
DEPARTMENT OF MECHANICAL ENGINEERING

COLLEGE OF ENGINEER_ING AND TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

NONLINEAR TRANSIENT THERMAL ANALYSIS BY THE

FORCE-DERIVATIVE METHOD

By

Narayani V. Balakrishnan

and

Dr. Gene Hou, Principal Investigator

Final Report

For the period ending January 3, 1996

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Attn.: Joseph Murray, Grants Officer

Mail Stop 126

Hampton, VA 23681-0001

Under

Research Grant NAG-I-1567

Dr. Charles J. Camarda, Technical Monitor
ODURF #14O452

Submitted by
Old Dominion University Research Foundation
Norfolk, VA 23508

November 1997



NONLINEAR TRANSIENT THERMAL ANALYSIS
BY THE FORCE,-DERI'VATIVE METHOD

by

Narayani V. Balakrishnan

B.E., May 1982, Madras University, India
M. Tech., May 1984, Indian Institute of Technology, Madras, India

A Dissertation Submitted to the Faculty of

Department of Mechanical Engineering in Partial Full'aliment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING MECHANICS

OLDDOMINION_ITY

August 1995

Dr. Jean W. Hou (Director)

Dr. Chuh Mei Dr.Due Nguyen

J



DEDICATION

Dedicated to my beloved father, Mahadeva Iyer Venkatraman, and my dear

brother, Venkatraman Raghavan.

ii



ACKNOWLEDGMENTS

My sincere thanks are due to Professor Jean W. Hou, chairman of my dissertation

committee, for providing excellent technical guidance during the course of this research.

I extend my gratitude to the members of the committee, Drs. Charles Camarda, Chuh Mei

and Duc Nguyen for their valuable suggestions. This work was supported by the Thermal

Structures Branch of NASA Langley Research Center under grant no. NAG-l-IS67.

Dr. Charles Camarda, who originally suggested this research topic, was the technical

monitor. I also thank Dr. Kim S. Bey for her enlightening discussions. The wonderful

typing job of Ms. Michelle Daft is highly appreciated.

I wish to express my heartfelt gratitude to my husband for his extreme patience and

effective encouragement throughout this endeavor. To my adorable mother, and to my dear

brothers, sisters, and their families I am deeply indebted for their invaluable help and their

strong faith in me. The appropriate words of comfort and encouragement from my friends

and the support of my in-laws are sincerely appreciated. Last, but most important, this

dissertation would have never been completed but for the unbelievable understanding of

and the sacrifices made by my precious little daughters Vidya and Divya, and to them I am

grateful beyond measure.



TABLE OF CONTENTS

DEDICATION .............................................................................................................

ACKNOWLEDGMENTS ...........................................................................................

LIST OF TABLES .......................................................................................................

Page

ii

o.o

Ill

vi

LIST OF FIGURES ..................................................................................................... vii

LIST OF SYMBOLS ................................................................................................... xi

Chapter

1. INTRODUCTION ........................................................................................... 1

1.1 Motivation of Curr_nt Research .............................................................. 1

1.2 Literatu_ Survey ..................................................................................... 2

1.2.1 Approximate Numerical Methods ............................................... 2
1.2.2 Time-Integration Algorithms ...................................................... 5
1.2.3 Adaptive Mesh Generation Techniques ...................................... 8
1.2.4 Reduced-Basis Methods .............................................................. 10

1.3 Objective of Study .................................................................................. 16
1.4 Scope of Study ........................................................................................17

2. GOVERNING EQUATION FOR TRANSIENT HEAT CONDUCTION ..... 19

2.1 Problem Stamment ..................................................................................20
2.2 Finim Element Formulation....................................................................22

3. THE FORCE-DERIVATIVE METHOD FOR LINEAR TRANSIENT
THERMAL PROBLEMS ................................................................................ 24

3.1 Unified Derivation of the Modal Methods .............................................. 24

3.1.1 The Mode-Displacement Method ............................................... 24
3.1.2 The Mode-Acceleration Method ................................................. 26
3.1.3 The Force-Derivative Method ..................................................... 28

3.2 Modal Coordinates for a Linearly Tinm-Varying Load .......................... 30
3.3 A Priori Estimate of the Required Number of Modes ............................ 32

iv



4. METHOD OF SOLUTION FOR NONLINEAR TRANSIENT
TI-IERMAL PROBLEMS ................................................................................

4. I Linearization of the System of Equations ...............................................

Derivation of the Newton-Raphson Method ...............................

Application of the Newton-Raphson Method with
Simplifications ............................................................................

4.2 The Force-Derivative Method for the Transient Response .....................

4.2.1 One-Step Approach ........................................................... _.........
4.2.2 Multi-Step Approach ...................................................................

4.3 Modal Coordinates for a Piecewise Linear Time-Varying Load ............
4.4 Convergence Criterion and Distribution Error Norm .............................
4.5 A Note on the Required Number of Modes ............................................
4.6 A Note on the Computational Effort Involved ........................................

5. LINEAR TRANSIENT EXAMPLE PROBLEMS ..........................................

=

5.1 Rod Subject to Convection at One End ..................................................
5.2 Plate Subject to Uniform Surface Heating ..............................................

NONLINEAR TRANSIENT EXAMPLE PROBLEMS .................................

6.1 Rod Subject to Convection at One End with Temperature-Dependent
Thermal Conductivity .............................................................................

6.1.1 Casel: k(T)-0.0001+0.5E-06T ........................................
6.1.2 Case2: k(T)--0.0001+0.1E-04T ........................................

6.2 Lower Surface of Bay 3 of Shuttle Wing Segment .................................

6.2.1 Simplified One-Dimensional Model ...........................................
6.2.2 Two-Dimensional Model ............................................................

7. CONCLUSIONS AND RECOMMENDATIONS ..........................................

REFERENCES .............................................................................................................
APPENDIX: COMPUTATIONAL PROCEDURES USED IN THE

IMPLEMENTATION OF THE MDM, MAM, AND THE FDM .......

37

37

37

39

41

41
43

46
47
47
48

51

51
57

73

73

73
82

95

100
125

138

141

146

V



LIST OF TABLES

TABLE PAGE

5.1 A priori estimate of the number of modes required at time t = 2 sec
(Linear example problem 2) ............................................................................. 61

6.1 Effect of time step on the solution accuracy of the FDM (Case 1 of nonlinear
example problem 1) ......................................................................................... 82

6.2 Effect of time-marching parameters on the number of modes required at
time t - 0.1 see (Case 1 of nonlinear example problem 1) .............................. 87

6.3 Effect of time-marching parameters on the number of modes required at
time t ---0.05 see (Case 2 of nonlinear example problem 1) ............................ 95

6.4 Comparison of reduction achieved by the MDM and the MAM for Shuttle
one-dimensional thermal model ....................................................................... 111

vi



LIST OFFIGURES

FIGURE PAGE

2.1 Three-dimensionalsolutiondomainfor generalheatconduction .................... 21

3.1 Forcing function that varies linearly with time. 31

5.1 Thermal f'mite element model of a rod subject to transient convective
heating at one end (Linear example problem 1) .............................................. 52

5.2 Temperature distribution along a rod subject to transient convection at one
end at time t = 0.02 sec (Linear example problem 1): a) Mode-displacement
method (MDM); b) Mode-acceleration method (MAM); c) Force-derivative
method (P'DM) ................................................................................................. 54

5.3 Convergence of the modal methods at time t = 0.02 sec O.,inear example
problem 1) ........................................................................................................ 58

5.4 Thermal finite element model (165 IX)F) of a plate subject to uniform,
transient heating over the surface and convection along the entire
boundary (Linear example problem 2) ............................................................. 59

5.5 Convergence of the error, • 1, in the load vector used to predict the number
of modes required by the MDM at times t = 2.0 sec and 9.0 sec (Linear
example problem 2) ......................................................................................... 60

5.6 Convergence of the error, e2, in the pseudo steady-state response used to
predict the number of modes required by the MAM at times t = 2.0 sec and
9.0 see (Linear example problem 2) ................................................................. 62

5.7 Convergence of the error, e3, in the derivative form of the pseudo steady-state
response used to predict the number of modes required by the FDM at times
t = 2.0 see and 9.0 see (Linear example problem 2) ........................................ 63

5.8 Temperature distributionattimet= 2.0 sec along y = 0.0 in.(Linearexample
problem 2):a)Mode-displacement method (MDM); b) Mode-acceleration
method (MAM); c) Force-derivative method (P'DM) ...................................... 65

5.9 Convergence of the correction offered by the MAM, CMAM, at times
t = 2.0 sec and 9.0 sec (Linear example problem 2) ........................................ 68

5.10 Convergence of the correction offered by the FDM, CFDM, at times
t = 2.0 sec and 9.0 sec (Linear example problem 2) ........................................ 69

5.11 Temperature distributionattime t= 9.0 see along y = 0.0 in.(Linear
example problem 2).........................................................................................71

vii



5.12

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Convergence of the modal methods at times t = 2.0 sec and 9.0 sec
(Linear example problem 2) .............................................................................

Thermal f'mite element model of a rod subject to transient convective

heating at one end with temperature-dependent thermal conductivity
(Nonlinear example problem 1) .......................................................................

History of iterations required by the FDM to determine the time for an
EVP update (Case 1 of nonlinear example problem 1) ....................................

Temperature distribution obtained by the MDM, MAM, and the FDM using

two modes at time t = 0.1 see (Case 1 of nonlinear example problem l) ........

Convergence of the modal methods at time t = 0.1 sec (Case 1 of nonlinear
example problem 1) .........................................................................................

Effect of time step on the response of the FDM at time t -- 0.1 see with
initial condition at time t = 0.0 see and one EVP update at _ t = 0.05 see
(Case 1 of nonlinear example problem 1) ........................................................

Effect of time step on the response of the P'DM at time t = 0.2 sec with
initial condition at time t = 0.1 scc and no EVP update (Case 1 of nonlinear
example problem 1) .........................................................................................

Effect of time-marching parameten on the number of modes required by the
MDM, MAM, and the FDM at time t = 0.1 see (Case 1 of nonlinear example
problem 1): a) Mode-di_lacement method (MDM); b) Mode-acceleration
method (MAM); c) Force-derivative method (FDM) ......................................

Comparison of temperature distributions at l_ne t = 0.05 see for the two
cases of nonlinear example problem 1.............................................................

Error history of the b'DM to determine the time for an EVP update (Case 2

of nonlinear example problem 1).....................................................................

Convergence of the modal methods at time t = 0.05 see (Case 2 of nonlinear
example problem 1) .........................................................................................

Effect of time step on the response of the FDM at time t = 0.05 sec with
initial condition at _ t = 0.0 and one EVP update at time t = 0.025 see
(Case 2 of nonlinear example problem I).

Effect of time-marching parameters on the number of modes required by the
MDM, MAM, and the FDM at time t = 0.05 see (Case 2 of nonlinear example
problem 1): a) Mode-displacement method (MDM); b) Mode-acceleration
method (MAM); c) Force-derivative method (P"DM) ......................................

History of the corrections made by the MAM and the FDM: a) Case 1 of
nonlinear example problem 1; b) Case 2 of nonlinear example problem 1.....

Geometry of Shuttle wing segment at Wing Station 240 .................................

Thermal model of the lower surface of bay 3 of Shutde wing segment ..........

72

74

76

78

79

80

81

83

86

88

90

91

92

96

98

99

VlU



6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

Heating history for the lower surface of bay 3 of Shuttle wing segment ......... I01

Spatial distribution of discontinuous heat load on the lower surface of
bay 3 at selected times ....................................................................................

Temperature-dependent quantities: a) Convection coefficient; b) HRSI
thermal properties.., ........................................................................................

Finite element mesh (16 DOF, uniform) for Shuttle one-dimensional
thermal model ..................................................................................................

Temperature histories at different locations through a Shuttle tile and
substructure obtained from a one-dimensional thermal model ........................

Comparison of full-system solutions of different meshes for Shuttle
one-dimensional thermal model .......................................................................

Effect of finite element mesh on efficiency of the MAM for Shuttle
one-dimensional thermal model .......................................................................

Comparison of eigenvalues at time t ffi 350 see of the different meshes
for Shuttle one-dimensional thermal model .....................................................

Mode shapes at time t = 350 see of the 16 DOF meshes for Shuttle
one-dimensional thermal model: a) Uniform mesh; b) Graded mesh ..............

Convergence of the corrections offered by the MAM and the FDM,
CMAM and CFDM respectively, at time t = 50 sec using the Shuttle
one-dimensional thermal model with 166 DOF ...............................................

Temperature distributions obtained by the MAM and the FDM at time
t = 50 see using the Shuttle one-dimensional thermal model with 166 DOF..

Convergence of the corrections offered by the MAM and the FDM, CMAM
and CFDM respectively, at different titres for Shuttle one-dimensional
thermal model: a) 166 DOF uniform rt_sh; b) 16 DOF graded mesh .............

Comparison of the histories of the _,'st derivative of the specified and
convective heat loads for the Shuttle one-dimensional thermal model ...........

Comparison of the historiesof thespecifiedand convectiveheatloads
forthe Shuttleone-dimensional thermalmodel ...............................................

Comparison of the histories of the eigenvalues of the 16 DOF graded
mesh for Shuttle one-dimensional thermal model ...........................................

Variation of the normalized mode-participation factors with time for
different meshes of Shuttle one-dimensional thermal model ...........................

Comparison of temperattrm histories of the different modal solutions for the
16 DOF graded mesh using a time step dt -" 2 see with the eigensolution
updated every 50 see for Shuttle one-dimensional thermal model ..................

102

103

105

107

108

110

112

113

116

117

118

121

122

123

124

126

ix



6.33

6.34

Spatialdistributionof heatingon thelower surfaceof bay3 atselected
times(Smoothly-varyingload)........................................................................

Temperaturecontoursattimet = 1000 sec of Shuttle two-dimensional
thermal model with 187 DOF and discontinuous load ....................................

6.35 Finite element mesh (578 DOF) for Shuttle two-dimensional thermal
model with discontinuous load ........................................................................

6.36 Temperature contours at time t --- 1000 sec of Shuttle two-dimensional
thermal model with 578 DOF and discontinuous load ....................................

6.37 Convergence of the correction offeredby the MAM, CMAM, at time
t = 350 sec using the Shuttle two-dimensional thermal model with 578 DOF
and discontinuous load .....................................................................................

6.38 Comparison of the error histories of the different modal solutions of the
Shuttle two-dimensional thermal model with discontinuous load and
578 DOF ...........................................................................................................

6.39 Convergence of the MDM and the M.AM at time t = 1000 sec using the
Shuttle two-dimensional thermal model with 578 DOF and discontinuous
load ...................................................................................................................

6.40 Finite element mesh (986 DOF) for Slauttle two-dimensional thermal

model with smoothly-varying load ..................................................................

6.41 Temperature contours at time t = 1000 sec of Shuttle two-dimensional
thermal model with 986 DOF and smoothly-varying load ..............................

