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DYNAMICAL SYSTEM ANALYSIS OF REYNOLDS STRESS CLOSURE EQUATIONS

SHARATH S. GIRIMAJI*

Abstract. In this paper, we establish the causality between the model coefficients in the standard

pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We

accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and

dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-

strain correlation models to yield obscrved equilibrium behavior.
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1. Introduction. The equilibrium states of benchmark turbulent homogeneous flows have long been

used to develop, calibrate and validate pressure-strain correlation models, Spezialc et al (1991). The bench-

mark flows have typically been plane shear and strain-rate dominated flows such as plane strain and ax-

isymmetric expansion/contraction. When these pressure-strain models are used to compute slightly more

complex flows which contain the effects of both rotation and strain (elliptic flows), the model results arc

inconsistent with linear stability theory and direct numerical simulation (DNS) data, (Spezialc et al 1996,

Blaisdell and Shariff, 1996). Improved predictive capability of elliptic flows requires a better understanding

of the physics of turbulence as well as the dynamics of the model equations. This calls for an intimate un-

derstanding of the model equations, especially the causality between the model constants and the predicted

long-time behavior. For the special case of shear flow in rotating coordinate frame, the equilibrium state

predicted by two-equation turbulence models and linear pressure-strain models have been investigated by

Speziale and Mac Giolla Mhuiris (1989, 1990). These studies have lead to models with better predictive

capability in those selected flows.

The objective of thc present study is to perform dynamical system analysis, i.e., fixed point and bifurca-

tion analyses, of the anisotropy, kinetic energy and dissipation closure equations with aid of representation

theory for all elliptic flows (with two-dimensional mean velocity field) to establish for the first time exact

(analytical) relationship between turbulence model (pressure-strain correlation and dissipation equation)

coefficients and the asymptotic behavior of the equation. The results from our study enables us to classify

completely the turbulent asymptotic state predicted by a model as a function of the mean strain and rotation

rates. The knowledge of this causality can be used in closure model development to yield the required asymp-

totic (equilibrium) behavior. Quasilinear pressure-strain model which includes the entire class of Launder,

Reece and Rodi (1975), referred to as LRR, models are considered here. This study also sheds light on the

strategies that can be employed to develop non-equilibrium algebraic Reynolds stress models starting form

the Reynolds stress closure equations.

In this study we will restrict ourselves to turbulence in inertial frames which includes elliptic flows.

Turbulence modeling in non-inertial rotating frames will be considered in future work.
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2. Turbulence Closure Equations. In homogeneous turbulence, the exact Reynolds stress transport

equation in an arbitrary inertial reference frame is given by

d-ffiuj _ Pij - _j +¢ij.
(i) dr"

The terms, respectively, are the time rate of change, production (Pij), dissipation (Eij) and pressure-strain

correlation (¢ij) of Reynolds stress:

out ovi
(2) Pit = -_,_k _ - _juk oE ;

Oui cguj . _cgui cOut .
_,t = 2_b-E__ 0x-7' ¢'j = P(_ + o-E_,)

The production and dissipation rate of turbulent kinetic energy are, respectively, P = ½Pii and e = ½6ii. In

high Reynolds number flows, dissipation is generally treated as being isotropic:

2
(3) ¢it -- 5e6it •

Closure models are needed for the pressure-strain correlation (¢ij) and dissipation rate (¢).

In this study, we focus on the quasilinear class of pressure-strain correlations models of the general form:

(4) ¢ij = -(C ° _ + C_ P)bit + C2KSij +

c3g(bikS_k + bjkS_*k -- 3brnnS_nn6ij) +

C4K(bikW;k + btkW*k),

where the C's are numerical constants and

. 1 cgUi OUt .

