 8pVQ 2 p_V2 0P
ot oz + or + 00 rpd r  or

+ 56; [(u + pr) (g—: + %{-)] + 567: [2(u+ pr) (%‘; - %9)]

+i(+ ) aV+ar _Z£(+ )
209 | THT\ e T Tar rog T

2 v 1 2 ar2Q 1,

+;(ﬂ+ﬂT) (3’;— 5@) - 7_—3(u+l1/1")( 50 +rV — §T @)

671'2 6Trr 1 a’l',g 1 1

oz + or + — 72 ae - 7‘_3T00 + ;Trr (C]'O)
BprQ  BprQU 6p1‘29V 6p7' Q2 oP

oz + + TPVQ = —-é?

I TN

[2(u+ ) (T - 3 e)] +22 (s uryv)

+

7200 06

1 o2 av\ 20 \
+-(p+pr) | 5 +5;) - -a—[( pr)r*Q]
076 | Oror 10700 lm (C.11)

Tz T T2
O= "ttt (C.12)
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2k

P=P+3

k-¢ equations in Cylindrical coordinates

dpk  0pUk 0ka+6ka \4 0 (
ot Oz or o6

K
.

5 (s ) 8], 121, )

*or [(‘”’ a,,) 61‘] t 25 [(’“L or

1 ok
+; <u+-ﬂ—T)—+Pk—ps

61: or o0 + PLaRr ™

0 dpVe 38pQe V i)
pe+6pUe pe+ oSl (u.*_fiT_)_

v (o4 52) 3]+ g (0 2)
+- (ﬂ + 0_5) ? + Celfl Pk ezfszs2
+C=3”ZT [(Z—f) + (%) + (%)2}
where
P, =P + P

2
PN = ~3(pk + pr0)0

+ F2 QI—J 2+ﬂ 3_V+3_U +BQ
Hr oz oz \ 9z  Or oz

[oU (0U 8V . av\? a0
tir ar \ or t oz oz + or + or
[6U (aU . an) L (av
6 \a60 " Bz )" 96 \ 99

vV o0 2 082
+2( +—3§)( 50—+7‘V>j|

P(Z) Tzz rer 5 z2 A
Bz 9z T 5

00

1[ oU (BV ) (OQ V)]
-+ Teo6— + Tyo —_ =70 + 796 | — + —

30

oe
a9

(*
(*

.00
31‘

U 8V 90 98U 8V

.00
dz

200

or

7

ou
o6

ov

a6

%)

)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)



C.2 Nonlinear part of turbulent stresses 7;;

After g”, g;; and Pk for the cylindrical coordinate system are calculated, we may use Eq.
(B.25) or Eq. (B. 33) to calculate all the turbulent stresses automatically through a computer
program. However, in the cylindrical coordinate system, most components of g, g;; and F"
are zero, therefore it is possiple to manually write down all the turbulent stresses to avoid
many unnecessary null operations in the computer code. We write them here in a general
form for the cubic model, so that model users can use their particular model coefficients for
their applications. Note that with Eq. (A.8), the coefficients C; can be easily obtained from
A;, or vice versa.

HJ

3 [ 2
= () a2
L 32

or 9z | 06 Oz
pk3 [(oU\* (aUu\* 1
+ G g2 L(@z) o ta

2
3
aU\: 1_ ]
(%) ~ 3k
pk3 [(oUN*  (oV® 1
+ 0352 (6:1:) t\oz) T 3

(&) -+

/ 4 TT TT T2 TT 2

+ ('4? Ll'lg + 120 +_.'+ 133 .+. 34 _§“3
f 1 z T TT zT 2

+ ('5_6T 1326 +f137 +...+ 150 + 151 __“3]
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g2 |9z 8r Or Or 06 0r Ofr
O W o 20

Oz 8z Or 8z 00 Oz oz

pk® [BU oV oUeV 18U8V 0OU Q]

9205 Toror 7008 96
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pk“
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02, 200 (BU .\ an) 61‘293V]
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ov 1
—27‘9% +V2 47202 — §r2n2]

k4 2

+ Cpe—[ng+T§§+...+T§§’+T3"f—grzns]
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(C.19)

The terms Tli‘; . Tg{ in the above equations are listed below:

The terms in T,.:

T ou (8U6U oU v 6U8(2> ou (BUBU ou ov BUBQ)
19 =
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D Appendix: Equations for Axisymmetric Flows

Continuity equation
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Momentum equations
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