\ |

£00 @

Froac NAGE-25¢

NS 8/002 ~ T — 205755 Y
o I7T

-

MMPP Traffic Generator < e
for the Testing of the
SCAR II Fast Packet Switch

Prepared for
William Ivancic, James Budinger and Jo1ge Quintana
of the
Space Electronics Branch
NASA Lewis Research Center

by

William A. Chren, Jr.
Associate Professor of Engineering
Grand Valley State University
January 16, 1995

SEUNOSTY YALVA NSAD r98¢ ¢68 979 XVd LP:TT dNL

. |
o- b~ /&—-—

Jf‘f%
fxst—/‘

L8/72/01

Table of Contents

I Introduction 3
1.1 High-level Description 3
12 External Interfaces 5
13 TG Operation ’ 5

L3.1 Frame and Packet Format 7
132 The MMPP and the Packet Generation Process 8
133 Simulation Results 10

I TG Design Details 10
o1 TGDATPROC Details i1
II.2 TGRAMCTL Details 15
IL.3 Future Work 24

[I3.1 Opportunities With the Present TG Implementation 24
132 Opportunities for the Development of a Standard-Cell 25
TG Implementation

Y00 SIUNOSHY YALVM [1SAD 98¢ §68 9T XVd LV:TT dNL L6/T2/0T

1. Introduction

A prototype MMPP Traffic Generator (TG) has be:n designed for testing of the
COMSAT-supplied SCAR TI Fast Packet Switch. By g:nerating packets distributed
according to a Markov-Modulated Poisson Process (MMPP) model, it allows the
assessment of the switch performance under traffic conditicns that are more realistic than
could be generated using the COMSAT-supplied Traffic Generator Module. The MMPP
model is widely believed to model accurately real-world superimposed voice and data
communications traffic.

The TG was designed to be as much as possible of a “drop-in” replacement for the
COMSAT Traffic Generator Module. The latter fit on two Altera EPM7256EGC 192-pin
CPLDs and produced traffic for one switch input port. N board changes are necessary
because it has been partitioned to use the existing board traces. The TG, consisting of
parts “TGDATPROC” and “TGRAMCTL” must merely be reprogrammed into the Altera
devices of the same name. However, the ‘040 controller software must be modified to
provide TG initialization data. This data will be given in Section II.

Figure 1 depicts the inputs and outputs of the Ti3. Tables 1 and 2 list their
functions and correspondence to signal names in the COMSAT documentation. Active
low signals are indicated by the ‘BAR’ suffix (for TG sigaals) and by the ‘backslash I’
suffix (for COMSAT signals). Signal names were pres:rved with minor exceptions.
Numbers in COMSAT signal names indicate the generator index (one of eight possible).
This is not the case in our design, even though the numbers were retained in some cases.

MMPP TGDRDYBAR

TGDATA[7..0]
TRAFFIC TouwrLoBAR
GENERATOR |o=.
(TG) RID_ADDR(13..0]

—————3
RIC_ADDR[!3..0]
—

Figure 1: Traffic Generator Block 1)iagram

s00@ SAOYNOSHY YALVM 1SAD p98c $68 918 Yvd LP:TT dNL L6/TZ/0T

200y

Table 1: Inputs to the Traffic Generator

Inputs Function Corresponding SCAR il
Name
BYTCLK 20 Mhz byte clock (system clock) TG*BYTCLK
(TG Module 6/20/94 page 2}
R1C DATA[15..0] Memory bank C data. Contains the state same
dwell and idle packet counts, statistically {Channe! 1 Traffic Generator,
generated according to the user specified 11/10/94 page 2}
distribution
RID_DATA[7..0] Memory bank D data. Contains the route same
numbers statistically distributed according to | (Channel 1 Traffic Generator,
the user specified distribution 11/10/94 page 3)
VMEDATBAR][15..0] | VME Slave data output lines \'TMEDAT{15..0\
(Channel) Traffic Generator,
" 1/10/94 page 3)
VMEADRBAR[15..0] | VME Slave address output lines “TMEADRI15..01\
(Channel 1 Traffic Generator,
1/10/94 page 3)
VMECTRLBAR[4..0] | VME Slave control output lines */MECTRLI[4..0]\

Outputs

(Channel 1 Traffic Generator,
1/10/94 page 3)

Table 2: Qutputs of the Traffic Gererator

Function

Corrcesponding SCARIT
Name

TGDATA[7.0]
TGDRDYBAR
TGUWFLGBAR

RIC CE

RID_CE

R1C_ADDR[13..0]

RID_ADDR[13..0]

output data to ECL serialization logic
output data ready flag
frame boundary indicator

memory bank C enable

memory bank D enable

memory bank C address

memory bank D address

SIYNOSTY YALVM [1SAD

——ar———a
TGIDATA[7..01
(TG Module 11/10/94 page 3)

TG1DRDY\
(TG Module 11/10/94 page 3)

TGIUWFLGV
(TG Module 11/10/94 page 3)

same
(Channel 1 Traffic Generator,
J1/10/94 page 2)

