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THE PATH RESISTANCEMETHOD FOR BOUNDING THE SMALLEST NONTRIVIAL

EIGENVALUE OF A LAPLACIAN*

STEPHEN GUATTERY t, TOM LEIGHTON$, AND GARY L. MILLER §

Abstract. We introduce the path resistance method for lower bounds on the smallest nontrivial eigen-

value of the Laplacian matrix of a graph. The method is based on viewing the graph in terms of electrical

circuits; it uses clique embeddings to produce lower bounds on )_2 and star cmbeddings to produce lower

bounds on the smallest Rayleigh quotient when there is a zero Dirichlet boundary condition. The method

assigns priorities to the paths in the embedding; we show that, for an unweighted tree T, using uniform

priorities for a clique embedding produces a lower bound on A2 that is off by at most an O(log diameter(T))

factor. We show that the best bounds this method can produce for clique cmbeddings are the same as for a

related method that uses clique cmbcddings and edge lengths to produce bounds.

Key words. Laplacians, Laplacian spectra, graph eigenvalues and eigenvectors, graph embeddings

Subject classification. Computer Science, Applied and Numerical Mathematics

1. Introduction. In this paper we consider methods based on graph embeddings for estimating the

smallest nontrivial eigenvalue of the Laplacian matrix representation of a graph. The Laplacian is one of

many ways to view a graph as a matrix; it is defined as follows: Let G = (11, E) be an undirected graph with

vertices vl,..., vn. Then the Laplacian of G is an n × n matrix L such that

degree(v_) ifi=j
l_j = -1 if (i,j) E E

0 otherwise

It is not hard to see that L is positive scmidefinite (all cigenvalues are > 0). Since the row sums of L are all

zero, the smallest eigenvalue is zero. If G is connected the second smallest eigenvalue A2 is positive.

The study of the connection between Laplacian spectra (particularly with respect to ,k2) and properties

of the associated graphs dates back to Fiedler's work in the 1970's (see, e.g., [Fie73] and [Fie75]). These

properties have been used in graph algorithms, particularly algorithms for finding small separators [PSL90}.

The Laplacian also has an important role in representing physical problems. It often occurs in finite

difference, finite element, and control volume representations of problems involving elliptic partial differential

equations. These problems often include a Dirichlet boundary condition that specifies that the values at a

set of vertices are zero. To represent this condition in the Laplacian, the rows and columns corresponding to

*A version of this paper originally appeared in the Proceedings of the Eighth Annual ACM/SIAM Symposium on Discrete

Algorithms.
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the boundary vertices are deleted from the matrix. The resulting matrix is positive definite, and its smallest

eigenvalue is the one of interest.

Bounds on the smallest nonzero eigenvalues of both forms of Laplacian havc other important applications.

Since the matrices are symmetric, their extreme eigenvalues can be used in computing their condition num-

bers, which are used in the study of iterative linear system solvers to estimate rates of convergence [HY81],

and to analyze the quality of preconditioners [Axe92, GMZ95]. Bounds on A2 are useful in the analysis

of spectral partitioning, both because A2 occurs in bounds on cut quality [Moh89], and because they can

be used in isolating structural properties of the eigenvectors used in making the cuts [GM95, ST96]. The

eigenvalue A2 has been related to expansion properties of graphs, and can be used in determining if a graph

is an expander [AM85a, Alo86].

Related work involving graph embeddings has been used to bound the mixing time for random walks

[JS89, SJ89, DS91, Sin92, Kah96]. In this case, the bound is on the second largest eigenvalue of the Markov

chain transition matrix. Mixing time bounds have been used in approximation algorithms for a number of

problems (see, e.g., [DFK91]).

In many of the preceding applications, it is necessary to show bounds for classes of graphs in order to

state results in terms of asymptotic algorithm behavior. For example, in the analysis of spectral partitioning,

[GM95] uses eigenvalue bounds on a family of bounded-degree graphs to prove facts about the structure of

eigenvectors used in partitioning; [ST96] gives an upper bound on planar graph eigenvalues that can bc

applied in bounds on the cut quotient of the resulting cut. The embedding techniques we present arc

well-suited to producing such general results, and can be used with known results about embeddings. We

have used them to generate lower bounds for families of graphs where the critical path resistance can be

parameterized in terms of the size of the family member.

Note that the applications listed above involve both upper and lower bounds. Upper bounds on A2 are

xT Lx Inusually given by exhibiting small Rayleigh quotients. If x _ 0 is an n-vector its Rayleigh quotient is x---_-_-x.

fact A2 = min_--] x=0 x-_-_-_"xTLxThus a I_yleigh quotient for a vector x such that _ x = 0 gives an upper bound

on A2. As a beautiful example, Spielman and Teng have proved that )_2 = O(1/n) for bounded degree planar

graphs by showing how to construct a vector with a small P_yleigh quotiem for each such graph [ST96].

In the zero Dirichlet boundary case we are interested in the smallest eigenvalue _. Consider the Laplacian
xT Lx

L with the rows and columns of the boundary vertices deleted. Then A = minx x-_r-_-_. In this case the

Rayleigh quotient has a continuous analog: Let _ be a compact domain in _a with boundary F, e.g. the

unit square in the plane, and let u _ 0 vary over all differentiable functions defined on fl such that u = 0 on

F. Then the P_yleigh quotient is

c = rain fa(Vu)2
u ffl U 2 '

where Vu is the gradient of u. This lower bound on c is known as a Poincar4 inequality. This analog provides

useful insight on the problem and helps with the proofs to follow.

