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Abstract

Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air

mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models

axe unable to appropriately model swirling flows. Therefore, it has been suggested that, for the

modeling of these flows, a second order closure scheme should be considered because of its ability

in the modeling of rotational and curvature effects. However, this scheme will require solution

of many complicated second moment transport equations (six Reynolds stresses plus other scalar

fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will

require a large amount of computer resources for a general combustor swirling flow.

This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent

swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of

model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k

and the other for the dissipation rate e. The cubic model developed in this report is based on a

general Reynolds stress-strain relationship (Shill and Lumley, 1993). Two flows have been chosen

for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex

flow with swirl and recirculation.
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1 Introduction

For better fuel-air mixing and flame stabilization in a combustor, a swirl is generally asso-

ciated with the flows. Therefore, accurate modeling of turbulent swirling flows is important

in engine combustor design. Common turbulence models used in engineering calculations

are eddy viscosity models which include zero-equation and two-equation models (e.g., mix-

ing length models and k-e models). However, it has long been recognized that this type of

eddy viscosity model is not appropriate for predicting swirling flows. In fact, the deficiency



of eddy viscosity models for swirling flows can be analytically demonstrated by modeling

a fully developed rotating pipe flow (Fu, 1995). Measured swirl velocity in the pipe varies

approximately as the square of the normalized radius (r2), however, eddy viscosity models

produce an exact linear profile of the swirl velocity, which describes a solid body rotation.

To avoid this kind of deficiency of eddy viscosity models, a second order closure scheme

has been suggested for modeling of swirling flows because of its ability to simulate the

effects of mean rotation and curvature. However, this requires solving many complicated

second moment transport equations, which involve six Reynolds stresses plus other Scalar

fluxes and variances. Because of this complexity and because of the large computer resources

required, second moment transport equation models have not been successfully implemented

in combustor swirling flows.

Recent developments in nonlinear Reynolds stress-strain models bring a practical method

for combustion flow calculations because of their potential in simulating turbulent swirling

flows with only two modeled turbulence transport equations (Craft et al, 1993). Further

development and evaluation of these models are of great interest to both CFD development

and modern aircraft engine combustor design.

The model developed in this report is based on a general Reynolds stress-strain relationship

which is an explicit expression for the Reynolds stresses in terms of a tensorial polynomial

of mean velocity gradients. It is derived from a generalized Cayley-Haanilton relation. This

general formulation contains terms up to the sixth power of the mean velocity gradient with

eleven undetermined coefficients. Obviously, for any practical application, we need to trun-

cate this polynomial. Shih, Zhu and Lumley (1995) suggested a quadratic formulation and

determined the three relevant coefficients by using the realizability constraints of Reynolds

stresses and a result from rapid distortion theory analysis. This quadratic model works quite

successfully for many complex flows including flows with separation. However, our recent

calculations of swirling flows show that the swirl velocity is not appropriately predicted,

which verifies the finding from Launder's group at UMIST. Launder (1995) pointed out that

"the weaknesses of the linear eddy viscosity model can not be rectified by introducing just

quadratic terms to the stress-strain relation."

In this report, we retain the cubic terms from a general Reynolds stress-stain formulation

and determine the coefficients by using a similar method used in Shih et al's quadratic model

and the measured data from rotating pipe flows. Modeled k-s equations are used together

with the cubic Reynolds stress-strain model for mean flow calculations. The first test flow is

that of fully developed pipe flow rotating about its own axial axis with various rotation rates

(Imao, Itoh and Harada, 1996). The second test flow is a more complex flow with swirl and

recirculation (Roback and Johnson, 1983). These two flows both have detailed experimental

data on mean velocity components. The comparisons between the experimental data and

computational results from models will be reported in detail.

In this report, there are four appendices. In Appendix A, the derivation of the proposed cubic

model is described. Appendix B gives the equations in a general coordinate system, which
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will be useful for studying flows in various curvilinear coordinate systems. For example,

axisymmetric flows will be most conveniently studied in a cylindrical coordinate system.

Therefore, in Appendix C and Appendix D, we write the equations for a general flow and

an axisymmetric flow respectively in a cylindrical coordinate system.

2 Cubic Reynolds stress model

A cubic Reynolds stress model, used in this study for modeling of turbulent swirling flows,

is developed in Appendix A. The resultant cubic model can be expressed in terms of mean

velocity gradients, Ui,i, or in terms of mean strain and rotation rates, Sij and fhj. Here, we

list both forms for convenience of their applications.

In terms of mean velocity gradients, the cubic model for Reynolds stresses is

2 _ii)--pUiU j = -- -_pk _q + I.tT

+ A3-_¢ 2pk3 (Uk.iUkd- Ui.,U,.,)

A pk4 [Uk,iUk,pUp,j Uk,jUk,pUp,i 2113 'ij+ 5--_- + -
1

-_Is . - 3 ]

-1-Is2 (Uk.iUkj + Ui.kUj.k - _--1"I2_iJ_]3} (1)

where ",j" means a tensorial derivative with respect to j. Is is the first principal invariant of

Sii, i.e., Skk. The invarints II1, II2 and II3 (which appear in Eq.(A.1)) are defined as foUows

1"_1 = Ui,jUj,i , 1] 2 : Ui,jUi,j , 1"I3 : Ui,kUi,pUp, k (2)

The three coefficients #T, A3 and As are

k2 k(k+ v_)
.T = pGY.T, or _ = pG/.

1
C_= kU* ' f_,=Eq.(22), or

4.0+ As_
E

1-}C_

A3 =
3k2-* S*

0.5+ _a

Eq.(26)

(3)

(4)

(5)



A 5 =

in which

1.6 #T

pk' 7(s*)2+ (fl*)2
¢3 4

(s)

As=v_cos¢, ¢=_arccos(v_W), W*- (S.)S

The model coefficient C t, is also constrained by the following conditions:

Cj, < y , and C, <_ As +-_IIsAs

(7)

(8)

(9)

where IIs is defined in Eq. (12).

In terms of mean strain and rotation rates, Eq. (1) can be written as

-puiuj =- 2pk6ij + p,T2S_ + As pks (Si_flkj - _ikSki)7
1

where

(I0)

(11)

IIs is the second principal invariant of S/./ defined as

IIs = (12)

Note that in the above equations, Skk means Su + $22 + Saa and S_k means StvS_,l + S2pSp2 +

SspS_ in which each term contains a summation operator on the subscript "p".