127

129

I30

131

133

134

135

136

137

X



A

B

C

C

dt

e

el

e2

e3

F

h

I

J ,J2

J

K

K c

Kh

Kr

k

kij

L

m

LIST OF SYMBOLS

cross-sectional area

temperature-_adient interpolation matrix

capacitance matrix

specific heat

time step

distribution error norm

error in the representation of the load vector, R (t)

error in the representation of the pseudo steady-state response, K "I R (t)

error in the representation of the vector, K "I CK "I I_ (t)

unbalanced load vector

convection coefficient

identity matrix

Jacobian matrices with respect to temperature and its time derivative,
respectively

order of _fferentiability of the forcing function

conductance matrix

conduction matrix

convection mamx

radiation matrix

thermal conductivity

components of the thermal conductivity tensor

length

number of time steps between eigensolution updates

xi



N

n

nx, ny, nz

P

Q

Qint

ONe

qi

qr

qs

R

RL, RNL

RQ

Rq

Rh

r

S

SI, S2, S3, S4

T

(13

T e

Ts

T

t

(t)

U

row vector of temperature interpolation functions

total number of degrees of freedom

cartesian components of a unit normal vector

reduced number of degrees of freedom, or, reduced number of modes
used in the solution

generalized heat load vector

rate of internal volumetric heat generation

nonlinear corrective load vector

components of the heat flux vector

rate of incident surface radiation

specified surface heating rate

applied heat load vector

linear and nonlinear components of the applied load vector

load vector due to internal volumetric heat generation

load vector due to specified surface heating

load vector due to surface convection

load vector due to incident surface radiation

number of nodes per element

boundary surface of integration

parts of the boundary surface

temperature vector

function of temperature

environment temperature

surface temperature

exact solution vector of a nonlinear system of equations

time

function of time

unit internal energy

xii



V

x,y,z

Xi

Z

Z

Greek

CC

A

8

£

q)

¢

Tl

A

P

0

oij

"C

Z,(P

V,_t

volume of integration

rectangular Cartesian coordinates

coordinate (i = 1, 2, 3)

vector of modal coordinates

modal coordinate

surface absorptivity

incremental quantity

Kronecker delta

surface emissivity; specified tolerance for iteration convergence

components of the strain tensor

matrix of thermal eigenvectors

thermal eigenvector

mode participation factor

thermal conductivity tensor

diagonal matrix of thermal eigenvalues

thermal eigenvalue

density

Stefan-Boltzmann constant

components of the stress tensor

dummy variable of time integration

variables used to define the Leibnitz's rule for differentiation

of an integral

functions used to define the Leibnitz's rule for differentiation

of an integral

°o°

Xln



Subscripts

0

n, n-l, n-k

P,q

r

i,j, s,m

x,y,z

Superscripts

., .-

• tP

A

a

e

i

m

(m-l)

T

Abbreviations

BIEM

CFDM

CMAM

COMET

CPU

DOF

EVP

evaluated based on initial condition

evaluated at current time, previous time, or k time steps earlier

free indices

modal index

dummy summation indices

directional components in the cartesian coordinate system

fast and second derivatives with respect to time

first and second derivatives with respect to temperature

matrix of reduced number of eigenvectors; vector of reduced number
of eigenvalues or modal coordinates; heat load vector represented by a
reduced number of eigenvectors

approximate

finite element

iteration index

raised to m th power

(m-1)th derivative with respect to time

transpose

boundary integral equation method

corrective vector added by the FDM to the response from the MAM

corrective vector added by the MAM to the response from the MDM

computational mechanics testbed

central processor unit

degrees of freedom

eigenvalue problem

xiv



FDM

FEM

HRSI

MAM

MDM

MITAS

RTV

SIP

TPS

force-derivativemethod

finite elementmethod

high-temperaturereusablesurfaceinsulation

mode-accelerationmethod

mode-displacementmethod

Martin interactivethermalanalysessystem

roomtemperaturevulcanized

strain-isolatorpad

thermalprotectionsystem

XV



Chapter 1

INTRODUCTION

1.1 Motivation of Current Research

High-speed vehicles such as the Space Shuttle Orbiter must withstand severe

aerodynamic heating during reentry through the atmosphere. The Shuttle skin and

substructure are constructed primarily of aluminum, which must be protected during

reentry with a thermal protection system (TPS) from being overheated beyond the

allowable temperature limit, so that the structural integrity is maintained for subsequent

flights. High-temperature reusable surface insulation CHRSI'), a popular choice of passive

insulation system, typically absorbs the incoming radiative or convective heat at its

surface and then re-radiates most of it to the atmosphere while conducting the smallest

amount possible to the structure by virtue of its low diffusivity.

In order to ensure a successful thermal performance of the Shuttle under a

prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle

must be done. The surface temperature profile, the transient response of the HRSI

interior, and the structural temperatures are all required to evaluate the functioning of the

HRSI. Transient temperature distributions which identify the regions of high temperature

gradients, are also required to compute the thermal loads for a structural thermal stress

analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-

dependent thermal properties of the HRSI as well as to model radiation losses.

Based on the capability to handle time-dependent as well as nonlinear boundary

conditions and thermal properties, and programmability in general purpose codes, the

finite element method is used to discretize the governing energy equation. When the
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structure is subjectedto severethermal loads, the discretizationlevel must often be

increasedby addingdegreesof freedomto predict accuratelythe temperaturegradients

and thesubsequentstressresponse.The addition of degreesof freedomsignificantly

increasesthe computationalcost of transientnonlinear thermalanalysis. Hence,it is

desirableto employa methodwhich caneffectively reducethe computationalproblem

sizewhile maintainingaccuracy,thusenablinganefficient solutionof largeor complex

thermalproblems.

The force-derivativemethod hasshown tremendoussuccess,in terms of the

reductionachieved,in avarietyof structuralproblemsandalsowhenappliedto a simple

lineartransientthermalproblem. Thisobservationhasmotivatedthepresentstudyon the

feasibility of using the force-derivativemethodas a reduction techniquefor solving

nonlineartransientthermalproblems.

1.2 LiteratureSurvey

This sectionsummarizesthe researchdone in the past to predict the thermal

response with greater efficiency and accuracy in a wide range of problems. After an

introduction to the different approximation methods available, the commonly used finite

element time integration algorithms are discussed along with measures proposed in the

earlier studies to overcome the demerits associated with such algorithms. Then, studies

on the concept and usefulness of adaptive mesh generation techniques are presented.

Finally, the evolution of the reduction methods to improve the computational efficiency

of large-scale structural problems is outlined, followed by a review of the status of the

reduction methods as applied to thermal problems.

1.2.1 Approximate Numerical Methods

Analytical or exact methods to obtain the temperature response are often

impossible or impractical, due to the arbitrariness or irregularity of the geometry, or other

features of the problem. Therefore, approximate numerical methods are often employed



for thispurpose.Thethermalanalysisof convectively-cooledstructuresby Wieting and

Guy [1]_'wasbasedon thefinite differencelumped-parametertechniquesuchasusedin

theMartin InteractiveThermal AnalysesSystem(MITAS) [2]. The finite difference

modelof a problemgivesa pointwiseapproximationto thegoverningequationof heat

transfer.Themodelis formedby writing differenceequationsfor anarrayof grid points,

andhenceis improvedasmorepoints areused. Bhattacharya[3] and Lick [4] usedan

improved finite difference method for time-dependentheat conduction problems.

However, the method performed poorly when faced with irregular geometriesor

complicatedboundaryconditions.

Anothernumericalapproachis the boundaryintegral equationmethod(BIEM)

wherean exact integral formula is derived relating boundaryheat flux and boundary

temperature from a fundamental singular solution to the governing equation. The part of

the boundary data not already prescribed in the problem statement is obtained

numerically from the formula. The temperature throughout the body is then generated by

means of a Green's type integral identity directly in terms of the boundary data. A hybrid

method which combined the BIEM with the Laplace transform technique to solve

transient heat conduction problems was developed by Rizzo and Shippy [5] in 1970.

Rources and Alarcon [6] presented the formulation for a two-dimensional isotropic

continuous solid using the BIEM with a finite difference approach in time.

The finite element method (FEM) represented a major breakthrough in solid

mechanics. Although the concepts of the FEM were well in use already, the method

gained momentum in 1965 when Zienkiewicz and Cheung [7] introduced it as a method

applicable to all field problems that can be stated in a variational form. This method

gives a piecewise approximation to the governing equation. The finite element model

replaces the solution region by an assem.blage of discrete elements, and thereby reduces

*Numbers in brackets indicate References.
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the continuumproblemto one of a finite numberof unknownsat points callednodes

alongelementboundaries(andsometimeswithin theelementstoo). Thevariationof the

field variablewithin theelementsis expressedin termsof thenodalvaluesof thevariable

and the assumedapproximatingfunctions called interpolating functions within each

element.

Thefinite elementmethodwasfirst extendedto linearthermalanalysisby Wilson

andNickell [8] andbyBeckerandParr [9] to solvesteady and transient heat conduction

problems. With this introduction, the potential of the method to perform thermal analysis

was realized as it could not only represent irregular geometry but could improve accuracy

and sometimes could perform more efficiently for a given accuracy than finite difference

methods. It has the added advantage that it can model both thermal and structural

problems. The various parameters in the method that can affect the nature of the solution,

in terms of efficiency and accuracy, have been studied extensively since the method

evolved." The ease in modeling complex geometry, the capability to handle

time-dependent as well as nonlinear boundary conditions and thermal properties,

pro_rammability in general purpose codes, and compatibility with a subsequent structural

analysis have made the FEM a very useful and effective method in engineering

applications in general.

One of the early works in nonlinear heat transfer using finite elements was by

Richardson and Shum [10], who included nonlinear radiation-convection heat flux

boundary conditions in an explicit formulation. The convergence characteristics were

improved by an alternative implicit-direct iteration scheme by Beckett and Chu [i1].

Aguirre-Ramirez and Oden [12] applied the FEM to solve nonlinear heat conduction

problems with temperature-dependent conductivity by the Runge-Kutta numerical

integration scheme, while Thornton and Wieting [13] developed a procedure to handle

several temperature-dependent parameters for simple elements based on the generalized
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Newton-Raphson iteration technique [14]. The procedure which relies on the

assumptions that thermal parameters are constant within an element and depend only on

the average element temperature, was applied to convecdvely cooled structures [15].

While the early studies employed the variational principles introduced by Gurtin [16]

(traditionally used in structural analysis) to derive the finite element equations,

subsequent researchers used the Galerkin method of weighted residuals with interpolation

functions as the weighting functions, commonly referred to as the conventional

formulation.

1.2.2 Time-lntegrationAlgorithms

Transient problems require the numerical solution of a set of first-order

simultaneousordinarydifferentialequations. This was done by solvingthe incremental

form of the governing equation [17],using an implicittime integrationand modified

Ncwton-Raphson iterationtoestablishequilibriumatevery time increment. The direct

integTationtechniquesstartfrom a known initialconditionand then solverecursivclyfor

the solutionatsuccessiveintervalsof time based on a finitedifferenceapproximation of

the time derivativeof the temperatureatan intermediatetime withineach time interval.

This approximationhas a significanteffecton thebehaviorof the transientresponse. The

study of the oscillationand stabilitycharacteristicsof directintegrationalgorithmshas

receivedconsiderableattentionover the years.

In theexplicitforward-differencescheme, the setof temperaturesata given time

isexpressedas an explicitfunctionof thesetofprevious temperaturesinthe structure.It

requires minimal computation per time step to solve uncoupled algebraicequations.

Capacitance has to bc lumped, which may have itsown inaccuracicsas discussed in

reference[18]. Itisonly conditionallystablewith severerestrictionson thetime stepfor

short or thin elements having high diffusivity.This makes computation costs very

prohibitivewhen the response iscalculatedovcr a long duration.Implicitschemes are
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unconditionally stable even for nonlinear problems [19] thus permitting larger step sizes.

However, they require considerable computational effort to solve coupled equations and

significant additional computational effort for nonlinear problems because of the need for

iterations at each time step and the need to factor the effective coefficient marx every

time step. Nevertheless, implicit algorithms are more efficient for solving stiff equations

with widely-separated eigenvalues. In the popular Crank-Nicholson implicit algorithm

the step size is often dictated by solution accuracy, for too large a step especially in

nonlinear applications, can introduce errors in the spatial temperature distributions.

Myers [20] has presented a method for estimating rime steps required in heat conduction

problems.

Adelman and Haftka [21] have identified some essential features of most transient

heat conduction problems with respect to integration techniques,

I° The thermal response may be divided into regions of slowly and rapidly varying

temperatures. Steep transients accompany initial conditions or sudden changes in

the heat load.

° The rapidity of variation of the transient portion of the temperature history is

proportional to the quantity equal to the square of the length of the element

divided by the diffusivity of the material. During such a transient, time steps

much smaller than this quantity must be taken no matter what type of integration

technique is used.

3. During a period of slowly-varying temperatures, large time steps may be taken by

implicit integration techniques but explicit algorithms still have the

above-mentioned restriction on the time step size.

Extensive research has been performed to improve the efficiency and accuracy of

these algorithms. Subcycling and mixed time integTation algorithms are some techniques
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thathavebeeninvestigated.Subcyclingusesdifferent time steps in different subdomains

of a problem whereas mixed time integration uses different integrators and a single time

step. However, application to nonlinear problems faces difficulties as the critical time

step varies and stability characteristics are not well defined for implicit integrators.

Orivuori [22] improved the efficiency of the Crank-Nicholson method to solve a

nonlinear problem (nonlinearity being due to temperature-dependent material properties

and boundary conditions), by using constant reference values for the effective coefficient

matrices and load vector but periodically multiplying them by time-dependent functions

to account for the nonlinearities, thus avoiding repeated factorizations. Efforts to couple

the development of a set of various-order implicit algorithms and a strategy to

automatically select both the largest possible time step as well as the appropriate

algorithm throughout the solution process have resulted in the GEAR algorithms [23].

Reference [21] compares the GEAR algorithms against those used in SPAR [24] and

MITAS [23.

The Taylor-Galerkin approach fast introduced in convective transport problems

was extended to transient nonlinear thermal-structural problems by Thornton and

Dechaumphai [25] and applied to aerodynamically heated leading edges [26]. This

algorithm utilizes first-order Taylor series in time and Galcrkin method for spatial

discretization. Unlike conventional algorithms, this approach treats the conservation

variable and not temperature as the unknown. The nonlinearities arc conveniently

handled through the flux components thus avoiding the need to regenerate element

matrices for nonlinear problems. The fluxes arc interpolated from nodal values, in the

same form as the conservation variable. The resulting clement matrices could be

evaluated in closed form thus avoiding the numerical integration for complex finite

element shapes. The merits of this linear flux approach were seen again in steady-state

thermal-structural analysis by Pandey et al., [27]. A second-order accurate explicit

scheme was proposed by Tamma and Namburu [28] by including higher-order time



derivatives in the Taylor series which are evaluated from the governing equation. An

alternate implicit, second-order accurate approach was presented by Thornton and

Balakrishnan [29] which uses enthalpy as the dependent variable, thereby handling

temperature-dependent specific heat outside the element inte_al as well and also

permitting larger time steps than the explicit form.

High conductivity or very small element sizes, as may result from adaptive

techniques, could severely restrict time step sizes from accuracy and stability

considerations. As a means of replacing time-integration techniques and their associated

complexities, hybrid methods have been developed which employ the Laplace transform

technique to remove the time derivative from the governing equation and then solve the

equation in the transform domain by the BIEM [5], finite difference [30] or FEM [31-33].

The temperature response is then obtained directly at the selected time of interest by

applying an inverse transform to the solution in the transform domain. Although this

technique was used very efficiently for linear problems in Ref. [33], its accuracy as a

general nonlinear solution technique is questionable. Cerro and Scotti [34] have shown

that the linearizafion involved before the Laplace transform is applied, neglects the time-

dependent behavior of the terms which define the nonlinear problem, and hence produces

significant inaccuracies as the nonlinearity increases.

1.2.3 Adapdve Mesh Generation Techniques

Severe aerodynamic heating produces non-uniform temperatures and stress

_adients over the st1"ucture and the distributions arc also time-dependent. Adaptive mesh

generation techniques are employed to capture such localized effects and thus improve

solution accuracy for a given computational effort. The two basic approaches are :

i. adaptive refinement/derefinement which includes

(a) the h-method,

(b) the p-method,

(c) the r-method, and
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2. remeshing.

The h-method increases/decreases the number of degrees of freedom ('DOF) by

adding/removing elements in the original mesh in regions of interest. It is commonly

used in production-type codes but orientation of elements cannot change to accommodate

the varying field. The p-method maintains the geometry of the elements of the initial

mesh but increases/decreases the DOF by increasing/decreasing the order of the

interpolating polynomial by the use of nodeless variables. The hierarchical temperature

interpolating functions need not be of the same order as displacement interpolating

functions; therefore independent refinement is possible which is useful in integrated

thermal-structural analysis [35] but has its complexities during implementation in

computer programs. The r-method keeps the number of elements and their connectivities

the same but relocates the nodes. This could sometimes result in distorted elements. The

inherent drawbacks in the refinement approaches led to the use of the remeshing

technique [36-37], wherein a new mesh is generated based on the solution obtained from

the previous mesh. The new mesh consists of small elements in the re_ons with large

changes in solution gradients and large elements in the regions where the gradient

changes are small. For thermal problems, especially where the thermal loads move along

the body of the structure and the magnitudes also vary with time, the mesh employed

must adapt itself both in time and space (mesh movement) to accurately capture the

transient temperature response. Remeshing has proved to be beneficial where steep

gradients are involved because of high convergence rates. Mesh adaptivity based on

relative error indicators estimated from the previous finite element solutions, avoids the

need to know the behavior a priori. For a plate subject to nonuniform surface heating,

when compared with a uniformly refined structured mesh, an adaptive unstructured mesh

required much fewer nodes for a given acceptable error or produced a much smaller error

for a given number of de_rees of freedom (nodes).
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1.2.4 Reduced-BasisMethods

A class of methods known as the reduced-basis methods retain the modeling

versatility of the FEM while simultaneously reducing the number of DOF. The central

idea is to solve the problem in a reduced subspace of the original space of discretization.

This is done by replacing the governing equations of the structure by a reduced system of

equations with considerably fewer unknowns. Thus, the actual solution vector is

approximated by the Rayleigh-Ritz technique as a linear combination of a reduced set of

linearly independent basis vectors. The approximate solution vector is then given by the

product of a transformation matrix whose columns are the basis vectors, and a vector of

undetermined coefficients which is obtained by solving the reduced system of equations.

The key to an effective reduction technique is the proper choice of the basis

vectors which may include eigenmodes, Ritz vectors, Lanczos vectors or any suitable

combination of the above. The following guidelines aid in the choice of appropriate basis

vectors:

1. The vectors must be linearly independent and span the space of solutions in the

neighborhood of the point considered on the solution path, and therefore fully

characterize the nonlinear response in that neighborhood.

2. Their generation should be both simple and computationally inexpensive, and

their number can be automatically selected for any given problem.

3. The vectors must have good approximation properties so that they provide highly

accurate solutions on a large interval of the solution path.