We start by describing a very simple yet powerful method for bounding A2 from below (Figure 1). We

show that the Path Resistance Method correctly bounds )_2 from below. Note that the quality of the lower

bound improves with the quality of the path embedding since better embeddings decrease congestion. We

also show that it is sometimes possible to improve the lower bound by assigning a priority to each path and

allocating the edge conductances based on the priorities. The path resistance method as stated in the figure

does not mention priorities; we refer to that version as the unit-priority case.



Procedure:ThePathResistanceMethod

Method"
1. Constructa pathembeddingof Kn into G, i.e.,

construct a path between evcry pair of vertices of

G.

2. For each edge eij in G compute the congestion

cij = I{Ple_j e P}I

3. For each path P and each edge eij on P allocate

a resistor of size c_j to P.

4. For each path P compute its resistance, i.e,

_-_e_cp cij. Let r be the maximum resistance ovcr

all paths.

5. return "n/r < A2".

FIG. 1.1. The Uniform Priority Path Resistance Me_hod

The clique embedding version of the Path Resistance Mcthod is closely related to another clique embed-

ding technique presented in [Kah96] that assigns edge lengths and computes the sum of the lengths of all

paths incident to each edge. We show that these methods are duals of one another, and that the best lower

bounds computed by these methods are the same.

Wc also present a version of the Path Resistance Method that is applicable in the zero Dirichlet boundary

case. Instead of embcdding a clique, we embed a star into the graph, with the boundary vertices consolidated

into the vertex at the center of the star.

Finally, we show that the clique embedding version of the Path Resistance Method with uniform priorities

is robust when applied to trees. We produce upper and lower bounds to show that for a tree T using uniform

priorities, our estimate is off by at most a factor of O(log diameter(T)). It is somewhat surprising that such

a simple way of setting the priorities gives such a good bound. It is open as to how well the uniform priority

method does for general graphs.

2. Previous Work. Prior work related to the applications of the lower bounds has been cited in the

Introduction. The use of clique embeddings to bound eigenvalues arose in the analysis of mixing times for

Markov chains by Jerrum and Sinclair [JS89] [SJ89]. _trther work in this direction was done by Diaconis

and Strook [DS91] and by Sinclair [Sin92]. Kahale [Kah96] generalized this work in terms of methods

assigning lengths to the graph edges, and showed that the best bound over all edge length assignmcnts is

the largest eigenvaluc of the matrix FTF, where F is a matrix representing the path embedding ([Kah96]

also cites unpublished work by Fill and Sokal in these directions). He also gave a semidefinite programming

formulation for a model allowing fractional paths, and showed that the bound is off by at most a factor of

log 2 n. Hc proved this gap is tight; he also noted that the results can be applied to Laplacians with suitable

modifications.

3. Terminology, Notation, and Background Results. Wc assume that the rcadcr is familiar with

the basic definitions of graph theory (in particular, for undirected graphs), and with the basic definitions

and results of matrix theory. A graph consists of a set of vertices V and a set of edges E; we denote the

vertices (respectively edges) of a particular graph G as V(G) (respectively E(G)) if there is any ambiguity



aboutwhichgraphisreferredto. Whenit isclearwhichgraphwearereferringto,weusen to denote IV].

We use the term path graph for a tree that has exactly two vertices of degree one. That is, a path

graph is a graph consisting of exactly its maximal path. A star is a tree with exactly one vertex that is not

a leaf. We call the non-leaf vertex the center of the star.

3.1. Matrices and Matrix Notation. We use capital letters to represent matrices and bold lower-

case letters for vectors. For a matrix A, aij or [A]ij represents the element in row i and column j; for the

vector x, xi or [x]i represents the ith entry in the vector. The notation x = 0 indicates that all entries of the

vector x are zero; i" indicates the vector that has 1 for every entry. For Laplacians, we index the eigenvalues

of an n × n matrix in non-decreasing order: hi represents the smallest eigenvalue, and )t_ the largest. We

use the notation )_i(L) (respectively hi(G)) to indicate the ith eigenvalue of matrix L (respectively of the

Laplacian of graph G) if there is any ambiguity about which matrix (respectively graph) the eigenvalue

belongs to. ui represents the eigenvector corresponding to hi.

3.2. The Laplacian Matrix Representation of a Graph. A common matrix representation of

graphs is the Laplacian. Let D be the matrix with dii = degree(vi) for vi E V(G), and all off-diagonal

entries equal to zero. Let A be the adjacency matrix for G (aij = 1 iff (v,, vj) C E(G), 0 otherwise). Then

the Laplacian representation of G is the matrix L = D - A.

The following are some useful facts about the Laplacian matrix:

• The Laplacian is symmetric positive semidefinitc, so all its eigenvalues are greater than or equal to

0 (see e.g. [AM85b]).

• A graph G is connected if and only if 0 is a simple eigenvalue of its Laplacian (see e.g. [AM85b]).

• The following characterization of _2 holds (see e.g. [Fie73])'.

xT Lx
(3.1) X2 = min .

x±i" xTx

• For any vector x and Laplacian L of the graph G, we have (see e.g. [Fie75]):

(3.2) xTLx = _ (xi - xj) 2
(vi,vj)EE(G)

An edge-weighted graph has a real, nonzero weight wij associated with each edge (vi, vj) (we consider

a zero edge weight to indicate the lack of an edge). Fiedler extended the notion of the Laplacian to graphs

with positivc edge weights [Fie75]; he referred to this representation as the generalized Laplacian. Let

wij be the (positive) weight of edge (i, j) in graph G. Then the entries of the generalized Laplacian L of

G are defined as follows: lii is the sum of the weights of the edges incident to vertex vi; for i # j and

(vi, vj) E E(G), lij = -wij, and lij = 0 otherwise.

