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CONVERGENCE ESTIMATES FOR MULTIDISCIPLINARY ANALYSIS AND

OPTIMIZATION

EYAL ARIAN *

Abstract. A quantitative analysis of coupling between systems of equations is introduced. This analysis

is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity

and optimization problems both multidisciplinary and single discipline feasibility schemes are considered.

In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system,

thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence

factor is identified with the measure for the "coupling" between the disciplines in the system. Applications

to algorithm development are discussed. Demonstration of the convergence estimates and numerical results

are given for a system composed of two non-linear algebraic equations, and for a system composed of two

PDEs modeling aeroelasticity.
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1. Introduction. In the last three years there have been a growing interest in the engineering com-

munity in the numerical solution of "multidisciplinary" (MD) problems [1]-[3]. A MD problem is defined

in this work to be a problem which involves the solution of a set of equations which can be divided into at

least two sets (disciplines). Three diffcrent MD problems are considered: the "Multidisciplinary Analysis"

problem (MDA), the "Multidisciplinary Sensitivity" (Adjoint) problem (MDS), and the "Multidisciplinary

Optimization" problem (MDO). The MDA problem is to solve a system of state equations, the MDS problem

is to compute the sensitivity of some given quantity with respect to "design" parameters which appear in

the state equations, and the MDO problem is to minimize a given cost-functional with respcct to the design

variables. Typically each set of state equations models a different physical process and therefore many times

each set is dominated by different scales; the Jacobian of each set of equations is characterized by a differ-

ent eigenvalue spectra resulting in a large and ill-conditioned problem. Also the MD problem introduces a

practical difficulty of connecting large codes of different origin. Whenever possible (computational-wise) it

is desirable to perform the computation in a "loosely coupled" scheme in which most of the computation is

done in the disciplinary levels.

The recent effort in MDO is aiming at the development of new strategies and algorithms to solve the

MD problems in a "tightly-coupled" approach. In some cases the optimization process is performed in the

"system level" while the analysis and sensitivity analysis are performed in the disciplinary levels. Having

the sensitivities of all the disciplines, the system optimization iteration convergence can be analyzed with

classical methods developed for single discipline optimization. For such an approach this work is relevant

only to the development of algorithms to solve the MDA and MDS problems. References [1]-[3] summarize

most of the work done so far in MDO. R.J. Balling and J. Sobieski [4] propose several multi-level algorithms

for the solution of MDO problems in which the design process is decomposed into the disciplinary levels.
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E.J.Crameret. al. [5]proposethreefundamentalformulationsto MDObasedon feasibility requirements:

Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF), and All-At-Once (AAO). These

formulations were applied by G.R. Shubin [6] to aeroelasticity and it is reported that in general the less

feasible formulation, AAO, was the most efficient in practice.

The classical approach to such problems is the sequential ("one-at-a-time") approach; solve each disci-

plinary problem separately, while freezing the variables of the other disciplines. Up-to-date the sequential

approach is used in applications to solve multidisciplinary optimization problems, for example in aircraft

design (e.g.,[7]). The sequential approach has the advantage that it is the simplest to apply since typically

there is a great deal of information and experience on numerical methods for the solution of each of the

disciplinary problems. However, in many cases such an approach is undesirable since it might not converge

to the MD solution at all [8], and in some other cases it might converge to the solution but slowly, requiring

numerous disciplinary solutions and exchange of data between the disciplines at each MD iteration. The

sequential approach is known in iterative methods for solving algebraic equations as the Gauss-Seidel algo-

rithm (for example [9] p.508), i.e., each of the equations in the system is solved separately for one variable

while freezing the variables of the other equations. Therefore, in this paper such an approach will be called

"a Generalized Gauss-Seidel" (GGS) approach. The GGS approach has a parallel version in which the disci-

plinary problems are solved separately in parallel rather than sequentially. This scheme is known in iterative

methods for solving algebraic equations as the Jacobi algorithm and therefore in this paper such an approach

will be called the "Generalized Jacobi" (G J) approach.

Qualitative predictions of the GGS convergence for an MDO problem were done in [10], where it was

shown that the MD Hessian determines the coupling in a static aeroelastic optimization problem. Local

mode analysis of the MD Hessian was performed to prove that for the non-smooth error mode components

the problem has very weak coupling between aerodynamic design and structural design and therefore it

predicts that a sequential approach will be efficient for that problem.

In this paper, a quantitative convergence analysis is developed for the GGS (sequential), and GJ (par-

allel), schemes applied to MDA, MDS, and MDO problems. An upper bound for the convergence rate of

the GGS scheme is estimated by the maximal singular value of a "convergence matrix", .A4, that is given in

terms of the Jacobians and Hessians of the problem. In problems governed by PDEs the convergence matrix

is an operator (typically non-differential) which determines the "coupling" between the disciplines in the

system. We claim that these operators have a fundamental role in the mathematical theory of MDO and

we give an explicit analysis of these operators for an aeroelastic model problem (Sec. 6). The motivation

behind that analysis is to be able to predict a-priori which of the subsystems in a given MD problem are

"loosely coupled" in the sense that a GGS approach will be computationally efficient when applied to the

solution of these sub-systems. The estimates allow to use mathematical theory, for example theory of Partial

Differential Equations (PDEs) in the differential level or linear algebra in the discrete level, to estimate these

convergence factors. Since the estimates are given in terms of the Jacobians and Hessians of the MD system

they can be approximated by existing analysis and optimization disciplinary codes. Throughout the paper

we assume that the problems at hand are well-posed and that there exists a unique solution; only the issue

of numerical convergence to the solution of these problems is addressed.

Demonstration of the convergence estimates and numerical results are given for a system composed of

two non-linear algebraic equations and for a system composed of two PDEs modeling aeroelasticity. The

numerical results are compatible with the analytical estimates.

Throughout the paper the following notation is used (some of the notation is taken from [11]):



A_ - Analysis of system i,

Si - Sensitivity (Adjoint) analysis of system i,

O_ - Optimization of system i,

(Z1, Z2) - Single execution of Z1 followed by Z2,

[Z1, Z2] - Nested execution of Z1 followed by Z2,

[Z1 IIZ2] - Nested execution of ZI and Z2 in parallel (freezing the coupling information at each execution).

For example, (A1,A2) denotes the analysis of system 1 followed by the analysis of system 2, and

[O1 (A1, $1)1102 (A2, $2)] denotes a nested execution of solving in parallel the MDO problem composed of

disciplines 1 and 2 (freezing the coupling information at each execution), where in each disciplinary opti-

mization problem there is a sequential application of the disciplinary analysis and sensitivity analysis.

The paper is divided into sections as follows:

In Secs.2, 3, and 4 the MDA, MDS (Adjoint), and MDO problems are treated respectively.

In Sec.5 the theory is demonstrated on a non-linear algebraic set of two equations.

In Sec.6 the theory is demonstrated on a set of two PDEs modeling static aeroelastic system.

In Sec. 7 discussion and concluding remarks are made followed by thc list of references.

Appendix A presents the norm used throughout the paper.

Appendix B gives a short presentation of the sensitivity equation and the adjoint methods.

Appendix C gives the proof of Lemma 1.

Appendix D gives the Fourier analysis of the aeroelastic problem which is discussed at Sec. 6.

2. The Multidisciplinary Analysis Problem.

coupled system of equations (typically PDEs) is solved,

In a Multidisciplinary Analysis (MDA) problem a

(2.1) Rj(Q1,'",QN)=-O ; j= I,...,N,

where Rj denotes the j'th state equation and Qk denotes the k'th state variable. If Rj is a differential operator

then in the discrete level each of the equations Rj is composed of a system of Nj algebraic equations and

each of the state variables Qj is a vector of the size Nj.

The notation (Akl, Ak_,..., AkN ) is used to denote a GGS iteration for a MD system which is composed

of N state equations, where the integers (kl, ks,..., kN) are a permutation of (1, 2,..., N); equation kl is

solved first for the state variable Qkl, then equation ks for Qk2 and so on. The notation (Akl HAk2II "'" IIAk_)

is used to denote a GJ iteration in which all the equations are solved in parallel. Note that in the GGS case

there are N[ different sequences of iterations depending on the order of solutions while in the GJ case there

is only one choice.

For simplicity a two disciplines system will be considered from here on:

(2.2) RI(Q1, Q2) = 0
/h(Ol, Q2) = 0.

The system (2.2) can be solved in a tightly coupled iterative algorithm for example by Newton's method

or by an exact solver for the hill system. One difficulty with a tightly coupled solution is that the full problem

is typically ili-conditioned; even if each of the disciplinary problems is well-conditioned (by preconditioning

for example), the Jacobian's eigenvalues of one discipline will typically be different than the eigenvalues of

the second discipline. Another practical difficulty with this approach is the need to join together the analysis

codes of the different disciplines.