. same

(Channel 1 Traffic Generator,
11/10/94 page 2)

same
(Channel 1 Traffic Generator,
11/10/94 page 2)

same
(Channel 1 Traffic Generator,
11/10/94 page 2)

y98¢ 68 9719 Xvd 8V 1T dNL L6/TZ2/0T

L2 _External Interfaces

An overview of the environment in which the TG will reside is given in Figure 2.
All external interfaces function identically to the COMSAT design. The TG is controlled
by the COMSAT dual '040 controller, which in turn i3 controlled by an ethernet-
connected workstation. Direct control of the TG is perform 2d by a 7256 CPLD called the
VME Slave, which translates the '040 commands to the appropriate data and control
signals required by the TG. Figure 3 depicts the interfaces to the oemory banks and the
VME Slave. Details of the type of data and control will be given below in Section II.
Note that althongh the TG requires no modification of the COMSAT hardware, the
workstation and/or ‘040 controller software must be mocified to initialize the TG, as
discussed below.

DDPS
‘040 VME Port
Workstation a TG ECLP® S
Controller Slave l g CONVERTER
Figure 2: TG Environment
VMEADRBARTIS..0] 7 -
VMEDATBAR[15.0] | ™| Bank [ECL Lioe -
VMECTRL{4..0] Roum Mumbst| D D EPM7256 10
on | Jxxrs| 8 TUDATPROC
Tis
EFMT7256 Addresses, yj— _,_—‘9‘—'_——
HOS;I_ﬂ VME Slave Eaubles (from 3
TGRAMCTL) _ 7
Statc Dwell, § 13 L —J
Idlc Packet Bank EPM7256
Diswitasions | C Dva TIRAMCIL s
VMEADRBAR[15.0] | [A%d™ P2l 160 x 16 16 ’ 30
VMEDATBAR{15.0] Banks C,D
VMECTRLI[4..0] Addresses,
37 _ Embles

Figure 3: Interfaces to Banks C, D and VME Slave
L3 TG Operation

The normal operating sequence of the TG consists of an initialization phase and a
packet generation phase. During the initialization phase the VME slave controls the TG
and must perform the seven functions listed in Table 3. For ready reference, Table 4 lists
the combinations of signals VMEADRBAR[12..9], VMECTRLBAR[4..0] and
VMEDATBAR[15..0] requircd.

000 SHOUNOSHY YALVA (SAD y98¢ $68 9T9 XVd 8¥:IT dnlL L6/TZ/01

800}

Table 3; VME Slave Responsibilities During TG Initialization

VME Slave Initialization Funciions

TSend rtesel commeand to TG: assert VMEADRBARO and
VMECTRLBARAY for at least one period of BYTCLE.

7. Load the frame matker: assert VMEADRBAR10 and VMEADRBARI1 for
at least one BYTCLK period with the frame marker cn VMEDATBAR[7..0]

3. Load the test length count: assert VMEADRBAK10 and VMEADRBARO
for at least one BYTCLK period with the test length count on
VMEDATBAR][15..0]

4. Load the LFSR initialization count: assert VMEADRBARIO,
VMEADRBAR]1 and VMEADRBARO for at least 0ae BYTCLK period with
the initialization count on VMEDATBAR[15..0]

5. Load the congestion control throttles: assert VMEADRBARI1 and the
combinations in Table 3b for at least two BYTCLKL periods with the throttle
settings on VMEDATBAR([15..0]. Odd (even) thrttles must be placed on
lower (upper) byte of VMEDATBAR.

6. Load the congestion control enable bits: assert VMEADRBARI2 for at
least one BYTCLKD period with the enable bits on VMEDATBAR[7..0].
Port numbers and bit numbers in VMEDATBAR[?7..1)] correspond.

7. Fneble the TG and begin the test: asset VMEADRBAR9 and
VMECTRLBARS3 for at least one period of BYTCLIX

Table 4: VME Signal Combinations Durin 3 Initialization

VME
VMEADR CTRL VMEDAT
BAR[12..0] BAR BAR[15..0] Function
[4.9]
300¢] 3000KXXXXX liooox | xxxooooooooooaax | Reset TG
xx hoooooox 1xX sxxxxx | ;oooocooxdddddddd | Loac. the frame marker
xx 1 000000 1 xoox | dddddddddddddddd | Load the test length count
xxoooxxxxx10 sxooex | dddddddddddddddd | Loacl the LFSR initialization count
x 100000000 xxxxX | ecceeeeeooo00000 | Loacl the congestion control

SI0ANOSTY YALVA (15AD

98¢ g¢68 919 Xvd 6V:T1T ANL L6/T1Z/01

(0=0dd, e=even) | throtties for ports | and 2

x1xoooaaxxx01 woxx | eeeeeeee00000000 | Load the congestion control
(o=odd, e=even) | throttles for ports 3 and 4

x 1xxxooooox10 xoxx | eeeeeeccoo000000 | Load the congestion control
(o=0dd, e=even) | throttles for ports 5 and 6

x1xooo0ooooee] 1 woox | eeeeeeee0o0000000 | Load the congestion control
(o=odd, e=even) | throttles for ports 7 and 8

Ixoooooooooox | xoox | xoooooxdddddddd | Load congestion control enable
bits
woxlxoooooox | xloox | xxxxxooooaoooooax | Enable the TG and begin the test

After the TG is cnabled (the final step in the initialization phase), it enters the
packet generation phase. This phase lasts as long as necessary to gencratc the total (ie.,
busy and idle) number of packets specified by the VME Slave during initialization step 3.
During the packet generation phase any steps in Table 3 car be executed at any time (e.g.,
step 1 would reset the TG). However, step 4 will not have any effect because the LFSR
initialization count is ignored during packet generation. Once the required number of
packets has been generated, the TG enters a reset state called PORSET (see Figure 15),
where it stays until the receipt of an enable command from he VME Slave.