While the first property guarantees convergence of the Bubnov-Galerkin approximation,

the other two decide the efficiency and effectiveness of the method in solving large-scale

nonlinear thermal problems. The review of the literature available for reduced-basis

methods is presented in separate sec_ns for structural and thermal problems.
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Structural Problems

The use of modal methods as a reduction technique has increased by leaps and

bounds since its introduction in 1944 by Biot and Bisplinghoff [38] to solve dynamic

structural problems. The eigenmodes of a structure were then recognized, for the first

time, to form a complete set of orthogonal and linearly independent vectors whose

superposition could therefore represent the transient, linear structural response. This

method henceforth came to be known as the mode-displacement method (MDM). Its

attractive feature was that the reduced system of equations that resulted from this

transformation were uncoupled, and hence could be solved individually as single degree

of freedom systems.

The use of modal techniques for nonlinear problems is based on the principle of

local mode super'position. For mildly nonlinear problems, Bathe and Gmcewski [39]

successfully employed the MDM coupled with the residual force technique. Herein, a

single set of modes (based on linear analysis) and a constant effective stiffness matrix is

used throughout the analysis, while the nonlinearities are fully taken into account in the

evaluation of the residual force vector. However, for highly nonlinear problems this

could yield erroneous results as the system characteristics are continually changing, while

an accurate solution might require too frequent basis updates which could prove to be

expensive. Noor [40] observed that the use of the linear solution as a basis vector

necessitates frequent additions of corrective basis vectors, where each additional vector is

obtained by solving the full system of nonlinear equations. To avoid this, Noor suggested

the use of a nonlinear solution and its various order path derivatives as basis vectors in

nonlinear structural problems. To accomplish the same task, Idelsohn and Cardona

[41-42]suggestedthe inclusionof derivativesof the basiseigenmodes and Ritzvectors.

The Ritzvectorshave the advantage of accountingfor the spatialdistributionof the load

at the basis generation itself.
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The efficiency of a reductionmethodis measuredby its ability to accurately

predictthetransientresponseby usingasfew basisvectorsaspossible.Thisability is all

themorecrucial for a modalmethodwherethecompletesolutionof a largeeigenvalue

problem is rather expensiveand also entails huge computer storagerequirements.

Although theMDM provedto beaccurateandcosteffectivefor solvingmanydynamic

structuralproblems,themethodexperiencedconvergencedifficulties whendealingwith

problemsthatexhibiteddiscontinuitiesin timeor space,or problemswith closely-spaced

natural frequencies[50-51]. The MDM often required a large numberof modesto

predicteventhedisplacementresponseaccuratelyandwasineffectivein predictingthe

stresses (which is expected since the stresses arc functions of the spatial derivatives of the

displacements and the process of differentiation tends to magnify errors already existing

in the displacement calculations). Kline [43] attempted to improve the MDM by adding a

suitable choice of Ritz vectors to the system eigenmodes for linear dynamic problems.

Several researchers [44-47] have worked on developing improved higher-order or faster-

convergent modal solutions. The improved convergence of the mode-acceleration

method (MAM) over the MDM is due to the additional term which represents the pseudo-

static response thus including to some extent, the flexibility of the higher modes which

are totally neglected in the MDM.

Camarda [48-50] identified a unified approach for deriving successively

higher-order modal methods, which are collectively called the force-derivative method

(FDM) and offer an increasingly improved approximation of the higher modes neglected

in the basic MDM. As the name indicates, the additional terms in the FDM involve an

increasing order of the time derivatives of the forcing function, which are obtained by

repeated integration by parts with respect to time, of the convolution integral form of the

modal response. Thus the MAM, which supplements the MDM with one correction term

that depends on the forcing function itself, is the first-order FDM.
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The FDM has established its superiority over lower-order modal methods by the

consistently faster convergence and greater accuracy in a wide variety of linear structural

problems [48-S0]. It must be noted that if the forcing function or its time derivatives are

discontinuous in time, the higher-order modal methods should include appropriate jump

conditions to avoid errors in the solution close to the time of discontinuity. This is

because the development of higher-order methods is based on the assumption that the

forcing function and its time derivatives are continuous. McGowan and Bostic IS I] have

demonstrated that for a multi-span beam (which has closely-spaced frequencies) subject

to a uniformly distributed load which varies as a quintic function of time, the FDM (order

4 and 6) not only significantly reduced the number of modes necessary to represent an

accurate response, but also required considerably less computational time as compared to

the lower-order modal methods and the Lanczos method. The highly desirable rapid

convergence property of the FDM was further exhibited in the analysis of an

unconstrained high-speed civil transport structure [$2], which used an elastic flexibility

matrix to replace the inverse of the stiffness matrix which was singular. However, a

comparative study of the central processor unit (CPU) times in this case showed an

increased CPU time required by the higher-order FDM as it performed more calculations

involving the elastic flexibility matrix.

Thermal Problems

Transient thermal problems exhibita wide spectrum response and the higher

thermal modes excitedby the heat supply intensitiesgenerallydominate the response.

Bushard [$3] employed the Guyan reduction technique (commonly used in structural

dynamics) to solve transientthermal problems. The mode-superposition techniquewas

introducedin thermalanalysisas wellby Biot [$4]in 19S7. However, too many DOF had

to be retainedin the reduced system for the MDM to predictan accuratetemperature
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response even for linear thermal problems. The slow convergence of the MDM can be

traced to the omission of the important higher modes.

Nour-Omid et al., [SS] recognized that the Lanczos algorithm, which originated to

solve the symmetric eigenvalue problem, was an efficient tool to extract

eigenvalues/eigenmodes at both ends of the spectrum. This capability enabled the

algorithm to generate a sequence of orthogonal vectors which served as an effective basis

in the transient thermal analyses by Nour-Omid [56] and Coutinho et aI., [57]. By

reducing the system of equations to the tridiagonal form, the solution required little

numerical effort. The vectors were themselves inexpensive to generate. Assuming the

spatial distribution of load does not vary with time, the steady-state solution was used as

the starting vector for linear problems, and with few vectors generated, the coordinate

transformation matrix contained vectors which were also global approximations of the

higher modes [57]. Thus, Lanczos vectors served as an effective reduced-basis for

thermal analysis. Subsequently, in an attempt to capture steep gradients in the solution,

Cardona and Idelsohn [$8] employed the increment of the nodal temperatures for the first

time step as the starting vector to generate the orthogonal Lanczos vectors, and then

supplemented with a constant vector for successive time steps.

Nonlinear thermal problems were handled by Cardona and Idelsohn [58] in a

manner similar to nonlinear structural problems by augmenting the set of basis vectors

with derivatives of the same with respect to their own amplitude parameters, thus
)

accounting for the variation of the system properties caused by changes in temperature.

Noor et al., [$9] extended the path-parameter approach to solve nor_linear steady-state

thermal problems. The governing equation is embedded in a single or multiple-parameter

family of equations. The path derivatives obtained by successive differentiation of the

finite element equations of the initial discretization, are computed at zero values of the

path parameters so that only one matrix factorization is needed. Often an augmented set
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is usedwhich includesa constantvectorto representa uniform temperature mode and

reciprocal vectors along with the first few path derivatives. The cost of evaluating the

basis vectors and generating the reduced equations can be rather high relative to the cost

of solving the reduced nonlinear algebraic equations. This is because the expressions for

the basis vectors grow in complexity for higher-order derivatives and their computation

involves contractions of multidimensional arrays with the basis vectors. Besides, all the

lower-order derivatives must be obtained before any subsequent order derivatives can be

computed.

r On the other hand, a modified modal method reviewed in reference [40] yielded

reasonably accurate solutions for step loaded dynamic problems by employing two sets of

vibration modes as basis vectors, namely

I. Few modes of a linear eigenvalue problem based on initial conditions;

2. Few modes of the nonlinear steady-state of the structure.

This success prompted the application of the modified method by Shore [60-62] to obtain

the temperature history of a model of the Space Shuttle Orbiter wing subject to reentry

heating. The nonlinearities arose from temperature-dependent properties and radiation

from the surface. For temporally varying heat loads, provided the uniform or nonuniform

spatial distribution of the heat loads remained constant in time, excellent results were

achieved. This was made possible by a careful construction of the basis which included

an adaptively generated vector based on the temperature distribution from the previous

time interval among others. When spatially varying heat loads were considered, further

enrichment of the basis via an analytically generated vector based on the changing

heating distribution became necessary.

The unified approach to develop the higher-order FDM for structural problems

has been extended to linear thermal analysis [50]. When applied to a simple
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one-dimensional thermal problem of a rod heated at one end, the first- and the

second-order FDM converged faster than the MDM as they did in structural applications.

1.3 Objective of Study

In spite of the versatility of the FEM, an unwieldy number of degrees of freedom

are often required to model complex geometries or to capture the temperature gradients

arising from severe thermal loads and hence to accurately predict the stress response

subsequently. The important step in nonlinear analyses, the solution of the system of

algebraic equations associated with the finite element model, therefore remains very

expensive even with improved numerical and programming techniques. This is

especially true when analyzing large, complex structures under severe thermal effects

since the analyses need to be carded out for long durations and involve full-size system

matrices which result in prohibitive computer storage and analysis costs.

Literature review indicates that reduced-basis methods have been u_d extensively

to provide very efficient solutions to large-scale structural problems, and to some extent

even for thermal problems. The modal methods use a reduced set of the lower

eigenmodes directlyas thebasisvectors.The effectivenessof theFDM, measured by the

reductionachieved in a multitudeof structuralproblems as well as in a linearthermal

problem, isvery impressive.Nevertheless,the method has heretoforenever been applied

to nonlinearthermal analysis. The FDM has thereforebeen chosen as the reduction

techniqueinthisresearcheffort.

The primary objectiveof thisstudyistodevelop and validatea solutionprocedure

thatemploys the FDM to obtainthe transientresponse fornonlinearthermal problems.

The specificobjectiveof thisstudy istocompare numericallythe efficiency(interms of

thereductioninthe number of equationstobe solvedonly)of the FDM with thatof the

fundamental modal method, the MDM, in obtaining the nonlinear transientthcrrnal
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response (within the desired accuracy) of a realistic structure such as the lower surface of

a segment of the Shuttle wing.

1.4 Scope of Study

To achieve the aforementioned objectives, first of all a new finite element

algorithm has been developed for solving nonlinear transient thermal problems, which

incorporates the modal methods (ranging from the MDM to the second-order FDM) and a

fixed-point iteration scheme. The modal methods have been derived in a form that can be

easily implemented in existing computer programs. This fact coupled with the desire to

take advantage of existing advanced finite element software, has led to the

implementation of the new algorithm in the COmputational MEchanics Testbed

(COMET) system [63].

The analytical solution has been used to solve the reduced system of uncoupled

modal equations, thus eliminating the need to employ a finite difference approximation in

time to solve the fuU-system of finite element equations. The solution, which is in the

form of a convolution integral, is obtained by stepping in time though, in order to

facilitate a piecewise linear approximation to all nonlinear quantities involved, thus

minimizing the error that could result from a totally linearized approach. In this

approach, the obvious restriction on the time step size is imposed by the degree of

nonlinearity of the problem; unlike in conventional time-integration algorithms, where

the time step size is directly dictated by the stability criteria. A study of the effect of time

step size and frequency of eigensolution updates on the solution accuracy has been

performed, to a limited extent, for a one-dimensional nonlinear problem.

A basic understanding of the role played by the correction terms of the higher-

order modal methods in predicting the response accurately with fewer modes has been

provided. Guidelines are presented to show how the relative rate of convergence of the

correction terms as more modes are included in the solution, can be used to make a priori
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estimate of the number of modes required. Attempts have also been made to examine the

effect of the finite element mesh on the efficiency of the reduction process. Finally, to

assess the applicability and the effectiveness of the FDM as a reduction technique, the

method has been applied to perform the thermal analysis of the lower surface of a

segment of the Shuttle wing.

A statement of the general transient heat conduction problem and the finite

element formulation, both linear and nonlinear, arc presented in chapter 2. For linear

problems, the modal methods up to the second-order FDM, the modal coordinates for the

specific case of a linearly time-varying load, and guidelines for a priori estimate of the

required number of modes are all derived in chapter 3. A simplified Newton-Raphson

iteration scheme, and the modified modal methods to obtain the transient response for

nonlinear problems are described in detail in chapter 4. The results of linear example

problems are discussed in chapter 5. Nonlinear thermal problems in one and two

dimensions have been solved, and the results arc discussed in chapter 6. A summary of

the conclusions and suggestions for future research appear in chapter 7.



Chapter 2

GOVERNING EQUATION FOR TRANSIENT HEAT CONDUCTION

In this chapter, a finite element formulation is presented for the computation of

transient temperature distribution in solids with general surface heat transfer. It begins

with a statement of the law of conservation of energy which considers the work done by

the stresses, thermal energy transported across surfaces by conduction, thermal and

mechanical energies stored within the material, and kinetic energy due to deformation.

The energy equation for a continuum in solid mechanics is

_qi _gii _u

+p =Qi., (2.1)

where the subscripts i and j are dummy summation indices ranging from 1 to 3, qi are the

heat flux components in the coordinate directions xi, _ij are the stress components, ¢ij are

the strain components, u is the unit internal energy, 0 is the density, and Qint is the

volumetric rate of internal heat generation. The equation indicates a thermomechanical

coupling which is the conversion of mechanical to thermal energy. Extensive studies on

coupled thermoelasticity have shown that this coupling effect can often be neglected in

the analyses of flight structures, because the thermal energy converrM from mechanical

energy is insignificant compared to the external energy resulting from intensive

aerodynamic heating [64]. Based on this assumption, the solid is considered

undeformable and the internal energy becomes a function of temperature alone. To be

specific, the term (_ij "_ may be dropped from Eq. (2.1) and paU3t can be expressed as

8 (cT)
P 8t
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2.1 ProblemStatement

With the above-mentioned simplification, the energy equation in Cartesian

coordinates for a general three-dimensional anisotropic solid of volume V bounded by a

surface S, Fig. 2.1, is

3 (cT) (2.2)

where p is the density, c is the specific heat, and the heat flux components are given by

Fourier's law as

OT (2.3)
qi = -kij _xj

The material properties p, c and kij may be temperature-dependent, where kij are the

components of the symmetric conductivity tensor, x: Substituting Eq. (2.3) in Eq. (2.2)

we obtain the governing heat conduction equation which is solved subject to an initial

condition

T (Xl, x2, x3, 0) = TO (Xl, x2, x3) (2.4)

and general boundary conditions which include prescribed boundary temperatures Ts on

surface S I, specified surface heating on $2, convective heat exchange on S3, and incident

and/oremittedradiationon $4

Ts = TI (Xl,x2,x3,t) on SI (2.5a)

qini= -qs on $2 (2.5b)

qini= h ("Is-Te) on $3 (2.5c)

qini= acTs4 -aqr on $4 (2.5d)

The prescribedtemperature,TI, may be a functionof positionand time, the specified

heatingrate,qs,could be time-dependent,the convectiveheattransfercoefficient,h,may

depend on the environment temperature,"re,and/or time, Ts is the unknown surface

temperature,c istheSmfan-Boltzmann constant,e isthe surfaceemissivitythatmay be a
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function of "Is, a is the surface absorptivity, qr is the rate of incident radiation per unit

area, and ni are the components of an outward unit normal vector.

2.2 Finite Element Formulation

The solution domain is discretized into elements with r nodes each. The

conventional approach is to express the temperature and temperature gradients within an

element in terms of the interpolation functions and their gradients. The element

temperature is defined as

T c (xl, x2, x3, t) =N (xl, x2, x3) T (t) (2.6)

where N is the row vector of temperature interpolation functions and T (t) is the column

vector of nodal temperatures. The components of the temperana'e-gradient interpolation

matrix are given by

B|j (Xl, x2, x3) = _xi; i -- 1, 2, 3; j = 1, 2 .... r (2.7)

Starting with the energy equation, applying the method of weighted residuals, integrating

using Gauss Divergence Theorem, and finally introducing the boundary conditions results

in a set of nonlinear finite element equations given in matrix form as

C(T) T + {KcfT) + Kh(T, t) + Kr(T) ) T(t)

= RQ (T, t) + Rq (T, t) + Rh (T, t) + Rr (T, t) (2.8)

The details of the manipulation required to obtain Eq. (2.8) can be found in Ref. [18].

The element capacitance matrix C, and the coefficient matrices Kc and Kit related to

conduction and convection respectively, are defined in Eqs. 2.9a-2.9c below, while the

radiation matrix, Kr, implicidy given by Eq. (2.9d) is explicidy given in Eq. (2.9e):

C =fv*OeNTNdv
(2.9a)

Kc =L, BTIcB dV (2.9b)
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Kit = fs h N T N dS (2.9c)
3

Kr T = fS _T4 NTdS (2.9d)
4

Kr = fS cET3 NTNds (2.9e)
4

The heat load vectors due to internal heat generation, specified surface heating, surface

convection and incident surface radiation, RQ, Rq, Rh, and Rr respectively, are defined as:

Ro =L Nrav (2.10a)

For the sake of brevity, Eq. (2.8) is hereafter written as

C(T) '1"+ K(T,t) T(t) = R(T,t) (2.11)

where K (T,t) is the system conductance matrix which contains the contributions from

Eqs. (2.9b) - (2.9(t) and R (T,0 is the system combined load vector made up of the

vectors defined in Eqs. (2.10a) - (2.10d). Equation (2.11) is a general nonlinear

formulation of finite element equations for transient heat conduction in an anisotropic

medium, and the solution requires an iterative scheme combined with a suitable time-

integration scheme. For linear thermal problems K is independent of temperature. If K

is further simplified to be time-independent, Eq. (2.11) becomes

C 'i"+ K T(t) = R(0 (2.12)

The solution of Eq. (2.12) requires a time-integration scheme alone.

