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Chapter 1

INTRODUCTION

1.1 Motivation of Current Research

High-speed vehicles such as the Space Shuttle Orbiter must withstand severe
aerodynamic heating during reentry through the atmosphere. The Shuttle skin and
substructure are constructed primarily of aluminum, which must be protected during
reentry with a thermal protection system (TPS) from being overheated beyond the
allowable temperature limit, so that the structural integrity is maintained for subsequent
flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive
insulation system, typically absorbs the incoming radiative or convective heat at its
surface and then re-radiates most of it to the atmosphere while conducting the smallest

amount possible to the structure by virtue of its low diffusivity.

In order to ensure a successful thermal performance of the Shuttle under a
prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle
must be done. The surface temperature profile, the transient response of the HRSI
interior, and the structural temperatures are all required to evaluate the functioning of the
HRSI. Transient temperature distributions which identify the regions of high temperature
gradients, are also required to compute the thermal loads for a structural thermal stress
analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-

dependent thermal properties of the HRSI as well as to model radiation losses.

Based on the capability to handle time-dependent as well as nonlinear boundary
conditions and thermal properties, and programmability in general purpose codes, the

finite element method is used to discretize the governing energy equation. When the



structure is subjected to severe thermal loads, the discretization level must often be
increased by adding degrees of freedom to predict accurately the temperature gradients
and the subsequent stress response. The addition of degrees of freedom significantly
increases the computational cost of transient nonlinear thermal analysis. Hence, it is
desirable to employ a method which can effectively reduce the computational problem
size while maintaining accuracy, thus enabling an efficient solution of large or complex
thermal problems.

The force-derivative method has shown temendous success, in terms of the
reduction achieved, in a variety of structural problems and also when applied to a simple
linear transient thermal problem. This observation has motivated the present study on the
feasibility of using the force-derivative method as a reduction technique for solving

nonlinear transient thermal problems.

1.2 Literature Survey

This section summarizes the research done in the past to predict the thermal
response with greater efficiency and accuracy in a wide range of problems. After an
introduction to the different approximation methods avzilable, the commonly used finite
element time integration algorithms are discussed along with measures proposed in the
earlier studies to overcome the demerits associated with such algorithms. Then, studies
on the concept and usefulness of adaptive mesh generation techniques are presented.
Finally, the evolution of the reduction methods to improve the computational efficiency
of large-scale structural problems is outlined, followed by a review of the status of the

reduction methods as applied to thermal problems.

1.2.1 Approximate Numerical Methods
Analytical or exact methods to obtain the temperature response are often
impossible or impractical, due to the arbitrariness or irregularity of the geometry, or other

features of the problem. Therefore, approximate numerical methods are often employed



for this purpose. The thermal analysis of convectively-cooled structures by Wieting and
Guy [1]* was based on the finite difference lumped-parameter technique such as used in
the Martin Interactive Thermal Analyses System (MITAS) [2]. The finite difference
model of a problem gives a pointwise approximation to the governing equation of heat
transfer. The model is formed by writing difference equations for an array of grid points,
and hence is improved as more points are used. Bhattacharya [3] and Lick [4] used an
improved finite difference method for time-dependent heat conduction problems.
However, the method performed poorly when faced with irregular geometries or

complicated boundary conditions.

Another numerical approach is the boundary integral equation method (BIEM)
where an exact integral formula is derived relating boundary heat flux and boundary
temperature from a fundamental singular solution to the governing equation. The part of
the boundary data not already prescribed in the problem statement is obtained
numerically from the formula. The tempera-turc throughout the body is then generated by
means of a Green’s type integral identity directly in terms of the boundary data. A hybrid
method which combined the BIEM . with the Laplace transform technique to solve
transient heat conduction problems was developed by Rizzo and Shippy [5] in 1970.
Rources and Alarcon [6] presented the formulation for a two-dimensional isotropic

continuous solid using the BIEM with a finite difference approach in time.

The finite element method (FEM) represented a major breakthrough in solid
mechanics. Although the concepts of the FEM were well in use already, the method
gained momentum in 1965 when Zienkiewicz and Cheung [7] introduced it as a method
applicable to all field problems that can be stated in a variational form. This method
gives a piecewise approximation to the governing equation. The finite element model

replaces the solution region by an assemblage of discrete elements, and thereby reduces

*Numbers in brackets indicate References.



4

the continuum problem to one of a finite number of unknowns at points called nodes
along element boundaries (and sometimes within the elements too). The variation of the
field variable within the elements is expressed in terms of the nodal values of the variable
and the assumed approximating functions called interpolating functions within each
element.

The finite element method was first extended to linear thermal analysis by Wilson
and Nickell [8] and by Becker and Parr [9] to solve steady and transient heat conduction
problems. With this introduction, the potential of the method to perform thermal analysis
was realized as it could not only represent irregular gcomctfy but could improve accuracy
and sometimes could perform more efficiently for a given accuracy than finite difference
methods. It has the added advantage that it can model both thermal and structural
problems. The various parémetcrs in the method that can affect the nature of the solution,
in terms of efficiency and accuracy, have been studied extensively since the method
evolved.” The ease in modeling complex geometry, the capability to handle
time-dependent as well as nonlinear boundary conditions and thermal properties,
programmability in general purpose codes, and compatibility with a subsequent structural

analysis have made the FEM a very useful and effective method in engineering

applications in general.

One of the early works in nonlinear heat transfer using finite elements was by
Richardson and Shum [10], who included nonlinear radiation-convection heat flux
boundary conditions in an explicit formulation. The convergence characteristics were
improved by an alternative implicit-direct iteration scheme by Beckett and Chu [11].
Aguirre-Ramirez and Oden [12] applied the FEM to solve nonlinear heat conduction
problems with temperature-dependent conductivity by the Runge-Kutta numerical
integration scheme, while Thornton and Wieting [13] developed a procedure to handle

several temperature-dependent parameters for simple elements based on the generalized



Newton-Raphson iteration technique [14]. The procedure which relies on the
assumptions that thermal parameters are constant within an element and depend only on
the average element temperature, was applied to convectively cooled structures [15].
While the early studies employed the variational principles introduced by Gurtin [16]
(traditionally used in structural analysis) to derive the finite element equations,
subsequent researchers used the Galerkin method of weighted residuals with interpolation

functions as the weighting functions, commonly referred to as the conventional

formulation.

1.2.2 Time-Integration Algorithms

Transient problems require the numerical solution of a set of first-order
simultaneous ordinary differential equations. This was done by solving the incremental
form of the governing equation [17], using' an implicit time integration and modified
Newton-Raphson iteration to establish equilibrium at every time increment. The direct
integration techniques start from a known initial condition and then solve recursively for
the solution at successive intervals of time based on a finite difference approximation of
the time dcrivative of the temperature at an intermediate time within each time interval.
This approximation has a significant effect on the behavior of the transient response. The
study of the oscillation and stability characteristics of direct integration algorithms has

received considerable attention over the years.

In the explicit forward-difference scheme, the set of temperatures at a given time
is expressed as an explicit function of the set of previous temperatures in the structure. It
requires minimal computation per time step to solve uncoupled algebraic equations.
Capacitance has to be lumped, which may have its own inaccuracies as discussed in
reference [18]. It is only conditionally stable with severe restrictions on the time step for
short or thin elements having high diffusivity. This makes computation costs very

prohibitive when the response is calculated over a long duration. Implicit schemes are



unconditionally stable even for nonlinear problems [19] thus permitting larger step sizes.
However, they require considerable computational effort to solve coupled equations and
significant additional computational effort for nonlinear problems because of the need for
iterations at each time step and the need to factor the effective coefficient matrix every
time step. Nevertheless, implicit algorithms are more efficient for solving stiff equations
with widely-separated eigenvalues. In the popular Crank-Nicholson implicit algorithm
the step size is often dictated by solution accuracy, for too large a step especially in
nonlinear applications, can introduce errors in the spatial temperature distributions.

Myers [20] has presented a method for estimating time steps required in heat conduction

problems.

Adelman and Haftka [21] have identified some essential features of most transient

heat conduction problems with respect to integration techniques,

1. The thermal response may be divided into regions of slowly and rapidly varying

temperatures. Steep transients accompany initial conditions or sudden changes in

the heat load.

2. The rapidity of variation of the transient portion of the temperature history is
proportional to the quantity equal to the square of the length of the element
divided by the diffusivity of the material. During such a transient, time steps
much smaller than this quantity must be taken no matter what type of integration

technique is used.

3. During a period of slowly-varying temperatures, large time steps may be taken by
implicit integration techniques but explicit algorithms still have the

above-mentioned restriction on the time step size.

Extensive research has been performed to improve the efficiency and accuracy of

these algorithms. Subcycling and mixed time integration algorithms are some techniques



that have been investigated. Subcycling uses different time steps in different subdomains
of a problem whereas mixed time integration uses different integrators and a single time
step. However, application to nonlinear problems faces difficulties as the critical time
step varies and stability characteristics are not well defined for implicit integrators.
Orivuori [22] improved the efficiency of the Crank-Nicholson method to solve a
nonlinear problem (nonlinearity being due to temperature-dependent material properties
and boundary conditions), by using constant reference values for the effective coefficient
matrices and load vector but periodically multiplying them by time-dependent functions
to account for the nonlinearities, thus avoiding repeated factorizations. Efforts to couple
the development of a set of various-order implicit algorithms and a strategy to
automatically select both the largest possible time step as well as the appropriate
algorithm throughout the solution process have resulted in the GEAR algorithms [23].

Reference [21] compares the GEAR algorithms against those used in SPAR [24] and
MITAS [2].

The Taylor-Galerkin approach first introduced in convective transport problems
was extended to transient nonlinear thermal-structural problems by Thornton and
Dechaumphai [25] and applied to acrodynamically heated leading edges {26]. This
algorithm utilizes first-order Taylor series in time and Galerkin method for spatial
discretization. Unlike conventional algorithms, this approach treats the conservation
variable and not temperature as the unknown. The nonlinearities are conveniently
handled through the flux components thus avoiding the need to regenerate element
matrices for nonlinear problems. The fluxes are interpolated from nodal values, in the
same form as the conservation variable. The resulting element matrices could be
evaluated in closed form thus avoiding the numerical integration for complex finite
element shapes. The merits of this linear flux approach were seen again in steady-state
thermal-structural analysis by Pandey et al., [27]. A second-order accurate explicit

scheme was proposed by Tamma and Namburu [28] by including higher-order time



derivatives in the Taylor series which are evaluated from the governing equation. An
alternate implicit, second-order accurate approach was presented by Thornton and
Balakrishnan [29] which uses enthalpy as the dependent variable, thereby handling
temperature-dependent specific heat outside the element integral as well and also

permitting larger time steps than the explicit form.

High conductivity or very small element sizes, as may result from adaptive
techniques, could severely restrict time step sizes from accuracy and stability
considerations. As a means of replacing time-integration techniques and their associated
complexities, hybrid methods have been developed which employ the Laplace transform
technique to remove the time derivative from the governing equation and then solve the
equation in the transform domain by the BIEM (3], finite difference [30] or FEM [31-33].
The temperature response is then obtained directly at the selected time of interest by
applying an inverse transform to the solution in the transform domain. Although this
technique was used very efficiently for linear problems in Ref. [33], its accuracy as a
general nonlinear solution technique is questionable. Cerro and Scotti [34] have shown
that the linearization involved before the Laplace transform is applied, neglects the time-
dependent behavior of the terms which define the nonlinear problem, and hence produces

significant inaccuracies as the nonlinearity increases.

1.2.3 Adaptive Mesh Generation Techniques

Severe acrodynamic heating produces non-uniform temperatures and stress
gradients over the structure and the distributions are also time-dependent. Adaptive mesh
generation techniques are employed to capture such localized effects and thus improve

solution accuracy for a given computational effort. The two basic approaches are :

1. adaptive refinement/derefinement which includes
(a) the h-method,
(b) the p-method,
(¢) the r-method, and



2. remeshing.

The h-method increases/decreases the number of degrees of freedom (DOF) by
adding/removing elements in the original mesh in regions of interest. It is commonly
used in production-type codes but orientation of elements cannot change to accommodate
the varying field. The p-method maintains the geometry of the elements of the initial
mesh but increases/decreases the DOF by increasing/decreasing the order of the
interpolating polynomial by the use of nodeless variables. The hierarchical temperature
interpolating functions need not be of the same order as displacement interpolating
functions; therefore independent refinement is possible which is useful in integrated
thermal-structural analysis [35] but has its complexities during implementation in
computer programs. The r-method keeps the number of elements and their connectivities
the same but relocates the nodes. This could sometimes result in distorted elements. The
inherent drawbacks in the refinement approaches led to the use of the remeshing
technique [36-37], wherein a new mesh is generated based on the solution obtained from
the previous mesh. The new mesh consists of small elements in the regions with large
changes in solution gradients and large elements in the regions where the gradient
changes are small. For thermal problems, especially where the thermal loads move along
the body of the structure and the magnitudes also vary with time, the mesh cmployed
must adapt itself both in time and space (mesh movement) to accurately capture the
transient temperature response. Remeshing has proved to be beneficial where steep
gradients are involved because of high convergence rates. Mesh adaptivity based on
relative error indicators estimated from the previous finite element solutions, avoids the
need to know the behavior a priori. For a plate subject to nonuniform surface heating,
when compared with a uniformly refined structured mesh, an adaptive unstructured mesh

required much fewer nodes for a given acceptable error or produced a much smaller error

for a given number of degrees of freedom (nodes).



10

1.2.4 Reduced-Basis Methods

A class of methods known as the reduced-basis methods retain the modeling
versatility of the FEM while simultaneously reducing the number of DOF. The central
idea is to solve the problem in a reduced subspace of the original space of discretization.
This is done by replacing the governing equations of the structure by a reduced system of
equations with considerably fewer unknowns. Thus, the actual solution vector is
approximated by the Rayleigh-Ritz technique as a linear combination of a reduced set of
linearly independent basis vectors. The approximate solution vector is then given by the
product of a transformation matrix whose columns are the basis vectors, and a vector of

undeterrained coefficients which is obtained by solving the reduced system of equations.

