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Background

NASA Grant NAG1-1802, originally submitted in June 1996 as a two-year
proposal, was awarded one-year’s funding by NASA LaRC for the period 5
Oct., 1996, through 4 Oct., 1997. Because of the inavailability (from IT at
NASA ARC) of sufficient supercomputer time in fiscal 1998 to complete the
computational goals of the second year of the original proposal (estimated to
be at least 400 Cray C-90 CPU hours), those goals have been appropriately
amended, and a new proposal has been submitted to LaRC as a follow-on to
NAG1-1802. The current report documents the activities and accomplish-
ments on NAG1-1802 during the one-year period from 5 Oct., 1996, through
4 Oct., 1997.

NASA Grant NAG1-1802, and its predecessor, NAG1-1772, have been di-
rected toward adapting the numerical tool of Large-Eddy Simulation (LES)
to aeroacoustic applications, with particular focus on noise suppression in
subsonic round jets. In LES, the filtered Navier-Stokes equations are solved
numerically on a relatively coarse computational grid. Residual stresses,
generated by scales of motion too small to be resolved on the coarse grid,
are modeled. Although most LES incorporate spatial filtering, time-domain
filtering affords certain conceptual and computational advantages, partic-
ularly for aeroacoustic applications. Consequently, this work has focused
on the development of subgrid-scale (SGS) models that incorporate time-
domain filters. The author is unaware of any previous attempt at purely
time-filtered LES; however, Aldama [1] and Dakhoul and Bedford [3] have
considered approaches that combine both spatial and temporal filtering. In
our view, filtering in both space and time is redundant, because removal of
high frequencies effects the removal of small spatial scales and vice versa.

1 Accomplishments

Most of the effort of NAG1-1772 was devoted to definition of a test case
for axisymmetric-jet flow, to computation of the (laminar) base state for
axisymmetric-jet flow (Pruett [19]), to adaptation of the direct numerical



simulation (DNS) algorithm of Pruett et al. [18] to the jet-flow problem of
interest, and to installation of the subgrid-scale (SGS) model of Erlebacher
et. al [4] (with a temporal filter) into the code to afford a baseline LES
capability. These efforts were successful; however, as expected, the baseline
model was overly dissipative, which suggested that dynamic modeling would
be necessary as anticipated.

Most of the previous year’s effort was devoted to an attempt to develop
an efficient dynamic SGS model based on a temporal filter.

TIME-DOMAIN FILTER: An early priority of the previous effort was
to development a candidate temporal filter. During this grant period, some
effort was devoted to refinement of the filter. Time-domain filters fall into
either of two broad categories: causal or acausal. For application to LES,
only causal filtering is realizable. By definition, causal filters incorporate
present and past information only, the future being inaccessible. Following
Press et al. [{17] and Strum and Kirk [24], we exploit the following linear
acausal digital filter

m n
5= pisi-j+ O GSi—k (1)
i=0 k=1

where s; = s(t;) is the raw discretized signal, 5, is the filtered signal, ¢; = [At,
At is the (constant) time interval between samples, and coefficients p; and
qx, are determined to give the filter certain desirable properties, which will be
addressed subsequently. The filter of Eq. 1 is “nonrecursive” if ¢, = 0 for all
k and “recursive” if, for at least one k, ¢x # 0, in which case the current value
of the filtered quantity is a linear combination of past and present unfiltered
values and past filtered values.

It is instructive to examine the frequency response of the filter associated
with Eq. 1. From Press et al. [17], the transfer function, which quantifies
the frequency response, is given by
__Xio pje”"
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where 1 = /—1, Q = w*At* is the dimensionless frequency, w* = 27 f* is the

dimensional circular frequency, and f* is the dimensional physical frequency.
(Throughout this work, we denote dimensional quantities by asterisk.) In

(2)

H(Q)
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general, the frequency response of a recursive filter is related to a rational
polynomial in the complex variable 1/¢, where ¢ = ¢**. The rational poly-
nomial form of the transfer function allows considerable latitude in shaping
the frequency response. Figure 1 below compares the modulus of the trans-
fer function of prototypical low-pass digital recursive filters with that of an
idealized “spectral cutoff” filter.
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Transfer function of prototype first-, second-, and fourth-order
causal digital filters compared with spectral-cutoff transfer
function.

Note that, for the spectral cutoff filter, 5 = 5, which is not true in general.
The transfer function of the digital filter can be made to more closely ap-
proximate the spectral ideal at the computational expense of including more
and more history (i.e., by using larger and larger values of m and n.)

Experimentation with prototype second- and fourth-order temporal fil-
ters lead to the fortuitous result that (for reasons to be addressed shortly)
second-order filters have some inherent advantages and require relatively lit-
tle storage. Consequently, attention was focused on second-order filters. The
transfer function of our prototype filter is that shown in Fig. 1. By a simple
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transformation, we modify the prototype filter to allow tuning of the cutoff
frequency. The tuning parameter is R., which relates the actual (£2.) and
prototypical (€2.) cutoff frequencies as follows:

Q
= — 3

Figure 2 compares an (artificially generated) raw time trace with its corre-
sponding filtered trace for several values of the cutoff parameter R..
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Filtered vs. unfiltered discrete time traces for selected values of
cutoff frequency ratio R.. Signal is periodic, with initial ramp
function. Sample rate is 64 per period.



PRELIMINARY NUMERICAL TESTS: As a demonstration of the
capability of the baseline LES algorithm, we simulated the evolution of a
heated axisymmetric jet at Mach 0.8 and Reynolds number 10,000. A second-
order causal Butterworth filter with R, = .125 (as discussed above) was
exploited for the LES. The results obtained were presented at the 3rd Sym-
posium on Transitional and Turbulent Compressible Flows, Summer FED
Meeting of the ASME, held in Vancouver in June 1997. The conference pa-
per is attached in the Appendix. Following Colonius [2], we computed the
compressible dilatation of the flow, which is shown in Fig. 5 of the paper.
In terms of the dilatation, each large vortex appears as a quadrupole, which
suggests that the large coherent structures may be the dominant acoustic
sources (although this has yet to be confirmed).

Whereas a DNS calculation (not shown, for which 1280 x 512 grid points
were needed) required 40 CPU hours, the 432 x 192 LES calculation required
less than two CPU hours. Relative to DNS results, the shear-layer roll-up
and pairing events were somewhat retarded, which suggested that the SGS
model was overly dissipative, as expected. It was concluded that a dynamic
SGS model would be beneficial in this context by limiting SGS dissipation
to regions where the flow is inadequately resolved.

Fig. 6 of the paper presents the principal component of the resolved
turbulent stress tensor £;;, computed by real-time temporal filtering of the
resolved scales. In an LES computation, the magnitude of the terms of
this tensor can be viewed as a measure of ill-resolution, or conversely, as
identifying the locations where additional dissipation is needed to prevent
numerical instability. That the components of the resolved turbulent stress
tensor are both well-defined and smooth gave confidence that a dynamic
procedure could be developed based on a temporal filter. This is the subject
of the next section.

DYNAMIC MODELING: Having tested the candidate filter in LES,
we re-directed attention to the development of a dynamic subgrid-scale model
that exploits time-domain filtering. This effort was only partially successful.
However, the reasons for the lack of complete success have to do more with
perceived problems with the conventional practice of dynamic modeling, in
general, than with the specifics of the temporal filter. A brief review of the



development of dynamic modeling is in order.