With the exception of equation (3.2), the properties listed above also apply to generalized Laplacians.

A slightly modified version of (3.2) holds for the generalized Laplacian L:

xTLx = _ wij(xi -- xj) 2
(vi ,vj)EE(G)

We usually use L to denote the Laplacian of a graph G, and K to represent the Laplacian of the clique

K (whether K refers to the graph or the Laplacian will be clear from context).

3.3. Graph Embeddings. We start with the notion of embedding one graph into another. Let G and

H be connected graphs such that the vertex set of H is a subset of the vertex set of G. An embedding



of H into G is a collection F of path subgraphs of G such that for each edge (v_, vj) E E(H), F contains a

simple path _/q from vi to vj in G. For full generality, we allow fractional paths in our embeddings: i.c.,

an edge (v_, vj) E E(H) can be associated with a finite collection of simple paths from vi to vj in G; each

such path has a positive fractional weight associated with it such that the weights add up to 1. If a path

includes edge e, we say that y is incident to e.

In the unit-priority case, the congestion cong(e) of an edge e E E(G) is the number of paths in the

embedding incident to e (fractional paths using e contribute their fractional weight to this count). The

resistance r(e) of an edge is its congestion divided by its weight: r(e) = _ The resistance of a path
me

r(_) is computed from the edge resistances in the same way that the resistance of a series of resistors would

bc computed in an electrical network. That is, r(-y) -- _-_ee-y r(e). The largest path resistance rma× is defined

as rmax -- max_er r(_/). The corresponding path is called the critical path. Note that rma× is always

defined with respect to an embedding; the particular embedding will bc clear from the context, and thus we

will not specify it in the notation.

The definitions change slightly when we use path priorities. Let Pij be the path priority for _iy, and let p

be the vector of priorities. The congestion cong(e) of edge e is the sum of the priorities of e's incident paths.

Each edge has a resistance factor r(e), defined as the congestion of the edge divided by its weight. The

resistance of edge e with respect to yij is fie). The resistance r('y) of a path _( is the sum of the resistance
Pij

1

factors of the edges in the path divided by the path priority (i.e., r(_q) -- _ _-_'_e_o r(e)). The maximum

path resistance taken over all paths in F is denoted rmax. The corresponding path is called the critical

path.

Wc note that using these modified definitions, the general method for computing lower bounds using

priorities is clear: Compute rma× according to the revised definitions. Then T_,-_ <- A2.

4. Lower Bounds on X2 for Generalized Laplacians.

4.1. A Bound Based on a Clique Embedding. We now consider the case in which G is a graph for

which we would like to bound A2 of G's (generalized) Laplacian from below. We will use a clique embedding

to decompose the graph. The decomposed graph is then viewed in terms of an electrical circuit analogy.

We start with an easy lemma that helps convey the nature of the bounding technique. Let L be the

Laplacian of (edge-weighted) graph G, and let K be the Laplacian of the completc graph on n =- IV(G)I

vertices.

LEMMA 4.1. Let a be a positive real number. If c_L - K is positive semidefinite, then A2(L) > n_

Proof. Assume that aL-K is positive semidefinite. Consider uT(aL- K)u2, where u2 is the eigenvector

corresponding to A2(L). Without loss of generality, assume that u2 has been normalized to length 1. Note

that K = nI - J, where J is the n × n matrix with all entries equal to 1. Thus it is clear that every vector

orthogonal to _ is an eigenvcctor of K with eigenvalue n. Therefore

ur(aL -- K)u2 = aurLu2 -- uTKu2 = aA2 -- n > O,

where the last inequality holds by the assumption that aK - L is positive semidefinite. The lemma follows.

[]

Thus, if we can demonstrate an a sufficiently large to make aL - K positive semidefinite, wc can bound

A2 from below. To do this, we form an embedding (F, p) of the complete graph into G, then break aL-K into

pieces consisting of edges in K and their corresponding paths in F. We use the following additional notation:

E_j denotes the Laplacian of the graph on V(G) that has only the single edge (i,j). L(_/ij) represents the



generalizedLaplacianon V(G) whose edges are the edges of q'ij, and whose edge weights are set as follows:

each path _rij using an edge (g, h) gets a share of Wgh proportional to _ This works out tocong(g,h) "

Wgh Pij _ Pij

cong(g, h) rgh

It is easy to see that the weights assigned to all incident paths for (g, h) sum to Wgh. (If fractional paths are

involved, then the matrix L(_'ij) is multiplied by the fractional coefficient of path _ij.)

We now state the theorem that gives us the technique for bounding A2:

THEOREM 4.2. For any generalized Laplacian L of a connected graph G with positive edge weights, and

any clique embedding into G,

n

)_2 > --.
?'max

Proof.