The key to an effective reduction technique is the proper choice of the basis
vectors which may include eigenmodes, Ritz vectors, Lanczos vectors or any suitable
combination of the above. The following guidelines aid in the choice of appropriate basis

vectors:

1. The vectors must be linearly independent and span the space of solutions in the
neighborhood of the point considered on the solution path, and therefore fully

characterize the nonlinear response in that neighborhood.

2. Their generation should be both simple and computationally inexpensive, and

their number can be automatically selected for any given problem.

3. The vectors must have good approximation properties so that they provide highly

accurate solutions on a large interval of the solution path.

While the first property guarantees convergence of the Bubnov-Galerkin approximation,
the other two decide the efficiency and effectiveness of the method in solving large-scale

nonlinear thermal problems. The review of the literature available for reduced-basis

methods is presented in separate secsens for structural and thermal problems.
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Structural Problems

The use of modal methods as a reduction technique has increased by leaps and
bounds since its introduction in 1944 by Biot and Bisplinghoff [38] to solve dynamic
structural problems. The eigenmodes of a structure were then recognized, for the first
time, to form a complete set of orthogonal and linearly independent vectors whose
superposition could therefore represent the transient, linear structural response. This
method henceforth came to be known as the mode-displacement method (MDM). Its
attractive feature was that the reduced system of equations that resulted from this

transformation were uncoupled, and hence could be solved individually as single degree

of freedom systems.

The use of modal techniques for nonlinear problems is based on the principle of
local mode superposition. For mildly nonlinear problems, Bathe and Gracewski [39]
successfully employed the MDM coupled with the residual force technique. Herein, a
single set of modes (based on linear analysis) and a constant effective stiffness matrix is
used throughout the analysis, while the nonlinearities are fully taken into account in the
evaluation of the residual force vector. However, for highly nonlinear problems this
could yield erroneous results as the system characteristics are continually changing, while
an accurate solution might require too frequent basis updates which could prove to be
expensive. Noor [40] observed that the use of the linear solution as a basis vector
necessitates frequent additions of corrective basis vectors, where each additional vector is
obtained by solving the full system of nonlinear equations. To avoid this, Noor suggested
the use of a nonlinear solution and its various order path derivatives as basis vectors in
nonlinear structural problems. To accomplish the same task, Idelsohn and Cardona
[41-42] suggested the inclusion of derivatives of the basis eigenmodes and Ritz vectors.

The Ritz vectors have the advantage of accounting for the spatial distribution of the load

at the basis generation itself.
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The efficiency of a reduction method is measured by its ability to accurately
predict the transient response by using as few basis vectors as possible. This ability is all
the more crucial for a modal method where the complete solution of a large eigenvalue
problem is rather expensive and also entails huge computer storage requirements.
Although the MDM proved to be accurate and cost effective for solving many dynamic
structural problems, the method experienced convergence difficulties when dealing with
problems that exhibited discontinuities in time or space, or problems with closely-spaced
natural frequencies [50-51]. The MDM often required a large number of modes to
predict even the displacement response accurately and was ineffective in predicting the
stresses (which is expected since the stresses are functions of the spatial derivatives of the
displacements and the process of differentiation tends to magnify errors already existing
in the displacement calculations). Kline [43] attempted to improve the MDM by adding a
suitable choice of Ritz vectors to the system eigenmodes for linear dynamic problems.
Several researchers [44-47] have worked on developing improved higher-order or faster-
convergent modal solutions. The improved convergence of the mode-acceleration
method (MAM) over the MDM is due to the additional term which represents the pseudo-
static response thus including to some extent, the flexibility of the higher modes which

are totally neglected in the MDM.

Camarda [48-50] identified a unified approach for deriving successively
higher-order modal methods, which are collectively called the force-derivative method
(FDM) and offer an increasingly improved approximation of the higher modes neglected
in the basic MDM. As the name indicates, the additional terms in the FDM involve an
increasing order of the time derivatives of the forcing function, which are 6btaincd by
repeated integration by parts with respect to time, of the convolution integral form of the
modal response. Thus the MAM, which supplements the MDM with one correction term

that depends on the forcing function itself, is the first-order FDM.
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The FDM has established its superiority over lower-order modal methods by the
consistently faster convergence and greater accuracy in a wide variety of linear structural
problems [48-50]. It must be noted that if the forcing function or its time derivatives are
discontinuous in time, the higher-order modal methods should include appropriate jump
conditions to avoid errors in the solution close to the time of discontinuity. This is
because the development of higher-order methods is based on the assumption that the
forcing function and its time derivatives are continuous. McGowan and Bostic [51] have
demonstrated that for a multi-span beam (which has closely-spaced frequencies) subject
to a uniformly distributed load which varies as a quintic function of time, the FDM (order
4 and 6) not only significantly reduced the number of modes necessary to represent an
accurate response, but also required considerably less computational time as compared to
the lower-order modal methods and the Lanczos method. The highly desirable rapid
convergence property of the FDM was further exhibited in the analysis of an
unconstrained high-speed civil transport structure [52], which used an elastic flexibility
matrix to replace the inverse of the stiffness matrix which was singular. However, a
comparative study of the central processor unit (CPU) times in this case showed an
increased CPU time required by the higher-order FDM as it performed more calculations

involving the elastic flexibility matrix.

Thermal Problems

Transient thermal problems exhibit a wide spectrum response and the higher
thermal modes excited by the heat supply intensities generally dominate the response.
Bushard [53] employed the Guyan reduction technique (commonly used in structural
dynamics) to solve transient thermal problems. The mode-superposition technique was
introduced in thermal analysis as well by Biot [54] in 1957. However, too many DOF had

to be retained in the reduced system for the MDM to predict an accurate temperature
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response even for linear thermal problems. The slow convergence of the MDM can be

traced to the omission of the important higher modes.

Nour-Omid et al., [55] recognized that the Lanczos algorithm, which originated to
solve the symmetric eigenvalue problem, was an efficient tool to extract
eigenvalues/eigenmodes at both ends of the spectrum. This capability enabled the
algorithm to generate a sequence of orthogonal vectors which served as an effective basis
in the transient thermal analyses by Nour-Omid [56] and Coutinho et al., [57]. By
reducing the system of equations to the tridiagonal form, the solution required little
numerical effort. The vectors were themselves inexpensive to generate. Assuming the
spatial distribution of load does not vary with time, the steady-state solution was used as
the starting vector for linear problems, and with few vectors generated, the coordinate
transformation matrix contained vectors which were also global approximations of the
higher modes (57]. Thus, Lanczos vectors served as an effective reduced-basis for
thermal analysis. Subsequently, in an attempt to capture steep gradients in the solution,
Cardona and Idelsohn [58] employed the increment of the nodal temperatures for the first
time step as the starting vector to generate the orthogonal Lanczos vectors, and then

supplemented with a constant vector for successive time steps.

Nonlinear thermal problems were handled by Cardona and Idelsohn [58] in a
manner similar to nonlinear structural problems by augmenting the set of basis vectors
with derivatives of the same with respect to their own amplitude parameters, thus
accounting for the variation of the system properties caused by chan ges in temperature.
Noor et al., [59] extended the path-parameter approach to solve nonlinear steady-state
thermal problems. The governing equation is embedded in a single or multiple-parameter
family of equations. The path derivatives obtained by successive differentiation of the
finite element equations of the initial discretization, are computed at zero values of the

path parameters so that only one matrix factorization is needed. Often an augmented set
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is used which includes a constant vector to represent a uniform temperature mode and
reciprocal vectors along with the first few path derivatives. The cost of evaluating the
basis vectors and generating the reduced equations can be rather high relative to the cost
of solving the reduced nonlinear algebraic equations. This is because the expressions for
the basis vectors grow in complexity for higher-order derivatives and their computation
involves contractions of multidimensional arrays with the basis vectors. Besides, all the
lower-order derivatives must be obtained before any subsequent order derivatives can be

computed.

" On the other hand, a modified modal method reviewed in reference [40] yielded
reasonably accurate solutions for step loaded dynamic problems by employing two sets of

vibration modes as basis vectors, namely
1. Few modes of a linear eigenvalue problem based on initial conditions;
2. Few modes of the nonlinear steady-state of the structure.

This success prompted the application of the modified method by Shore [60-62] to obtain
the temperature history of a model of the Space Shuttle Orbiter wing subject to reentry
heating. The nonlinearities arose from temperature-dependent properties and radiation
from the surface. For temporally varying heat loads, provided the uniform or nonuniform
spatial distribution of the heat loads remained constant in time, excellent results were
achieved. This was made possible by a careful construction of the basis which included
an adaptively generated vector based on the temperature distribution from the previous
time interval among others. When spatially varying heat loads were considered, further
enrichment of the basis via an analytically generated vector based on the changing
heating distribution became necessary.

The unified approach to develop the higher-order FDM for structural problems

has been extended to linear thermal analysis [50]). When applied to a simple
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one-dimensional thermal problem of a rod heated at one end, the first- and the

second-order FDM converged faster than the MDM as they did in structural applications.

1.3 Objective of Study

In spite of the versatility of the FEM, an unwieldy number of degrees of freedom
are often required to model complex geometries or to capture the temperature gradients
arising from severe thermal loads and hence to accurately predict the stress response
subsequently. The important step in nonlinear analyses, the solution of the system of
algebraic equations associated with the finite element model, therefore remains very
expensive even with improved numerical and programming techniques. This is
especially true when analyzing large, complex structures under severe thermal effects
since the analyses need to be carried out for long durations and involve full-size system

matrices which result in prohibitive computer storage and analysis costs.

Literature review indicates that reduced-basis methods have been used extensively
to provide very efficient solutions to large-scale structural problems, and to some extent
even for thermal problems. The modal methods use a reduced set of the lower
eigenmodes directly as the basis vectors. The effectiveness of the FDM, measured by the
reduction achieved in a multitude of structural problems as well as in a linear thermal
problem, is very impressive. Nevertheless, the method has heretofore never been applied

to nonlinear thermal analysis. The FDM has therefore been chosen as the reduction

technique in this research effort.

The primary objective of this study is to develop and validate a solution procedure
that employs the FDM to obtain the transient response for nonlinear thermal problems.
The specific objective of this study is to compare numerically the efficiency (in terms of
the reduction in the number of equations to be solved only) of the FDM with that of the

fundamental modal method, the MDM, in obfaining the nonlinear transient thermal



17

response (within the desired accuracy) of a realistic structure such as the lower surface of

a segment of the Shuttle wing.

1.4 Scope of Study

To achieve the aforementioned objectives, first of all a new finite element
algorithm has been developed for solving nonlinear transient thermal problems, which
incorporates the modal methods (ranging from the MDM to the second-order FDM) and a
fixed-point iteration scheme. The modal methods have been derived in a fofm that can be
easily implemented in existing computer programs. This fact coupled with the desire to
take advantage of existing advanced finite element software, has led to the

implementation of the new algorithm in the COmputational MEchanics Testbed

(COMET) system [63].

The analytical solution has been used to solve the reduced system of uncoupled
modal equations, thus eliminating the need to employ a finite difference approximation in
time to solve the full-system of finite element equations. The solution, which is in the
form of a convolution integral, is obtained by stepping in time though, in order to
facilitate a piecewise linear approximation to all nonlinear quantities involved, thus
minimizing the error that could result from a totally linearized approach. In this
approach, the obvious restriction on the time step size is imposed by the degree of
nonlinearity of the problem; unlike in conventional time-integration algorithms, where
the time step size is directly dictated by the stability criteria. A study of the effect of time
step size and frequency of eigensolution updates on the solution accuracy has been

performed, to a limited extent, for a one-dimensional nonlinear problem.

A basic understanding of the role played by the correction terms of the higher-
order modal methods in predicting the response accurately with fewer modes has been
provided. Guidelines are presented to show how the relative rate of convergence of the

correction terms as more modes are included in the solution, can be used to make a priori
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estimate of the number of modes required. Attempts have also been made to examine the
effect of the finite element mesh on the efficiency of the reduction process. Finally, to
assess the ‘applicability and the effectiveness of the FDM as a reduction technique, the
method has been applied to perform the thermal analysis of the lower surface of a

segment of the Shuttle wing.

A statement of the general transient heat conduction problem and the finite
element formulation, both linear and nonlinear, are presented in chapter 2. For linear
problems, the modal methods up to the second-order FDM, the modal coordinates for the
specific case of a linearly time-varying load, and guidelines for a priori estimate of the
required number of modes are all derived in chapter 3. A simplified Newton-Raphson
iteration scheme, and the modified modal methods to obtain the transient response for
nonlinear problems are described in detail in chapter 4. The results of linear example
problems are discussed in chapter 5. Nonline‘ar thermal problems in one and two
dimensions have been solved, and the results are discussed in chapter 6. A summary of

the conclusions and suggestions for future research appear in chapter 7.



Chapter 2
GOVERNING EQUATION FOR TRANSIENT HEAT CONDUCTION

In this chapter, a finite element formulation is presented for the computation of
transient temperature distribution in solids with general surface heat transfer. It begins
with a statement of the law of conservation of energy which considers the work done by
the stresses, thermal energy transported across surfaces by conduction, thermal and

mechanical energies stored within the material, and kinetic energy due to deformation.

The energy equation for a continuum in solid mechanics is

dai o 98, _o
xi Gijj 3t +p * Qine (2.1

where the subscripts i and j are dummy summation indices ranging from 1 to 3, qj are the
heat flux components in the coordinate directions x;, Gijj are the stress components, €jj are
the strain components, u is the unit internal energy, p is the density, and Qjn is the
volumetric rate of internal heat generation. The equation indicates a thermomechanical
coupling which is the conversion of mechanical to thermal energy. Extensive studies on
coupled thermoelasticity have shown that this coupling effect can often be neglected in
the analyses of flight structures, because the thermal energy converted from mechanical
energy is insignificant compared to the external energy resulting from intensive
aecrodynamic heating [64]. Based on this assumption, the solid is considered
undeformable and the internal energy becomes a function of temperature alone. To be
specific, the term Gj; a—;il may be dropped from Eq. (2.1) and p%% can be expressed as

a (cT)
P ot

19



20

21 Problem Statement

With the above-mentioned simplification, the energy equation in Cartesian
coordinates for a general three-dimensional anisotropic solid of volume V bounded by a
surface S, Fig. 2.1, is

P IA LY,
e Qm=p T 2.2)

where p is the density, ¢ is the specific heat, and the heat flux components are given by
Fourier’s law as

qi = -Kij g% (2.3)

The material properties p, ¢ and kjj may be temperature-dependent, where kij are the
components of the symmetric conductivity tensor, K Substituting Eq. (2.3) in Eq. (2.2)
we obtain the governing heat conduction equation which is solved subject to an initial

condition
T (x1, X2, X3, 0) = To (x1, X2, X3) 24

and general boundary conditions which include prescribed boundary temperatures T on
surface Sy, specified surface heating on S2, convective heat exchange on S3, and incident

and/or emitted radiation on S4

Ts =T (xq, X2, X3, 1) on § (2.5a)
qini=-qs on S2 (2.59)
qini=h(Ts-Te) on S3 (2.5¢)
qi ni = OET; - 0qr on S4 (2.5d)

The prescribed temperature, Ty, may be a function of position and time, the specified
heating rate, qs, could be time-dependent, the convective heat transfer coefficient, h, may
depend on the environment temperature, Te, and/or time, Ts is the unknown surface

temperature, G is the Stefan-Boltzmann constant, € is the surface emissivity that may be a
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Fig. 2.1 Three-dimensional solution domain for general heat conduction.
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function of Ts, & is the surface absorptivity, qr iS the rate of incident radiation per unit
area, and n; are the components of an outward unit normal vector.