2.1. A Generalized Gauss-Seidel (GGS) Scheme.

Definition:

A GGS iteration for the two discipline system (2.2) is defined by the following procedure (see Fig.(1)):

Scheme 1.1

Starting with an approximation (Q_, Q_) (from here on the notation n will be omitted, for example

Q1 = Q?),

1. Solve for Q?+I the equation Rl(QT+I,Q2)= 0,

2. Solve for Q_+I the equation _L2[t_ID[_n+l, _2_n+l_} ---- O.

AI A2

_+! D+I

%Q2

FZG. 1. GGS Iteration for the MDA Problem: (A1, A2).

In some cases the GGS sequential algorithm might require many MD iterations thus it might result with

a much higher computational cost than a tightly coupled solution. In such cases there is also a practical

difficulty since each of the disciplinary solutions is computed with a different code, thus each GGS iteration

requires information interchange between these codes.

However, in some cases the GGS scheme converges efficiently to the MD solution. In the rest of this

section the condition for convergence of GGS iteration is analyzed and a quantitative estimate of its con-

vergence rate, Pa, is derived. This might serve as a tool to develop algorithms in complex systems where

possibly only a subset of the system may require tightly coupled solutions; for a system composed of more

than two disciplines it is possible to have a subsystem which is solved in a tightly coupled manner. For

example, in a three disciplines system it is possible to define the MD iteration (A1, [A2, A3]), i.e., solve state

equation number one for Q1 and then solve tightly coupled the state equations number two and three for

Q2 and Q3. It is possible that different sequences of GGS iterations result in different error reduction, e.g.,

(A1, A2, A3) versus (A1, An, A1). In that case we would like to analyze which of the sequences results in a

maximum error reduction.

2.1.1. Linearization. A linear relationship between errors and residuals for the system of state equa-

tions is assumed. In the two disciplines system such a relationship can be written in a matrix form as

,23 (Rio 1o)(01) (R)R2,Q1 R2,Q_ 0,2 R2

where in general the quantities P_j depend on the state variables Q and where (_ and/_ denote the errors

and residuals at iteration n respectively. The block matrices P_,Qj are dominated by the Jacobian _ and
aQ_

axe equal to it in linear systems. We will assume that the block diagonal matrices in (2.3) are invertible.

Note that in the differential level the quantities _ should be understood as the Fr_chet derivative of
aQ_

a function space entity, P_ E W, with respect to another, Qj E _'. Such a derivative is an operator from ,_'



to W:

P_ ,Q j : 2d --* W .

2.1.2. The GGS Iteration in terms of the System Jacobian. Starting with the states Q1 and

Q2 the GGS iteration (see scheme 1.1) can be written as

(2.4) Q_+I _- Q1 + 61

where 0'1 and 0'2 satisfy the following system of equations:

R2,Q1 R2,Q_ 0,2 = -- R2 "

2.2. Convergence Analysis.

Definition:

The convergence :factor for the analysis problem (2.2), Pa, is defined to be the maximum of the disciplinary

error reduction in the state variables as a result of one application of the MD iteration:

IIQT+lll 110' '+111 116 ÷'tl
(2.6) = max{ lIQll----V'HQ211' ' NH J
In non-linear problems the convergence factor depends on the state variables, #a = #a((_).

For small values of/_, the MDA problem can be solved with a small number of GGS iterations. The

higher the value of _ (but still smaller than one) the more GGS iterations required to solve the MDA

problem.

The convergence of the loosely coupled iteration is determined by the map T which relates the error, _',

to the the error after application of a MD iteration, _,_+1:

(2.7) T : g--_ _+1.

In the following the map T is studied for the GGS and GJ iterations for the solution of the MDA problem.

We first find the explicit form of the map T (locally) and then take its maximal singular value, al (T), as the

measure of its L 2 norm (see Appendix A). The error decrease as a result of an MD iteration is estimated

(2.8) II_'+1 II < al(T)ll_l.

We claim that any MD iteration, including the sequential GGS (which is characterized by a map T defined

in (2.7)) converges to the MD solution if and only if al(T") < (1 - e), for n > N where N is some integer

greater than unity, and e is some real positive number smaller than unity: 0 < e < 1.

Lemma 1:

For a two states system (2.2), starting with errors (_1 and (_2 in the state variables and assuming that

the errors satisfy the quasi-linear approximation (2.3), a GGS sequential iteration (A1, A2) results in the

following error relations:

--1 n--1 --1 n--1 -

Q_+I (R1,Q1R1,Q2(R_,Q2) RT2,Q1)Q 1
(2.9)

--1 R R -1
Q_+I (R72,Q 2 2,Q1 1,Q, R1,Q2)Q2 •

The proof is given in Appendix C.



2.2.1. The Convergence Matrix. The convergence matrix for a two discipline system is defined by

(2.10) .h4_ -I -1= P_,Q2R2,Q1R1,QI R1,Q2.

In terms of the convergence matrix the errors in the state variables are given by:

0

k=n

0

"Vl k -0
(2.12) (_n+I:-('R"Q1)-IRI'Q2( H J_a)Q2.

k=n-1

Defining a new variable for discipline 1:

Z 1 : -R2._2R2,Q1Q1

we get that the error reduction in zl is identical to the error reduction in Q2 at all iterations and therefore

we conclude that the convergence matrix determines the total error reduction in the system.

The local error at iteration n is bounded by (the same relation holds for Zl)

(2.13) IIQ211'_+_-< II-MoIIIIQ211-

2.3. Connection with Classical Gauss-Seidel and Jacobi Methods. The iteration (2.4-2.5) is a

generalization of Gauss-Seidel (GS) iteration to systems of equations. When applying GS iteration to solve

an algebraic system of equations Ax = b where A is a matrix and x and b are vectors with proper dimensions,

then a GS iteration has the form

(2.14) Mx n+l ----Nx + b

where M = D ÷ L, N -- -U, and D, L, and U are the diagonal, lower triangular, and upper triangular of A

respectively. The convergence of GS iteration is determined by the spectral radius p(M-1N) ([9] p.508):

Theorem 1:

Suppose b E _ and A = M ÷ N E _nxn is nonsingular. If M is nonsingular and the spectral radius

of M-1N satisfies the inequality p(M-1N) < 1, then the iterates x (k) defined by Mx (k+l) -= Nx (k) + b

converge to x = A-lb for any starting vector x (°).

Generalized Gauss-Seidel

The MD iteration defined by (2.4-2.5) is a GS iteration (2.14) with

R2,QI R2,Q2 ; N = - 0 0

The matrix M-1N is given by

/

(2.16) M_IN = [ 0

\ 0 1 )R1,Q 1R1,Q2
--1 -1 "

Rf2,Q 2 R2,Q1 R1,QI R1,Q2

By theorem 1 the iteration (2.4-2.5) converges if p(M-1N) < 1 where

(2.17) p(M-1N) -1 R --1-_ P(P_2,Q_ 2,QIR1,Qll_l,Q2) •



Note that the expression in (2.17) is the convergence matrix (2.10).

Generalized Jacobi

The sequential iteration (A1, A2) can be replaced by a parallel version (A1 [[A2) where A1 is solved in

parallel to A2. This iteration will be called a "Generalized Jacobi" (G J) MD iteration, since it is a Jacobi

iteration with

The matrix M-1N is given by

0 R;, IR1,Q )(2.19) M-1N = R2.1Q R2,Q1 0 "

According to theorem 1 the GJ iteration converges if p(M-1N) < 1.

Eq. (2.19) implies that the asymptotic convergence rate of the GJ scheme is the square-root of the GGS,

i.e., the sequential (GGS) approach requires less MD iterations than the parallel (G J) to converge.

In a similar manner other iterative schemes can be generalized to MD systems (e.g., Richardson, Kacz-

marz, Etc.). Also, it is possible to apply generalized acceleration techniques developed for systems of equa-

tions to MD systems, foe example, SOR of GS can be applied to accelerate the numerical convergence of

the GGS scheme; in that case the update will depend on the SOR parameter, w, and one should choose the

SOR parameter, w, such that min_ [[M_(w)[[. Extension of this work to acceleration of MDO schemes will

be discussed elsewhere.

3. The Multidisciplinary Sensitivity (Adjoint) Problem. In a Multidisciplinary Sensitivity Anal-

ysis (MDS) problem the sensitivities of the states or of a cost functional with respect to disciplinary "design

variables", (bl,.-., bM), are computed. In the discrete level each bk is a vector of length Mk. The system

(2.1) now includes the design variables and have the following form

(3.1) Rj(Q1,...,QN, bk)=O ; j=I,...,N ; keCj

where Cj is a subset of the integers of {1,.--, M}.