Any embedding of the complete graph into G defines a natural decomposition of the Laplacian L in

terms of the lij's: define thc matrix Lnonpath as the Laplacian of the graph on V(G) that includes any edges

of G not used in any path 3,. It is easy to see that

L =
"_EF

Since L,-,onpath is positive semidefinite, the following inequality holds for any positive a and real vector x:

(4.1) xT(Z"(aL(_/ij)-EiJ)) x<-xT(v_L-K)x'i<j

Applying properties of linearity and rewriting gives

(4.2) E (axT L('Tij)x - xTEi/x) -< xT (aL - K) x.
i<j

Now consider the terms axTL(_ij)x -- xTEijx. By (3.2), xTEijx = (xi -- xj) 2. Likewise, the term for the

path can be written in terms of its edges and edge weights:

 (xg - x )2
(_,h)E'_o gh

Since all the priorities and resistance factors are positive, the sum in the expression above can be interpreted

as the energy dissipation of a series of resistances (the reciprocals of the -_-' "rgh s) given a set of potentials (the

xi's) at the nodes between the resistances. It is well known (see e.g. [DS84]) that this quantity is minimized

when the potentials at the internal nodes are consistent with Kirchoff's law (this is easily seen through an

application of the Cauchy-Schwarz inequality). At that minimum the sum is the square of the potential

differences of the endpoints dividcd by the path resistance:

(g,h)e'tO gh -- r ("/ij)

Thus, if _ = rma_, we have for every path _/ij and every x that

(xi - x_)2
axTL(_ij)x-- xTEijx > rm_ r(Tij) (xi -- xj) 2 >_ O.



Forthisvalueof a, the left-hand sides of inequalities (4.1) and (4.2) are nonnegative. Thus rmaxL - K is

positive semidefinitc, and the theorem holds by Lemma 4.1.

If fractional paths are involved, then each L(7ij) is multiplied by the fractional coefficient, as is the

corresponding Eij. The fractional coefficients cancel, so it is easy to sec that the theorem also holds in this

case.

• We now compare the path resistance method with the edge length method described in [Kah96]. The

method as applied to Laplacians is described as follows:

• Specify a clique embedding for the graph, and assign each edge a positive length.

• Compute the length of each path with respect to the edge lengths.

• For each edge, compute the sum of the lengths of all incident paths divided by the length of that

edge. Let Pmax be the maximum such value taken over all the edges. Then Pma_ is a lower bound

for A2.

The proof that this produces a lower bound can be done in a fashion similar to the proof given above

for the path resistance method; however, the argument manipulates the xTKx term. More specifically, the

difference across each edge (i,j) E K gets written as a telescoping sum of the differences along 7ij. The

Cauchy-Schwarz inequality is applied, and the resulting sum is reorganized in terms of edges in L.

In the unit priority/unit length case, the two methods can be thought of in terms of the following electrical

analogies: the path resistance method partitions the conductance (i.e., the reciprocal of the resistance) of

an edges e E E(G) equally among its incident paths. The resulting paths have path conductances; we find

a multiplier (rmax) sufficient to increase the conductance of every path so that it is at least as big as the

conductance of the corresponding clique edge. The edge length method also deals with path conductances,

but instead assigns each path a demand equal to the path's length; this insures that each path has unit

conductance to support a clique edge. We find a multiplier (PEa×) sufficient to make each edge's conductance

at least as large as the sum of the demands of its incident paths. In both methods, the multiplier shows up

in the bound.

The two methods are duals of each other in the following sense:

THEOREM 4.3. Given a path embedding, the best lower bound ]or the path resistance method taken over

all allowed priority assignments and the best lower bound for the edge length method taken over all allowed

length assignments are the same.

Proof. To show this, we will use a representation presented by Kahale in [Kah96]. He defines an

embedding matrix F as follows: Each row of F represents a path between a pair of distinct vertices. A row

entry is 1 if the corresponding edge is in the path and zero otherwise (this is easily generalized to fractional

paths). It is easy to see that multiplying a vector of edge lengths by F computes the length of each path, and

that multiplying the result by F T sums the lengths of the incident paths for each edge. Thus multiplying an

edge vector by FTF and dividing the result for each edge by the original length and taking the maximum is

a way to compute the value Pmax used in the edge length lower bound. FTF is clearly a nonnegative matrix,

and Kahalc shows, using the properties of such matrices (see, e.g., [Min88]), that the best lower bound for

this method is the largest eigenvalue of this matrix.

The path resistance lower bound can be computed by multiplying a vector of priorities by FF T, then

dividing the result termwise by the original priorities and setting rma x to the maximum resulting value. The

same arguments about nonnegative matrices apply. However, FF T and FTF have the same set of nonzero

eigenvalues; this is easily seen by showing that for every eigenvector u of a nonzero eigenvaluc of FF T, FTu

is an eigenvector of FTF with nonzero eigenvalue; likewise, if u is an cigcnvector of a nonzero eigcnvalue of



FTF,Fu is aneigenvectorof FFT with nonzero eigenvalue. Thus the best lower bounds produced are the

same. [:]

4.2. Star Embeddings. Embeddings other than clique embeddings are useful. In particular, we embed

stars into graphs with zero Dirichlet boundary conditions. Such boundary conditions specify a set of vertices

whose values are zero. Let G be a graph with such a zero boundary, and let L be its Laplacian. Let X" be

the set of non-zero vectors consistent with the boundary restriction. We are interested in that value of the

following quantity:

xT Lx
A= min--

xCX" xTx

To find a lower bound, we embed a star into G such that every boundary vertex is mapped to the center

of the star, and every other vertex is mapped to a distinct leaf. Thus we specify a path in G from each

non-boundary vertex to a boundary vertex. Priorities, congestions, resistances, and rmax are all defined as

before. The following theorem applies:

THEOREM 4.4.

