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Acronyms

ATC
CCS
CTOL
DCC
DFC
EAC
HAT
RCS
RPA
SCS
STOL
VAT
VATOL
VMS
V/STOL
VTOL
WCS
WPA

Symbols

NOMENCLATURE

air traffic control

control card sequence

conventional takeoff and landing
direction cosine attitude control mode
direct force control mode

Euler angle control mode

horizontal attitude coordinatization mode, £ EoE3
reaction control system

runway path axes coordinatization mode
status card sequence

short takeoff and landing

vertical attitude control mode, E3EoE3
vertical attitude takeoff and landing
vehicle management system

vertical short takeoff and landing
vertical takeoff and landing

waypoint card sequence

wind path axes coordinatization mode

runway coordinates of acceleration (ft/sec2)

body-fixed axis system (right-handed orthonormal)
Kkt control point

—

direction cosine matrix relating b to T (e.g., zp = Cprar)
elementary Euler rotation about axis 7 through angle

force

specific force (F /m)

force and moment generating algorithm, Fj = ( fl{ )
also, the expanded algorithm, ( b be b par Fg)b)
— (thb’ Fmoe por, tht, thb,Ftar,Ftvb)

algorithm for the multimode static inverse of F}

generalized F} to include a switch (€) to suppress zero dynamics

body coordinates of specific force

specific force generating function in body coordinates: f; = fl;f (zp)
specific moment generating function in body coordinates: my = f;"(2;)



Jp
My
My
m

my,

My

ny

Py

P[t, T, z(0), z(T)]

vi

runway coordinates of specific force

t-coordinates of specific force, Cy, fr

specific force error of the pure feedback approximation
state flow for mode p (e.g., T = fy,)

acceleration of gravity

altitude, h = —r,3

state-to-output function in mode y [e.g., y = hu(z)]
time interval of segment k

moment of inertia matrix

macro maneuver: step forward a given distance in a given time
maxima of a unit step maneuver in ith derivative
mass

body coordinates of the specific moment, my = ny + Jb_ls(wbrb)wabrb
state space model for mode p

body coordinates of the specific torque, n, = J,° 1Nb
parameter space for mode p

polynomial segment with given boundary conditions
parameter p = (wyr, W,0p,...)

set of all real n-tuples

runway-fixed axis system

" basis vector of 7

runway coordinates of position vector 7

matrix of vector cross product operator

algorithm for the exact dynamic inverse

duration of the kt/ segment

algorithm for the pure feedback dynamic inverse
algorithm for the inverse of T'

algorithm for the inverse of 79

time in seconds

active control space for mode u

control u = (um, Up, UF)

guidance control

plant control

configuration control (flap, aileron droop, speed brake)
moment control (roll, pitch, yaw)

power control (throttle, side force, nozzle)

input to plant control servos

relative air velocity vector

runway coordinates of velocity vector ¥

weight of aircraft

wind vector

runway coordinates of wind

state space of aircraft for mode p

state



Hy

k
9j
Whrh

state error

guidance state

plant state

estimated plant state

rigid-body state z, = (7, vr. Cpy, wWprp)

output space for mode p

output

output of the force and moment algorithm, y;, = (fp, 1)
desired output

input to the force and moment algorithm

transpose

inverse

kth time derivative
vector

three-dimensional column of zeros except row 7, which is 1
switch for the suppression zero dynamics
trim error threshold
pitch angle
air temperature
operating mode, 1 = (Ua, fy, Hu)
coordinatization mode
control mode
output mode
th

elementary step maneuver in j'" derivative

angular velocity, so that C, = S(wprp)Chr

Functions of Dynamic Forms

AF}
FISF™(2)]
MF*(M)
MF > RF
MF<RF
MF >~ AF,
MF < AF,
MF»> PF
MF<PF
RFf
SF*(x)
SFk(z) « SFk(y)
VEF*(xy)

Euler angle form to order & for sequence ¢
scalar form of f(z), namely [f(m), f(z),...
matrix form, {AL ]\Y, ce ./\/I(k)]
transformation taking matrix forms to rotational forms

transformation taking rotational forms to matrix forms

transformation taking matrix forms to Euler angle forms in sequence ¢
transformation taking Euler angle forms in sequence ¢ to matrix forms
transformation taking matrix forms to Euler parameter forms
transformation taking Euler parameter forms to matrix forms

()]

rotation form, [Cbr’wbrbw .. ,wéfb—l)}
scalar formto order k of z € R, = [LL’, Ty... ,x(k)]
scalar form of zy, namely, [a:y, (zy)D, ..., (:Ey)(k)]

vector form to order k of b-coordinates of &
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Dynamic Forms Part II:

Application to Aircraft Guidance

George Meyer and G. Allan Smith

Ames Research Center

SUMMARY

The paper describes a method for guiding a dynamic system through a given set of points. The
paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence
of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time,
position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both
the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional,
multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude
of operating modes, which may number in the hundreds. Each such mode defines a distinct state
space model of the process by specifying the state space coordinatization, the partition of the controls
into active controls and configuration controls, and the output map. Furthermore, mode transitions are
required to be smooth.

The proposed guidance algorithm is based on the inversion of the pure feedback approximation,
followed by correction for the effects of zero dynamics. The paper describes the structure and major
modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.



1 INTRODUCTION

Development of a methodology for the design and verification of aviation operations systems is a
NASA goal. (See ref. 1.) For the purposes of the present report, several interacting components of such
a system may be identified as shown in figure 1. They include air traffic control (ATC) and a varying
number of flights, each consisting of a pilot crew, the aircraft, and the flight vehicle management system
(VMS). Finally, the ever-present environmental conditions, including weather and hardware failures,
affect all the other components.

é ENVIRONMENT )
f FLIGHT #§ ( FLIGHT # ﬁ
VEMICLE VEHICLE
MANAGEMENT MANAGEMENT
SYSTEM SYSTEM

Figure 1. Major components of an aviation operations system.

Consider the vehicle management system; its purpose is to provide interfaces between the human
pilot, the ATC, and the aircraft. The major subsystems of VMS and their interactions are shown in
figure 2. (See ref. 2.) The human pilot interacts with the VMS at three levels. At the highest level,
which is knowledge-based (termed strategic in the upper left-hand corner of the diagram), the pilot in
command generates the flight plan and proposes it to ATC, accounting for weather, route, fuel reserves,
and other parameters. ATC then modifies this proposed flight plan as necessary to provide separation
from other traffic, and issues a clearance to the flight. On board the aircraft, the clearance is checked
for legality and feasibility, and either accepted or renegotiated with ATC, as necessary. The clearance
is then translated into an executable reference flightpath, and appropriate modes are selected to enable
the aircraft to fly the accepted clearance.
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Figure 2. Major components of a VMS.

In addition to operational modes such as takeoff, climb, cruise, approach, and landing that are
selected by the pilot at the strategic level, lower-level modes are selected by the pilot at the tactical
level. These tactical modes include guidance, configuration, flight control, navigation (state estimation),
and display modes.

At the skill level, the pilot is manually controlling the aircraft with little assistance from the
automatics.

It may be noted that there is a mixture of both computation and message types of variables. Some
computations, particularly at the high levels, are discrete or sentential in that they are based on a formal
logic and they manipulate sentences in that logic, while other computations are arithmetic or numeric
in the sense that they employ mathematical methods that manipulate real variables. Similarly, the
communication between subsystems may be by means of both sentences and numbers. In the diagram,
dashed lines represent flows of sentential or boolean variables; solid lines represent flows of numbers.
For the present discussion, continuous variables and sampled data need not be distinguished between,
but both can be referred to as analog variables. Systems with mixed variables, both discrete and analog,
are referred to as hybrid. It is apparent that a VMS is a hybrid system.

In the diagram, the aircraft represents the airframe, including engines, servo actuators for all con-
trols, and all sensors. In this view, the aircraft is the main source of analog variables. It is modeled
mathematically with differential equations, which are multidimensional, multiaxis, highly coupled, non-
linear, and time varying.



The interaction between the sentential and analog components of a VMS is further illustrated by the
diagram in figure 3. In this model, the VMS communicates with ATC by means of sentences and with
the controlled aircraft by means of analog signals. The virtue of the diagram is that it shows that there
must be an interface, called herein a dynamics translator, which translates sentential commands into
functions of time, and conversely, analog measurements into sentential descriptions of system behavior.

e DIST
HUMAN CONTROL 4 ISTURBANCE
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A FLIGHT
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CONTROLLER OF TIME DYNAMICS — DISTURBANCE

Figure 3. Interface between sentential and analog layers.

The multiaxis servo is the analog layer. The arithmetic controller closes the loops around aircraft
disturbances and modeling errors, thereby making the analog layer robust, and it provides accurate
tracking of input signals.