2.2 Finite Element Formulation

The solution domain is discretized into elements with r nodes each. The
conventional approach is to express the temperature and temperature gradients within an
element in terms of the interpolation functions and their gradients. The element

temperature is defined as
T° (x1, x2, X3, 1) =N (x1, X2, x3) T (1) (2.6)

where N is the row vector of temperature interpolation functions and T (t) is the column
vector of nodal temperatures. The components of the temperature-gradient interpolation

matrix are given by

B;j (x1, x2, X3)=%%-; i=1,2,3 j=1,2,...r v )
1

Starting with the energy equation, applying the method of weighted residuals, integrating
using Gauss Divergence Theorem, and finally introducing the boundary conditions results
in a set of nonlinear finite element equations given in matrix form as
C(D T + (Ke(T) + Ka(T, ) + Ke(T) ) T()

=RQ(T.t) + Rq(T, ) + Ra (T, ) +Rr (T, 1) (2.8)
The details of the manipulation required to obtain Eq. (2.8) can be found in Ref. [18].
The element capacitance matrix C, and the coefficient matrices K¢ and Ky, related to
conduction and convection respectively, are defined in Eqs. 2.92-2.9¢ below, while the

radiation matrix, K, implicitly given by Eq. (2.9d) is explicitly given in Eq. (2.9¢):

C = I pcNIN dV (2.92)
VG

K. = f B kB dv (2.9b)
vc
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Ky = f hNTNdS (2.9¢)
S3
KT = f ceT* NTds (2.9d)
S4
K, =J ceT> NTNdS (2.9€)
S4

The heat load vectors due to internal heat generation, specified surface heating, surface

convection and incident surface radiation, RQ, Rq, Rh, and R, respectively, are defined as:

Rg = f Qint N TdV (2.10a)

v
T

Rg=| aqsNTds (2.10b)
S2

Rp = f h Te N 1dS (2.10c)
S3

T

R =f o q N 'dS (2.10d)

Ss

For the sake of brevity, Eq. (2.8) is hereafter written as

C(M T + K(T.,1) T(1) = R(T.¢) (2.11)
where K (T,t) is the system conductance matrix which contains the contributions from
Egs. (2.9b) - (2.9d) and R (T,t) is the system combined load vector made up of the
vectors defined in Eqs. (2.10a) - (2.10d). Equation (2.11) is a general nonlinear
formulation of finite element equations for transient heat conduction in an anisotropic
medium, and the solution requires an iterative scheme combined with a suitable time-
integration scheme. For linear thermal problems K is independent of temperature. If K

is further simplified to be time-independent, Eq. (2.11) becomes
CT+KT@)= R(H ' (2.12)

The solution of Eq. (2.12) requires a time-integration scheme alone.



Chapter 3

THE FORCE-DERIVATIVE METHOD FOR
LINEAR TRANSIENT THERMAL PROBLEMS

3.1 Unified Derivation of the Modal Methods

For the purpose of completeness, the mode-displacement method used to obtain
the transient response for linear thermal problems is first presented, followed by the
unified derivation of the higher-order force-derivative method assuming the forcing

function possesses continuous derivatives.

3.1.1 The Mode-Displacement Method (MDM)

The governing finite element equation for a linear transient thermal problem,

Eq. (2.12), is reproduced below

CT+KT(@)=R() (3.1

with initial condition
TO) =To (3.2)
where in general, the applied load vector R, may be time-dependent. As mentioned at the

end of chapter 2, although the system matrix K can be time-dependent for linear

‘problems, it is assumed constant in this study. The solution to the homogeneous form of
the linear conduction equation Eq. (3.1) is given as

T =e™¢; r=1,2...n (3.3)

where ¢, is a modal vector of unknown amplitude, Ar is the associated decay constant

(analogous to the natural frequency in structural dynamics), r is a summation index and n

24
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is the number of unconstrained degrees of freedom. Use of Eq. (3.3) in Eq. (3.1) results

in the following constant eigenvalue problem (EVP):
Ko-2Co,=0; r=1,2...n 3.9)

where n is the total number of degrees of freedom. The eigenvectors are normalized such

that
0p Cq=8g PA=1,2..1 (3.5)

and
0 KOq=8qhpm Pa=1,2...n (3.6)

where 8pq is the Kronecker delta. In matrix form (Egs. (3.5) and (3.6) become,

o'Co=I 3.7)

and
O Kd=A (3.8)

where I is the identity matrix and A is a diagonal matrix with entries that are the
eigenvalues. The homogeneous solution to Eq. (3.1) in the form of a modal summation is
given by
n
T()) =Y, 6rzdd) (3.9)
r=1

where the solution is expressed as a linear combination of all the eigenvectors of the

system weighted by the unknown modal coordinates.
Substitution of Eq. (3.9) in Eq. (3.1), premultiplication by q);r , and the use of the

orthogonality of the modes, Egs. (3.5) and (3.6), result in the following uncoupled modal

equations:

() + Ar ) = ¢;r R, r=1,2...n (3.10)
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Pre-multiplying Eq. (3.9) by ¢,TC and setting t = 0, the inital condition becomes
T
z0= ¢r CTo (3.11)

The analytical solution to the nonhomogeneous problem represented by Egs. (3.10) and
(3.11) is given as follows:
‘ T
2:(t) =zgeMt + j MW o R(1) dt (3.12)
0

where the integral is called the convolution of the functions e and Q,T R (1).

Approximating the solution to Eq. (3.1) by using a truncated set of modes, one has:

p
T =Y, drzt); psn (3.13)

r=1
where z, (t) is given by Eq. (3.12) and ¢r, and A, are obtained from the solution of
Eq. (3.4). Rewriting Eq. (3.13) in matrix form results in
T = ®Z0 (3.14)
where A denotes a reduced set of modes. The approximate solution given by Eq. (3.13) or
(3.14) is commonly referred to as the mode-displacement method (MDM) in structural
dynamics.

3.1.2 The Mode-Acceleration Method (MAM)

Equation (3.10) may be rearranged as follows:

20 = 161 R@® - L @ (3.15)
)\.r A.r

So Eq. (3.9) becomes

n n
TH= 6,1 6fRO-D m-kl-ir(r) (3.16)
r=1 Ar r=1 r
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Using the orthogonality of the modes and taking the inverse of the square matrix on either
side of Eq. (3.8) yields

4T
oK o =-k (3.17)

Pre- and post-multiplying both sides of the above equation by @ and <DT, and noting that

-1 -1
dd =0 @ =1, leads to the following identity:

K'=0lo' (3.18)
A
or
n
: T
K'=Y ¢ Lo (3.19)
1 M

Now Eq. (3.16) may be written as follows:

n
T =K R®- Y 6r L 20 (3.20)
r=]

T

The Leibnitz’s rule for differentiation of an integral states that if f () and a—f%ﬂ are

continuous functions of % and ¢, then

w(Q) v(p)

4 J fOu@) dx | = f af(ax’ Lay - g& f(1(9)9] + %“1 fly(e)o] (3.21)
we) we) %9 A A

provided p and v have a continuous first-order derivative with respect to @. If the forcing

function is CO continuous, then the Leibnitz’s rule can be applied to Eq. (3.12) to replace

the term z(t) in Eq. (3.20) as follows:
t

T T |
3:0) = 0 RO - M zeoe ™t - k,f MED o R(7) dt (3.22)
0

Substituting Eq. (3.22) in Eq. (3.20) and rearranging gives:

n n
Tt = Y, O 2e(0) + (K'l - i1-¢f ) R (1) (3.23)
r=1 r

r=1
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Now introduce an approximation to the solution by using only a subset of the modes,

so that

p p
(OED) ¢,z,(:)+(x"-2 ¢,11-¢I)R(t); p<n (3.24)
r=] =1 J

or, in matrix notation

-~ L a AT
T(t)§<DZ(t)+(K1 -¢>%—¢ )R(t) (3.25)

Equations (3.24) and (3.25) are alternate forms of the MAM, where the second term

represents the first-order correction to the approximate solution given by the MDM,
Egs. (3.13) and (3.14).
3.1.3 The Force-Derivative Method

Assuming sufficient regularity, Eq. (3.15) may be differentiated once with respect

to time to obtain

T .
70 = L ¢ R(D) - L 20 (3.26)
Ar Ar
Substituting the above in Eq. (3.15) results in the following equation:
T T,
2dt) = L ¢ R@) - L ¢ RO +-L 20 (3.27)
Ar A2 A2

So Eq. (3.9) now becomes

=3, ¢ Lo: RO- YoLo RO+ 0Lzl G2
=l =] }1 =l )\‘

Again, based on the orthogonality of the modes, the following identity can be established:

Klck'=oLlo’ (3.29)
2
A
or
1 -1 - T
K'CK =X &L o (3.30)
' = A
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so that

. . 1. n
T =K R@)-K 'K RO +Y, o L 340 (3.31)
A r=1 l}

If the forcing function is C! continuous, employ the Leibnitz’s rule for differentiation,
Eq. (3.21), to evaluate (1) given in Eq. (3.31) results in

t
T T . 2 T
2:() = -Ar 6 R(t) + O R(D) + Ar zroc"\rt + lrz [ c')"(t't? ¢ R(1) dt (3.32)
0

Using Eq. (3.32) in Eq. (3.31) and rearranging results in

n
K'ck'+Y ¢,-L2¢,T)R ® (3.33)

n n
T = Y, ¢r z(1) +(K“- Y ¢rl-¢3)k (®) +
=1 A =1 A

r=1 T

Again, approximating the response by using a subset of the modes for the summation
terms in Eq. (3.33) one obtains:

P p
T =Y, Or zdt) +(K" -y ¢r-lL ¢f) R
r=} r=1 T

P .
+-K'CK +Y oL ¢,T) R (3.34)

=1 A,

or, in matrix form

~T

1 d )R(t)

T() 562(:) +(K - 3)

>

-~ ~T
+ -K'ICK'1+<D—1E<D R() (3.35)

A

Equation (3.34) or (3.35) is the response by the second-order FDM, where the third term
represents the second-order correction to the approximate solution given by the MAM,

Eqgs. (3.24) and (3.25).
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In general, for a C’ continuous forcing function, the highest (j+1)th order FDM for

approximating the response is given as follows:

~ i+l S, m-l ~ ~-m~T
= dZM+ 3 [((-K o K'+d R @ ) R(‘“'l)(t)] (3.36)
m=1

where the superscript in parentheses of R(t) denotes the order of differentiation with
respect to time.

The major advantage in using the analytical solution, Eq. (3.12), of the uncoupled
modal equations is that when the load vector is available as a function of time such that
exact integration is possible, the solution at any time can be obtained directly with time
t = 0 as the initial condition. Furthermore, the only source of error is the truncation of
modes which can be alleviated by the proper selection of modes. However, when the
heat load vector is a function of time that cannot be integrated exactly, numerical time
integration is required and the time step size for a desired accuracy will depend on the
order of the numerical integration method used. The following section describes how to

obtain the modal coordinates for a specific type of load.

3.2 Modal Coordinates for a Linearly Time-Varying Load

If the applied load varies linearly with time and has a constant slope over the
entire time domain as shown in Fig. 3.1, then the modal coordinates given by Eq. (3.12)

can be obtained by exact integration. Rewriting Eq. 3.12 for this case one obtains:

t
z () =20 c'x"+f c'“‘(“t)q:,TR (t)dt (3.37)
0
where
R(M=RO)+R@O)T; 0stst (3.38)

It is clear from Fig. (3.1) that R (0) is the inital load vector and R (0) represents

the constant slope. Substituting Eq. (3.38) in Eq. (3.37) and expanding results in:



R(1) R(1) =R(0) + R(0) ©
Btu/sec

, seconds

Fig. 3.1 Forcing function that varies linearly with time.
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t

z(t) = z,oe'xft+¢;-rR (O)I M (tD) dt
0

t

+ 0L RO j te M ge (3.39)
0

Using integration by parts and regrouping the terms, one has

RO{1-e™Y+R 0

T
z,(t)=z,oc';”’[+¢rr t-l-‘—ﬁ);ﬁr—t)} (3.40)

Now consider a more general case where the applied load vector can be treated as
a series of piecewise linear functions of time with varying slopes over the entire time
domain. Then Eq. (3.40) can be applied individually to each time interval, dt, using the
modal coordinates obtained at the end of the previous time interval as the initial

condition. Accordingly, Eq. (3.37) may be modified as follows:
¢ T
Zne=Znsre S + f e M@t R(r)ar (3.41)
0

where | R(1)=Rp.1 +Rp15 0StSdt (3.42)

Similarly, it can be shown that eq. (3.40) now becomes

/
. . A d )
tne=zalre 0 v 0] !(RM- -tk...l)(u&—‘- + %Rn.l} (3.43)

3.3 A Priori Estimate of the Required Number of Modes

To minimize the computational costs associated with the complete solution of the
EVP, some guidelines are presented below on selecting the number of modes prior to the

actual solution process. These guidelines are limited to linear transient thermal problems.