1
--<A.
rmax

For brevity, we omit the proof, which is almost the same as the proof in the clique case. For readers wishing

to construct the proof themselves, we note that for the star, the Rayleigh quotient of any nonzero vector

with zero at the center is exactly 1.

Matrices for the zero Dirichlet boundary case often represent boundary vertices implicitly. That is, the

rows and columns of boundary vertices are deleted from the Laplacian of the full graph G. In that case,

edges between non-boundary and boundary vertices are not explicitly represented by off-diagonal entries in

thc resulting matrix. Instead, they show up as surpluses in the diagonal entries for the non-boundary end

of the edge.

4.3. Paths with Masses. To simplify the computation of quantities such as congestions for embed-

dings into trees in the unit priority case, we introduce the idea of mass. Consider a tree T and a unit priority

embedding of a graph H into into T (note that this embedding F is unique). Using the definitions from

Section 3.3 above, we can compute the critical path. We distinguish two types of vertices that do not lie on

the critical path: those not in any path containing a critical path edge (noncontributing vertices), and those

that are in some such path (contributing vertices). For each contributing vertex v, there is a first critical

path vertex vc on any path that includes both v and a critical path edge. Note that since we are working

with a tree, v_ is the same for every such path. We will call vc the connection point for v. Assume that

the critical path has k vertices indexed from 1 to k in order. We assign masses to the critical path vertices

as follows: Vertex vi has a mass rni equal to 1 plus the number of contributing vertices that have vi as a

connection point.

We refer to the graph P consisting of a path on k vertices plus the masses for the critical path as the

path-with-masses model. It has an embedding of a subgraph of H consisting of a subset of F that includes

paths with both endpoints on the critical path. Congestions are computed as before, except that now each

path contributes an amount equal to the product of the masses of its endpoints to the edge congestions. It

is easy to see that the path congestion of P in this model is equal to the congestion on the critical path of

the original embedding.



Wecanalsousethepath-with-massesmodelin computingupperbounds.Let y be a vector of length

k. Let L(P) be the Laplacian of P, and let M be the diagonal matrix with entry [M]_ = mi. Let L be

the Laplacian of T, the tree we arc working with. Construct a vector x on n vertices as follows: For the i th

vertex on the critical path, set the corresponding entry of x to y_. For each noncontributing vertex, set the

corresponding entry of x to 0. For each contributing vertex, set the corresponding entry of x to the value of

y for its connection point. Recall Laplacian Property (3.2) from Section 3.2, and note that the only edges

of T with nonzero differences across them lie on the critical path. Note also that the number of vertices in

T assigned the value yi is equal to mi. It is therefore easy to see that

xT Lx yT L(P)y

xTx yTMy

In the star case with Dirichlct boundary, it is easy to see that if we enforce the boundary condition in y,

then it is enforced in x, which implies that YrL-_-_(-P_is an upper bound on A as defined above. For clique
yTMy

embcddings, note that enforcing the condition yTM1 = 0 is equivalent to enforcing the condition xT1 " ----0;

in this case, _ is an upper bound on A2.
y_ My

5. Lower Bounds for Trees. In this section we show that, for an arbitrary unweighted tree T with

diameter diam(T), assigning all paths priority 1 in the clique embedding gives a lower bound within a

log diam(T) factor of A2. The argument works by first showing the bound holds for a tree with a single zero

boundary vertex, then applying this fact along the critical path to handle the clique-embedding case.

We start with a Dirichlet boundary case, where A is defined as in Section 4.2. Let k be the length of the

critical path.

THEOREM 5.1. For any unweighted tree with a single zero boundary vertex, let rmax be the maximum

path resistance for the star embedding in the unit priority case. Then

max (log k, 1)
-

rmax

Proof Note that if the boundary vertex separates the tree into multiple components, the components

can bc considered separately. We need only consider the component with the critical path.

Let L be the Laplacian of the tree. For any such trec and boundary, wc construct a nonzero vector x

consistent with the boundary condition such that

(5.1) xTLx < C max (logk, 1)
xTx -- rmax

where c is a constant independent of the choice of tree and boundary. By the definition of A, the theorem

then holds. The construction of x is done with respect to the path-with-masses model of the critical path

as described in Section 4.3.

Let P be the critical path. By assumption it has k edges. We index its vertices as follows: vertex 0

is the boundary vertex. Vertex i is the vertex at distance i from the boundary. The maximum index is k.

Mass mi is assigned to vi as specified in Section 4.3 to account for paths that start off the critical path, but

intersect with it.

Because we arc dealing with the critical path plus a zero boundary, we can express the value xi as
i

follows: Let 6i = xi - x___. Then xi = _j=l 5j. This allows us to rewrite some of the quantities from

Inequality (5.1) as follows:

(5.2) 1 _ 1 _ 1



and

(5.3) xT Lx _ _ik=l 6_
k i 2"

xTx Ei=I _Fti (Ej=I (_j )

We specify x by setting 6i = i-½. For k = 1 it is clear that the quantities on the right-hand sides of (5.2)

and (5.3) are equal and the theorem holds. For k > 1, we have

k k

; i-1= o(iogk)
i=l i=l

Thus if we show that the quantities in the denominators of the right-hand sides of (5.2) and (5.3) are within

a constant factor, the theorem holds. Note that the two denominators can be thought of as expressions in

the rni's , so it will suffice to show that the corresponding coefficients for each mi are within a constant of

each other. Thus, we want to show that i is within a constant factor of -(y_i • 1)2-j=lJ- _ . Fori= 1 these are

both 1. For i > 1, the summation can be bounded using integration techniques; in this ease the sum lies

between i½ and 2i½. Thus the square of the sum lies between i and 4i, which gives the desired result. [3

It is possible to find examples for which this gap is tight. Consider a tree consisting of a path graph

connecting the center vertices of a series of stars. In particular, let the path have k + 1 vertices numbered

from 0 to k. Vertex vi (0 < i < k) on the path is the center of a star with [k2/i 2] - 1 leaves. For simplicity

of reference, we refer to this tree as the bad tree for parameter k. Vertex v0 is the zero Dirichlet boundary.