Another representation of the aviation operations system is shown in figure 4. For simplicity, only
the fully automatic mode of operation, in which the flight is controlled completely by ATC and flight
computers, is shown. A hierarchy of subsystems or layers is in effect, namely, (top to bottom) ATC,
flight, VMS, path generator, guidance, and regulator. The hierarchy operates in terms of the horizon
width, persistence, detail, and type. In planning a sequence of way points, ATC has the widest horizon,
the plan changes infrequently (minutes to hours), it is very coarse, and the planning algorithm is of the
discrete type. The path generator, in converting the waypoints into control points (described later in the
report) has a narrower horizon than does ATC; replanning occurs more frequently (seconds to minutes);
there is a moderate amount of detail in the plan; and planning employs a mix of discrete and continuous
methods. The guidance, which transforms the path into the corresponding reference motion of aircraft
state and control (z9,u9), has a narrow horizon with only several seconds of “look-ahead” capability;
replanning occurs frequently (several seconds), and the planning employs mainly continuous methods.
Finally, at the bottom of the hierarchy, the regulator transforms the tracking error z¢ = P — z9, which
is the difference between the estimated plant state and the guidance state, into corrective control that is
combined with the guidance control u9 to produce the plant control uP. (The negative of the standard
servo error is chosen so that 9 may be treated as the origin.) The regulator has the narrowest horizon,
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Figure 4. Multilayer model of aviation operations system.

without any look-ahead capability; the shortest persistence (milliseconds); and the greatest amount of
detail. The algorithm is based on continuous (and sampled-data) methods.

The environment injects disturbances into the aviation operations system at many levels. The
standard procedure for reducing the effects of these disturbances is to employ feedback. Centralized
feedback in which the hierarchy is ignored is always possible, but it leads, in all but the simplest cases,
to very complex and largely unsolvable performance analysis problems. It seems that a more promising
approach is to structure the feedback hierarchically and to match at each level the variable type of the
feedback with the algorithm type of the level. If the feedback can be layered in this way, then the
complete system will consist of a hierarchy of closed-loop subsystems. Each subsystem has the servo
structure in the sense that its function is to closely follow its command in spite of disturbances. In
such a completely layered structure, the type of command and disturbance depends on the type of the
layer. The expected analytical advantage of such a structure is that each servo has a relatively simple
input/output description, and communication between servos is simpler. This is not passive modeling—
it is active design to make it so. Part of the freedom available in the design process is used to structure
the system; the remainder is used for control. The present working hypothesis is that such complete
lavering is possible for the aviation operations system. Consider the block diagram shown in figure 5.
In the figure, the ATC waypoints are represented by a waypoint card sequence (WCS) that describes the
waypoints. The discrete event control system operates on the waypoint card sequence, the pilot input,
and the system behavior represented by the status card sequence (SCS), and produces the control card
sequence (CCS). The control cards are the only means for controlling the rest of the system below this
level. That is, at this level the CCS is the control variable. Furthermore, the SCS is the only means for
observing the behavior of the system below this level.
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Figure 5. Closed-loop hybrid flight control model.

The guidance output trajectory generator translates the control cards into appropriate continuous
functions of time that define the commanded motion of system output y¢, which may include, for
example, the runway coordinates of aircraft position vector, the position of flaps, and other variables.
This generator also specifies the operation mode u, which specifies some of the details (such as control
mode) of just how the maneuver given by y° is to be executed.

The guidance state trajectory generator expands y© into a complete state trajectory and correspond-
ing control (z9,u9) that satisfies the state equation of the aircraft model and the output map. The
aircraft is then regulated to that reference state. Finally, the performance monitor reports any deviations
from the expected motion by means of the SCS.

This report is concerned only with the transformation of CCS into the corresponding guidance
(z9,u9). The guidance algorithms that are developed are quite general; they apply to both civilian
and military operations, including remotely piloted vehicles, and to a variety of aircraft types such as
conventional takeoff and landing (CTOL), short takeoff and landing (STOL), vertical takeoff and landing
(VTOL), helicopters, and tilt rotors.

The guidance problem considered in the present report may be described as follows. The control
point table describes the control points. For example, figure 6 shows a 90-degree turn that is composed
of several segments, which are specified by control points. The straight west-to-east line segment
terminates on the control point c;. The next segment is a variable curvature transition to a circle at
ck+1- The circular arc, terminating at cg_ o, is followed by a variable curvature transition terminating
on a north/south line at c; 3. The CCS provides the X,y coordinates at each control point. In addition,
it may specify the duration or the arc length of the segment, as well as a set of consistent terminal
conditions for some of the many additional variables such as altitude, climb rate, ground speed, airspeed,
heading, thrust level, and flap deployment. The CCS also provides higher level instructions such as
the type of segment (linear, circular, or helical), and it specifies the operating mode for the segment.
The operating mode provides such high-level instructions as (1) which of several possible state space
representations is to be used; (2) which of several possible state-to-output maps is to be used; and
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Figure 6. Typical maneuver specified by means of control points.

(3) which of several control modes is to be used. The operating mode is discussed in detail in the
main body of the present report. At this point we merely note that there may easily be over a hundred
possible operating modes.

Each such mode (denoted by 1) defines a different state space model M, of the same underlying
physical process. That is, each operating mode defines a particular state space (X), control space (U,),
parameter space (FP,), output space (Y),), state flow ( fu)» and output map (hy):

t € RhzeXy,uelUy, pe Py, yeyy,

z = fu(l‘,u,p) (D

y = hu(m)
The dimension of the state space X, remains constant; the meaning of the coordinates is mode-
dependent. All controls are distinguished into two types: The controls used by the regulator are
called the active controls (or controls, for short) u; the rest of the controls are called parameters p. The
dimensions of the active controls and output spaces, U, and Y}, respectively, while always equal to
each other, may be mode-dependent. For example, in one control mode the throttle may be an active
control that is used by the control system to execute a particular maneuver; in that case the throttle is
included in Uj,. On the other hand, occasions arise where the throttle is not available for active control,
as when set to idle. In that case the throttle is considered to be a parameter coordinate in P, and not a
control coordinate in U,. Similarly, both airspeed and climb rate may be controlled outputs, in which
case both coordinates are in Y),. But there is a mode in which the climb rate is not controlled explicitly;
then it is not one of the coordinates in Y),. Some variables, such as the wind, are always in P,.

In general, each such model M, is multidimensional, multiaxis, cross-coupled, nonlinear, and,
because of p, time-varying. The problem is to find for every segment k the evolution of state and
control,

(mg’ug)(t)y te Iy (2)
such that they satisfy both the state and output equations. That is, for the duration of the segment
t € I}, and for the given desired output y9,

#9(t) = fulzd(t),uI(t),p(t)] (3)
() = hu[mg(t)]



Furthermore, the segments must be patched smoothly together. A solution of this class of problems is
the subject of the present report.

The report consists of three major sections. First, a general model of an aircraft is developed,
and the typical structure of the force and moment generators is described. The Harrier VTOL fighter
aircraft is used as an example. Next, the command generator in which the aircraft maneuvers are
defined is developed. The maneuvers are represented by a sequence of control points that are linked
with polynomials. Several useful representations of aircraft attitude are also presented. Finally, the
multimode inverse algorithm, which generates the initial state and the control time history that produce
the desired maneuver, is developed. The methodology is illustrated by means of several numerical
examples.

The aircraft model used in the report is quite realistic. As a result, it is relatively complex. The
state space is high-dimensional and, because of rotations, not Euclidean. The model is multiaxis (up
to six), cross-coupled, and nonlinear. Furthermore, there is a need to employ several representations,
output maps, and control strategies. The methodology of dynamic forms developed in “Dynamic Forms
Part I: Functions” (ref. 3) provides effective means for the management of this complexity. A dynamic
form of order k of a variable of time is simply the variable together with its first k& time derivatives.
The essential aspects of the methodology are reviewed and employed throughout the present report.



2 AIRCRAFT MODEL

In this section a state equation describing the open-loop dynamic behavior of an aircraft is developed
in several steps. This equation forms the basis for a variety of state space models that are developed
and used in the remainder of the report.

2.1 Rigid Body

The core of the model is a rigid body moving in three-dimensional, inertial space, subject to
the gravitational, aerodynamic, and propulsion forces. In this report the dynamic effects due to Earth
rotation and nonflatness are ignored. This approximation causes less than 0.004 g acceleration error
for speeds up to 600 mph, and such errors are consistent with the assumed modeling accuracy of the
aerodynamic and propulsion forces. Similarly, the aircraft mass, location of the center of mass, and the
moments of inertia are assumed to be quasistatic in the sense that their time derivatives do not appear
in the model. Furthermore, the effects of rotating parts of the aircraft are ignored. All such translational
and angular acceleration errors that are of the order of 0.004 g and 0.002 radians/sec?, respectively, are
ignored since their effects can be easily controlled by means of a realistic regulator.

Let 7 be a local (runway) right-handed, orthonormal axis system in which 73 pomt@ in the direction
of the local vertical (down), 7] points in the direction of the runway, and 75 = 73 x 77. The T system
is attached to the runway. The runway coordinates of vectors are denoted by the subscript 7.