In this section the problem of computing sensitivities of a cost functional, I, with respect to the design

variables is addressed. The cost functional, I, is a mapping between a vector space (a Hilbert space in the

PDE level) to the real numbers and is possibly dependent on all the variables:

I = I(Q1,..., QN, bl,..., bM).

The "MDS problem" is the computation of the sensitivities:

(3.2) (gl,''',gM)-- dbl'"" d-b-M "

As in the previous section, for the sake of simplicity, the discussion will be restricted to the following system

of equations which is related with acroelasticity:

Rx (Q1, Q2, bl) = 0

(3.3) R2(QI, Q2, b2) = 0.



In the aeroelastic application Q1 stands for the flow variables, Q2 for the structural deflection, bl the

aerodynamic shape and b2 for the structural rigidity (see Sec.5). Similar analysis can be done to any other

MD system.

Since there is only a single quantity as an "output" (the cost functional I) and many "inputs" (the

design variables {bk}M1) the most efficient method to compute the sensitivities in such a case is the adjoint

method. A brief explanation of the adjoint method is given in appendix B (for a more rigorous treatment of

the subject see for example [12]).

Since the Jacobian in the adjoint equation is the adjoint of the Jacobian in the sensitivity equations

(obtained by direct differentiation) the convergence estimates for both are identical (see Appendix B).

3.1. Adjoint Formulation. The derivatives of the cost functional with respect to the design variables

(sensitivity gradients) are given by

(3.4) gl = _ -t- \ Oh1) -t- k Oh1) 2
g2 OI ( O____R_ * [ o___a_ *A '

where the Lagrange multipliers, A1 and A2, satisfy the following "adjoint" or "costate" equations" (Ib_
denotes oi R* denotes [_*

and i,Q_ _,OQ_ ] ):

* * A
(3.5) PI (A1, A 2, QI , Q2, bl , b2 ) = Ibl -t- R1,Q1A1 ÷ PJ2,QI 2 = 0

P2(A1, A2, Q1, Q2, bl, b2) = Ib_ + R_,Q2A1 + P_,Q2A2 = 0.

Note that the costate equations are linear in the costatc variables, /_, with non-constant coefficient that

depend on the state and design variables, (_ and b respectively.

3.2. Multidisciplinary Feasible Sensitivity Solution: [$1, $2] - [81 [A1, A2], $2[A1, A2]]. Each of

the disciplinary sensitivity calculations is assumed to be done on a MDA solution as shown in Fig.2. Since

the state equations are assumed to be solved prior to the solution of the MDS problem only the system (3.5)

is considered. In terms of the notations P_j, used in the previous section, the system of error equations is

given by

/_,Q, P_,Q, A2 P2

where P1 and/)2 are the residuals of the system (3.5) at iteration n. A GGS iteration and the convergence

factor are defined in similar to the MDA case and the convergence factor is given by a similar formula.

Notation.

The notation for a GGS iteration for a MD adjoint problem which is composed of N costate equations

is (Ski, Sk2,'", SkN) where the indices should be understood as in the analysis case.

Scheme 2.1: A GGS Adjoint Iteration

A GGS iteration of the two discipline system (3.5) is given by the following two steps, starting with an

approximation (AI, A2) and keeping the state (Q_, Q_) and the design (bl, b2) variables fixed:

1. Solve for A_ +_ the equation

PI(A_+I,A2 =h" * *2, Q1, Q2, bl, b2) = 0



2. Solve for A_ +1 the equation

P2(A1 A_ A,+I ,_. _. bl,b2)= O.z lXl,iX 2 , Udl, L,d2,

^,;A_

Sl $2

a n

p_(^, A = A) =0

Fic. 2. MD Feasible Sensitivity Solution: [St, $2] -- IS1[A1, A2], S2[A1, A2]].

Lemma 2.1:

For a two states system (3.6), starting with errors/_1 and/_2 in the costate variables and assuming fixed

states, a GGS iteration of the adjoint problem (S1, $2) results in the following relations for errors reduction:

(3.7) x +l =

The proof is identical to the proof of Lemma 1.

The convergence matrix for the sensitivity problem is defined by

(3.8)

3.3. Single Discipline Feasible Sensitivity Solution: [SI(A1), $2(A2)]. In this section the conver-

gcncc factor for the combined computation of analysis and sensitivity, of a MD system as shown in Fig.3, is

estimated.

Q:Q;

(A,,_)

.÷1 a

Qt Q2

.*| .

A I,A 2

(A,.%)
1

a+l ! .+l _l

L(Q,._:(_)=0 _ %%
_1 n+l a+l

P2( AI, A= h ) =0 At,A 2

FIG. 3. Single Discipline Feasible Sensitivity Solution: [St(A1), $2(A2)].

Scheme 2.2: A GGS Analysis and Adjoint and Iteration

The process which is under consideration is summarized by the following two steps iteration, starting

with an initial approximation (Q0, 0 0Q2,A1, A °) iteration n + 1 (where n > 0) is given by:

Step 1: (A1,S1),

i. Solve for Q_+I the state equation,

RI(Q_ +1, Q2 = Q_,bl) = 0.



2. Solve for A_ +I the costate equation,

= ,.%n+l f), b b _PI(A_+I,A2 A_,%:1 ,_2, 1, 2]--0.

Step 2: (A2,$2),

1. Solve for Q_+I the state equation,

R2(Q1 -- Q_+1,05+1, b2) = O.

2. Solve for A_ +1 the costate equation,

_n+l f_n-{-i f,n+l z. k \
P2(AI=A?,,_2 ,wl ,w2 ,01,u2)=0.

Definitions:

The sensitivity convergence factor, #s, is defined to be the error reduction in the costate variables as a

result of one GGS analysis and adjoint iteration as defined by Scheme 2.2.

Lemma 2.2:

For a two states system (3.3), starting with errors /_1 and /i2 in the costate variables and assuming

that the errors in the state variables satisfy the quasi-linear approximation (2.3), then a GGS iteration

((A1, $1), (A2, $2)) for the solution of the MDS problem results in the following errors reduction:

_+I S-Ic ,',-,n--l_--Ic',n--l== 11 J'J12 _22 ) _21 ¢::I

_+ _ = S_21S2, S_1_S_2e2.

(3.9)

where

and the errors ei = (Q_, Ai).

Pi,Q_ P_,Aj

Proof."

The GGS analysis and adjoint iteration is updating the variables (Q1, At) and (Q2, A2) with the quan-

tities_1 and _2 respectively which satisfythe following equation

(3.10) (ri)=(s110)( i)
r2 $21 $22 @-2

where ri = (Ri, Pi).

We brought the MDS problem into the same form as the MDA problem (see Eqs. (2.3) and (2.5)) with

the changes Raj _ Sij, Rj _ rj and O --_ _, and (_ --_ _. Using Lemma 1 we conclude that

(3.11)
_?+1 --1 n--1 --1 n--l--- SII S12(S22 ) S21 el

_2+I --I --I ------ $22 $21811 S12e2.

[]

lO



The convergence matrix of a GGS sensitivity (adjoint) iteration, (SI(A1), $2(A2)), is defined by

(3.12) Ms = $221S21S1-11S12.

The convergence factor for the iteration (SI(A1), $2(A2)) is bounded from above by the maximum singular

value of Ads or equivalently by the square-root of the spectral radius of A/t*A4s:

(3.13) .s _<.,t .Ms)
Note that the block diagonal terms in the convergence matrix, A4s, are A/ta and .Ma. :

(3.14) it/Is= ( A4aA/[asA4a.O ).

The eigenvalues of fl4s are equal to the eigenvalues of A/ta and _4a.. However the maximal singular

value of .h4s is different than that of A4a and J_4a. and therefore the convergence rate of the scheme

[SI(A1), $2(A2)] is possibly different than that of [SI[A1, A2], $2[A2, A2]].

4. The Multidisciplinary Optimization Problem. In a Multidisciplinary Optimization (MDO)

problem the minimum of a given cost hmctional with respect to the disciplinary design variables, (b l, • • •, bM),

is computed:

(4.1) min I(Q1,"', QN, bl,'", bM),
(bl,...,bM)

subject to the MD state equations:

Rj(Q1,.-.,QN,bk)=O ; j=I,...,N ; kECj.

As in the previous sections, for the sake of simplicity, the discussion will be restricted to the following

problem which is related with aeroelasticity:

(4.2a)

subject to

(4.2b)

B).

rain I(Q1, Q2, bl, b2)
(b_,b2)

RI(Q1,Q2, bl) = 0

R2(Q1,Q2, b2) = o.