[.3.1 Frame and Packet Format

The frame and packet structure used is the same as that used by COMSAT. A
frame consists of a one-byte frame marker followed by foir 58-byte packets (see SCAR
Program Phase II Critical Design Review 4/14/94). A packet consists of a five-byte
header and a 53-byte payload, with the header shown in Figure 4. All bits of the header
are set to zero except for the route number, which is a vatiate distributed according to a
completely-arbitrary, user-programmable pdf whose inv-rse distribution is stored in
memory bank D. Note that this feature (in conjunction. with the congestion control
throttle mechanism) gives us exceptionable flexibility in dealing with congestion and
modeling traffic sources. Idle packets have a route numbe: of all zeroes. The remaining
53 bytes of the packet consist of all zeroes except for a time stamp in the two bytes
immediately following the header. The stamp is a count of the number of BYTCLK
transitions since the receipt of the enable signal.

2bits 2 bits 8 bits 2 bits 4 bits 6 b 8 bits 8 bits
. Route 1
constant (z6r0) pdf consumnt (zero)
(user programmable)

Figure 4: Packet Header Formr at
the Packet Generation

600 SIANOSHY YALVA [1SAD vo8¢ $68 90T9 XVd 6¥V: 1T AL L6/TZ2/0T

Packets are generated according to a Markov-Modulated Poisson Process
(MMPP). This stochastic process is widely used in network performance rescarch to
model the bursty and correlative aspects of traffic which cntains a mix of voice, video
and data.

The MMPP has two states: “busy” and “idle”. Tie former is characterized by
higher rates of busy packet generation than the latter. Taie interarrival times between
busy packets in either state are Poisson distributed. The tirr es spent in citber of the states
are geometrically distributed. The number of packets (bus)’ and idle) generated in cither
state will henceforth be referred to as the “state dwell time”. The state diagram for the
MMPP is given in Figure 5, where 2, , A, refer respectively to the Poisson parameters for
the busy and idle state interarrival times, and o,p refer to the probabilities of leaving the
busy and idle states, respectively.

Figure 5: State Diagram for the MMFPP

The TG manages the state dwell time using a ¢junter which stores the total
number m (0 < m < 65535) of packets to be generated in the state. The counter is loaded
upon state entry with an integer-valued geometric deviate, chosen from either the busy
state geometric distribution or the idle state geometric distr bution, depending on the type
of state being entered. Both types of deviate are stored in 1nemory bank C, whose layout
is discussed below.

The packet interarrival times are modeled by ancther counter (called the “idle
packet counter”) which contains the number o (03 u:g 65535) of consccutive idlc
packets that is to be generated before the next busy packe.. The counter is loaded upon
state entry and after each busy packet generated while rem aining in the same state. The
load values are integer-valued Poisson deviates, chosen from either the busy state Poisson
distribution or the idle state Poisson distribution, depend ng on the state the TG is in.
Both types of deviate are stored in memory bank C, whose layout will now be discussed.

The generation of the required deviates is done using the “inverse distribution”
method, in which variates from an arbitrary distribution :xe obtained by evaluating the
inverse of the distribution at uniformly-distributed values. Memory banks C and D store
the inverse distribution values in look-up table fashior. A 32-bit LFSR generates
uniform variates which address the banks. This look-up “able approach is preferable to
computational circuitry for this application because the memory is already available with
the COMSAT hardware. This approach is also faster and user-programmable.

Memory bank C is laid out as shown in Table 5. Bank D is used for the route
number distribution. Its map is not shown because it is trivial. Note that the distributions
of the dwell times and idle packet counts are represented to 12-bit accuracy (i.c., memory
address width), instead of the 14 used for the route number distribution.

oT0 [SAUNOSTY YALVA [1SAD P98t ¢68 9719 XVd 0G:TT dNL L6/T2/0T

TT0@

Table 5: Map for Memory Bank C

Address R1IC_ADDR[13..0] Data
11dddddddddddd Busy state dwell times
10dddddddddddd Busy state idl> packet counts
01dddddddddddd Idle state dwell times
00dddddddddddd Idle state idle packet counts