Several variables are fundamental to the following discussion. The position, velocity, and accel-
eration of the aircraft center of mass relative to the runway are denoted by 7, ¥, and @, respectively,
the average wind velocity at 7 by w, and the relative air velocity by ©* = @ — . The aircraft mass
is denoted by m, the total nongravitational force acting on the aircraft by F, the specific force by
f F/m and the gravitational force by mgr3 with scalar, constant g. Since 7 is assumed to be
inertial, the standard form of the translational equations of motion follows:

7:'7' - Ur
. 4
O = ar = fr + 963 @

where 8; for i = 1,2,3 is a column matrix with zero entries except in row 7, where the entry is 1.

Another frequently used axis system is attached to the aircraft. In this (body) system, b, 51
points tail to nose, b3 is in the aircraft plane of symmetry and perpendicular to b1 pointing down, and

bg = b3 X b1 points along the right wing. The b system is attached to the aircraft center of mass.

The attitude of the aircraft relative to the runway is defined by the direction cosine matrix Cj,. so
that, for example, the body coordinates of the aircraft velocity ¢’ are given by

vp = Chppor ()

The inverse of the direction cosine matrix equals its transpose: Cb_rl = Cg; = C,4. The body coordinates
of the angular velocity of b relative to T are denoted by wp,p, o that

C"br = S(wprb)Cr (6)



where, for any three-dimensional column matrix z,

0 T3 —I9
S(xy=|-z3 0 2 )
o —I 0

The function S represents the vector cross product. For example, £ = § x 7 is represented in 7 as
Tr = _S(yr)Z'r.

The angular momentum and the total torque about the aircraft center of mass are denoted by L and
7 . . — . . .
N, respectively. Since 7 is assumed to be inertial,

Ly =N, ®)

where the overdot denotes the time derivative of the (scalar) elements of L. But Ly = Cj, L, so that
after applying equation (6),
Ly = Np + S(wprp) Lp 9)

The body coordinates of the moment-of-inertia operator about the center of mass are denoted by Jj, so
that, ignoring rotating components,
Ly = Jywpro (10)

and, since the time derivatives of Jp, are ignored, the Euler equations (refs. 5 and 6) become
Jppry = Np + S(wprd) Jpworp (11)

or, equivalently, 1
Whrb = 1+ Jy S (whrb) Jpwrbd (12)

where the specific torque ny = Ji~ le. For convenience, let
my = ng + Jy S (Whrb) Jybrs (13)
The parameter my is the specific moment.
In summary, the equations of motion of a rigid body in inertial space follow:
Tr = vr
vr = Crpfp +963

Cbr = S(wprp)Chr
Whrp = My

(14)

Next a model of the specific force f; and moment my, is developed.

2.2 Force and Moment Generators

In this section the structure of the function relating the aerodynamic, propulsion, and reaction
control forces and moments to other process variables is developed. The special case of the Harrier
aircraft is considered, but the formalism applies to other aircraft types.

10



The YAV-8B Harrier (ref. 4) is a powered-lift vertical/short takeoff and landing (V/STOL) transonic,
light, attack aircraft. The engine is a single turbofan, whose thrust may be diverted by means of a
nozzle system. The directed thrust supports the aircraft in low-speed flight. Aerodynamic lift supports
the aircraft in high-speed, conventional flight. The general features are shown in figure 7. The engine
thrust vector is controllable in the longitudinal plane by means of the throttle, which controls the
magnitude, and the nozzle, which controls the direction. The control of aircraft rotation depends on
the flight condition. At high speed, the torque vector is generated aerodynamically by means of the
conventional ailerons, elevator, and rudder. At low speed, when the aerodynamics is ineffective, the
torque vector is generated by means of a reaction control system (RCS). In the RCS, a portion of the
engine gas is ducted to the extremities of the aircraft, where the directed flow produces reaction forces
whose magnitude is controlled by means of valves. The valves are connected to the aircraft roll, pitch,
and yaw controls. In the transition regime, there is a smooth blend of aerodynamics, powered lift, and
RCS. Note that, since a request for moment may produce unwanted forces as a side effect, there may
be zero dynamics.

— D
laam\

D>

ilf

_E

Roll Pitch Thrust

Figure 7. YAV-8B Harrier aircraft.

The algorithm YAV 8B adapted from reference 4 for computing the total force and moment is
shown in figure 8. At the top level, the algorithm implements the function

YAVS8B: RY® - R® x R® (15)

The input consists of moment controls u;, € R3, power controls up € R3, configuration controls
ug € R3, air velocity vp € R3, angular velocity wpyp, € R3, pitch angle 6, altitude h, air temperature
O, and aircraft weight W. The output consists of the specific force fj € R3 and the specific moment
my € R3. In this case of the Harrier, the power control up consists of the throttle, empty slot, and
nozzle. In general, the middle term could be a side-force controller. The configuration control uf
includes the flaps, aileron droop, and the speed brake.

11
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Figure 8. Force and moment generation algorithm for the YAV-8B Harrier aircraft.

At the next level down are seven major subalgorithms. Secondary variables are computed first
from the input. The aircraft mass, the location of the aircraft center of mass, and the moment of inertia
matrix are computed in M ASSDAT A. The air density, pressure, and speed of sound are the outputs of
ATMOS, which models the atmosphere. The airspeed, angles of attack and sideslip, dynamic pressure,
and Mach number are provided by AIRDAT A. The preliminary computations are completed in the
FANOUT algorithm, in which the controls (wm, up, us) are interpreted in terms of the engine throttle,
the nozzle angle, the eight reaction control valve openings, and the seven aerodynamic control surfaces.

The details of the actual physics of the process are represented by the three large algorithms AE RO,
ENGINE, and RCS, which compute the aerodynamic, engine, and reaction control system torque and
force. In the case of Y AV 8B, there is a one-way interaction between engine and aerodynamics through
the jet effects and a two-way interaction between the engine and the RCS due to bleed gas ejected
through the reaction control valves. The pitch angle 6 and altitude h are used in AERO to compute
the ground effect. Other aircraft types, such as other VTOL types, powered-lift STOLs, helicopters,
tilt rotors, and CTOL aircraft have similar algorithms describing the corresponding force and moment
generators. The action of the algorithm is denoted by

yp = F(2) (16)
where the input and output are given by, respectively,

zp = (um,up,uf,vg,wb,,b,&h, W, GT) S (R3)5 X (R)4
w = (frmy) € (R?)?

Henceforth it is assumed that the algorithm is given for the particular aircraft being considered.

(7
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In general, the body coordinates vy of the air velocity, which is an entry in the input z;, may be
computed as follows

vy = Cpp(vp — wy) (18)

where w, € R3 represents the runway coordinates of wind. Another entry, the altitude £, is the negative
of the third coordinate of position:

h=—7:3 (19)
and the pitch angle 8 is the middle Euler angle in the following expansion of the direction cosine matrix
Cor = E1(0)E2(0) E3(¥) (20

Therefore, z;, may be computed from (u, zy, p), say
zp=Z (u,24,p) (21)

where u, x,, p are the combined control, rigid body state, and parameters, respectively, defined as
follows:

u = (u;rn. 'le, Uf) c U C (R3)3
Ty = (T7-,'Ur, CbT’wbI'b) € va C (R3)2 X 50(3) X R3 (22)
p = (w,W,0p)ePCR*XRxR

The combined algorithm is denoted by F), = (fbf,fg”). Consequently, equations (14) may be
written as the rigid-body state equation, as follows:

7.‘7‘ = Vr

G = Crpff (u,20,p) + 963 (23)
Cyr = S(wprp)Cpr
Whrp = fgn(ua-TWap)

with the arguments defined by equations (22).

2.3 Simulation Model

In general, the nine controls (w;,, up, us) are not directly accessible. Rather, intervening dynamics,
including position and rate limits, exist between the accessible servo inputs (uf,. uj, u‘}) and the outputs

(U, up, uf). However, often the control servos may be adequately modeled by the usual second-order

systems of the form

2
Wn

ut 2+ 2Cwns + w,%

as shown figure 9. The servo controls (u2,,u2,u2) are connected to the inputs (uS,, u,u$) by the
g ms Ups Uy P my Up: U g

usually decoupled servo control laws:

(24)

u?n Om (um’ u12n ’ ufn)
u% = op(up, u%, up) (25)
2 _ 2 ,.C
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Figure 9. Block diagram of a typical simulation.

such that there is good tracking for slowly varying inputs that remain within their position limits:

(um, up,uf) = (ufn,ug,u?) (26)

The other inputs to the model are the parameters, namely, runway coordinates of wind wy, aircraft
weight W, ambient temperature 87, and the rigid-body state z,,. The block X produces the variable

xp, which is the input to the force flf and moment f]™ algorithm. The body coordinates of force f}, are
transformed into the runway coordinates f, and the effects of gravity are added, resulting in the aircraft
acceleration a,, which is integrated to produce aircraft velocity v, and another integration produces
aircraft position 7.