Rq =f$ qsNTds (2.10b)
2

Rh =fs hTe'NTds (2.10c)
3

Rr = fs=qr N TdS (2.10d)
4



Chapter 3

THE FORCE-DERIVATIVE METHOD FOR

LINEAR TRANSIENT THERMAL PROBLEMS

3.1 Unified Derivation of the Modal Methods

For the purpose of completeness, the mode-displacement method used to obtain

the transient response for linear thermal problems is ir_rst presented, followed by the

unified derivation of the higher-order force-derivative method assuming the forcing

function possesses continuous derivatives.

3.I.1 The Mode-Displacement Method (MDM)

The governing finiteelement equation for a Hnear transientthermal problem,

Eq. (2.12), is reproduced below

with initial condition

C "t+ K T(t)= R(t) (3.1)

T(0) = TO (3.2)

where in general, the applied load vector R, may be time-dependent. As mentioned at the

end of chapter 2, although the system matrix K can be time-dependent for linear

problems, it is assumed constant in this study. The solution to the homogeneous form of

the linear conduction equation Eq. (3.1) is given as

T(t) = e "_rt _; r = 1, 2... n (3.3)

where )r is a modal vector of unknown amplitude, _.r is the associated decay constant

(analogous to the natural frequency in structural dynamics), r is a summation index and n

24
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is the number of unconstrained degrees of freedom. Use of Eq. (3.3) in Eq. (3.1) results

in the following constant eigenvalue problem (EVP):

K0r-XrCOr=0; r= 1,2... n (3.4)

where n is the total number of degrees of freedom. The eigenvectors are normalized such

that

O: C eq = 8m; p,q -- 1, 2... n (3.5)

and

¢pTKCq-SpqXm; p,q= 1,2...n (3.6)

where _ is the Kronecker delta. In matrix form (Eqs. (3.5) and (3.6) become,

oTc ¢_ = I

and

(3.7)

q)TK q) = A (3.8)

is a diagonal matrix with entries that are the

I1

T(t) = _ ¢ r Zr(0 (3.9)
1"=1

wher_ the solution is exp_ssed as a linear combination of all the eigenvectors of the

system weighed by the unknown modal coordinat¢s.

Substitution of Eq. (3.9) in Eq. (3.1), prcmultiplication by ¢_, and the use of the

orthogonality of the modes, Eqs. (3.5) and (3.6), result in the following uncoupled modal

equations:

2r(t) + _.r Zr(t) = ¢_ R(t); r= 1, 2... n (3.10)

given by

where I is the identity matrix and A

eigenvalues. The homogeneous solution to Eq. (3.1) in the form of a modal summation is



26

Pre-multiplyingEq. (3.9)by¢7C andsettingt = 0, the initial conditionbecomes

Zr0= CTcT0 (3.1 I)

The analytical solution to the nonhomogeneous problem represented by Eqs. (3.10) and

(3.11) is given as follows:

Zr(t) = ZrOe'_ t + R('_) dx (3.12)

where the integral is called the convolution of the functions e'Lr(t) and cTR (t).

Approximating the solution to Eq. (3.1) by using a truncated set of modes, one has:

P

T(t) --__ _ Zr(t); p < n (3.13)

where zr (t)

Eq. (3.4). Rewriting Eq. (3.13) in matrix form results in

T(t) -=_) 7.(t) (3.14)

where ^ denotes a reduced set of modes. The approximate solution given by Eq. (3.13) or

(3.14) is commonly referred to as the mode-displacement method (MDM) in structural

dynamics.

3.1.2 The Mode-Acceleration Method (MAM)

Equation (3.10) may be rearranged as follows:

So Eq. (3.9) becomes

is given by Eq. (3.12) and _, and Xr are obtained from the solution of

I1 II

_1 rml

(3.15)

(3.16)

Zr(t) = .1. _h_ R(t) - i ¢'r(t)
Xr Xr
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Usingtheorthogonalityof themodesand taking the inverse of the square matrix on either

side of Eq. (3.8) yields

.1K.1 _-T = l (3.17)
A

Pre- and post-multiplying both sides of the above equation by • and _T, and noting that

¢-1 = ¢-1¢ = I, leads to the following identity:

K 1 = d>-L d>T (3.18)
A

or

[1

K1--Z *rX*r
_1 _r

(3.19)

Now Eq. (3.16) may be written as follows:

I1

T(t) - K q R(t) - _,r _r 1 _-r(t)
r_l _-r

(3.20)

The Leibnitz's rule for differentiation of an inmgral states that if f (X,_O) and
Of (X,O)

are

continuous functions of X and _p, then

+d__v
dq) f[_(q)),cp] (3.21)

provided I.t and v have a continuous ftrst,order derivative with respect to q). If the forcing

function is CO continuous, then the Leibnitz's role can be applied to Eq. (3.12) to replace

the term _r(t) in Eq. (3.20) as follows:

,fT T
_'r(t) - _ R(t) - _ ZrOe"_t o X •4"r(v_) _ R(%) d_ (3.22)

Substituting Eq. (3.22) in Eq. (3.20) and rearranging gives:

T(t)=_¢rZr(t)+ K - ¢r ¢ R(t)
_1 r=l

(3.23)
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Now introduce an approximation to the solution by using only a subset of the modes,

so that

T(t)---_t_rZ_t)+ K -_, erlt_ R(t); p-<n
r=-I r=l _-r

or, in matrix notation

(3.24)

T(t)=-._ _.(t)+(K I -_ _-_T) R(t) (3.25)

Equations (3.24) and (3.25) are alternate forms of the MAM, where the second term

represents the first-order correction to the approximate solution given by the MDM,

Eqs. (3.13) and (3.14).

3.1.3 The Force-Derivative Method

Assuming sufficient regularity, Eq. (3.15) may be differentiated once with respect

to time to obtain

_,t(t) = l g R(t) - .2.. it(t) (3.26)

Xr Xr

Substituting the above in Eq. (3.15) results in the following equation:

T T

Zr(t)- I _ R(t)- "_2_ I_(t)+ "_2_-r(t)
_,r _.r _-r

(3.27)

So Eq. (3.9) now becomes

n n n

T(t)= '_ *r _'07 R(t)-X *r _L 07 l_.(t} + '_ ,r-L _. {t) (3.28)

Again, based on the orthogonality of the modes, the following identity can be established:

K'Ic K'I= _ ..L. _T (3.29)

A 2

or

(3.30)
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sothat
rl

T(t)= K "IR(t)-K'ICK "Il_(t)+_ Or _ it(t) (3.31)

_1 _-r
d.

If the forcing function is C 1 continuous, employ the Leibnitz's rule for differentiation,

Eq. (3.21), to evaluate _ r {t) given in Eq. (3.31) results in

T T 2 _2 e'_(t"0 Or R(_) d__r(t) = -kr Or R(t) + Or R(t) + Xr zr0 e"xrt +

Using Eq. (3.32) in Eq. (3.31) and rearran_ng results in

T(t)=_0rZr(t)+ Kd-_0rl, R(t)+ CKd+_0r * R(t) (3.33)
r=l r=l %r _1 Lr /

Again, approximating the response by using a subset of the modes for the summation

terms in Eq. (3.33) one obtains:

T(t) _.-_ ¢r zr(t) + "E Or 1 ¢ R (t)
r=l tel Xr

+ -K dCK "l+_*r_* R(t) (3.34)
r_l _-r

or,in matrixform

(3.32)

(T(t)_=OT.(t)+ K "1-0_0 R(t)

A /

+ (.K.IcK.I + $ ..__ _T)..2 R(t) (3.35)

A

Equation (3.34) or (3.35) is the response by the second-order FDM, where the third term

represents the second-order correction to the approximate solution given by the MAM,

Eqs. (3.24) and (3.25).



In general,for aCj continuousforcingfunction,thehighest(j+l)th orderF'DMfor

approximatingtheresponseis givenasfollows:

J+1 [((_K-IC)m'IT(t)= _)Z(t)+ _ K
m=l

where the superscript in parentheses of R(t) denotes the order of differentiation with

respect to time.

The major advantage in using the analytical solution, Eq. (3.12), of the uncoupled

modal equations is that when the load vector is available as a function of time such that

exact integration is possible, the solution at any time can be obtained directly with time

t = 0 as the initial condition. Furthermore, the only source of error is the truncation of

modes which can be alleviated by the proper selection of modes. However, when the

heat load vector is a function of time that cannot be integrated exactly, numerical time

integration is rcquix_d and the time step size for a desired accuracy will depend on the

order of the numerical integration method used. The foUowing section describes how to

obtain the modal coordinates for a specific type of load.

3.2 Modal Coordinatesfora LinearlyTime-Varying Load

Ifthe applied load varieslinearlywith time and has a constant slope over the

entiretime domain as shown in Fig.3.1,then themodal coordinatesgiven by Eq. (3.12)

can be obtainedby exactintegration.RewritingEq. 3.12 forthiscase one obtains:

/0zc(t) .- zro eJ% t + e'_¢ (t'_)(DTR (%) d%

where

R (z)= R (0)+ R (0)z;,0 <z < t

the constant slope.

(3.37)

(3.38)

Itisclearfrom Fig. (3.I)thatR (0)isthe initalload vectorand I_(0)represents

SubstitutingEq. (3.38) in Eq. (3.37) and expanding resultsin:
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B R(_)
m/see

///_R(_ - R(O)+ R(O)

'_, SeCOrl_

Fig. 3.1 Forcing function that varies linearly with ume.
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f0 t
z_(t) = zroe -x_t + OrTR (0) e";_(t-z) dz

f0'+ *r T 1_ (0) _e "xf(t'_) d_ (3.39)

Using integration by parts and regrouping the terms, one has

Now consider a more general ease where the applied load vector can be treated as

a series of piecewise linear functions of time with varying slopes over the entire time

domain. Then Eq. (3.40) can be applied individually to each time interval, dt, using the

modal coordinates obtained at the end of the previous time interval as the initial

condition. Accordingly, Eq. (3.3"/) may be modified as follows:

+ (at e'er (dt" "c),T R ('r) d'r (3.41)Zn,r = Zn.l.r e ";_rdt
J0

where R (_) = Rn.1 + l_n-l_ 0 _"_ _"dt (3.42)

Similarly, it can be shown that eq. (3.40) now becomes

z,. r - Zn.l,r ,'gr _ + _ : I(Rn.,- _ 1_) (1 "e_grat) + _ l_n.11 (3.43)

3.3 A Priori Estimate of the Required Number of Modes

To minimize the computational costs associated with the complete solution of the

EVP, some guidelines are presented below on selecting the number of modes prior to the

actual solution process. These guidelines are limited to linear transient thermal problems.

The error introduced in solving Eq. (3.1) by the MDM, Eq. (3.13), can be

evaluated based on the level of approximation of the heat load vector represented by that
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subsetof modes[65].

follows:

Theparticipationfactorof therth mode,fir, at time, t, is definedas

T
"qr (t) = q)r R (t) (3.44)

which gives a measure of the significance of that mode in representing the total load and

hence the response. Pre-multiplying Eq. (3.44) by Cq)r, and using the orthogonal property

of the modes with respect to C, the approximate load vector is given by

P

if, (t) _=_ Cq)r fir (t); p < n (3.45)

Once a desired level of approximation of the load vector has been attained, the generation

of modes may be terminated. The error, el, in the load vector represented by the

truncated set of modes is given by

./R(t r (R
el (3.46)"V R(t) TR(t)

If a direct relationship between the errors in the solution and the load vectors can be

established then Eq. (3.46) may be used to obtain a priori estimate of the number of

modes required by the MDM to achieve a desired degree of solution accuracy.

To determine the truncation of modes for the higher-order methods, which has not

been studied in the past, the corrections offered by these methods to the MDM is

considered. The full-system solution may be spLit into two parts given as follows:

p ,

T(t)=_q)rZr(t)+ _ _rZr(t) (3.47)
P=l r=p+l

where the first term is the approximate solution given by the MDM, and the second term

represents the contribution of the higher modes neglected by the MDM. As before, using

the orthogonality conditions and assuming the transient load vector has continuous

derivatives up to order j, it can be shown that
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r=-p+l

_r Zr (t) =

n n n

r=p+l _-r - I _.r r= I _-r

.... dr.

n n

_E_ ('l)J(l)r_-l"--R(J)(t)+ ('1) j+l _r "-'1-'-- z (j+l) (t) (3.48)

(_.r)j+l

For the specific case where the load vector has non-zero derivatives up to first-order only,

that is, j = 1 in Eq. (3.48), neglecting the last term in Eq. (3.48), one has:

n n

_r Zr(t)-= _ (1)r-L TR(t)___ _r--_-2 Tl_(t) (3.49)
r=p+l _-r - 1 _-r

It is easily recognized that the first term on the fight-hand side of Eq. (3.49) is the

correction offered by the MAM, Eq. (3.24), and will hereafter be referred to as CMAM

for brevity. That is

or

r=p+l

P

CMAM = K "IR (t)-_E_(l}r_I_(lh.TR (t)
r,-I Xr

(3.51)

Thus, by adding the contribution of the higher modes as well to the pseudo steady-state

response, the MAM yields a better approximation of the total transient response than

the MDM.

In a given spectrum, the magnitude of the eigenvalues successively increases.

Examination of Eq. (3.50) indicates that at a given time, the significance of CMAM

should decrease when higher modes are included in the MDM, as the eigenvalue appears

in the denominator. In other words, the lower modes play a more important role in

approximating the pseudo steady-state response. Based on this fact, the number of modes

required to realize the maximum benefits of the MAM can be determined when the

pseudo steady-state response has been approximated within a desired accuracy.
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Alternatively, similar to Eq. (3.46), a measure of the error, e2,

K "1 R (t) by the lower modes can be obtained as follows:

in the representation of

or

n

= cr R (t) (3.53)

r=p+l Xr

to as CFDM for brevity, that is,

.. p

CFDM -- K "ICK "II_(t) + _ 0r _ 07 1_(t) (3.54)
r=l Xr

By including the contribution of the higher modes in approximating the first-order

transient response, - K "1 CK "1 I_ (t), derived from the pseudo steady-state solution, the

FDM enhances the MAM. At a given time, the magnitude of CFDM declines at a faster

rate than that of CMAM since the square of the eigenvalue appears in the denominator.

This makes the selection of modes more and more distinct as the order of the method

increases. Similar to the MAM, the number of modes necessary for the convergence of

the FDM is determined when - K "1 CK "1 I_, (t) is approximated by the lower modes

within a specified tolerance, or the error norm, e3, given below becomes acceptable:

K'I CK-I R(t)-_ ..I... R(t)
..2

e3 = A (3.55)

Although higher-ordercorrectionsinvolve the eigenvaluesraisedto successively

higher negative exponents, they need not necessarilybe negligiblecompared to the

_/ (K'IR(t)) T K'IR(t) - _ _-kl2-_ T )

R (t)

e2 = A (3.52)

(K "IR (t))T K "IR (t)

The second term on the right-hand side of Eq. (3.49) can be identified as the

correction offered by the second-order FDM, Eq. (3.34), to the MAM and will be referred
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lower-ordercorrectionsat all times,becausetheyaredependenton thetransientnatureof

theloadaswell. With just one mode included in the solution, a comparison of the norm

of CMAM and CFDM, Eqs. (3.51) and (3.54) respectively, indicates their relative

importance at that particular time. This rate of convergence with respect to modes

depends on the nature of the variation of the eigenvalues within the spectrum. For a

linear thermal problem subject to a specified transient load, it is thus possible to select the

higher-order method which can achieve the maximum reduction at any given time.



Chapter4

METHOD OFSOLUTIONFOR

NONLINEARTRANSIENTTHERMAL PROBLEMS

4.i Linearizationof theSystem ofEquations

After a briefintroductionto the Newton-Raphson scheme, itsapplicationto the

nonlinear,transientheat transferequation isdescribedand the simplifyingassumptions

made in thisstudyam highlighted.Although the finallinearizedform can be obtainedby

a directapplicationof the fixed-pointiterationscheme, the detailsare presentedhere to

aid inthefutureuse of a rigorousform of theNe_vton-Raphson scheme.

4.1.1 Derivation of the Newton-Raphson Method

Consider a typical nonlinear set of equations of the form

F(T)=0 (4.1)

If T is the exact solution vector, then Eq. (4.1) is satisfied identically. However, often

one cannot compute the exact solution, but can obtain an approximate solution so that the

unbalance in a typical equation is smaller than a specified tolerance. This is achieved by

the Newton-Raphson scheme which is derived below by an intuitive approach based upon

the Taylor polynomial [66].