In the early 1990’s, LES experienced a resurgence of interest, in large part
due to the advent of dynamic SGS modeling (Germano et al. [5]), and it was
quickly recognized that many of the shortcomings of LES could be addressed
by dynamic models. The theoretical advantages of dynamic SGS models are
now well established (Moin and Jimenez [14]; namely, the model coefficient
is local, it is computed rather than prescribed, the model is applicable to
transitional flow, and no near-wall damping is needed. Historically, dynamic
modeling is rooted in the Germano [6] identity, which relates tensors obtained
by filtering at two different scales. One of the terms in the Germano identity
is the resolved turbulent stress tensor, £;; (mentioned previously), which is
a computible quantity. Unfortunately, dynamic modeling encounters certain
practical difficulties, which are now also well known. A difficulty of physical
origin arises when the model coefficient becomes locally negative due to a
reverse cascade of energy (backscatter), in which case computations may
“blow up” due to negative eddy viscosity. A second difficulty is numerical ill-
conditioning inherent in the computed model constant. As aresult, the model
coefficient tends to oscillate wildly. Both problems are commonly addressed
by ad hoc averaging of the computed coefficient over homogeneous spatial
dimensions, a practice that unfortunately removes some of the local variation
of the coefficient that lead to the desirability of dynamic SGS modeling in
the first place.

Recently, considerable attention has been focused to address the prob-
lems of dynamic SGS models. Specifically, Ghosal et al. [7] have proposed
mathematically elegant and rigorous dynamic modeling approaches based on
variational formulations. Alternately, Meneveau et al. [13] developed a La-
grangian dynamic model in which smoothing of the model constant occurs in
the time domain. This idea was recently extended to mixed models by Wu
and Squires [25].

In general, most of these proposed fixes to the shortcomings of dynamic
SGS models have gravitated toward greater and greater complexity and com-
putational overhead. (One of the notable exceptions is the localized dynamic
model of Piomelli and Liu {16], in which the model is approximated to arbi-
trary order). In the opinion of the PI, dynamic SGS modeling will realize its



potential in the simulation of flows of engineering interest if and only if its
complexity and computational overhead are reduced significantly, and the
continued pursuance of either ad hoc or inefficient fixes for dynamic mod-
els is ultimately counterproductive. What is needed is a simplified dynamic
procedure.

The attempt to simplify the dynamic modeling procedure lead to to the
idea of approximating the action of the filter by its Taylor-series expansion
in terms of the filter parameter. The Taylor expansion was then used to
approximate both the SGS stress tensor 7;; and the resolved turbulent stress
tensor £;;. Although, for simplicity, these (one-dimensional) expansions were
initially carried out for time-domain filters, multidimensional Taylor expan-
sions could be carried out (and have been carried out by other researchers;
e.g., Horiuti [8]) for spatial filters as well. This simple approach has lead to
a number of surprising and somewhat controversial revelations, which were
documented in a conference paper presented at the First AFOSR Conference
on DNS/LES, Ruston, LA, August, 1997. The paper is also attached in the
Appendix. We summarize the most important findings below.

RESULTS: First, for LES, the filter, the SGS model, and the numeri-
cal method must be mutually consistent. Although this issue was partially
addressed by Piomelli et al. in 1988 [15], it is not commonly recognized
within the LES community even today. To be specific, present results show
the Smagorinsky eddy-viscosity model to be consistent only with first- or
second-order filters and inconsistent, for example, with spectral filters. Fur-
thermore, there can be no universal Smagorinsky constant; the value depends
on the properties of the filter. More importantly, it appears that, under cer-
tain conditions, the SGS stresses can be directly approzimated (rather than
modeled) by the computed resolved turbulent stresses without appealing to
the Germano identity. The approximation error appears to small when the
filter is of second order and the ratio of grid to test filter widths is unity,
an unconventional practice. Direct approximation of the SGS stresses would
avoid most or all the problems associated with conventional dynamic models.

Initially, these revelations were so surprising that the PI himself ques-
tioned their legitimacy. Gradually, evidence has accumulated to support
present conclusions. Most convincing are the experimental results obtained



by Liu et al. [12] who investigated a turbulent jet by two-dimensional particle
velocimetry. Liu et al. found high correlations between 7;; and £;; when fil-
tering was accomplished consistently with either Gaussian or physical-domain
top-hat filters (both of which are of low order in our terminology). On
the other hand, negligible correlations existed when a sharp cut-off filter
was used in Fourier space (i.e., a spectral filter in our terminology). More-
over, exact SGS stresses correlated relatively poorly with the Smagorinsky
model. Recently, we conducted a priori tests based on highly resolved DNS
results to compare exact SGS stress and resolved turbulent stress tensors.
Extremely high correlations were obtained, for both temporal and spatial
filters, although some phase error was incurred for temporal filters. Because
of insufficient computational resources, these numerical tests considered only
axisymmetric jet flow, and thorough validation must await the simulation of
fully three-dimensional flows.

Results obtained by this PI, and corroborating results of other researchers
to date, suggest that a simple, accurate, and efficient dynamic SGS model for
LES, which would be applicable to aeroacoustics, is within reach. However,
a number of fundamental unresolved issues need to be addressed. These are
discussed in the next section.

2 Objectives of Proposed Future Work

The efforts of the past year have revealed a number of unresolved issues
relative to LES, in general, and temporally filtered LES, in particular. An
overarching consideration is the establishment of criteria that, when followed,
guarantee filter/model /numerical-method consistency in the practice of LES.
A second issue concerns the convergence of Taylor-series expansions of filter
operators in the context of LES. A third issue, intimated by Speziale [22],
concerns the Galilean invariance of SGS models that exploit temporal filters.
And a fourth issue involves bounding the unavoidable phase errors inherent
with causal temporal filters. The following objectives are proposed to address
these issues.

1. Perform a priori tests based on DNS of three-dimensional decaying



isotropic turbulence to verify that the SGS stress tensor 7;; can be
directly approximated to suitable accuracy by the residual stress ten-
sor L;;. Due to the unavailability of sufficient supercomputer time, this
configuration is proposed in lieu of the DNS of a three-dimensional tur-
bulent jet originally envisioned, which is estimated to require in excess
of 400 Cray C90 hours. In contrast, the computation of isotropic tur-
bulence can be accomplished in a very few CPU hours with an existing
code that exploits fully spectral numerical methods.

. If item 1 above is successful, then direct approximation, rather than
modeling, of SGS stresses is virtually confirmed as a viable LES ap-
proach, given the already existing corroborating experimental evidence.
Further mathematical attention should then be devoted to the conver-
gence properties of the Taylor-expansion representations of the SGS
and resolved turbulent stress tensors, to establish practical criteria for
LES that guarantee the accuracy of this approximation. Based on pre-
liminary results, such criteria are likely to involve the order of the filter,
the ratio of the grid and test filter widths r, and the dimensionless filter
cutoff €2..

. The mathematical analysis performed above, which examines filter-
model consistency, should be expanded to include consistency with the
numerical scheme, and a set of criteria for fully self-consistent LES
should be established. These criteria will be codified into a set of
practical guidelines for the practitioners of LES.

. Speziale [22] has given examples of SGS models based on spatial fil-
ters and in common usage that fail the test of Galilean invariance. A
later paper [23] suggests that time-domain filters may predispose SGS
models to violations of Galilean invariance. This issue is poorly un-
derstood within the LES community, and we propose to examine the
issue afresh. Recently, Meneveau et al. [13] have proposed a dynamic
model that exploits time-domain filtering in a Lagrangian frame of ref-
erence to preserve Galilean invariance. However, it is not yet clear if
the Lagrangian frame is a necessity.

5. Investigate the seriousness of the inherent phase-lag errors associated

with causal temporal filters and attempt to establish practical bounds
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for such errors.