The adjoint formulation is used for the derivation of the sensitivity gradients (see Sec. 3.1 and Appendix

4.1. Multidisciplinary Feasible Optimization Solution: [O1, O2]. Each of the disciplinary opti-

mization problems is solved on a MDA and MDS feasible solutions (see Fig.4): [O1, 02] -- [O1 ([A1, A2], [$1, $2])

, O2([A1, A2], IS1, $2])]. Since zero errors in the states (3.3) and costates (3.5) are assumed, only the system

of the design equations (3.4) need to be considered:

(4.3)
* * AIbl Jr" RI,blA1 -{- P_2,bl 2 _- 0

* * AIb_ -t- RI,b2A1 + P_,b2 2 ----- 0

11



where the following notation is used Ib_ OI= _ and R*,bj = Obj" In that case the system of error equations
for the design variables can be written as follows

where gl and g2 are the residuals when solving Eq.(4.3) (these residuals are equal to the sensitivity gradients)

and the matrix H is the transformation between errors end residuals of the design equations (gradients).

The matrices/-/ii are dominated by the disciplinary Hessians (assuming feasible state solution, the first order

term in a Taylor expansion of the gradient is the Hessian, thus, in the first order approximation, the Hessian

relates the errors in each of the disciplinary design variables with the negative gradient of that discipline).

Assuming MDA and MDS feasibility at each optimization step, the GGS iteration is defined as in the

MDA ease with O replacing R and where equation (4.4) replaces (2.3) (the Hessian blocks, HO, replace the

Jacobian blocks, Rij).

Ol

minI (b b=_)
bl I _ 2 2

e,,%,A)=O

_', b:,A:

O2

_, minl(b,=8:b)

. R,:o.,_) =o
Q,/b2,A;

e,.:A:_) =0

÷ l D+l

[ + +l a+l

FIG. 4. MD Feasible Optimization Solution: [O1,02].

Lemma 3.1:

For a two disciplines optimization problem (4.2a-4.2b), starting with errors bl and b2 in the design

variables the MD feasible scheme, [O1,02], results in the following expressions for errors reduction:

_+1 = [H{_1H21[/_/n-1_-1Hn-1]
[, 22 ) 12 j 2(4.5)

_-I-I .= [H_21H12H_1IH21]_)2.

The proof is similar to the proof of Lemma 1.

The convergence matrix in that case is given by

(4.6) .A/IH = H221H21H_ll H12,

and the convergence factor is bounded by

(4.7) ,,<

4.2. Single Discipline Feasible Optimization Solution: [O1(A1, _ql), O2(A2, $2)]. In this section

we estimate the convergence factor for the solution in which there is decoupling of the analysis, the sensitivity,

and the optimization solutions of one discipline from the other as shown in Fig.5. In terms of the notation we

have used so fax the decoupled scheme is denoted by [Ok1 (Akl, Sk I ), Ok 2 (Ak2, Sk2)], i.e., optimizer of system

kl is using repetitive calls to the analysis and sensitivity analyzers of system kl (and uses fixed values of

states and sensitivities of system k2) followed by optimizer of system k2 which acts similarly for system k2.

12



a a a

Q f bl'?/1

n n la

Ot b2'A2

O(AcS) O(A,S)

bl I 2 2 i a+ln+l_l

P_%QTq)=° b_ .., /e¢%=q q)=o /

P,(AI, A_)=0] Q_bfA2[ P,(AI=_J,)=0 !

FIG. 5. Single Discipline Feasible Optimization Solution: [O1 (A1, $1), 02 (A2, $2)].

The MD scheme under study is summarized by the following two steps scheme. Starting with an initial

approximation, 0 0 0 0(Q1, Q2, A1, h2, b°, b°), iteration n + 1 (where n > 0) is given by:

Scheme 3.2: A GGS MDO Iteration: (Ox(A1, $1),02(A2, $2))

Step h OI[A1, S1],

Solve for b_ +l the optimization problem

minb?+ 1 I(Q_+I, Q2 = Q_, b_ +1, b2 = b_)

subject to

11,ug I _ _2 = Q2, = 0.

Step 2: O2[A2, $2],

Solve for b_+i the optimization problem

minb_+a I(Q1 _- "°cI_n+l, '_2¢-)n+1, bi = b? +1 , b_ +1 )

subject to

r)n+l _n+1 b_+l)R_(Q1 = "_1 ' "_2 ' = O.

Lemma 3.2:

For a two disciplines optimization problem (4.2a-4.2b), starting with errors bl and b2 in the design

variables and assuming that the errors in the states satisfy the quasi-linear approximation (2.3), then a

single discipline feasible GGS iteration, (O1 (A1, S1), 02 (A2, $2)), results in the following errors reduction:

--1 n--1 --1 n--1 -

6'_+1 :(Oll O12(022 ) O21 )el

_,_+1 (0210210111012)_2

where the matrices Oij are defined by

(4.8)
( /_,Qj 0 R/,bj )

Oi_ = Pi,Qj P_,Aj P,,b

gi,Qj gi,A_ gi,b_

and 6i = (Qi, Ai, bi).

Proof:

13



In terms of the matrices Oij the relation between the errors and the residuals is given by

where ri = (1_, ei, 9i).

The GGS MDO iteration is updating the variables (Q1, A1, bl) and (Q2, A2, b2) with the quantities 61

and 62 respectively which satisfy the following equation:

:
We brought the MDO problem into the same form as the MDA problem (see Eqs. (2.3) and (2.5)) with the

changes Ri,Qj --* Oij, Rj _ rj, Q, _ _, and Q -_ & Using Lemma 1 we conclude that

--1 n--1 --I n--I -

_?+I (011 O12(O22 ) 021 )el
(4.11)

_+1 ___ (O2--2102101--11012 ) _2.

[]

The convergence matrix in this case is given by

(4.12) J_o --I --I= 022 021011 012.

As a result of one iteration (O 1 (A1, S1), 02(A2, _2)) the total error in the variables of discipline 2 (and

also in the transformed variables of discipline 1 (see Sec.2.2.1)) g= (0, A, b) is reduced by

(4.13) _n+l = .A4og.

An upper bound for the convergence factor, #o, is estimated by the following formula:

(4.14) #o <_ P½(A4*o.A4o).

5. Test Case I' a Non-Linear Algebraic Example. In this section we treat a set of two non-linear

algebraic equations. The aim here is to demonstrate how the MD convergence estimates are computed when

the state equations are non-linear. In this example the estimates will be computed in the same space as the

numerical computation is performed, in contrast to the next section in which the estimates are approximated

in the infinite dimensional space while the equations are solved in finite dimension. In non-linear problems

the equations are first linearized and the convergence theory is applied to approximate the MD convergence

rate on the linearized system.

5.1. Multidisciplinary Analysis. Let us examine a simple set of non-linear algebraic equations:

(5.1) x3 + x2 = bl
Xl "+ X3 : b2

where we set bl = b_ = 2. A solution of the above system is given by (xl = 1,x2 = 1).

A GGS iteration for the iterative solution of the system (5.1), (A1, A2), is the Gauss-Seidel (GS) iteration.

The convergence matrix (a scalar in this case) for the "MD" iteration (A1, As) is given by (Eq. (2.13)):

(5.2) -1 -1 1
>a(n > I) < R_2,Q2R2,Q1R1,QIR1,Q. _ -- 2 2"

-- 9XlX 2

14



In this case the convergence factor depends on the states, Xl and x2. At the solution, (Xl -- 1, x2 = 1), the
1

convergence factor is asymptotically equal to 6 thus the predicted asymptotic convergence rate for the GS
1

iteration for the solution of Eqs.(5.1) is #a = 6"

Application of formula (C.8) for the first iteration results in the following inequality

1 I °l 1
(5.3) #a(n = 1) _< max {3x_ I_°1 ' 9z_x 2 }"

Fig.6 depicts the actual convergence rate versus the theoretical upper bound, where Ptheory given in

(5.2-5.3), and

1
For n > 2 both Ptheory and #act,,at are equal to tt -- 6"

5.2. Multidisciplinary Adjoint. We define the cost functional

(5.4) I(Xl, z2) _-= (XlX2 - 1) 2 -_- _Xl 2 -_- x g,

where xl and x2 satisfy Eq.(5.1).

The sensitivities d_l and dI are given by

dl _1
(5.5) gl - dbl --

dl A2
g2 -- db2 --

where the costates, )h and )_2, satisfy the adjoint equations:

3x21A1
(5.6) \

)_1 -[- 3X2_2---_ --Ix_ "-_ --(2Xl(XlX2- 1)-_- 2X2).

5.2.1. Multidisciplinary Feasible Sensitivity Solution: [SI[Ai,A2], $2[A1, A2]]. Since all the op-

erators in this case R4,Qj are real scalars the convergence estimates are identical to the MDA case. In the

numerical test the MDA problem is solved first and then the GS scheme is applied to the adjoint system

(5.6). Fig.Ta depicts the actual versus the upper bound convergence rate for this scheme. As in the MDA

case there is a good agreement between the theoretical upper bound and the actual convergence rates.