The error introduced in solving Eq. (3.1) by the MDM, Eq. (3.13), can be

evaluated based on the level of approximation of the heat load vector represented by that
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subset of modes (65]. The participation factor of the rth mode, 1, at time, t, is defined as

follows:

0 =¢rTR ® (3.44)
which gives a measure of the significance of that mode in representing the total load and
hence the response. Pre-multiplying Eq. (3.44) by Cr, and using the orthogonal property
of the modes with respect to C, the approximate load vector is given by

p
R®=Y Corne (s p<n (3.45)

r=1
Once a desired level of approximation of the load vector has been attained, the generation
of modes may be terminated. The error, €1, in the load vector represented by the

truncated set of modes is given by

—F =
o= /\/7R(t) (Rit)-k(z)) 546
RO TR

If a direct relationship between the errors in the solution and the load vectors can be

established then Eq. (3.46) may be used to obtain a priori estimate of the number of
modes required by the MDM to achieve a desired degree of solution accuracy.

To dctcr;ninc the truncation of modes for the higher-order methods, which has not
been studied in the past, the corrections offered by these methods to the MDM is
considered. The full-system solution may be split into two parts given as follows:

P n
TM =2, ¢rzdd+ 2, 6z (3.47)
r=l r=p+l
where the first term is the approximate solution given by the MDM, and the second term
represents the contribution of the higher modes neglected by the MDM. As before, using
the orthogonality conditions and assuming the transient load vector has continuous

derivatives up to order j, it can be shown that
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3

n n n n
2 ozx®=3 olorRo- Y oL or RO + Y orL of K
rep+1 reptl e prl Ar reprl )

" n 'n . ,
s 3 e LRV + T 1oL 0 3y

For the specific case where the load vector has non-zero derivatives up to first-order only,

thatis, j = 1 in Eq. (3.48), neglecting the last term in Eq. (3.48), one has:

n n n _
Y orzm= Y ol orRO- Y 0r L orR (1) (3.49)
r=p+1 r=p+1 Ar r=p+1 Ar

[t is easily recognized that the first term on the right-hand side of Eq. (3.49) is the
correction offered by the MAM, Eq. (3.24), and will hereafter be referred to as CMAM

for brevity. Thatis

n
CMAM= ) ¢r'}}; 0r R (3.50)
r=p+1
or
-1 P T
CMAM=K R@®-2, ¢1 ¢ R® (3.51)
=] Ar

Thus, by adding the contribution of the higher modes as well to the pseudo steady-state
response, the MAM yields a better approximation of the total transient response than
the MDM.

In a given spectrum, the magnitude of the eigenvalues successively increases.
Examination of Eq. (3.50) indicates that at a given time, the significance of CMAM
should decrease when higher modes are included in the MDM, as the eigenvalue appears
in the denominator. In other words, the lower modes play a more important role in
approximating the pseudo steady-state response. Based on this fact, the number of modes
required to realize the maximum benefits of the MAM can be determined when the

pseudo steady-state response has been approximated within a desired accuracy.
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Alternatively, similar to Eq. (3.46), a measure of the €ITOr, €3, in the representation of

K°! R (1) by the lower modes can be obtained as follows:

T ~, ~T
(K"R(t)) (K'IR(t) -olo r (t))
e = A (3.52)

(k'R (t))T K'R®

The second term on the right-hand side of Eq. (3.49) can be identified as the
correction offered by the second-order FDM, Eq. (3.34), to the MAM and will be referred

to as CFDM for brevity, that is,

n
croM=- Y, orL 67 RO (353)
r=p+1 Ar
or
U SRR« T
CEDM=-K CK R0+, q;,-lE or R (1) (3.54)
=1 A

By including the contribution of the higher modes in approximating the first-order
transient response, - K1CcK!R (1), derived from the pseudo steady-state solution, the
EDM enhances the MAM. At a given time, the magnitude of CFDM declines at a faster
rate than that of CMAM since the square of the eigenvalue appears in the denominator.
This makes the selection of modes more and more distinct as the order of the method
increases. Similar to the MAM, the number of modes necessary for the convergence of
the FDM is determined when - K1 CK!R (v) is approximated by the lower modes

within a specified tolerance, or the error norm, €3, given below becomes acceptable:

T - -1, ~ ~T .
(K!ck ko) (K ek Ro- o-Lo Ro
e3= - A (3.55)
(k' ck™ro) (K ck " Ro)

Although higher-order corrections involve the eigenvalues raised to successively

higher negative exponents, they need not necessarily be negligible compared to the
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lower-order corrections at all times, because they are dependent on the transient nature of
the load as well. With just one mode included in the solution, a comparison of the norm
of CMAM and CFDM, Egs. (3.51) and (3.54) respectively, indicates their relative
importance at that particular time. This rate of convergence with respect to modes
depends on the nature of the variation of the eigenvalues within the spectrum. For a
linear thermal problem subject to a specified transient load, it is thus possible to select the

higher-order method which can achieve the maximum reduction at any given time.



Chapter 4

METHOD OF SOLUTION FOR
NONLINEAR TRANSIENT THERMAL PROBLEMS

4.1 Linearization of the System of Equations

After a brief introduction to the Newton-Raphson scheme, its application to the
nonlinear, transient heat transfer equation is described and the simplifying assumptions
made in this study are highlighted. Although the final linearized form can be obtained by
a direct application of the fixed-point iteration scheme, the details are presented here to

aid in the future use of a rigorous form of the Newton-Raphson scheme.

4.1.1 Derivation of the Newton-Raphson Method

Consider a typical nonlinear set of equations of the form

F(M=0 4.1)

If T is the exact solution vector, then Eq. (4.1) is satisfied identically. However, often
one cannot compute the exact solution, but can obtain an approximate solution so that the
unbalance in a typical equation is smaller than a specified tolerance. This is achieved by
the Newton-Raphson scheme which is derived below by an intuitive approach based upon
the Taylor polynomial [66).

Suppose that F is twice continuously differentiable in the interval [a,b]. Let

T e [a,b] be an approximation to T such that F’(T) is non-singular and the difference
between Tand T is small. Considering the second-degree polynomials for F(T),

expanded about T one has:

37
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_ = o T
F(D) = (D + F'(D (-1 + - Py (4.2)

where §(T) lies between Tand T. But F(T') =0, and since the difference between T and T
is assumed to be small, square of the difference is even smaller and can be assumed

negligible. Then,
0=FD+F @ TD (4.3)
which gives
T=T-F@ ED (4.4)
which is a better approximation to T than T. This sets the stage for the Newton-Raphson

method, which involves generating the sequence of iterates T' defined by

T =T F’(’I‘i'l)-lF('I'i'l), i1 4.5)
which may be rewritten as
1tart=. " 4.6)
where
Ji-l - F,(Ti-l) - (g_’l;_ - @.7)

is called the Jacobian matrix and
aT' =T -T" 4.8)
It is clear that Newton’s method cannot be continued if the Jacobian is singular
for some i. The method is most effective when J is bounded away from zero near the
fixed point . Although Newton’s method will sometimes converge even with a very poor
initial approximation, in many cases it is imperative that a good initial approximation be
chosen. Also, Newton's method will converge quadratically under suitable conditions
onF. In fact, Newton’s method can be derived as a special case of the fixed-point

iteration scheme which exhibits linear convergence in general.
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In practice, the method ig generally performed in a two-step manner. First a
vector AT' is found which satisfies Eq. (4.6). Once this is accomplished, the new
app;oximation Ti is obtained from Eq. (4.8). A difficulty in this method arises from the
necessity to invert the Jacobian matrix during each iteration which involves reforming
and factorization at each iteration, making the method computationally expensive for
large sets of equations. In a modified form of the method, the Jacobian is formed and
factored only once and is held constant throughout the balance of the iteration process
[18]. More iterations are required with the modified method, but usually net

computational costs are reduced.

4.1.2 Application of the Newton-Raphson Method with Simplifications
The discrete nonlinear transient heat conduction equation at any time t, Eq. (2.11)
is reproduced below:
CM T+ KT T =R, (4.9)
The residual or unbalanced load in the nonlinear system of equations at the (i-1)th
iteration is given by,
et T = e T+ Ko T W - R (4.10)
Simplifying the notation, a typical pth equation of this system is given by,

File cht 1h! + Kim® Th'® - RE'@; p=1,2--n @.11)
where m is a dummy summation index, and n is the total number of equations. The
sequence of successive iterates generated by Newton’s method for the temperature and its
time derivative increments is then given by

J 1:;;1 A‘i‘: + Jz;i{sl ATs= -Fg'l (4.12)
where Ji and J; are the Jacobians associated with temperature and its time derivative,

respectively, and are defined according to Eq. (4.7) as follows:
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i- oF

The new values of the unknowns at the end of the current iteration will then be
i i-1 i R U O | . i
Ts=Ts +ATs and Tg=Ts +AT; (4.14)
While the right hand side of Eq. (4.12) is given directly in Eq. (4.10), the product terms

involving the Jacobians on the left hand side of Eq. (4.12) are derived from Egs. (4.13)

and (4.10) using the chain rule of differentiation as follows

1 . . i . i
les AT = Chon (aTm) AT;=C,§,,‘, Sms ATs = Cps. AT 4.15)
S
and
i-1 i _ aCEm i1 i1 i-1 aTm i1 i
szs ATS = aTs Tm ATS Kpm a,rs ATs
aK i'l '-l . aR i‘l N
Em 1 1 - _2 1

Equation (4.12) now becomes
‘_1 . M .. . .-
Chsl AT + [ ACps + Kps + AKps - ARps] ™ ATS = -Fp' (4.17)

The incremental temperature-dependent system matrices and load vector are given by

i- 1
act; -(-352—) (4.18)
AKps -( ) (4.19)
ARg -(&> (4.20)

Dropping the indicial notation, Eq. (4.17) may be rewritten as follows:
-1 i1, i i-
clat' + [AC+K+AK-AR] ™ AT = -F"! 4.21)
It is seen that the Jacobian associated with temperature involves the increments in

the system nonlinear capacitance, conductance matrices and load vector, namely AC, AK
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and AR. These increments reflect the change in material properties with temperature, and
generally have a minor effect on the accuracy of the Jacobian J2 [24]. The matrix AR
includes the effect of radiation exchange as well. The evaluation of these incremental
matrices is cumbersome and prohibitively expensive. Even though the system matrices C
and K are symmetric their increments are not, and AR is unsymmetric as well.
Consequently, the iterative solution requires an unsymmetric solver. Moreover,
evaluation of the true Jacobian requires additional knowledge about the nature of
nonlinearities and identification of element types. Therefore, for ease of implementétion,
the Jacobian is approximated by the conductance matrix alone neglecting the incremental
quantities, which is exact if material properties are not temperature-dependent and there
is no radiation exchange. This makes computation of the Jacobian, as well as the solution
of the linearized system of equations easier as matrix symmetry is maintained, albeit

convergence could be slower. Introducing this modification in Eq. (4.21), we now have

i-1

clat + K*'AT = -F 4.22)

where

K=K.+Kp+4K; (4.23)
. i i
Substituting for AT and AT' from Eq.(4.14), using Eq. (4.10) and simplifying, one
obtains the linearized equations given as follows:
c't + kT = RV (4.24)
where the temperatures at the current iteration, and not their increments, are the
unknowns.

4.2 The Force-Derivative Method for the Transient Response

42.1 One-Step Approach
For constant or linearly varying transient loads, the approach used to obtain the

transient response for linear problems in chapter 3 can be readily extended to solve
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Eq. (4.24). Thereby, the response is computed at the time of interest in one step, with

time t = 0 as the initial condition. The initial eigenvalue problem of Eq. (4.24) is given

by,

Ko®o-AgCo@p=0 (4.25)
where

Ko = K(Tp) and Cp = C(To) (4.26)

However, due to the nonlinear nature of the system matrices, the eigensolution is varying
with time as well. The eigenvalue problem at time t is
i-1 _i-1 i-l i-1 _i-1
K & -A C & =0 4.27)

which needs to be updated during the iteration process.

Assume a solution to Eq. (4.24) in the form of a modal summation

To=3 6t (4.28)
r=]
which yields the uncoupled modal equations given as follows:
o+ 20 = R 4.29)
with initial condition
2(0) =210 = 60 CoTo (4.30)

The solution to Eq. (4.29) analogous to Eq. (3.12) is given by,
, t
i -Arct Ay il okl
(t)=z0¢ + ]| e ¢ R(T (v)r)de 4.31)
0
It is important to note that for nonlinear problems, the load vector and the system
matrices, and hence the eigensolution, are functions of temperature and are therefore
continually changing as the temperature distribution evolves with time. Careful

inspection of Eq. (4.31) reveals that a major approximation is embedded in that equation.
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Since the solution is not computed .at intermediate times, the nonlinear quantities are
evaluated directly as a function of Tl-l(t), the current estimate of the temperature at the
desired time of response. This essentially ignores the variation of the integrand with time
due to nonlinearity, and includes only the explicit time-dependence when evaluating the
integral in Eq. (4.31). Such an approximation could result in large errors for highly
nonlinear problems. It is therefore imperative to introduce a time-stepping scheme so that
the transient variation of the nonlinear quantities are well represented when obtaining the
modal coordinates. If the transient variation of the load is of a complex nature, the

one-step approach is not applicable in the first place, similar to linear problems.