It should also be mentioned that the eddy viscosity #T in Eq. (3) will become the standard
k2

form of #r = pC. k2¢ for high turbulent Reynolds number flows (_T >> 1).
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3 Modeling of turbulent swirling flows

The model proposed in the previous section will be used for modehng of swirling flows in

this study. The first flow is a fully developed rotating pipe flow (Imao, Itoh and Harada,

1996). This flow was used for model development; however, a pipe flow with various axial

rotating rates is still a critical test case for the model. The second flow is a more complex

swirling flow with recirculation and separation (Roback and Johnson, 1983), which is often

encountered in an aircraft engine combustor.

3.1 Rotating pipe flow

A fully developed rotating pipe flow provides a very clean test case for checking the turbu-

lence model's ability to model swirling flows. As mentioned previously, commonly used eddy

viscosity models fail to predict this flow. In fact, one can show that any eddy viscosity model

will produce a solution of solid body rotation for a rotating pipe flow, while experimental

data shows that the flow is not a solid body rotation. Experiments further demonstrate

that the characteristics of a pipe flow changes significantly with the axial rotation rate. For

example, for a fixed mass flux, the axial rotation will strongly reduce the pressure drop. In

other words, for a fixed pressure drop, the axial rotation will increase the total mass flux.

However, standard eddy viscosity models show no such changes at all.

In a fully developed turbulent pipe flow, all the axial gradients, O/Ox, and the azimuthal

derivatives, 0/00, are zero, and so is the radial velocity V = 0. The non-zero velocity

components are the axial velocity U and the tangential (or swirl) velocity W = rf_, where

f_ is the angular velocity. Equations for this flow are

or

-- _-+_ (_+_)_-_;+

Or2pW 0 [ . OrW1 _ 20__
at - 0r L(_ + _T)r--o7-_] 0r [(_+ _)rw]

[(Orpk 0 #T r'_r

Orpe 0 I_ r_r--d -= _ "+_

(13)

+ rPk - rpe

Or'Far

+ 0--'-7- (14)

[(OrpE_ c9 P/r r-_rOt Or I_ +

rp¢ 2 [Z#T r ( OS_ 2

+ c, lfl rP_fi - c_I,_ --F- + _o \ or /

(15)

4" Clfl rpS E -- C2f2

(16)

rpe 2 ##r r (os_ 2
k + _ + -- (17)p \0r/
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whereS= _=,/(°v_2 2.V ka_] -t- (aw w) The nonlinear parts of turbulent stresses, T=_

and to,, from the proposed cubic model, Eq. (1) or Eq. (10), are

T=_ -- 0

To, s--j- w\o,. / _

The production rate of turbulent kinetic energy Pk is

(18)

(19)

where

_3 T _ L_aT/
(20)

k 2

_r = pC. /.-;-

,,f. [1 exp(-alRk aaR_ ""s'11/2= - - - as_k_]

s_= 1, s_= 1- 0.22_p (-R+2/36)

(21)

(22)

(23)

and al = 1.7 • 10 -3, as = 1 • 10 -9, al = 5 • 10 -1°, Rk = px/ky/#. Other model constants

used in this report are standard: ak = 1, a_ = 1.3, Cel = 1.44 and C_2 = 1.92. Depending on

particular modeled k-e equations, the model coefficients and damping function f_, may have

different formulations proposed by various researchers. For example, if Eq. (17) (Shih et al,

1995) is used together with

e (24)

then

Cl=max 0.43, 5+r/ ' C2=1.9, 77 e

and _, fl are

.f_, =1 - exp {- (air + a2 R2 -4- a3.R 3 -b aaR 4 -'k asRS) }

.fl = 1-exp{- (a;R + al2R 2 +ataR 3 -]-a_R 4 + a;RS)}

(26)

(27)
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.f2 = Eq.(23) (28)

where

k 1/2(k + v/_) 3/2
R = (29)

V_

and

a1=3.3.10 -3 , a2=-6.10 -5 , a3=6.6.10 -7,

a4 = -3.6 * 10 -9, as = 8.4 • 10 -12 (30)
F ! !

a t=2.53,10 -3 , a 2----5.7,10 -5 , a 3=6.55,10 -7 ,

' = 8.3 • 10 -12 (31)' -3.6.10 -9 , a sa 4 =

From Eq. (14), it is easy to show that any eddy viscosity model will produce a solution of

solid body rotation, i.e., W/Ww,u = r/R, where W,_jz is the swirl velocity of the wall and R

is the radius of the pipe. It can also be shown that any quadratic Reynolds stress models will

have no contributions to the component TO, for a fully develed rotating pipe flow. Therefore,

they will also produce a solution of solid body rotation, just like an eddy viscosity model

does. Equations (13)-(17) can be easily and accurately solved by a parabolic code. Figures

1 - 3 show the results of the present cubic model with Eqs. (15) and (17) compared with

the measurements by Imao, et al (1996). The results from the standard k-s eddy viscosity

model are also included for comparison. In the figures, the rotation parameter N is defined

as N = W_au/Um, where U,_ is the average velocity of the pipe. The Reynolds number based

on U,_ and R is 20000. As shown in these figures, the standard k-e eddy viscosity model has

totally missed the effect of axial rotations on the pipe flow. In contrast, the present cubic

Reynolds stress model can capture all the effects of the axial rotation on the pipe flow: it

increases the centerline velocity and changes the axial velocity profile towards a parabolic

shape, it maintains non-solid body swirl velocity profile, and it reduces the relative turbulent

kinetic energy k /U 2.

3.2 Complex swirling flow with recirculation

A confined swirling coaxial jet was experimentally studied by Roback and Johnson (1983).

Figure 4 shows the general features of the flow. At the inlet, an inner jet and an annular jet

are ejected into an enlarged duct. Besides an annular separation due to sudden expansion of

the duct, a central recirculation bubble is created by the swirhng flow. This flow feature is

often observed in an aircraft engine combustor. In this figure, calculated velocity vectors in

an axisymmetric plane from the cubic model is compared with the one from the standard k-_

eddy viscosity model. Solutions were obtained by two Navier-Stokes codes. One is CORSAIR

(Liu et al, 1996) and the other is FAST-2D (Zhu, 1991). Eq. (16) and Eq. (17) are respectively

used in this calculation. Numerical results from the two codes are quite close to each other.

Figure 5 compares the calculations of the centerline velocity using a standard k-_ eddy



viscositymodel (SKE) and the present cubic model with the experimental data. The negative

velocity indicates the central recirculation. It is seen that both models predict the strength

of central recirculation quite well, but the present model predicts the rear stagnation point

much better than does the SKE model. This is also reflected in Fig. 4 that the recirculation

bubble from the cubic model is larger than that from the standard SKE model. Figure 6 shows

the comparison of calculated and measured mean velocity profiles at x=51mm. Both models

give reasonably good profiles which axe within experimental scatter. However, significant

differences in the tangential velocity profile between the two models have been found in the

downstream region. For example, Fig. 7 shows the swirl velocity profile at x=305mm. SKE

model predicts a nearly solid body rotation, whereas the cubic model shows a non-solid body

rotation which is consistent with experimental observation.