A high-level block diagram of the TG is shown in F: gure 6, where it can be seen

. Uniform Virize
- + " ToAddrem loputs
: ‘Mamoey Danks CD
TI:M!'r-mM:h-‘J
| LFSR] .
g pnber (from Bionk T) _
mmcl Sute Ducl ||‘n-u Prioity0]
e 2
ftom bk C Idle Fackd time out 5”‘0_"
Counler i MUX To
> e, heatace
i =t [
" Generationy |
Congestion 9
o e e 5 wnot| Fimatr
Constars, Fickder0
M“_‘";.@_MM mwT i
comter stahxy -—
—_ l&ﬁ!hu&mb}_n
1eact {fiom Vene Slaved 16

Controller aorer {
anchle (fom Vims Skave) " ——

B

HA

Figure 6: High-Level Block Diagram of the TG

that the TG generates all 58 bytes of a packet simultancously in parallel. Conversion to
byte-serial format (required by the ECL logic) is perfonned by an output multiplexer
MUX which gives very high speed. The complicated paris of the design (e.g., the route
number generator/congestion control handler ROUTGEN?) with long critical paths run

SEOYNOSTY YALVA (1SAD ¥98¢ S68 9T9 XVd 0G:TT dNL L6/T2/0T

10

at half clock (signal BYTCLKD) because simulation has shoywn that they are too slow for
full speed and caonot be simplified. Fortunately, the commencement of new route
number generation/congestion control takes place as soon a: the previous route number is
output to the ECL interface. This fact allows as many as 5'7 byte times to be used for the
process, which is more than enough.

L33 Simulation Results

Figure Al on the next page shows the bursty, stoch: stic nature of a sample packet
output streamn. The two bottom traces (ROUTSENT and uctive-low IDLESEND_BAR)
indicate packet (idle or busy) times and idle packet times, respectively, for a simulation
sequence which begins in the busy state for seven packets, dwells in the idle state for
eight packets, and then returns to the busy state for another 7 packets. The differcnee in
idle packet density between the two states is clear from the wo traces.

Figure A2 shows the same simulation with the con:estion control bit enabled for
output port 3, and its throttle set to 1. The “pre-congesticn control” route number (i.e.,
the byte accessed from memory bank D) is FF. By obscrving the trace of the output
(TGDATA[7..0]) between the vertical lines it can be seen that the route fields in
successive packets alternate between FF and 7F, indicating correct congestion control on
output port 3 with a throttle of 1.

II. TG Design Details

The partitioning of the TG between the two CPLDs is shown in Figure 7.

cT0® SAOUNOSTY YALVM (1SAD 98¢ G688 079 YVd Tg:TT dANL L6/T2/0T

st

il =

Fe ECTRURRIL T 2

PERAE e e e D MD_ADOR(3, 8]
N ; . RIC_AOORL 7, . 8]
RN o MG

T o VP T M. Jop—— iw
YHERONSARLS ' | cnssannre en_mwura_uan—JIH-ROJEJAR
: EULYSEND_ BAN——

aSYTeLHN— A]

Figure 7: Partitioning of the TG
IL1_TGDATPROC Details

The upper module (TGDATPROC) functions are given in Table 6. Tables 7 and
8 list the functions of the inputs and outputs, respectively.

Table 6: Functions of the TGDATPROC Module

TGDATPROC Functions
1. Generate packet bytes for ECL serialization ‘ogic

2. Compute packet time stamps
3. Generate packet route mumbers with congestion control
4. Store congestion control throttle numbers

5. Store frame marker

eT0 SHOUNOSHY YALVA (1SAD y98¢ €68 8T9 XVd Tg:TT ANL L6/T2/0T

Table 7: TGDATPROC Inputs and their Functions

Inputs

ﬁ
VMEDATBAR[]5..0]

VMEADRBAR(15..0]

BYTCLKD

BUSYSEND_BAR

RID_DATA[7..0]

IDLESEND_BAR
EN_ROUTE_BAR
RESET_BAR
BYTCLK

TMSTMPENA_BAR

ENADNCNTR_BAR

Function

——————) I
initializing data from VME Slave (frame

marker, congestion control enable bits and
throttle settings for channels)

addresses for setting of fram:: marker,
congestion bits and throtile s :ttings

BYTCLK divided-by-2 for ¢ ongestion control
(see ROUTGEN2 module below)

mitializes busy packet gener.ition

memory bank D data output lines which
contain the statistically-gene :ated routing
gumber (before congestion | rocessing)
initializes idle packet geerazion

starts the route number gene ‘ation

global reset for TG (see CN''RLER below)

systern clock (20 Mhz)

starts the timer (used to stan p the outgoing
packets)

starts the packet generation

Table 8: TGDATPROC Outputs and their Functions

Outputs Function

TGDRDYBAR output data ready flag

TGDATA[7..0] output data to ECL serialization logic

ROUTDONE controller signal to acknowledge the
completion of the route nuniber congestion
control adjustment process

ROUTSENT controller signal to acknow edge the seading of
the route number in the out)ut stream

TGUWFLGBAR frame boundary indicator

The schematic of TGDATPROC is shown in Figurc 8.

The ROUTGEN2

schematic is shown in Figure 9. ROUTGEN2 is responsible for throttle storage,
congestion control and the generation of the appropriately modified route mummber

r10@

SHOUNOSHY YALVA (1SAD

v98t ¢68 919 Yvd 2S:TT dNL L6/T2/0T

13

accessed from memory bank D, which gencrates route nu nbers according to the user-
specified statistical distribution.