4.2.2 Multi-Step Approach

Since Eq. (4.24) holds true at any instant of time, the temperature T,ll at the current
iteration at time t, must satisfy the following equation
c ey + ko T =R (4.32)

where, the subscript n denotes the current computation time, and the superscript i denotes

the current iteration number, and the following simplifying notations are used, namely

K:i{l KT w (4.33)

cHl=c i (4.34)
i-1 i-1

Rp =R(Ty ,tp) (4.35)

The solution is marched out in time from the initial temperature at time t = 0, and the time

step is defined as follows:
dt=ty - th-1 (4.36)

The initial condition to start the iteration process at each time step is given by,

TaTy; i=1 437)
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Although the temperature-dependent thermal properties and load vector are allowed to
vary during the iterations at each time step, the eigensolution, which is determined from
the converged temperature at the end of the previous time step, is held constant until
convergence at the current time step. To accomodate this piecewise linear approximation
of the eigensolution, the left-hand side of Eq. (4.32) is modified and the change is moved
over to the right-hand side to form a corrective heat load vector QNLi;l. Accordingly, we
now have
Cot To +Kn1 Ta=RE + Quit (438)

where

Quit =+ ((Ki - Kna] T + (G2 - Cout] T ) (439)
In a more general approach, Egs. (4.38) and (4.39) may be rewritten as follows:

CoxTh + Kok Ta=Ra'+ Quit (4.40)

and
Quit = (K - Koad Tol+ [Ch - Caid T ) (441)

where k is an integer greater than zero. Here the eigensolution is held constant over a
period of several time steps, say m, depending on the severity of the nonlinearity;

k indicates the number of time steps since the previous update. The applied load vector

may be split into a linear component, RL_, (which may be time-dependent) and a

nonlinear component RNL,i{l . The entire right-hand side of Eq. (4.40) may be considered

as a generalized heat load vector which is defined as follows:
(it )= il il
Q\Tn ,ta/=Qn =Rr,+ Rnpy +QnL,y (4.42)
Another major variation between the linear and nonlinear solutions is in the definition of

the right-hand side load vector Eq. (4.42). For linear problems, it comprises the linear

applied load vector alone, while it is rather complicated for nonlinear applications where
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a nonlinear applied load vector may exist and additional corrective nonlinear terms are

involved as well. The eigenvalue problem associated with Eq. (4.40) is given by,

Knk @nk - Ank Cnx @nk=0 (4.43)

The modal equations now become

i i T i-1
Znr + Avn-k,r zrll.r =0nkr Q:l (4.44)

with initial condition

T
Zn-1r = Onkr Cn-k Tna (4.45)

The solution to Eq. (4.44) is given as follows:
&

2h = zgypetmirdt I etnks (@D 6 T (T, 1) de (4.46)
0

In light of the discussion following Eq. (4.31), the error in Eq. (4.46) is expected to be

small compared to the one-step solution, Eq. (4.31), for sufficiently small time steps. A

truncated modal summation solution for this problem, similar to Eq. (3.13) for linear

problems, is given by,

. P .
Tn= ), GnkrZnr P<<n (4.47)
r=]
or, in matrix form
1 ”~ Ai
Th = Opk Zn (4.48)

Noting from Eq. (4.43) that the modes are now normalized with respect to Ky.x and Cp.x,
the response given by the MAM is obtained by modifying Eq. (3.25) to yield

i-1

Qn (4.49)

: ~ -~ i _l -~ ”~ T
Txlr =0nxZn+ [Kn-k - Onk :':L Dnk
Ank

while that of the second-order FDM is obtained by modifying Eq. (3.35) as follows:
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Q:.-l

. ~ -~ i _1 ~ ~
T:\ =QpxZy+ |iKn-k - Onk ‘:L' Onx
Ank

i-1

_l _1 ~ ~
-Knk Cnk Knk + @nx —2L Dk | Qn (4.50)

Ank

The exact first-order time derivative used in Eq. (4.50) is obtained from Eq. (4.42) as

i-1
oltit n)=04" = Ry, +(J———T) (4.51)
il . I
For the purpose of easy implementation, Qq  has been approximated in this study as
i-1
Qn =Ry, (4.52)
. i-1 .
The truncation of modes and the replacement of Qa by Ry, are the two numerical errors
in the current form of the FDM. The former can be minimized by a proper selection of &)
based on the discussion in Sec. (3.3). The latter can be reduced by a frequent update of o
when necessary, that is, by maintaining a small value for k in Eq. (4.40).

4.3 Modal Coordinates For a Piecewise Linear Time-Varying Load
Recall that in Eq. (4.46), the nonlinear part of the generalized heat load vector
is assﬁmed constant during each time interval, and the integration is performed only for
the explicit time-dependent portion. Accordingly, for a nonlinear problem when the
linear part of the heat load vector, Rp, varies linearly with time Eq. (3.43) may be

modified to yield,

i - T . xnkrdl
Y (LR s R

+¢rIk;{(R P+ Qu b )( JL"k"dl)} (4.53)
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The first two terms in Eq. (4.53) comprise the linear component of the modal coordinates

while the third term represents the nonlinear contribution.

4.4  Convergence Criterion and Distribution Error Norm

The convergence criterion used to terminate the iteration process at any time tp is

given by,

T . .

i i-1 i i-1
(Tn'Tn )T(Tn'Tn ) <€ (4.54)
Ta T

where € is the specified tolerance. The distribution error norm of an approximation to the

temperature vector is given by

(T T“)Trr T
e= - T - (4.55)
TT -

where T represents a full-system solution based on a well-refined mesh, and T3 is an
approximation based on the first p thermal modes. Note that this error norm can only be
used to evaluate a method a posteriori, and is not intended to be used to predict the

number of modes necessary for convergence of the modal solution.

4.5 A Note on the Required Number of Modes

The guidelines provided in Sec. 3.3 to estimate the number of modes required for
linear problems cannot be applied directly to nonlinear problems. When the system
matrices and hence the eigenmodes depend on the solution vector, which in turn depends
on the number of modes included and the order of the method used, the issue becomes
too complex for analysis. For linear problems, the improvement in the response obtained
by the MAM as compared to the MDM is given directly by the pseudo steady-state term,
CMAM, Eq. (3.51). For nonlinear problems, this lincar superposition of the correction
terms to obtain the response by the higher-order methods is not appropriate. It is

therefore necessary to get the responses by the MDM, MAM, and FDM individually,
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using their respective solution vectors to evaluate the nonlinear quantities. Then the
correction made by the MAM, CMAM, is given by the difference between the entire
right-hand sides of Egs. (4.49) and (4.48), that is, by the difference between the responses
of the MAM and the MDM. Similarly, CFDM is obtained from Eqs. (4.50) and (4.49) as
the difference between the solutions of the FDM and the MAM. For the same reasons, it
can be said that the superposition of the contribution of each successive higher mode to

compute the total response of all the modes is permissible only for linear problems.

4.6 A Note on the Computational Effort Involved

The three modal methods presented in Sec. 4.2.2 for solving nonlinear thermal
problems have been implemented in the COMET [63] on the CONVEX C220 high-
performance computer at NASA Langley Research Center. The details of the
implementation, which include the construction of the execution centrol file, the
development of independent programs called processors, etc., following the rules and
syntax of the COMET, can be found in Ref. [67]. The step-by-step procedure to be
followed in the solution process using the modal methods is illustrated in Appendix A.
The computational effort involved in the different steps for a nonlinear problem and the

simplifications that occur for a linear problem are summarized below.

The basic advantages of using the modal methods to solve thermal

problems are:
1. The need to solve much fewer equations than in the full system.
2. The modal equations are uncoupled.
3. The use of the convolution integral form of the solution for the modal coordinates.

The skyline form of the symmetric conductance matrix, K, is used which requires less

computer storage and also less computing time for all matrix operations involving K.
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The main computationally intensive step for nonlinear problems is the solution of the
EVP for intermediate basis updates, the frequency of which is problem-dependent. The
product term K,;}k Q:.l (Eqgs. 4.49 and 4.50) involves the inverse of K. Itis computed,
however, without actually inverting the K matrix but by solving the linear set of
cquanons Knkr= Q,. whose solution, r, yields Kn-k Qn directly. Similarly, the term
K,, xC Kn-k Qn (Eq. 4.50) involves the solution of two sets of linear equations and a
matrix-vector multiplication. Note also that in this study, Qn o has been approxlmatcd as

RL,, in the FDM. The evaluation of QNL:;I (Eq. (4.41)) and the products ¢ -l-fb Q,i{l
A

~ /\ '.l
(Eqs. 4.49 and 4.50) and @ _L2¢ Q:. (Eq. 4.50) involve two matrix-vector products
A

each. Conventional implicit algorithms need to form and factor the left-hand side
coefficient matrix and solve simultaneous algebraic equations at every time step for
nonlinear problems. Although explicit algorithms avoid the solutior of simultaneous
equations, they require much smaller time steps so that the solution remains stable.
Modal methods, however, entail only the forward reduction and backward substitution
stages in the solution of simultaneous equations, as the K matrix needs to be factored
only with every eigenmode update and is held constant until the next update. The
forward reduction and backward substitution processes could amount to significant
computational effort though, when the solution is obtained in a large number of time
steps.
For the FDM, Q;.'1 and Q,l,l can be treated as multiple loads and hence K,}}k Q,i,' !

and K,ﬁk Q,i-.-l can be computed in parallel. Also for any method, the modal loads

T i- . . .
On-kr Q}‘l as well as the various matrix-vector products are good candidates for

fine-grain parallel processing.
For linear problems, the procedure is much simpler. Since all system matrices are

assumed time-independent for the linear case, only one eigensolution and one

factorization of K need to be performed. The guidelines presented in Sec. 3.3 can be
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used to solve only for the desired number of eigenmodes. No iterations are required.
Furthermore, if the applied load is constant or varies linearly in time at a constant rate,
then no time-stepping is required either, as discussed already in Sec. 3.4, unlike nonlinear
problems. Also, for the linear case, the response of the MDM and the MAM are obtained
directly as by-products from the FDM. Nonlinear problems necessitate an independent
run for each modal method, so that the response of that particular method is used to

compute the temperature-dependent quantities which in tumn affect the response.



Chapter 5
LINEAR TRANSIENT EXAMPLE PROBLEMS

Literature survey indicates that the MDM is unsuccessful in the efficient solution
of transient linear thermal problems, since excitement of higher frequencies in the wide
spectrum response necessitates the inclusion of almost all modes for an accurate solution
[54]. On the other hand, by representing approximations of the higher eigenmodes with
few vectors in the basis, the Lanczos vectors are effective in the reduction process [56].
From the derivation of the higher-order modal methods presented in chapter 3, it is clear
that these methods include an increasingly better approximation of the higher modes
neglected by the MDM. If is therefore expected that the MAM and t1-1e FDM are more
effective reduced-basis methods than the MDM for transient thermal problems and has

been demonstrated for a linear one-dimensional problem [50].

This chapter introduces the application of the modal methods to linear thermal
analysis before embarking on nonlinear analysis. In the following numerical study, the
methods are evaluated based on the efficiency which is measured by the number of
modes necessary to represent an accurate response. The accuracy of a solution is
determined based on the distribution error norm, Eq. (4.55). Since the applied load varies
linearly in time, the exact modal coordinates given in Eq. (3.40) were used to predict the

response at any time in one step.
5.1 Rod Subject to Convection at One End

This simple linear transient example was chosen to introduce the modal methods
to thermal problems and to demonstrate the improved efficiency of the higher-order

methods compared to the MDM. The rod shown in Fig. 5.1 is initially at a uniform

51
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Fig. 5.1 Thermal finite element model of a rod subject to transient convective heating
at one end (Linear example problem 1).
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temperature of 0° F. Beginning at time zero, the left end is heated by convection while
the right end is maintained at 0° F. A total of twenty elements was used to discretize the
model. A forcing function that varies linearly with time was selected so that up to the
second-order FDM could be applied.

Temperature distribution at an early time t = 0.02 sec (when the gradient is still
very steep) was obtained by the three modal methods (Figs. 5.2a - 5.2¢c). The response
predicted by the MDM is shown in Fig. 5.2a. The full-system solution, denoted by the
solid line in Fig. 5.2a, results from using all twenty modes. The acceptable error
corresponds to a distribution that is fairly close to the exact solution. The solution
approximated by using a reduced number of five modes undcrprcdicts the peak
temperature (417° F at left end) by 49%, and the distribution along the rod is also very
oscillatory in nature. When the number of modes is increased to 10 and 15, the peak
temperature is underpredicted by 23% and 11% respectively. Eighteen out of the 20
modes are required by the MDM to yield a response with an acceptable error, Eq. (4.55),
of 0.083.

Figure 5.2b shows that the MAM overpredicts the peak temperature by 18% when
using three modes and by 9% with four modes. However, with five modes the error falls
within 0.08 and the oscillations in the distribution along the rod are mild. This faster
convergence of the MAM compared to the MDM is due to the pseudo steady-state term

which includes a first-order approximation of the higher modes that are neglected

by the MDM.

A higher rate of convergence is exhibited by the FDM which has the highest error
with one mode but captures the distribution accurately with as few as three modes,
Fig. 5.2¢c. It is evident that the derivative-related term in the FDM has further improved
the approximation of the higher modes compared to the MAM. The rates of convergence

of the three modal methods for this linear example with a C! continuous applied load are
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a) Mode-displacement method (MDM).

Fig. 52 Temperature distribution along a rod subject to transient convection at one end
at time t = 0.02 sec (Linear example problem 1).
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compared in Fig. 5.3. While the FDM requires just 15% of the modes (3 out of 20)
which means a reduction of the problem size by 85%, the MAM and the MDM have

achieved a reduction in problem size of 75% and 10%, respectively.

5.2. Plate Subject to Uniform Surface ficating

This problem was chosen to demonstrate the reliability of the measures presented

in Sec. 3.3 to predict the number of modes required for linear problems.

The plate shown in Fig. 5.4 is subject to a uniform specified heat load which
increases linearly with time. The initial temperature of the plate is 0° F. All four edges of

the boundary convect to the environment which is at a temperature Te = 0*F.

The full plate was analyzed although this is a symmetric problem and only a
quarter of the plate needs to be considered. The finite element mesh used for the modal
analysis consists of 165 DOF with 140 uniform rectangular elements. This mesh is
considered adequate for this problem since the full-system solution compares very well
with that of a much finer mesh with 561 DOF. Since the load varies linearly with time,

the modal solution at any time can be computed in one step.

The guidelines listed in Sec. 3.3 are used to estimate a priori the number of modes
that are required by the MDM, MAM, and the FDM at two different times t = 2 sec and
9 sec, respectively. The norm of CMAM and CFDM were used to obtain the results

presented herein.