4 Conclusion and discussion

This study shows that nonlinear cubic Reynolds stress-strain models with modeled k-e equa-

tions have the potential to simulate turbulent swirling flows encountered in aircraft engine

combustors. The model proposed in this report appears simple and numerically robust in

CFD applications in which the aircraft engine industry is particularly interested. However,

further evaluations against other flows axe needed in order to determine the flow range of

the model's validity and to seek possible further improvements.

The proposed cubic Reynolds stress model can be combined with existing k-e model equa-

tions, yet the best combination needs further studies and evaluations.

The proposed cubic model appears the simplest among other cubic or higher order models;

however it requires about 15% more CPU time than does a linear k-_ eddy viscosity model for

a general 2D axisymmetric swirling flow. We expect that if a higher order model (e.g., fourth

or fifth order) is used, then the CPU time for calculating Reynolds stresses will significantly

increase and the model may become very costly for the calculation of a general 3D swirling
flOW.
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A Appendix: Development of a Cubic Turbulent Model

A truncated general cubic turbulent stress-strain relation from Shih and Lumley (1993) can
be written as

-p_j = - _pk _ + C_pT

c pk' (Ui,,_Uk,t+ _2 ,hi)+ 1--_- ut,W_,i -_nl

+ C pk3
2--_- (U,,kUt,k - _II21 ,q)

"pk3(u',iU'j lII _it)- ]

+ C'Pk' (Ui'kU_"U"k+ Ui"V"'U"k-- _ IIs *i')7

+ c Ok' + 2 'it)_7 u_,_vk,, v,,, - -glI_ (A.1)

The six model coefficients in Eq.(A.1) will be determined by the following procedure. First,

we consider two extreme cases: a pure strain flow and a pure shear flow, and apply reMizabil-

ity constraints on the Reynolds stresses to ensure positive energy components and Schwarz'

inequality. This was suggested by Reynolds (1987) and Shih et al (1995), which will allow us

to determine the model coefficients of C_, C1, 6'2 and (73. The second procedure is to deter-

mine the model coefficients C4 and Cs by using the experimental data of a fully developed

rotating pipe flow. To anMize the pure strain and pure shear flows, it is more convenient to

write Eq.(A.1) in terms of mean strain and rotation rates, as ill the following:

--pulu t =

+

+

+

+

where

P k3 2(,q(2.) (2,)
-2pk'it + C._2S_ + Ct-fi--.,-.i t +f_,, )

C pk3 ,,.,(2.) f_!2..) , .
2-fi-to o - --,j - S_kflk_+ fhkS_j)

C pk3 ,, t_(2*) _!2.) .

_-fi-toit - --,t + s;k_,t - niks?,t)

2c4ak_ (s}] *, o(_').. .-, o,_., l a_,s,=n_6i tg -- °ik aLkJ + a*ik°kj -- flikSkm_'_mt + 3 )

Pk4( C(2*)n c_ 0(2.) 1 ) (A.2)

S_ = &t - gS_ _t,

s!._'), = -
3

5'}_ *)= S_ -- l-S_k_ij '3 --itf_(2*)= nit2 -- X a2kk_it3

2 _. _il_tt_2 = SilSlt , _-_it
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1 U 1
S_j "- SimSmlSlj , Si_ = 7( i,j --_ Uj,i) , _'_ij = -_(U,j -- Uj,i) (A.3)

. ._,(2.) (2*) ._,(3.)Note that 5'ij , -'ij , _ij and -ij are all traceless tensors. Using Cay]ey-Hami]ton relation,

S3 - IsS_ + IIsSij - IIIs6ij= 0 (A.4)

.q(3,)"ij can be expressed in terms of quadratic and linear terms as

S_ *) = _so_jrc,(2.)_ IIsS_ (A.5)

where Is, IIs and IIIs are the three principal invariants of Sij:

3s.sj5÷2s )Is = Sii , IIs = -_
(A.6)

Using Eq.(A.5), we may write Eq.(A.2) as

2 k C_,_2S_ -" Pk3_(2*) Pk3"_(2*)-pu_uj --_p 6_i + + += 2A1--_--aii 2A2-_-_zii

p___k23, , ._34i'o(2,),-, (2,)+A, - + .,,,,- )

-2A5_ (_'_ikSk_n_'_rrtj - l _'_klSlm_'_mk'iJ3 ÷ IIsS_ - IsS!-2")_tz]

where

(A.7)

1 1

(2C1+C2+C3), A2=_(2C1-C2-C3)A1 =
A3=63-62, A4 = (C5- C4), As'-(C4+Cs) (A.8)

A result from a rapid distortion theory analysis (Reynolds,1987) states that isotropic tur-

bulence should not be affected by a pure mean rotation. To satisfy this result, the simplest

way is to eliminate the pure rotation term in Eq.(A.7), i.e., A2 = 0, which indicates that

2C1 = C2 + C3.

To determine the model coefficients, let us first consider a pure strain flow, in which f_ij = 0.

Under this situation,

k2rr A _Pk22c* _ kr A I Pk3o¢(2.)
puiuj = 2pk6,j - (C_, - -_--s_s]--_- "_ij (A1 + 7-s._sl-fi-,.,-,,j (A.9)

In principal axes of S_j, we may write (see Shih, Zhu and Lumley, 1995)
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[10 i} [1:2°/• = _L+__ S_1, -ij _n
S;j 0 02 _ = 0 x+_ 0 c(2") (A.10)

0 2 _ 0 _ 1-__bb2

where a and b can take on arbitrary values. Then, one may write

(A.11)

If we define

S*=_,
/o(2,) _,(2,)

S(2.) = VOii o_i (A.le)

from Eq.(A.10), we obtain

s* = ISx,I -_ , s(=*) IS_ + b= (A.13)

Therefore, Eq.(A.11) may be written as

-- 2 k (C_- k--22IIsAs)Pk22s*_f 2
_2 = _p _ c c V3 + a 2

+ k Pk3 2. / 2
(A_ -_sA_)--_-2S( )W--V-_(A.14)

m

Since u 2 k 0, we must require the following inequality for any large S* and S (2.)

k 2 k / k k2./181 - (C_ - -_IIsAs) S* 18 (At + 3 + b2 -3 + a 2 [IsA5)_ s(= ) _ > 0 (A.15)