The congestion control scheme is as follows. Tle VME Slave loads throttle
settings for each of the eight switch output ports in ROUT GEN2 at any time, including
reset. Throttle value n causes an idle packet to be inseited every n successive busy
packets destined for that port. Throttle control is enabled >nly when the throttle enable
bit for that port is asserted. The throttle enable bits arc loaded from the VME Slave at
any time, and stored in ROUTGEN2.

This process is implemented by a loopback scherne. Each bit of the routing
number (accessed from the memory bank D) is sequentially tested. If a particular bit is
set, then it is reset only if that port’s throttle is enabled and the munber of consecutive
busy packets destined for that port that have been already sant equals the throttle setting.
The number of packets already sent is called the “throttle count” and is maintained in
ROUTGEN? by a down counter. If reset is performed, the throttle count is restored to its
original (VME Slave-provided) value. If not, the count is decremented. The route
number computed by this process is output from the TG.

T OREDAINT IS TN YT Us,)
2 0

il =1 2

Figure 8: Schematic of the TGDATPROC Module

ST0[A SEJYNOSAY ALVA NSAD v98¢ g¢68 918 XYVd 26:T1T dNL Le/T1Z/0T

FYFI 4 FFER s oo
nnwdntivn *

et .@ﬁﬁ,

¥98¢ G888 OT9 XVd €G:IT HAL L6/72/0T

Figure 9: Schematic of the ROUTGEN2 Module
SADUNOSTY WIALVM 1SAD

810

Other TGDATPROC subsystems are straightforwsrd except for MUXCNTRL,
whose text listing is shown in Figure 10. MUXCNTRL is «lesigned to convert the output
of the downcounter DNCNTR to appropriate select signals for the output multiplexer
OUTMUX. The design is not trivial because of the necestity to insert the frame header

every four packets.
SUBDESIGN muxcnfrl
(
count[7..0] : INPUT;
sel[2..0], routsent : OUTPUT;
endpacket, endframe : OUTPUT;
)
BEGIN
CASE countf] IS
WHEN 0 =>scl[] =7,
endframe = VCC;
endpacket = VCC;

WHEN 52, 110, 168, 226 => sel[] = 6,
WHEN 53, 111, 169, 227 => sel[] = 5,
WHEN 54, 112, 170, 228 => scl[] = 4;
WHEN 55, 113, 171,229 => sel[] =3;
routsent = VCC;
WHEN 56, 114, 172, 230 => sel[] = 2;
WHEN 57,115, 173,231 =>sel[] = |;
WHEN 58, 116, 174 == sel[1= 7,

endpacket = VCC;
WHEN 232 => sel[] = 0;
WHEN OTHERS => sel{] = 7;
END CASE;
END;
Figure 10: Module OUTMUX De:sign
1.2 TGRAMCTL Details

The lower module (TGRAMCTL) functions are given in Table 9. Tables 10 and
11 list the functions of the inputs and outputs, respectivcly.

LT0Q SAOYNO0STY YALVA [1SAD ro8¢ S68 979 XVd €S:TT HAL LB/T2/0T

ST0[R

Table 9: Functions of the TGRAMCTI. Module

TGRAMCTL Functions

Wﬁ
Generate uniform variates for addresses to memory banks C : nd D, thus procuring suitably

distributed state dwell times and idle packet counts

Control the movement between and the time in the Markov states (“bursty” and “quiet”).
Also control the generation of idle packet sequences

Control the generation of busy packets
Control the initialization of the TG, and store the LFSR initialization count.
Store the test length couant

Generate a clock signal BY TCLKD with half the frequency «f BYTCLK for usc by
ROUTGEN2, which due to its loopback structure is slow.

Perform all other control functions for the TG, for example r.sct, initialization, and
shutdown

Table 10: TGRAMCTL Inputs and thei Functions

Inputs Functiop
BYTCLK system clock (20 Mhz)

VMEADRBAR[15..0] | addresses for storing LFSR jnitialization and
length of test counts, as well as resetting and
cnabling the TG

VMECTRLBAR[4..0] | control bits for resetting and enabling the TG

ENDFRAME flag indicating that the lust t yte in a frame has
Just been sent to the ECL. s¢:ialization circuitry.
Used by CNTRLER to perfi rm an orderly reset
sequence

ROUTDONE flag which when asserted n-licates that the
Toute number is being proce ised by
ROUTGEN? according to the loopback
congestion control procedur : discussed above.