. Based on resolution of the items above, recommend and/or propose
a SGS model applicable to aeroacoustics and conduct a validation-
of-concept test for axisymmetric-jet flow. The recommendation will
include an assessment of the practicality of time-domain filtering for
LES.
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ABSTRACT

Au approach to large-eddy simulation (LES) is developed
whose subgrid-scale model incorporates filtering in the time
domain. in coutrast to conventional approaches. which cx-
ploit spatial filtering. The method is demonstrated in the
simulation of a heated. compressible. axisymmetric jet. and
results are compared with those obtained from fully resolved
direct mumerical simulation. The present approach was. in
fact. motivated by the jet-flow problem and the desire to ma-
nipulate the flow by localized (poiut) sources for the purposes
of noise suppression. Time-domain filtering appears to be
more consistent with the modeling of point sources: more-
over. time-domain filtering may resolve some fundamental in-
consistencies associated with conventional space-filtered LES
approaches.

1 INTRODUCTION

By definition. direct numerical simulation (DNS) is the nu-
merical solution of the Navier-Stokes equations without re-
course to cmpirical models. In concept, the fluid motions are
resolved down to the Kolmogorov length scale, at which ed-
dies succumb to viscous dissipation. Counsequently, for high
Reyuolds number flow. the computational requirements of
fully resolved DNS are staggering.

In contrast. in large-eddy simulation (LES). the large scales
of motion are resolved in space and time on a suitable compu-
tational grid: however. the cffects of the subgrid-scale motions
on the evolution of the large scales are modeled. Relative to
DNS. LES is conducted on relatively coarse grids at reason-
able computational expense. In practice, LES involves filter-
ing the Navier-Stokes equations in space or time or both. The
filtered cquations of motion contain subgrid-scale (residual)
stress termns whose effects must be modeled.

Both DNS and LES can be classified fundamentally as tem-
porally or spatially evolving. The distinction between tem-

*Research conducted under NASA Grant NAS1-1802, monitored by
Dr. Kristine . Meadows, NASA Langley Research Center, Hampton,
VA 23681-0001

poral and spatial approaches is muddied by most applica-
tions of LES. In particular. nearly all current LES approaches.
whether temporal or spatial. exploit spatial filtering. In their
review paper, Moin and Jimeuez (1993) state: “Historically.
temporal filtering has not been used.” one presues for rea-
sons of computational efficicncy. However. because the roles
of space and time are fundamentally interchanged in tempo-
ral vs. spatial simulations. we suggest that spatial filtering
is more appropriate for temporal LES. and conversely. tem-
poral filtering is more appropriate for spatial LES. Indeed.
time-domain filtering may remove some of the conceptual and
practical inconsistencies that have been obscrved by practi-
tioners of LES. a few of which are discussed briefly below.

First. as intimated by Germano (1992). LES can be viewed
as lying somewhere near the middle of a spectrum of numer-
ical solution techniques with DNS at one end and Reynolds-
averaged Navier-Stokes (RANS) at the othier end. In our opin-
ion. this point of view is most sclf-consistent if time-domain
filtering is exploited in LES as it is in RANS. Second. Moin
and Jimenez (1993) observe that the operations of filtering
and differentiation do not commute on a non-uniform mesh.
Consequently. most subgrid-scale models inadvertently im-
pose different levels of dissipation in different regions of the
computational domain. a problem made worse on the highly
stretched grids associated with complicated geometries. This
problem should be circumvented by temporal filtering in con-
junction with uniform time increments. Third. again accord-
ing to Moin and Jimenecz (1993): “In LES. it is highly de-
sirable for the filter width to be significantly larger than the
computational mesh to separate the numerical and model-
ing errors. Practical cousiderations. however. usually require
the filter width and mesh to be of the same order. In this
case. there does not appear to be a necessity for higher than
second order mumerical methods for LES.” In contrast. for
the present temporally filtered approach. the filter width is
typically an order of magnitude larger than the time step.
Fourth. it may be desirable in spatial DNS or LES of certain
physical problems (e.g.. jet flow) to allow for time-dependent
localized (point) sources as a means of manipulating the flow
for the purposes of control. For example. such sources could
be used to introduce local disturbances to enhance or inhibit
mixing. Dakhoul and Bedford (1986) suggest that spatial fil-
tering is fundamentally inconsistent with the introduction of
point sources. whereas temporal filtering of a point source is



well defined.

Whereas Dakhoul and Bedford (1986) and Aldama (1990)
propose and develop space-time filters for LES. the author is
unaware of any purely time-filtered approach. In the next few
sections. we develop and demonstrate a spatial LES concept
hased on filtering in the time domain. and we apply the ap-
proach to the investigation of large colierent structures (CS)
m a heated subsonic axisymmetric jet. For several reasons.
the jet-flow problewm is well suited to the particular LES ap-
proach. First. free shear layers. jets. and wakes. whose mean
streamwise velocity profiles are inflectional. are inviscidly un-
stable to disturbances of a broad spectrum of frequencies
(wavelengths). As a consequence. DNS of three-dimensional
(3D) unbounded shear flows is presently impractical because
of the extremely fine grid resolution required. and sowme sort
of subgrid-scale dissipation is virtually a necessity. Second.
tlic problem is of immediate practical interest to the field of
computational acroacoustics (CAA). Specifically. it is gener-
ally belicved that. for supersonic jets. most of the noise origi-
nates from the CS rather than from the small-scale turbulence
(Seiner. 1984. and Tani. 1995). For subsouic jets. the origin
of noise is less certain. In his recent review paper. Tam (1995)
expresses the view that subsonic jet noise originates primar-
ily from fine-scale turbulence. Our results (preliminary at the
present time) would suggest otherwise. Thus. spatial LES
may provide a tool by which to investigate the physics of
noise production and suppression in jets. Last. because no
walls are present. we avold for the time being the difficulties
expertenced by many subgrid-scale models in the vicinity of
solid boundaries.

In the next section. time-dowain filtering is discussed in
general. and a prototype causal digital filter is developed. The
governing equations for DNS are discussed in Section 3. and
the equations are modified for LES based on adaptation of the
so-called SEZHu (says who™) model of Speziale and cowork-
ers (1988). The present model differs from the SEZHu model
in that it exploits temporal rather than spatial filtering. The
axisymmetric-jet test case is defined in Section 4. The nu-
merical approach to the solution of the governing equations.
adapted from Pructt et al. (1995). is addressed briefly in Sec-
tion 5. Results of LES for the axisymmetric-jet problem are
presented in Section 6 and are compared with well-resolved
DNS results. Finally, some brief conclusions are offered in
Scction 7.

2 CAUSAL FILTERING

Time-domain filters fall into either of two categories: causal
or acausal. For application to LES. only causal filtering is re-
alizable. By definition. causal temporal filters exploit present
and past information only. the future being inaccessible. Con-
sequently. in this section. we consider prototypical continuous
and discrete causal filters. A coutinuous filter is presented for
conceptnal purposes: an analogous discrete filter is exploited
in practice.

A CONTINUOUS CAUSAL FILTER: If s(¢) represeuts a
smootl continuous signal in time t. then a contimous low-
pass causal filter can be constructed simply by integrating
the signal over the interval A. the temporal window width. as

follows:
1/t
5(t.A)= — /
A Jiia

(1)

s(T)dr

The input to Eq. 1 is the raw signal s(t). and the output is
the continuous filtered signal. denoted by S(¢. A). From ele-
wentary calculus. the following property of the filter defined
by Eq. 1 is readily derived:

§(t.0) = iigl()?(f. A) = s(t) (2)

In general. 3 # 5 If A represents some moderately large tem-
poral window. then filtering s(¢) via Eq. 1 will tend to remove
oscillations of high frequency relative to A while preserving
low-frequency oscillations. which defines a “low-pass™ time-
domain filter,

LINEAR DIGITAL CAUSAL FILTERS; Let us digitize
the continuous signal s(¢) such that s, = s(t;). where t; = (At
and At is the (constant) time interval between samples. Typ-
ically. for applicatious to LES. A should be an order of mag-
nitude larger than At. The approximation of Eq. 1 by a lincar
quadrature rule results iu its discrete analog

7

5, = E PiSi—y
Jj=0

where the filter cocflicients p; are determined to give the fil-
ter certain desirable properties (e.g.. low-pass characteristies.
stability. and high-order accuracy at low frequencies). Follow-
ing Press ct al. (1986), we generalize the linear digital filter
given in Eq. 3 to allow the use of previously filtered data.
Specifically. suppose

m n
8 = E PjSi-j T E YrSi-k
k=1

§=0

(3)

(4)

The filter of Eq. 4 is "nourccursive™ if ¢, = 0 for all k and
srecursive” if. for at least one A. ¢ # 0. in which case the
current value of the filtered quantity is a linear combination
of previous unfiltered and filtered values.

