

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

Illllllllllllllllllllllllllllilllll

P B 9 6 -15 2 7 31 	 Information is our business.

ARCHITECTURE FOR ADAPTIVE INTELLIGENT
SYSTEMS

STANFORD UNIV., CA

DEC 93

- - , " ; ^ -̂-- y
	

d

Gi

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

BIBLIOGRAPHIC INFORMATION

PB96-152731

Report Nos: STAN-CS-TR-93-1496, KSL-93-19
P

Title: Architecture for Adaptive Intelligent Systems.

Date: Dec 93 t

Authors: B. Hayes-Roth. t

Performing Organization: Stanford Univ., CA. Dept. of Computer Science.

Sponsoring Organization: *National Aeronautics and Space Administration, Washington,
UC-*ATvance esearc Agency, Arlington, VA.*Air Force Office of Scientific
Research, Bolling AFB, DC.

Contract Nos: NASA-NAG2-581, ARPA-DAAA21-92-C-0028, AFOSR-91-Q131

NTIS Field/Group Codes: 62C (Control Systems & Control Theory), 62 (Computers, Control
&wnfiorma io Ineory), 44H (Health Care Technology)

Price: PC A03/MF A01

Avaiity: Available from the National Technical Information Service, Springfield,
VA. 22161

Number of Pages: 50p

Keywords: *Machine learning, *Active control, *Dynamic control, *Computer programming
noR wiedge bases(Artificail intelligence), Real time operation, Application

programs(Computers), Controllers, Problem solvingg Self organizing systems,
Architecture(Computers), Operating systems(Computers), Patients, Monitoring, Intensiv
care units.	 I

Abstract: We identify a class of niches to be occupied by 'adaptive intelligent
sy^ms (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches
present situations that vary dynamically along several key dimensions: different
combinations of required tasks, different configurations of available resources,
contextual conditions ranging from benign to stressful, and different performance
criteria. We present a small class hierarchy of AIS niches that exhibit these
dimensions of variability and describe a particular AIS niche, ICU (intensive care
unit) patient monitoring, which we use for illustration throughout the paper. We have
designed and implemented an agent architecture that supports all of different kinds o
adaptation by exploiting a single underlyingt heoretical concept: An agent dynamicallA
co nstructs explicit control plans to guide its choices among situation-triggered
behaviors. We illustrate the architecture and its support for adaptation with examples
from Guardian, an experimental agent for ICU monitoring.

December 1993
	

Report No. STAN-CS-TR-93-1496

Also numbered KSL 93-19

II I lil) II VIII 111111111 II II I III
PB96-152731

An Architecture for Adaptive Intelligent Systems

by

Barbara Hayes-Roth

Department of Computer Science

Stanford University

Stanford, California 94305

REPRODUCED 6Y:
U.S. Department of Commerce

Netlonel Technical Informatfon Service
Springfield, Virginia 22191

An Architecture for Adaptive Intelligent Systems l

Barbara Hayes-Roth

Knowledge Systems Laboratory

Stanford University

701 Welch Road, Building C

Palo Alto, Ca. 94304

1 This research was supported by NASA contract NAG 2-581 under ARPA Order 6822, subcontract No.
71715-1 from Teknowledge Federal Systems under ARPA contract No. DAAA21 -92-C-0028, and AFOSR
grant AFOSR-91-0131. We thank Edward A. Feigenbaum for sponsoring the work in the Knowledge
Systems Laboratory. We thank two anonymous reviewers for their many helpful criticisms and suggestions
for improving earlier versions of the paper. Many individuals have contributed to different features of the
AIS architecture and the Guardian system discussed in this paper: D. Ash, L. J. Barr, L. Boureau, L.
Brownston, A. Collinot, V. Dabija, J. Drakopoulos, D. Gaba, G. Gold, M. Hewett, R. Hewett, A.Macalalad,
A. Seiver, S. Uckun, A. Vina, R. Washington.

PROTECTED UNDER INTERNATIONA L COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Abstract

Our goal is to understand and build comprehensive agents that function effectively in

challenging niches. In particular, we identify a class of niches to be occupied by

"adaptive intelligent systems (AISs)." In contrast with niches occupied by typical Al

agents, AIS niches present situations that vary dynamically along several key dimensions:

different combinations of required tasks, different configurations of available resources,

contextual conditions ranging from benign to stressful, and different performance criteria.

We present a smali class hierarchy of AIS niches that exhibit these dimensions of

variability and describe a particular AIS niche, ICU (intensive care unit) patient

monitoring, which we use for illustration throughout the paper. To function effectively

throughout the range of situations presented by an AIS niche, an agent must be highly

adaptive. In contrast with the rather stereotypic behavior of typical AI agents, an AIS

must adapt several key aspects of its behavior to its dynamic situation: its perceptual

strategy, its control mode, its choices of reasoning tasks to perform, its choices of

reasoning methods for perfom-Ang chosen tasks; and its meta-control strategy for global

coordination of all of its behavior. We have designed and implemented an agent

architecture that supports all of these different kinds of adaptation by exploiting a single

underlying theoretical concept: An agent dynamically constructs explicit control plans to

guide its choices among situation-triggered behaviors. The architecture has been used to

build experimental agents for several AIS niches. We illustrate the architecture and its

support for adaptation with examples from Guardian, an experimental agent for ICU

monitoring.

2

1. Toward More Comprehensive Al Agents

"Intelligent agents" continuously perform three functions: perception of dynamic

conditions in the environment; action to affect conditions in the environment; and

reasoning to interpret perceptions, solve problems, draw inferences, and determine

actions. Conceptually, perception informs reasoning and reasoning guides action,

although in some cases perception may drive action directly. This abstract definition

allows for a great variety of biological and artificial agents whose capabilities ravage from

extremely limited and stereotyped behavior to extremely sophisticated and versatile

behavior. Why should different agents exhibit different behavioral capabilities and what

underlies these differences?

Differences in their behavioral capabilities allow different classes of agents to

function effectively in different niches. A "niche" is a class of operating environments:

the tasks an agent must perform, the resources it has for performing tasks, the contextual

conditions that may influence its performance, and the evaluation criteria it must satisfy.

Human beings are the most sophisticated existing agents. Given their broad range of

potential behavior, individual human beings can function effectively in many challenging

niches. By contrast, typical AI agents are extremely limited. Given their narrow range of

potential behavior, individual agents can function effectively only in a small number

(usually one) of severely restricted (usually highly engineered) niches.

We hypothesize that, to a large degree, an agent's architecture determines its potential

behavior and, therefore, the niches in which it potentially can function:

Agent Architecture => Potential Behavior => Suitable Niches.

By "architecture" we mean the abstract design of a class of agents: the set of structural

components in which perception, reasoning, and action occur, the specific functionality

and interface of each component, and the interconnection topology among components.

Under this hypothesis, human beings function effectively in many niches that no other

animal or existing AI agent could fill--certainly because only human beings have

acquired the necessary knowledge and skills, but more fundamentally because only the

complex and powerful architecture embodied in the human nervous system [Albus, 1981]

supports such a broad range of knowledge and skills.

3

Conversely, to function effectively in a particular niche, an agent must exhibit the

range of behavior required in that niche and, the; efore, must have an architecture that

supports the required behavior:

Intended Niche => Required Behavior => Sufficient Architectures.

Typical Al agents have simple architectures for good reason: simple architectures are

sufficient to support the behavior required in their intended niches. In fact, for restricted

niches, architecture often plays a relatively small role in an agent's effectiveness, many

alternative architectures may suffice, and architectural design is a relatively insignificant

part of the agent-building enterprise. As the intended niche increases in complexity,

however, architecture plays a larger role in the agent's effectiveness, fewer alternative

architectures will suffice, and architectural design becomes a more critical and expensive

part of the agent-building enterprise.

Thus, we argue that present AI agents are "niche-bound" both because they are

"knowledge-bound" [Lenat and Feigenbaum, 1991] and because they are "architecture-

bound." Increasing only agents' knowledge can expand the very narrow niches in which

they currently function. However, it will have diminishing returns as the intended niches

increase in complexity and agents' ability to exploit the necessary knowledge and skills

runs up against architectural limitations.

Our goal is to provide an architecture for more comprehensive AI agents that function

effectively in more challenging niches. Thus, we are working very much in the spirit of

Newell's call for "unified theories of cognition" [Newell, 1990]; see also: [Albus, 1991;

Laird, et al, 1987]. We focus on a class of "adaptive intelligent systems (AISs)," which

operate in a class of niches that is intermediate between the severely restricted niches of

typical AI systems and the effectively unrestricted niches of human beings. As discussed

below, AIS niches present dynamic variability in their required tasks, available resources,

contextual conditions, and performance criteria. As a result, LJ function effectively in AIS

niches, agents must possess a pervasive property of human behavior: adaptation. We

have designed an agent architecture to support the several dimensions of adaptation

required in AIS niches and used it to build experimental agents for several of the domain-

specific niches in irigure 1. To ground the discussion, we take examples throughout the

paper from a particular niche, patient monitoring in an intensive care unit (ICU), and an

4

experimental agent called Guardian [Hayes-Rath, et al, 1989; 1992], which was built with

our agent architecture.

Associate
System
Niches

/,.-^Monitoring
AISSystem

Niches	 `	 Niches

Mobile
Robot
Niches

Pilot's Associate

ICU Patient Monitoring

Anesthesia Monitoring

Power Plant Equipment Monitoring

Semiconductor Equipment Monitoring

Materials Process Monitoring

OMce Surveillance

Office Factotum

Figure 1. Excerpt from the Class Hierarchy of AIS Niches.

Let us begin by using the ICU monitoring niche to illustrate important shared

properties of AIS niches. Intensive care patients are critically ill and depend on life-

support devices (e.g., a ventilator) to perform vital functions until their own impaired

organs heal and resume normal function, usually a period of several days. The high-level

goals of ICU monitoring are to wean the patient from the devices as soon as possible (to

minimize cost, discomfort, and undesirable side effects), while detecting and treating any

additional problems that arise along the way. Effective patient-management involves:

interpretation of many continuously, periodically, or occasionally sensed physiological

and device variables; planning and comparative evaluation of many interacting therapy

alternatives; detection, diagnosis, and correction of unanticipated problems; control of

many patient-management and device-control parameters; and reporting and consulting

on patient progress with other members of the ICU team. The complexity of ICU

monitoring can overwhelm even skilled clinicians.

5

Table 1. Shared Properties of AIS Niches versus Typical AI Niches

AIS Niches
	

Typical AI Niches

Required Tasks	 Diverse, concurrent, interacting Single isolated task

Available Resources 	 Variable methods, data, models, Single correct method, relevant
facts available	 data, and appropriate model

Typical Context	 Competing;	 No competition
Percepts, tasks, actions

Evaluation Criteria	 Effective, timely, robust 	 Correct, efficient, complete

As illustrated by ICU monitoring and summarized in Table 1, AIS niches are

considerably more demanding than the niches occupied by typical Al agents. First, AIS

niches require performance of several diverse tasks, sometimes concurrently and often

interacting. For example, ICU monitoring requires tasks such as condition monitoring;

fault detection, diagnosis, and planning. Second, AIS niches provide variable resources

for performing tasks, For example, Guardian has both associative and causal modeling

methods for performing diagnosis tasks. It may or may not have the particular class

hierarchies or causal relations needed to apply these methods to a given diagnosis

problem. Third, AIS niches entail complex and variable contextual conditions. For

example in ICU monitoring there may be 100 variables sensed automatically several

times per second (e.g., blood pressure, pulse), as well as other variables that are sensed

irregularly (e.g., laboratory results, x-ray analyses). Data representing these variables

differ in criticality and criticality is context-dependent. A patient may manifest several

problems simultaneously and therapies for simultaneous problems may interact. Finally,

AIS niches impose more qualitative performance criteria, replacing the usual

correctness, efficiency, and completeness criteria with effectiveness, timeliness, and

robustness. For example, if an ICU patient manifests several problems simultaneously,

any critical problems must be treated well enough and soon enough to save the patient's

life, even if such treatment is sub-optimal and regardless of how many other problems go

untreated.