5.2.2. Single Discipline Feasible Sensitivity Solution: [SI(A1), S2(A_)]. We apply Lemma 2.2 to

estimate the upper bound for the convergence rate. In this case the matrices Sij are given by

( 0) (1 0)(5.7a) Sll = 6Xl)_l +Izl,X _ 3X_ ; S12 = Ixl,x2 1

(5.7b) $21 = Ix2,_ 1 ' 6x2_2 + Ix2,x2 3x_

where

(5.8)

1
Ixl,xl = 2x2x2 -F

Ixl,x2 = 4XlX2 -- 2

Ix2,xl ----4XlX2 -- 2

I_2,_ 2 = 2XlXl + 2.
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The upper bound for the convergence rate is estimated by

In the numerical test scheme 2.2 was applied [S1 (A1), $2 (A1)]. Fig.7b depicts the actual versus theoretical

upper bound of the convergence for this case. The theoretical upper bound for the first GGS iteration is

I_theory(n = 1) _ 2.6 (n = 1 in the figure). The actual convergence rate approaches the MDA convergence

rate#a=lforn>>l.

5.3. Multidisciplinary Optimization. The optimization problem is defined by

(5.9) min I(xl, x2)
b* ,b2

subject to Eq.(5.1), where the cost functional I(xl, x2) is defined in (5.4).

5.3.1. Multidlsciplinary Feasible Optimization Solution: [O1,02]. The Hessian is computed

with a combination of the adjoint and direct-differentiation method (the combination of the adjoint and

sensitivity methods to compute the Hessian was originally introduced by R. Haftka [13]). The Hessian is

given by

(5.10)

where A' o_ satisfies=b-6

(5.11)

og Og OQ ag_,

cgP OP OQ OP ,

o-_+ o--_o--_+ -_ _ = o

and P -- P(Q, A, b) denotes the residuals of the costate equation

(5.12)
OQ + _OQ ]

For the problem (5.9)

(5.13) __o___oP
ab -- OQ -- -fig = 0 and

Thus the Hessian is given by

Hn H21 ) ___ _,= /Op_-lopDQH12 //22 - \-_-X] _ Ob =

( )1((5.14) _ 3x 2 1 6XlA1 ÷ Iz,,=l
1 3x_ I=_,=,

where Ix,,=_ are given in (5.8)

The convergence factor #H for this scheme is estimated by

(5.15)

where A4H is given by

(5.16)

_,. <_p½(M'.M.)

.A4H = H221H21H111H12.

-1

6x2A2 + I=2,=2 1 3x 2
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In the numerical test each of the sub-optimization problems was solved at a time, i.e.,

O1 -- mini(x1) ; 02 = mini(x2),
bl b2

where full MDA and MDS feasibility were maintained at each solution. Fig. 8a depicts the actual versus

theoretical upper bound of the convergence for this case. The actual and theoretical upper bound convergence

factors for the first GGS iteration are given by #act_,az(n = 1) _ 2.7 and I_theory(n ---- 1) _ 9.5 respectively.

The asymptotic convergence rates are given by #actual(n -- 1) _ 0.93 and #theory(n = 1) _ 0.95.

5.4. Single Discipline Feasible Optimization Solution: [01(A1,S1),O2(A2,S2)]. The conver-

gence of the GGS scheme, [01(A1,S1),O2(A2, $2)], is determined by the matrices O,j defined in Eq.(4.8).

For the problem (5.9) the matrices O_j are given in the following:

(5.17a) (R1ol0Rib1)( 01)Oll = P1,Q1 PI,AI Pl,bl = 6XlA1 + I_1,_ 3x_ 0

gl,Q1 gl,A1 gl,b, 0 --1 0

(5.17b) (R1Q20Rib)(100)O12=-- P1,Q2 PI,A_ Pl,b2 _- I_1,_ 2 1 0

gl,Q2 gl,A2 gl,b2 0 0 0

(5.17c) O21 = (R2Ol0R2bl)(100)P2,Q1 P2,_1 P2,bl : Ix2,x 1 1 0

g2,Q1 g2,_1 g2,bl 0 0 0

(5.17d) (R2o0Rb)( 01)022 = P2,Q_ P2,_ P2,b_ = 6x2A2 + I_2,_ 3x_ 0 •

g2,Q2 g2,A2 g2,b2 0 --1 0

An upper bound for the convergence factor is estimated by the spectral radius of J_4_J_/[o, where

A4o = 0_0210111012:

uo < p_ (,_/[oJ_o).

Fig.8b depicts the actual versus theoretical upper bound of the convergence for this case. The actual and

theoretical upper bound convergence factors for the first OGS iteration are given by _actu_z(n --- 1) _ 1.9 and

_th_o_(n = 1) _ 4.3 respectively. In the numerical test the solution of the problem was obtained after the

third iteration in which the error was reduced by a factor of approximately 1.75.10 -6 (the optimal solution

is given by xl = 1,x2 ---- ½,b_ -- 1½, and b2 -- 1_). It is interesting to note that in this case the solution

required much less optimization steps than in the previous case where full feasibility was maintained. This

was predicted by the analysis although the upper bound for the convergence is higher than the one found in

practice: for n > 1, I_theory _ 0.25.
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6. Test Case II: A Coupled System of PDEs Modeling Static Aeroelasticity. In this section

we treat a set of two coupled PDEs with the aim to demonstrate how estimates in the PDE level can be used

to approximate the different convergence factors in the problem. Since the actual numerical computation is

done in a finite dimensional space, the continuum estimates holds only in the limit of the discrete mesh-size,

h, approaching zero. Nevertheless, the continuum estimates give a good approximation of the actual discrete

convergence (as long as the discrete mesh is not too coarse). The coupling estimates can be derived also in

the discrete level where the different Jacobians are large matrices (rather then operators).

In this example we use Fourier analysis and Parseval's relation to estimate the norms of the convergence

operators involved, however it is not necessarily the only way to get such estimates. The problem under

consideration is linear in the state variables with non-constant coefficients. However, the optimization

problem is non-linear since the design variables multiply the states. In the general case where the state

equations are non-linear the first step in the analysis is to linearize them resulting in a linear equation with

non-constant coefficients similar to the problem under consideration in this section.

This problem contains some of the physical features of static aeroelasticity. Aeroelastic optimization

is a major MDO problem in aerospace industry (e.g., [14] and references their-in). The aerodynamic state

equation models the flow around a body and the design variables are some parameters defining the shape

of that body. The aerodynamic cost functional is typically the drag or some measure of the closeness to

some specified pressure distribution. The structure state equation typically results from a finite element

analysis of the structure and the design variables are some parameters which determine the stiffness of the

structure. The structure cost functional is typically the weight and there are constraints on the stress on

different elements in the structure. There is not a unique way to define an MDO problem in that field and

hencc we will assume a simple model problem that contains some of the physics of the real problem.

6.1. Problem Definition. We consider a two dimensional potential flow over a one dimensional beam.

The MDO problem is to compute the set of rigidity parameters, {Dh}N1, and the set of shape parameters,
h N

{c_i )i=1, such that the following cost functional is minimized (we denote the discrete quantities by a super-

script h),

N

cO h 2(01)
i=l

subject to the inequality constraint

(6.2) D h >_ D,_i,

and to the following finite difference equations,

(1 2 hh hh- M_)cO_¢,,_ ----0+ 0_z¢i,k
h h h h= 0_(_ w_")0_¢_,1 +

(6.3) ¢_,_= ¢_,k
CN-- l,k

¢,_,N= o

1 h 2
+ _(D,")½ + _(CO_¢,_)W2+ _,_(_, ) ]

I<i<N

l <i,k<N

I<i<N

l<k<N

l<k<N

I<i<N

(6.4)
h h h h -PiO_AD,O_w_ ) = ¢_)

Wl_= W_ = O
h h h hOLw_ o=O_W_ =

I<i<N

for a simply supported beam
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where Oh, Oh, Oh and Cg_zdenote finite difference operators for the first and second derivatives in the x and

z directions respectively.

The pressure, p, depends on the potential by the Bernoulli law (we assume 0x¢ << Uoo):

(6.5) p = poo+ poov o ¢.

In the numerical test the far field parameters were set to unity except the far field Mach number which was

set to zero (the latter was chosen to simplify the analytical estimate of the coupling):

Po_ =po_=Uoo=l ; Mo_=O.

The forth term in the cost functional was added for uniqueness of the optimal solution a* (since only the

derivative 0x_ appears in the equations). The weights in the cost functional were determined to establish a

significant coupling between the disciplines, i.e., at the optimal solution the deflection, W*, and the shape,

a*, have the same order of magnitude:

71 =1 ; 72=0.01 ; 73=-1 ; 3_a= 1.