Suppose that F is twice continuously Clifferentiable in the interval [a,b]. Let

T E [a,b]be an approximation to T such thatF'(T) isnon-singularand the difference

between T and T is small. Considering the second-degree polynomials for F(T),

expanded about T one has:
i

37



38

F(T)
= F(T) + F'CT) (T-T) + _ F"(_(T))("_-T) (4.2)

where _(T) lies between T and T. But F(_') = 0, and since the difference between T and T

is assumed to be small, square of the difference is even smaller and can be assumed

negligible. Then,

o = F(T) + F'(T) (T-T) (4.3)

which gives

T-, T- F'(T)'IF(T) (4.4)

where

c3F
ji-l= F,(Ti-I)= (_.}Ti.l

is called the Jacobian matrix and

AT i = T i - T i'l (4.8)

It is clear that Newton's method cannot be continued if the Jacobian is singular

for some i. The method is most effective when J is bounded away from zero near the

fixed point. Although Newton's method will sometimes converge even with a very poor

initial approximation, in many cases it is imperative that a good initial approximation be

chosen. Also, Newton's method will converge quadratically under suitable conditions

on F. In fact, Newton's method can be derived as a special case of the fixed-point

iteration scheme which exhibits linear convergence in general,

.1i'l AT i = - F i'l (4.6)

(4.7)

which may be rewritten as

which is a better approximation to T than T. This sets the stage for the Newton-Raphson

method, which involves generating the sequence of iterates T i defined by

, "l •

T i = T i'l - F'(T t'l) F(Tt'I), i >_.1 (4.5)
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In practice, the method is generally performed in a two-step manner. First a

vector AT t is found which satisfies Eq. (4.6). Once this is accomplished, the new

approximation T i is obtained from Eq. (4.8). A difficulty in this method arises from the

necessity to invert the Jacobian matrix during each iteration which involves reforming

and factorization at each iteration, making the method computationally expensive for

large sets of equations. In a modified form of the method, the Jacobian is formed and

factored only once and is held constant throughout the balance of the iteration process

[18]. More iterations are required with the modified method, but usually net

computational costs are reduced.

4.1.2 Application of the Newton-Raphson Method with Simplifications

The discrete nonlinear transient heat conduction equation at any time t, Eq. (2.11)

is reproduced below:

C(T) T + K(T,t) T(t) -- R(T,t) (4.9)

The residual or unbalanced load in the nonlinear system of equations at the (i-1)th

iteration is given by,

F(-[- i'l T i-l) C(T i'l) ,1-,i'l, -- + K(Ti'l,t) Ti'l(t) - R(Ti'l,t) (4.10)

Simplifying the notation, a typical pth extuadon of this system is given by,

i-1 i-1 i-1 i-1
_'l(t); p= , .Fp = Cpm "I'm + Kpm(t) T_l(t) - R 1 2.. n (4.11)

where m is a dummy summation index, and n is the total number of equations. The

sequence of successive iterates generated by Newton's method for the temperature and its

time derivative increments is then given by

• • i-I
,11_;I _'l'_ + ,J2p; 1 _T_ =-Fp (4.12)

where Jl and ,12 are the J'acobians associated with temperature and its time derivative,

respectively, and are defined according to Eq. (4.7) as follows:
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= tO.i..s]yi.1 and J2ps = /STs]¢. 1
(4.13)

The new values of the unknowns at the end of the current iteration will then be

• .i i-1 .ii i-I
AT_ and Ts 'I's +ATs (4.14)Ts = Ts + . = . .

While the right hand side of Eq. (4.12) is given directly in Eq. (4.10), the product terms

involving the Jacobians on the left hand side of Eq. (4.12) are derived from Eqs. (4.13)

and (4.10) using the chain rule of differentiation as follows

/_1"m \i'l i-I .i i-1 .i

Jl_s 1 A'I'_ = Cp_ [ ,_'_'s's ] A'i'_- Cpm 8ms ATs-- Cps ATs (4.15)

and

J2_s 1 AT_ = I_Cpmt i'l" i'l " i-1 [OTml i-1 .
I o3Ts / Tm ATs l+Kpm_cYI,sl AT_

I i-, Ti i-,
+_ _Ts I Tm A s-_Ts] ATs

(4.16)

Equation (4.12) now becomes

ci.1 .ips ATs + [ ACps + Kps + AKps - ARps ] i., _ (4.17)

The incremental temperature-dependent system matrices and load vector are given by

i-,
Cps -_ /}Ts I Tm

AKi-1 /_____i i'l
ps =I _Ts I T_I

ARi-1 [_Rpl i'l
ps =[ rsl

(4.18)

(4.19)

(4.20)

Dropping the indicial notation, Eq. (4.17) may be rewritten as follows:

C i'l A.I. i =+ [AC + K + AK - AR ]i-1 AT i . Fi.1 (4.21)

It is seen that the Jacobian associated with temperature involves the increments in

the system nonlinear capacitance, conductance matrices and load vector, namely AC, AK
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and AR. These increments reflect the change in material properties with temperature, and

generally have a minor effect on the accuracy of the Jacobian J2 [24]. The matrix AR

includes the effect of radiation exchange as well. The evaluation of these incremental

matrices is cumbersome and prohibitively expensive. Even though the system matrices C

and K are symmetric their increments are not, and AR is unsymmetric as well.

Consequently, the iterative solution requires an unsymmetric solver. Moreover,

evaluation of the true Jacobian requires additional knowledge about the nature of

nonlinearities and identification of element types. Therefore, for ease of implementation,

the Jacobian is approximated by the conductance matrix alone neglecting the incremental

quantities, which is exact if material properties are not temperature-dependent and there

is no radiation exchange. This makes computation of the Jacobian, as well as the solution

of the linearized system of equations easier as matrix symmetry is maintained, albeit

convergence could be slower. Introducing this modification in Eq. (4.21), we now have

C i'l AT i + K i'1 AT i = -F iq (4.22)

where

.i
Substituting for AT

obtains the linearized equations given as follows:

K = K¢ + Kh + 4 Kr (4.23)

and AT t from Eq.(4.14),using Eq. (4.10)and simplifying,one

ci-I.i.i + Ki'l(t)Ti(t)= Ri'1(t) (4.24)

where the temperatures at the current iteration,and not theirincrements, are the

unknowns.

4.2 The Force-Derivative Method for the Transient Response

4.2.1 One-Step Approach

For constant or linearly varying transient loads, the approach used to obtain the

transient response for linear problems in chapter 3 can be readily extended to solve
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Eq. (4.24).

time t = 0 as the initial condition.

by,

where

Thereby, the response is computed at the time of interest in one step, with

The initial eigenvalue problem of Eq. (4.24) is given

Ko ¢o - Ao Co ¢o = 0 (4.25)

K0 = K(T0) and CO = C(T0) (4.26)

However, due to the nonlinear nature of the system matrices, the eigensolution is varying

with time as well. The eigenvalue problem at time t is

K i'1 O i'l - A i'1 C i'I • i'l = 0

which needs to be updated during the iteration process.

Assume a solution to Eq. (4.24) in the form of a modal summation

1t,1

which yields the uncoupled modal equations given as follows:

(4.27)

(4.28)

(4.29)

with initial condition

Zr (0) = zxo = _ TCoT0 (4.30)

The solution to Eq. (4.29) analogous to F_.q. (3.12) is given by,

t i-I

z_(t)=zr0e-X_t+ e._/ (t-x)¢_-IrR(Ti-l(t),x)dx (4.31)

Itisimportantto note thatfornonlinearproblems, the loadvectorand the system

matrices,and hence the eigensolution,am functionsof temperature and are therefore

continually changing as the temperature distributionevolves with time. Careful

inspectionof Eq. (4.3l).revealsthata major approximation isembedded inthatequation.
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Since the solution is not computed at intermediate times, the nonlinear quantifies are

evaluated directly as a function of Ti'l(t), the current estimate of the temperature atthe

desired time of response. This essentially ignores the variation of the integrand with time

due to nonlinearity, and includes only the explicit time-dependence when evaluating the

integral in Eq. (4.31). Such an approximation could result in large errors for highly

nonlinear problems. It is therefore imperative to introduce a time-stepping scheme so that

the transient variation of the nonlinear quantities are well represented when obtaining the

modal coordinates. If the transient variation of the load is of a complex nature, the

one-step approach is not applicable in the fh'st place, similar to linear problems.

4.2.2 Multi-Step Approach

Since Eq. (4.24) holds true at any instant of time, the temperature T_ at the current

iteration at dine tn must satisfy the following equation

C i'l Tin + K i', Tin = R_ "I (4.32)

where, the subscript n denotes the current computation time, and the superscript i denotes

the current iteration number, and the following simplifying notations are used, namely

i-I i-I
Kn = K (Tn , tn) (4.33)

=c (4.34)

i-I i-I
Rn = R (Tn , tn) (4.35)

The solution is marebed out in time from the initial temperature at time t = 0, and the time

step is defined as follows:
dt -- tn - tn-I (4.36)

The initial condition to start the iteration process at each time step is given by,

Ti=Tn.1; i= 1 (4.37)
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Although the temperature-dependentthermalpropertiesand loadvector areallowedto

varyduring theiterationsateachtime step,theeigensolution,which is determinedfrom

the convergedtemperatureat the endof the previoustime step,is held constantuntil

convergenceat thecurrenttimestep. To accomodatethispiecewiselinearapproximation

of theeigensolution,theleft-handsideof Eq. (4.32)is modifiedandthechangeis moved

overto theright-handsideto form acorrectiveheatloadvector Qr,_1. Accordingly,we

nowhave

Cn-1 "["in+ Kn-I Tn = Rni'X+ Q_-I (4.38)

where

- co. 1

In a more general approach, Eqs. (4.38) and (4.39) may be rewritten as follows:

.i i-I QN_. I (4.40)Cn.k Tn + Kn-k 'In= Rn +

and

QNI._"1 ---(IX i'l" Kn-id T i'l+ [C i'l- Cn-id Tin"l ) (4.41)

where k is an integer greater than zero. Here the eigensolution is held constant over a

period of several time steps, say m, depending on the severity of the nonlinearity;

k indicates the number of time steps since the previous update. The applied load vector

may be split into a linear component, RL n, (which may be time-dependent) and a

nonlinear component RNL_ t . The entire right-hand side of Eq. (4.40) may be considered

as a generalized heat load vector which is defined as follows:

Q (Tin'l, tn) = Qin'l -- RL_ + RNI_'I + QNI_ "1 (4.42)

Another major variation between the linear and nonlinear solutions is in the definition of

the right-hand side load vector Eq. (4.42). For linear problems, it comprises the linear

applied load vector alone, while it is rather complicated for nonlinear applications where
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a nonlinear applied load vector may exist and additional corrective nonlinear terms are

involved as well. The eigenvalue problem associated with Eq. (4.40) is given by,

Kn-k ¢_n-k - An-k Cn-k _n-k = 0 (4.43)

The modal equations now become

.i i T ,., i-1
Zn,r + Xn-k_" Zn,r = _ n-k,r _n (4.44)

with initial condition

Zn-l,r= ¢_nT-k,rCn-k Tn.l

The solution to Eq. (4.44) is given as follows:

• [(k T Q(T i'I, x) d'_Z_,r= Zn-l$e "2qa'k'rdt + eJ_n.k.r(ck-_)_ n-k,r
/0

(4.45)

(4.46)

or, in matrix form

P
'T_ " "=-._ _bn-k.rZ_,r p << n (4.47)

Ti e ^ ^i¢_n-kZn (4.48)

Noting from Eq. (4.43)thatthe modes al_now normalized with respecttoKn-k and Cn-k,

theresponse given by theMAM isobtainedby modifying Eq. (3.25)toyield

--tl)n.kT--,n+ Kn!k-_n.k_-"L'-&n T- Q_-I (4.49)

An-k J

while thatof thesecond-orderFDM isobtainedby modifying Eq. (3.35)as follows:

problems,isgiven by,

In light of the discussion following Eq. (4.31), the error in Eq. (4.46) is expected to be

small compared to the one-step solution, Eq. (4.31), for sufficiently small time steps. A

truncated modal summation solution for this problem, similar to Eq. (3.13) for linear
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^ ^i V ^ ^_ _,Tin=¢.-k_ + K_!k-O°-k_ en-_
L An-k

+ - Kn-k Cn-k Kn-k + _n-k _n- (4.50)

An-k J

The exact first-order time derivative used in Eq. (4.50) is obtained from Eq. (4.42) as

i-1

-n

• i-I
For the purpose of easy implementation, Qn has been approximated in this study as

(_a"1_= l_ (4.52)

. i-1
The truncation of modes and the replacement of Qn by I_I.. are the two numerical errors

in the current form of the FDM. The former can be minimized by a proper selection of_

based on the discussion in Sec. (3.3). The latter can be reduced by a frequent update of O

when necessary, that is, by maintaining a small value for k in Eq. (4.40).

4.3 Modal Coordinates For a Piecewise Linear Time-Varying Load

Recall that in Eq. (4.46), the nonlinear part of the generalized heat load vector

is assumed constant during each time interval, and the integration is performed only for

the explicit time-dependent portion. Accordingly, for a nonlinear problem when the

linear part of the heat load vector, RL, varies linearly with time Eq. (3.43) may be

modified to yield,

+ enT.k.r{{RI_t-I. QNI_-'} (I"e_n?_ de)} (4.53)
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The first two terms in Eq. (4.53) comprise the linear component of the modal coordinates

while the third term represents the nonlinear contribution.

4.4 Convergence Criterion and Distribution Error Norm

The convergence criterion used to terminate the iteration process at any time tn is

given by,

"I) T - 'In )

.T i
TntTn

< e (4.54)

temperature vector is given by

/.,1/('T - Ta)T(T - T a)
C (4.55)

V TTT

where T represents a full-system solution based on a well-refined mesh, and 'I s is an

approximation based on the first p thermal modes. Note that this error norm can only be

used to evaluate a method a posteriori, and is not intended to be used to predict the

number of modes necessary for convergence of the modal solution.

4.5 A Note on the Required Number of Modes

The guidelines provided in Sec. 3.3 to estimate the number of modes required for

linear problems cannot be applied directly to nonlinear problems. When the system

matrices and hence the eigenmodes depend on the solution vector, which in turn depends

on the number of modes included and the order of the method used, the issue becomes

too complex for analysis. For linear problems, the improvement in the response obtained

by the MAM as compared to the MDM is given directly by the pseudo steady-state term,

CMAM, Eq. (3.51). For nonlinear problems, this linear superposition of the correction

terms to obtain the response by the higher-order methods is not appropriate. It is

therefore necessary to get the responses by the MDM, MAM, and FDM individually,

where e is the specified tolerance. The distribution error norm of an approximation to the
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using their respectivesolution vectorsto evaluatethe nonlinearquantities. Then the

correctionmadeby theMAM, CMAM, is givenby the differencebetweenthe entire

right-handsidesof Eqs.(4.49)and(4.48),thatis, by thedifferencebetweentheresponses

of theMAM andtheMDM. Similarly,CFDM isobtainedfromEqs.(4.50)and(4.49)as

thedifferencebetweenthesolutionsof theFDM and the MAM. For the same reasons, it

can be said that the superposition of the contribution of each successive higher mode to

compute the total response of all the modes is permissible only for linear problems.

4.6 A Note on the Computational Effort Involved

The three modal methods presented in Sec. 4.2.2 for solving nonlinear thermal

problems have been implemented in the COMET [63] on the CONVEX C220 high-

performance computer at NASA Langley Research Center. The details of the

implementation, which include the construction of the execution control file, the

development of independent programs called processors, etc., following the rules and

syntax of the COMET, can be found in Ref. [67]. The step-by-step procedure to be

followed in the solution process using the modal methods is illustrated in Appendix A.

The computational effort involved in the different steps for a nonlinear problem and the

simplifications that occur for a linear problem are summarized below.

The basic advantages of using the modal methods to solve thermal

problems are:

1. The need to solve much fewer equations than in the full system.

2. The modal equations are uncoupled.

3. The use of the convolution integral form of the solution for the modal coordinates.

The skyline form of the symmetric conductance matrix, K, is used which requires less

computer storage and also less computing time for all matrix operations involving K.
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The main computationally intensive step for nonlinear problems is the solution of the

EVP for intermediate basis updates, the frequency of which is problem-dependent. The

product term Kn!k Q_-I (Eqs. 4.49 and 4.50) involves the inverse of K. It is computed,

however, without actually inverting the K matrix but by solving the linear set of

oq,,atio..Kn.kr=0_"whoso_ol.,io.,,',yiold_z_!__-' _-o_tly.Si,',',ila.y,_ho_
Kn!k C Kn!k (_-1 CEq. 4.50)involves the solutionof two setsof linearequationsand a

.i-I
matrix-vectormultiplication.Note alsothatin thisstudy,Qn has been approximated as

,,.,.T -

l_Lnin the FDM. The evaluationof QNL_ l,(Eq. (4.41))and the products _ 1..(Pthal__-I
A

CZqs.4.49and4.50)and$ _L STQ_-I
^2 (Eq. 4.50) involve two matrix-vector products

A

each. Conventional implicit algorithms need to form and factor the left-hand side

coefficient matrix and solve simultaneous algebraic equations at every time step for

nonlinear problems. Although explicit algorithms avoid the solution" of simultaneous

equations, they require much smaller time steps so that the solution remains stable.