6

Table 2. Behavioral Adaptations Required of an AIS

versus the Static Behavior of a Typical Al Agent

Required AIS Adaptationb 	 Typical AI Agent Behaviors

Perception Strategy	 Adapt to information requirements Fixed
and resource limitations

ntr Irk Mode	 Adapt to goal-based c onstf'aints	 Fixed
and environmental uncertainty

Reasoning Tasks 	 Adapt to perceived and inferred	 Single Task
conditions

Reasoning Methods 	 Adapt to available information 	 Single Reasoning Method
and current performance criteria

Meta-Control Strategy Adapt to dynamic configurations Unnecessary
of demands and opportunities

To function effectively in AIS niches, an agent must be highly adaptive (Table 2): it

must modify its behavior on each of several dimensions, depending on the situation in

which it finds itself. First, an agent must adapt its perceptual strategy to dynamic

information requir^ments and resource limitations. For example, when Guardian is

monitoring a stable patient, it may divide its perceptual activities among all available

patient data in order to maintain a good overview of the patient's condition and remain

vigilant to possible problems. However, when it detects a serious problem, Guardian must

perceive more selectively, focusing on patient data that help it diagnose the problem and

identify an appropriate therapeutic action in a timely manner. Second, an agent must

adapt its control mode to dynamic goal-based constraints on its actions and uncertainty

about its environment. For example, when the padfmt has a critical, but slowly evolving

problem, Guardian can plan and execute an optimal course of therapeutic actions.

However, when urgent conditions arise, Guardian must be prepared to react immediately.

Third, an agew must adapt its choices among potential reasoning tasks to dynamic local

and global objectives. For example, when Guardian is monitoring a stable patient, it need

only track patient data. When it detects a problem, it must perform a diagnosis task, along

with its ongoing monitoring task. After completing its diagnosis, it must perform a

therapy planning task, along with its ongoing monitoring task. Fourth, an agent must

adapt its reasoning methods to the currently available information. and performance

criteria. For example, Guardian can use clinical experience to recognize commonly

7

occurring problems and select standard therapeutic responses. However, when faced with

unfamiliar problems, it must fall back on models of the patient's underlying

pathophysiology to perform a more systematic diagnosis and design an appropriate

therapy. Finally, an agent must adapt its meta-control strategy to its dynamic

configuration of demands, opportunities, and resources for behavior. For example,

Guardian ordinarily interleaves several unrelated or loosely-coupled activities, but may

decide to su;r %,nd competing activities if a critical problem arises. An effective meta-

control strategy may emerge from Guardian's independent decisions regarding co-

occurring problems; in other cases it may decide to impose a particular meta-control

strategy on a challenging configuration of competing demands and opportunities for

behavior.

We have designed and implemented an agent architecture to support the several forms

of adaptation required of an AIS. It enables an agent to modify its perceptual strategy, its

control mode, its reasoning tasks, its reasoning methods, and its meta-control strategy,

depending on relevant features of its dynamic situation. Moreover, our architecture has an

important theoretical strength, a kind of architectural parsimony. Its support for all five

dimensions of adaptation derives from a fundamental theoretical. concept and its

architectural embodiment [Hayes-Roth, 1985; 1993a,b]; An agent dynamically constructs

explicit control plans to guide its choices among situation-triggered behaviors.

The remainder of the paper is organized as follows. Section 2 presents our agent

architecture. Section ,; 3-7 examine the requirements for each of the five dimensions of

adaptation in more detail and show how our architecture supports them. Section 8

discusses evaluation of the architecture, summarizes the status of experimental agents

built with the architecture, and contrasts the architecture with others in the literature.

Section 9 presents conclusions.

2. The Agent Architecture

Our agent architecture (Figure 2) hierarchically organizes component systems for

perception, action, and cognition processes. Perception processes acquire, abstract, and

filter sensed data before sending it to other components. Action systems control the

execution of external actions on effectors. Perception can influence action directly

through reflex arcs or through perception-action coordination processes. The cognition

system interprets perceptions, solves problems, makes plans, and guides both perceptual

8

strategies and external action. These processes operate concurrently and asynchronously.

They communicate by message passing. Perception-action operations occur at least an

order of magnitude faster than cognitive operations.

Scheduling

Control
Plan

Possible 1	 / Next

Knowledge

Triggering J=h,-(Events).--,Z Execution

Coordination

Perception

	

	 Action
Fast Reflex Arcs

Dynamic Environment I
Figure 2. The Agent Architecture.

The cognition system, which is the architecture's most substantial component, is

realized as a "blackboard architecture" [Erman, et al, 1980], extended to support dynamic

control planning [Hayes-Roth, 1985;1990; 1993b]. For present purposes, we emphasize

these features: (a) Perceptual inputs and internal reasoning operations produce changes to

a global memory. (b) Each such event triggers some number of possible reasoning

operations. (c) Pc3sible operations are scheduled for execution based on active control

plans. (d) Control plans are themselves constructed and modified by reasoning

operations. (e) Possible actions and control plans are represented in an English-like

machine-interpretable language that supports semantic partial matching of actions to

plans.

9

For example, here is one of Guardian's reasoning operations for model-based diagnosis:

Name: Find-Generic-Causes

Trigger: Observe condition, C; where C exemplifies Generic-fault, F

Action: Find generic-faults that can-cause F

Find-Generic-Causes is triggered and its parameters are instantiated whenever a prior

reasoning operation indicates that a newly observed patient condition, C, "exemplifies"

some generic-fault, F. For example, if C were a decrease in the patient's urine output or

inspired air, it would exemplify the generic fault: decrease in the flow of a flow process.

When executed, the action of this reasoning operation consults the factual knowledge

base and identifies all generic-faults that "can-cause" F (e.g., blockage or leakage of an

upstream flow structure can cause a decrease in the flow of a flow process). By recording

each such possible cause in the global memory, this operation creates internal events that

trigger other reasoning operations. For example, some triggered operations might

instantiate possible generic causes with respect to the ob^zrved condition, C (e.g,

blockage or leakage of various structures in the urinary or respiratory system). Others

might continue the backward chaining to identify other generic-faults that "can-cause"

those currently hypothesized. Others might attempt to discriminate among alternative

hypotheses by examining relevant patient data. To perform a reasoning task such as

diagnosis, Guardian triggers and executes a sequence of sur L reasoning operations, under

the control of an appropriate control strategy, incrementa:". ,, ouilding a solution to the

diagnosiG problem.

Here is an example of Guardian's control reasoning operations:

Name: Respond-to-Urgent-Problem

Trigger: Observe critical condition, C

Action: Record control decision with

Prescription: Quickly respond to C

Criticality: Criticality of C

Goal: Diagnosed problems related to C are corrected

Respond-to-Urgent-Problem is triggered and its parameter, C, is instantiated whenever

the perception system delivers an observed condition with a high criticality. When

10

executed, it creates a control decision to quickly respond to the condition and gives this

decision a priority that is proportional to the criticality of C. While active, this control

decision focuses (some of) Guardian's perception, reasoning (e.g., diagnosis and therapy

planning), and action resources on activities related to quickly responding to C. For

example, Respond-to-Urgent-Problem could produce a co^mrol decision to: Respond

quickly to the observed decrease in the patient's inspired air. To identify possible

operations that semantically match its control plans, an agent uses explicit knowledge of

its own competence as well as its domain: (a) type hierarchies of actions and domain

concepts; (b) other relations among actions and concepts; and (c) attached procedures for

evaluating modifiers of actions and concepts. Thus, continuing the present example,

Guardian would favor execution of possible operations that "quickly" (fast, relative to

other operations) "respond to" (monitor, diagnose, correct) the observed decrease in

inspired air. A control decision is deactivated when its goal is achieved, in this case,

when all diagnosed problems related to C have been corrected. Using a small set of

general control reasoning operations to generate a variety of specific control decisions, an

agent such as Guardian can construct control plans (including plans that have sequential

or hierarchical structure) that are appropriate to its situation and it can change those plans

as the situation changes (Johnson and Hayes-Roth, 1987).

Figure 3 illustrates the characteristic behavior of agents implemented in this

architecture with a simplified episode from Guardian's monitoring of a simulated ICU

patient.

At the start of the episode, Guardian has two active control plans: plan A, to update

the control plan whenever possible with priority 5; and plan B, to monitor patient data

whenever possible with priority 3. Because patient data are always available, the

perception system filters continuously sensed patient data and sends selected values to the

cognition system at a manageable global data rate. These perceived patient data

repeatedly trigger monitoring operations for several variables, including blood pressure

and heart rate, all of which match plan B. No events trigger any operations that match

plan A. Therefore, for a time, Guardian executes various monitoring operations.

Soon, however, an executed monitoring operation reveals that the patient has

abnormally low blood pressure. This observation triggers thr .-e new operations, one

operation to update the control plan and two alternative operations to begin diagnosing

the low blood pressure, all of which compete with recently triggered monitoring

11

operations, Guardian chooses to update the control. plan because that operation matches

plan A, its highest priority active control plan. This operation produces control plan C, to

respond quickly to the low blood pressure, with priority 3, and lowers the priority of plan

B to 1. As a result of the latter change, which is designed to focus resources on the more

Urgent blood pressure problem, the perception system filters sensed patient data more

severely and sends values t;,: hP cognition system at a lower global data rate.

Cor,nIP;A^

A. Update wi y ''' t

B. 11IOnWt

P=3	 P=3

C.QtU dy respond to low 3P -- P=3

Possible Actions - Top Row Chosen for Execution

M:hr M : bp U:cp DI :bp I:G M :bp U:cp M: hr M:bp

M:bp M :hr M: hr Whr M: hr M:hr Khr M: by M:hr

M:bp M :bp M:bp	 M:bp

DI:bp D2:bp

D2:bp

^MWMMNO*

Time

U = Update	 pd = Patient Data	 P = Priority
M = Monitor	 by = Blood Pressure _= Active Interval
I = Increase	 hr = Heart Rate

DI = Diagnose Type I	 G = Fluid Intake
D2 = Diagnose Type 2	 cp = Control Plan

Figure 3. Illustrative Guardian Reasoning Behavior.

Now Guardian executes a series of actions that match plan C, temporarily ignoring

repeatedly triggered monitoring actions because of plan B's lower priority. First,

Guardian executes one of its pending diagnostic operations--types 1 and 2--for

diagnosing the observed low blood pressure. Although both diagnostic operations

"respond to low blood pressure" and, therefore, match plan C, diagnosis type 1 matches

better because it embodies a "quicker" diagnostic method. Although Figure 3 abstracts

Guardian's diagnostic reasoning as a single executed action, in fact diagnosis involves

execution of a sequence of reasoning operations. The result of each operation triggers the

12

next, until the last operation identifies the cause of the high blood pressure, in this case

low fluid intake. Identification of this underlying fault triggers an operation to take

corrective action (via the action subsystem) by increasing the patient's fluid intake.