We show that the gap for the bad tree is tight by showing a set of priorities that give a lower bound

within a constant of the upper bound constructed as per the proof of Theorem 4.4. Let T be a bad tree with

k > I; let L be the Laplacian of T. The path connecting the stars is obviously the critical path. We assume

that the path vertices are numbered as in the definition of the bad tree. Path edges are numbered by the

larger of the endpoint indices: i.e., edge i is from vi-1 to vi.

THEOREM 5.2. Let vo be the zero boundary vertex for bad tree T with parameter k > 1. Let 1-!-- be the
_-max

unit priority lower bound estimate on A of L given that boundary. Then A = 0 (_ _.
\rm.x /

Pro@ We again use the "path with masses" model. It is clear that vertex vi has mass _ . We note

k _
that the quantity _ is always greater than or equal to 1 in the allowed range, so its ceiling is bigger by no

more than a factor of 2. Because we are interested in bounds, we drop the ceilings; it is easy to verify that

this does not change the results below by more than a constant factor.
• 1

As in the proof of Theorem 4.4, we can construct a vector x with x0 = 0 and, for i > 0, xi = _-_. Values

xTLx As in theat vertices off the critical path are set as per Section 4.3. Consider the Rayleigh quotient x--ffr_x•

previous proof, the numerator is O(log k). The denominator is

xTx=Xm, =Xm,
i=1 j=l i=1

As noted in the proof to Theorem 4.4, _'_j=1J-_ is v_ to within a constant factor, so, to within a constant

factor the denominator is

k k k2 _ k2

ira,= i = 2_.5- =O(k l°gk)
i=l i=l i=1

(note that k > 1 by assumption). Thus the upper bound is O(_).

10



For the unit priority lower bound, it is obvious that the critical path runs from the boundary to vertex

Vk. As noted previously, we can write the formula for r_n_x as follows (once again we drop the ceilings without

changing the result by more than a constant factor):

v-_k v-_k k2
O(k2 logk).

$
i=1 i=l

Thus the upper and lower bounds differ by a log k factor, the value of the Rayleigh quotient numerator.

We can get a better lower bound and close the gap by assigning priorities to paths. The relative sizes of

the priorities determine the relative shares of the conductance that the paths get. In the current problem,

the resistance of the critical path is high because it gets very small shares of the conductances of the edges

close to the boundary. By increasing the shares of longer paths, we can offset this problem; because the

number of shorter paths using edge i grows fast as the boundary is approached, the number of paths getting

an increased share of conductance is relatively small and doesn't increase the resistance of these shorter

paths too much.

We now specify a set of priorities that gives us a lower bound that matches the upper bound. Each path

that either starts at vi on the critical path, or that has vi as its connection point, gets priority p, = v/i.

With this change, the congestion of edge i is equal to

k

k k k2 = k 2 _;-'J-_.

j=i j=i j=i

For all i greater than 1, wc use integration techniques to get the bounds

k

j=i

and

(5.5) kS E j _ <- 2 k s
j=_ vff- 1 "

For i = 1 the upper bound is replaced by 2 k s 2 - _ , the lower bound remains unchanged.

Recall that in the case where path _ has priority p, we compute the path resistance as follows:

1

r('y) = P E cong(e).
e_3'

Plugging in the upper and lower bounds on edge congestion in (5.4) and (5.5) above gives upper and lower

bounds on the path resistance for a path "yj starting at vj. We start with the lower bound; the third line

below follows from an application of standard integral techniques for bounding sums:

k2z 
P eE"t i=1 l=i

11



With some straightforward calculations, the reader can verify that the term in parentheses in the last line is

greater than _ for all j and k such that k _> j.

The calculation for the upper bound is similar:

P eE"/ i=1 l=i i=2

J=

The sum in parentheses is easily shown to be less than 3 for all allowed values of j and k (i.e., k >_j).

The combination of these bounds implies that, for every path in the embedding that starts at a vertex

vj, the path resistance is O(k2). Note that for any path starting at one of the leaves this value is increased

by at most 1; thus any path in the embedding has resistance proportional to k 2. Therefore the lower bound

on )_ is O(_), which is within a constant of the upper bound. D

We now show how to combine the star embedding lower bounds for paths with masses to get a lower

bound on the uniform priority path resistance lower bound for trees. Consider what happens when we pick

any point along critical path of the clique embedding and set it to zero. The zero point splits the path in

two, producing two components with zero Dirichlet boundaries. We can find a lower bound on the smallest

eigenvalue of each component.

To minimize subscript conflicts, we introduce the notation r* to stand for rmax. We have three r*'s

to consider: one from the clique embedding in the original graph, which we denote as r_, and the two

zero-boundary bounds with respect to our split point. Since we are working with a path, we can think of the

path laid out with vertices in increasing order from left to right; we therefore denote the two path resistances

used in the bounds as r_ for the left side and r_ for the right.
n .