RI1C_DATAJ15..0] memory bank C data output lines which contain
(at disjoint times) either the statistically-
generated Markov state dwe 1l times, or the
statistically-generated idle packet sequence
counts

ROUTSENT flag indicating that the routt number byte has
just been passed to the ECL serialization
circuitry. Used by CNTRLIIR to begin
preparing another idle or busy packet

VMEDATBAR[15..0] | initializing data from VME Slave (test count
length and LFSR. initialization count)

SHOUNOSTY YALVM 1SAD 98¢ G688 019 Xvd ¥Q:TT dNL 16/12/01

Table 11: TGRAMCTL Outputs and thei: Functions

Outputs
RIC_CE

R1D_CE

R1D_ADDR(13..0]

RIC_ADDR[13..0}

RESET_BAR

TMSTMPENA_BAR

ENADNCNTR_BAR

IDLESEND_BAR

EN_ROUTE_BAR

BUSYSEND_BAR

BYTCLKD

S T Tyt
Memory bank C enable line

Function

Memory bank D enable line

Address lines for memory baak D. The lower
eight of these lines are connected to selected
LFSR outputs and thus contain uniform variates
for generating the statisticall /~distributed
routing numbers

Address lines for memory bznk C. These lines
are connected to selected LF SR outputs and
thus contain uniform variate:. for generating the
statistically-distributed Markov state dwell
times and corresponding idl¢ packet counts

TG reset signal generated by CNTRLER

enable signal for the time st: mp counter,
generated by CNTRLER.

enable signal for the down ¢ sunter which
sequences MUXCNTRL ani: OUTMUX in
TGDATPROC; geperat:d by CNTRLER

enable signal for the generation of an idie
packet. Generated by CNTHLER and sent to

ROUTGEN?2 in TGDATPROC

enable signal to begin the loapback congestion
control procedure discussed above on the
routing number within the R OUTGEN2
module in TGDATPROC; ;(enerated by
CNTRLER

enable signal for the genera jon of a busy
packet. Generated by CNTRLER and sent to
ROUTGEN?2 in TGDATPRDC

BYTCLK divided-by-2 for songestion control
(sec ROUTGENZ2 module asove)

The schematic of TGRAMCTL is shown in Figure 11. The LFSR schematic is

8T0 @

SAOUNOSTY YHLVA [I1SAD

98¢ 668 OT9 YVd ¥G:TT dANL L6/T2/0T

Figure 11: Schematic of the TGRAMCTL Module

003 SHOYNOSHY YALVM (1SAD vos8¢ €68 079 XYVd €S TT dNL L8/T2/0T

is shown in Figure 12. It is 32 bits long and has a period of 2™ ~1. The tap locations
which are used to form the lower 12 bits of the C memory bank address (see discussion
below) and the lower eight bits of the D memory bank addr:ss (see discussion below) are
as indicated in the figure.

wno 74199
L oa.ka
npon
) o
4 saaues L] -
na e
s 1. 1
L e . a2
[] L o
resat_lar D.L..!_"' I — P
mnublu bar D'wv“i‘;"'— a-rsisranwil
R nUp—t Loler o

ol —I3A22.
L3 El
o
-
- R INGE_
I Py s—2gncanas
&= 1| . prige’ T - -,
l__sgecend®
pume— B aa
- |_weerond)
-~ : iﬂh""‘
« -7

FM‘-NP

RxEali
enoRltBMoni. |
& SIFT BEG.
RTSTETS routrand(?, .0)

ome RIS Lderandtis. .91
sdoranall) .0 (L 1poranalsi, .e]
wor 74199 *
Y T
-
w—
| clarange
L]
~ - i and?
S I w—Sgorongs
HGFM
] as
Qﬂ:r.ﬂil!
ae{ me an

L
2

L wr scane?

resah bar pryrp

bytollk

enable bt .., |

» RMIFT REwS.

7412
v ol P e
pomy 2
] am
- routrogdh
a -~
& »a w—roukenndE
L L
=10 an
ae w-—Ccauirendd
et ma e—EmutrandR,
——i v —oputrgodl
I “__myl.v\‘\n‘l
AL
e A
anable _Bor i

JENIPT Ara.

Figure 12: LFSR Schematic Diaram

TZo @ SIYNOSHA YALVM NSAD 98¢ g68 OT9 XVd SS:TT dNL L6/T2/01

c20 @

20

The four GENREG modules are identical “generic™ 16-bit down counters whose
schematic will not be shown because of its simplicity. They function as the Markov state
dwell time counter, idle packet counter, test length couiter and LFSR initialization
counter, respectively reading top-to-bottom on the TGRAMZTL schematic.

The text for the CNTRLER module is given in Figwe 13. This module is a Finite
State Machine (FSM) which is the controller for the TG. A Mealy type architecture (i.e.,
outputs change in response to input changes without chang ng state) was chosen because
it is easier to understand and debug. The state diagram for CNTRLER is given in Figure
14, and the dictionary for its output symbols is given in Table 12. The output PRELOC
in the table represents output 1 in Figure 13.