Guardian executes this operation and, in so doing, triggers an operation to monitor blood

pressure, which it expects to rise. This is the last operation Guardian. executes under plan

C. (Although this simple example involved only a single corrective action, Guardian is

capable of performing several corrective actions in parallel--coordinated actions to

address a single problem or separate actions to address different problems.)

Confirmation of normal blood pressure indicates that the goal of plan C has been

achieved, which triggers a new operation to update the control plan. Guardian executes

this operation because it matches plan A, the highest priority active plan. It deactivates

Plan C and returns the priority of Plan B to 3. As a result, the perception system filters

sensed patient data less severely and sends values to the cognition system at its original

higher global data rate. Guardian returns to executing monitoring operations repeatedly

triggered by perceived patient data and chosen for execution under plan B.

This example illustrates the architectural mechanism underlying our fundamental

theoretical concept: that an agent dynamically constructs explicit control plans to

constrain and guide its choices among situation-triggered possible behaviors. Guardian

always has some number of active control plans, varying in priority. Some control plans

are quite general and favor the execution of a large class of potential operations. Others

are more specific and distinguish operations that will help Guardian achieve well-defined

objectives. Although the example of Figure 3 shows only simple one-sentence control

plans, the architecture allows (and Guardian typically employs) more complex control

plans having sequential and hierarchical structure. Similarly, Guardian always has some

number of possible behaviors. Some are triggered by inputs from its perception system,

while others are triggered by the results of prior reasoning operations. Different

operations, if executed, could change Guardian's knowledge of the environment, initiate

or extend its performance of particular reasoning tasks, initiate performance of external

actions by its action system, or modify its active control plans. At each opportunity,

Guardian performs behaviors that best match its highest priority active control plans.

In the following sections, we show how this key architectural mechanism enables an

agent to adapt its perceptual strategy, control mode, reasoning tasks, reasoning methods,

and meta-control strategy to its dynamic situation.

13

3. Adaptation of Perceptual Strategy

In order to perform effectively in AIS niches, an agent must adapt its perceptual

strategy to changing cognitive requirements.

In theory, we might like an agent to perceive all events in its environment and to

reason about them in all promising ways, so that it can determine and carry out optimal

courses of action. However, AIS niches present high, variable data rates for many

environmental conditions; a resource-bounded agent cannot realize unbounded

perception. In addition, AIS niches permit many different reasoning tasks and sometimes

different methods for performing particular tasks. Each perceived event initiates a

potential cascade of reasoning activities; the event itself triggers a number of possible

reasoning operations, each of which produces new events, each of which triggers new

operations, and so forth. Even if unbounded perception were feasible, the high and

cascading demand for reasoning would swamp the cognitive resources of an agent such

as Guardian (or a human being, for that matter).

In general, a resource-bounded agent ordinarily cannot--and, equally important, need

not--perceive, reason, or act on every condition in its environment. Instead, the agent

must be highly selective in its perception of the environment and it must adapt its

perceptual strategy to balance two objectives. First, from a purely quantitative

perspective, the agent must maximize its vigilance, perceiving as much information as

possible about as many environmental conditions as possible, while avoiding perceptual

overload. Second, from a qualitative perspective, the agent must maximize goal-directed

effectiveness, readily acquiring data that are relevant to its currently important reasoning

tasks, while avoiding distraction by irrelevant or insignificant data.

In our architecture, the perception system's basic .functions (Figure 4) are to abstract,

prioritize, and filter sensed data before sending it to the cognition system. Five

parameters determine how the perception system performs these functions. Two static

compile-time parameters identify the domain variables to be sensed and ranges of critical

values for those variables. Three dynamic run-time parameters (sent asynchronously by

the cognition system) specify requested data abstractions, relevance values for different

variables, and the desired global data rate. The perception system processes and sends to

the cognition system all requested data abstractions at appropriately high rates and sends

14

unrequested data at appropriately low (but usually non-zero) rates. It dynamically

determines the "appropriate" rates at which to send each requested and unrequested

observation by distributing the current desired global data rate among them in proportion

to their current relevance values. There is one exception to this rule: The perception

system sends critical values for all sensed variables, regardless of their current relevance

values. Note that, since many variables are not sensed continuously, this provision does

not guarantee perception of every critical value that occurs, but only every critical value

that is sensed.

Cognition

Interpretiation
Reasoning
Planning

Perception Informs Cognition:	 Cognition Focuses Perception:

Requested observations	 Global data rate
Base rate observations	 Perception	 Data relevance
Critical observations 	 Desired data abstractions

Abstraction
Prioritization

Filtering

Dynamic Environment

Figure 4. Coordination of Cognition and Perception.

An agent dynamically adapts its perceptual strategy by modifying its three run-time

parameters based on both feedback control and predictive control from the cognitive

system.

15

The agent adapts its global data rate based on feedback control from activities in its

cognitive system's limited-capacity event buffer. The event buffer is designed to insure

that the cognitive system always retrieves the most important, up-to-date perceptions

available. Events are ordered in the buffer by priority and recency, with best-first retrieval

and worst-first overflow. (In theory, the buffer mechanism also uses a decay factor to

remove unretrieved, out-of-date events, but we have not yet implem-.nted a decay factor.)

The specific function used to integrate priority and recea;cy factors to order events in

the buffer should be tailored to characteristics of the agent's niche. For example,

Guardian's niche presents events that vary widely in priority, with very high priority

events occurring infrequently. Important features of its environment change relatively,

slowly and its deadlines are relatively long compared to the speed of its perception.

Therefore, Guardian orders perceptual events by priority and then by recency. It always

retrieves the most recent of the most important events and, in case of overflow, loses the

least recent of the least important events. In practice, when critical events occur, Guardian

retrieves and reasons about them immediately. When multiple critical events co-occur

during a brief time interval, Guardian handles them promptly in priority order. Most of

the time, however, no critical events occur and Guardian processes all of the incoming

events within a few retrieval cycles of their arrival in the buffer--the exact order has no

effect on the overall utility of its performance.

Regardless of the specific event-ordering function used, the buffer mechanism is

designed for steady-state operation in which: (a) perceptual events enter and leave the

buffer at roughly equal rates; and (b) all of the entering events ultimately are retrieved for

reasoning. However, steady-state operation assumes that the perception system has been

parameterized with a global data rate that is appropriate for the agent's reasoning rate. If

there is a decrease in the pace of the agent's reasoning or an increase in the rate of critical

sensed events, the event buffer will overflow--this is the architecture's "last line of

defense" against perceptual overload. When the event buffer overflows, it means that the

agent's reasoning cannot keep pace with perceptual events and, although it is still

reasoning about up-to-date events, the agent is losing potentially important information.

Conversely, when the buffer underflows (i.e., is empty), it means that the agent is

waiting for perceptual events to reason about and, in the meantime, wasting cognitive

resources. In either case, the agent corrects the imbalance between perception and

reasoning rates by modifying the desired global data rate used by the perception system.

16

An earlier version of this feedback mechanism implemented a "bang-bang" control

response to actual over(under)flow. The current version implements an adaptive control

response by monitoring trends in the number of items in the buffer and adjusting the

global data rate in anticipation of over(under)flow occurs. As in conventional control

applications, the adaptive control gives a smoother correlation between desired and actual

global data rates.

The agent also adapts its global data rate predictively. It analyzes newly created or

modified control plans to estimate its own future demand for cognitive resources and,

complementarily, its future capacity to process perceptual events. Based on this estimate,

it may increase or decrease its global data rate. For example, when Guardian adopts plan

C in Figure 3, to respond quickly to the patient's low blood pressure, it knows: (a) that the

associated reasoning tasks will consume computational resources previously consumed

by monitoring a variety of patient data; and (b) that the new tasks are more important

than the monitoring task (priority 3 versus 2). It lowers its global data rate. Conversely, it

raises its global data rate after achieving the goal of plan C. With a little knowledge

about the computational properties of different reasoning methods, an agent can

predictively modulate its global data rate more precisely.

The agent also analyzes control decisions to identify useful data abstractions and to

determine the context-specific ,relevance of different variables. For example, in plan B of

Figure 3, Guardian's decision to monitor all patient "data" implies that the perception

system should send the raw numeric data available from its sensors for all patient

variables. Alternatively, given appropriate definitions for various data abstractions,

Guardian might decide to monitor "criterial changes in value," "hourly high and low

values," "running averages," etc. Plan B's initial priority of 3 translates into a mid-range

relevance value for all patient variables. Guardian's subsequent reduction of plan B's

priority translates into a reduction in relevance. However, Guardian's simultaneous

introduction of plan C, to respond to the patient's low blood pressure with priority 3,

preserves the medium relevance value for blood pressure. Although we do not illustrate it

in Figure 3, Guardian also could identify other variables that are relevant to its reasoning

under plan C, either based on explicit domain knowledge or in the course of the reasoning

itself.

In summary, our architecture enables an agent to adapt its perceptual strategy to its

cognitive requirements in two ways. First, the agent maximizes its vigilance, while

17

avoiding perceptual overload, by using feedback control and predictive control (based on

control plans) to manage th global data rate underlying in its perceptual strategy.

Second, the agent acquires useful data, while avoiding distraction, by using dynamic

control plans to adapt the relevance and abstraction parameters underlying its perceptual

strategy. In an early experiment [Washington and Hayes-Roth, 1989], Guardian's

adaptation of its perceptual strategy reduced its input data rates to less than 10% of the

original sensed data rates, with no degradation in the quality of its performance.

4. Adaptation of Control Mode

In order to function effectively in AIS niches, an agent must adapt its control mode to

changing features of its control situation.

We can characterize control situations on several dimensions, including the

uncertainty of events in the task environment, the degree of constraint on which

sequences of actions will be effective in achieving goals, and the availability and cost of

off-line and on-line computational resources. In simple niches, a characteristic control

situation--representing a particular configuration of values on these several dimensions--

may predominate. In that case, an agent should adopt the control mode that is most

effective in its predominant situation. For example, the most effective control mode for

some niches may be to plan and then execute carefully coordinated sequences of actions

[Fikes and Nilsson, 1971; Sacerdoti, 1975; Wilkins, 1984], while in other niches the most

effective control mode may be to prepare and then execute more localized reactions to a

range of possible run-time events [Agre and Chapman, 1987; Nilsson, 1989; Rosensche:in

and Kaelbling, 1986; Schoppers, 1987].

However, AIS niches do not present characteristic control situations; they present

control situations that vary over time on several dimensions. Two salient dimensions of

variability, which we analyze here, are environmental uncertainty and constraint on

effective actions. Environmental uncertainty determines how much monitoring an agent

must do to determine run-time conditions. For example, a cold post-operative ICU

patient presents low uncertainty; the patient is probably cold as a natural consequence of

the surgery and quite likely to warm up gradually to normal body temperature, with no

lingering after-effects. By contrast, a patient whose blood pressure is falling presents high

uncertainty; it is unknown how long or how far the blood pressure will fall, what is

causing the change, and what related effects may occur. Constraint on effective actions

18

determines how many alternative courses of action the agent can pursue to achieve its

goals. For example, there are many ways to help a cold post-operative patient regain

normal body temperature, but there is only one way to enable a patient with a severe

pneumothorax (a hole in the lung) to breathe: surgically insert a chest tube to allow

accumulated air in the chest cavity to escape and thereby enable the lungs to inflate. As

illustrated in Figure 5, these two dimensions define a space of control situations.