FREQUENCY RESPONSE: It is instructive to cxamine
the frequency respouse of the filter associated with Eq. 4.
From Press et al. (1986). the transfer function. which quau-
tifics the frequency response. is given by

Timopse”

= n —_ N
1 - Zk:l qre Q2

where ¢« = V=1. @ = w*At* is the dimensionless frequency.
w* = 27 f* is the dimensional circular frequency. and f* is the
dimensional physical frequency. (Throughout this work. we
denote dimensional quantities by asterisks.) In general. the
frequency respouse of a recursive filter is related to a ratio-
nal polynomial function in the complex variable 1/¢. where
¢ = Y. Thus. recursive filters are to nonrecursive filters what
compact-difference operators are to standard finite-difference
operators. The rational polynomial form of the transfer func-
tion allows considerable latitude in shaping the frequency re-
sponse. Fig. 7 compares the modulus of the transfer function
of a prototypical low-pass digital recursive filter with that of
an idealized “spectral cutoff” filter. for a nominal cutoft fre-
quency €. Note that. for the spectral cutoff filter. 5 = 5.
which. as we have mentioned previously. is not true in gen-
eral. The transfer function of the digital filter can be made
to more closely approximate the spectral ideal at the expense

H(Q)



of including more and more history (i.e.. by using larger and
larger values of m and n.)

For the purposes of time-filtered LES. the design con-
straints for the discrete filter are: 1) stability for all ¢;: 2)
H(0) = 1: 3) high-order accuracy: 4) |H(2)] = 0 for Q > Q.:
and 5) as little storage required as possible. For reasons
to be addressed fully in a subsequent paper. oue is lead to
the fortunate if surprising conclusion that second-order fil-
ters are optimal for the present application to LES. First.
second-order causal filters require relatively little storage for
history. Second. to avoid mixing the truncation errors of the
filter and numerical method. one should invoke a filter with
no higher order than that of the time-advancement scheme.
Thus. a secoud-order filter is compatible with the present
third-order time advancement scheme (see Section 5). Third.
and a subtle point. it can be shown that second-order filtering
is cousistent with the underlying subgrid-scale model (Pruett.
1996h). Cousequently. for our purposes. we have followed the
design procedures outlined in the digital signal filtering text
by Strum and Kirk (1988). Formally. our prototype filter is a
sccond-order. impulsc-invariant. digital Butterworth low-pass
filter. for which me = n = 2. and pg = 0. Technically. But-
terworth filters are “all-pole™ filters. whose trausfer functions
are maximally flat in the vieinity of the origin. Unfortunately.
Liowever. the transfer functions of Butterworth filters do not
vanish identically for large values of Q. In practice. this is
not a problem as will be shown subsequently. The nominal
cutoff frequency for our prototype filter is 2, = 1.0, for which
|H(Q)|? = 0.5.

A suitable generalization from the prototype filter to a
tunable-cutoff low-pass filter is made by incorporating a pa-
rameter B,.. defined as the ratio of the actual and prototypical
cutoff frequencies. namely

Q. At

R(: = _: = (0)
Q! A

Note that R, — 0 for the discrete filter is analogous to A — x
for the continuous filter of Eq. 1. Couversely. as B, — x.
A — 0. in which case 5(f. A) — s(¢) by the property of Eq. 2.
Fig. 7 shows the frequency respouse of the present filter for
R. = .125. a value typical for the current time-filtered LES
approach. Note that high-frequency oscillations are virtually
climinated by the present filter. as desired.

3 GOVERNING EQUATIONS

We first specify the governing equations for DNS and then
present the governing system as modified for LES.

DNS: As a basis ou which to evaluate various LES solutions.
we require a well-resolved DNS solution for the axisymmetric-
jet problem. For a compressible fluid. it is appropriate to
define a fluid state vector [p.p. T.w. v. w)T comprised of the
density p. pressure p. temperature T and velocity components
w. v. and w. The governing equations for the axisyminetric-
jet problem are adapted from those presented in Pruett et al.
(1995) for a hody-fitted coordinate system & = [;r:.(). z]T on
an axisymmetric body. where z as the arc length along the
body. 8 is the azimuthal angle. z is the coordinate normal to
the body. » = R+ zcos ¢ is the radial coordinate. R(x) is the
body radius. and ¢(x) is the angle of the surface tangent to
the body. For the jet-flow application. R = ¢ = 0. in which

case the coordinate system degenerates to z = r with «© as the
axial coordinate. whereby u and w become the axial and ra-
dial velocities. respectively. Because R = 0. the equations are
geometrically singular along the jet axis. For the continuity
cquation. the singularity is removed by applying L'Hopital's
rule along the axis (z = 0). The singularity is not problematic
for the momentum and cuergy equations because axial bound-
ary conditions replace the governing equations along the axis.
Specifically. considerations of symmetry require that the az-
imuthal velocity (v) vanish everywhere and that

(9_T_0u

EP a:w:ﬂ (z=0) (
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LES AND SUBGRID-SCALE MODEL: If the compress-
ible Navier-Stokes equations (CNSE) are filtered in the time
domain according to Eq. 1. the resulting equation system is
formally identical to that of Eqs. (15). (16). and (34) of Er-
lebacher et al. (1992). where overbars and tildes distinguish
conventionally filtered and Favre-filtered quantitics. respec-
tively. In general. the use of Favre-filtered (density-weighted)
variables reduces the complexity of the filtered CNSE. Specif-
ically. for example. the Favre-filtered axial velocity is defined
as

= (8)
Other Favre-filtered quantities are defined analogously. For
the filtered equations. the fluid state vector is comprised
of a mixture of conventionally and Favre-filtered quantities.
namely [p.75.T.@.o.@]T. The filtered governing equations
contain residual stresses not present in the original equations.
which are decomposed into Leonard-stress. cross-stress, and
Reynolds-stress terms denoted by L. C. and R. respectively.
following the notation of Erlcbacher et al. (1992). Of these.
C and R must be modeled: L can be computed.

Several candidate subgrid-scale models are available: how-
ever. for our present purpose. we adapt the SEZHu model
(Speziale et. al. 1988) as adapted by Erlebacher et al. (1992).
Several considerations favor this selection. First. to demon-
strate the time-filtered approach. the filtering process must
participate in the model. rather than simply serving as a con-
ceptual framework as it does in some models (e.g.. Smagoriu-
sky). Second. although present results suggest that a dy-
namic model (Germano et al.. 1991) is desirable. we wanted
initially to avoid some of the pitfalls of dynamic subgrid-scale
models. particularly. the need to smooth the computed model
constants. Finally. the SEZHu model is extremely well docu-
mented in Erlebacher et al. (1992).