In the rotational part, the body coordinates of the angular acceleration of the aircraft about its
center of mass, wy,, = My, are integrated to yield the body coordinates of angular velocity relative to
the runway, wy,;, and another integration according to equation (6) results in the direction cosine matrix

A «—
Cyy, locating the body axes b relative to the runway axes 7.

It should be noted that the presence of the direction cosine matrix C,. causes the state space to be
nonflat, but a small angle patch of the state space is a subset of R30. The analysis of the large angle
behavior of the system is complicated by this relatively large dimension and type of the state space.
The analysis is further complicated by the nature of the force and moment generator, which is generally
high-dimensional, multiaxis, cross-coupled, and nonlinear.

14



In a typical real-time, piloted simulation, the algorithms shown in figure 9 are connected to several
other systems, such as a cab that provides to the pilot translational and rotational motion cues, and a
cockpit that provides the pilot access to the controls and visual, tactile, audio, and electronic displays.
The simulations are quite realistic. In fact, in many cases the control software is loaded into the
simulation computers, where it is checked out by the test pilot and then loaded without changes and in
exactly the same way into the flight computer and flight tested.

The remainder of the report assumes a high-fidelity force and moment algorithm Fj, = ( f,{ I
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3 OUTPUT TRAJECTORY COMMAND GENERATOR

The purpose of the command generator is to provide the interface between the discrete and analog
levels. As already noted, the signals in the discrete level are best described as sentences, which compose
the current plan of action generated by the automatic reasoning system. The signals in the analog level
are real functions of time. At the detailed level these signals are, of course, not analog but sampled
data. However, since the present variables are relatively slowly varying, while the usual sampling rate is
high, sampling is largely ignored, and the signals are analog. The high-level plan to be executed by the
aircraft may be considered to be a series of maneuvers. Furthermore, there is a hierarchy of maneuvers
in the sense that a particular maneuver may be further parsed into a more-detailed concatenation of
simpler maneuvers. The maneuvers have both qualitative and quantitative components. In this chapter,
a method for converting the commands of the sentential (discrete) level to the analog level is developed.
The interface is realized by means of a sequence of records (control cards) that specify the complete
maneuver. In the next chapter, these maneuvers are converted into detailed guidance commands, which
specify the nominal evolution of system state and controls.

3.1 Aircraft Maneuvers

The type of maneuvers that the automatic system should be able to execute is illustrated by the
following examples.

Maneuver M = My(Az, At). In this maneuver, the aircraft is required to step forward a given
distance Az in a given amount of time At. Furthermore, the aircraft is in hover at both the beginning
and the end of the maneuver. This relatively high-level maneuver may be parsed into a sequence of
more elementary submaneuvers, as follows.

M, = hover e accelerate o coast e decelerate ® hover

The specific case of stepping forward 300 feet is shown in figure 10, where motion is from right to
left. In panel (a) time is zero and the aircraft is in hover with zero pitch attitude and with nozzle at
90 degrees. The control mode is VTOL, in which both the throttle and the nozzle are available for
longitudinal force control. The next submaneuver is to accelerate to 8.2 ft/sec?, holding pitch attitude
at zero degrees. At (b), 4.5 seconds later, the position, velocity, and acceleration are, respectively,
16 ft, 15 ft/sec, and 8 ft/sec?; the nozzle angle changed to 74 degrees to provide the horizontal force
needed for the specified acceleration. The next submaneuver (panel ¢) is to coast at 30 ft/sec for two
seconds. Finally, the aircraft is commanded to decelerate to zero velocity. It may be noted that, while
the motion of the aircraft center of mass is symmetric about the midpoint (c), the control is not, because
the available nozzle range is from 5 to 100 degrees. Therefore, the control mode has to be switched
to one in which the nozzle becomes a parameter (in the present example driven to 90 degrees), and
the control action flows through the pitch axis. This control scheme of tipping the thrust is typical
in the control of helicopters. For this reason this control mode is denoted as HEL. In panel (e), at
time 18 sec, the aircraft is hovering over the point 300 ft from the starting point, as specified by the
macromaneuver M (300, 18).
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Figure 10. The step forward maneuver, M, (300, 18).

Similar maneuvers in the lateral My(Ay, At) and vertical M;(Az, At) directions are, of course,
also of practical interest, as are simultaneous combinations, My (A7, At).

Maneuver My = Mg(A@, At). In this maneuver, the aircraft center of mass remains fixed while
the pitch angle is changed by the amount Af. The duration of the maneuver is Af. The case of
Mpy(81,12) is shown in figure 11, where the drawings are offset for clarity. Initially, the aircraft is
in the VTOL mode and the pitch is zero. During the maneuver the control mode changes to vertical
attitude takeoff and landing (VATOL), that is, a *tail sitter,” in which the force control flows through
thrust, pitch, and yaw channels. The nozzle becomes a parameter driven to 9 degrees, and the maneuver
includes a change of coordinates. The near-horizontal attitudes are usually represented by means of the
Euler angles in the standard sequence of roll-pitch-yaw. That representation becomes singular in the
vertical attitude. On the other hand, the yaw-pitch-yaw sequence is nonsingular in the neighborhood of
the vertical attitude but becomes singular for near-horizontal attitudes. During the maneuver the control
system must smoothly patch the two representations.

Figure 11. Transition from VTOL to VATOL maneuver, M.
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Similar maneuvers may be defined for the other two axes, namely, roll and yaw. Whether or not
a given maneuver is executable depends on the available control degrees of freedom. If an aircraft,
unlike the Harrier, does have a direct three-axis force controller, then translation and rotation become
independently controllable. In any case, a macromaneuver may consist of simultaneous translation and
rotation submaneuvers. For example, a vertical step together with a large pitch change would look as
shown in figure 11.

Maneuver M3 = FRISBEFE. This only partly whimsical example illustrates the multiaxis,
multisegment nature of the maneuvers. It is assumed that an accurate force and moment model exists
in the unusual flight conditions. As shown in figures 12 and 13, the aircraft is taken from steady hover,
through a climbing transition, to intermediate speed flight. In addition, the aircraft executes a flat, 360-
degree yaw maneuver. As before, the motion is from right to left in the figures. Initially, in panel (a),
the Harrier is in steady hover, at which time the command is given to accelerate speed, altitude rate,
and yaw. Some of the variables at 7 sec into the maneuver are shown in panel (b). For example, the
yaw and yaw rate are 90 degrees and 30 degrees/sec, respectively; the nozzle is in vertical position, the
required acceleration being provided by tipping the thrust by means of the roll angle of —6 degrees. In
panel (c), the aircraft is flying backward, the acceleration being provided by the forward position of the
nozzle at 96 degrees, and the roll angle is back at zero. The speed and climb rate are, respectively, 26
and 15 ft/sec. In panel (d), the roll angle is not quite symmetric in comparison with panel (b) because
of growing aerodynamic effects. By 18 sec, panel (e), the yaw maneuver has been completed; the speed
is 50 ft/sec, and the nozzle is at 82 degrees. The Harrier is in longitudinal accelerated, climbing flight.
The transition from VTOL to the CTOL mode is shown in figure 13. Up to this point the control mode
was VTOL, the pitch angle was held at zero, and the flap was set to a maximum of 61 degrees. At
30 sec into the maneuver, panel (g), the control is changed from VTOL to CTOL, in which the lift is
generated mainly by means of the angle of attack. The nozzle is commanded to its minimum, and the
flaps are commanded to retract to 25 degrees. The flaps have to be partially retracted to satisfy the flap
placard, which limits the allowable aerodynamic forces on the flaps for structural reasons. Finally, in
panel (i), the aircraft has transitioned to conventional flight at 215 ft/sec speed and 15 ft/sec climb rate.
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Figure 12. Low-speed part of the Frisbee maneuver, M3.

\\

@ (h) (@ U]

Figure 13. Conventional-flight part of the Frisbee maneuver, M3.

Maneuver Ay = ROLL. This maneuver, shown in figure 14, illustrates the case in which the
definition of the system output changes during the maneuver. In panel (a) the fighter is shown in
horizontal, high-speed flight and in the CTOL control mode. The output is the triple of Cartesian
coordinates of velocity. The aircraft is commanded to acquire a given vertical velocity, and then to
switch to the output mode VYZ in which the variables being controlled are the speed (v) and the lateral
(Y) and normal (Z) components of force. Then the command is given to unload the force by driving
its component perpendicular to the flight path to zero, as in panel (c), at which point the aircraft is in
near free fall, with thrust being used for speed control. Meanwhile, the maneuver analogous to A} is
executed in the roll axis:

]\f[¢ = hold e accelerate o coast & decelerate o hold

to accomplish the 360-degree roll. Finally, the force is reloaded and level flight is recovered, as shown
in panel (g).
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Figure 14. The high-speed roll maneuver, Mjy.