To function effectively in AIS niches, therefore, an agent must possess and exploit a

corresponding variety of control modes.

Like control situations, we can characterize control modes along several dimensions. Two

salient dimensions, which we analyze here, are: the agent's sensitivity to run-time events and

its advance commitment to specific actions. Sensitivity to run-time events measures how

much the agent monitors its run time environment. Commitment to specific actions measures

how much the agent restricts in advance the actions it will execute at run time. (Control

modes also vary, for example, on their demands for off-line and on-line computational and

real-time resources; however these variables are not included in our analysis.) As illustrated

in Figure 5, these two dimensions, sensitivity and commitment, define a space of control

modes.

By superimposing the spaces of control modes and control situations in Figure 5, we

suggest that particular control modes are appropriate for particular control situations--and,

more importantly, that an agent could use a similar dimensional analysis to identify its

dynamic control situation and adapt its control mode as appropriate. Let us consider the four

corners of the space of control modes.

In a pure planning mode, an agent commits in advance to a sequence of actions, perhaps

with limited conditionality, and then executes it at run time with minimal monitoring of run-

time events. Planning mode is appropriate for control situations with low environmental

uncertainty and high constraints on the selection and sequencing of effective actions. At the

cost of preparation time, the agent exploits predictability in its environment to construct and

execute an effective, efficient plan. For example, when requested to make patient

presentations for physicians on rounds, Guardian should follow a standard protocol for

presenting the relevant information in the correct order.

19

In a pure reactive mode, the agent commits in advance to a set of specific actions and

conditions for their execution, but monitors run-time events to control invocation of

particular actions from the set. Reactive mode is appropriate for control situations with high

uncertainty and high constraints on effective actions. At the cost of preparation time and run-

time resources, the agent can exploit its monitoring capabilities to respond flexibly to an

uncertain environment. For example, Guardian should operate in reactive mode when

responding to critical problems under time pressure, such as reacting to an observed increase

in a p"tint's peak inspiratory pressure (a potentially life-threatening condition) by

monitoring relevant data closely and using them to choose among a small set of

predetermined diagnoses and associated therapeutic actions .

Dimensions of
Control Modes

Advance Commitment to Specific Actions	 —►

Reflex Goal-Spec
Reaction

Manage a patient whose
condition is volatile

Respond to high PIP

Wean patient from
ventilator

Apply warm blankets Make patient presentation
to a cold post-operative to physicians on rounds
patient

Classical
Dead Reckoning Plan Execution

Maximal

Uncertainty
of the

Environment

Minimal

t
—10,

Minimal	 Maximal

Minimal	 Maximal
Constraint on Effective Actions

Maximal t

Sensitivity to
Run-Time Events

Minimal

Dimensions of
Control Situations

Figure 5. Different control modes for different control situations.

In both planning and reaction modes, an agent commits in advance to specific executable

actions in order to meet strong constraints imposed by its goals. Planning mode exploits

20

predictability of environmental events to minimize monitoring while following a single

globally coordinated action sequence; thus it streamlines run-time performance. Reaction

mode copes with greater uncertainty of environmental events by preparing a larger number of

actions for a larger number of contingencies; run-time performance is less streamlined, but

more robust. In intermediate modes between these two extremes, the agent modulates the

amount of run-time monitoring and the conditionality of actions. In all regions along this

border, however, the agent pays a high cost in advance preparation to choose the specific

conditions it will monitor and the specific actions it will perform, The agent is maximally

committed and can not respond to a truly unanticipated event or perform a truly unanticipated

action.

In what we might call a pure "dead reckoning" mode, an agent commits to a rough

sequence of a few classes of actions and executes any sequence of specific actions within

each successive class at run time. Dead reckoning mode is appropriate for control

situations with minimal uncertainty of the environment and minimal constraints on

actions. The agent can produce satisfactory behavior with a low cost of advance

preparation. For example, Guardian should operate in dead reckoning mode when it has

weak goals for non-critical conditions and plenty of time, such as improving the comfort

and condition of cold post-operative patients by taking any of several different actions to

help them warm ap during their first couple of hours in the ICU.

In what we might call a pure "reflex" mode, the agent commits to a large class of

actions, without specifying any of them individually, and monitors a similarly large set of

run-time conditions to control its selection of actions for execution. Reflex mode is

appropriate for control situations with high uncertainty and low constraint on effective

actions. The agent can maximize its flexibility with a low cost of advance preparation.

For example, Guardian should operate in reflex mode when a patient is very volatile,

monitoring a broad class of patient data and letting observed irregularities elicit corrective

actions.

In both dead reckoning and reflex modes, an agent is positioned implicitly to perform a

larger number of specific actions and action sequence$, compared to planning and reactive

modes, respectively. Dead reckoning mode exploits predictability in environmental events to

predetermine only the general shape of behavior, which the agent can instantiate as any of

many alternative appropriate courses of action at run time. Reflex mode copes with greater

environmental uncertainty by relying on run-time monitoring to invoke appropriate actions.

21

In the intermediate modes between these two extremes, the agent modulates the amount of

run-time monitoring and the balance of top-down versus bottom-up control of actions. In all

modes on this border, however, the agent pays a minimal cost of advance preparation by

identifying arbitrarily large classes of events to monitor and arbitrarily large classes of

actions to perform. It does not commit to monitor any specific events or to perform any

specific actions at all. Thus, unlike planning and reaction modes, the agent is always

responding to "unanticipated" eve¢.ts and performing "unanticipated" actions.

Our analysis assumes that an agent has adequate monitoring and preparation

resources for any control mode, but that, other things equal: (a) it prefers to spend

resources on preparation rather than on monitoring in order to maximize the efficiency

and global structure of run-time performance; and (b) it prefers to spend less resources

when that will not compromise its goals. Alternatively, if we assume variations in

availability or cost of these resources, the superimposed spaces show how run-time

performance ma, be degraded in order to conserve particular resources. A more

comprehensive analysis would introduce availability and demand for monitoring and

preparation resources as higher-order dimensions of the superimposed spaces. The

purpose of our analysis in the present context is to partially characterize the variability of

control situations and differences in the situation-specific efficacy of alternative control

modes.

To function effectively in AIS niches, an agent must continually identify its control

situation, choose an appropriate control mode, and implement the chosen mode. We use

examples from Guardian's niche to illustrate how our architecture supports this kind of

adaptation.

First, an agent must identify its control situation. The agent can assess the uncertainty

of its environment by recognizing that it is in states with known uncertainty. For

example, Guardian might know that certain surgical procedures are more likely than

others to be followed by recovery problems (higher uncertainty) in the ICU. The agent

also can assess uncertainty empirically at run time, tracking the variance in its

obseivations over time, noticing that planned actions are not having their expected

effects, etc. The agent can assess the constraint on effective actions based on domain

knowledge or on measurements of the search space associated with a particular goal. For

example, Guardian might know that physicians want all patient presentations to follow

the standard protocol (high constraint). As mentioned above, control situations also vary

22

along other dimensions, such as the availability of computational and real-time resources

during and prior to run time, As discussed in section 3, an agent can estimate current and

future demand for computational resources by analyzing its current and future control

plans. It can estimate the availability of real-time resources based on domain knowledge.

For example, Guardian might know that some ICU problems evolve slowly, while others

quickly become life-threatening.

Next, the agent must choose an appropriate control mode. The superimposed spaces

in Figure 5 provide one framework for making this choice. As mentioned above, control

modes also vary along other dimensions, such as their demand for computational and

real-time resources during and prior to run time, An agent can have qualitative knowledge

of the resource requirements associated with generic control modes, such as those in

Figure 5. In addition, it might be able to quantify the requirements for a particular control

mode in a particular parameterized situation.

Having identified its control situation and chosen an appropriate control mode ; the

agent must effect the chosen mode. Figure 6 summarizes how our architecture enables an

agent to adapt its control mode, modulating its sensitivity to run-time events and its

commitment to specific actions by manipulating two properties of its control plan: the

specificity of action classes indicated in each component control decision and the degree

of sequential organization among control decisions. Again we illustrate this capability

with the control modes in the four corners of the space.

The agent goes into a pure planning mode by constructing a control plan that comprises

a sequence of decisions, each identifying a specific executable action. It monitors only

those events that are necessary to trigger the current next action in the plan. It tries to

trigger only each successive next planned action. As a result, the agent triggers and

executes the planned sequence of specific actions very quickly and reliably.

The agent goes into reactive mode by constructing a control plan that comprises an

unordered set of decisions, each identifying a specific condition-action contingency. It

monitors only those events necessary to evaluate the specified conditions. It attempts to

trigger only the specified actions and executes whichever ones it triggers. As a result, the

agent executes a less predictable sequence of a reliable set of planned actions. It is a little

slower than in planning mode because it monitors all conditions all the time.

23

Reflex Goal-Specific
Reaction

Control Plan: Control Plan:
Non-Specific Specific
Non-Sequential Non-Sequential

Control Plan: Control Plan:
Non-Specific Specific
Sequential Sequential

Open-Loop
Dead Reckoning Plan Execution

Maximal

Sensitivity to
Run-Time Events

Minimal

The agent goes into dead reckoning mode by constructing a control plan that comprises

a sequence of a few general action classes. It monitors only those events that might trigger

any member of the current planned action class. It attempts to trigger only actions that are

members of the current planned action class and executes whichever ones it triggers until

the local goal of the current planned action class is met. As a result, the agent executes a

roughly predictable sequence of certain kinds of actions, with variability the number and

specific identities of executed actions within each successive class.

Dimensions of
Control Modes

Advance Commitment to Specific Actions 	 10

Minimal	 Maximal

Maximal

Uncertainty
of the

Environment

Minimal

—►

Minimal	 Maximal

Constraint on Effective Actions

Dimensions of
Control Situations

Figure 6. Varying Control Plan Properties to Effect Different Control Modes.

The agent goes into reflex mode by constructing a plan that comprises an unordered set

of decisions, each identifying a class of condition-action contingencies. It monitors only

those events that might trigger any member of any of the action classes and executes

24

whichever ones it triggers. As a result, the agent's behavior is quite unpredictable in the

number, identities, and sequence of specific actions it executes.

Our analysis can potentially be translated into the language of classical control theory.

For example, the border between plans and reactive systems corresponds to the control

theoretic distinction between open-loop and closed-loop policies. Techniques for

choosing optimal control modes also exploit our concept of uncertainty. Thus, it is known

that in a deterministic environment, an optimal open-loop policy exists, while in a

stochastic environment there exists a closed-loop policy that performs better than any

open-loop policy. To our knowledge, adaptive control theory does not exploit our concept

of constraint on actions (which corresponds to the control theoretic concept of solution

density) as a basis for p:^^:3cribing control modes. In addition, although there exist control

theoretic approaches to i un-time switching of control modes [Rugh, 1990], these

approaches typically switch among a much more homogeneous set of alternative

controllers in the context of much simpler task environments. Finally, control theoretic

approaches do not provide a framework for smooth transitions in a continuous space of

controllers.2

In summary, our architecture enables an agent to adapt its control mode among a

diverse set of control modes, based on its environmental uncertainty and internally

determined constraints on its actions by modifying two key parameters of its control plans:

specificity and sequential organization of component control decisions.