(5) sit = _(O-_j+ _1;

bit - u'ut 16
2K -3 _"

. 1 .aUi OUj

w;t = _(J;-_j ax, );

We choose this form of the pressure-strain model for two reasons. First, this form of the model permits

analytical treatment of the asymptotic behavior. Second, this is the form most frequently used in practical

Reynolds stress closure calculations: this form includes all linear-pressure strain models (e.g. LRR model)

and some of the non-linear models (such as the quasi-linear SSG model) can also be reduced to this form

near equilibrium. For the LRR model, the coefficients are

C ° = 3.0; C_ = 0.; C2 = 0.8; 6"3 = 1.75; Ca = 1.31

The coefficients for the Gibson and Launder (1978) model are

C ° = 3.6; C_ = 0.; C2 = 0.8; Ca = 1.2; 6'4 = 1.2

For the quasillnearized SSG model, the coefficients are

C ° = 3.4; C 1 = 1.8; C2 = 0.36; C3 = 1.25; 6'4 = 0.4

The anisotropy evolution equation can be derived from the Reynolds stress equation and the pressure

strain correlation model:

dbit _
(6) dt* o e _ L_bm, S_,) + L2S_*jbi j (L1 -_

+ L3(bikS_k + btkS_ - 2 btmS_m6ij )

+La(bikW_k + bjkW*k)



The pressure-strain correlation model coefficients are redefined as:

(7) L1°-=C °-2; L_--2C_+4; L2=C2-4_'
3'

L3 = C3- 2; La=_C4-2.

The turbulent kinetic energy evolves according to

(8) dg
dt---: = P - e,

and the modeled evolution equation of dissipation is

= Ca1 _ P - C_2-_.(9)
dt*

The model constants C_1 and C_2 are typically given values of 1.44 and 1.90 respectively.

Equations (6), (8) and (9) constitute the second order closure equations in homogeneous turbulence.

These equations can be non-dimensionalized using the norm of the deformation rate tensor:

(10)

The non-dimensional quantitiesare

(11)

= s,5s:5 + w,;

= =

dt = v/-_dt*; w = e/(v/-_K),

where w is the relative strain rate, i.e., the ratio of the turbulence to mean flow strain rates. In the

above equations, asterisk is used to represent dimensional quantities and the corresponding non-dimensional

quantity is written without the asterisk. In dimensionless time, the anisotropy transport equation is

(12) dbij _ b,j(LO w _ L_brnnSmn) + L2Sij
dt

q- La( Sikbkj -4-bik Skj -- 2 bmnSmnSij )

+ L4(Wikbkj - b_kW_j ).

Two points are worthy of note here. In dimensionless time the anisotropy evolution is (i) independent of the

magnitude of deformation (r/) and depends only on the ratio of strain to rotation rate; and (ii) dependent only

on the relative strain rate and not individually on kinetic energy and dissipation. The evolution equation of

the relative strain rate, w, is easily obtained from those of the turbulent kinetic energy and dissipation:

(13) dw _ 2w(Cel - 1)brnnSm, - (C_2 - 1)w 2.
dt

The first term on the right hand side of equation (13) represents the production of the relative strain rate

whereas the second terms represents its destruction.

In homogeneous turbulence, the above non-linear dynamical system of equations represents an initial

value problem. The Reynolds stress, kinetic energy and dissipation may grow unbounded from their initial

values. However, it is known that for some benchmark flows such as (homogeneous) plane shear, plane strain

and axisymmetric expansion/contraction the normalized turbulence parameters bit and w evolve from their

specified initial conditions according to the equations and asymptote to finite-valued fixed points (equilibrium

turbulence), provided such a state exists. The fixed point or the equilibrium state of turbulence is described

by

(14) dbij dw
_-_ --0; and -_=0.



2.1. Representation theory. We are interested in the asymptotic behavior, long after the influence

of the initial conditions has diminished. At this stage of flow evolution, it can be argued that the Reynolds

stress can be a tensorial function of only the mean strain and rotation rates. Representation theory can

then be invoked to determine the most general tensor function that can be constructed with the strain

and rotation rates. The most general, physically permissible tensor representation for the Reynolds stress

anisotropy in terms of the strain and rotation rates in the case of two-dimensional mean flow is given by

(Girimaji 1996a)

(15)

where,

bij = GISij + G2(SikWkj -- W{kSkj)

_1 ti
+G3(S, kSk_ _71 _j),

(16) 71 = SijS_j; and rt2 = WijWij.

In the above equations Gt - G3 are yet to be determined scalar functions of the invariants of strain and

rotation rate tensors. During the evolution of bij, G1 - G3 will be functions of time as well. Also note that,

by definition, 71 + rt2 --- 1.