Formally. our implementation of the SEZHu model is vir-
tually identical to that of Erlebacher et al. (1992). except.
of course. that the filter is temporal. In tensor notation. the
dimecnsionless filtered equations. with the modeled terms de-
noted by underlines. are

M5 =75T (9)
dp | O0(pin)
LT Ll L 10
It Qg 0 (10)
% + O—OJ—[ [ﬁfbk'ﬂt + plini = I:I,kl:l,()] =
ap 0 i
_9 9 1, . 1
St (e pS] ()
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(7 JpD + dy. (ko + tiz) dury, + Re ® (12)
where i
St
= 13
O.I?k ( )
is the resolved-scale dilatation.
. N 1_.
Spt = 2(épg — gDOM) (14)

1 15 the kronecker delta. and ¢y 1s the resolved-scale strain-
rate teusor. namely
. 1 [Oar Oy
=z |5—+ 7 (15)
2|0 Ouxp

For brevity. the physical viscosity and thermal conductivity
are denoted. respectively. as

l /L
by = — I hRp= ———— 16
0= e * = M?Relr (16)
where Re. Pr. and M are the dimensionless Reynolds.
Prandtl. and Mach numbers. respectively. Similarly. the eddy
viscosity and the eddy thermal conductivity are given by

T

— C’,.lz—H]/z _
T p TM2Prr

(17)

wlere 1 is a length scale to be defined shortly, Prp is the
turbulent Prandtl number. 4 is the ratio of specific hicats.
and

II= SMSM (18)

Whereas the underlined terms on the right-hand sides of the
governing equations model R. the underlined terms on the
left-hand sides. which are properly referred to as the resolved
stresses. are computible by filtering the resolved fields. For
tlic present subgrid-scale model. the resolved stresses model

the siun L + C.

In the original SEZHu subgrid-scale model (Speziale ot al..
1988). the Reynolds stresses were split into deviatoric and
isotropic parts. which were modeled separately. In the more
detailed paper of Erlebacher et al.  (1992). on which the
present approach is based. the isotropic part is disregarded
on the rationale that its contribution should be small for tur-
bulent Mach nunbers A, < 0.6 (a coustraint satisfied by most
compressible flows). Several other subtleties of the implemen-
tation of the model are not inumediately apparent upon the
study of Erlebacher ct al. (1992). First. the viscous-stress
terms of the filtered momentum equations. and the dissipa-
tion function ® and thermal-stress ters of the filtered en-
crgy equation. formally involve couventioually filtered rather
than Favre-filtered quantitics. Because these quantities are
unavailable. however. they are approximated by their Favre-
filtered equivalents. Sccond. terms that arise from subgrid-
scale fluctuations of p, and s, are neglected. Third. the re-
solved stresses are computed using p rather than p. the latter
of which is unavailable. These approximations should be con-
sidered as additional modeling errors.

MODEL CONSTANTS: Equation 17 requires values for
three coustants. Following Erlebacher et al. (1992). we usce
Prp =0.5 and C, = 0.012. It remains to determine [ which.
for the original SEZHu model. is a characteristic length scale
related to spatial grid resolution. Specifically. Erlebacher et
al. (1992) show that | = cAr is optimal (in the sense of pre-
serving the Galilean invariance of certain terms of the model)
for ¢ = 2. where A is the actual computational grid spacing,.

Here. we must determine I based on the choice of the tempo-
ral scale A (or equivalently. R.). for which purposes we appeal
to results from the area of hydrodynamic stability. From lin-
ear stability theory. we know that jets. wakes. and free shear
layers are dispersive: i.e.. waves of different frequencies prop-
agate at different phase velocities. However. disturbances of
moderate to high frequencies propagate at a velocity approx-
imately that of Ujy. the average of the jet and ambient ve-
locities. Accordingly. we define Az* as the characteristic size
of an eddy associated with a disturbance of cutoff frequency
frothat is

_ Uy _ 21U A8

Ar* = f_(* = R(:

(19)

Finally. we note that the CNSE are recovered from the
governing equations in the limit as A — 0.

4 TEST CASE

The numerical test case was chosen to approximately replicate
an acoustics experiment that is being conducted at NASA
Langley Rescarch Center. Specifically. we investigate a heated
subsounic (M = 0.8) jet exhausting into a nearly quiescent at-
mosphere. The jet temperature 7). on which the Mach nun-
ber is based. is 600 F {1059.6 R). and the ambient tempera-
ture is 70 F (529.6 R). The nominal jet radius is 127 = 0.5 in.
(0.0417 ft.). The ambient pressure in the physical experiment
is approximately one atmosphere (2160 psf.). However. this
results in too high a Reynolds number for a DNS computa-
tion of reasonable expense: consequently. the computational
experiment assumes an ambicnt pressure 10 percent that of
the physical experiment: that is. 216 psf. which results in
Re = 10153 based on the jet conditions and the nominal jet
radius. In the physical experiment. the ambient air was quies-
cent. However. computational experiments with unbounded
shear layers typically encounter nnmerical difficulties (as did
the present work) whenever the ambient stream is perfectly
quiescent (Tannehill et al.. 1984). Consequently. it is cus-
tomary for the jet to exhaust into a coflowing stream with a
velocity of a few percent of the jet velocity. For the present
problem. we use an ambient to jet velocity (US) ratio of 10
percent. We further assume that the jet is fully expanded. in
which case. in the absence of any disturbances. the pressure
is constant both radially and axially.

In the governing equations and in the results to follow. all
lengths have been normalized by R}, and the velocities. tem-
perature. and density. have been normalized by Ur. T7. and

. . . 2
p;. respectively. Pressure is normalized by pjU .



5 NUMERICAL METHODOLOGY

Spatial DNS and LES can be viewed as three-step processes.
First. an unperturbed time-independent base state is ob-
tained. usually by boundary-layer techniques. Second. the
base state is subjected to either random or temporally peri-
odic perturbations, which are typically imposed at or ncar the
computational inflow boundary. The structure of these dis-
turbauces is commonly obtained from lincar stability theory.
or more recently. from parabolized stability equation (PSE)
methodology. Third. the spatial evolution of the propagating
disturbances is computed by solution of the complete Navier-
Stokes equations. with (LES) or without (DNS) subgrid-scale
models. We discuss in turn cach of these steps in the context
of the current problem.

COMPUTATION OF THE BASE STATE: The applica-
tion of standard fully implicit boundary-layer techiniques to
the axisymmetric jet revealed an unanticipated computational
difficulty: namely. the Jacobian matrix associated with the
iteration procedure was extremely ill-conditioned and the it-
cration did not converge. The computational problem arises
from a reversal of sign in the transverse velocity experienced
by internal boundary-layer flows such as jets, wakes. and free
shear layers. To circumvent this numerical difficulty. a scini-
implicit boundary-layer technique was developed. which is is
documented in Pruett (1996a). The interested reader is re-
ferred to this paper for details. Also to avoid munerical diffi-
culties. the internal shear layer is given finite thickness at the
lip of the jet. The boundary-layer solution can be viewed as
an uustable equilibrium state of the CNSE.

IMPOSITION OF THE DISTURBANCES: The nature of
instabilitics is different for wall-bounded and free-shear flows.
Specifically. wall-bounded flows are subject to viscous insta-
bilities. for whichi typically only a relatively narrow band of
frequencies are unstable. In contrast, free-shear layers. jets.
and wakes are subject to inviscid instabilities over a broad
range of frequencies. Relative to viscous instabilities. inviscid
instabilities experience rapid growth rates. Thus. for simulat-
ing instability waves in wall-bounded flows, it is essential that
the imposed disturbances be consistent with eigenfunctions
obtained frow stability theory: otherwise. one introduces spa-
tial transients that may corrupt the particular instability of
interest. Oun the other hand. oue can be somewhat cavalier in
imposing disturbances in free-shear flows because of the flow's
tendency to rapidly organize arbitrary disturbances into the
dominant cigenmodes. Conscquently. following Mankbadi et
al. (1994). at the inflow boundary. we impose a temporally
periodic fluctuation comprised of a few harmonics of specified
frequencies, but whose structure is not derived from stability
theory. At present. we impose the disturbance only through
the streanwise velocity., Specifically. at the inflow boundary
J= 0

w(t.wg.z) = wpleg. z)+ eu'(t. 2) (20)
Wt.z) = ¢(z)[sin(wyrt) + cos(0.5wyt)] (21)
oz) = expl—(2(z — 1) (22)

where the subscript B denotes the base state. the prime de-
notes a fluctuating quantity. and the subscript f denotes the
fundamental frequency. The function ¢(z) 1s used to shape
the disturbance profile so that the disturbance is largest near
the edge of the jet but essentially vanishes along the jet axis
and at the far-field boundary. Nwmerical experimentation re-
veals the most rapid development of the jet for wy = 7. whick

[@a]

corresponds to a Strouhal number (St = f;R;-/U;) of 0.5.
in keeping with the observations of Mankbadi et al. (1994).
Following the carly computational investigation of free-shear
layers by Riley and Metcalfe (1980). we include an out-of-
phiase subliarmonic component to enhance pairing of adjacent
vortices. At present. we use a forcing amplitude of € = 0.005.
which is ramped up slowly (over a time interval of one pe-
riod of oscillation at the fundamental frequency) to minimize
temporal transients.