5. Adaptation of Reasoning Tasks

In order to function effectively in AIS niches, an agent must adapt its reasoning

tasks to dynamic environmental conditions.

In general, AIS niches demand performance of multiple component reasoning tasks.

We define a task in terms of the types of domain entities it takes as inputs and produces

as outputs and the relationships that must hold between particular instances of inputs and

outputs. For example, in a diagnosis task, inputs are observed symptoms in a monitored

system, outputs are conditions within the system, and the relationship is that the

conditions caused the symptoms. For example, Guardian might diagnose the

2 1 am grateful to Satinder Pal Singh for calling my attention to the relationship between the present
analysis and the classical control-theoretic analysis.

25

physiological condition that is causing a patient's observed low blood pressure. As a

second example, in a prediction task, inputs are initial conditions in a monitored system,

outputs are subsequent conditions in the system, and the relationship is that the

subsequent conditions have a high conditional probability given the initial conditions. For

example, Guardian might predict the consequences of leaving the patient's low blood

pressure untreated. As a third example, in a planning task, inputs are initial conditions

and desirable subsequent conditions, outputs are specifications for a pattern of actions,

and the relationship is that performing the planned actions in the context of the initial

conditions is expected to bring about the desirable subsequent conditions. For example,

Guardian might plan therapeutic actions to raise the patient's low blood pressure back to

normal range. An agent such as Guardian has many opportunities to perform different

instances of each of these tasks and to perform sequences of related tasks, for example

perceiving a problem, diagnosing it, then planning and executing a corrective response.

Our agent architecture provides a natural platform for realizing and integrating

performance of diverse, potentially interacting tasks. As discussed in section 2, each of an

agent's reasoning methods is operationalized as a set of event-triggered reasoning

operations, including some that construct control plans to organize the reasoning process

appropriately in particular situations. Execution of each reasoning operation contributes

to an incrementally growing solution in global memory and produces events that may

trigger other reasoning operations. This "blackboard model" for reasoning is extremely

general; it can support the inferential processes underlying many different reasoning tasks

and potential interactions among tasks based on intermediate, as well as final results

[Jagannathan, et al, 1989; Engelmore and Morgan, 1988].

Within the architecture, any perceptual or cognitive event potentially can trigger

operations involved in any known task. All triggered operations are placed on a global

agenda, where they compete to be scheduled and executed. Depending on its control plan,

the agent may execute all of the operations in a given reasoning task prior to beginning a

new one or it may interleave the operations of several tasks. In either case, the

intermediate and final results of different tasks are recorded in the global memory, where

they can influence one another. In section 2 above, we illustrated how Guardian initiates,

performs, and terminates a single task in response to a perceptual event: it reactively

diagnosed and corrected a problem signaled by perceived low blood pressure. More

generally, the event-based triggering of task-specific operations allows an agent to adapt

its selection and sequencing of reasoning tasks to perceived conditions in the external

26

environment and to internally generated conditions reflecting the intrinsic relations

among reasoning tasks.

Figure 7 illustrates Guardian's performance of a series of interacting perception,

reasoning, and action tasks in which each task is triggered by preceding perceptual or

cognitive events and produces cognitive events of its own that may trigger subsequent

tasks. Figure 7 does not show the triggering, execution, and results of each task's

component reasoning operations. And it does not show the many triggered tasks that

Guardian does not choose to execute.

In step 1, Guardian is observing a variety of patient data. It intends that the patient it

is monitoring should be in a "normal" state (normal for a particular class of post-surgical

patients) and, because it is not aware of any problems, expects that all patient data will be

normal. As we shall see, much of Guardian's reasoning is driven by discrepancies

between phenomena it observes, expects and intends. Our agent architecture makes these

distinctions explicit and automatically detects mismatches to trigger reasoning activities.

In steps 2-3, Guardian detects an oxygen delivery problem and partially diagnoses it.

In step 1, Guardian perceives patient data available from its sensors and produces a

number of observations. In step 2, one of the new observations, the new value of PIP

(peak inspiratory pressure), triggers a task to assess the dynamic state of the patient's PIP.

The assessment task produces a new observation, that the patient's PIP is high and has

been rising during the time interval tl-t3. This observation violates Guardian's

expectation of normal patient data and so, in step 3, triggers a task to diagnose the cause

of the discrepancy. The diagnosis task itself produces two results: a hypothesis that the

patient is suffering from a compliance problem (inability to inhale sufficient air; as

opposed to a sensor error in PIP measurement or a mechanical problem in the ventilator,

for example); and an expectation that, as a result, the patient's arterial oxygen will be low.

At this point, the diagnosis is not complete: Guardian does not know what is causing

the compliance problem. However, because the expected low arterial oxygen violates

Guardian's intention that the patient should be in a normal state and because arterial

oxygen is a life-critical physiological parameter, it does not immediately continue the

diagnosis task. Instead, in step 4, the expectation of low arterial oxygen triggers a

planning task to improve the patient's arterial oxygen now. The planning task produces an

intention to raise the FIO2 now (increasing the fraction of inhaled oxygen delivered by

27

the ventilator), with the conditional expectation that doing so will raise the patient's

arterial oxygen gradually. In step 5, the intention to raise FIO2 now triggers the

corresponding action and an associated perceptual task to confirm successful execution of

the action. Guardian observes that it has indeed raised the patient's FIO2 and, as a result,

expects the arterial oxygen to rise. Note that, in the present scenario (without an oximeter

in place), Guardian cannot observe the arterial oxygen directly and so must rely on the

expected effects of its action of raising the FIO2.

Triggering Events	 Tasks Performed	 Resulting Events

1. Sense: Patient data	 Perceive: Patient data	 Observe: Many data values

Intend: Normal patient state

Expect: Normal patient data

2. Perceive: PIP value	 Assess: PIP values	 Observe: PIP high, rising tl-t3

3. Observe: PIP high, rising tl-t3 Diagnose: PIP rising 	 Hypothesize: Compliance

Expect: Low arterial 02

4. Expect: Low arterial 02	 Plan: Improve arterial 02 now Intend: Raise FIO2 now

5. Intend: Raise FIO2 now

6. Hypothesize: Compliance

7. Expect: Falling arterial 02

Expect: Possible death > t8

8. Intend: Insert chest tube now

Do: Raise FIO2

Perceive: FIO2 setting

Diagnose: Compliance

Plan: Lower PIP now and

Normalize arterial 02

Perceive: PIP data

Conditionally Expect:

Raise arterial 02 gradually

Observe: Raise FIO2

Expect: Raise arterial 02 grad.

Hypothesize: Pneumothorax t 1

Expect: Falling arterial 02

Expect: Possible death > t8

(a) Step 1

Intend: Insert chest tube now

Conditionally Expect:

Lower PIP now

Conditionally Expect:

Raise arterial 02 promptly

Expect: Raise arterial 02

Do: Insert chest tube	 Observe: Chest tube inserted

Perceive: Chest tube insertion Observe: Lower PIP now

28

3V

9. Observe: Lower PIP

10. Intend: Lower FIO2 now

Plan: Normalize arterial 02

Do: Lower FIO2

Perceive: F102 setting

(b) Step 2

Intend: Lower FIO2 now

Conditionally Expect:

Normal arterial 02

Observe: Lower FIO2

Expect: Normal arterial 02

Figure 7. Illustrative Chain of Reasoning Tasks Initiated by

Cognitive and Perceptual Events.

In step 6, Guardian continues its diagnosis of the oxygen delivery (compliance)

problem. The previous hypothesis of a compliance problem (produced in step 3), which

violates Guardian's intention of normal patient state, triggers a task to diagnose the

underlying cause. This task produces three results: a more specific hypothesis, that the

patient suffered a pneumothorax (a hole in the lung that allows inhaled air to rush out into

the chest cavity, compressing the lungs and preventing subsequent inhalation) at time ti;

an expectation that, as a result of the pneumothorax and despite Guardian's having raised

the FIO2, the patient's arterial oxygen will continue to fall; and a second expectation that,

as a result of the falling arterial oxygen, the patient may die after time t8.

In step 7, these two expectations, which dramatically violate Guardian's intention of

normal patient state, trigger a two-part planning task: (a) to lower the patient's PIP now so

that any oxygen at all can be delivered; and (b) to normalize the patient's arterial oxygen.

The first part of the planning task produces step 1: an intention to insert a chest tube

immediately (to relieve pressure in the chest cavity and enable the lungs to inflate), with

the conditional expectation that doing so will lower the patient's PIP immediately and, as

a result, raise the arterial oxygen promptly.

At this point, the plan is not complete: Guardian has not determined how to normalize

the patient's arterial oxygen. However, because the patient is in a life-threatening

condition, it does not immediately continue its planning task. Instead, in step 8, the

intention to insert a chest tube now triggers the corresponding action and associated

perceptual tasks to confirm the insertion of the chest tube and the expected lowering of

the patient's PIP. Again, Guardian cannot observe the expected rise in arterial oxygen

directly and must rely on the expected effects of lowering the patient's PIP in the presence

of a pneumothorax.

29

In step 9, Guardian's confirmation of the expected lower PIP triggers resumption of

its interrupted planning task, producing step 2: an intention to lower the F102 (back to its

previous level), with the conditional expectation that arterial oxygen will gradually return

to normal. In step 10, this intention triggers the corresponding action and an associated

perceptual task to confirm the new FIO2 setting. Again, Guardian expects, but cannot

observe directly, that the patient's arterial oxygen gradually will return to normal. At this

point in the scenario, with the crisis apparently resolved and the time pressure eased,

Guardian may decide to place an oximeter so that it can monitor the patient's arterial

oxygen directly or, alternatively, to send a blood sample to the laboratory for a gas

analysis after twenty minutes or so.

As this scenario illustrates, our architecture allows an agent to perform a variety of

reasoning tasks and, more importantly, to adapt its selection, ordering, and interleaving of

reasoning tasks to dynamic perceived and inferred conditions in its environment.

Triggering tasks with perceptual events enables the agent to adapt to exogenously

produced changes in the world.. Triggering tasks with cognitive events enables the agent

to follow the intrinsic logical relations among tasks--where the intermediate or final

results of one task provide the input to another. Explicit representation of the initial,

intermediate, and final results of reasoning tasks allows the agent to interrupt and resume

tasks deliberately.

6. Adaptation of Reasoning Methods

In order to function effectively in AIS niches, an agent must adapt its reasoning

methods to the available information.

Given our input-output definition of tasks, there may be alternative methods for

performing particular tasks. For example, an agent might perform a diagnosis task by

means of a "model-based" method, in which it instantiates structure/function models of

phenomena observed in the monitored system and follows causal links to identify and

instantiate hypothesized precursors. Alternatively, an agent might apply a "structured

selection" method [Clancey, 1985], in which it abstracts the observed data, performs a

heuristic mapping into the hypothesis space, and refines the identified hypothesis back

into the problem context. Alternatively, the agent might use a case-based method

[Simoudis, 1990], in which it retrieves cases manifesting problems similar to the

30

Demand for
Model

Dimensions of
Reasoning Methods

—►
T

Maximal

Demand for
Run-Tune Data

Minimal

Minimal	 Maximal

Maximal

Availability of
Run-Time Data

Minimal

Pattern Extrapolation Quantitative
:simulation

Extrapolate Continuation of
Observed Rising Temperature

Calculate F102 Changes to
Maintain Normal Blood Gases

Lifer that Aspirin
Given for Paul

Recall that, in Some Patients Might Cause Post-Op
Pneumothorax Followed internal Bleeding
Breathing Exercises By Thinning Blood

Case-Based Causal
Reasoning Modeling

observed problem and hypothesizes that the diagnoses associated with those cases may

explain the observed problem. Similarly, alternative methods may be applicable to other

tasks, such as monitoring, prediction, and planning.