SUBDESIGN cntrler

% %
%Renaming of inputs and outputs: %
%a=bytclk %
%b=Teset %
%c=enable %
%d=tosdc %
%e=ipczero %
%f=tstcntzero %
%g=routsent %
%h=endframe %
%i=Ifstcntzero %
%j=routdone %
%k=bytclkd %
%l=toggle control for location %
%n=reset_bar %
%r=lfstentena_bar %
%s=enalfsr_bar %
%t=statechoose %
%v=ldsdc_bar %
%w=ldipc_bar %
%xi=tmstmpena_bar %
%y=idlesend_bar %
%z=en_routc_bar %
%zl=enadncntr_bar %
%z3=cntdecr_bar %
%z4~=decripc_bar %
%z5=busysend bar %
%z6=dwell_idlechoose %
% %
(

a,b,c,d,e f : INPUT;
g, hijk : INPUT;

SIOUNOSTY YALVM (1SAD ¥98¢ S68 9T9 XVd S§:TT dNL L6/T2/0T

21

nrs : OUTPUT;
t,v,w,xi,y : OUTPUT;
2,21, 73, z4, 25, 26 : QUTEUT;
)
VARIABLE

ss : MACHINE WITH STATES (porset, init, Arre, As, Bsl, Bs2, Bs, Cpre,
Csend, Cs, Cpost, Cwait, Ds, Dsl, Dsend, preot);
1: NODE;

BEGIN
ss.clk = a;
ss.reset=Db;

t=TFFE(VCC, a, VCC, VCC, 1);

g0

TABLE

% current current next current %
% state input state output %
% %
sS, c,defghijk=> ss, 1, n,r,s,v,w,xi,y,z,z1,23,74,25,26;
porset, 0,X,X,X.X.X,x.x,x => porset, 0, 0,1,0,1,1,1, LL,LLLLL,

porset, 1 xxxxxxxx=> init, 0, 1,1,1,1,1,0,1,1.0,1, 1,1,1;

init, xxxlxxxxx=> preot, 0, 1,1,1,1,1,1,1,1,0,1,1, 1, 1;

init, xxx0xx0xx=> init, 0, 1,0,0,,1,0,1,1,0,1,1,1,1;

init, xxx0%x%1xx=> Apre, 1, 1,1,0,1,1,0,1,1.0,1,1,1,1;

Apre, XXXXXXXXX=> As, 0, 1,1,1,0,1,0, 1,1.0,1,1,1,1;

As, x1xxxxxxx=> Apre, 1, 1,1,0,1,1,0,1,1.0,1,1, 1, 1;

As, x,0.xxxxxxx=> Bsl, 0, 1,1,0,1,1,0,1,1.0,1,1,1,1;

Bsl, xxxXxXXxxx=> Bs2, 0, 1,1,1,1,0,0,1,1,0,1,1,1,0;

Bs2, xXXXXXxxxx=> Bs, 0, 1,1,1,1,1,0,1,1.0,1,1,1,1;

Bs, x,%,0,%,%,%%x0=> Cpre, 0, 1,1,1,1,1,0,0,1.0,1,1,0, 1;

Bs, xx0xxxxx1=> Bs, 0,111110,01,0,1,1,0,1;

Bs, xX%,1,%,%,%X%0=> Cwait, 0, 1,1,1,1,1,0,1,0,0,1, 1,0, 1;

Bs, xxlxxxxxl=> Bs, 0, 111110,10,0,1,1,0,1;

Cpre, XXXXXXX.XX=> Csend, 0, 1,1,1,1,1,0,0,0,0,1, 1,1, 1;

Csend, x,x%xxxX,1,x=> Csend, 0, 1,1,1,1,1,0,0,0,0,1, 1, 1, 1;

Csend, x,xxxxxx0x=> Cs, 0, 111110,1.1,0,1, 1,1, 1;

Cs, XX.%,%,0,%,%,%X == Cs, o, 1,1,1,1,1,0,1,1,0,1, 1,1, 1;

Cs, xx.xx,1,xxxx=> Cpost, 0, 1,1,1,1,1,0,1,1,0,0,0,1, 1;

Cpost, x.x%1,xxxxx=> preot, 0, 1,1,1,1,1,1, 1,1,0,1,1, 1, 1;

Cpost, x,1x,0xxxxx=> Apre, 1, 1,1,0,1,1,0,1,1,0. 1,1, 1, 1;

Cpost, x,0,1,0x,x,x,x,0=> Cwait, 0, 1,1,1,1,1,0, 1,0,0.1,1,0,1;

Cpost, x,0,1,0,x,xx,%x,1=> Cpost, 0, 1,1,1,1,1,0,1,0,0.1,1,0, ;

SHOUNOSHY YILVM [I1SAD

vo8c ¢68 9719 XYV 99 TT dNL L8/TZ/01

reo @

Cpost, x,0,0,0,x,x,%,%,0=>
Cpost, x,0,0,0.x.X.x,x,1 =>
Cwait, X,XX.XXX,XXX =>
Dsend, x,x.X,X,%,%,X,1,x=>
Dsend, x,x,X,X,X,X,X,0,x =>
Ds, %X%%,0%XXx=>
Ds, %%%XX1.XXXX ">
Dsl, x%%X1,XxXXX=>
Dst, x,1,%0,%%XX.XX =>
Dsl, x,0,%,0,%,%,%XX=>
preot, XXX, %,%1,XXX=>
preot, XX, %.%,%,0,X,X,x =>

END TABLE;
END;

Cpre, 0,

Cpost, 0,

Dsend, 0,
Dsend, 0,
Ds, O
Ds, O
Dsl, O
preot, O
Apre, 1,
Bsl, O,
porset, 0,
preot, 0,

~»

N

»