The representation for b_j is now substituted into equation (12) and the resulting equation is simplified

using the following identities valid for all two-dimensional mean flows:

(17) 1 _(2) _zr T_r 1

1 1

S_kSkl S,3 = _71S_ ;S_k WkL Stj = - -_71 W_;
|

W_kSklWzj = :rt2Sij ;S,_nbm,_ = G171,
2

Substitution of equation (15) into equation (12) yields the anisotropy evolution equation in terms of coef-

ficients G1 - G3. After substitution, the coefficient of each tensor on either side of equation (12) has to be

equal due to the linear independence of the generators of the integrity basis. Comparing the coefficients of

the three representation tensors on either side we get

(19) dG1 1 L
d---t + Gl(L°w - L]GI_I) -_ L2 d- _ 3Gar/1

Wikbkj -- bik Wkj = -Gl ( Sik Wkj - WikSkj )

+ 2rl2G2Sij.

where (fi(2) and 5ij are the two and three dimensional delta functions respectively. We retain terms up to

quadratic power (in strain and rotation rate) in their original form and invoke their two-dimensional property

only when these terms appear in cubic and higher power terms. For example, SikSkj is retained as such

when it appears by itself: whereas, when it appears as a part of a cubic or higher power term we invoke

SikSkj 1_ _(2) to write SikSkjSjl -= ½71S_. By invoking the two-dimensional property for reducing only

cubic and higher power terms, it is hoped that the three-dimensional effect is approximately accounted for

upto the quadratic term. Using these rules, we write

(18) Sikbkj + b_kSk3 - bmnS,nng_j = -_71GaS_j

1



+2Lar_G2
dG2
d--t + G2(L°w - L_Glrh) = -GiL4,

dG3
d----t-+ G3(i°w - L_GI_h) = 2alL3.

Equations (19) along with (13) constitute the new non-linear system of evolution equations for Reynolds

stresses in homogeneous turbulence.

3. Dynamical System Analysis. Fixed point and bifurcation analyses of the new system is now

performed.

The fixed point equations (14) can now be restated as

(20) dG1 _ dG2 _ dG3 _ dw _ O.
dt dt dt dt

Using the notation that the fixed point values are denoted by a superscript 0, the algebraic fixed point

relations are (using bran Stun = G1 rh ):

(21) 0 = 2w°(Cel - 1)G°_l + (Ce2_ 1 -- 1)(w°) 2

0 -G_(L°w 1 o 1 o
= - L1Glrh) + L2 A- _LaG3rll

+ 2Larl2G °

o a°(L°_ , o a_L_= _ L1G1_?I ) +

o a°(L°_ l O= - L1alm) - 2G°L3

This system of equations leads to the five fixed points:

[_a° = 0, G O = 0, L2 + ½LaG3rll + 2L4rt2G2 ----0];

[_o=o, a°=- _ ao= _-_ ao _-_.
_Q1, L*'h' = -- L*rh 1'

ao= _____ao ______,.[_0 =0, a ° = +_Q1, L-.., = --L-hi J,

[_°=-2_a%, a?=--q:- a°_- _ ao--_---_.
v_' -- L*_I ' -- L*,h I'

[_o=-2_a%, ao = +9:_ ao = _ a_o_ _______
In the above equations Q1 and Q* are defined as

(22)
L2 2(L3_2 L4 1 - 7hQ' : -Vii + _'_' - 2(y1')_ _; '

f

t/_L2 2 L_ L 2 1 - rh,Q*
L-: + 3 L'2 2L'2 _1V

where

(23) L* = 2L ° eel -- 1 + L1"
Ce2 - 1

It should be pointed out that a negative value of G o is consistent with a gradient-diffusion type effect and

energy flow from the mean to the fluctuating velocity field. A positive value would imply count-gradient

diffusion and a negative value of production - i.e, flow of energy from the turbulent fluctuations to the mean

flOW.



3.1. Bifurcation analysis. The qualitative behavior of the solution of a set of differential equations

may depend on the parameters of the system. For example, the nature and even the number of fixed points

of a system can change with changing parameter values (bifurcation). The parameters of the present system

of equations are the constants of the pressure-strain correlation model and the mean strain-rate to total

deformation ratio T/1. (Note that, by definition, Z/2 -- 1 - Z/l, and hence _ is not considered an independent

parameter.) In this paper, we restrict our attention to bifurcation due to _}1alone for a given pressure-strain

correlation model.