Recall that the lower bound for the clique embedding is _, we can relate it to the boundary case as

follows: For tree T with a clique embedding and uniform priorities, let P be the critical path with vertices

indexed from 1 to k + 1 and let r_ be the path resistance of P. Let 1 < s < k + 1 be the index of a split

point. Removing v_ separates T into subgraphs; let T1 and Tr be the subtrees containing s plus the vertices

of P with indices less than s and greater than s respectively. Let r_ and r* be the maximum path resistances

for the star embeddings of T1 and Tr respectively when vs is a zero boundary point and uniform priorities

are used (if either of these trees is empty, its maximum path resistance is zero).

LEMMA 5.3. For the situation described above,

1 n

r_ + r_ r_

Proof. The critical path has k edges and k + 1 vertices, with edge i between vertices i and i + 1. Since

all of the terms involved are positive, we work with the reciprocals of the quantities in the lamina statement.

The reciprocal of the left term can be written as follows:

s--1 i k k+l

rr+r; =ZZmj+_ _ rnj.
i=1 j=l i=s j=i+l

12



We can write the reciprocal of the right expression as

r K

m j- _ mj
n i=1 j=l j=i+l

_____ • -_

i=1 j=l n i=s

s-1 i k k+l

<ZZm,+Z
i=1 3=1 i=s j=i+l

mj
j=i+l

_-_k+ 1
To see the final inequality, recall that n = z.,i=l mi. This proves the lemma. D

We can use this to show how to assemble a vector that gives a Raylcigh quotient for the original Laplacian

that is within a log dicta(T) factor of A2. This is shown in the next theorem:

THEOREM 5.4. The uniform priority path resistance method produces a lower bound _ < A2 for the

Laplacian of any unweighted tree T that is off by a factor that is O(log dicta(T)).

Proof. Let L be the Laplacian of T. Wc consider splitting the critical path at various points. Since r_

and r_ depend on the split point s, we make that clear by writing them as r_ (s) and r_ (s) respectively in this

proof. Note that as s increases, r_ (s) increases and r r (s) decreases. We also have that r_ (1) = r* (k + 1) = 0.

Let /3(s) = _ This ratio is unbounded when s = 1 and decreases as s increases, reaching 0 when
r_'(_) •

s = k + 1. We consider two cases: when there exists an s such that 2 > _3(s) > ½, and when there is no such

S.

In the first case, Lemma 5.3 gives us the following:

1 n

(5.6) r (s) + r:(s) < <

Theorem 5.1 gives a way to construct the vectors xl and x_ so that the respective Rayleigh quotients

(m_x(log(_-a),l)_ [m_×(l°g(k+l-_)'l)) respectively. Recall that thesefor the left and right sides are O r_(_) ] and O k _(_)

vectors are positive. The left Rayleigh quotient has value

s-1

RQI = Ei=I (xi - Xi+I) 2
s--I

the right has value

RQr = _i=s(Xi -- xi+l

i=s+l

We construct a vector x for the whole tree as follows: assign the values from xl and the negatives of

the values of x_ to the corresponding vertices on the critical path, with x_ = 0. Extend the vector to the

rest of the tree by assigning vertices off the critical path the values of their connection points as described

in Section 4.3. Using the Rayleigh quotient for x as an upper bound on A2 requires x's entries to sum to 0.

This is easily accomplished by scaling one of the vectors xl or x_; this scaling does not affect the respective

Rayleigh quotients RQ1 and RQ_. By construction, we have the following (remember that Xs = 0):

xT Lx

xTx

s--1 k

Ei=l (Xi--  i+1) 2 + Ei=s(Xi --
s-1 X-.k+ 1 miX2" ,xi2 +

13



This is the sum of the numerators of RQI and RQr divided by the sum of their denominators. It is well

known that, for positive values a, b, c, and d,

a÷c < max
b÷d -

Thus we have that

(5.7) A2 _< max(RQj, RQr, ).

By (5.6), (5.7), and the condition on _(s), the desired result holds for this case.

Now assume that there is no s such that 2 > f_(s) > ½. Then there is some s such that _(s) > 2 and

_(s+l) < ½. ByLemmah.3, both 1 1 nr_(,)+_7(_) and rT(_+l)+r;(_+l) are lower bounds on _-7_K,and hence on
2 n

_2. The second of these plus the condition on f_(s ÷ 1) imply that _ < _. A similar argument shows
that 2 is also a lower bound.

We construct a vector x to demonstrate an upper bound. The construction is slightly different this time;

we construct xl with respect to the boundary being at vertex s ÷ 1, and Xr with respect to the boundary

being at vertex s. Corresponding values are mapped into x as in the previous case. Once again, we can scale

one side as necessary to insure that the values in x sum to zero without affecting the left or right Rayleigh

quotients.

Note that if it were the case that

xTLx num(RQ1) + num(RQr)

xTx denom(RQl) + denom(RQr) '

the argument as in the previous case would show that max(RQl, RQr) would be an upper bound on )_2.

This, combined with the lower bounds for this case demonstrated above, would be sufficient to prove that

the theorem statement holds for this case. However, there is no zero point in this case, and the equality does

not hold. To solve this problem, we will show that in fact thc Rayleigh quotient is no more than a factor of

two larger than the right hand side of the inequality.