-

1,1,1,1,1,0,0,1,0,1,1,0,1;
1,1,1,1,1,0,0,1,0,1,1,0,1;
1,1,1,1,1,0,1,0,0,1, 1,1, 1;
1,1,1,1,1,0,1,0,0,1,1, 1, 1;
1,1,1,1,1,0,1,1,0,1,1,1,1;
1,1,1,1,1,0,1,1,0,1,1, 1, 1;
1,1,1,1,1,0,1,1,0,C, 1,1, 1;
1,1,1,1,1,1,1,1,0,1, 1, 1, 1;
1,1,0,1,1,0,1,1,0,1,1,1,1;
1,1,0,1,1,0,1,1,0,1,1,1,1;
1,1,1,LLL, 01,1, 0,1, L
1,1,1,1,1,1,1,1,0, 1,1, 1, 1;

Figure 13: Text of the CNTRLER Mod 1le Design

SHOUNOSTY HIALVA [1SAD $98¢ 968 0T9 YVd 9G:TT dNL L6/T2/0T

23

O

iptacso & bywelk 1/10

l10ede/7

ipeze 0 & Ihyrckd/10

ipezero & bytclkdNo

Figure 14: State Diagram for the CNTR.ER Module

gz0@ SIUNOSIY YHLVAM [(1SAD 98¢ 668 019 YVd LG:TT dNL L6/T2/0T

Table 12: Dictionary of the Qutput Codes in Figure 10

Code Signals Asserted
1. | RESET_BAR, ENALFSR_BAR

2. | IMSTMPENA_BAR, ENADNCNTR_BAR

3. | ENADNCNTR_BAR

4. | LESRCNTENA_BAR, ENALFSR_BAR, TMSTMPENA_BAR, ENADNCNTR_BAR
5 | PRELOC, ENALFSR_BAR, TMSTMPENA_BAR, ENADNCNTR_BAR

6. |LDSDC_BAR, TMSTMPENA_BAR, ENADNCNIR_3AR

7. | ENALFSR_BAR, TMSTMPENA_BAR, ENADNCNTR} BAR

8. |LDIPC_BAR, TMSTMPENA_BAR, ENADNCNTR_T.AR, DWELL_IDLECHOOSE
9. | TMSTMPENA_BAR, IDLESEND_BAR, ENADNCN [R_BAR, BUSYSEND_BAR
10. | TMSTMPENA_BAR, ENROUTE_BAR, ENADNCNIR_BAR, BUSYSEND_BAR
11. | TMSTMPENA_BAR, IDLESEND_BAR, ENROUTE_BAR, ENADNCNTR_BAR
12. | TMSTMPENA_BAR, ENADNCNTR_BAR, CNTDECR_BAR

13. | TMSTMPENA_BAR, ENADNCNTR_BAR, CNTDECR_BAR, DECRIPC_BAR

14. | TMSTMPENA_BAR, ENROUTE_BAR, ENADNCN R_BAR

15. | none

1.3 Future Waork

Opportunities for future work exist with the present implementation, as well as
with a standard-cell ASIC implementation.

There are threc major enhancements that can be made. The first is the
incorporation of different packet priorities and lengths, Memory bank D could store the
user-programmable probability distributions for the priorites and lengths, in addition Lo
the route number distribution that it now contains. The loss (2 bits) in pdf resolution
would be inconsequential because the present value (14 bits) exceeds our needs.

The second major cnhancement is the widening of the Time Stamp Counter to 40
bits. Iis present length of 16 bits was chosen because it Allowed the design to fit in the

9zZ0@ SHOUNOSHY YILVA (1SAD ¥o8¢ €68 9T9 YVd LG:TT ANL L6/TZ/0T

25

7256 CPLDs. However, the length of the longest test is less than a second. Widening the
counter would increase the test length to over 15 hours, which is ample enough to study
long-term effects of congestion handling procedures on meny different mixes of packet
types and priorities. The LFSR and its initialization counter should also be widened, in
order to guarantee long-term uniformity of the generated adcresses.

The third major enhancement is the inclusion of extra states in the Markov
process. Three or more states may allow more accurate modeling of traffic and more
thorough testing of the switch. The literature on multi-state MMPPs is scanty and this
presents an opportunity for significant research and publicat on.

These enhancements will require bigger CPLDs. The utilization percentages for
the present design (88% and 47%) are high enough that furt 1er modifications might make
routing/fitting/placement very difficult. Routing/fitting of the present design already is
tight as evidenced by the fact that it consumed 40 man-ho 1ts and dictated placement of
the clock division flip-flop on the device other than the onc that needed it. The effect of
the enhancements on the speed of the TG will be minimal because of the parallel

architecture.
3.2 ortunities for evel d-Cell TG Implementation

A standard-cell ASIC implementation of the TG weuld allow the incorporation of
the ephancements mentioned above (as well as other:) without routing or board
trace/space problems. It would also allow the testing of future switches which require
higher speeds, and the multi-state Markov process would generate more realistic traffic.

L20@ SEOANOSTY YALVA [1SAD ¥98¢ ¢68 9T9 XVd 8S:TT HALL LB/TZ/0T