The system has five fixed points when 7/1 is such that both Q1 and Q* are real. If only one of Q1 or Q*

is real, then the system has three fixed points. If both are not real, then there is only one fixed point. It is

important to establish the conditions under which Q1 and Q* are real.

For Q1 to be real we require

(24) L2 2.L3,2 _,L4,2 1 - z/1 > 0,
'J -

implying that _I should be greaterthan a criticalvalue_:

2L_

T}I > z?_ = -L_L} -4- -_L23÷ 2L 2"
(25)

Similarly, Q* is real only when

(26) Z/I_>_ ----- 2L2
2 2 2L 2'-L_L* + -_L3 +

For allthe pressure-straincorrelationmodels consideredin thispaper, L2 isnegative and L* > L_ leading

to

(27) 1 > Z/_ > _ > 0.

When z/1 is in the interval (1, z/_), the system has five fixed points. The system has three fixed points in the

interval (z/_, z/b). Finally, for _/1 < _?b, the system has only one fixed point.

In summary, the nonlinear set of equations governing the (modeled) evolution of the Reynolds stress has

two bifurcation points 7/_ and z/b. The behavior of the solution for various values of Z/1 depends upon the

stability of the various fixed points.

3.2. Stability of fixed points. In order to establish the stability of a fixed point, we need to examine

if any small perturbation of the system away from the fixed point eventually returns to the fixed point after

a sufficiently long time. The most expeditious way of establishing this is by investigating the Jacobian of

the system at the fixed point. If an eigenvalue of the Jacobian is negative, solution trajectories are attracted

towards the fixed point along the corresponding eigenvector. On the other hand, if an eigenvalue is positive,

the solution trajectory is repelled away from the fixed point along the corresponding eigenvector. For a fixed

point to be stable all the eigenvalues must be negative, so that all trajectories in the neighborhood of the

fixed point are attracted towards the fixed point. If all permissible initial conditions are attracted to the

fixed point, such a fixed point is called globally asymptotically stable. The set of all initial conditions that

ultimately evolve to a stable fixed point is called the basin of attraction of that fixed point. For a nonlinear

set of equations, such as the one considered here, it is difficult to establish the basin of attraction and will

not be attempted here. We will only seek to establish the local asymptotic stability of each of the fixed

points. First, the various types of fixed points are listed.



1. Whenall theeigenvaluesoftheJacobianarerealandnegative,thenthefixedpointisastablefixed
pointalsocalledanattractoror asink.

2. If all theeigenvaluesarerealandpositive,thenthefixedpointisasourceorrepellor.All solution
trajectoriesin theneighborhoodof thefixedpointarerepelledawayfromit.

3. If theeigenvaluesarerealwithsomepositiveandtheothersnegative,thenthefixedpointisofthe
saddletype.Thesolutiontrajectoriesareattractedtowardsthefixedpointin somedirectionsand
repelledawayin otherdirections.

4. If theeigenvaluesarecomplexandtherealpart ispositive,thenthefixedpointisaspiralsource.
Thesolutionto the systemfluctuatesaboutthefixedpointwith theamplitudeofthefluctuation
gettinglargerwith time.

5. If theeigenvaluesarecomplexwith anegativerealpart,thenthefixedpointisa spiralsink.The
solutionisoscillatorywithdecreasingmagnitudeaboutthefixedpoint.

6. If theeigenvaluesarepurelyimaginary,thenthefixedpointisclassifiedasacenter.Theasymptotic
solutionthendisplaysanoscillatorybehavior.

Thesinkandspiralsinkfixedpointsareattractingfixedpointsand,hence,stable.Saddleandsourcefixed
pointsareunstable.

Fixed point # 1.. This fixed point is given by

1
w °=0, G °--0, L2+_L3G3,h+2L4rl2G2=0.

This is the only fixed point that exists for the entire range of 711values.