To see this, note that the denominator of the actual Rayleigh quotient is the same as in the preceding

expression. The numerator has the following changes: we lose two edges from the ends of xl and Xr to

2 2 We replace these edges by an edgepresumed zero points; this decreases the numerator by x_ + x_+ 1.

between vs and v_+l that contributes (xs - x_+l) 2 < 2x_ + 2x2+1 . Hence

xTLx 2 (num(RQ1) ÷ num(RQr))
-- < < 2 max(RQz, RQr),
xTx denom(RQl) + denom(RQr) -

and there are upper and lower bounds within a log factor of the diameter.

This proves that there is a constant such that the theorem holds for the second case, which implies that

the theorem holds for both cases using the larger of the two constants from the cases, g

6. Open Questions. A number of interesting qucstions remain open. How good in general is the

bound based on uniform priorities? Is there an easy way to set path priorities that works well in general?

There is also the question of whether there is an easy way to calculate priorities for trees in both the Dirichlet

case and the case without boundary conditions that improves the lower bounds.

REFERENCES

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83 96, 1986.

14



[AM85a] N. Alon and V. D. Milman. A1, isoperimetric inequalities for graphs, and supcrconcentrators.

Journal of Combinatorial Theory, Series B, 38:73 88, 1985.

[AM85b] W. N. Anderson, Jr. and T. D. Morley. Eigenvalues of the Laplacian of a graph. Linear and

Multilinear Algebra, 18:141 145, 1985.

[Axe92] O. Axetsson. Bounds of eigenvalues of preconditioned matrices. SIAM Journal on Matrix Analysis

and Applications, 13(3):847 862, July 1992.

[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for approximating the

volume of convex bodies. Journal of the ACM, 38(1):1 17, January 1991.

[DS84] P.G. Doyle and J. L. Snell. Random Walks and Electric Networks. The Mathematical Association

of America, Washington, D.C., 1984.

[DS91] P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. Annals of Applied

Probability, 1:36 61, 1991.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298 305,

1973.

[Fie75] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to

graph theory. Czechoslovak Mathematical Journal, 25(100):619 633, 1975.

[GM95] S. Guattery and G.L. Miller. On the performance of spectral graph partitioning methods. In 6th

ACM-SIAM Symposium on Discrete Algorithms, pages 233 242, San Francisco, January 1995.

ACM-SIAM.

[GMZ95] K.D. Gremban, G.L. Miller, and M. Zagha. Performance evaluation of a parallel preconditioner.

In 9th International Parallel Processing Symposium, pages 65 69, Santa Barbara, April 1995.

IEEE.

[HY81] L.A. Hageman and D. M. Young. Applied Iterative Methods. Computer Science and Applied

Mathematics. Academic Press, Inc, San Diego and London, 1981.

[JS89] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing,

18(6):1149 1178, Deccmbcr 1989.

[Kah96] N. Kahalc. A semidcfinitc bound for mixing rates of Markov chains. In Proc. Fifth Integer

Programming and Combinatorial Optimization Conference, pagcs 190 203, 1996. Lecture Notes

in Computer Science 1084.

[Min88] H. Minc. Nonnegative Matrices. Wiley, New York, 1988.

[Moh89] B. Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B, 47:274

291, 1989.

[PSL90] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors of graphs.

SIAM Journal on Matrix Analysis and Applications, 11(3):430 452, July 1990.

[Sin92] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Com-

binatorics, Probability and Computing, 1:351 370, 1992.

[SJ89] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing Markov

chains. Information and Computation, 82:93 133, 1989.

[ST96] D.A. Spielman and S. H. Teng. Spectral partitioning works: Planar graphs and finite clement

meshes. Technical Report UCB CSD-96-898, U.C. Berkeley, 1996. An extended abstract

appeared in the 37th Annual Symposium on Foundations of Computer Science.

15



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reportingburdenfor thiscollectionof information is estimatedto average1 hourperresponse,includingthe time for reviewing instructions,searchingexistingdatasources,
gatheringandmaintainingthe data needed,and completingand reviewing the collectionof information.Sendcommentsregardingthis burdenestimateor anyotheraspectof this
collectiono¢information,includingsuggestionsfor reducing thisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsand Reports,1215Jefferson
Davis Highway,Suite 1204, Arlington.VA 22202-4302,andto the Officeof Managementand Budget,PaperworkReductionProject(0704-0188). Washington,DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

October 1997 Contractor Report

4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Path Resistance Method for Bounding the Smallest Nontrivial

Eigenvalue of a Laplacian

6. AUTHOR(S)

Stephen Guattery

Tom Leighton

Gary L. Miller

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-19480
WU 505-90-52-01

8, PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-51

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201746

ICASE Report No. 97-51

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61, 64

Distribution: Nonstandard

Availability: NASA-CASI (3"01)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We introduce the path resistance method for lower bounds on the smallest nontrivial eigenvalue of the Laplacian

matrix of a graph. The method is based on viewing the graph in terms of electrical circuits; it uses clique embeddings

to produce lower bounds on A2 and star embeddings to produce lower bounds on the smallest Rayleigh quotient

when there is a zero Dirichlet boundary condition. The method assigns priorities to the paths in the embedding;

we show that, for an unweighted tree T, using uniform priorities for a clique embedding produces a lower bound on

A2 that is off by at most an O(log diameter(T)) factor. We show that the best bounds this method can produce for

clique embeddings are the same as for a related method that uses clique embeddings and edge lengths to produce

bounds.

14. SUBJECT TERMS

Laplacians, Laplacian spectra, graph eigenvalues and eigenvectors, graph embeddings

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_SN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

20

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 249)
Prescribedby ANSI Std Z39-18
2g8-102