Following our analysis of situation-appropriate control modes (section 4), we offer a
M	

similar analysis of situation-appropriate reasoning methods. Again, reasoning situations

and methods vary along complementary dimensions: availability versus consumption of

resources (e.g., domain knowledge, environmental data, real time, and computation);

demand versus provision of performance properties (e.g., intezruptability, potentially

useful intermediate results); and requirement versus provision of response features (e.g.,

precision, certainty, quality, and justification),

Minimal

	

	 Maximal
Availability of Model

Dimensions of
Reasoning Situations

Figure 8. Different Methods for Different Contexts.

31

Taking a subset of the dimensions defined by these variables for illustration, Figure 8

superimposes two two-dimensional spaces, mapping methods that vary in their

consumption of domain knowledge and run-time data onto situations that vary in the

availability of these two resources. Methods in particular regions of the superimposed

spaces are "appropriate" for situations in corresponding regions, based on two

simplifying assumptions: (a) as more knowledge and data are brought to bear, the agent's

response improves monotonically on all features; and (b) the agent prefers to expend

whatever resources are available in order to produce the highest quality response. A more

complete analysis would incorporate information about the actual cost of resources and

the utility of particular performance and response features as higher-order dimensions of

the superimposed spaces. But even with our simplifying assumptions, the present analysis

illustrates the need and potential for agents operating in AIS niches to choose and use

appropriate reasoning methods in different reasoning situations.

For illustration, we consider methods representing the four corners of the space in

Figure 8, applied to a prediction task.

Applying a quantitative simulation method [Iwasaki and Simon, 1986] to a prediction

task, an agent uses observed numeric data to instantiate parameters representing the initial

conditions and other important variables in a set of differential equations and calculates

the predicted values of the variables of interest after variable time t. Quantitative

simulation produces precise, reliable, temporally specific quantitative results and

explanatory justification in terms of the instantiated equations. Computation time may be

high. Other things equal, quantitative simulation is appropriate when the reasoning

context includes an appropriate set of differential equations and the run-time data

necessary to instantiate the necessary parameters. For example, Guardian should use

quantitative simulation to predict whether current values of FIO2 (amount of oxygen

provided by the ventilator on each breath) will maintain normal blood gases for the

patient over some time period.

Applying a causal modeling method [Pearl, 1986] to a prediction task, an agent uses

qualitative observations to instantiate variables in a causal network with the initial

conditions and follows causal links to identify predicted conditions. Causal modeling

produces reliable, qualitative results, but no specific temporal information. It provides

explanatory justification in terms of the instantiated conditions and causal links in the

model. Run-time computation depends on the branching factor and depth of the model.

32

Other things equal, causal modeling is appropriate when the reasoning context includes

an appropriate causal model and when either; (a) the data, knowledge, or resources

necessary to instantiate a more precise quantitative model are not available; or (b) the

precision of quantitative simulation is not needed. For example, Guardian should use

causal modeling to predict that aspirin given to a post-operative patient for pain will also

thin the patient's blood (a side-effect) and, therefore, might also cause internal bleeding.

With both quantitative simulation and causal modeling, an agent exploits strong

models to make predictions (or perform other tasks) and to explain its conclusions.

Quantitative simulation also exploits larger amounts of run-time data to produce more

specific, temporally constrained, quantitative predictions. Causal modeling compensates

for a lack of relevant run-time data by producing more general, qualitative predictions

with less specific temporal properties. Applying intermediate methods between

quantitative simulation and causal modeling, the agent uses whatever data are available to

quantify its model-based predictions as much as possible. With all methods along this

border, however, the agent pays a high cost in run-time computation to reason out its

predictions (or other conclusions). In addition, the agent's ability to perform its task with

these methods is limited by the availability of appropriate models--which tend to be in

short supply in some domains, such ass ICU monitoring, but more available in other

domains such as device monitoring.

Applying a pattern extrapolation method [Shahar, 1992] to a prediction task, an agent

incrementally instantiates time-varying patterns in observed data values and extrapolates

their completion to identify predicted conditions. Pattern extrapolation can produce

predictions where no models are available, but with high uncertainty and no explanatory

,justification at all. Run-time computation depends on the number and complexity of

known pattern definitions. Pattern extrapolation is appropriate when the reasoning

context provides a lot of run-time data for developing and distinguishing among different

potential patterns. For example, Guardian could use pattern extrapolation to predict that a

monitored patient's rising temperature might continue to rise at its current rate, eventually

reaching a dangerous region.

Applying a case-based method [Harnmond, 1989; Kolodner, 1984; Riesbeck and

Schank, 1989] to a prediction task, an agent retrieves a previous case its which conditions

similar to those in the present case occurred and predicts that subsequent conditions in the

present case will be similar to those in the previous case. Case-based reasoning can

33

produce predictions in a broad range of situations, but with high uncertainty and no

explanatory justification at all. Computation time depends on the agent's repertoire of

cases and indexing mechanism. Case-based reasoning is appropriate when the task

context includes a representative sample of cases and the run-time data necessary to index

into the "right" prior case. For example, Guardian could use case-based reasoning about

previous lung surgery patients to predict that a post-operative patient who is performing

his breathing exercises very vigorously might develop a pneumothoiax (a hole in the

lung) in the area of a ung incision.

With both pattern extrapolation and case-based reasoning, an agent compensates for

the absence of good models by using other kinds of knowledge (abstract pattern

definitions or previous cases) to make predictions (or perform other reasoning tasks).

Pattern extrapolation also exploits the availability of large amounts of run-time data to

compensate for the absence: of relevant cases. With all methods along this border, the

agent pays a minimal cost in run-time computation. Its ability to perform its task is

limited primarily by its repertoire of abstract pattern, defin itions and prior cases, which are

readily available in medical domains such as ICU monitoring (often called "clinical

experience"), as well as in engineering domains.

Our architecture provides a natural environment for representing, selecting, and

applying situation-appropriate reasoning methods. Alternative methods for performing a

given task can be represented as different collections of reasoning operations, all of which

might be triggered by events signaling a need for that task to be performed. For example,

Guardian's decision to give a patient aspirin to relieve pain might trigger a control decision

to predict possible side effects, along with the initial reasoning operations underlying

quantitative simulation, causal modeling, and case-based reasoning methods for performing

prediction tasks. At that point, Guardian is free to apply any, all, or none of the triggered

methods. Because reasoning skills are represcrited explicitly, an agent can determine what

run-time data and models are required by a given method in a situation, and which of the

required data and models are available in the situation. Continuing the example, Guardian

could follow the analysis of Figure 8 (or a similar analysis that incorporates other

situational variables) to determine that, for the effects of aspirin, it has a very large number

of potentially relevant cases varying on many dimensions, no quantitative models at all,

and a simple causal model with a modest demand for run-time data. Under these

circumstances, it would be appropriate to use the causal model. By modifying its initial

34

control decision, so that it now intends to causally predict the side effects of giving aspirin,

Guardian insures the selection of causal reasoning operations to perform its task.

In summary, our architecture allows an agent to adapt its reasoning methods to the

availability of resources by representing a diverse collection of reasoning methods as sets

of event-triggered reasoning operations, explicitly storing method-specific resource

requirements, and allowing the agent to construct run-time control plans that reflect its

assessment of situation-specific resource availability.

7. Adaptation of Meta -Control Strategy

In order to function effectively in AIS niches, an agent must adapt its meta-control

strategy to dynamic configurations of demands and opportunities for activity.

An agent's meta-control strategy places global constraints on its allocation of

computational and physical (e.g., sensors, effectors) resources among competing activities.

As a result, it determines which goals the agent achieves, to what degree, and with what

side effects. As illustrated throughout this paper, our architecture permits an agent to adapt

its perceptual strategy, control mode, reasoning task, and reasoning method to the

requirements of a given activity. However, AIS niches'characteristically present demands

and opportunities for multiple activities during overlapping time intervals. For example, an

ICU patient may manifest several simultaneous problems, varying in criticality. While

Guardian is responding to one set of problems, it must continue to monitor other aspects of

the patient's condition and, quite possibly, respond to newly occurring problems along the

way. In addition, Guardian may perform other tasks not directly concerned with patient

monitoring, such as describing a patient's progress during the preceding eight hours to a

physician on rounds, explaining its diagnostic reasoning to a medical student, or advising a

nurse of anticipated changes in the patient's condition. How should Guardian respond to

each new demand or opportunity as it arises? How should its responses to new events

impact on its prior commitments to ongoing activities--and vice versa? Thus, in AIS niches,

the meta-control problem is: How should an agent allocate its limited computational

resources among dynamic configurations of competing and complementary activities so as

to achieve a high overall utility of its behavior?

35

Our architecture provides a natural framework for dynamic adaptation of explicit meta-

control strategies for global coordination of its behavior. Working within the basic

architectural mechanism, an agent can trigger meta-control operations based on changes to

its control plans. It can use some meta-control operations to monitor its activity-specific

control decisions, their implications for resource consumption, and its actual progress

toward associated objectives--all as they evolve over time. It can use other operations to

revise activity-specific control decisions in light of global considerations. For example,

Guardian might notice that it has made a series of control decisions to diagnose and treat a

series of unanticipated problems. Although each of these decisions may be individually

justifiable, together they may exhaust Guardian's computational and perceptual resources

and, as a result, compromise its vigilance. Even worse, the division of available resources

among the several problems may preclude treating any of them before its deadline. Having

made this assessment, Guardian could make a meta-control decision to postpone its

diagnosis and treatment of the least important of its pending problems to conserve

resources for rt?onitoring and to insure treatment of the most critical problems by deadline.

The architecture also allows an agent to use meta-control decisions prospectively to

establish the desired global character of its intended behavior by constraining subsequent

meta-level and activity-specific control reasoning. For example, in the episodes illustrated

in Figures 9 and 10, Guardian is monitoring a patient_ who develops two problems, first low

blood pressure and then high PIP (peak inspiratory pressure). In both cases,

Guardian diagnoses the low blood pressure as resulting from dehydration and treats it by

increasing fluid intake. In both cases, it diagnoses the high PIP first as a hypoxia problem,

which it treats by increasing the patient's oxygen, and then more specifically as the result of

a pneumothorax, which it treats by inserting a chest tube. However, in the two Figures

these problems and treatments occur in c ifferent meta-level contexts, producing subtle, but

significant differences Guardian's behavior and, under some value models, in the overall

utility of its behavior.

The two episodes differ in meta-control decision B versus B'. In Figure 9, Guardian has

made meta-control decision B, to give its highest priority to urgent problems, its next

highest priority to monitoring, and its third highest priority to other problems. As a result,

when it observes and decides to respond quickly to the patient's high PIP, Guardian

maintains its current monitoring activity, but decides to suspend its activities related to the

patient's low blood pressure, a less important problem, until it has resolved the patient's

36

high PIP, In Figure 10, Guardian has made a different meta-control decision B', to respond

to perceived problems immediately. As a result, when it observes and decides to respond

quickly to the patient's high PIP, Guardian continues its activities related to the patient's

low blood pressure, but reduces its monitoring activities until it has resolved the patient's

high PIP, A comparison of corresponding elements of Figures 9 and 10 reveals other

consequences of the difference in meta-level strategy. Under strategy B in Figure 9,

Guardian completes its diagnosis and treatment of the high PIP problem faster than under

strategy B' in Figure 10, but completes its diagnosis and treatment of the low blood

pressure problem later. Under strategy B in Figure 9, it remains sensitive to patient data not

directly related to its current activities (e.g., heart rate), while under strategy B' in Figure

10, its attention to patient data is depressed by its attention to immediate problems,

Depending on Guardian's value model, each of these meta-control strategies could produce

a higher overall utility of behavior.