The Jacobian at this fixed point is

(oo(28) o o
0

0

The eigenvalues of the Jacobian are

00)2L4(1- 711) 1L5 3711

1 0
L1711G2 - La 0 0

1 0
LIT]IG3 + 2L3 0 0

A1 --0, A2----0,

and the corresponding eigenvectors are

(29)

A3 = +v@L_Q, A4 = -v@L_Q,

Since two of the eigenvalues are zero, this fixed point is classified as a non-hyperbolic fixed point. So long

as Q is real (711 _> 7]b), A3 is positive and Aa is negative leading to this fixed point being a saddle and hence

unstable. When 711< _?bthe eigenvalues A3 and Xa are both purely imaginary; the fixed point is a center and

the asymptotic solution is oscillatory. The stability of non-hyperbolic center fixed point cannot be gleaned

from a linear approximation. The stability can be evaluated only from a center manifold theory which is

not attempted here. It suffices here to say that for 711< 7]5, the long-time behavior of the Reynolds stress in

oscillatory.

vl ----[1,0,0,0],

v2 ----[0, 0, L3_71
6La(1 - 7]1)' 1],

V 3 [0, 1 1 0---- +x/_LiQ, 51711G2 - 54, L_7]1 _33 + 253],

va [O,_v/_L_Q ' 1 o 1 o---- L17]lG2 - La, L17]IG 3 + 2L3].



Fixed points #2 and #3.. These fixed points are given by

1 La

_0=0, _ = ±_Q1, co= L--_' C°-

and exist only in the range _1 _ _?_. The Jacobian at this fixed point is

(30)

0 0 0 0 /

-G o 2G* 2L4(1-_1) ]L3yl

-G O 0 G** 0

-G O 0 0 G**

2L3

L.r] 1

where G* o 1= GI_]I(L 1 -}- eel - 1) and G** = G°_?I(L_ + 2C_1 - 2).

The eigenvalues are given by

(31) A1 -- -2(C_1 - 1)G°_?l, A2 = 2L_G_I_h,

1 o
A3 = A4 = L1G17h.

The eigenvectors are,

(32) Vl = [_07 (L1 + 2Cel - 2),

1
G%II(L] + 2C_2 - 2) + 2L4_ + 553,71

2G%ll(L_ + Cel - 1) ,1, 1],

v2 = [0, 1,0, 0],

v3 = [0, 2L4(1 -,/1)0 1 , 1,0],
GI Ll _71

L3
v4 = [0, _, 0, 1].

_,-_ 1_1

Since all the eigenvalues are non-zero this an hyperbolic fixed point. In all the models considered, L] and

(C_1 - 1) are both positive and 7/1 is positive by definition. As a result, irrespective of the sign of G °, some

of the eigenvalues will be positive and others negative and the fixed point is a saddle. These two fixed points

are unstable when 7/1 > _/_ and do not exist otherwise. They do not play an important role in the long-time

behavior of the Reynolds stresses.

Fixed point #4.. This fixed point is given by

(33) = 2c_, - 1_o I__Q._d 0 -- -_------7(j17_1 _ G 0 =
c_ - 1 v_

2La
Go_ L_ Go=_L_:_.L*_I '

This fixed point exists only for _1 _> _b. Due to the complex nature of the Jacobian, it is difficult to obtain

all the eigenvalues and eigenvectors symbolically. However, one eigenvalue is easily obtained by inspection:

(34) A1 = G_I_IL*; Vl = [0,0, 1,-6 L4(1 - _1)].
L3r]l

The eigenvalues evaluated numerically are plotted in Figure l(a) as a function of the parameter _1 for

the linearized-SSG pressure-strain correlation model. All of the eigenvalues are non-zero (hyperbolic fixed

point) and negative indicating that this is an attractor. (Note that the quantity plotted is the negative of



theactualeigenvalues.)Anotherimportantpointto begleanedfromthethefigureis that eigenvalueAais
alwaysaboutanorderof magnitudesmallerthantheothereigenvalues.This indicatesthat theevolution
equationsevolveslowlyalongtheeigenvectorassociatedwith A4andrapidlyalongall otherdirection.The
eigenvectordirectioncorrespondingto A4isshowninFigure1(b)andit isalmostcoincidentwiththew axis.

The behavior of the eigenvalues of this fixed point with LRR pressure-strain correlation model is qualitatively

and, even, quantitatively similar to that of SSG model.