Modal methods, however, entail only the forward reduction and backward substitution

stages in the solution of simultaneous equations, as the K matrix needs to be factored

only with every eigcnmode update and is held constant until the next update. The

forward reduction and backward substitution processes could amount to significant

computational effort though, when the solution is obtained in a large number of time

steps.

For,h_FDM,_" ,.-,dQ_"_,,,,_ _,od.. ,_,,_,ip_o_oa,_a.,_h_,,_oK_!_Q_"
-1 Q_-Iand Kn-k can be computed in parallel.Also for any method, the modal loads

_bnT.k.rQ_-I as well as the various matrix-vector products are good candidates for

fine-grainparallelprocessing.

For linearproblems, theprocedure ismuch simpler. Since allsystem matricesare

assumed time-independent for the linear case, only one eigensolution and one

factoriZationof K need to be performed. The guidelinespresentedin Sec. 3.3 can be
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used to solve only for the desired number of eigenmodes. No iterations are required.

Furthermore, if the applied load is constant or varies linearly in time at a constant rate,

then no time-stepping is required either, as discussed already in Sec. 3.4, unlike nonlinear

problems. Also, for the linear case, the response of the MDM and the MAM are obtained

directly as by-products from the FDM. Nonlinear problems necessitate an independent

run for each modal method, so that the response of that particular method is used to

compute the temperature-dependent quantities which in turn affect the response.



Chapter5

LINEAR TRANSIENT EXAMPLE PROBLEMS

Literature survey indicates that the MDM is unsuccessful in the efficient solution

of transient linear thermal problems, since excitement of higher frequencies in the wide

spectrum response necessitates the inclusion of almost all modes for an accurate solution

[54]. On the other hand, by representing approximations of the higher eigenmodcs with

few vectors in the basis, the Lanczos vectors are effective in the reduction process [56].

From the derivation of the higher-order modal methods presented in chapter 3, it is clear

that these methods include an increasingly better approximation of the higher modes

neglected by the MDM. If is therefore expected that the MAM and the FDM arc more

effective reduced-basis methods than the MDM for transient thermal problems and has

been demonstrated for a linear one-dimensional problem [50].

This chapter introduces the application of the modal methods to linear thermal

analysis before embarking on nonlinear analysis. In the following numerical study, the

methods arc evaluated based on the efficiency which is measured by the number of

modes necessary to represent an accurate response. The accuracy of a solution is

determined based on the dis_bufion error norm, Eq. (4.55). Since the applied load varies

linearly in time, the exact modal coordinates given in Eq. (3.40) were used to predict the

response at any time in one step.

5.1 ROd SubjecttoConvection atOne End

This simple lineartransientexample was chosen tointroducethe modal methods

to thermal problems and to demonstrate the improved efficiencyof the higher-order

methods compared tothe MDM. The rod shown inFig.5.I isinitiallyata uniform

51
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Fig. 5.1 Thcrrnal finite element model of a rod subject to transient convective heating
at one end (Linear example problem I).
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temperature of 0" F. Beginning at time zero, the left end is heated by convection while

the right end is maintained at 0 ° F. A total of twenty elements was used to discretize the

model. A forcing function that varies linearly with time was selected so that up to the

second-order F'DM could be applied.

Temperature distribution at an early time t = 0.02 sec (when the gradient is still

very steep) was obtained by the three modal methods (Figs. 5.2a - 5.2c). The response

predicted by the MDM is shown in Fig. 5.2a. The full-system solution, denoted by the

solid line in Fig. 5.2a, results from using ail twenty modes. The acceptable error

corresponds to a distribution that is fairly close to the exact solution. The solution

approximated by using a reduced number of five modes underpredicts the peak

temperature (417" F at left end) by 49%, and the distribution along the rod is also very

oscillatory in nature. When the number of modes is increased to I0 and 15, the peak

temperature is underpredicted by 23% and 11% respectively. Eighteen out of the 20

modes are required by the MDM to yield a response with an acceptable error, Eq. (4.55),

of 0.083.

Figure 5.2b shows that the MAM overpredicts the peak temperature by 18% when

using three modes and by 9% with four modes. However, with five modes the error falls

within 0.08 and the oscillations in the distribution along the rod are mild. This faster

convergence of the MAM compared to the MDM is due to the pseudo steady-state term

which includes a first-order approximation of the higher modes that are neglected

by the MDM.

A higher rate of convergence is exhibited by the FDM which has the highest error

with one mode but captures the distribution accurately with as few as three modes,

Fig. 5.2c. It is evident that the derivative-_lated term in the FDM has further improved

the approximation of the higher modes compared to the MAM. The rates of convergence

of the three modal methods for this linear example with a C I continuous applied load are
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a) Mode-displacement method (MDM).

Temperature distribution along a rod subject to transient convection at one end
at time t = 0.02 sec (Linear example problem 1).
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compared in Fig. 5.3. While the FDM requires just 15% of the modes (3 out of 20),

which means a reduction of the problem size by 85%, the MAM and the MDM have

achieved a reduction in problem size of 75% and 10%, respectively.

5.2. Plate Subject to Uniform Surface Heating

This problem was chosen to demonstrate the reliability of the measures presented

in Sec. 3.3 to predict the number of modes required for linear problems.

The plate shown in Fig. 5.4 is subject to a uniform specified heat load which

increases linearly with time. The initial temperatur_ of the plate is 0" F. All four edges of

the boundary convect to the environment which is at a temperature Te = 0" F.

The full plate was analyzed although this is a symmetric problem and only a

quarter of the plate needs to be considered. The finite element mesh used for the modal

analysis consists of 165 DOF with 140 uniform rectangular element_. This mesh is

considered adequate for this problem since the full-system solution compares very well

with that of a much finer mesh with 561 DOF. Since the load varies linearly with time,

the modal solution at any time can be computed in one step.

The guidelines listed in See. 3.3 are used to estimate a priori the number of modes

that are required by the MDM, MAM, and the FDM at two different times t = 2 sec and

9 see, respectively. The norm of CMAM and CF'DM were used to obtain the results

presented herein.

Estimate for the Reauired Number of Modes at Time t = 2 see

The mode participation factor, Eq. (3.44), which indicates the component of the

applied load that contributes to the response of the corresponding eigenvector, provides a

measure of the significance of that vector in the total response. The participation factor

of each mode is used to compute the error in the load vector, el, Eq. (3.46), for increasing

number of modes in the subset as shown in Fig. 5.5. Likewise, the errors, e2 and e3,
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Fig.5.3 Convergence of themodal methods atfin'_t= 0.02 sec (Linearexample
problem I).
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Fig. 5.4 Thermal finiteelement model (165 IX)F) of aplatesubjecttouniform,
transientheatingover thesurfaceand convectionalong the entireboundary
(Linearexample problem 2).
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given by Eqs. (3.52) and (3.55), respectively, are computed for each additional mode and

are shown in Figs. 5.6 and 5.7. The error converges in a step-like manner as seen in

Fig. 5.5 indicating no change due to the addition of the second and third modes and then

drops sharply with the inclusion of the fourth mode. This step-like convergence occurs

because the second and third modes arc asymmetric and therefore orthogonal to the

uniform load and hence produce a negligible modal load. The step-like convergence over

the entire spectrum is listed in Table 5.1. The wide range of modes 25 to 148 have

negligible participation, but the 149m and the 161st modes cause a dramatic reduction in

the error, thus confu'ming the importance of the higher modes in the MDM solution.

Table 5.1 A priori estimate of the required number of modes at time t = 2 sec
(Linear example problem 2)

Number Error

of el
modes

1 0.162908

90 0.443 E-01

149 0.261 E-01

160 0.246 E-01

161 0.576 E-02

Number
of

modes

I

12-18

19-23

24

25-27

Error

e2

0.598 E-02

0.138 E-03

0.126 E-03

0.927 E-04

0.284 E-04

Number
of

modes

4--7

8

Error
e3

0.383 E-03

0.452 E-04

0.578 E-05

On the other hand, the error e2, Eq. (3.52), in the representation of the pseudo

steady-state response, K "1 R(t), also converges in a step-like manner, Fig. 5.6, but

decreases rapidly due to the increasing magnitude of the higher eigenvalue appearing in

the denominator. This also explains the faster rate at which the error e3, Eq. (3.55),

approaches zero (Fig. 5.7) due to the square of the eigenvalue appearing in the

denominator. The number of modes required by each of the methods is determined when

the error approaches zero. From Figs. 5.5 - 5.7, it is estimated that up to 160 modes are

required by the MDM whereas only 25 and 8 modes are required by the MAM and the

FDM respectively. Referring to Table 5.1, these modes correspond to errors

approximately two orders of magnitude less than the maximum error in each case.
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Fig. 5.6 Convergence of the error, e2, in the pseudo steady-state response used to
predict the number of modes required by the MAM at times t = 2.0 sec and 9.0
sec (Linear example problem 2).
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response used to predict the number of modes required by the FDM at times
t = 2.0 see and 9.0 see (Linear example problem 2).
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Table 5.1 highlights the selected modes which cause the rapid convergence of the

methods.

Convergence of the Modal Methods at Time t = 2 sec

The modal solutions obtained using the estimated number of modes at

time t = 2 sec are shown in Figs. 5.8a - 5.8c. To judge the reliability of these estimates, in

the case of the MAM for example, the distribution along y - 0 in. obtained by 10, 23 and

25 modes are compared in Fig. 5.8b, since modes 13 through 23 are nearly orthogonal to

the load. Similarly for the FDM the solutions from using eight and four modes are

compared in Fig. 5.8c. Figures 5.8b and 5.8c demonstrate that 25 and 8 modes are indeed

required by the MAM and the FDM respectively, and thus conf'urm that the corresponding

estimates are accurate; whereas Fig. 5.8a shows that the MDM yields an acceptable

solution even with about 90 modes, which is much fewer than the 160 modes estimated.

This deviation from the estimate could possibly be due to the fact that the estimate is

based on the error in the load vector and not the error in the solution vector itself.

Estimate for the Reouired Number of Modes at Time t = 9 sec

The rates of convergence of the errors, • 1, e2 and e'3, remain the same at this time.

This is because the error e2, for instance, is essentially the error in the representation of

K "I by the subset of modes used. Since the eigenmodes are constant for this problem,

this approximation does not change with time. The correction offered by the MAM,

CMAM (Eq. (3.50)), varies with time since the load varies with time, as seen in Fig. 5.9.

Although CMAM decreases as more modes are included at a given time, the maximum

value of CMAM (which occurs when only one mode is included) increases with time as

R (t) increases monotonically. For the given nature of the load, it is obvious from

Fig. 5.9 that the MAM requires fewer modes to converge at time t = 9 sec than at time

t = 2 see. The rate of convergence of the correction of the FDM, CFDM (Eq. (3.53)),

does not change with time (Fig. 5.10), since the applied load has a constant first
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derivative with respectto time. Nevertheless,since the magnitude of CFDM is not

negligible when compared to CMAM at time t = 9 sec, the FDM is expected to play an

important role in the reduction process at this time also and hence converge with fewer

modes than the MAM, albeit the difference is smaUer at time t- 2 sec. The rate of

convergence of the load vector, Eq. (3A5), is also expected to vary with time by realizing

that the participation factor of the non-orthogonal modes is proportional to the load R(t).

Although the corrections indicate that each method individually converges faster at this

time than at time t = 2 sec, additional work may be necessary to use these corrections to

decide the cutoff value for the number of modes required at different times.

Convergence of the Modal Methods at Time t = 9 see

The modal responses were computed at time t = 9 sec and it is found that the

MDM, MAM, and the FDM converge with fewer modes at this time, namely 30, 8 and 1

respectively. The distributions shown in Fig. 5.11 or, alternatively, the distribution error

norms compared in Fig. 5.12, corffh'm that all three methods converge with fewer modes

at this time. For this problem with a monotonically time-varying load, the number of

modes predicted based on the errors at time t = 2 see is a conservative estimate, that is,

guarantees convergence of the modal methods at all times but may not be necessary at all
/

times, as the results at time t = 9 see have shown.

The results demonstrate the potential of the higher-order methods to effectively

inprove the reduction achieved for transient thermal problems. Also the error estimates

and the convergence of the correction terms show the potential to serve as useful tools in

the prediction of the number of modes required at any given time.
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Chapter 6

NONLINEAR TRANSIENT EXAMPLE PROBLEMS

To study the feasibility of using the modal methods as a reduction technique for

nonlinear transient thermal problems, two nonlinear examples were analyzed. The results

of these analyses are presented in this chapter. The relative performance of the methods

is evaluated and the conditions that bring out their best performances are highlighted.

The multi-step approach described in Sec. 4..2.2 was used even though the load varies

linearly in time, to accommodate for the temperature-dependent load vectors and

eigenmodes. Also, the modal coordinates givea by Eq. (4.53) were used to solve the

numerical examples that follow.

6.1 ROd Subject to Convection at One End

with Temperature-Dependent Thermal Conductivity

The problem statement for this simple example is shown in Fig. 6.1. It was

primarily chosen to validate the new finite element algorithm for nonlinear problems

which is presented in chapter 4. Two cases with different thermal conductivities are

considered.

6.1.1 Case l:k(T) =0.0001 +0.SE-06T

Time for Eigensolution Update

Some trial runs were made to determine the time when an eigensolution update is

necessary to adequately represent the change in the nonlinear basis vectors with time.

The frequency of these updates requires a compromise between computation time and

accuracy. The FDM was used to march the solution from time t = 0 sec when the initial

73
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eigenvalue problem was solved. An arbitrarily chosen time step, dt = 0.01 sec,

(Eq. (4.36)) and a minimum of two modes (which is discussed subsequently) were used.

The number of iterations needed to achieve convergence, within a tolerance of e = 0.01,

increases with time as seen in Fig. 6.2, until the solution does not converge at time

t = 0.08 sec, regardless of the number of modes in the subset. Even though the solution

converges at time t = 0.07 sec, the number of iterations increases when more modes are

included in the solution. A similar behavior was observed even when the tolerance was

increased to e -- 0. I, or, when the time step was decreased to dt= 0.005 sec. However,

with an EVP update at time t ---0.05 sec, the number of iterations reduces to three from

nine or ten at time t -- 0.06 sec, and the increase in number of iterations at a later

time t---0.I sec is less with more modes. This confirms the need to update the

temperature-dependent eigensolution in time .fo.r nonlinear problems. However, this

approach based on the iterations required is not meant to be used for an a priori estimate

of the time for an EVl :) update.

CoNvergence of Modal Methods

The solution at time t ffi0.1 see in the early transient period when the gradient is

significant, is used to evaluate the performance of the modal methods. A time step

dt= 0.01 sec was used for this analysis with the initial eigensolution updated only once at

time t = 0.05 sec, that is, m = 5 (see discussion following Eq. 4.41). The converged

solution used to compute the distribution error norm of the reduced-basis solutions was

obtained with a fine mesh of 101 nodes using a small time step dt= 0.001 sec. The

implicit transient thermal analyzer in COMET which uses the Crank-Nicholson algorithm

for time integration was used for this purpose.

The MDM underpredicts the exact peak temperature of 373.7" F by 38%, 17%

and 8.2% with 5 (25% of the number of degr_s of fre_om), i0 (50%) and 15 (75%)

modes respectively. At least 16 modes are required by the MDM to yield a distribution
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fairly close to exact. On the other hand, the MAM converges with a much smaller subset

of four modes while the FDM exhibits a superior performance by predicting the peak

temperature within 1.36% using just two modes as shown in Fig. 6.3. This is made

possible by the large ratio (10) of the magnitude of the derivative of the load to that of the

load itself (which varies linearly with time) at this early time. The rates of convergence

of the three methods are compared in Fig. 6.4.

Effect of Time Step

The effect of the time step size on the performance of the FDM was studied. The

responses obtained by the FDM using two modes are compared for two different time

steps dt = 0.01 and 0.05 sec in Fig. 6.5 which have an error norm of 0.038 and 0.08

respectively. The smaller time step yields a distribution very close to the exact and helps

to obtain a smooth temperature history when desired, as it computes the response at more

instants of time. The advantages though, should justify the additional computational

effort required to do the iterations at each of the intermediate times. Computations reveal

that both time steps require the same total number of iterations, 17. The solution was

further marched out in time to t = 0.2 see. The solution at time t = 0.1 see was used as the

initial guess and the corresponding EVP was solved. The solution at time t = 0.2 sec

obtained in one step (error = 0.09), is compared with that obtained in five steps using

dt = 0.02 see (error = 0.02) in Fig. 6.6. Again, the two analyses involve the same total

number of iterations 7. These results are summarized in Table 6,1. By well-representing

the transient variation of the nonlinear quantities, a smaller time step yields a better

solution accuracy for a given computational effort.