DNS AND LES METHODQLOGIES: For both the DNS
and LES. we adapt the high-order numerical scheme of Pruett
et al. (1993). to which the reader is referred for details.
Briefly. this algorithm exploits fully explicit time advance-
ment. high-order compact-difference methods (Lele. 1992)
for aperiodic spatial dimensions. and spectral collocation
methods for periodic spatial dimensions.  Specifically. for
the present axisymmetric-jet application. we use fourth- and
sixth-order compact difference schemes in the axial and ra-
dial dimensions. respectively. The azimuthal dimension. of
course. does not come into play for the axisymmetric case.
The method of Pruett et al. (1995) uses a variable step for
time advancement in the coutext of a three-stage. low-storage
Runge-Kutta (RK3) scheme. However. the present LES appli-
cation. which involves temporal filtering. requires a constant
time step. Consequently. the original Runge-Kutta tempo-
ral integration has been replaced by a fixed-length. multiple-
step. third-order Adams-Bashforth (AB3) technique. An ad-
ditional motivation for replacing the RK3 method was that it
was not immediately clear to the author how temporal filter-
ing would interact with time advancement whenever multiple
stages per time step were involved. the fear being the pos-
sibility of numerical instability. The storage requirement for
thie algorithm with AB3 time advancement is about 150 per-
cent that of the original algorithmm with RK3. In general.
multiple-step methods are not self starting. The AB3 inte-
gration is started initially with a single first-order Euler step
followed by one sccond-order Adams-Bashforth step. Because
the perturbation is ramped slowly to full amplitude. and the
initial state is in (unear) equilibrium. the initial loss of tempo-
ral accuracy is inconsequential.

For both the DNS and the LES. the symmetry conditions
given by Eq. 7 are imposed along the jet axis. At the in-
flow boundary. for the present axisymmetric-jet problem. the
flow is everywlere subsonic. and one characteristic points up-
streant. Cousequently. not all flow variables can be specified.
Currently. we specify v. w. T. and the incoming Riemann in-
variants. At the far-ficld boundary (z zmax ). we adapt
the non-reflecting boundary conditions of Thompson (1987)
as modified by Pruett et al. (1993). At the outflow boundary.
we exploit a buffer-domain approach (Streett and Macaracg.
1989/1990). Near the outflow boundary. a buffer zoue of fi-
nite width is constructed in which both the base state and
the governing equations are modified to ensure that all waves
propagate out of the domain.

Finally. we note that the present LES algorithm is one of
few to incorporate high-order numerical methods. another be-
ing that of El-Hady and coworkers [5].

COMPUTATIQNAL EFFICIENCY: On the same grid. an
LES computation with the present algorithm requires not
quite twice the computational cffort as DNS and approxi-
mately 2.5 times the storage for 3D flows (twice the stor-
age for two-dimensional or axisymmetric flows). Most of the
additional memory is relegated to storage of the time histo-




ries of quantitics assoclated with the time-filtered approach.
Ouce must keep in mind. however. that. by definition. LES
allows computations on coarser grids than DNS. If. for the
present LES algorithm, for example. the grid resolution rela-
tive to DNS could be reduced by a factor of three in cach of
thie three spatial dimensions and time. theu storage require-
ments would be diminished by a factor of approximately tern.
and processor time would diminish by a factor of approxi-
mately 40, Thus. measures of efficicncy in LES must consider
not only nominal storage and operation counts. but also the
potential grid-coarsening factor. which could conceivably be
higher for temporally filtered LES than for conventional ap-
proaches.

6 RESULTS

For the DNS and LES results presented below, the computa-
tional domain was

0<er<20 3 0<z<9 (23)
The length of the domain was sufficient to allow one pairing of
the adjacent vortices shed at the edge of the jet. The final 16
percent of the axial extent of the domain lies in the buffer do-
main: results within the buffer domain should be disregarded
as unphysical. For convenience in presenting results. we de-
fine ¢ p. the time i periods of oscillation at the fundamental
disturbauce frequency.

DNS: The DNS results were obtained on the computational
domain defined above at an extremely fine spatial grid reso-
lution of 1280 x 512 and a temporal resolution of 2048 steps
per (fundamental) disturbance period. To arrive at this res-
olution. computations were made ou successively finer grids
beginning from a coarse grid of 256 x 128. For each spatial res-
olution. an estimate of the temporal resolution necessary for
stability was made based on stability analyses of model advec-
tion and diffusion equations. All computations except for that
on the finest grid eventually “blew up™ due to mumerical insta-
bilities associated with unresolved scales. In contrast. Fig. 7
shows instantaneous contours of constant deusity at tp = 18
for the fully resolved computation. On the finest grid. the
DNS computation required in excess of 20 CPU hours on a
Cray C90. Couscquently. calculations at a higler Reynolds
number would have been impractical given the computational
resources available.

The present fine-grid DNS represents one of the most aceu-
rate and highly refined computations of an unbounded shear
layer of which we are aware. another being that of Colonius et
al. (1995). and Fig. 7 affords considerable detail. It is inter-
esting to note a striking corrclation between the contours of
constant density and those of constant vorticity (not shown
due to space limitations). Both quantitics clearly show the
roll-up of the shear layer at the jet's edge into a vortex street
and the subsequent pairing of adjacent vortices. phenomena
commion to unbounded shear flows. A similar comparison of
vorticity and pressure contours is also most revealing. Not un-
expectedly, the centers of low pressure correspond preciscly
with the centers of the large vortices. As adjacent vortices
merge. the individual pressure lows are replaced by larger
and stronger low pressure regions. High pressure regious lie
between adjacent vortices.

LES: For LES of jet flow. the trick is to find an appro-
priate amount of eddy viscosity. If the LES subgrid-scale

model is insufficiently dissipative. the computation will blow
up. On the other hand. if the model is excessively dissipative.
the instabilities that result in vortex shedding and paitring
are suppressed or diminished. It appears possible. however.
that an intermediate amount of dissipation will preserve the
large-scale features of the flow while preventing numerical in-
stabilities associated with unresolved scales. In particular.
Figs. 7 and 7 present instantancous contours of constant den-
sity and pressure. respectively. obtained from an LES compu-
tation with a spatial grid resolution of 432 x 192. coarser by a
factor of approximately three in each direction than the DNS
computation presented previously. The time is tp = 18. and
the temporal resolution is 1024 time steps per period. Be-
cause fully explicit time-advancement schemes typically yield
over-resolution in time. practicality demands a filter width A
that is approximately. say. an order of magnitude larger than
the time step. Here. we used A/At = 8 (R, = 0.125). At this
cutoff frequency. the maximun eddy viscosity was approxi-
mately eight times the maximum physical viscosity. Whereas
the DNS calculation required 20 CPU hours. the 432 x 192
LES calculation required two CPU hours. (Calculations on
the coarsest grid of 236 x 128. for which the computation
eventually blew up. required ouly a matter of minutes.) Rel-
ative to the DNS results of Fig. 7. the shear-layer roll-up
and pairing cvents of the moderately dissipative LES com-
putation are retarded. but not prevented. Consequently. we
helieve the moderately resolved LES could serve as a compu-
tational platform for the investigation of jet noise. To this
end and following Colonius et al. [3]. we extract the com-
pressible dilatation from the numerical solution: The instan-
tancous dilatation field at £p = 18 of the moderately resolved
LES computation is shown in Fig. 7. It would appear that.
in terms of the dilatation. cach large vortex appears as an
acoustic quadrupole. These results suggest that significant
acoustic radiation is associated with the large-scale vortices,
in contrast to the view expressed by Tam (1995) for subsonic
jets.