If we write

k2II A k . [ 18 k -kS (2.) [ 18
(C.-_ s s)_S V3+a2-a, (AI+_IsAs)--_S V3+b2-/3 (A.16)

then we must require

a +/3 _<1 (A.17)

while we write

k 2

(C_, - -_ IlsAs ) =
a (A_ + kIsAs)- _ _ (A.18)

kS* _ ' c k2S (2.)[ 18

-_V3¥-_ _ V3+_
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Following Shih, Zhu and Lumley (1995), for simplicity we set/3 = 0, i.e., A1 = -klsA5,

which indicates C2 + C3 = -k-IsAs. Then, a must be less than unity, i.e.,
g

k_ I

(C_- -_IIsAs) <_- kS*
As_

g

(A.19)

18 calculated the relations [see Shih et alwhere As equals 3 + a-------_
and can be using following

(1995), or Reynolds (i987)]:

, * *

A,= v cos¢,¢=  arccos(V W*),W*= (A.20)

From Eq.(A.19), C_ can be written as

C_, < 1 k 2- kS* + -_IIsAs (A.21)
As_

g

Now, let us consider a pure shear flow, in which there is only one non-zero component, U1,2,

i.e.,

Ui,j = 0 0 0
0 0 0

1 U
In this case, Sn = ill2 = _ i,2. Under this situation, we obtain from Eq.(A.7)

-- 2 ,_ A Pk3 -
pu 2 = -_pk + ,_3-_-5"i2_i2

2 _ S12_12
P_22 = -_pk - 2As

 1u2 = -2c.Pk2sl2
g

(A.22)

(A.23)

(A.24)

Note that in Eqs. (A.22)-(A.24), the condition (Al+'2IsAs) = 0 has been used, and note also
g

that A3 must be positive since the shear UL2 will make u_ increase and u_ decrease. Applying

17



Schwarz'inequality, (u-_) 2 _<u_ u 2, to the above equations, we obtain a constraint for A3:

A3 < 1 - 9C_--_$12S12
k2 (A.25)

3_-$12_212

Noting that (S*) 2 = 2S12S12 and fFS* = 21212S1_ for the pure shear flow, a generalized

expression for A3 may be written as

A3 --
__ 3k 2 . . , C0>_0 (A.26)
c02+ 5_za s

where

To ensure a positive real value of A3, the coefficient Cv must be also restricted by the

following condition for any large values of S*:

Cv < y (A.28)

The formulations for C_, and A3, i.e., Eqs. (A.21) and (A.26), will ensure realizability of

turbulent stresses. However, A4 and As axe left to be further determined, which are related

to the coefficients C4 and Cs by Eq.(A.8).

To determine A4 and As, or C4 and Cs, let us study a fully developed rotating pipe flow.

In this case, only two components of the non-linear part of turbulent stresses, _-,, and _'a,,

appear in the mean flow equations, i.e., Eqs. (13) and (14), which axe

_"=- 7-7- _

TOT=--'_-2_-" _ _

_--_- Wt, o_ ] + _ _

(A.29)

W)]r (A.30)

Now integrate the Eq. (14) for the velocity W component at a steady state to obtain

18



0 (A.31)

Experimental data show that Wwat-----_t"_" for a large range of W_u. Here, R is the radius

of the pipe, W_u is the wall swirl velocity. Insert this relation into the above equation, we

obtain, for high turbulent Reynolds numbers,

(A.32)

If we write

c Pk4_ ur2 = a'
T 2

47 ,.-R_,, _o,, pc, L"R,""°"+_0r/ j
= fl' Pc (A.33)

then from Eq.(A.32), we must require a'+;3' .._ 1. The coefficients C4 and Cs can be expressed

as

a' pc fl'

C4"-- Pk42 2 2 , Cs= [ Pc
(A.34)

-- --2 _ +[_3 R4 _3 "--''\0r] J

In a fully developed, rotating, pipe flow, we find that the following relations hold,

r2W 2 1
R 4 2

_ _°" + t 0r/ j = _ (Ts;Ss,5+

Finally, we obtain expressions for C4 and Cs as follows

(A.35)

(A.36)

a'Pc (A.37)

C4 = pk 4 1 (S.)_ _ ,'_._21
z3 2

/3' _T (A.38)

05= pk'_(7(s'y+ (a')2)
e3 4

19



From the calculation of rotating pipe flows, we find that the following coefficients seem

appropriate (i.e., we set a' = 0, j3' = 1.6):

1

C_, = kU* (A.39)
4.0 + As_

g

C, =0 (A.40)

1.6/_T (A.41)
Cs = pk 4 7(S.)2 + (a.)2

e 3 4

where

(A.42)

Equations (A.40) and (A.8) suggest that A4 = As = C5.

Now, we may summarize the cubic model and its coefficients as follows:

where

(A.43)

#r= Eq.(3) (A.44)
1

C_, = kU* (A.45)
4.0 + As_

I +/A_= 1-2C_(k" _
ak_ , . (AA6/

0.s + _za s
1.6pT

As = (A.47)
pk'7(s*) _+ (n*)_

z 3 4

* * c_ o(2*)
In Eq. (A.43), we have used the fact that S_kl'lk j 12ikS_ i = Siki-lki - fli_Skj and _,.ikoki -

S_2*)n _ikS2_. S2kf/kj. In also be constrained the conditions fromaddition, c. must byk a_kj =

2O



Eqs. (A.21) and (A.28), i.e.,

C_, <_ As + -_IIsA5 and C_ < _ (A.48)

The cubic model can be directly expressed in terms of mean velocity gradients, i.e., Eq.

(A.1). The corresponding coefficients are

lk
C1 - IsAs

2_

C2=-_ A3 + IsA5

C3 = _

C4=0

Cs = As

then the cubic model, Eq.(A.43), becomes

(A.49)

(A._0)

(A.51)

(A.52)
(A.53)

2 k 2U _o/
/

+ _- _--7-

AsP k4
[ 2II

+ 7 [u_,,u_,pup_ + u_,juk,pup,_ - -_ 3 _j

(A.54)
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B Appendix: Equations in a General Coordinate System

In this appendix, a set of mean flow equations with a general cubic model will be written in a

general coordinate system. This appendix will be found useful for studying turbulent flows in

a curvilineax coordinate system. We start with the governing equations in general tensorial

form. In Appendix C, we will write these equations in a cylindrical coordinate system as an

example to show how to write the equations and models for a specific curvilineax coordinate

system.