In order to avoid singularities in the beam equation, D h : 0, an inequality constraint has been applied

on the rigidity:

(6.6) D(x) >_ Drain(x) 0 < x < 1

where the minimal value of the rigidity was set to D,_in(x) = 10 -4.

The computational grid consisted of an (N x N) grid on which the potential equation was solved in the

whole domain while the beam equation was solved on the boundary (z = 0). On each grid point on the

boundary, 1 < i < N, two design variables were defined: a h and D h.

6.2. MDA. The MDA problem is to solve the system of diseretized PDEs (6.3-6.4) for ch and W h

where the design parameters, a h and D h, are fixed. A GGS iteration is composed of two steps; solving

Eq.(6.3) for ch keeping W h fixed, followed by the solution of Eq.(6.4) for W h keeping ch fixed. By Eq.(2.13)

the convergence of the above GGS iteration is determined by the norm of the convergence matrix, A4_ =
--1 --1

P_,Q2R2,Q1R1,Q1R1,Q2. In the following Fourier analysis in the continuum level is used to estimate the

norm of dt4a. Since the estimate is derived in the continuum level and the numerical test is done in the

discrete level, the derived estimate is only an approximation (that is expected to be more accurate with the

refinement of the discretization).

An Estimate of the convergence factor using Parseval's Relation

We now make use of Parseval's relation to estimate the norm of the convergence matrix, .hda, in the

PDE level. Parseval's relation states that the L 2 norm of the error in real space is equal to the L 2 norm of

the error in Fourier space:

(6.7) IMIL,= 113kilL2.

By Eq.(2.13)

(6.8)
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and therefore (see Appendix A)

(6.9) I1_ +111 < mkax (A)/:.A)I.) ½[l@'21[.

An upper bound for the convergence factor, #a, is estimated with

½<6.10) ]2°< max =max( --
- k \/ k x_v(D)¢w(D)/

6.2.1. Numerical Results. In the numerical test the scheme [A1, A2] was applied. A random number

generator was used to give the initial values to the state variables, Ch and W h. At each iteration the single

discipline analysis problem (the the potential equation for ch) was solved to machine zero accuracy, keeping

the other discipline state variables (W h) fixed. This was followed by solving the second discipline analysis

problem (Beam equation for W h) while keeping the updated values of the first discipline (¢h) fixed. The

equations were solved with a second order accurate finite difference iterative method.

Fig.9 depicts the actual convergence rate versus the theoretical upper bound, where ]2theory given in

(6.10) and

IIW_-+ll,_
I1,_"11' IIW"ll J

Since Gw (D) in (6.10) depends on the values of the rigidity, tfDhlNiJi=l, the estimate (6.10) was computed by

the analysis code for the actual values of the rigidity at each iteration. An alternative could have been a good

a-priori estimate of the minimum value of Gw (D). The results show good agreement with the predictions

of the convergence estimates. It is interesting to note that although the estimate for the convergence factor

depends on the non-constant coefficient D h still the predicted values of/*4 axe fixed (for n > 1) on the value

]2theory _ 7 X 10 -3, possibly due to the determination of the extremal values of D h, oOxD h and OxxD h during

the early stage of the computation. The actual convergence rate is about ]2act_l _ 1 - 3 x 10 -3, (lower

than the upper bound estimate). After the fourth iteration the errors in the state variables reach the level

of machine accuracy and the computation is terminated.

6.3. MDS. In the MDS problem the sensitivities on the cost functional, (6.1), are computed with

respect to the design variables O h and ah. We choose to use the adjoint method (see appendix B) to

compute these sensitivities since it is the most efficient method if there are less "outputs" (in this case the

only output is the cost functional) than "inputs" (2N design variables) in the problem.

The costate equations for that problem, in the continuum level, are given by (the costate flow and

structure variable are denoted by A1 -- A and As = _ respectively):

Flow Costate Equation

(6.11)

AA=0

O_A= O_n+ 271(a_¢ - oj*) + 730_w

O_A=O

O_A = 0

A=0

in f_={0<x<l; 0<y<l}

onz=O

onx-----O

onx= 1

onz= I.
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Structure Costate Equation

Oxx(DOxxrT) = -OzA - "1'30x¢ on z = 0 ; 0 < x < 1

(6.12) 7(0) = _/(1) = 0

0xxp(0) = axxv/(1) = 0 for a simply supported beam .

dF
Having defined the states and costates, the sensitivity gradients, gl = _F and g2 = _-5, are given by

(6.13) g] =0xA+3,4a on z=0 ; 0<x< 1.
g2= o= ,7o  w + D-½

The MDS problem, for this example, is to solve Eqs.(6.11-6.12) for A and rl. We apply two schemes:

the MD feasible sensitivity solution [$1, $2] and the single discipline sensitivity solution [SI(A1), $2(A2)]

requiring only single discipline state feasibility at each step (see Secs.3.2-3.3).

Multidisciplinary Feasible Sensitivity Solution: [$1, $2]

By Lemma 2.1 (Eq.(3.8)) the convergence matrix for the MD feasible sensitivity scheme is given by

2kTr
1:)-* R* R-* D* -- *

(6.14) _4a .... 2,Q2 2,Q1 1,QI"_I,Q_ _v(D) --.Ma"

We conclude that

(6.15) IIM -II - IIM II,

thus we predict the same convergence factor as in the MDA case.

Single Discipline Feasible Sensitivity Solution: [S] (A1), $2(A2)]

The symbol of the convergence matrix for that scheme is given by (see Eq.(3.14))

M 1 1 ( o0)= S22 821Sll S12 = J_as J_a*

where

(6.16)

An upper bound for the convergence rate is estimated by

(6.17) _<

6.3.1.

tested.

.h_ia : (.A;ta-)* = _-D)2k= . jO_. = 4krc(_f3-'h2k_r)' Gw(D)

Numerical l_sults. In the numerical test the two schemes [Sl, $21 and [SI(A1), S2(A2)] were

Multidisciplinary Feasible Sensitivity Solution: [$1, S_]

In the numerical test the MDA problem was solved first and then the GGS scheme was applied to the

adjoint system (6.11-6.12). A random number generator was used to give the initial values to the costate

variables: )_h and @. The same procedure as in the MDA case was repeated for the adjoint equations.

The theoretical upper bound in this case is identical to the one in the MDA problem (Eq. 6.15). Fig.10a
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depicts the actual versus the upper bound convergence rate for this scheme. For iteration number n > 1

the theoretical upper bound settles on /_th_o_y _ 8 × 10 -a while the actual convergence rate for n > 1 is

_Zactual _-. 2 - 4 × 10 -3.

Single Discipline Feasible Sensitivity Solution: [SI(A1), $2(A2)]

In this case a random number generator was used to give the initial values to both the state and costate

variables: ch, W h, Ah and r/h. At each iteration the single discipline analysis and adjoint problems were

solved sequentially (the analysis problem is independent of the adjoint problem).

Fig.10b depicts the actual convergence rate versus the theoretical upper bound, where #theor_ given in

(6.17) and

It¢"+ "11 ' IIw"+ "ll

For iteration number n > 1 the theoretical upper bound, computed by (6.17), settles on IZtheory _ 1.1 × 10 -2

while the actual convergence rate for n > 1 is #_ct_at _ 1 - 5 × 10 -3.

6.4. MDO. The MDO problem is to solve the optimization problem (6.1-6.4). The MDO problem is

divided into two sub-optimization problems: O1 and O2. In O1 the design variable is c_h while O h is fixed

and in 02 it is visa versa. In the numerical test two schemes were applied: the MD feasible scheme, [O1, O2],

and the single discipline feasible scheme, [01(A1, $1), 02(A2, $2)].

6.4.1. Fourier Analysis for the MD Feasible Scheme [O1,02]. By Eq.(4.6) the convergence matrix

in this case is given by

(6.18) .It4n = H_l H21H_1H12.

Following [10] the symbol of the Hessian for this problem is computed by the following procedure. The map,

in Fourier space, between the errors in the design variables and the state variables is computed:

W(k) = - 2rik dw(D) 0 GD(W) D(k)

The solution of (6.19a) is substituted in the following equation for the map, in Fourier space, between the

errors in the design variables and the costate variables:

el(k) 27rik Gw(D) _/3(27rik) 0 Iv(k)

()1( )()(6.19b) _ 27rk 2rik 0 0 &(k)
27rik Gw(D) 0 GD(rl) D(k) "

Finally, both the solutions of (6.19a) and of (6.19b) are substituted in the expression for the symbols of

the sensitivity gradients to compute the map, in Fourier space, between the errors in the design variables

and the residuals of the design equations (the gradients):
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(01,k,)(0 0 0O_(k) = o d_(v) W(k) + 0 d_(w) #(k)

,o19c, o0 -'7_1D-+ b(k) "

As discussed in [10] the symbol of that map is the symbol of the MD Hessian:

(6.20) (gl(k)g2(k) )- (/2/ll(k) /2/12(k)/2/m (k) /:/22(k) ) (&(k)b(k) )

Having computed the symbol of the convergence matrix for that problem,

X_. (k) =//_1 (k)/_1 (k)/:/;11(k)/_12(k),

an upper bound for the convergence rate is estimated by

(6.21) u. _<_p_ (M;,(k)M,(k)).