Several characteristics may be extracted from the preceding examples:

e There appears to be a hierarchy of maneuvers so that a maneuver at one level may be parsed
into a sequence of simpler maneuvers from the next lower level.

e In general, the parsing may not be unique.
e The maneuvers are described both qualitatively and quantitatively.

e It is useful to characterize the qualitative behavior of the aircraft by means of operation modes,
such as control modes, coordinates modes, and output modes.

The parsing problem, which is, as yet, unsolved, is the subject of current research. The present report
is concerned only with the representation and generation of the elementary maneuvers.
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3.2 Polynomial Segments

Consider the example maneuver Af; shown in figure 10; the objective is construction of a time
history of position y(¢) such that the aircraft accomplishes the step forward in the allotted time and
such that it is flyable, that is, the aircraft motion is consistent with the existing dynamic and saturation
constraints. Position is, of course, linked to acceleration by a pair of integrators. Usually, acceleration
is not a directly accessible control variable. For example, in panel (d) of figure 10, acceleration is
accomplished by means of rotation, which inserts two more integrators in the control path. Angular
acceleration is essentially directly accessible because the servos controlling the torque generators have
a high bandwidth. However, since the servos are rate limited, one more integrator is inserted in the
control path to obtain continuity of the control variable. Similar considerations apply to other controls.
As a result, in order to be a possible motion of aircraft position, y and four of its derivatives must be
continuous at all times. Consequently, the special case of a string of integrators shown in figure 15
with y = 7 1s a model of the single-axis-motion command generator. The k" time derivative of 118

ng) X(14) X1(3) x1(2) xg1) x$0>
===
u X5 X4 X3 X2 X1

Figure 15. Single string of integrators as model for single-axis position generator.

denoted by at(k). Let the state and control of this system be denoted by, respectively,

T = a:go),:v(ll),a:§2),azg3>,x(l4)

(5)

u =

(27)

Suppose that the boundary conditions [z(0),z(T")] are to be connected by a polynomial satisfying the
structure in figure 15. For n integrators, the boundary conditions require 2n values, which are provided
by a polynomial of degree 2n — 1. Consequently,

x(t) = E1(t)ey + Ea(t)er (28)

where the two square matrices are given by

1t 220 . -1
em=2 t - =2/ (n = 2)! 29)
0 1
and
t" /n! t”+1/(n F1) L. t2‘71—1/(2n —1)!
Eo(t) = tn—l/(n - 1! " /n! o th—z/(Qn _9)! 0
1 g
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Since Eq(0) = I, E9(0) = 0, and E(t) is nonsingular for t > 0,

c; = xz(0)

¢ = EyY(T)[z(T) - E1(T)z(0)] 3

Therefore, the polynomial with n continuous derivatives that satisfies the boundary condition [z(0), z(T")]
is given by

P[t, T, 2(0), 2(T)] = [Ex(t) — Ea(t)E5 () E((D)e(0) + E2()E3 (TD)a(T)  (32)

which is the optimal solution for a string of n integrators with the quadratic penalty on the input:

J = /OT [a:("+l)]2 (r)dr (33)

The polynomial solution has the following two computationally desirable properties: Suppose that it is
necessary to insert a new control point 0 < 7} < T inside the current interval. That will not change
the solution, since for t > T}

Plt, T,2(0),2(T)] = P{t = Ty, Ty — T1, P[T1. T, z(0), z(T)], 2(T)} (34)

Furthermore, as can be easily verified, the time variable scales, so that,

E\(t/T) = DpE\()Dp' ,  Es(t/T) = T "DrEa(t)Dy! (35)
where
Dr = diag [1,T, ... 7] (36)
and, therefore,
P[t, T, 2(0),z(T)] = DF' P[t/T, 1, Dya(0), Dy (T)] 37)
Of particular practical interest is the case of a step of size z1(T):
z(0) = 0
38
o(T) = =1(T)é oo
where §; is a column of zeros except in row 4, where it is one. The corresponding solution is
it T,21(1)) = 21(T) D7 P(¢/T,1,0,61) (39)

Consequently, properties of the function ¢t — [t,T,z1(T")] can be obtained from the normalized
function 7 — (7,1, 1). For example, the maximum absolute value of each coordinate for t € [0,7],
which is of considerable practical interest, is related to that over T € [0,1] by the simple relation

maz|y;[t, T,z1(T)]| = :L‘l(T)Tl—imaﬂjIl/)i(T, 1,1)] (40)

So, a unit step in position for T = 4, which is shown in figure 16, may serve as a standard. The

upper panel shows 1 = £(0) (solid) and 9 = 1 = a:(ll) (dotted); similarly, the middle panel shows

#(2) .(3) 4) (5

(z3,24) = [.1:1 , ] ], and the bottom panel shows (z5,u) = [a:l , Iy J The absolute maxima
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Figure 16. Unit position maneuver for T = 4.

[l:z:(j)\mal-, 3=0.. .,5] for a unit step in position for any duration 7" may be computed from the
corresponding maxima for the case of T = 4 by means of equation (40). The first row My;(T) in
table 1 gives these maxima for a unit step in position z; that is accomplished in time 7. The second row
in table 1 represents the maxima for the unit velocity step. For this maneuver the boundary conditions
are given by m(ll)(T) =1,z;(T) =0, i =2,...5 and z1(T) is free—it is not matched. Similarly, for
the other rows in the table the state coordinates to the left of 1.000 are not matched; they are “don’t
cares.”

Table 1. Maxima M; ;(T') of elementary maneuvers

T U a a a a(3)
z  1.000 246171 937172 787473 622574 151207 °
v 0.5007 1.000 218871 751172 525073  840.07 %
a 0.1437%  0.500T" 1.000 1.87571 577372 60.007 3
a 0.0337%  0.1507? 0.5007"! 1.000 1.5007 1 6.0007 2
a  0.008T4  0.04273 0.16772 0.5007"! 1.000 1.0007!

The unit velocity v maneuver for T' = 3 is shown in figure 17. The absolute maxima in this case
are given by the second row (first derivative) M7;(3). For example, |:c(5)|ma1; = 840/81. The unit
acceleration a maneuver for 7' = 2 is shown in figure 18.
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Figure 17. Unit velocity maneuver for T' = 3.

_20 1 i 1 1 1
. ' time (sec) '

Figure 18. Unit acceleration maneuver for T' = 2.

So far the states were assumed to be unconstrained, but in practice, there may be constraints.
Thus, it may be necessary to stay within a speed limit, ¥ < vpqz, and impose limits on the acceleration
and higher derivatives. For example, in the case of the Harrier in the helicopter (HEL) control mode,
forward acceleration is accomplished by pitching the aircraft forward, so that, approximately, the forward
acceleration a,; = —g6, where g is the acceleration of gravity and @ is the pitch angle in radians.
Situations arise when it is desirable to limit the pitch angle and three of its time derivatives to some
given values. Pitch acceleration is limited by the capabilities of the pitch moment generator, and pitch
acceleration rate must be consistent with the rate limits, which may be imposed on the pitch channel
actuator servo to prevent rapid hard-over failures. That means that the acceleration and higher derivatives
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should be constrained as follows:

‘T§3;| Qmar
‘:L’ l Q_ma.r
2@ | =9 o “h
2] Olna

For example, typical constraints, including a speed limit for the Harrier in the low-speed HEL mode,
may be

(1)) 30
|z(2)| 12
2G| | < | 12 (42)
S 12
|$(5) 24

These limits would be violated if, for example, the maneuver A; = step forward in 18 seconds were
to be executed as a single segment as shown in figure 19. The maneuver is very smooth, with small

(2) (3) (1)

xy ' and x;’, but the speed v = x; " exceeds its limit of 30 ft/sec. Next an approach for satisfying
constraints is considered.

2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 19. Unconstrained realization of the maneuver M.

3.3 Control Cards

As is well known, for reasonable situations with constraints, the optimal trajectory is a concatenation
of segments that are either interior or on the constraining boundary. Strict optimality is not pursued
further since the structure of the overall control system is of primary concern. However, the insight that
the optimal solution consists of a sequence of control points that are connected by polynomials is used.
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In the present case of a string of integrators, in order to stay on the (constant) boundary ; = ;42>
the higher derivatives of z; must be zero. Consequently, the unconstrained elementary maneuvers listed
in table 2 are considered.

Table 2. Elementary maneuvers

(x,T) get steady position z in time T
(v, T) get steady velocity vin time T'

k
0
k
1(

aé(a, T) get steady acceleration a in time T’
3"'((1, T) get steady accel. rate a in time T
A
4

Y(a,T) get steady accel. accel. a in time T

The lower index on o indicates the first derivative that is not to be ignored; the upper index
indicates the highest derivative that must be matched. Thus, og’ indicates that position and velocity are
to be ignored (not matched), and all derivatives of acceleration up to order 3 must be zero at the end of
the interval. Many maneuvers of practical interest may be parsed into the these elementary maneuvers.
For example, the overall goal of the step forward maneuver M; may be achieved in several different
ways:

(1) The maneuver may be achieved as a single segment (shown in figure 19) that is given by
M = og(Am, T) (43)
The maxima are given by the first row in table 1: |:v(1j)|mal~ = Az My(T), Az = 300,T = 18.