B.1 Equations in tensorial form

p,t + t ,,_pUJ)_ 0

,J

= • 2 k

(ok)..+ (ov'k)..= . + _ k_ + e, - 0_

(i061, t -1- (pui_), i ]A --[- -_¢ 6 ] ,, ..[- Celfl_P k - Ce2f2P-- _

-_-Ce3 _]_T gj, S j S,r
P

where

Pk= # (-_,-_)<'_, s =

(B.:)

(B.2)

(S.3)

(B.4)

(B.5)

The turbulent stress is written in the following form:

2 k 2 k= + (v..+ + (B.6)

where the subscript ",i" denotes a tensorial derivative, g'J and gii are the two metric tensors

of a coordinate system, which axe defined in Eq.(B.16). The nonlinear part of the general

cubic model, TO, is

zii = C pk3 (Vi,kV_ k 2 gij)17 + vj,k<, - 5II,

+ c Ok_(¢'U'''U''_-W- -g:n_,,,)

+ c,--fi-Pk"(vk,,V_- -g::I, ,,,)
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2 gij)

where,

IIt i k klUi U, -ktUi U U_= U,_i , II2 = g ,k i,z , II3 = g ,k i,,,, ,z

(B.7)

(B.8)

In addition, the often used scalar parameters S* and i2" defined in Eq.(A.42) and W* in

Eq.(A.20) can be written as

1 • 1 i2
(s.) = + -

1 (gi.iU,,iUt} _ U_U{)(a')

(B.9)

(B.10)

(B.11)

The nonlinear part of turbulent stress _'ij, Eq. (B.7), can also be expressed in terms of mean

strain and rotation rates Sij and f_ij which will be listed in Eq. (B.33).

B.2 Equations in a general coodinate system

Let x i represent a general curvilinear coordinate system, then the corresponding contravari-
dx i

ant velocity is defined as U i = m and the covariant velocity is defined as Ui = glj U j. To
dt

write Eqs. (B.1)-(B.10) in this general coordinate system, we need the following expressions

for various tensorial derivatives:

OAi

Ai,j = OxJ P_jAq

A_- OAi + r',jA 
OAij q q

A_,k- 0x k FikAq1 - FikAi q

_ OA_ q i _ q (B.12)
Ai, k - _xk FikAq + FqkAi

where F_.k is a Cristoffel symbol defined in Eq.(B.17). With the above formulations, Eqs.

(B.1)-(B.10) can be written as follows

OPUJ J (B.13)
Ps + Ox---T + Fj_ pU _ = 0
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(pU,),,+ --OxJ
r_pu=u_ + r_=pu,u = - oP

-g'rf'('+_)\oxp+ oxJ erjpu.-_ogj_

+ gJ" Ox" Fi'%i - Fi"wi_

where

OU k

o=<_= yF + rLv-

(B.14)

(B.15)

and

Ox _ Oxi OX _'OX I'

g'J- OXk OXk , gli - Ox i Oxi (B.16)

here X k denotes the Cartesian coordinte system while x _ represents a general coordinate

system. The symbol F}i,, called the Christoffel symbol, is defined as

0,¥" OXJ \ ax k ) (B.17)

The equations for the turbulent kinetic energy, k = giJ_,,U i ----UiU i, and its dissipation rate e
can be written as

(pk),t + Ox------7- + ri_pkU = Ox-; _ + _ - g_rj, _ + ox,,
+ Pk - Pe (B.18)

(pc),, + --
OpUic

c C ##T2,0S OS (B.19)
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where

Pr = -gr;pu--_ kOzr + r_u"

2
-puiu i = --_pkgij + Pc tOxJ + -- -

OU_ ,, 2
Oz_ 2£uU,_ - -_Og o

(B.20)

+ T# (B.21)

If we decompose Pr into two parts, one due to the linear part of -puiuj and the other due

to the nonlinear part, then we may write

Pr- p_l)+ pk(2) (B.22)

where

2 (ou 
= --_(pk + I_TO)O + 9kJlgr _OxJ

•
\ oxk /

+ oxi \ o.k + rkw m . (B.23)

(B.24)

The nonlinear part of the cubic model, Eq. (B.7), in a general coordinate system is

c pk3(°v' our ov, _ our p kv#q
_'J= 17 ko_r o.J + -y_rqjvq- r,_vq0%7- r,kr_j

OUj OU r OUj r q OUk pp r,k rr rrq 2II /
+ 0X r OX i "{" _-_-xkrqiuq - riruq _ ir-qi,_p,_ -- "_ lgii

/

\b-_ o_' _r_,u. - ,r "b-_ r,_u,u.u , - gn_gij

C pk3 (OUr OU r OUkFr U q - F q U, oUr Fp _k rr rrq lII )
/

\o_r o.., o_z ox_ Ox_r_.,u_ - £irU_,_x_ Oz t

+rfru_v.u.OU'- ou_ov, ou" oujov_ .
OX I "q- OX r OX rn OT, 1 OZ r OT, 1 rirnUq

p OUIOU" vpvq rrrrOU" OU_OUj _ ,
-£_kU_,_z_ Oxl +,.jr-i_,_,_q Oz_ + Ozr _z_F,._ U

OUi q ,n ,. OUi'_ rr r,,_rr, P q "_
-_xkrjrnUqrrlV OXm_.ik_,q.trlV + £,rr_._r.,u.u_u"
OUt OUi ,,., ,. OUi vq rrr,,,_rr- OUi _ ,n ,.

-_ OZ k _m _rlU Oxk_im_q*rl v -- Ox---_F_kUq_rlU

2II+r_rr,kr,"%u,u" ) - -_ _,_]
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where

c pk, (ov_ ov_av' ov_ , av' r_v_OV_au'
+ s--_- \ Ozi Oz z ozJ Ozk r_"uP-6_-iz_+ oz z ozJ

vk vp rr rrq OUl OU k OUk OU z OU _ p OU t
--J" qi_" kl_P 'J _ "Jff OX j OX 10X i _ rklVp

k OUkOU l vkvprrrrq OUz OU_OUkrl U"
+FqiUq Ozz Ozk -qj_kz'-'p'-" _ + Ozk _ ,.j

OUk p I , OUkpk U UqU _ k p t q ,
Ox i FmF,iUpU + _ qi ,i - FqiFmF,iUpU U

OUk OUkF_ U, OUk p t , OUkpk U UqU"
+ Ox-/ _ " Oxi PmP'iUpU + _ q-/ ,i

217 (B.25)

(or, .II_ = \ Oxk + r'pkUv) \ Ozi +

ii2 = 9k, ( OUk . ) ( OU,koz_+ r;_u. koz.