Esti for the Required Numt f Mod Ti =2

The mode participation factor, Eq. (3.44), which indicates the componcnt of the
applied load that contributes to the response of the corresponding eigenvector, provides a
measure of the significance of that vector in the total response. The participation factor
of each mode is used to compute the error in the load vector, €1, Eq. (3.46), for increasing

number of modes in the subset as shown in Fig. 5.5. Likewise, the errors, €2 and e3,
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Fig. 5.3 Convergence of the modal methods at time t = 0.02 sec (Linear example
problem 1).
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Fig. 5.4 Thermal finite element model (165 DOF) of a plate subject to uniform,
transient heating over the surface and convection along the entire boundary
(Linear example problem 2).
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Fig. 5.5 Convergence of the error, 1, in the load vector used to predict the number of
modes required by the MDM at times t = 2.0 sec and 9.0 sec (Linear example
problem 2).
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given by Eqs. (3.52) and (3.55), respectively, are computed for each additional mode and
are shown in Figs. 5.6 and 5.7. The error converges in a step-like manner as seen in
Fig. 5.5 indicating no change due to the addition of the second and third modes and then
drops sharply with the inclusion of the fourth mode. This step-like convergence occurs
because the second and third modes are asymmetric and therefore orthogonal to the
uniform load and hence produce a negligible modal load. The step-like convergence over
the entire spectrum is listed in Table 5.1. The wide range of modes 25 to 148 have
negligible participation, but the 149th and the 161st modes cause a dramatic reduction in
the error, thus confirming the importance of the higher modes in the MDM solution.

Table 5.1 A priori estimate of the required number of modes at time t = 2 sec
(Linear example problem 2)

Number Error Number Error Number Error
of el of e2 of e3
modes modes modes
1 0.162908 1 0.598 E-02 1 ~ 1 0.383 E-03
90 0.443 E-01 12-18 0.138 E-03 4-7 0.452 E-04
149 0.261 E-01 19-23 0.126 E-03 8 0.578 E-05
160 0.246 E-O1 24 0.927 E-04
161 0.576 E-02 25-27 0.284 E-04

On the other hand, the error e2, Eq. (3.52), in the representation of the pseudo
steady-state response, K-! R(), also converges in a step-like manner, Fig. 5.6, but
decreases rapidly due to the increasing magnitude of the higher eigenvalue appearing in
the denominator. This also explains the faster rate at which the error e3, Eq. (3.55),
approaches zero (Fig. 5.7) due to the square of the eigenvalue appearing in the
denominator. The number of modes required by each of the methods is determined when
the error approaches zero. From Figs. 5.5 - 5.7, it is estimated that up to 160 modes are
required by the MDM whereas only 25 and 8 modes are required by the MAM and the
FDM respectively. Referring to Table 5.1, these modes correspond to errors

approximately two orders of magnitude less than the maximum error in each case.
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Fig. 5.6 Convergence of the error, €2, in the pseudo steady-state response used to
predict the number of modes required by the MAM at times t = 2.0 sec and 9.0

sec (Linear example problem 2).
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Fig. 5.7 Convergence of the error, 3, in the derivative form of the pseudo steady-state
response used to predict the number of modes required by the FDM at times

t = 2.0 sec and 9.0 sec (Linear example problem 2).
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Table 5.1 highlights the selected modes which cause the rapid convergence of the

methods.

v 1 =

The modal solutions obtained using the estimated number of modes at
time t = 2 sec are shown in Figs. 5.8a - 5.8c. To judge the reliability of these estimates, in
the case of the MAM for example, the distribution along y = 0 in. obtained by 10, 23 and
25 modes are compared in Fig. 5.8b, since modes 13 through 23 are nearly orthogonal to
the load. Similarly for the FDM the solutions from using eight and four modes are
compared in Fig. 5.8¢c. Figures 5.8b and 5.8c demonstrate that 25 and 8 modes are indeed
required by the MAM and the FDM respectively, and thus confirm that the corresponding
estimates are accurate; whereas Fig. 5.8a shows that the MDM yields an acceptable
solution even with about 90 modes, which is much fewer than the 160 modes estimated.
This deviation from the estimate could possibly be due to the fact that the estimate is

based on the error in the load vector and not the error in the solution vector itself.

im i i =
The rates of convergence of the errors, €], €2 and e3, remain the same at this time.
This is because the error 3, for instance, is essentially the error in the representation of

K! by the subset of modes used. Since the eigenmodes are constant for this problem, -
this approximation does not change with time. The correction offered by the MAM,
CMAM (Eq. (3.50)), varies with time since the load varies with time, as seen in Fig. 5.9.
Although CMAM decreases as more modes are included at a given time, the maximum
value of CMAM (which occurs when only one mode is included) increases with time as
R (t) increases monotonically. For the given nature of the load, it is obvious from
Fig. 5.9 that the MAM requires fewer modes to converge at time t =9 sec than at time

t=2sec. The rate of convergence of the correction of the FDM, CFDM (Eq. (3.53)),

does not change with time (Fig. 5.10), since the applied load has a constant first
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a) Mode-displacement method (MDM).

Temperature distribution at time t = 2.0 sec along y = 0.0 in. (Linear example
problem 2).
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Fig. 5.9 Convergence of the correction offered by the MAM, CMAM, at times t = 2.0
sec and 9.0 sec (Linear example problem 2).
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Fig. 5.10 Convergence of the correction offered by the FDM, CFDM, at times
t = 2.0 sec and 9.0 sec (Linear example problem 2).
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derivative with respect to time. Nevertheless, since the magnitude of CFDM is not
negligible when compared to CMAM at time t =9 sec, the FDM is expected to play an
important role in the reduction process at this time also and hence converge with fewer
modes than the MAM, albeit the difference is smaller at time t =2 sec. The rate of
convergence of the load vector, Eq. (3.45), is also expected to vary with time by realizing
that the participation factor of the non-orthogonal modes is proportional to the load R(t).
Although the corrections indicate that each method individually converges faster at this
time than at time t = 2 sec, additional work may be necessary to use these corrections to

decide the cutoff value for the number of modes required at different times.

VEIZ =
The modal responses were computed at time t =9 sec and it is found that the
MDM, MAM, and the FDM converge with fewer modes at this time, namely 30, 8 and 1
respectively. The distributions shown in Fig. 5.11 or, alternatively, the distribution error
norms compared in Fig. 5.12, confirm that all three methods converge with fewer modes
at this time. For this problem with a monotonically time-varying load, the number of
modes predicted based on the errors at time t = 2 sec is a conservative estimate, that is,

guarantees convergence of the modal methods at all times but may not be necessary at all
/

times, as the results at time t =9 sec have shown.

The results demonstrate the potential of the higher-order methods to effectively
inprove the reduction achieved for transient thermal problems. Also the error estimates
and the convergence of the correction terms show the potential to serve as useful tools in

the prediction of the number of modes required at any given time.
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Chapter 6

NONLINEAR TRANSIENT EXAMPLE PROBLEMS

To study the feasibility of using the modal methods as a reduction technique for
nonlinear transient thermal problems, two nonlinear examples were analyzed. The results
of these analyses are presented in this chapter. The relative performance of the methods
is evaluated and the conditions that bring out their best performances are highlighted.
The multi-step approach described in Sec. 4.2.2 was used even though the load varies
linearly in time, to accommodate for the temperature-dependent load vectors and
eigenmodes. Also, the modal coordinates given by Eq. (4.53) were used to solve the

numerical examples that follow.

6.1 Rod Subject to Convection at One End

with Temperature-Dependent Thermal Conductivity

The problem statement for this \simplc example is shown in Fig. 6.1. It was
primarily chosen to validate the new finite element algorithm for nonlinear problems

which is presented in chapter 4. Two cases with different thermal conductivities are

considered.

6.1.1 Case 1: k (T) =0.0001 +0.5E-06T

Time for Eigensolution Upd

Some trial runs were made to determine the time when an eigensolution update is
necessary to adequately represent the change in the nonlinear basis vectors with time.
The frequency of these updates requires a compromise between computation time and

accuracy. The FDM was used to march the solution from time t = 0 sec when the initial
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Fig. 6.1 Thermal finite element model of a rod subject to transient convective heating
at one end with temperature-dependent thermal conductivity (Nonlinear

example problem 1).
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eigenvalue problem was solved. An arbitrarily chosen time step, dt =0.01 sec,
(Eq. (4.36)) and a minimum of two modes (which is discussed subsequently) were used.
The number of iterations needed to achieve convergence, within a tolerance of € = 0.01,
increases with time as seen in Fig. 6.2, until the solution does not converge at time
t = 0.08 sec, regardless of the number of modes in the subset. Even though the solution
converges at time t = 0.07 sec, the number of iterations increases when more modes are
included in the solution. A similar behavior was observed even when the tolerance was
increased to € = 0.1, or, when the time step was decreased to dt = 0.005 sec. However,
with an EVP update at time t = 0.05 sec, the number of iterations reduces to three from
nine or ten at time t = 0.06 sec, and the increase in number of iterations at a later
time t = 0.1 sec is less with more modes. This confirms the need to update the
temperature-dependent eigensolution in time for nonlinear problems. However, this
approach based on the iterations required is not meant to be used for an a priori estimate
of the time for an EVP update.
Convergence of Modal Methods

The solution at time t = 0.1 sec in the early transient period when the gradient is
significant, is used to evaluate the performance of the modal methods. A time step
dt = 0.01 sec was used for this analysis with the initial eigensolution updated only once at
time t = 0.05 sec, that is, m = 5 (see discussion following Eq. 4.41). The converged
solution used to compute the distribution error norm of the reduced-basis solutions was
obtained with a fine mesh of 101 nodes using a small time step dt = 0.001 sec. The
implicit transient thermal analyzer in COMET which uses the Crank-Nicholson algorithm

for time integration was used for this purpose.

The MDM underpredicts the exact peak temperature of 373.7° F by 38%, 17%
and 8.2% with 5 (25% of the number of degrees of freedom), 10 (50%) and 15 (75%)
modes respectively. At least 16 modes are required by the MDM to yield a distribution
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fairly close to exact. On the other hand, the MAM converges with a much smaller subset
of four modes while the FDM exhibits a superior performance by predicting the peak
temperature within 1.36% using just two modes as shown in Fig. 6.3. This is made
possible by the large ratio (10) of the magnitude of the derivative of the load to that of the
load itself (which varies linearly with time) at this early time. The rates of convergence
of the three methods are compared in Fig. 6.4.
Effect of Time Step

The effect of the time step size on the performance of the FDM was studied. The
responses obtained by the FDM using two modes are compared for two different time
steps dt = 0.01 and 0.05 sec in Fig. 6.5 which have an error norm of 0.038 and 0.08
respectively. The smaller time step yields a distribution very close to the exact and helps
to obtain a smooth temperature history when desired, as it computes the response at more
instants of time. The advantages though, should justify the additional computational
effort required to do the iterations at each of the intermediate times. Computations reveal
that both time steps require the same total number of iterations, 17. The solution was
further marched out in time to t = 0.2 sec. The solution at time t = 0.1 sec was used as the
initial guess and the corresponding EVP was solved. The solution at time t = 0.2 sec
obtained in one step (error = 0.09), is compared with that obtained in five steps using
dt = 0.02 sec (error = 0.02) in Fig. 6.6. Again, the two analyses involve the same total
number of iterations 7. These results are summarized in Table 6.1. By well-representing
the transient variation of the nonlinear quantities, a smaller time step yields a better

solution accuracy for a given computational effort.

Minimum Number of Modes
It is seen in Fig. 6.4 that the error from the FDM is shown for two modes and

more only. For the chosen time step (dt = 0.01 sec), tolerance (€ = 0.1) and EVP update

(m = 5), it was determined by trial and error that a minimum of two modes were required
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Table 6.1 Effect of time step on the solution accuracy of the FDM
(Case 1 of nonlinear example problem 1)

Time = 0.1 sec Time =0.2 sec
Time step | Number of Error Time step | Number of Error
dt iterations e dt iterations e
0.01 17 0.038 0.02 7 0.02
0.05 17 0.08 0.1 7 0.09

by the FDM to obtain a solution (which is already converged), at t = 0.1 sec without any
numerical instability or divergence at some intermediate time. A similar behavior was
observed even with a fine mesh of 101 DOF. This minimum requirement for the number
of modes did not arise for linear problems where the eigenmodes are independent of the
solution and just one mode yields a solution even if highly erroneous.

The time-marching parameters were varied to study their effect on the minimum
number of modes required by the modal methods at t = 0.1 sec. The results of this study
are shown in Figs. 6.7a - 6.7c and are also summarized in Table 6.2. The MDM and the
MAM yield a solution with one mode for all the parameters studied for this problem. The
FDM also converges with one mode for the first set of parameters with only one EVP
update and no iterations. Instead, when iterations are performed as with the second set of
parameters, or, a piecewise linear approach (where the eigensolution is updated every
time step, i.e., m = 1) is used with smaller time steps, the MAM converges with fewer
modes (three instead of four) but the FDM requires more (two instead of one) for a

minimum but the same number (two) to converge.

6.1.2 Case 2: k(T)=0.0001 +0.1E-04T

To study the effect of variation of the nonlinear parameter k(T), the slope of the
conductivity curve was increased by a factor of 20. Although the heat load is identical in
both cases, the diffusivity is very different. This is reflected in the temperature profiles at

the same time t = 0.05 sec in Fig. 6.8. The temperature distribution in the first case has a
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relatively steep gradient compared to the second case, and the peak temperature is almost
twice as well.

Table 6.2 Effect of time-marching parameters on the number of modes required at time
t=0.1 sec (Case 1 of nonlinear example problem 1)

Minimum number Modes required
Time-marching of modes for a to converge within the
parameters stable solution desired accuracy
dt m € MDM | MAM | FDM | MDM | MAM | FDM
0.01 5 1.0 1 1 1 17 4 2
0.01 5 0.2 1 1 2 17 4 2
0.01 1 1.0 1 1 2 17 4 2
0.001 1 1.0 1 1 2 17 3 2
0.0001 1 1.0 1 1 2 17 3 2

As in Case 1, the FDM was used to obtain the transient response starting with
time time t = 0.0 as the initial condition. A time step dt = 0.001 sec was used which
caused the solution to converge in only one iteration for a tolerance € = 1.0. A minimum
of four modes were required in this case. As seen in Fig. 6.9, the error in the computed
response progressively decreases from time t = 0 sec until it suddenly shoots up to
prohibitive levels sometime after time t = 0.025 sec, even if more modes are included.
With one EVP update at time t = 0.025 sec, the error at time t = 0.05 sec falls within an

acceptable limit, confirming the need to update the nonlincar eigenmodes.

Convergence of Modal Methods

Using a time step dt = 0.001 sec and an EVP update at time t = 0.025 sec as
determined above for the FDM, the solution at time t = 0.05 sec was obtained by the three
methods. While the FDM required a minimum of four modes to converge, the MAM
required seven. The MDM solution, though, became acceptable only with 16 modes.