Control Plan

A. Update control plans .. P_5

B. Priority Ordering: Urgent problems, Monitoring, Other problems

C. Monitor all patient data
Pe3

D. Quickly respond to low BP .- P=3

E. Quickly respond to high PIP .. P-10

F. Suspend D .. P=10

Possible Actions Chosen for Execudon

U:cp Dx : bp M;bp M :pip U:cp U:cp Dx :pip I:o2 Dx:pip It:ct D:o2	 :pip M :hr M:pip Ump I:fi Dx:bp

(Many Possible Actions Related to Tasks, A, B, C, DJ

Time

U	 = Update	 ppd^ m Patient Data P : Priority
M = Monitor	 by	 Blood Pressure = Active Interval
1	 e Increase	 hr aHeart hate Suspended Interval
D	 Decrease	 B	 a Fluid Intake

Dx n Diagnose Type 1	 pip . Pak	 Pressure (^ _> Contrast
It	 . Insert	 n	 = Contr

C

Insp,

Figure 9o l
Pla

nep = Control Pla
n

Figure 9. Illustrative Behavioral Effects of Meta-Control Strategy B.

37

Control Plan

A. Update control plans -- P=5

B'. Respond to perceived problems Immediately - P-10

C. Monitor all patient data
P=3	 I N-1	 P—.-3

D. Quickly respond to low BP -- P--3

E. Quickly respond to high PIP -- P-10

F. Reduce monitors -- P-10

Possible Actions -Chosen jor Execution

U:cp Dx:bp M:bp M:pip U:cp U;cp Dx:pip i:o2 Dx:psp It:ct D:o l:rr M:pip Dx:bp M:pip U:cp M:hr

[Many Other Possible Actions Not Chosen for Execution]

Time

U a Update	 pd a Patient Data	 P a Priority
M = Maniwr	 by = Blood Pressure 	 = Active laterral
I a Incrane	 hr = Heart Rate	 = Suspended Interval
D = Dec.-Me	 tl a Fluid Intake
Dx = Diagnose plp = Peak Insp. Pressure 	 Q => Contrast

= Insert e = Chest l Pla	 Figure 8eP =Control Plan

Figure 10. Illustrative Behavioral Effects of Meta-Control Strategy B'.

As these simple examples illustrate, our architecture uses the same underlying

mechanism to enable an agent to represent, reason about, and use both activity-specific

control plans and meta-control plans. An agent can adapt its meta-control strategy to its

dynamic configuration of potential activities by: (a) analyzing control plans representing

intended activities to estimate their resource requirements; (b) assessing the availability of

required resources in the prospective situation; and (c) making or modifying meta-control

decisions that establish appropriate constr aints on the constructions of activity-specific

control plans. From the agent's point of view, meta-control plans are no different from other

control plans, all of which simply establish local preferences for performing different

classes of reasoning operations--which may include different classes of task-level reasoning

operations, control operations, and meta-control operations. Similarly, the agent need not

treat meta-control planning any differently from its other reasoning activities, all of which

occur through the scheduling and execution of event-triggered reasoning operations.

8. Evaluation

8.1 Evaluation Paradigm

38

How can we evaluate , the proposed architecture for adaptive intelligent systems?

Given the complexity of the behavior we aim to support, we emphasize empirical

evaluation. Following Simon's observations on computer systems in general, we believe

that the problems we are trying to address more closely resemble those of biology or

psychology than physics and therefore so should our methods:

We are never going to have three laws of motion in computer science.... Now

computing systems may or may not be as complicated as living organisms, but

that are pretty complicated, and the principal way in which we are going to learn

about them is to go into a laboratory and find facts. We do that by building

systems and testing them. [Simon, 1991, p. 128]

Moreover, we believe that challenging real-world domains (rather than artificially

structured games or toy problems) offer a rich experimental testbed for investigating

adaptive intelligent systems, their architectures, and their behavior. In fact, it is difficult to

define an artificial task domain that can simulate all of the dimensions of adaptation we

observe in real-world AIS niches. Thus, for example, Feigenbaum explains how working

on the DENDRAL project [Feigenbaum, et al, 1971] played a critical role in the discovery

that production rules could be used for knowledge representation:

Buchanan succeeded where Waterman failed because Buchanan was immersed in

the details of the chemistry, the knowledge representation problem, and the

programming of the reasoning process. Waterman was only an onlooker. The

immense importance of the experimental method in AI, and more broadly in CS,

is that it provides the necessary mental data in sufficient detail to stimulate

innovation and discovery. Perhaps it's easier to discover new ideas than to invent

them! [Feigenbaum, 1992, p. 1971

Our goal is to develop an architecture that meets a sufficiency criterion, supporting

adaptive intelligent systems throughout a large class of AIS niches. Thus, it is less

important that any particular aspect of the architecture should embody the optimal approach

to achieving any particular form of adaptation than that the architecture should gracefully

integrate all of the required forms of adaptation--and that it should demonstratively be able

39

to produce those behavioral adaptations as required by the operating environment. As

Newell remarks on how best to evaluate unified theories of cognition:

"Necessary characteristics are well and good, but they are substantially less than

half the story. Sufficiency is all-important" [Newell, 1990, p. 158]

Finally, other things being equal--in particular, given that the sufficiency criterion has

been met, we prefer architectural parsimony. A compelling architecture should minimize

the number of component mechanisms with which it supports the several required forms of

adaptation.

8.2 Current Status of Experimental Agents

Our architecture has been implemented in an application-independent form and used

to build experimental agents in several of the specific AIS niches in Figure 1.

Guardian is the most substantial of our experimental agents. Guardian demonstration

4 [Hayes-Roth, et al, 1992] monitors on the order of twenty continuously sensed patient

data variables and several occasionally sensed variables. Its tasks include monitoring,

fault detection, diagnosis, prediction, explanation, and planning. It has relatively fast

reasoning methods based on clinical knowledge of commonly occurring problems, their

typical symptoms, and their standard treatments. It also has relatively slow, but more

comprehensive reasoning methods based on symbolic knowledge of the underlying

anatomy, physiology, and pathophysiology. Guardian demonstration 4 has been applied

to a small number of simple, but realistic ICU scenarios. As illustrated in examples

throughout the paper, this version of Guardian performs rudimentary versions of all of the

different kinds of adaptation discussed above. Guardian demonstration 5, which is

currently under development, will monitor on the order of 100 variables. It will perform

the same set of tasks performed in demonstration 4, but with a more comprehensive set of

methods. It will have a much larger medical knowledge base. Most important in the

present context, Guardian demonstration 5 will provide a richer environment for

evaluating the claimed architectural support for adaptation.

In addition to Guardian, several other experimental monitoring agents have been

developed in the architecture. In our laboratory, we have developed experimental agents

to monitor power plant equipment [Sipma and Hayes-Roth, 1993] and semi-conductor

40

manufacturing equipment [Murdock and Hayes-Roth, 1991]. Both of these agents possess

symbolic representations of the structure, function, and behavior of the equipment being

monitored. They perform model-based process tracking, diagnosis, prediction, and

explanation. Each one has been demonstrated on two or three simple, but realistic

scenarios. A similar agent has been developed to monitor materials processing [Pardee, et

al, 1990]. These applications demonstrate the generality of our agent architecture across

diverse domains within the AIS monitoring niche.

More recently, we have begun studying the application of our architecture to a class

of niches for adaptive intelligent robots, which we call "AIbots." In a first demonstration

[Hayes-Roth, et al, 1993], we developed a simulated robot that plans surveillance

destinations and routes, gathers information from the environment, and responds to

unanticipated alarms. Despite its simplicity, this agent exhibits several of the kinds of

adaptation discussed in this paper. It uses reasoning to select and parameterize perceptual

strategies and navigation strategies. It uses dynamic control plans to decide which high-

level task to perform (e.g., situation assessment, planning, information gathering) and

which method to use for a given task (e.g., a classical planner versus a case-based

planner). In a second demonstration, we developed a simulaed robot that acts as a

general office factotum. It can deliver messages personally or electronically, fetch and

deliver objects, and learn unanticipated features of its environment. It accepts

asynchronous requests for instances of these message and object goals and generates

learning goals for itself. It plans and executes behavior to achieve goals in various

sequences and combinations, based on their priorities, deadlines, and interactions with

one another. This agent continuously adapts whatever pending goals and plans it has in

light of newly perceived information about its environment, new goals, or the

unanticipated details of progress on current goals and plans. Finally, in a third

demonstration, we have demonstrated the above-described behaviors on an actual Nomad

200 robot [Zhu, 19921 operating in our offices.

The intelligent monitoring niches exemplified by Guardian and the intelligent

robotics niches exemplified in our AIbots demand the array of behavioral adaptations

characteristic of all adaptive intelligent systems, but they emphasize complementary

subsets of these demands. The Guardian niche emphasizes broad and deep domain

knowledge and reasoning, important requirements for adaptive selective perception (but

no real signal processing), and minimal requirements for action control. The AIbots niche

emphasizes signal interpretation as well as selective perception, important requirements

41

for controlling physical action, and simpler cognitive behaviors. For this reason, we find

them to be an interesting combination of niches to which to evaluate our architecture.

8.3 Comparison with Other Architecture

Although our architecture is not the only one that supports adaptation, it is one of a

small set of candidate architectures currently in the literature. However, most of these other

architectures focus on selected aspects of adaptation, as illustrated by the following

examples. Soar [Newell, 1990; Laird, et al, 1987] provides a very general search

mechanism that can be applied to a variety of reasoning tasks and a learning mechanism

that automatically moves the agent from search to a more reactive control mode based on

experience. However, it does not provide a mechanism for perceptual adaptation or a

mechanism for deliberately choosing reasoning tasks, reasoning methods, or control modes.

The subsumption architecture [Brooks, 1986] embodies a layered control model in which

each layer adapts its behavior continuously to relevant perceptual information and imposes

constraints on the responsiveness of the layer below itself. However, it has been applied

primarily to the perceptual-motor behavior of mobile robots. It has not yet been extended to

support reasoning and it does not provide a mechanism that allows an agent to dynamically

choose among its own capabilities. CIRCA [Musliner, et al, 1993] and a similar

architecture based on the Maruti real-time operating system [Hendler and Agrawala, 1990]

offer a two-layer architecture in which unpredictable Al methods are used to set goals and

priorities for a real-time scheduler that guarantees to meet hard deadlines (assuming that is

feasible) and to use slack resources effectively. This architecture adapts its real-time

schedule to available resources and current priorities, but it does not provide other forms of

adaptation, particularly within its use of the AI methods.

A caveat: We do not mean to suggest that these architectures are not capable of

providing all of the required forms of adaptation, but only that their ability to do so has not

yet been demonstrated and is not immediately obvious to us.