. )\ Ozj' + r'pkuP \ Oz"

_ Fit

)__ piqUq ik Oz t

The scalar strain and rotation rates are

(B.26)

(B.27)

+ r.,u (B.28)

l [9ii( OUk rLU,) (°U_(s')_ = -_ \ O=k \

--_ \Oz_ + r_u'

l [gii ( OUk r_iUq) ( aUk

(or' . (ov,+ko.i +r;y') , O_ ,i "]-rlkVl)]+
]

(B.29)

+ r_v')

k O=j r;iuq] k OT'i

W*= Eq.(B.39)

(B.30)

(B.31)

B.3 Another form of the cubic model

In terms of strain and rotation rates, the cubic Reynolds stress model can be written as

2 cPk22( 1 )--puiu i -- ---_p k gq "b _T Ski -- -_E) gii + "rk./ (B.32)
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where the nonlinear part, Tij, is

"rij: 2Al_2 (g_SipSqj - _S(2)glj) + 2A2_2 (gPq_ipflqj - l _(2)glj)

pk3 pq(Si,_qj _ _ipSq,) _F k4 (SipSqr_-_sj __ _.-_ipSqrSsj)+ A3--_ g 2A4p-'_gN g ""

where

(B.33)

and

1 (OUi OUj 2F_jUk) _ij =1 (OUi OUj)

0 = .q'WS_ , S (2) = g_g'S;,,.S,q , FL(2) = g_g"'_p,.f_,q

_S_2 = g_'g g _ ,t ,_a , Is=O, IIs = _ 02-S (2)

(B.34)

(B.35)

(B.36)

1

(S*) 2 = gkVgzqSkzS_ -- _e 2

(_.)2 = g_, glq_kZ_ _

W* = g_i gkl g,,,,, S_*_S_* S_i
(s'p

where,

1

(B.37)

(B.38)

(B.39)

Note that Eq. (B.33) appears to be more compact than Eq. (B.25) and may bring some

convenience for the CFD implementation.
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C Appendix: Equations in Cylindrical Coordinates

C.1 Mean equations

Now, let us write all equations in a cylindrical coordinate system: x i = (x, r, 0). To accomplish

this, we need to calculate the metric tensors gii, g# and the Christoffel symbol F_k for

cylindrical coordinates. Let X i = (x, y, z) be the cartesian system. The relation between the

two systems is

x = x , y = r cosO , z = r sinO (C.1)

or

x--x, r-- _/y2 + z 2 , O=azctan(z/y) (C.2)

We may easily calculate

[10 0}  xi10 o}Ozl 0 cosO sinO = 0 cosO -r sinO (C.3)

°x--V= o -sinOlr eosOlr ' _ 0 sinO _cosO

The metric tensors gij and 90 can then be obtained according to Eq. (B.16):

[lo0]g'J= 0 1 0 ,

0 0 1/r 2
i 0 0]

gij= 0 1 0 (C.4)
0 0 r 2

and the Christoffel symbol F_k can be obtained from Eq.(B.17)

[000}[00o} 1000)r_k= 0 0 0 , rh= 0 0 , r_,= 0 0 1/_
0 0 0 0 0 - 0 1/r 0

(c.5)

The contravariant velocity in the cyhndrical coordinates is

v _= (v, v, _) (c.6)

where U and V are the axial and radial velocities, _2 is the angular velocity. The corresponding

covariant velocity can be obtained from

Ui= g_jUj = (U,V, r2S_) (C.7)
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With Eqs.(C.1)-(C.7), the equations for turbulent flows in a cylindrical coordinate system

become

Continuity equation

op opu opv op_ pv
_ +--_- +--_- +-_- +-- = 0T (c.s)

Momentum equations

OpU OpU 2 OpUV OpUfl pUV O-P

Ot cOx cOT cOO r cOX

+_-z_o0(.+.r) -_+ 0x ]J+; ("+"r) N
cO_-_ cOT_, i cOTzS I

+ _ + _ + T-z cO--_-+ -n,T

Opv2fl

cOt

av)]+_-_

ov)+_

Opr2f_U copr2fW Opr_22 O-P

Jr cOx + cOr + cO----O---+ rpV_ - - cOO

o 2(. +.r) T_o + [(. +.r)v]+ _ cOo ;_

1
+T("+"_)\ cOT+_ TOT

OTO_ COTS, 1 0_-_ 1

+ _ + _ + T-_cO-_-+ -Tno

where

cOU cOV cO_ V

e= cO-_-+-b-T+ N +-T

(c.9)

(c._0)

(C.11)

(c._2)
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2 (c.t3)

k-s equations in Cylindrical coordinates

where

p_ = p(kt)+ p(k_}

(C.14)

(c.ts)

(c._o)

(c.tT)

(C.18)
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C.2 Nonlinear part of turbulent stresses Tij

After gii, gij and l_i_ for the cylindrical coordinate system are calculated, we may use Eq.

(B.25) or Eq. (B.33) to calculate all the turbulent stresses automatically through a computer

program. However, in the cylindrical coordinate system, most components of gij gli and Fi_

are zero, therefore it is possiple to manually write down all the turbulent stresses to avoid

many unnecessary null operations in the computer code. We write them here in a general

form for the cubic model, so that model users can use their particular model coefficients for

their applications. Note that with Eq. (A.8), the coefficients Ci can be easily obtained from

Ai, or vice versa.

_'z1"

7"=O

C. pk3
+ 27

+

+ C4 pk4
7

+ Cs pk*
7

= C pka
17

• 2ii ]Tf_ + TIT +... + T_" + T_V - g 3

iV: +T_¢ + ... + Ts*_ + T:? - _n3]

ou ou ou oy ov off ov
_+_+_+_7

OU OV OV OV ov 1
---- + O00z Oz ]

OV l OUOV OU_]-- O--'-r + r 2 O0 O0 O0

OU OV O_ r20_ 0_ ]

+... + T_" + T_']

+ +
Ox Ox Or Ox

C pka [OU OV OU
+ _- L-g_--+Ox Or

+ C3 pk3 [OUOU7 _Or +

-[- C4 _-3 [T;;" + T_* o"

+ C s _ [T;_" + T[7" +... + T_*0" + T_']

C pk3 [OU OU
O0

20fl ( OU+rVo_ + r _

C pk_ [ OU O_
+ 2-7 Lr2_--' +----Ox Ox

OUOV OUOft OUV rt2(OU OV)Or oo + o-_oW+ oo r -57+-F;

O_) Or=_]aV+_+ O,_
OU O_

Oo O0
OU Or2_ rft OU V OU ]

+ Or Or'- -_-r+r-O-OJ
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+

+

+

,r_ T --.