(2) The maneuver may be achieved as a symmetric concatenation of three velocity segments (shown
in figure 20 for 77 = 8, T5 = 2) given by

My = o(v, T1)0?} (v, Ta)o? (0, T1) (44)

where the duration of the maneuver is
T =211 +1Ts (45)

and size of the position step is the product
z=(Th +To)v (46)
The maxima of velocity and higher derivatives for this maneuver are given by the second row in table 1,
|U(k)|ma:c = vMy p41(11) 47)

(3) The maneuver may also be synthesized as a symmetric concatenation of seven elementary
acceleration segments (shown in figure 21 for 7} =4, To =0, T3 = 2) as follows:

My = 03(a, T})o5(a, Tp)o5(0, Ty) e 05(0, T3) ® 03(—a, T} )03 (—a, Ta)a3(0, Ty) (48)
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The duration of the complete maneuver is

T=4T1 + 215+ T3 (49)
The maximum velocity is
v =a(T] + T») (50)
and the final position is
z= (T +T3)(2T, + Tr + T3)a &30

The absolute maxima of acceleration and its derivatives are given by
[a(k)lnla;[ - a]\/IQ’k+2(T1), k = O, 3 (52)

The maxima for the three realizations are compared in table 3.

Table 3. Absolute maxima for the three realizations of the maneuver M,

T v a a a a(3)

o 300.0 410 87 41 18 24
@3 3000 300 82 35 31 6.2
(@7 3000 300 75 35 27 7.0

As noted previously, the position maneuver is smooth but violates the speed limit. The other two
maneuvers are quite similar and, as shown in figures 20 and 21, step the aircraft forward 300 feet in
18 seconds without violating the constraints. It may be noted that, as is to be expected, the satisfaction
of constraints requires greater activity in the control u. Of course, the increase may be expected to be
smaller for the optimum solution.

T

200 7
100 7

1
2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 20. The three-segment maneuver M3 = (ag
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Figure 21. The seven-segment maneuver M7 = (055))7.

It is helpful to think of a composite maneuver as a sequence of control cards. For example, the

three-segment maneuver M; = (055))3 may be represented by the sequence C = CyC1C2C73 of four
control cards, as follows:

CO::Z;:O 0 000 0 *x

012:5:8 x 30 000 14?
CQ::Z;:ZZ x 30 0 0 0 14 |
03::;{::8 300 0 0 0 0 04

The first card Cy specifies the initial condition. The second card C'; commands that the segment is to
last 8 seconds and that the terminal velocity £ = 30 ft/sec (variable 1), higher derivatives up to fourth
(variable 4) are to be zero, while the position is to be ignored. The third card Co commands a 2-second
coast at 30 ft/sec. The last card commands a steady 300 ft (variable 0).

This representation becomes particularly helpful when z is multidimensional. Complex, multiaxis
maneuvers may require many control cards, each with many (e.g., 90) rows of data. In the present
structure for the flight vehicle management system, these control cards are the interface from the discrete
levels to the analog levels. Before expanding on this point, consider the multiaxis case.
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3.4 Coordinate Patching

To be applicable to aircraft, the preceding discussion must be generalized to include multiple axes
and rotations. A slight detour into the methodology of dynamic forms is made to considerably simplify
the discussion that follows. Much more detail is given in reference 3.

A scalar form of order k of a scalar variable of time is defined by the k-tuple consisting of the
variable and k of its time derivatives:

(k)

SFF(z) = [z, 2,2 "), z € R (53)

For example, the system in figure 15 with n = 4 may be represented by SF5(a:1). Similarly, vector
and matrix forms are given, respectively, by

VFk(v):(v,@,v(z),...,v(k)), ve R (54)
and
MF*(M) = (M, M, M@, ME)) | M e Rmm (55)

As described in reference 3, sums, products, and other elementary functions are easily extendible to
dynamic forms. Then, more-complicated functions may be built out of the elementary set. Thus, for
example, the possibly time-varying affine map

v=Mu+z (56)
may be raised from order zero to order k as follows:

VFR @) = MFFM)» VF*(u) + VFF(2) (57)

Let @ be a three-dimensional, right-handed, orthonormal axis system. The ‘@ -coordinates of a

—
vector Z will be denoted by the column z,. The attitude of another axis system b may be defined
relative to a by the direction cosine matrix Cp,. The coordinates transform according to zj, = Cj,zq.
—

Let the angular velocity of b relative to @ be denoted by the vector &p,; its body coordinates are wyg,
Then the time derivative of the direction cosine matrix,

Cha = S(wpab)Cha (58)
where, as before, the skew-symmetric matrix, given for any z € R3 by
0 23 —29

S(z)=|-23 0 21 (59)
20—z 0
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represents the cross-product operator. The ability to generate direction cosine matrices by a structure
of the type shown in figure 22 is of interest. It is convenient to represent this structure as the rotation

form:
. 2 k-1
RFk(Cba) = [Cba’wbab’wbab»wlga%’ ... ’wlgab )] (60)

(k1)

Dpap Dpap Dphab c.:ba Cba
T I — [}
Cba =S(wbab)Cba

-

Figure 22. Rotational form RFk(Cy,).

The closely related matrix form is given by

MF*(Cy,) = [Cba, Chpas CD,...,C0 61)

ba’--

The kinematic equation (58) and
S(what) = CaCha (62)

where ()T denotes the transpose, provide a nonsingular link between the two forms. The subroutines
for transforming them into each other are denoted as

MF¥(Cy) = MF<RF[RF¥(Cy,)]

63
RF*¥(Cy,) = MF>RF[MF*(Cy,)| (63)

The generalization of the Coriolis’ derivative to order k is given by
VF*(up) = MF¥(Cpy) * VF¥(vg) = MF < RF[RF*(Cyg)] % VF¥(v,) (64)

This subroutine outputs the b-components v, of ¥ and the k time derivatives of vy, for given a-components
ve and its k time derivatives and the attitude Cp, and angular velocity and its derivatives.

The transpose of a matrix form,
[MFF(M)T = MFR(MT) (65)
Consequently, the inverse of a rotation form is given by
RF¥(Cpp) = MF = RF{{MF*(Cya)"} (66)
It is often necessary to represent rotations in terms of Euler angles in some desired sequence. That

is,
Cra = Eqy (01)Eqy(02) Egy (a3) (67)
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where the sequence ¢ = (g1, ¢2,¢93) With g2 # ¢1,43, and E; is an elementary rotation about axis 1.
This representation has a gimbal lock (the Jacobian matrix is singular) at ag = 7/2 for a nonrepeating
sequence, and at || = O for a repeating sequence. Since derivatives of Euler angles are needed, an
angle form is defined as follows: .

VF (a)) (68)
q
and the subroutine for the forward and inverse parameterizations (away from the singularities) is defined

as:

AF(a) = (

MF*(Cy) = MF<AF[AFf(ay,)]
AFNop,) = MF> AF[MF¥(Cy,)]
This algorithm provides a bidirectional link between a direction cosine matrix and the corresponding

angular velocity and its derivatives on the one hand, with the corresponding Euler angles and their time
derivatives on the other.

(69)

All these easily coded algorithms are very useful in practice. Now consider a maneuver such
as the transition from VTOL to VATOL, as shown in figure 11. The standard representation by the
nonrepeating sequence ¢ = (1,2, 3):

Ctr = E1923(7) = E1(m)Ea(v2) E3(73) (70)

which is nonsingular for near horizontal attitudes, becomes singular in the vertical attitude. A repeating
sequence such as p = (3,2, 3)

Ctr = E323(8) = E3(61)E2(82)E3(83) (71)

is nonsingular near vertical attitudes. To achieve large-angle maneuvers, it is necessary to patch coor-
dinates smoothly. That is easily done by means of the algorithms defined previously.

AFy(8) = HY |AF}| = MF > AF {MF < AF [AFf ()|} (72)

Let the coordinate-designating mode variable be denoted by . This mode variable may take on
many values, but for the VTOL to VATOL maneuver, two are noted: horizontal attitude (HAT) and
vertical attitude (VAT). Switching from one coordinate system to another is a discrete event initiated by
a change in p,. In the horizontal mode pq, = H AT, both sets of coordinates are computed according

to
AFE()\ [ AFE(Y)
(A@wﬂ‘(Hﬁume 73)

That is, y is free to move in any preassigned manner while 3 is slaved to the image of . On the other
hand, in the vertical mode i, = VAT, (3 is free while + is slaved:

Aﬂw>_.%M¢wm
(M@@)‘(Aww) 79
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The coordinate switch may be commanded by means of control cards. For example, consider a sequence
of control cards C = ...C;C;41 ..., where

(T =2 T
o = HAT
" f0 0000 04
- | f 010000 14
L (oA f 011 00 0 14
By s 0 0000 04
o s 0 0000 04
| 33 s 0 0000 04)
and i i
T =
e = VAT
1 s 0 0000 04
S s 0 0000 04
G R PO s 0 0000 04
B f 0 0000 04
5o £90 0000 04
| B f 011 00 0 14

Control card C; commands a segment of 2 seconds duration in the horizontal attitude coordinatization
mode pq = HAT, in which the ~s are free to satisfy the indicated terminal conditions: zero roll
(v1 = 0), constant pitch rate 49 = 10 deg/sec, and constant yaw rate 3 = 11 deg/sec. The 3s are to be
slaved to the image of the vs. The next control card C;,; commands a segment of 7 seconds duration
in the vertical attitude coordinatization mode i, = VAT. The initial condition to be satisfied by the
3s are given by the slaved (s of the previous card C;. The terminal conditions are constant 8, = 0,
B> = 90, and B3 = 11. The ~s are slaved to the image of the 3s.