For the present work in progress. our primary objective has
heen to demonstrate the feasibility and practicality of time-
filtered spatial LES. As one possible measure of success. we
exawmine the resolved subgrid-scale stresses computed by the
timme-filtered subgrid-scale model. the principal component of
wlhich is presented in Fig. 7. For an LES computation. the
maguitude of the resolved stresses can be viewed as a mea-
sure of ill resolution. or equivalently. as identifying the re-
gions where additional dissipation is needed to prevent numer-
ical instability. For the present time-filtered approach. these
terms are well defined. judging by the apparent smoothness of
thie contours in the figure. In summary. these results suggoest
that a time-filtered dynamic subgrid-scale model could be de-
veloped. We suspect that dynamic modeling (Germano et al..
1991) would improve the present results by limiting the eddy
viscosity only to regious where it is needed. For this reason.
the dynamic approach is judged to be more appropriate for
transitional flows. as was demonstrated for compressible flow.
for example. in the work of El-Hady et al. (1993).

In closing. we comment that computations of 2D or ax-
isymmetric unbounded shear flows are both less and more
difficult than computations of 3D flows. Although the total
computational requirements are lower for simulations in 2D.
the resolution needed for those two dimensions may well he
greater than for the same two dimensions of a 3D simulation.
The reason is that. in 3D. the third dimension provides a path
for relief of Reynolds stresses that cannot be relieved in 2D.
Complete validation of the present time-filtered LES concept



and its application to acroacoustics ultimately will require the
counsideration of fully 3D flows.

7

CONCLUSIONS

Time-domain filtering for the residual-stress models of
LES is a viable concept that should be investigated fur-
ther. Preliminary results suggest that time-domain fil-
tering may have significant advantages relative to con-
ventional space-filtered approaches.

The current bascline LES algorithm is one of a very few
LES algorithius to exploit high-order numerical methods.

The present subgrid-scale model. which involves time-
domain filtering. might be improved for application to
trausitional flows by recasting it in a dynamic-model con-
text (Germano et al.. 1991).

The present approach to LES appears to be applicable
to aeroacoustics. as had been hoped.

A thorough validation of the time-filtered LES approach

and its nsefulness to acroacoustics will require LES of
fully 3D flows.
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Figure 1. Transfer function of prototype second-order
cansal filter compared with spectral-cutoff transfer func-
tiomw.

Figure 2. Contours of constant density obtained from
well-resolved (1280 x 512) DNS calculation at ¢p = 18,
Flow is left to right. Jet centerline is along lower bound-
ary of figure. Contour levels denote variations of 0.82 <
p < 2.15. Buffer domain shown.,
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Figure 3. Contours of constant density obtained at tp =
18 from LES of 432 x 192 grid resolution. Maximum eddy
viscosity is 8 times that of pliysical viscosity. Relative
to DNS. vortex roll-up and pairing events are retarded
but not preveuted. Contour levels denote variations of
0.95 < p < 2.13. Buffer domain shown.

Figure 4. Coutours of coustant pressure obtained from
LES calculation of resolution 432 x 192 at tp = 18. Cou-
tour levels denote variations of 0.87 < p < 1.26. Buffer
domain shown.
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Figure 5. Isolevels of dilatation D obtained at tp = 18
from LES of 432 x 192 grid resolution. Countour levels
denote variations of —0.10 < D < 0.13. Buffer domain
not shown.
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Figure 6. Principal component of resolved stresses ob-
tained at tp = 18 from LES of 432 x 192 grid resolu-
tion. Contour levels denote variations from —4.2 x 107°
to 3.3 x 107°. Buffer domain shown.
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Abstract

We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy
simulations, in general, and for those with dynamic SGS models, in particular. From a review of the
literature, it would appear that many practitioners of LES consider the link between the filter and the
model more or less as a formality of little practical effect. In contrast, we will show that the filter and
the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first-
or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the
Germano identity is shown to be both problematic and unnecessary for the development of dynamic
SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the
computible resolved turbulent stresses, properly scaled, closely approzimate the SGS stresses.

1 Introduction

By definition, direct numerical simulation (DNS) is the numerical solution of the Navier-Stokes equations
without recourse to empirical models. In concept, the fluid motions are resolved down to the Kolmogorov
length scale, at which eddies succumb to viscous dissipation. In general, the computational workload for
fully-resolved DNS scales as Re?, where Re is the Reynolds number. Consequently, for the complex, high-
Reynolds-number flows of engineering interest, the computational requirements DNS are staggering and
prohibitive.

In contrast, in large-eddy simulation (LES), the larger scales of motion are resolved in space and time
on a moderately coarse grid; however, the effect of the subgrid-scale (SGS) motions on the evolution of the
larger scales is modeled. In practice, the decomposition into resolved and unresolved scales is accomplished
by a spatial (temporal) filtering operation with an associated cutoff length (time) scale A.

First introduced in the 1960’s, LES has experienced a resurgence of interest since 1991, when dynamic
SGS modeling was proposed by Germano and coworkersé. The advantages and difficulties associated with
dynamic SGS models are now well established, and space does not permit elaboration. However, it is fair to
say that the promise of dynamic modeling has not been fully realized largely because many of the proposed
fixes to the shortcomings of dynamic models involve considerable additional complexity and computational
overhead.

Here, our purpose is to examine the connection between the choice of the filter and the subgrid-scale
(SGS) model, with an eye toward the simplification of dynamic SGS models.

From a review of the literature, it would appear that many practitioners of LES consider the link between
the filter and the model more or less as a formality of little practical effect. Surprisingly little is written
on this topic, Piomelli et al.? and Aldamal excepted. Specifically, regarding the conventional practice of
LES, Piomelli et al.9 observed: “In the past, however, the choices of model and filter have been regarded as
completely independent.” Recognizing that the behavior of the SGS model strongly depends on the choice of

*Research conducted under NASA Grant NAG-1-1802, monitored by Dr. Kristine R. Meadows, NASA Langley Research
Center, Hampton, VA 23681-0001



the filter, they attempted to address the issue of filter-model consistency on the basis of physical arguments
and a priori tests, which involve comparisons of the exact and modeled SGS stresses computed by fully
resolved DNS. Here, we approach filter-model consistency from a mathematical point of view. From the
present analysis come a number of revelations, some of which run counter to conventional wisdom.

In the next section, we discuss aspects of linear filters in general, focusing on their order properties. In
the third section, starting from the Germano identity and in the context of a dynamic SGS model, we derive
a simple but accurate approximation for the residual stresses. In the fourth section, we derive a similar result
without first appealing to the Germano identity. In the fifth section, we briefly discuss the implications of
these results. Conclusions are summarized in the final section.

2 Linear Filter Operators

Like differential operators, filter operators may be either continuous or discrete. Here, for brevity, we
consider only continuous filters (which are also referred to as “analog”); however, the conclusions drawn for
continous filters generalize immediately to linear discrete filters. Moreover, also for brevity, we consider only
time-domain filters. However, the implications should apply to spatial filters as well.