+

+

+

+

T_O =

+

+

+

+

T_ --"

Cs pk4
7

OU OU OV OV r2 Oft Oft
-_ _ + 0--7o-_+ o_ oe

[r_:+rg +... +r;: +r;:]

[V:+r;_+... +r_:+r_:]

_ + rV Oft r_t OV]
_- -_j

C4-_3 4 "T_'19+ T_2_ +... +T_3_ +T_'_ - _IIa ]

C pk4 " 2rl ]_7 _3 + T_ +... + _ + T_';- _

C pka OV OU OV OV OV O_ _r1-W a---_o--_+ 0--7a--_+ ae ae 2m + ---

r2 Oft OU Or2ft OV + r= 0f_ Oft+ +
Ox Or Or Or 08 Or

c Pk a

Ca pka

_2 _ 3ii2 ]

V OV

r 08

C1 pka

- 2r_

C pka
+ 2-_-

+2rV-_-_- - r2_2 - V2 - _r2yI2]

+ =7 [koe] + koe] + -_

rV 0_2 ]
----+ _j

_-_b_x+ or & + oo oo _-r + _ + -_ 00 + av

[OUOU OVOV &2_O_ _vO_ _ m (Ov o_) ]or o_ + o---_o--_+ Or O_ + Or _r +-_ + _y

[_+_+...+_+_]

[_g+_+... +rg+_]

2\ Ox 08 + Or 08 + 08-_ + 2r208 r

+ -_ + 2_y_-_+ 2v=+ 2_n =- S_ n,

\ _] +\ o_ ] + \_] -2m o--7-

2

+ 2rV O_
OO
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+

+

(c._9)

--2r_ _ V + V2 r2_2 1 2 ]Oe + - _r ri2
pk 4

The terms T_... T_i_ in the above equations are listed below:

The terms in r :

ov ( o__ ovov ovon_ ov ovov
Tf: =_ _ a_ + 0-70-7+ _] + _ (_ OU OV OU Oft ]

ev {_ o_ e_ov ove_,_
T_g = O
T_'=O
T_" = O
T_" = Tf:
T27=0
2&'=O
T_%"= 0

T&:= O
T_'=O
T;g = O

T3%"= 0
T_: = O
TA" = O

r:: =o_ (ov_ ovov _ o__ (ov_ ovov ovo__,-gg=o_ + ov
_+ oe_]+__o +

T:f=2rnO_ VOQ (Oft)"
T_" = O
T&"= O

Tgf=T:_
T&'=O
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T_3"= 0

TL'=0
T:s"- 0
T::=0
T:¢-0
T::-0
T:_=0
T_o"-- 0
T_'_= 0

_The terms in %,:

OU(OVOU OVOV OVO_] OU(OVOUT_;--_-_ -_ Ox + O_.._.O_.__+____x/ +_.r -_ Or

1 ov (or ov ov ov ov on]+ r-ZO-'g -_z _ + +

( ov on ov on ov on)+ +
Oz Or Or r 2 O0

T_(= O
T_2"= 0

OV OV

Or Or

OU OV

Or Or

OV 0_)
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:F_.." OV fort _,.
19 _ -'--- _ UV

r_ -_- .._ uv OV Or

r;t, - _,-,/'ovo_ --?" oo oo ooJ
. ----mr I _--__.. OVOD /

_" =w_ o, oo oooo)

T" - V/OV\ 2

r 2 OqO _l ---..._

_,=__ov o,

O_ Or 0:: _--
+ _. ( O_UO_U OV ov Or 0o:)

" "_' Or OeJ

7 --. _ov

_9 =_VY?.L _ _OV Or OOJ
T." ...__ Or - _'r

+

_to,. o,.+_o"7 +,_,.---_--)
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r

_7: 00
T47= .___v
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r 0800

Or O-O

T_3_ = _V oV V z OV -20V

T_ = _.n__ _V 2
r

Tg= °g _T; _ + 0-7o-7+ _ _ ] + -bgk-g; _ + _ +
o_{or ov ovov +o_o__ o_o_ _ o_/

__ _ + °g _ ) 0-7oW

T_ = _ (r_ O_ av ar2_ ov r_a_ o_ ]

2"_ - V OFt _ £t2 0V
=_ -dg

O_'l (OU OU OV OV r20_'l O_ _ O0 Or _ Or ]

_= r:¢

: £ [+ o_ov o+_ov +oao_)
_ _Y;+-_ + Yg_]

= __V aV r_O_ V _.0_Or + _+
Or Or

= v (o_o_ ovov +o_o_ (o_ov ovov o_
" k_-+ °--7°--g+ _-)-"nkY;;_-_ +_/-_ +_ o,. )_:= T::

-_ Or

r

_1 = n (o_ov ovov +onon
Tg= T;g

_= _
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_, _ v {at;ov av ov ,an an
- 7k-b-g_-g+a-_o-_+ _g}

-,-n k_ + o--go-7+gg o_ }
TI:= _

\ o_ +_ + _+
Or O0

T_4Te V__ _ + 2r_2V
r

TZ = T_?

Other scalar uantities:

II1= 2 ( r_ O_t _ OV V O_ _ V 2

[OU _2 IOV'2 2

+1 o

(C.20)

(c.22)

_} +_ko_ _+_} +_\-y;_ OV OV OV Ogt]
+ 0-70-7+ _}

+_ t_; + _ + _1 +rv _ (c.23)

_,_, o_{o_o_ ovov ovo__ ov (ovo_ ovo. ovo_= o-7k-o;-YF+ o-7o-7+ _g_} + _ _-_-_; + _ +
o_ov {ouov o_ o_ yg _ }

+_ k_ + _ + ovov _oaon)_g_} +-
{°_) _ {onov _ t_ + o-_ + --+_vt_ } +2vo_+_n onov orion] o_Yg

+n_ + vn _ t_ + o-70--7+ _g_}
T

n_,,_ ov (ovov ovov ovoo] ov {ov ov ovov _ on) <c.2_)
=°g t_-+ °-7°--g+_}+_ _;_+_-_ + oo_}
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(e')== _ _ +" _ + \_7] + \_]

W*= Eq.(C.41)

C.3 Another form of 7q

In terms of Sq and fq, the components of _'ii can be written as

(C.29)
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pk3 1 _
_-._.=2.,41-_23 ISnS12-{-S12S22+_-2S13S32/-I-2A2-_'_-_ 13 32

1 (S13_32 - _lzSn) 1+A3_ [_12(SII- S22)+-_

+2A4_-3 [Sn (Snf212 +-_ S13f232) + Sn_ S23f_32

+l s13 (S3_12 + _S3_32) - _12 (S22S22 + _S_3S32)

+ +

(c.3o)

Tz 0 -- _.cL17 $11S13 + S12S23 --_ S13S33 --_ ..%_127_'_12_'_23

+A3-_2 3 Sl1_'_13- _'_12S23 Jc 7"2 23 (S12- $32)]

+2A s_ (s_a_ + s_2a_) + Sl,(S21a_ + s_,a,_)