6.4.2. Fourier Analysis for the SD Feasible Scheme [O1(A1, Sx), 02(A2, S_)]. By Lemma 3.2 the

convergence matrix in this case is given by

(6.22) Ado ---- 021 O21Oll 1 O12

where the operators Oij are defined in (4.8).

The matrices _)ij are given in the following:

(6.23a) 01a= /51,Q1 /51,al /51,bl = 2'71(27rk) 2

gl,Q1 gl,)_1 91,bl 0

0 -27rik )
27rk 0

2_rik "74

(6.23b) 012= /)1,Q2 /_l,A2 /_1,b2 = --'73 (27r/k)- 271-ik 0

gl,Q2 91,A2 gl,b2 0 0 0

(6.23c) 021= /5:,Q 1 /52,_, /Su,nl = "73(2rrik) 21rik 0

g2,Q1 g2,_l g2,bl 0 0 0

(6.23d) ()22: /52,Q2 /52,a2 /52,b_ = Gw(D) GD0?)3 •
92,Q2 92,X2 g2,b2 dD(_}) GD(W) -'72_1-_D

Using Parseval's relation an upper bound for the convergence factor is estimated by the maximal singular

value of JQo, or equivalently by

(6.24) I_o < max p½ (JQ*o(k)2_4o(k ) ),
k

where .A_O : 0221 0210il 1 012-
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6.4.3. Numerical Results. In the numerical test the two schemes [O1,02] and [O1(A1, $1), 02 (A2, $2)]

were tested.

Multidisciplinary Feasible Optimization Solution: [O1,02]

optimization step.

actual rate by

In the numerical test the MDA and MDS problems were solved to machine zero accuracy at each

The theoretical upper bound for the convergence rate was computed by (6.21), and the

II nll ' IIZ%tl

In that case the error in ah reduced at the first iteration by a factor of 1.3 x 10 -5 while that of D h by 3.7 × 10 -6.

Since the error reduction is so significant the computation is terminated after two iterations due to the low

numbers involved in the computation at this stage. The theoretical upper bound is #theory "_ 3.5 x 10 -2

which is much higher than the actual convergence rate.

Single Discipline Feasible Optimization Solution: [O1(A1, $1), O2(A2, $2)]

In this case at each iteration the single discipline optimization problem was solved while keeping the

variables of the other discipline fixed.

Fig.ll depicts the actual convergence rate versus the theoretical upper bound, where I-ttheorV given in

(6.24) and

(I[_n+l .jr ,_n--bl _._ C_n--blll [iWnq-1 + _]nq-1 .__/_n+lll ,

In this case the actual convergence rate for iterations 2,3,4, and 5 are given by 5.5 x 10 -¢, 1.84 x 10 -3,

8.8 x 10 -a, and 1.02 x 10 -2. The theoretical upper bound is l.$theory ,_ 5.2 X 10 -2. As discussed in [10] the

fast convergence of sequential algorithms applied to the aeroelastic model problem indicates of weak coupling

between the two disciplines.

7. Discussion and Concluding Remarks. We present a quantitative analysis to determine the

convergence rate of loosely coupled schemes for solving MD systems of equations.

The sequential scheme, where the problems are solved in the disciplinary level "one-at-a-time", is iden-

tified as a generalization of the Gauss-Seidel (GGS) iterative method. The parallel version of the sequential

scheme, where the problems are solved in the disciplinary level in parallel exchanging coupling data after

each MD iteration, is identified as a generalization of the Jacobi (G J) iterative method. Other iterative

schemes can be generalized to MD systems (e.g., Pdchardson, Kaczmarz, Etc.).

The asymptotic convergence rate for the GGS scheme can serve a measure for the coupling between the

disciplinary problems since the looser the coupling is the lower is the value of that convergence rate. An

upper bound for the convergence rate (convergence factor) is estimated for the multidisciplinary analysis

(MDA), sensitivity (MDS), and optimization (MDO) problems.

Five different basic schemes are considered (given here for problems composed of two disciplinary sub-

problems). In all the schemes the convergence matrix is given in the general form .M = Z_21Z21Z_lZ12. The
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quantities Z_j depend on the scheme under consideration and are summarized here for the different schemes

presented in the paper:

• Sequential GGS scheme for the MDA problem, [A1, A2]: Zij = P_,Q_

• Sequential GGS scheme for the MDS problem

- MD feasible sensitivity solution, [$1, $2]: Zid = R_,Q,

- Single discipline feasible sensitivity solution, [$1 (A 1), S2 (A2)]:

Pi,Qj P_,h_

• Sequential GGS scheme for the MDO problem

- MD feasible optimization solution, [O1, 02]: Zi,j = H_,j

- Single discipline feasible optimization solution, [O1 (A1, $1), 02 (A2, Ss)]:

P_,Qj 0 P_,bj )
Zi,j = Pi,Qj Pi,Aj P,,bj •

gi,Qj gi,Aj gi,bj

For all of these schemes an upper bound for the convergence factor is estimated by # < O'l(J_), where al

denotes the maximal singular value of 34. In problems governed by PDEs the quantities M are operators,

typically non-differential, which measure the coupling between the disciplines in the problem.

The convergence theory was applied to two test cases: a system of two non-linear algebraic equations

and a system of two PDEs which model an aeroelastic system (in both test cases there are non-linearities

causing the coupling to be a local property). In both test cases MDA, MDS, and MDO problems were

defined, analyzed, and tested numerically. In the first test case it is demonstrated how the convergence

factors can be estimated in a finite dimensional level. In the second test case it is demonstrated how the

convergence factors can be estimated in the PDE level; such estimates are expected to be more accurate

as the discretization refines. The symbol of the convergence operators were computed explicitly and where

estimated on the boundary (which is the interface between the two disciplines involved). The symbols

indicate that the convergence operators are pseudo-differential and contain the information of the coupling

between the two disciplines. We think that these operators play a major role in the theory of MDO governed

by PDEs. The numerical results are compatible with the analytical estimates.

In applications, where large codes are involved, the different convergence factors can be approximated

numerically, locally, using numerical computation (in the disciplinary level) of the Jacobians and Hessians of

the different disciplines in the problem. These convergence factors can serve as a tool to develop algorithms

for the solution of MD problems. When a problem is composed of more than two disciplines the convergence

factor can be estimated between all the different disciplines. For example, if the problem is composed of

three disciplines and the convergence factor of the iteration (A1, As) and that of (A1, A3) is much smaller

than that of (As, A3), then the scheme (A1, [A2, Aa]) is expected to have desired convergence properties.

For MDO problems which have a "system level", e.g., for O[(A1, $1),(A2, Ss),(A3, $3)] the convergence

theory can be applied to define algorithms for the solution of the MDA and MDS problems. Extension of

this work to acceleration of MDO schemes will be discussed elsewhere.
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Appendix A. Norms. Throughout the paper the L 2 norm is used. In the following we define it for a

vector, a matrix, a function, and a differential operator:

• Let ff be a vector in C n, then

• Let A be a matrix in C mxn, then,

li_H:= _. _,

IIAII= sup IIA_II
_c_ I1_11'

• Let v = v(x) be a function in a Hilbert space T/, then

II ll= fv (x)dx,
• Let L be a differential operator L : 7-/--+ VY where W is a Hilbert space, then

ll/IJ =

Theorem [15]

For any A C C TM, the L 2 norm of A is given by

llLvll
sup

v(x)c_ Ilvll

ilAII=al(A)=p½(A*A)

where aj is the maximal singular value and p is the spectral radius.

by

Corollary

Using the above theorem and Parseval's relation, the L 2 norm of a differential operator can be bounded

IILII_ %a_p_ (L*(k)L(k)),

where g(k) denotes the symbol of the operator L.

Appendix B. The Sensitivity Equation and the Adjoint Methods. Let L be a partial differential

operator defining the following PDE:

L(Q, bi,...,bM) = O,

where Q denotes the state variables and bj denote the j'th design variable. Let I = I(Q, bb..., bM) be a

functional. The sensitivity problem is to compute the derivatives

dI

(B.1) gj = d-_j.
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A briefsummaryof the"sensitivityequationmethod"(alsoknownas"direct-differentiation")andof the
"adjointmethod"aregivenin thefollowing.Foramoreextensivetreatmentofthesemethodsseeforexample
[16]-[17]forthesensitivityequationmethodand[12],[18]fortheadjointmethod.