When the eigensolution was updated every 0.01 sec, the MAM also converged with only
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four modes like the FDM. The rates of convergence of the three modal methods using
dt = 0.001 sec and m = 10 are compared in Fig. 6.10 for this case.
Effect of Time Step

For the given EVP update at time t = 0.025 sec, the unacceptable error resulting
from using a time step dt = 0.025 sec is dramatically reduced by decreasing the time step
to dt = 0.001 sec as seen in Fig. 6.11. Also, this entails little additional computational

effort, as the solution requires only one iteration per time step.

ini m

Results of a parametric study conducted similar to Case 1 are shown in
Figs. 6.12a - 6.12¢ and are summarized in Table 6.3. For this case, the MDM again needs
just one mode for a well-behaved solution with any of the parameters. With the first set
of parameters, the MAM requires up to seven modes as a minimum and also for
convergence. When the time step is reduced, this minimum decreases for the MAM,
which then converges with four modes itself like the FDM. So for this case of higher
nonlinearity, the reduction achieved by the MAM and the FDM is identical even at this
early time t =0.05 sec. On the contrary, the minimum requirement for the FDM

increases when the time step is decreased, similar to the first case.

In both cases of this example, the higher-order MAM and the FDM demonstrate .
superior convergence over the basic modal method, the MDM. Also the FDM is more
effective than the MAM for a longer time in the first case with the less temperature-
dependent conductivity. The difference in the convergence of the FDM relative to the
MAM for the two cases is understood by studying the norm of the respective corrections

obtained as discussed in Sec. 4.5. With two modes the proportion of the FDM
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Table 6.3 Effect of time-marching parameters on the number of modes required at
time t = 0.05 sec (Case 2 of nonlinear example problem 1)

. . Minimum number Modes required
Time-marching of modes for a to converge within the
parameters stable solution desired accuracy
dt m £ MDM | MAM | FDM | MDM | MAM | FDM
0.001 25 1.0 1 7 4 16 7 4
0.001 10 1.0 1 4 4 16 4 4
0.001 1 10.0 1 4 5 16 4 5
0.0001 1 10.0 1 2 6 16 4 6
0.00005 1 10.0 1 2 6 16 4 6

correction to that of the MAM looks significant at time t = 0.1 sec in Fig. 6.13a (Case 1),
whereas in Fig. 6.13b (Case 2), with four modes it is almost negligible at
time t = 0.05 sec. That is, CFDM contributes very little compared to CMAM, to the
solution of Case 2. Figures 6.13a and 6.13b also'illustrate that the relative importance of

the higher-order terms changes with time.

6.2 Lower Surface of Bay 3 of Shuttle Wing Segment

The specific objective of this research is to compare the efficiency of the modal
methods, in terms of the reduction achieved, in performing the nonlinear transient thermal
analysis of a realistic structure, such as the Shuttle wing segment shown in Fig. 6.14. The
thermal model shown in Fig. 6.15 represents a 58 in. segment of the lower surface of bay
3 and consists of a 0.119 in. thick aluminum sheet (to represent the structure) covered by
a 1.36 in. thick layer of high-temperature reusable surface insulation (HRSI). The 0.16
in. thick strain isolator pad (SIP) lies between the wing skin and the HRSI. The HRSI is
bonded to the SIP and the SIP is bonded to the skin with room temperature vulcanized

(RTV) adhesive.

The lateral edges and the aluminum structure are assumed to be adiabatic. The

outer wing surface is subject to heat loads representative of Shuttle reentry. The nature of
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the heating history is significantly complex. As depicted in Figs. 6.16 and 6.17, in
addition to the transient variation of the intensity, the spatial distribution of the load on
the surface changes dramatically as well. This is & result of the air in the boundary layer
over the wing undergoing transition from a laminar to a turbulent flow beginning at about
700 sec into the heating history. Radiation loss from the surface is modeled using an
equivalent nonlinear convection coefficient whose variation with temperature is shown in
Fig. 6.18a. The thermal properties (specific heat and thermal conductivity) of the HRSI
are highly temperature-dependent and their variation is shown in Fig. 6.18b. The various
materials involved whose properties considerably differ between them, coupled with the

complex imposed heating, result in a nonsymmetric temperature distribution.

6.2.1 Simplified One-Dimensional Model

In a preliminary analysis, the spatial variation in the applied heat load was ignored
and uniform specified heating was assumed. This resulted in a simplified
one-dimensional model across the thickness of the HRSI. Two-node conduction
elements were used to model the HRSI, SIP, RTV and aluminum skin, and zero-length or
point elements were used to represent the external heating and convection. The purpose
of this analysis is to characterize the finite element discretization necessary across the
HRSI thickness, so that the entire thermal response (not only the peak temperature) can
be predicted with reasonable accuracy and minimal computational effort throughout the
load history. Studies based on the simplified model are used to gain insight into the
physics of this problem and to understand how it affects the performance of the modal
methods. These preliminary results are expected to be useful in the subsequent finite

element modeling of the actual two-dimensional problem.

Mesh Convergence

A series of meshes were generated starting with a relatively coarse mesh

(Fig. 6.19) consisting of 16 nodes with ten uniform-length elements through the HRSI
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thickness. Successively refined meshes include 26, 46, 80 and 166 DOF with 20, 40 50
and 160 uniform elements, respectively, to represent the HRSI. Finally, based on the
nature of the problem, the 16 DOF mesh with ten uniform elements was modified to have
ten graduated elements with an arbitrary stretching factor of 2. This gives a large range
of element sizes, with fine elements in the region near the heated end and very large
elements in the interior.

The full-system solutions were obtained using a relatively small time step
dt = 0.5 sec with the eigensolution updated every time step. The well-refined 166 DOF
system yields a very smooth solution as depicted by the solid lines in Figs. 6.20 and 6.21.
The temperature at the HRSI surface rises very rapidly as the heating is applied and
diffuses rather slowly through the HRSI thickness and SIP to the aluminum skin as
shown in Fig. 6.20. After peak heating occurs at time t = 1100 sec, the surface begins to
cool while the temperatures of the interior of the HRSI and the aluminum skin continue to
rise. The temperature distribution pattern in Fig. 6.21 shows steep gradients at early time
due to the low conductivity of the HRSI. A good modal solution should capture this

nonlinear behavior accurately with as few modes as possible.

The 166 DOF solution is considered to be converged and is used to compute the
distribution error norm of the other full-system solutions, to determine the adequacy of
the meshes. As expected, the coarse 16 DOF systems both uniform and graded, have the
highest error norm over the entire time period with a maximum of 0.008 and 0.017
respectively at times t = 275 sec and t = 475 sec. The corresponding full-system solutions
denoted by triangles and circles respectively (Fig. 6.21), are compared with the
converged solution at discrete times when the errors are high. The distribution of the
uniform mesh is not as smooth as those of the finer uniform meshes (not shown);
nevertheless the nodal temperatures match those of the 166 DOF mesh at corresponding

locations. The full-system solution of the graded mesh is far from smooth. The error at
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the location of the mid-HRS] thickness starts increasing around time t = 350 sec and
reaches a maximum at time t = 475 sec (temperature distribution at intermediate times are
not shown), when the peak temperature is almost reached but the temperature penetrates
at a fast rate due to increase in conductivity, but the nodes are too far apart to capture this
nonlinear behavior. Notwithstanding this error, the peak temperature as well as the
gradient at the heated end are captured accurately at all times. The 46 DOF and 80 DOF

solutions are very smooth and agree with the converged solution.

verg Var

Having determined the limitations of the various meshes used and the accuracy of
the respective full-system solutions, the modal solutions were obtained to identify the
effect of the mesh on the eigensolution and hence on the efficiency of the modal methods.
Although the transient variation of the load is curvilinear (Fig, 6.16), the thermal analyzer
assumes linear variation between the specified input times so that the highest order modal
method that can be used is the second-order FDM. For the purpose of a one-to-one
comparison, a time step of 2 sec (determined by some trial and error) was used in all of
the following analyses, (except where indicated otherwise) and the eigensolution was

updated every 50 sec (that is, m = 25).

With the crude 16 DOF uniform mesh, each of the three methods requires 12
(75%) modes to converge, yielding a reduction of only 25%. While in the case of the
graded mesh, the coarseness produces an inadequate solution accuracy in the interior of
the HRSI, in the uniform mesh it decreases the efficiency of the MAM. The MAM
converges with 20 modes on all other uniform meshes. This yields a steady increase in
the percentage of reduction achieved with refinement beyond the 26 DOF mesh as seen in
Fig. 6.22. It is noteworthy that with the 16 DOF coarse but graded mesh, the MAM
shows a dramatic convergence with just 6 modes, 50% less modes than the uniform

mesh, subject to the error bound of the full-system solution. This reduction is
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comparable to that of the much finer 46 DOF uniform mesh. The increase in efficiency
of the MDM is observed to be far less with the graded mesh which requires 11 modes
(instead of 12 modes for the uniform mesh) and even with the finest 166 DOF mesh
which still needs to retain 70 (42%) modes. Based on the requirement for convergence
throughout the heating history, the FDM has not performed better than the MAM with

any mesh (this issue is discussed later). Table 6.4 summarizes some of these results

below.
Table 6.4. Comparison of reduction achieved by the MDM and
the MAM for Shuttle 1-D model
Required number of modes Reduction %
Mesh description MDM MAM, FDM MDM MAM, FDM
16, uniform 12 12 250 25.0
16, graded 11 6 31.25 62.5
166, uniform 70 20 - 58.0 88.0

Figure 6.23 compares the eigenvalues of the meshes at time t = 350 sec and
clearly shows how the mesh affects the distribution of the eigenvalues within the
spectrum. The relative position of the fourth eigenvalue corresponding to the 16 DOF
meshes, for instance, is given by 0.25 on the x-axis in Fig. 6.23. Mesh refinement
enhances the rate of increase of the eigenvalues at the lower end of the spectrum,
although the degree of enhancement decreases as the mesh becomes finer. A higher
magnitude for the eigenvalues has been attained more efficiently, that is, by retaining
fewer DOF in the mesh, by a suitable grading of the element sizes. This explains why the
efficiency of the MAM with the 16 DOF graded mesh is comparable to the efficiency
with the much finer 46 DOF mesh, and is much higher than that with the i6 DOF
uniform mesh. A comparison of the mode shapes of the 16 DOF uniform and graded
meshes shown in Figs. 6.24a and 6.24b shows how the steep gradients can be well-

captured by fewer modes of the graded mesh.
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As in the previous examples, the MAM has achieved a remarkable improved
reduction compared to the MDM for this one-dimensional model of the Shuttle example.
For this example, although the heating history is transient, the FDM does not lead to any
improvement over the MAM with any mesh. The number of modes required for
convergence of the MDM and the MAM are based on the requirements for a stable as

well as accurate solution over the entire time domain.

The corrections CMAM and CFDM discussed in Sec. 4.5, were computed for the
166 DOF mesh based on the initial eigensolution and the applied load at time t = 50 sec.
As estimated from Fig. 6.25, the FDM and the MAM converge with four and eight modes
respectively at time t = 50 sec and the corresponding distributions shown in Fig. 6.26
confirm the accuracy of these estimates. The convergence of CMAM and CFDM at
different times shown for the 166 DOF and 16 DOF graded meshes in Figs. 6.27a and
6.27b were obtained using the corresponding full-system solutions at each time. As
depicted qualitatively in these figures, the more-effective higher-order method and the
modes required for convergence vary with time for this complex nonlinear problem with
a transient load. That is, the correction offered by the FDM to the MAM becomes
negligible rather early in time, whereas the correction offered by the MAM to the MDM
remains significant even at a much later time t = 950 sec. This data was not used directly,

however, to estimate the modes required for this problem.

Effect of Transient Load and Nonlinearity on the Perf ¢ the Modal Method

For this study a piecewise linear approach with dt = 0.5 sec was used. For the
166 DOF mesh, the response of the FDM with four modes becomes unstable after
time t = 200 sec. Both the MAM and the FDM converge with the same number of modes
after time t = 250 sec. Similarly for the 16 DOF mesh, the MAM and the FDM converge
with five modes up to time t = 300 sec. Recalling the implementation described in

Sec. 4.6, the full form of the generalized load vector was used for the MAM but only the
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Fig. 6.25 Convergence of the corrections offered by the MAM and the FDM, CMAM

and CFDM respectively, at time t = 50 sec using the Shuttle one-dimensional
thermal model with 166 DOF.
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Fig. 6.26 Temperature distributions obtained by the MAM and the FDM at time
t = 50 sec using the Shuttle one-dimensional thermal model with 166 DOF.
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approximate form of the derivative of the generalized load vector was used for the FDM.
However, since the eigensolution was updated every time step in this study and no
iterations were made, the nonlinear correction did not exist. Also for the 16 DOF graded
mesh, the derivative of the nonlinear convection heat load vector (Fig. 6.28), computed
based on the full-system solution, was included so that no approximation was actually
made to the FDM.

In the early stages, CFDM is significant and increases with time (Figs. 6.27a,
6.27b) so that the FDM éonvcrgcs faster than the MAM. Later on, between
times t = 250 sec and t = 300 sec, the trend reverses and CFDM decreases until the MAM
becomes the most effective method. Figure 6.28 shows that the derivative of the applied
heat load reaches a local peak at time t = 250 sec and then starts decreasing while the
magnitude of the load itself is still increasing as seen in Fig. 6.29. The change in
effectiveness of the FDM with time, which is experienced with both meshes, may be

governed by the heating history for this problem.

Although the MAM gives a converged solution with five modes for the 16 DOF
mesh up to time t = 300 sec, the eigenvalues (Fig. 6.30), and hence the response, exhibit
unrealistic oscillations in time. The difficulty faced by the MAM in predicting a stable
solution after time t = 300 sec can be qualitatively explained with the help of Fig. 6.31.
The normalized participation factor gives a measure of the contribution of each mode in
representing the total load vector at different times. The spatial distribution of the load
does not change with time for this 1-D model; however, the mode shapes vary with time
due to the temperature-dependence of the thermal properties. Although the magnitude of
the load is increasing with time, Fig. 6.31 shows that the participation of the modes
steadily decreases from the initial time and reaches a minimum between times t = 300 sec
and t = 400 sec when the inclusion of sufficient modes becomes necessary for a stable

solution after this time. This pattern was observed with the finer meshes too, which gave
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Fig. 6.28 Comparison of the histories of the first derivative of the specified and
convective heat loads for the Shuttle one—dimcnsional thermal model.
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Fig. 6.29 Comparison of the histories of the specified and convective heat loads for the
Shuttle one-dimensional thermal model.