_-_S13S32_23-_12($21S13Jf - S22S23_S23S33)

1 ($32S23 .Jc

-- 2A5 _34 [_'_ 12 (,21__13 -_- _22_'_23) -_- _2 _13 ('31_'_13 -_- $32_'_23)

_-IIsS13-1sISllS13-]-$12S23-]--_S13S33)] (C.31)

- o_ pk3 ($21S12 + -_-T1.v -- _.c'1 7 $22 $22 _823S32-_S (2))

@-2A4_-3 [2S21 (S11_12-{--_S13_32> q- 2S22 (S21_12 _- _ S23_32 >

2 S (S31fhe+_ 23 + _S33f_n)]

-- 2A5 _34 [_"_12 ($11_"_12 --_- 1S13 _'_32) -_- _2 _'_23 ($31_'_12 --_- _ $33_'_32)

-l_'_S_-_-}-,,s ($22- 1(_)> -Is (S21S12-_-$22S22 nt- _$23S32 - _S(2))] (c.32)
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=2A pk3 ($21S13+ +1 )+
pk 3 _

T,O 17 $22S23 r._$23S33 z_27_21f113

+APk3(s,l_1337 + $22['_23 - __21S13 - _'_23S33)

--'_--2.A4-_3 = [S21 ($11_'_13 + S12_"_23 ) -{.- $22($21_'_,13-.}- $22_"_23)

1.4

1 (,11,,,+ )-_- _'_ $23S31__13 - _'_21 S12S23 T_-_$13S33

--_fl23 (S31S13 + -_ S3_$33) ]

- _ + + +

J1'-././S,,.,_23 -- _ (_'21 ,.._13 -J¢- ,,._22 $23 --_.- _ _'23 _33) ] (C.33)

1 1 2S(2))Tso"- 2Al_2 (S31S13 -Jc- S32S23 Jr- -._S33,.,_33

E* 2A pk3

IA-

-.{.-2A4.._3= [2S31 (Sl1_'_13 -._- $12_'_23 ) + 2S32 ($21__13 + $22_'_23 )

1
(S13_'_31 -_- $23fl32)IS33

7"2
J

- 2A5--_3 [_-`_3_ ( _ _3 -_- c_2_.-_23 ) -_- _._32 ( S2_1_13 -.}- S22_.`_23 ) -1T2-_---_

-'{-././S ($33- 1'F20)--1,.,¢ ($31S13--[-S32S23 -.{- _$33S33 - _-1-2S(2))] (C.34)

The scalars that appear in the above equations are as follows

0 : $11 "_ $22 "J" _2_33

iS (2) -- SllSll -Jc ,..,,c22S22 -Jr- _-_'S'33S33 -Jr--2,-,c12,-,c12 -+- (S'13S13 + $23S23 )

_"_S_'_ -" ['_12_'_21(Sll "Jr S22 ) + __12a31_--_(S23 -.}- $32 ) + _"_21_'_32 (Sis -Jr S31 )

1

Is=O, Iis=1(02-S (2))

(c.35)

(c.36)

(c.3z)

(c.3s)

(c.39)
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Two other scalars (S*) 2 and (fl,)2 can be expressed as

(s.)_ = s(_)_ 30_, (a.)_= ac_
(c.40)

_ ' [.(.... ,_ )(s,) 3 s,, s,_sl_ + s,,s,1 + shsh

(s_,s,2+s_@,, + _shs;,)+S_2 * * * *

,.( _ )
+S_1 * " * *

(S2,S,2 + S22S22+-_S_,S;2)+S_2 * * * *

,_(.. --,_ )+ _ $31S12 + S_2S_2 + S_3S_2

,.(_)+T_s_, shsh + s;_s;,+ s;,sh

'.(_)+;zs,_ S;lSh+ s;_sh+ s;_sh

1.( ,_ )] (c.4_)

where

Sn Sn 1-0 " 10 • 1 2. = _ _r O,3 ' $22=$22-3 ' $33=$33-

S_2 -- S12, S_ 3 = S13 , S;3 -- S23

(c.42)

Finally, the six components of Sij and the three components of flij (note that S 0 = Sji and

_0 = -flJi) are

(c.43)
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D Appendix: Equations for Axisymmetric Flows

Continuity equation

Op cOpU OpV pV

N+-y_-_ +-_ +--°_ - (D.I)

Momentum equations

OpU

Ot

OpV

Ot

OpU 2 cOpUV pUV O-P
--+--+--+

Ox Or r Ox

(auav) o,=o,..1

OpUV OpV _ pV 2 O-P
--+ 0-'"7 + Or rp_2 +-r =---Or

o[ )]+_ (.+.T) -8-_--=+_--+_ _ e

Or, z Or,_ 1 1

+ _ + Or r3 r_ + -Z,,r

Opr2_

& Opr212U Opr212V 0 [ .0r2_2]+ o= + o_ + _pv_ = _ (_ + _)--_-]

0 [ i)r2_] 1 Or2_+_ (,+_r) Or j+7 (_+_) o,.
O're= 0_'_ 12o[0,+_)r'_]+ + +-_.,rOr _ _ ,"

where

OU OV V

e= o-_-+-av+-r

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

k-E equations
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(_k 7"

+ 0---2-+ Or r C PP

[\g) + \_1 1

(D.7)

(D.8)

where

pk = p_l ) + p(2)

p(k_) = __(pk + _rO)O

_(ov'¢ ov(or

o,,) (ov'f _ (o_'foi_(°u +
OU OV Off OU OV

+_'o, N+ +-#

(D.9)

ov oa '¢_

+ 2v71 (n.lO)

(D._i)

-r.. in axis mmetn'c flows

,, _ [ o_(orov ovov_ _ov(orov ouov'__

,. _, hov(orov ovov_ ov(orov ovov'_
(D.12)

47



(D.13)
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L Or + Or2_ OV

OV Or2_ Or J

2 _2 L Oz Oz + "_r --_--r - r. _7 + .V]

e [' Or- Or +_vl

"-'4 o _.---_ 12_2Z2_ at/ Or_m _,,,

x va; _ + -..-... 2 _U 01.2

_,azaz +_'---- -r_ avav av __ arJ
0,- Or ---_._ --. OV o

Or Ox Or - rf2 +

Or ar ) - r_ k az ar +

Or Or )

2

+ 2V2 + 2r2f_2 - 3 r I'I_]

(D.16)
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where

V _

_ -2n_+-_
_,---- o_ ' (eh'

O0 Or_ + _ + 2e_

+

5O



1 [(_V_ 2 r2/Of_'_2 (OU_ 2

(D.24)

(D.25)
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