Fixed point #5.. This fixed point

(35) _jO _-_ -2Cel -- 1 G771 ' C10 1 ,

Ce2 - 1 = +_Q

L4 2Ls

L%, c°- •' L,71

also exists only for 71 --_ ?7b. The eigenvalues calculated numerically are all positive indicating that the fixed

point is a source or a rcpellor and, hence, unstable.

All the stability and bifurcation results for G1 are summarized in Figure 2. The bifurcation diagram of

w is given in Figure 3.

4. Summary and Discussion. The long-time behavior of the standard Reynolds stress closure equa-

tion depends upon the value of the parameter 71, the fraction of deformation that is strain. The asymptotic

behavior undergoes bifurcation at 71 = 75. For values of 71 higher than 7b, the solution of the equation set

asymptotes monotonically to an attractor. For smaller values, the long-time behavior is oscillatory.

Asymptotic behavior ]or ?_1 _" ?7b-.

tion ratio at this equilibrium state is

The solution is attracted to fixed point 4. The production to dissipa-

(36) P (equilibrium) - Ce2 - 1
e Cel - 1

independent of 71.

exponentially at rates independent of 71 :

(37) dlnK _
dT

where T = _vot.

In appropriately normalized time, the turbulent kinetic energy and dissipation grow

P din e P
1; -- eel-- - C_2,

Longtime behavior for 71 < @.. The long-time behavior in this case is dictated by fixed point 1 which

is non-hyperbolic (has zero eigenvalues). Linear analysis about the fixed point is inadequate to determine

its stability. Numerical calculations indicate that (i) w decays monotonically (exponentially?) to zero, (ii)

G1 oscillates about zero, (iii) G2 and G3 converge to non-zero values, (iv) with decreasing 71 the asymptotic

growth rates of kinetic energy and dissipation decrease. In fact, for small enough 71 values kinetic energy

and dissipation decay in time leading to relaminarization.

Implications to pressure-strain correlation modeling.. It is reasonable to demand that future models

yield bifurcation diagrams consistent with experimentally (laboratory and numerical) observed behavior of

the Navier-Stokes equation. At the very least, for the sake of qualitative consistency with true physics, the

bifurcation points of the model equation set should coincide with that of Navier-Stokes statistics.

The DNS data of Blaisdell and Shariff (1996) appears to indicate that the asymptotic growth rate of

kinetic energy is always positive and nearly independent of rh:

(38) din K
dt " _" Const.(> 0), for 1 > 71 > 0,



aresultthatisconsistentwith linearstabilityanalysis.Thelackofqualitative(or,even,quantitative) change

in the behavior of the kinetic energy growth rate appears to imply that there is no bifurcation, contrary

to model predictions. This can be interpreted as the bifurcation taking place at _1 = 0. If this is indeed

true (further work is currently underway), then, in order for the pressure strain model to be consistent with

physics we need:

2542
(39) _ = -L2L* + 2L2 + 2L 2 = O,

leading to La = 0, implying C4 = 2.

This should be the behavior of C4 in the limit of vanishing values of ?_1. The currently used values of C4

yield good agreement with data in homogeneous shear and strain dominated cases. This clearly suggests

that C4 and perhaps all other coefficients should be functions of _71and r/2. These ideas will be explored in

future works.

Non-equilibrium algebraic stress modeling.. Non-equilibrium algebraic Reynolds stress model can be

considered as the approximate solution of the Reynolds stress closure equations away from the equilibrium

state. When rll > _/b the solution approaches the equilibrium state (fixed point 4) along the invariant

manifold corresponding to eigenvector va for nearly all initial conditions. This is because the corresponding

eigenvalue (A4) is much smaller than the rest (Figure la). (From a random initial condition, the solution

evolution along the other eigenvector directions is very rapid, so that the trajectory after a short initial stage

is nearly aligned with the slowest eigen-direction.) In Girimaji (1996b), it was suggested that the invariant

manifold of v4 be used as the non-equilibrium Reynolds stress model and a strategy for determining the

manifold was presented. When vii <: ylb, the strategy for non-equilibrium algebraic modeling in not yet clear.

Central manifold reduction may be the answer and that approach is currently under investigation.
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