123

Mode-acceleration method

10°
)"6
10" e
---------- M
-
2
8 10° E & )
Y 3
2 ; Ay
3 C
= s A, ———
(3] emn
2 »>—
10
F Smodes
L dceem—aa—- 6modes
10-‘ E‘ ’ xl Ly e wn =
10-5 | 1 | | 1 | ]
0 50 100 150 200 250 300 350

Time, seconds
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a stable converged solution with 17 modes itself (instead of 20), provided the time step
was decreased near time t = 300 sec. The MDM, however, is well-behaved even with
much fewer modes than that required for convergence, although the solution is quite

inaccurate as seen in Fig. 6.32.

6.2.2 Two-Dimensional Model

This example demonstrates the capability of the proposed higher-order modal
method for solving complex situations with a much smaller set of equations than the
MDM. Two-dimensional quadrilateral elements were used to model the HRSI, SIP and
RTV while the aluminum structure, the heat load and the nonlinear surface convection
were represented by line elements. Based on the experience with the 1-D model, the
MAM was selected as the main focus in these analyses. For the 2-D model of the Shuttle
problem (Fig. 6.15), the additional complexity involved is the spatial variation of the heat
load. The magnitude of the load increases rapidly in a more or less spatially uniform
manner from time t = 200 sec to time t = 350 sec (Fig. 6.17), and then the distribution
becomes nonuniform. Also, around time t = 700 sec the pattern starts reversing, and by
time t = 850 sec a step-like distribution pattern dcvclop_s. Then the magnitude of the load
increases at the maximum rate up to time t = 900 sec and after reaching the peak value at
t = 1000 sec, the distribution becomes uniform again. A variation of the nonuniform load
was also considered where the loads do not change abruptly as described earlier but in a

much smoother manner as shown in Fig. 6.33.

It is therefore prudent to arrive at the optimum mesh which can accurately
represent the gradients, which in this case occur not only across the HRSI thickness but
along the wing surface as well. For both cases of the spatially-varying load, judging from
the 1-D analysis results, the discretization of the 16 DOF graded mesh was chosen across
the HRSI thickness, i.c., along the y-axis in Fig. 6.15, as it offers a higher increase in

efficiency for a given number of DOF. In an attempt to improve the solution accuracy, it
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Fig. 6.32 Comparison of temperature histories of the different modal solutions for the
16 DOF graded mesh using a time step dt = 2 sec with the eigensolution
updated every 50 sec for Shuttle one-dimensional thermal model.



127

0.12 t = 1000 sec

smoothly-varying load
discontinuous load

0.10

g 008 t = 850 sec
"
3
a 0.06
)
=3
0.04 -
0.02+
0‘00 | 1 { | |
0 10 20 30 40 50

X, inches

Fig. 6.33 Spatial distribution of heating on the lower surface of bay 3 at selected times
(Smoothly-varying load).



128

was refined to include three more nodes at the mid-section where elements are rather

large in the 1-D model. The discretization used along the x-axis is discussed separately

for the two load cases.

The full-system solution at time t = 1000 sec obtained with a crude mesh of 187
DOF shows unrealistic spatial oscillations as in Fig. 6.34, due to the improper
representation of the applied load. This mesh was obtained using only two elements each
to represent each different load span (Fig. 6.15). For this load case shown in Fig. 6.17,
the discretization along the wing surface, i.e., along the x-axis in Fig. 6.15, must be done
bearing in mind that the calculation of the nodal load vectors involves the finite element
approximation of lumping the element load equally at the two nodes. Consequently, a
series of fine elements are necessary at the junction of the unequal input loads in order to
accurately model the spatially-discontinuous load and thereby predict the temperature
response reliably. The mesh thus generated after careful consideration consists of 578

nodes as shown in Fig. 6.35.

The temperature contours obtained from the full-system solution at
time t = 1000 sec are shown in Fig. 6.36. It is evident that the temperature variation in
the x-direction closely resembles the load distribution pattern causing a jump in the
temperature of up to 150°R within a distance of 0.2 in. at locations where the load
increases abruptly, and then the temperature remains constant (even if intermediate nodes
are added) until the next jump location. To establish the suitability of the nodal locations
along the x-axis for this problem, a mesh with 1683 nodes was employed along with a
minor smoothing of the load changes over a thickness pf about 1 in. The response was
very similar to that of the 578 DOF mesh, that is, with similar jumps in temperature and
temperature diffusion occurring only in the same width as the load smoothing in spite of

the large array of very fine elements at the junctions. The adequacy of the discretization
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model with 187 DOF and discontinuous load.
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Fig. 6.36 Temperature contours at time t = 1000 sec of Shuttle two-dimensional thermal
model with 578 DOF and discontinuous load.
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in the y-direction was verified by comparing the distribution along the edge x = 0.0 with
the full-system solution of the 1-D model using the 166 DOF mesh.

The convergence of the correction, CMAM, at time t = 350 sec (Fig. 6.37) is used
to make a rough estimate of the number of modes required for convergence of the MAM.
The reduced-system solution is considered to be converged when the error norm (based
on the full solution) is acceptable throughout the solution time (Fig. 6.38). Based on this
criterion, a subset of up to 400 modes (or 70%) are required by the MDM, whereas only
200 modes (or 35%) are required by the MAM as seen in Fig. 6.39; thus confirming the
improved predictability of the MAM for problems with extreme temperature gradients,
even an abrupt increase in temperature caused by a discontinuous load. Here again, the
FDM shows no better convergence than the MAM as expected from Fig. 6.37 which

shows that CFDM is insignificant compared to CMAM.

Case 2: Nonuniform Load Distribution with a Smooth Variati

The sudden jump in the thermal load at discrete points in Fig. 6.17 was
smoothened by incrementing the load in small step sizes over the entire load span and the
resulting distributions at times t = 850 sec and 1000 sec are shown in Fig. 6.32.
Accordingly, a vast number of elements were used to model these loads producing the
mesh comprised of 986 DOF shown in Fig. 6.40. As expected, a smooth temperature
distribution occurs along the wing surface as seen in Fig. 6.41, to obtain which 850
modes (or 86%) are needed by the MDM (16% more than that required for Case 1).
About the same increase in percentage of modes as that of the MDM is witnessed for the

MAM which requires 550 modes (or 5§5%) for this case.

The two cases discussed above, which encompass a wide range of nonsymmetric
load distribution, firmly establish the superior performance of the MAM over the MDM
although the degree of the increase in efficiency could vary, depending on the nature of

the load distribution and the finite element discretizatdon.
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with smoothly-varying load. (Also see Fig. 6.33).



w

(v, }

\i

— N W A O

2436 °R
2091 °R
1746 ° R
1401 °R
1056 ° R
711 °R

137

Fig. 6.41 Temperature contours at time t = 1000 sec of Shuttle two-dimensional thermal

model with 986 DOF and smoothly-varying load.



Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

The force-derivative method (FDM), which collectively represents a class of
higher-order modal methods that improve the fundamental modal method, the MDM,
with various-order correétion terms, has been presented for nonlinear transient thermal
analysis. The additional terms in the FDM include the forcing function and its
derivatives with respect to time. A new algorithm incorporating the modal methods ar;d a
fixed-point iteration scheme has been implemented in an existing advanced finite element
code, COMET, and validated with the aid of numerical examples. The solution is
advanced in time with the nonlinear system maﬁ'iccs and load vectors being re-evaluated
during the iterations at each time step, while the eigensolution is updated periodically to
account for the change in the nonlinear basis vectors. For nonlinear problems, the first-
order correction that the MAM offers to the MDM is fully realized by forming a
generalized load vector, which in addition to the applied load vectors includes a
corrective vector to account for the change in the nonlinear eigensolution between
updates. The similar implementation of the second-order FDM in its entirety, requires
the exact derivative of the generalized load vector which entails additional computational
effort. Hence, in general, the highest-order FDM that may be employed, could be
decided based on the order of the explicit time-dependence of the forcing function, as for

linear problems.

In general, the results demonstrate the potential of the higher-order methods to

effectively improve the reduction achieved for transient thermal problems. In this study,
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the efficiency of the methods is measured only by the reduction achieved, in terms of the

number of modes required, to obtain the response within the desired accuracy.

The first nonlinear example is a rod with a transient load and temperature-
dependent thermal conductivity. The second nonlinear example involves a realistic
structure, the lower surface of bay 3 of the Shuttle wing segment with nonlinear thermal
properties. The complicated heat loads include specified surface heating which varies not

only with time but in space as well, and nonlinear surface convection.

A number of factors that affect the performance of the modal methods have been
identified. The need for a multi-step approach in time with periodic updates of the
eigensolution has been established fér nonlinear problems. Reduction of the time step
size and eigensolution updates have either increased the solution accuracy or improved
the convergence of the methods to some extent. The magnitude of the derivative of the
transient load compared to that of the load itself, and the degree of temperature-
dependence of the thermal conductivity are seen to affect the relative effectiveness of the

FDM compared to the MAM.

The preliminary one-dimensional analysis of the Shuttle problem using different
meshes clearly indicates that for a given number of degrees of freedom a suitably-graded
mesh based on the expected response can upgrade the eigenmodes and thereby further
enhance the faster convergence of the MAM over the MDM. For the two-dimensional
problem with a discontinuous load distribution, the mesh is contrived in light of the above
conclusion. Results confirm that the correction term of the MAM, which involves the
load itself, is very effective in representing the neglected higher modes thus enabling the
MAM 1o achieve a remarkable reduction of 65%, over twice that of the MDM, for this

example with complex loading conditions.

The above examples have demonstrated that the FDM (the MAM in particular) is

indeed a feasible, effective reduction method for nonlinear transient thermal problems.
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To solve nonlinear problems more efficiently, future research must include easy but
effective means to approximate the changing eigensolution. When coupled with a
transient adaptive meshing scheme, the method shows potential to yield a reliable and

efficient solution for problems with severe gradients.

In this study, it has been observed that the response of the MDM, though highly
inaccurate, is well-behaved even with much fewer modes than that required for
convergence. However, a minimum number of modes are required by the higher-order
methods to yield a stable solution without unrealistic oscillations in time, regardless of
how small the time step may be. This behavior of the MAM and the FDM exhibited in

this study needs further investigation.

Error estimates based on the approximation of the pseudo steady-state response
and its time-derivative by a subset of modes have been identified for linear transient
analysis. Results of a linear problem with a spatially-uniform load but a linearly-varying
transient load, although not conclusive, show how these error estimates can reliably
predict the number of modes required by the MAM and the FDM throughout the time
domain. The results also indicate the potential usefulness of the convergence of the
correction terms of the MAM and the FDM in determining the effective method and the
modes required, both of which may vary with time. Further study is required for a
thorough interpretation of these correction terms, to decide how they may be obtained for
nonlinear problems and for establishing convergence criteria to use them as a priori

estimates.

The parallelization of the FDM is another subject identified for future study. The
uncoupled nature of the modal equations and the numerous matrix-vector products
involved in the modal solutions indicate that the computational efficiency can be

improved by using parallel processing techniques.
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Appendix

COMPUTATIONAL PROCEDURES USED IN THE IMPLEMENTATION
OF THE MDM, MAM AND THE FDM

The sequence of the steps to be followed in the solution of transient thermal

problems using the modal methods is presented below.

1.

Input the number of modes to be included in the solution.

Input the number of time steps before every EVP update, m.

Atinitial ime t=0:

Evaluate the nonlinear system matrices, Kg and Cp.

Evaluate the linear and nonlinear applied load vectors, RL; and RNL(, and their time

derivatives, Rlo and RNI.O-

Apply the boundary conditions.

Solve the initial EVP, Eq. (4.25), to get @ and Ao,
Factor K.

Set the indicator for EVP update, k, to zero. See Eq. (4.40).

Forn=1,2... total number of timesteps; loop through step 27.

Increment k; k = k+1.

Evaluate the linear applied load and its time derivative at current time, R and RL,,.
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10.

11.

12.

13.

14.

15.
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Initialize the modal coordinates, zn.1, Eq. (4.45).

Compute the linear part of the modal coordinates; sum of the first two terms on the

right-hand side of Eq. (4.53).
Fori=1,2... until the iterations converge, loop through step 24.

Compute the nonlinear corrective load vector, QNL:I, Eq. (4.41), and add to the

nonlinear applied load vector, ij\‘l to form the nonlinear part of the generalized

load vector.

Obtain the modal coordinates, zq, by adding the nonlinear part (third term on the

right-hand side of Eq. (4.53)) to the linear part computed in step 7.

Get the approximate response, T,ll, by the MDM, Eq. (4.48). If the MDM is the

chosen method, go to step 21.

Otherwise, assemble the generalized load vector Q,l,'l. Eq. (4.42), by adding the

linear component from step 5 to the nonlinear component from step 9.

. 1 i
Solve the set of linear equations Kp.x r= Q,l, 1 to obtain K.k Q}. l.

Compute o 1 o Q,i{l.
A

Get the response of the MAM, Eq. (4.49). If the MAM is the desired method,

go to step 21.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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. ) . i-1 -l
Otherwise, using the approximate form of Qq , Eq. (4.52), solve Kp.x r = Qr: to

- i-1

yield Ko On .
a4 il
Compute Cp.x Knk Qn .

1 il -1 - i-
Solve Kpk r= Chk Knx Q,l, to yield Kn-x Cnk Kn}k Q:. 1.

~ 1 T il
Compute<b—15<b Q,l, .
A

Get the response of the second-order FDM, Eq. (4.50).

Use the new temperature vector to update the nonlinear system matrices and

load vector for the next iteration or time step.

Apply the boundary conditions.

If the iterations have converged, Eq. (4.54), go to step 25.
Otherwise, go to the next iteration, step 8.

If this is the last time step, STOP.

Otherwise, check if it is time to update the EVP; if it is not, i.., k # m, go to the next
time, step 4. If it is, then obtain the new set of eigenmodes, 6,, and Xn.

Factor K.

Resetk = 0.

Go to step 4.
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