As an example of this type of coordinate patching, consider a large-angle maneuver, as shown in
figure 23. The maneuver lasting 40 seconds pitches the time-axis system from zero to 90 degrees and
then back to zero while yawing through the complete 360 degrees. In the vertical position, (] =~ —73),

T s tilted about t3 from zero to 3 degrees and back to zero. The complete maneuver is synthesized
with eight control cards. The evolutions of v and % are shown in the first two panels of the figure. The
Euler angle forms are set to zero within one degree of their respective singularities. The evolutions of
8 and 3 are shown in the bottom two panels. The 3-degree tilt is shown in the top panel of figure 24.

The corresponding evolution of the direction cosine matrix Cy- may be computed as discussed
previously by means of the algorithm

MF > RF{MF < AF[AFf3 (7))} if po = HAT

MF > RF{MF < AF[AF5,(B)} if pa = VAT (73)

RF*(Cyr) = {

The angular velocity, angular acceleration, and their derivatives are shown in in the bottom panels of
L d

the figure. The components of wy,s are measures of the rate gyros attached to ¢. Note that ¥, which

looks like yaw rate, becomes roll rate as ¢t becomes vertical and then again yaw rate at the end of
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the maneuver. The 3-degree tilt of £; submaneuver has no effect on the roll channel but activates both
pitch and yaw. Finally, it may be noted that, as required, both angular velocity and acceleration are

continuous throughout the maneuver, despite segmentation and coordinate changes.

200 T T T

-200 I 1 1 L

10

T
‘A

-10 & L L 1 i 1 - 1.

200 T T T =T T T T

_200 1 1 1

-10 b ) | . N ) ||

time (sec)

Figure 23. Vertical attitude maneuver: Euler angles.
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\
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'0.5 C 1 1 1 ’ 1 1 1 1

0 5 10 15 20 25 30 35
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Figure 24. Vertical attitude maneuver: angular velocity.
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3.5 Transition Dynamics

In the preceding discussion of the coordinate change v «» 3, there was enough freedom to patch
continuously across the mode switch. That is not always the case. Two very useful coordinatizations of
Cjr, namely the runway path axes RPA and wind path axes WPA, are given in terms of the trajectory
of the origin of ¢, as follows. Consider an axis system v, defined so that the first unit vector #7 points
along the velocity @ of v relative to the runway-fixed axes 7. In addition, let the total specific force

-

f=17- g3 (76)

be in the (77, ¥'3) plane, pointing up. That is,

ao= ol
’172 = 171 X f/|171 X f| amn
173 = 61 X 172

Then the attitude of v relative to T is given by the direction cosine matrix Cyr, whose rows are the
. «—
r-coordinates of v:

Cyr = ( Ulr, V2r, U3r )T (78)

This zero-order computation can be easily raised to order k£ by means of the methodology of dynamic
forms:
MF¥(Cy) = MF <VR[VFF1(y,)] (79)

which may then be transformed into the corresponding rotation form RF’“(CW). In the runway path
axis mode (g = RPA), MFF(Cy) = MF¥(Cyyr).

Another frequently used axis system w is defined in terms of the relative wind. The velocity
relative to the average wind is given by
~

7 =7— (80)

where & is the average wind velocity with respect to the runway. The axis system is given by

w = 7/|0%
Wy = Wy x f/ldh x fl 81)
Wy = Wy X Wo

so that the first basis vector points in the direction of the relative wind ¥ rather than in the direction
of #. In the wind path axis coordinatization mode (e = WPA), M Fk(C'tr) =M Fk(C'w,«). Other
variations on this theme are, of course, possible. The problem is that, while it is possible to switch
smoothly from a path-defined mode to an Euler angle mode, the change from Euler angles to path may
be discontinuous because the path is generally not a free variable that can be slaved to an attitude.
However, the discontinuity may be smoothed by means of transition dynamics, as follows. The idea is
to factor the attitude into two rotations, one of which is relaxed to the identity. For example, suppose
that the mode is switched at ¢t = ¢; from p, = HAT to puq = RPA:

Ey93(t), fort<t

Cr = {Cvr(t), for t] <t 82)
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Then, without smoothing, the discontinuity at ¢; is

D(t1) = E13(t,)CL. (1)) (83)
On the other hand, if we define
_ [ Er2s(t), for t <t
Cor = {D(t)C’vr(t), for ¢ < t (84)

and relax D(t) — I, then the transition can be made smooth. This zero-order procedure can be easily
lifted to order k:

- MFk(E 93), fort <t
MF*(Cyp) = e LA =1 85
(Cr) {MF"(D)*MF"(CN), for t; < t )

There are many ways to relax M F*(C) — (I,0,... ,0). One possibility is to express D in terms of
Euler angles 6 in some sequence g and then drive AFy(6)(t;) — (0,...,0) by means of polynomial
segments. Another way is to apply a zero-seeking regulator structure. For example, suppose that D is
represented in terms of Euler parameters (e,n) € R3 x R:

D =TI+ 2nS(e) + 25%(e) (86)
and conversely,
€ = ams(D)/n
where for any = € R3,
azis[S(z)] =z (88)

The constraint is €2 + 7% = 1, and the representation is singular for |¢| = 1. These zero-order compu-
tations are easily raised to order &, as follows:

(VF*(e),SFF(n)) = MF>PF[MF"'(D)]

Associated with the vector part of the parameter form is the three-dimensional string of k integrators,
each

eb+1) — o, (90)
The initial condition is given by
[e(t2). . B (t)] = VFE(e)(11) ©n
Choose a stable regulator law
u==k [e,...,e(k)] (92)

Then, provided that |e| < 1, the offset € will decay to zero. The evolution of Cy, for t; < t is then
constructed as follows
SFE(m) = [1- VPR
MFk(D) = MF<PF[VFk(), SFk(n)] (93)
MFk(Cy) = MF*(D)» MF¥(Cy)
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By construction there is no discontinuity in Cy, or k of its time derivatives, and C}, coincides with Cly;
after the transient has died down.

Several useful ways have been developed to coordinatize large-angle attitudes. The generation of
three-dimensional reference trajectories is now considered.

3.6 Output Mode

The coordinate mode, g, discussed in the preceding section, affects the meaning of the system
state and control coordinates. In this section the output mode, 1, which determines the meaning of the
system output (that is, which variables are to be tracked) is considered. Some of the many possibilities
are the Cartesian, cylindrical, or spherical coordinates of position, or airspeed and path, or, as in the
360-degree roll maneuver shown in figure 14, speed and lateral and normal forces. Many more output
maps are of practical interest. Specifying and switching of output maps may be handled in much the
same way as the Euler angles. Thus, for example, consider a 90-degree horizontal turn maneuver with
100 ft/sec initial and final speeds. The maneuver may be realized by means of the Cartesian coordinates,
as follows:

Mzy: 90-degree Cartesian maneuver

VER(y) f 0100 0 0 O
VE(r,) f 0 0000
VE(r,) f 0 000 0

T =16.5, ta = RPA, iy = CAR
VF(r,) f 10000 0 0 0 0 04
VEy(r,) f 1000 100 0 0 0O 04

VF(r;) f 0O 0000 04

The turn is accomplished with one segment in 16.5 sec. The path is shown in figure 25. The attitude

of t is slaved to the runway path axis system (uqg = RPA). The corresponding Euler angles o
in the standard sequence ¢ = (1,2,3) may be extracted from Cy,.. Figure 26 shows the Euler angles,

angular velocity, and angular acceleration of the t system relative to the runway T Figure 27 shows the
evolution of the ground speed v (ft/sec, upper panel), acceleration v (ft/sec , second panel), t-coordinates
of force ft’ (third panel), and curvature « (in inverse thousand feet), where

vV = §=8§= t{rvr

v = §

i = Culfr ‘,"953)/9
K ld/dt(%)|| /v

(94)

I
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Figure 25. Cartesian maneuver: path.