Minimum Number of Modes

It is seen in Fig. 6.4 that the error from the FDM is shown for two modes and

more only. For the chosen time step ((It = 0.01 see), tolerance (e = 0.1) and EVP update

(m = 5), it was determined by trial and error that a minimum of two modes were required



78

O

_.=

E
¢.

Fig. 6.3

35O

250

150

50

EXACT

MDM

MAM

FDM

%%

%

x, inches

Temperature distribution obtained by the MDM, MAM, and the FDM using
two modes at time t ffi0.1 se¢ (Case 1 of nonlinear example problem 1).



79

10 0 -- !

0

L--

R
L_

Fig. 6.4

i0"t

MDM 16 modes

MAM 4 modes

FDM 2 modes

/,,Acccp_blc crror

10-2 I I I l
0 5 10 15 20

Number of modes

Convergence of the modal methods at time t = 0.I scc (Case 1 of nonlinear

example problem I).



8O

4oo 

tL
O

t=a
-1

i...

8.
E
¢.

300

200

full-system

.......... dt -- 0.01 see

...... dt - 0.05 see

100

Fig. 6.5

0 .t.
0.000 0.025 0.050 0.075 O. 100

x, inches

Effect of time step on the response of the FDM at time t = O. 1 see with initial
condition at time t = 0.0 see and one EVP update at time t = 0.05 see (Case 1

of nonlinear example problem 1).



81

O

E
¢.

Fig. 6.6

Force-derivative method

425

(Number of modes - 2)

'\ full-system

_, .......... dt = 0.02 sec

..... dt = 0.1 see

m °

0 I
0.00 0.05 0.10

x, inches

Effectoftime stepon the responseof theFDM attime tffi0.2 sec with initial
conditionattime t- 0.I sec and no EVP update (Case Iof nonlinearexample

problem I).



Table 6.1 Effect of time step on the solution accuracy of the FDM
(Case 1 of nonlinear example problem 1)

82

Time step
dt

0.01

0.05

Time -- 0.1 sec

Number of
iterations

17

17

Error
e

0.038

0.08

Time step
dt

0.02

0.1

Time = 0.2 sec

Number of Error
iterations e

7 0.02

7 0.09

by the FDM to obtain a solution (which is already converged), at t = 0.1 sec without any

numerical instability or divergence at some intermediate time. A similar behavior was

observed even with a fine mesh of 101 DOF. This minimum requirement for the number

of modes did not arise for linear problems where the eigenmodes are independent of the

solution and just one mode yields a solution even if highly erroneous.

The time-marching parameters were varied to study their effect on the minimum

number of modes required by the modal methods at t = 0.1 see. The results of this study

are shown in Figs. 6.7a - 6.7c and are also summarized in Table 6.2. The MDM and the

MAM yield a solution with one mode for all the parameters studied for this problem. The

FDM also converges with one mode for the first set of parameters with only one EVP

update and no iterations. Instead, when iterations are performed as with the second set of

parameters, or, a piecewise linear approach (where the eigensolution is updated every

time step, i.e., m = 1) is used with smaller time steps, the MAM converges with fewer

modes (three instead of four) but the FDM requires more (two instead of one) for a

minimum but the same number (two) to converge.

6.1.2 Case 2: k (T) ffi 0.0001 +0.1E - 04T

To study the effect of variation of the nonlinear parameter k(T), the slope of the

conductivity curve was increased by a factor of 20. Although the heat load is identical in

both cases, the diffusivity is very different. This is reflected in the temperature profiles at

the same time t = 0.05 see in Fig. 6.8. The temperature distribution in the first case has a
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relatively steep gradient compared to the second case, and the peak temperature is almost

twice as well.

Table 6.2 Effect of time-marching parameters on the number of modes required at time
t = 0.1 sec (Case 1 of nonlinear example problem 1)

Time-marching
parameters

dt m

0.01 5

0.01 5

E

1.0

0.2

Minimum number
of modes for a
stable solution

MDM

1

1

MAM

1

FDM

1

Modes required
to converge within the

desired accuracy

MI)M MAM

17 4

1 2 17 4

0.01 1 1.0 1 1 2 17 4

0.001 1 1.0 1 1 17 32

20.0_i 1.0 17 3

FDM

2

2

2

2

2

Time for Ei_ensolution Ut)date

As in Case 1, the F-'DM was used to obtain the transient response starting with

time time t -- 0.0 as the initial condition. A time step dt -- 0.001 sec was used which

caused the solution to converge in only one iteration for a tolerance _ = 1.0. A minimum

of four modes were required in this case. As seen in Fig. 6.9, the error in the computed

response progressively decreases from time t = 0 sec until it suddenly shoots up to

prohibitive levels sometime after time t = 0.025 see, even if more modes are included.

With one EVP update at time t = 0.025 see, the error at time t -- 0.05 sec falls within an

acceptable limit, confmning the need to update the nonlinear eigenmodes.

Convergence of Modal Methods

Using a time step dt -- 0.001 sec and an EVP update at time t = 0.025 sec as

determined above for the FDM, the solution at time t = 0.05 sec was obtained by the three

methods. While the FDM required a minimum of four modes to converge, the MAM

required seven. The MDM solution, though, became acceptable only with 16 modes.

When the eigensolution was updated every 0.01 sec, the MAM also converged with only
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four modes like the FDM. The rates of convergence of the three modal methods using

dt = 0.001 sec and m = I0 are compared in Fig. 6.10 for this case.

Effect of Time Step

For the given EVP update at time t = 0.025 sec, the unacceptable error resulting

from using a time step dt = 0.025 sec is dramaticaily reduced by decreasing the time step

to dt = 0.001 sec as seen in Fig. 6.11. Also, this entails little additional computational

effort, as the solution requires only one iteration per time step.

Minimum Number of Modes

Results of a parametric study conducted similar to Case I are shown in

Figs. 6.12a - 6.12c and arc summarized in Table 6.3. For this case, the MDM again needs

just one mode for a well-behaved solution with any of the parameters. With the first set

of parameters, the MAM requires up to seven modes as a minimum and also for

convergence. When the time step is reduced, this minimum decreases for the MAM,

which then converges with four modes itself like the FDM. So for this case of higher

nonlinearity, the reduction achieved by the MAM and the FDM is identical even at this

early time t = 0.05 see. On the contrary, the minimum requirement for the FDM

increases when the time step is decreased, similar to the fn'st case.

In both cases of this example, the higher-order MAM and the FDM demonstrate

superior convergence over the basic modal method, the MDM. Also the FDM is more

effective than the MAM for a longer time in the first case with the less temperature-

dependent conductivity. The difference in the convergence of the FDM relative to the

MAM for the two cases is understood by studying the norm of the respective corrections

obtained as discussed in Sec. 4.5. With two modes the proportion of the FDM



9O

42

Fig. 6.10

10 °

lift

10 -2

MDM 16 modes

.......... MAM 4 modes

..... FDM 4 modes

fAcceptabl_

\

10 .3 I I I I
0 5 10 15 20

Number of modes

Convergence of the modal methods at time t = 0.05 see (Case 2 of nonlinear
example problem 1).



91

;,r,,
O

_=

125_\_.

loot \

75

5O

25

Force-derivative method

(Number of modes = 4)

\ full-system

\ dt ---0.001 .sec

\ dt ---0.025 sec

0

Fig. 6.11

-25 I
0.00 0.05 0.10

x,inches

Effectof _ stepon theresponseof theFDM attime t= 0.05 scc with initial
conditionattime t= 0.0 and one EVP updateattime t= 0.025 sec (Case 2 of
nonlinear example problem I).



92

o

t.:
o

Fig. 6.12

101

10o

I 0 "_

10 .2

dt m ¢

0.001, 25, 1.0

0.001, 10, 1.0

0.001, I, I0.0

0.0001, 1, I0.0

0.00005, I, I0.0

Acceptable error

10_ I I I
0 5 10 15 20

Number of modes

a) Mode-displacement method (MDM).

Effectof titre-marchingparameters on thenumber of modes requiredby
theMDM, M.AM, and the FDM attime t= 0.05_c (Case 2 of nonlinear
example problem I).



93

101

10 0

10 "1

dt m ¢

0.001, 25, 1.0

.......... 0.001, I0, 1.0

0.001, 1, 10.0

0.0001, 1, 10.0

0.00005, 1, 10.0

Acceptable error
/

10 .2

10 "3 I I
0 5 10 15 20

Number of modes

b) Mode-acceleradon method (MAM).

Fig. 6.12 Continued.



94

101

100

o
L=

10"_

10 "=

10 "_
0

dt m E

0.001, 25, 1.0

0.001, I0, 1.0

0.001, I, I0.0

0.0001, I, I0.0

0.00005, 1, 10.0

5 10

Acceptable error

/

I I
15 20

Number of modes

c) Force-derivative method O=DM).

Fig. 6.12 Concluded.



dt

0.001

0.001

Table 6.3 Effect of time-marching parameters on the number of modes required at
time t -- 0.05 sec (Case 2 of nonLinear example problem 1)

Time-marching
parameters

m

Minimum number
of modes for a
stable solution

Modes required
to converge within the

desired accuracy

25

I0

E

1.0

1.0

0.001 1 10.0

0.0001 1 10.0

0.00005 1 10.0

MDM MAM

7

4

FDM

4

4

MDM

16

16

MAM FDM

4

1 4

1 4 5 16 4 5

1 2 6 16 4 6

1 2 6 16 4 6
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correction to that of the MAM looks significant at time t - 0.I sec in Fig. 6.13a (Case 1),

whereas in Fig. 6.13b (Case 2), with four modes it is almost negligible at

time t - 0.05 see. That is, CFDM contributes very little compared to CMAM, to the

solution of Case 2. Figures 6.13a and 6.13b also illustrate that the relative importance of

thehigher-orderterms changes with time.

6.2 Lower Surfaceof Bay 3 of ShuttleWing Segment

The specificobjectiveof thisresearchistocompare the efficiencyof the modal

methods, interms of thereductionachieved,inl_rforming thenonlineartransientthermal

analysisof arealisticstructure,such as theShuttlewing segment shown inFig.6.14. The

thermalmodel shown inFig.6.15 representsa 58 in.segment of the lower surfaceof bay

3 and consistsof a 0.119 in.thickaluminum sheet(torepresentthe structure)covered by

a 1.36in.thicklayerof high-temperaturereusablesurfaceinsulation(HRSI). The 0.16

in.thickstrainisolatorpad (SIP) liesbetween the wing skinand theHRSI. The HRSI is

bonded to the SIP and the SIP isbonded to the skinwith room temperaturevulcanized

(RTV) adhesive.

The lateraledges and the aluminum structuream assumed to be adiabatic.The

outerwing surfaceissubjecttoheatloadsrepresentativeofShuttlereentry.The natureof
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the heating history is significantly complex. As depicted in Figs. 6.16 and 6.17, in

addition to the transient variation of the intensity, the spatial distribution of the load on

the surface changes dramatically as well. This is a result of the air in the boundary layer

over the wing undergoing transition from a laminar to a turbulent flow beginning at about

700 sec into the heating history. Radiation loss from the surface is modeled using an

equivalent nonlinear convection coefficient whose variation with temperature is shown in

Fig. 6.18a. The thermal properties (specific heat and thermal conductivity) of the HRSI

are highly temperature-dependent and their variation is shown in Fig. 6.18b. The various

materials involved whose properties considerably differ between them, coupled with the

complex imposed heating, result in a nonsymmetric temperature distribution.

6.2.1 Simplified One-Dimensional Model

In a preliminary analysis, the spatial variation in the applied heat load was ignored

and uniform specified heating was assumed. This resulted in a simplified

one-dimensional model across the thickness of the HRSI. Two-node conduction

elements were used to model the HRSI, SIP, RTV and aluminum skin, and zero-length or

point elements were used to represent the external heating and convection. The purpose

of this analysis is to characterize the finite element discretization necessary across the

HRSI thickness, so that the entire thermal response (not only the peak temperature) can

be predicted with reasonable accuracy and minimal computational effort throughout the

load history. Studies based on the simplified model are used to gain insight into the

physics of this problem and to understand how it affects the performance of the modal

methods. These preliminary results are expected to be useful in the subsequent finite

element modeling of the actual two-dimensional problem.

Mesh Convergence

A series of meshes were generated starting with a relatively coarse mesh

(Fig. 6.19) consisting of 16 nodes with ten uniform-length elements through the HRSI
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thickness.Successively refined meshes include 26, 46, 80 and 166 DOF with 20, 40 50

and 160 uniform elements, respectively, to represent the HRSI. Finally, based on the

nature of the problem, the 16 DOF mesh with ten uniform elements was modified to have

ten graduated elements with an arbitrary stretching factor of 2. This gives a large range

of element sizes, with fine elements in the region near the heated end and very large

elements in the interior.

The full-system solutions were obtained using a relatively small time step

dt = 0.5 sec with the eigensolution updated every time step. The well-refined 166 DOF

system yields a very smooth solution as depicted by the solid lines in Figs. 6.20 and 6.21.

The temperature at the HRSI surface rises very rapidly as the heating is applied and

diffuses rather slowly through the HRSI thickness and SIP to the aluminum skin as

shown in Fig. 6.20. After peak heating occurs at time t = I I00 sec, the surface begins to

cool while the temperatures of the interior of the HRSI and the aluminum skin continue to

rise. The temperature distribution pattern in Fig. 6.21 shows steep gradients at early time

due to the low conductivity of the HRSI. A good modal solution should capture this

nonlinear behavior accurately with as few modes as possible.

The 166 DOF solution is considered to be converged and is used to compute the

distribution error norm of the other full-system solutions, to determine the adequacy of

the meshes. As expected, the coarse 16 DOF systems both uniform and graded, have the

highest error norm over the entire time period with a maximum of 0.008 and 0.017

respectively at times t = 2"/5 see and t = 4"/5 sec. The corresponding full-system solutions

denoted by triangles and circles respectively (Fig. 6.21), are compared with the

converged solution at discrete times when the errors are high. The distribution of the

uniform mesh is not as smooth as those of the finer uniform meshes (not shown);

nevertheless the nodal temperatures match those of the 166 DOF mesh at corresponding

locations. The full-system solution of the graded mesh is far from smooth. The error at
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the location of the mid-HRSI thickness starts increasing around time t = 350 sec and

reaches a maximum at time t = 475 sec (temperature distribution at intermediate times are

not shown), when the peak temperature is almost reached but the temperature penetrates

at a fast rate due to increase in conductivity, but the nodes are too far apart to capture this

nonlinear behavior. Notwithstanding this error, the peak temperature as well as the

gradient at the heated end are captured accurately at all times. The 46 DOF and 80 DOF

solutions are very smooth and agree with the converged solution.

Convergence of Modal Methods for the Various Meshes

Having determined the limitations of the various meshes used and the accuracy of

the respective full-system solutions, the modal solutions were obtained to identify the

effect of the mesh on the eigensolution and hence on the efficiency of the modal methods.

Although the transient variation of the load is curvilinear (Fig, 6.16), the thermal analyzer

assumes linear variation between the specified input times so that the highest order modal

method that can be used is the second-order FDM. For the purpose of a one-to-one

comparison, a time step of 2 sec (determined by some trial and error) was used in all of

the following analyses, (except where indicated otherwise) and the eigensolution was

updated every 50 sec (that is, m = 25).

With the crude 16 DOF uniform mesh, each of the three methods requires 12

(75%) modes to converge, yielding a reduction of only 25%. While in the case of the

graded mesh, the coarseness produces an inadequate solution accuracy in the interior of

the HRSI, in the uniform mesh it decreases the efficiency of the MAM. The MAM

converges with 20 modes on all other uniform meshes. This yields a steady increase in

the percentage of reduction achieved with refinement beyond the 26 DOF mesh as seen in

Fig. 6.22. It is noteworthy that with the 16 DOF coarse but graded mesh, the MAM

shows a dramatic convergence with just 6 modes, 50% less modes than the uniform

mesh, subject to the error bound of the full-system solution. This reduction is
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comparable to that of the much finer 46 DOF uniform mesh. The increase in efficiency

of the MDM is observed to be far less with the graded mesh which requires 11 modes

(instead of 12 modes for the uniform mesh) and even with the finest 166 DOF mesh

which still needs to retain 70 (42%) modes. Based on the requirement for convergence

throughout the heating history, the FDM has not performed better than the MAM with

any mesh (this issue is discussed later). Table 6.4 summarizes some of these results

below.