B.1. The Sensitivity Equation Method. The sensitivity equations are a linear set of M equations

given by

(B.2) LQCj + Lbj =0 for 1 < j < M,

where the solutions Cj are the sensitivities of the state variables with respect to the design variables on all
the domain:

(B.3) ¢j = _--_j.

In terms of the sensitivities, the derivatives of the cost functional with respect to the design variables are

given by

OI ¢ OI
(B.4) gj = -_--Q j + --_j for l < j < M.

B.2. The Adjoint Method. With the adjoint method the computation of the derivatives gj is done

with the solution of only one linear PDE, rather than M, irrespective of the number of design variables.

The adjoint equation, for the adjoint variable A, is a linear PDE is given by

OI

(8.5) L_A + _-_ = 0.

where the operator L_ is the adjoint of LQ. In terms of the adjoint variable, A, the derivatives of the cost

functional with respect to the design variables are given by

(B.6) gj = L* OI
b,A + Obj"

Appendix C. Lemma 1.

Lemma 1:

For a two states system (2.2), starting with errors Qa and Q2 in the state variables and assuming that

the errors satisfy the quasi-linear approximation (2.3), a GGS sequential iteration (A1, A2) results in the

following error relations:

= /R -1 R , .n-1 ,-1 ,-,,,-a _QIQ_+l _ 1,Q1 1,Q2!,rt2,Qa) "xt2,Q 1(c.1) ]

Proof."

The solutionsequence (At,A2) of system (2.2)impliesfirstsolvingRI for Ol and then solving//2 for

Q2 as definedinEqs.(2.4-2.5).The solutionofEq.(2.5) isgiven by

(c.2) -1 -1 -1 •
- Rf2,Q2R2'Q_ R1,Q1 P_,Q2 R2
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Let (Q_, Q_) denote the solution of the coupled system (2.2). The errors after a GGS iteration (2.4) are

given by

(c.a)
{_n+l

1 : Q_ - (Q1 -_- Q1) = 01 - 01

O_+1: Q_ - (Q: + 02) = Q2 - 02.

Substitution of (C.3) in (2.3) gives

(R"+I Rn+l )(C.4) 1,Q1 1,Q2
_n+l p_+l*_2,Q, ,Q=

Substitution of (C.2) in (C.4) gives

(C.5) _ ( /_+1R_+' )

where

01 - 01 -(R_+1 )"

(Rn+lo +1)(QI)= 1,Q1 "_1,Q2

_n+l (02/_+1 PC
,Q1 * '*2,Qa

()()1( )]C = 1 0 _ R1,Q1 0 R1,Q1 R1,Q2 .

0 1 R2,Q1 R2,Q 2 R2,Q1 R2,Q 2

(c.6)

Using relations (2.3) and multiplication of Eq.(C.5) from the left by the matrix

/:_n+l jt:_n+l )--1

* _I,Q, * _1,Q2

l_n+l t_n+l
*"2,Qa *_2,Qa

results in the following relation between the errors before and after a GGS iteration for MDA:

[(10)( R1-- 1,Q1 0

(C.7) 0_ +1 = 0 1 --zt2,QaD-1 R2,Q1 R-11,QI P_,Qa-1

/,From Eq.(C.7) it is concluded that

QT+I = _(__1,Q1)-lR1,Q2(_2

(C.8) (_+1 -1 R-1 R1,Q2 02.
----R72,QaR2,Q1 1,Q1

By the above two relations the following holds:

(C.9)

and

(c.lo)

)(R1,olRI,o )](Q1R2,Q1 R2,Q2 (02)

Q_+I = -(l_L1Q1R1,Q2) {[I_n-l"_-lI_n-l [t_n-l ,-1Rn-l _ta}n-1
_*'2,Qa] *"2,Q1', 1,Q1! 1,Q2 ]'_2

(01_- - ( ( R?-Q11)- l Rn-1_ (_r_ -1.1,Q2]

Substituting (0_-1 of relation (C.10) in relation (C.9) results in an expression for the error reduction in QI:

(C.!l) (_--kl = (RI_I.R1,Q2(p_,Qla)-Ip_,Q11)(01.

[]
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Appendix D. Fourier Analysis of the Aeroelastic Problem.

D.1. The Analysis Problem. The error equations are analyzed with Fourier analysis resulting in the

symbols of the Jacobian operators, P_,Q_. Then Parseval's relation is applied to estimate the norm of the

operators R_,Qj in the real space.

The Flow Analysis Problem: R1 (¢, _) = 0

The analysis problem, R1, is given by the following PDE (in this specific case the error equation is

identical to the state equation):

A¢ = 0

0z¢=_

(D.1) 0z¢ = 0

o_¢=o

¢=0

where _3 = _(x) is some non-constant L2[0, 1] function.

The solution of Eq.(D.1) is given by

(D.2) ¢(x, z) =

where

in f_----{0<x<l; 0<y<l}

onz=0

onx=0

onx=l

onz=l

k=-oo,k_O

(D.3) Ck(Z) = -- tanh(21rk) cosh(2rkz) + sinh(2_rkz).

Since the function ICk(z)[ has a maximum at z = 0 in the interval z E [0, 1], for all k, we conclude that

(D.4) I¢(x,_)l _<I¢(x,0)l 0 < _ < 1

and therefore, for the sake of error convergence, we will examine the error in ¢ on the boundary only (z = 0).

By Eq.(D.2) on the boundary ¢ = ¢(x) satisfies

(D.5) ¢(x, 0) = - w'°° h- _e i(2_k*)Z..._k=--ov_,k¢O t--'_ 2_k

Cz(X,0) = _k_=-_,k_0 _ke_(2_k_)"

We conclude the following symbols of the Jacobians:

(D.6) /_l,_(k) = --_2_k ," Rl,w(k)=-27rik

Rl,a(k) = -2_rik ; f_l,D(k) = 0.

The Structure Analysis Problem: R2(W, D) = 0

The analysis problem, R2, is given by the following PDE (simply supported boundary conditions):

(D.7)

a.x(Dax.W) = -p

W(O) = WO) = 0

Ox.W(O) = O_W(1) = O.

on z=O; O<x<l
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(D.10)

where

Linearizationof (D.7)resultsin thefollowingerrorequation

O_:::(DO_zW) + Oxz(DO_xlTv) = -p on z = 0 ;

(D.S) ?¢(0) = ?¢(1) = 0
0_xI_(0) = 0_I]V(1) = 0.

The errors W, D, and/5 are expanded by a Fourier series:

(D.9) lJd(x)= l]Vkei(2'_k_) ; D(x)= bkei(2'_kx) ; _(x)=

k=-oo,k_O k=-oo,k_O

Substitution of (D.9) into (D.8) results in an expression for the symbol of R2:

O<x<l

Gw(D) = D(2rrk) 4 - 2i(OxD)(2rtk) 3 - (O_,D)(2rrk) 2

(D.11) GD(W) = -(2rrk)2OxxW + 2(21rik)OzxxW + O, xa:,_W

_, = 2rik.

Therefore, the symbols of the Jacobians are give by

(D.12) /_2,¢(k) = 2_rik ; /_2,w(k) = Gw(D)
&,o(k) = 0 ; R,_(k) = do(w).

D.2. The Adjoint Problem.

The Adjoint Flow Problem

The symbol of the adjoint flow operator P1 on the boundary is given by (P1 (A, 77,¢, W) = OzA - O_rl -

2,_l C_xx ¢ -- ,.,/30x W )

2_rk
"r3w) + 2"_,(2,_k)_,(D.13) P1 (k) - )_ - (271"/k) (?) -4-

tanh--_-rrk) \

therefore the symbols of the Jacobians are given by

[_l,w(k) = -T3(27rik)
Pl,,7(k ) = - 27rik

P_,_,(k) = O.

(D.14)

/51,,(k) = 2"rl (2rrk) 2

Pl,A (k) -- 2_rk
tanh(21rk)

P_,_(k)= o

The Adjoint Structure Problem

The symbol of the adjoint structure operator P2 on the boundary is given by (/:'1 (A, rl, ¢, D) = 0x, (DO,:::_7)+

0_ + _aO_¢)

(D.15) _'2(k) = (_w(D)_ + dD(rl)D + (2_rik)(A + 'Ya¢),

therefore the symbols of the Jacobians are given by

(D.16)

/52,¢(k)= "),a(2rrik)
P=,_(k)= 2_ik

A,_(k) = 0

P=,w(k) = 0
Pa,,7(k)= Gw(D)
P=._,(k)= O_,(V).
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