18 20

time (sec)

Figure 26. Cartesian maneuver: oy (deg), wiyt (deg/sec), wirt (deg/secg).
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100 7

time (sec)

Figure 27. Cartesian maneuver: v (ft/sec), v (ft/secQ), ft’ (g’s), & (1/kft).

and where g is the acceleration of gravity. It may be noted that the ground speed of this maneuver is
not constant; there is a small acceleration into the turn and a small deceleration out of the turn (second
panel). In some cases a constant speed maneuver is preferable. That may be accomplished by means
of the cylindrical coordinates (v, v, h) of velocity:

v COS Y
vp = | vsiny (935)
—h
where h = —7,3 is the altitude. The Cartesian coordinates of position and the arc length are, of course,

rr(t) = rT(O)—i—/Otvr(a)da

s(t) = 3(0)+/[)tv(0)da

Often it is easier to generate the maneuver in two steps. First the path is “drawn” with some convenient
speed, and the path parameter is changed from time to arc length. Then the path is traversed at some
other speed. This may be accomplished as follows:

(96)

First draw the path, as a function of time

(s,9) = [s1(t),¥1 ()], t € [0, T] (97)
where $; > 0. Next consider s as the independent parameter:
(t,¥) = [a(s),8(s)], s € [s1(0),51(T)] (98)

where s1[a(s)] = s, and 3(s) = ¢¥1[a(s)]. Finally, traverse it with a different schedule

s = so(t), t € [to, tf] 99)
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namely
(s,9) = [s2(2), ¥2(t)] = {s2(t), Bls2(t)]}, t € [to, ty] (100)

where tg = a[s1(0)] and t; = a[s1(T)]. The problem is to raise this zero-order computation to order
m. That is, the problem is to construct

SFR () = 1 {a[SF¥(5)]} (101)

Suppose that for given s; = ag the corresponding ¢; and SF*k (s1) are known. Then the evolution
of s; near the base point (ag,t;) is given by the Taylor series in T,

s1(ty+7) = 81+ 517 + ... + stk kY (102)
This is a polynomial of degree k in 7 with constant coefficients
a=(s1,5,...,58 k) (103)
This zero-order polynomial may be raised easily to order k:
SFk(sl) = poly|a, SFk(T)] (104)

The input is SF*(m) = (7,1,0,...,0) and the output is SF*(s;). The present objective is to invert
the process: given some other evolution SF*(s,), find the corresponding SF*(r3). Having found that,
the new evolution of % is given by the polynomial

SF¥(32) = poly[b, SF¥(rs)] | (105)

with constant coefficients
: k
b= (y1,91,....,v" /k!) (106)
The inverse SF¥(7,) may obtained in the standard way. (See ref. 3.)

SFk(r) =(0,...,0)

g=(s)7"
doi=1,k

w = {poly[a, SF¥(1)}x
end do

In the special but useful case when both the initial drawing and final traverse are done at constant but
possibly different speeds, $; = vy and $9 = v9 = pv1, respectively, simple scaling suffices:

SFk(d)Q) = (wlaud}l"“’ﬂ'kw(k)) (107)

For example, consider the following abbreviated control card schedule.
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M. 90-degree cylindrical maneuver

T= 0,uy=CYL

SFi(s) f 0 100 0 0 0

SFi+) f 0 0 0 0 0

SF4h) f 100 0 0 0 0
T= 5uy=CYL

SFis) f 0 100 0 0 0 14

SFi) f 0 6 0 0 0 14

SF4h) f 100 0 0 0 0 04
T =10,py = CYL

SF4s) f 0100 0 0 0 14

SFi+) f 0 6 0 0 0 14

SF4h) f 100 0 0 0 0 04
T= 5pu;=CYL

SF4s) f 0 100 0 0 0 14

SF4y) f 90 0 0 0 0 14

SF4h) f 100 0 0 0 0 04

The speed is held constant throughout the maneuver at v = 100 ft/sec. At the end of the third segment,
the displacement r(20) —r,-(0) = (1208, 1208,0)T. A displacement of (1000, 1000, 0) may be obtained
by scaling time by a factor of 1000/1208. The resulting path is shown solid in figure 28, and it may
be compared with the Cartesian path (dotted). The behaviors of the attitude, angular velocity, and

5001

1000
0

500 1000
x (ft)

Figure 28. Cylindrical maneuver: path.

acceleration are shown in figure 29. Figure 30 shows that the speed (top panel) is constant, as expected.
The curvature is smaller for this case than for the Cartesian maneuver shown in figure 27.
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Figure 29. Cylindrical maneuver: oy, (deg), wirs (deg/sec), wirt (deg/sec2).
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Figure 30. Cylindrical maneuver: v (ft/sec), v (ft/secQ), ft’ (g’s), k (1/kft).



Often ground speed is of lesser interest than the airspeed. The air velocity is given by
P =0-w=35—u (108)

where ¢ is the path tangent. Therefore, the ground speed needed to maintain a desired airspeed v® = a,
which may be a function of time, is given by

s=10 +/(F W)2 + a2 — w? (109)

This equation can be used iteratively to raise the order to SF' k(s). Often it is desirable to point the
axes into the wind. This maneuver may be done by choosing ¢y in the direction of the air velocity
rather than, as before, in the direction of the ground velocity v.

—
t
,D'a

Figure 31 shows the 90-degree turn in which the airspeed is held constant at v, = 100 ft/sec in the
presence of a constant wind wy = (—20, 20, 0) ft/sec. The maneuver is executed in the wind path axis
mode p, = WPA. It may be noted that, while the ground speed v (solid line in panel 1) varies, the
airspeed v, (dotted) is constant at the set value of 100 ft/sec. The second panel shows f/. It may be
noted that only the normal component ft’3 (dashed) is active. The Euler angles oy, degrees are shown
in the third panel. Note that, since the axis is pointing into vy = v, — wy, the yaw angle ay,3 (dashed)
starts the turn with —11.5 degrees and finishes the turn with 78.6 degrees. Furthermore, the roll angle
(solid) is not constant in the constant radius segment. The bottom panel shows the angular acceleration
Wirt degrees/secQ. Note the smaller roll acceleration at the beginning of the maneuver and the larger
value at the end in comparison with the no-wind case shown in figure 29. Finally, the duration of the
maneuver is a little longer, namely 17.35 seconds.

100
50 =

0.2 T T T T T T T T T

_0‘2 i 1 1 1 1 A 1 1 i
100 | T T T T T T T T

" -
2 4 6 8 10 12
time (sec)

Figure 31. Fixed air speed cylindrical maneuver (v,va), f}, Qtr, Wirt.
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Other possibilities are of practical interest. For example, spherical coordinates of velocity
(1y = SPH)
vr—_-(vcosdzcos’y,vsin1/Jcos'y,—vsinfy)T (110)

are frequently used for guiding an aircraft to the airport.

The methodology developed in the present chapter allows one to generate segments in any one
of these many useful representations, and to patch the segments into a smooth, executable maneuver.
Thus, the Guidance Output Trajectory Generator, which is the first block in figure 5, is realized. The
input is a sequence of control cards. The output is the commanded definition and evolution of the
system output y° and the evolution of the operating mode . So far, the operating mode had two
coordinates, namely pq, which defines the coordinatization of the system state space, and p,, which
defines the state-to-output map. In the next chapter, in which the Guidance State Trajectory Generator
is considered, the third coordinate, the control mode y., which specifies how the maneuver is to be
executed, is introduced, and an approach for constructing the guidance state and control (z9, u9), which
produce the desired output y9 ~ y°, is given.
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4 DYNAMIC INVERSE

In the previous section, a procedure for converting control points into the desired motion of the
output y, is developed. (The underline denotes a function of time.) In this section, an inversion
procedure that converts y ; into the corresponding motions of the state and control (29, u9) is developed.
It will be useful to clearly distinguish between two types of inverses, namely the static inverse and the
dynamic inverse.

For the static inverse problem, the following terminology is employed. A direct algorithm f is
given:
v € UCR", pePCR!, yeYCR™
f : UxP-Y (111
y = f(u,p)
where u, p, and y are, respectively, the control, parameter, and output. The problem is to construct the
relative inverse algorithm f,

j; : }/' xP—-U (112)
v = flya,p)
so that, for any desired output y; € Y and parameter p € P, the output error
ey = Y4 — f(u,p) (113)

is sufficiently close to zero.

In contrast, the dynamic inverse problem may be summarized as follows: Suppose that a state
equation and an output map are given:

t € cR zeXCR",  ueUCR™ yeYCR™, pe PCRY

f XxUxP—-X

h : XxP-Y (114)
T = f(mausp)

y = h(.’U,p)

Here, z, u, p, and y are, respectively, the state, control, parameter, and output; f is the flow, and A is the
output map. In this case, the inversion problem is to construct an algorithm T', which transforms any
given, suitably restricted, motion of the output y , and parameter p, respectively, into the corresponding
motion of the state z9 and control u9, which satisfy both the state equation and the output map. That
is, the state error equation and output equation error, respectively,

ex(t) = 29(t) — f[z9(¢),u9(t), p(t)] (115)
ey(t) = yalt) — hlz9(t), p