Table 6.4. Comparison of reduction achieved by the IVIDM and
the MAM for Shuttle I-D model

Mesh description

Required number of modes

MDM MAM, FDM

16, uniform 12 12

16, graded 11 6 31.25 62.5

166, uniform 70 20 58.0 88.0

Reduction %

MDM MAM, FDM

25.0 25.0

Figure 6.23 compares the eigenvaluesof the meshes at time t= 350 sec and

clearly shows how the mesh affectsthe distributionof the eigenvalucs within the

spectrum. The relativepositionof the fourtheigenvaluc corresponding to the 16 DOF

meshes, for instance,is given by 0.25 on the x-axis in Fig. 6.23. Mesh refinement

enhances the rate of increase of the eigenvalues at the lower end of the spectrum,

although the degree of enhancement de,creases as the mesh becomes finer.A higher

magnitude for the eigenvalues has been attainedmore efficiently,thatis,by retaining

fewer DOF inthemesh, by a suitablegradingof theelement sizes.This explainswhy the

efficiencyof the MAM with the 16 DOF graded mesh iscomparable to the efficiency

with the much finer46 DOF mesh, and ismuch higher than that with the 16 DOF

uniform mesh. A comparison of the mode shapes of the 16 DOF uniform and graded

meshes shown in Figs. 6.24a and 6.24b shows how the steep gradientscan be well-

captured by fewer modes of the graded mesh.
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As in the previous examples, the MAM has achieved a remarkable improved

reduction compared to the MDM for this one-dimensional model of the Shuttle example.

For this example, although the heating history is transient, the FDM does not lead to any

improvement over the MAM with any mesh. The number of modes required for

convergence of the MDM and the MAM are based on the requirements for a stable as

well as accurate solution over the entire time domain.

The corrections CMAM and CFDM discussed in See. 4.5, were computed for the

166 DOF mesh based on the initial eigensolution and the applied load at time t = 50 sec.

As estimated from Fig. 6.25, the FDM and the MAM converge with four and eight modes

respectively at time t = 50 see and the corresponding distributions shown in Fig. 6.26

confirm the accuracy of these estimates. The convergence of CMAM and CFDM at

different times shown for the 166 DOF and 16 "DOF graded meshes in Figs. 6.27a and

6.27b were obtained using the corresponding full-system solutions at each time. As

depicted qualitatively in these figures, the more-effective higher-order method and the

modes required for convergence vary with time for this complex nonlinear problem with

a transient load. That is, the correction offered by the FDM to the MAM becomes

negligible rather early in time, whereas the correction offered by the MAM to the MDM

remains significant even at a much later time t = 950 see. This data was not used directly,

however, to estimate the modes required for this problem.

Effect of Transient Load and Nonlinearity on the Performance of the Modal Methods

For this study a piccewisc linear approach with dt = 0.5 see was used. For the

166 DOF mesh, the response of the FDM with four modes becomes unstable after

time t = 200 see. Both the MAM and the FDM converge with the same number of modes

after time t ---250 scc. Similarly for the 16 DOF mesh, the MAM and the FDM converge

with five modes up to time t = 300 see. Recalling the implementation described in

See. 4.6, the full form of the generalized load vector was used for the MAM but only the
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approximate form of the derivative of the generalized load vector was used for the FDM.

However, since the eigensolution was updated every time step in this study and no

iterations were made, the nonlinear correction did not exist. Also for the 16 DOF graded

mesh, the derivative of the nonlinear convection heat load vector (Fig. 6.28), computed

based on the full-system solution, was included so that no approximation was actually

made to the FDM.

In the early stages, CFDM is significant and increases with time (Figs. 6.27a,

6.27b) so that the FDM converges faster than the MAM. Later on, between

times t = 250 sec and t - 300 sec, the trend reverses and CFDM decreases until the MAM

becomes the most effective method. Figure 6.28 shows that the derivative of the applied

heat load reaches a local peak at time t = 250 sec and then starts decreasing while the

magnitude of the load itself is still increasing as seen in Fig. 6.29. The change in

effectiveness of the FDM with time, which is experienced with both meshes, may be

governed by the heating history for this problem.

Although the MAM gives a converged solution with five modes for the 16 DOF

mesh up to time t = 300 sec, the ¢igenvalues (Fig. 6.30), and hence the response, exhibit

unrealistic oscillations in time. The difficulty faced by the MAM in predicting a stable

solution after time t - 300 sec can be qualitatively explained with the help of Fig. 6.3 I.

The normalized participation factor gives a meastLr¢ of the contribution of each mode in

representing the total load vector at different times. The spatial distribution of the load

does not change with time for this I-D model; however, the mode shapes vary with time

due to the temperature-dependence of the thermal properties. Although the magnitude of

the load is increasing with time, Fig. 6.31 shows that the participation of the modes

steadily decreases from the initial time and reaches a minimum between times t = 300 sec

and t = 400 sec when the inclusion of sufficient modes becomes necessary for a stable

solution after this time. This pattern was observed with the f'mer meshes too, which gave
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a stable converged solution with 17 modes itself (instead of 20), provided the time step

was decreased near time t = 300 sec. The MDM, however, is well-behaved even with

much fewer modes than that required for convergence, although the solution is quite

inaccurate as seen in Fig. 6.32.

6.2.2 Two-Dimensional Model

This example demonstrates the capability of the proposed higher-order modal

method for solving complex situations with a much smaller set of equations than the

MDM. Two-dimensional quadrilateral elements were used tomodel the HRSI, SIP and

RTV while the aluminum structure, the heat load and the nonlinear surface convection

were represented by line elements. Based on the experience with the 1-D model, the

MAM was selected as the main focus in these analyses. For the 2-D model of the Shuttle

problem (Fig. 6.15), the additional complexity involved is the spatial variation of the heat

load. The magnitude of the load increases rapidly in a more or less spatially uniform

manner from time t= 200 sec to time t--350 sec (Fig.6.17),and then the distribution

becomes nonuniform. Also, around time t= 700 sec thepatternstartsreversing,and by

time t= 850 sec a step-likedistributionpatterndevelops. Then themagnitude of the load

increasesatthemaximum rateup to time t= 900 sec and afterreachingthepeak value at

t= I000 sec,thedistributionbecomes uniform again. A variationof the nonuniform load

was alsoconsideredwhere the loadsdo not change abruptlyas describedearlierbut in a

much smoother manner as shown inFig.6.33.

It is thereforeprudent to arriveat the optimum mesh which can accurately

representthe gradients,which in thiscase occur not only acrossthe HRSI thicknessbut

along the wing surfaceaswell. For both casesof thespatially-varyingload,judgingfrom

the I-D analysisresults,thediscretizationof the 16 DOF graded mesh was chosen across

the HRSI thickness,i.e.,along the y-axisin Fig. 6.15,as itoffersa higherincreasein

efficiencyfora given number of DOF. In an attempttoimprove thesolutionaccuracy,it
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wasrefined to include threemorenodesat the mid-section where elements are rather

large in the I-D model. The discretization used along the x-axis is discussed separately

for the two load cases.

_ase 1: Nonuniform Load Distributien with Jump Discontinuities

The full-system solution at time t = 1000 sec obtained with a crude mesh of 187

DOF shows unrealistic spatial oscillations as in Fig. 6.34, due to the improper

representation of the applied load. This mesh was obtained using only two elements each

to represent each different load span (Fig. 6.15). For this load case shown in Fig. 6.17,

the discretization along the wing surface, i.e., along the x-axis in Fig. 6.15, must be done

bearing in mind that the calculation of the nodal load vectors involves the finite element

approximation of lumping the element load equally at the two nodes. Consequently, a

series of fine elements are necessary at the junction of the unequal input loads in order to

accurately model the spatially-discontinuous load and thereby predict the temperature

response reliably. The mesh thus generated after careful consideration consists of 578

nodes as shown in Fig. 6.35.

The temperature contours obtained from the full-system solution at

time t -- 1000 see are shown in Fig. 6.36. It is evident that the temperature variation in

the x-direction closely resembles the load distribution pattern causing a jump in the

temperature of up to 150"R within a distance of 0.2 in. at locations where the load

increases abruptly, and then the temperature remains constant (even if intermediate nodes

are added) until the next jump location. To establish the suitability of the nodal locations

along the x-axis for this problem, a mesh with 1683 nodes was employed along with a

minor smoothing of the load changes over a thickness of about 1 in. The response was

very similar to that of the 578 DOF mesh, that is, with similar jumps in temperature and

temperature diffusion occurring only in the same width as the load smoothing in spite of

the large array of vcl:y fine elements at the junctions. The adequacy of the discretization
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in the y-direction was verified by comparing the distribution along the edge x = 0.0 with

the full-system solution of the 1-D model using the 166 DOF mesh.

The convergence of the correction, CMAM, at time t = 350 sec (Fig. 6.37) is used

to make a rough estimate of the number of modes required for convergence of the MAM.

The reduced-system solution is considered to be converged when the error norm (based

on the full solution) is acceptable throughout the solution time (Fig. 6.38). Based on this

criterion, a subset of up to 400 modes (or 70%) are required by the MDM, whereas only

200 modes (or 35%) are required by the MAM as seen in Fig. 6.39; thus confirming the

improved predictability of the MAM for problems with extreme temperature gradients,

even an abrupt increase in temperature caused by a discontinuous load. Here again, the

FDM shows no better convergence than the MAM as expected from Fig. 6.37 which

shows that CFDM is insignificant compared to CMAM.

Case 2; Nonuniform Load Distribution with a Smooth Variation

The sudden jump in the thermal load at discrete points in Fig. 6.17 was

smoothened by incrementing the load in small step sizes over the entire load span and the

resulting distributions at times t = 850 see and 1000 sec are shown in Fig. 6.32.

Accordingly, a vast number of elements were used to model these loads producing the

mesh comprised of 986 DOF shown in Fig. 6.40. As expected, a smooth temperature

distribution occurs along the wing surface as seen in Fig. 6.41, to obtain which 850

modes (or 86%) are needed by the MDM (16% more than that required for Case 1).

About the same increase in percentage of modes as that of the MDM is witnessed for the

MAM which requires 550 modes (or 55%) for this case.

The two cases discussed above, which encompass a wide range of nonsymmetric

load distribution, firmly establish the superior performance of the MAM over the MDM

although the degree of the increase in efficiency could vary, depending on the nature of

the load distribution and the finite element discretizadon.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

The force-derivative method (FDM), which collectively represents a class of

higher-order modal methods that improve the fundamental modal method, the MDM,

with various-order correction terms, has been presented for nonlinear transient thermal

analysis. The additional terms in the FDM include the forcing function and its

derivatives with respect to time. A new algorithm incorporating the modal methods and a

fixed-point iteration scheme has been implemented in an existing advanced finite element

code, COMET, and validated with the aid of numerical examples. The solution is

advanced in time with the nonlinear system matrices and load vectors being re-evaluated

during the iterations at each time step, while the eigensolution is updated periodically to

account for the change in the nonlinear basis vectors. For nonlinear problems, the f'trst-

order correction that the MAM offers to the MDM is fully realized by forming a

generalized load vector, which in addition to the applied load vectors includes a

corrective vector to account for the change in the nonlinear eigensolution between

updates. The similar implementation of the second-order FDM in its entirety, requires

the exact derivative of the generalized load vector which entails additional computational

effort. Hence, in general, the highest-order FDM that may be employed, could be

decided based on the order of the explicit time-dependence of the forcing function, as for

linear problems.

In general, the results demonstrate the potential of the higher-order methods to

effectively improve the reduction achieved for transient thermal problems. In this study,

138
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the efficiency of the methods is measured only by the reduction achieved, in terms of the

number of modes required, to obtain the response within the desired accuracy.

The first nonlinear example is a rod with a transient load and temperature-

dependent thermal conductivity. The second nonlinear example involves a realistic

structure, the lower surface of bay 3 of the Shuttle wing segment with nonlinear thermal

properties. The complicated heat loads include specified surface heating which varies not

only with time but in space as well, and nonlinear surface convection.

A number of factors that affect the performance of the modal methods have been

identified. The need for a multi-step approach in time with periodic updates of the

eigensolution has been established for nonlinear problems. Reduction of the time step

size and eigensolution updates have either increased the solution accuracy or improved

the convergence of the methods to some extent. The magnitude of the derivative of the

transient load compared to that of the load itself, and the degree of temperature-

dependence of the thermal conductivity are seen to affect the relative effectiveness of the

FDM compared to the MAM.

The preliminary one-dimensional analysis of the Shuttle problem using different

meshes clearly indicates that for a given number of degrees of freedom a suitably-graded

mesh based on the expected response can upgrade the eigenmodes and thereby further

enhance the faster convergence of the MAM over the MDM. For the two-dimensional

problem with a discontinuous load distribution, the mesh is contrived in light of the above

conclusion. Results conf'u'm that the correction term of the MAM, which involves the

load itself, is very effective in representing the neglected higher modes thus enabling the

MAM to achieve a remarkable reduction of 65%, over twice that of the MDM, for this

example with complex loading conditions.

The above examples have demonstrated that the FDM (the MAM in particular) is

indeed a feasible, effective reduction method for nonlinear transient thermal problems.
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To solve nonlinear problems more efficiently, future research must include easy but

effective means to approximate the changing eigensolution. When coupled with a

transient adaptive meshing scheme, the method shows potential to yield a reliable and

efficient solution for problems with severe gradients.

In this study, it has been observed that the response of the MDM, though highly

inaccurate, is well-behaved even with much fewer modes than that required for

convergence. However, a minimum number of modes are required by the higher-order

methods to yield a stable solution without unrealistic oscillations in time, regardless of

how small the time step may be. This behavior of the MAM and the FDM exhibited in

this study needs further investigation.

Error estimates based on the approximation of the pseudo steady-state response

and its timo-clorivative by a subset of modes" have been identified for linear transient

analysis. Results of a linear problem with a spatially-uniform load but a linearly-varying

transient load, although not conclusive, show how those error estimates can reliably

predictthe number of modes requiredby the MAM and the FDM throughout the time

domain. The resultsalso indicatethe potentialusefulnessof the convergence of the

correctionterms of the MAM and the FDM in determining the effectivemethod and the

modes required,both of which may vary with time. Further study isrequired for a

thorough interpretationof thesecorrectionterms,todecidehow theymay be obtainedfor

nonlinearproblems and for establishingconvergence criteriato use them as a priori

estimates.

The parallelizationof theFDM isanothersubjectidentifiedforfuturestudy. The

uncoupled nature of the modal equations and the numerous matrix-vectorproducts

involved in the modal solutionsindicate that the computational efficiencycan be

improved by usingparallelprocessingtechniques.
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Appendix

COMPUTATIONALPROCEDURESUSEDIN THEIMPLEMENTATION

OFTHEMDM, MAM AND THEFDM

The sequenceof the stepsto be followed in the solution of transientthermal

problemsusingthemodalmethodsis presentedbelow.

1. input the number of modes to be included in the solution.

Input the number of time steps before every EVP update, m.

At initial time t = 0:

Evaluate the nonlinear system matrices, K0 and CO.

Evaluate the linear and nonlinear applied load vectors, RI o and RNL 0, and their time

derivatives, I_L0 and I_. 0.

2. Apply the boundary conditions.

. Solve the initial EVP, Eq. (4.25), to get O0 and Ao.

Factor K0.

Set the indicator for EVP update, k, to zero. See Eq. (4.40).

.

.

For n = 1, 2. total number of timesteps; loop through step 27.

Increment k; k = k+ 1.

Evaluate the linear applied load and its time derivative at current time, RL n and I_Ln.
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. Initialize the modal coordinates, Zn-1, Eq. (4.45).
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, Compute the linear part of the modal coordinates; sum of the f'n'st two terms on the

right-hand side of Eq. (4.53).

8. For i = 1, 2... until the iterations converge, loop through step 24.

. Compute the nonlinear corrective load vector, QNL_"l, Eq. (4.41), and add to the

nonlinear applied load vector, RNLn'q to form the nonlinear part of the generalized

load vector.

10. Obtain the modal coordinates, Zn, by adding the nonlinear part (third term on the

right-hand side of Eq. (4.53)) to the linear part computed in step 7.

11. Get the approximate response, Tin, by the MDM, Eq. (4.48).

chosen method, go to step 21.

If the MDM is the

12.
i-I

Otherwise, assemble the generalizedload vectorQn , Eq. (4.42),by adding the

linearcomponent from step5 tothenonlinearcomponent from step9.

13. Solve the set of linear equations Kn.kr = Q_-I to obtain Kn!k Q_-I.

14. Compute _ _ _ Qi-1.
A

15. Get the response of the MAM, Eq. (4.49). If the MAM is the desired method,

go to step 21.



16.
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• i-1 . i-I

Otherwise, using the approximate form of Qn , Eq. (4.52), solve Kn-k r - Qn to

_ -1 _i-1
yield Kn-k Qn •

C K-1 ji-117. Compute n-k n-k Qn •

18. SolveKn.kr Cn-kKn!k(_ "1 -1 -1 0_'1.= toyieldKn-k Cn-k Kn-k

19. ^ j_._T .i-I
Compute • .. 2 Qn •

A

20. Get the responseof thesecond-orderFDM, Eq. (4.50).

21. Use the new temperature vector to update the nonlinear system matrices and

loadvectorforthenextiterationor timestop.

22. Apply the boundary conditions.

23. Iftheiterationshave converged,Eq. (4.54),go to step25.

24. Otherwise, go to the next iteration, step 8.

25. If this is the last time step, STOP.

26. Otherwise, check ff it is time to update the EVP; if it is not, i.e., k ¢ m, go to the next

time, step 4. If it is, then obtain the new set of eigcnmodcs, q)n and An.

Factor Kn.

Reset k = 0.

Go to step 4.
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