8.4 Other Related Work

Several researchers are working on particular forms of adaptation independent of

architectural context. Notable examples are: anytime algorithms that trade reasoning time

for solution quality [Boddy and Dean, 1989], design-to-time scheduling algorithms for

maximizing the use of available resources while meeting deadlines on critical tasks

42

[Garvey and Lesser, 1993], reactive systems that provide bounded response times for

specified events [Rosenschein and Kaelbling, 1986] or flexible adaptation to

unanticipated event orderings [Agre and Chapman, 1987; Nilsson, 1989], approximate

processing techniques that provide acceptably degraded responses when resources are

short [Decker et al, 1990]. We view these approaches as useful capabilities that we would

strive to integrate within our architecture.

9. Conclusions

We have characterized a class of AIS niches. They require performance of diverse

competing, and complementary tasks. They provide variable, possibly inadequate,

resources for performing tasks. They present variably stressful contextual conditions. They

impose conflicting performance criteria, which often cannot be satisfied completely.

Therefore we have argued that, to function effectively in AIS niches, an agent must be

highly adaptive. It must adapt its perceptual strategy to its dynamic cognitive requirements.

It must adapt its control mode to uncertainty in its environment and constraints on its

actions. It must adapt its reasoning tasks to demands and opportunities presented by its

environment. It must adapt its reasoning methods to the available resources. It must adapt

its meta-control strategy to its dynamic configuration of potential activities.

We find AIS niches motivating for three reasons. First, AIS niches represent a

substantial increment in behavioral requirements compared to niches occupied by typical

AI agents. They stress our science. They force us to deal with uncertainty and resource

limitations. They force us to balance traditional efforts to design optimal solutions to

isolated problems with efforts to design integrated solutions to complex problems. Second,

AIS niches appear to represent an achievable objective. They do not overwhelm us with the

complexity of all of human behavior, but focus our investigation on a powerful and

pervasive property of human behavior: adaptation. Third, AIS niches represent significant

real applications (e.g., intelligent monitoring systems, intelligent surveillance systems,

intelligent associate systems). Agents that function effectively in these niches would have

real practical and social utility.

In this paper, we argue on behalf of a particular agent architecture for AIS niches.

However, as noted above, there are other sophisticated agent architectures that could be

candidates for AIS niches. The success criteria for an AIS architecture are sufficiency, not

necessity, followed by parsimony. It is quite possible that further evaluation of these

43

candidates will identify several sufficient architectures. In the meantime, we have had a

modest success in using our own architecture to build experimental agents in several A,IS

niches and in demonstrating the required kinds of adaptation. Moreover, we have been able

to support the several required dimensions of adaptation parsimoniously, by means of a

single architectural concept: An agent dynamically constructs explicit control plans to

guide its choices among situation-triggered possible actions.

44

References

P. E. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In
Proceedings of the National Conference on Artificial Intelligence, San Mateo, Ca:

Morgan Kaufmann, 1987.

J.S. Albus. Brains. Behavior and Robotics. Peterborough, N.H.: BYTE Books, 1981.

J.S. Albus. Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and

Cybernetics, 21, 473-509, 1991.

J.S. Albus. System description and design architecture for multiple autonomous undersea
vehicles. Gaithersburg, MD: National Institute of Standards and Technology Report
1251, 1988.

D. Ash, G. Gold, A. Seiver, and B. Hayes-Roth. Guaranteeing real-time response with
limited resources. Journal of Artificial Intelligence in Medicine, 5 (1), 1993, 49-66.

D. Ash and B. Hayes-Roth. A comparison of action-based hierarchies and decision trees for
real-time performance. Proc. of the National Conference on Artificial Intelligence,

Washington, D.C., 1993.

M. Boddy, and T. Dean. Solving time-dependent planning problems. In Proceedings of
the International Joint Conference on Artificial Intelligence, 1989.

R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation. RA-2 (1), 14-23, 1986.

W. Clancey. Heuristic classification. Artificial Intelligence, 27, 289-350, 1985.

R. A. Brooks. Intelligence Without Reason. Proceedings of the International Joint
Conference on Artificial Intelligence, San Mateo, Ca: Morgan Kaufmann, 569-595, 1991

K. Decker, V. Lesser, and R. Whitehair. Extending a blackboard architecture for
approximate processing. Journal of Real-Time Systems, 2, 47-70, 1990.

45

R. Engelmore and T. Morgan. (Eds), Blackboard Systems, Menlo Park, CA.: Addison-

Wesley Publishing Company, 1988.

L. Erman, F. Hayes-Roth, V. Lesser, and R. Reddy. The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. Computing Surveys,

12, 213-253, 1980.

E.A.Feigenbaum. A personal view of expert systems: Looking back and looking ahead.
Expert Systems with Applications, 5, 193-201, 1992.

E.A. Feigenbaum, B.G. Buchanan, and J. Lederberg. On generality and problem solving:
A case study using the DENDRAL program. In B. Meltzer and D. Michie (Eds.) New
York: American Elsevier, Machine Intelligence 6, 165-190, 1971.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 198-208, 1971.

A. Garvey, and V. Lesser. Design-to-time real-time scheduling. To' appear in IEEE

Transactions on Systems, Man, and Cybernetics, 23, 1993.

A. Georgeff and A. Lansky. Reactive reasoning and planning. Proceedings of the
National Conference on Artificial Intelligence, San Mateo, Ca: Morgan Kaufmann, 1987.

K. Hammond. Case-Based Planning : Viewing Planning as a Memo ,mask. Boston:
Academic Press, 1989.

B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 26, 251-
321, 1985.

B. Hayes-Roth. Architectural foundations for real-time performance in intelligent agents.
Real-Time Systems: The International Journal of Time-Critical Computing Systems, 2,

99-125,1990.

B. Hayes-Roth, On building integrated cognitive agents: A review of Newell's Unified
Theories of Cognition. Artificial intelligence, 59,213-220, 1993a.

46

B. Hayes-Roth. Opportunistic control of action. IEEE Transactions on Systems, Man, and

Cybernetics, in press, 1993b.

B. Hayes-Roth, P. Lalanda, P. Morignot, M. Balabanovic, and K. Pfleger. Plans and

behavior in intelligent agents, submitted to Al Journal, 1993.

B. Hayes-Roth, R. Washington, D. Ash, A. Collinot, A. Vina, and A. Seiver. Guardian: A

prototype intensive care monitoring agent. Journal of Artificial Intelligence and

Medicine, 1992.

B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett, and A. Seiver. Intelligent Real-

Time Monitoring and Control. Proceedings of the International Joint Conference on
Artificial Intelligence, San Mateo, Ca: Morgan Kaufmann, 1989.

J. Hendler, and A. Agrawala. Mission critical planning: All on the MARUTT real-time

operating system. In Proceedings of the Workshop on T,nnovative Approaches to
Planning, Scheduling, and Control, 77-84, November, 1990.

T. Iwasaki and H.A. Simon. Causality in device behavior. Artificial Intelligence, 29, 3-

32, 1986.

V. Jagannathan, R. Dodhiawala, and L. Baum. (Eds.). Blackboard Architectures and
Applications. Boston, MA.: Academic Press, Inc., 1989.

M.V. Johnson and B. Hayes-Roth. Integrating diverse reasoning methods in the BB 1

blackboard control architecture. Proceedings of the International Joint Conference on
Artificial Intelli2ence, San Mateo, Ca: Morgan Kaufmann, 1987.

J.L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model. Hillsdale, N.J.: L. Erlbaum Associates, 1984.

J. Laird, A. Newell, and P.S. Rosenbloom. Soar: An architecture for general intelligence.

Artificial Intelligence, 33, 1-64, 1987.

47

D. Lenat, and E. A. Feigenbaum. On the thresholds of knowledge. Artificial Intelligence,

47, 1991, 185-250.

T. Mitchell, J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette, and J. Schlimmer.

Theo: A framework for self-improving systems. In K. VanLehn (ed.), Architectures for

Intelligence. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., 1991.

J. L. Murdock and B. Hayes-Roth. Intelligent Monitoring and Control of Semiconductor

Manufacturing. IEEE Expert, 6, 19-31, 1991.

D.J. Musliner, E.H. Durfee, and K.G. Shin. CIRCA: A cooperative intelligent real-time

control architecture. To appear in IEEE Transactions on Systems, Man, and Cybernetics,

23, 1993.

A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA:

1990.

N. Nilsson. Action networks. Stanford, CA: Technical Report, 1989.

W. Pardee, M. Shaff, and B. Hayes-Roth. Intelligent control of complex materials

processes. Journal of Artificial Intelligence in Engineering, Design, Automation, and

Manufacturing, 4, 55-65, 1990.

J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,

29, 241-288, 1986.

C.K. Riesbeck and R.C. Schank. Inside Case-Based Reasoning. Hillsdale, N.J.: L.

Erlbaum, 1989.

S. J. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with provable

epistemic properties. Proceedings of the Conference on Theoretical Aspects of

Reasoning about Knowledge, Morgan Kaufmann, pp. 83-98, 1986.

W.J. Rugh. Analytical framework for gain scheduling. Proceedings of the American

Control Conference, 2, 1990.

48

E. D. Sacerdoti. The non-linear nature of plans. Proceedings of the International Joint
Conference on Artificial Intelligence, San Mateo, Ca: Morgan Kaufmann, 1975.

M. Schoppers. Universal plans for reactive robots in unpredictable environments.
Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo,

Ca: Morgan Kaufmann, 1987.

Y. Shahar. A temporal abstraction mechanism for patient monitoring. Proceedings of
SCAMC. 121-127,1991.

H.A. Simon. Artificial Intelligence: Where has it been and where is it going?
IEEE Transactions on Knowledge and Data En ing_ eering, Vol. 3, No. 2, 1991, 128-136.

H. Sipma and B. Hayes-Roth. Model-based monitoring of dynamical systems. Stanford,
CA: Technical Report, in preparation, 1992.

R. Washington and B. Hayes-Roth. Managing input data in real-time AI systems.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, San
Mateo, Ca: Morgan Kaufmann, 1989.

D. E. Wilkins. Domain-independent planning: Representation and plan generation.
Artificial Intelligence, 22, 1984.

D. Zhu. Nomadic host software development environment (Unix Version 1.1). Mountain
View, Ca.: Nomadic Technologies, Inc., 1992.

49

	1997057065.pdf
	0020B01.tif
	0020B02.tif
	0020B03.tif
	0020B04.tif
	0020B05.tif
	0020B06.tif
	0020B07.tif
	0020B08.tif
	0020B09.tif
	0020B10.tif
	0020B11.tif
	0020B12.tif
	0020B13.tif
	0020C01.tif
	0020C02.tif
	0020C03.tif
	0020C04.tif
	0020C05.tif
	0020C06.tif
	0020C07.tif
	0020C08.tif
	0020C09.tif
	0020C10.tif
	0020C11.tif
	0020C12.tif
	0020C13.tif
	0020C14.tif
	0020D01.tif
	0020D02.tif
	0020D03.tif
	0020D04.tif
	0020D05.tif
	0020D06.tif
	0020D07.tif
	0020D08.tif
	0020D09.tif
	0020D10.tif
	0020D11.tif
	0020D12.tif
	0020D13.tif
	0020D14.tif
	0020E01.tif
	0020E02.tif
	0020E03.tif
	0020E04.tif
	0020E05.tif
	0020E06.tif
	0020E07.tif
	0020E08.tif
	0020E09.tif
	0020E10.tif
	0020E11.tif
	0020E12.tif
	0020E13.tif
	0020E14.tif