Let f(¢,T) be a continous function of time and space, and let A, the “window” width, denote a charac-
teristic time scale associated with the temporal linear filter F[f(t), A]. As a specific example, consider the
continuous, causal filter given by the integral equation

Flfta.8) =5 [ frar (1)

From first principles of the Calculus, it is readily shown that lima_0 F[f(t), A] = f(t). On the other hand,
for a finite window A, the time-domain filter above tends to remove oscillations of high frequency relative
to A while preserving low-frequency oscillations, which defines a “low-pass” filter. For applications to LES,
we consider only low-pass filters.

The effect of a filter is most apparent in Fourier space. To each filter is associated a transfer function
H(Q) that quantifies the amplitude and phase effects of the filter on oscillations of dimensionless frequency
1 = wA. For example, the transfer function associated with Eq. 1, shown in Fig. 1, is readily obtained
by directly integrating F(e*¢, A) for arbitrary w. Figure 1 reveals some undesirable traits of the filter: the
amplitude decay is not monotonic, the amplitude envelope decays slowly (like 1/}, and, consequently, the
cutoff is gradual.
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Again by analogy to difference operators, to each filter operator is associated an order-property that
quantifies the behavior of the filter as Q tends toward zero. The order property is revealed by the leading
non-zero term in A in the Taylor-series expansion of the filter. For example, for a function of time only, the
Taylor-series expansion with respect to A of the filter of Eq. 1 is

2

FU(),A] = /0 = 370 + (1) + 0(a%) 2



A class of causal time-domain filters more suitable for LES than Eq. 1 is that of the so-called Butterworth
filters. Figure 2 compares the moduli of the transfer functions of prototypical Butterworth analog (BA) low-
pass filters of orders 1, 2, and 4, each of which has a nominal cutoff frequency Q. = 1. The properties and
design constraints of the first- and second-order low-pass BA prototypes can be found in Strum and Kirk12.
The fourth-order BA prototype was developed by the author using Mathematica. The prototype BA filters
shown in Fig. 2 are readily discretized and adapted to an arbitrary cutoff 2.
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The order of a filter is closely related to the flatness of its transfer function at = 0. In general, for a
filter of order n, H® ()= = 0 for all 0 < k < n, but H"*1(0) # 0. In particular, Butterworth filters
manifest several desirable properties for applications to LES: 1) stability, i.e., |[H(§}})| < 1; 2) their transfer
functions decay monotonically with increasing €2, and 3) their transfer functions are maximally flat near
! = 0. For comparison, Fig. 2 also presents the idealized transfer function of an analog spectral filter, which
can be considered of infinite order.

For brevity in future discussions, let an overbar denote filtered quantities; that is, f = F[f (t), A} for
some fixed A. From Figs. 1 and 2 it can be inferred that, except for the spectral filter, f # f. It is also
clear that the spectral ideal is more closely approximated as the order n increases. As a result, high-order
temporal filters are problematic for practical applications to LES, because they necessitate the storage of
relatively more time history. This may be a principal reason that, to date, time-domain filtering has been
avoided by practitioners of LES, as hinted by Moin and Jimenez8 in their survey paper.

One might naively assume (as did the author originally) that higher order is better. One of the more
significant results of this work is to show that, in the context of LES, lower order filters are desirable for
several reasons. This is particularly good news if one wants to consider the application of time-domain filters
to LES, for example, as in Pruett!0,

To develop the results of the next sections, we make use of the Taylor series expansions of filter operators.
For example, recall Eq. 1 above. More generally, assuming sufficient differentiability of «, any time-domain
filter can be expanded as

a(t, £, A) = u+ c; Au' + e A% + 3 A3 + . (3)

where primes denote temporal partial derivatives. For spatially multi-dimensional filter operators, similar
expansions could be derived; however, their Taylor expansions would, of course, be multi-dimensional. In
general, a filter is of order n in A provided ¢, # 0, but ¢, = 0 for 1 < k < n. Thus, Eq. 1, for example,
defines a first-order filter. Similarly, one can show that both Gaussian and tophat physical-space filters are
first order.

3 Conventional Dynamic SGS Modeling

In tensor notation, the linearly filtered Navier-Stokes equations are given by

ou,
8$,‘




ot a . _ _ 19p 2- i
a1 +5;j-(u1u]) = -- + vVe; + ' (5)

where repeated indices imply summation, and 7;; is the SGS (residual) stress tensor defined as

Tij Eﬁiﬂj — U Uy (6)

Equation 6 is exact; inexactness enters only when the 7;; are modeled. We focus now on dynamic modeling
of the residual stresses.

Dynamic models® of the SGS stress tensor are rooted in the Germano® identity and typically exploit

successive (spatial) “grid” and “test” filtering operations with associated length scales ! and [, respectively.
To transition to temporal filtering, we explicitly assume that % = % = r, where » > 0 is a parameter.

Typically, » = 2. The Germano identity relates the resolved turbulent stress tensor £;; and the “subgrid”
and “subtest” stress tensors, 7;; and T;, respectively. Specifically,

Lij =Ty = 7 (7
where
E,‘j = ﬂiﬁj - WU (8)
and
Ti; = uit; — Wty (9)

The Germano identity is exact; moreover, its left-hand side is computible. It remains to model each of the
terms on the right-hand side, which is frequently accomplished via the Smagorinsky eddy-viscosity model,
namely

Tij — %&'ﬂkk ~ 2C12[§{§ij 1)

Here, &;; is the Kronecker delta, 5;; is the resolved-scale strain-rate tensor, |S| = 1/25;;S;, [ is the char-
acteristic length scale associated with the grid filter, and C is the model constant of primary interest. In
general, a criticism of eddy-viscosity models is their implicit assumption that the principal axes of the resid-
ual stress and the resolved-scale strain-rate tensors are aligned (Moin and Jimenez®). Indeed, in a recent
experiment that examined turbulent three-dimensional boundary-layer flow, Compton and Eaton found
considerable misalignment between residual-stress and strain-rate tensors in the near-wall region. They
concluded that eddy-viscosity models are inappropriate for such flows. Moin and Jimenez® propose a more
generally applicable model, for which each stress-tensor component has its own coeflicient, namely

_ _ — 1
7i; = (CixSky + CirSri)l*[S| = §(Cz‘kl3kj + CikOri) (11)

where _

3i; = 21%5|S,, (12)
We will refer to Eq. 11 as the “generalized residual-stress model.” The generalized residual-stress tensor is
symmetric; hence, six independent coefficients must be determined. In principle, these coefficients can be

uniquely determined by the dynamic procedure of Germano et al.6, as adapted to the generalized model by
Moin and Jimenez8. We briefly describe the procedure below.

It is now assumed that the subtest stresses can also be modeled by Eq. 11 with the same coefficients C;j,
in which case

Tij ~ (Cikgkj + Cjkghz)plgl (13)
(In the author’s opinion, this assumption represents a considerable leap of faith, given that 7,; and T;; are
not formal twins.) From Eqgs. 7, 11, and 13, a set of integral equations for the coefficients C;; follows, namely

2L = (Cuvany + Chirag; ~ C;Ekj - C'j/k,\Bki) (14)

where s
ai; = 21%|S|S;; (15)



We now exploit the Taylor-series expansion of the test filter to obtain a simple approximation to Eq. 14.
For specificity, we use the filter of Eq. 1 and its expansion Eq. 2. Omitting details for brevity, we obtain the

approximation

2[:1']' ~ (7‘2 - 1) (Cikﬁkj + C]‘kﬂk,‘) +2L.0.E. + 0(121&2) = 2(‘7’2 - 1)Ti]‘ +2L.0O.F. + 0(1252) (16)

where the leading-order error (L.O.E.) term in A is given by

_ _é 2 ~ OBk 08k (OCukBri | OC5kBki
LO.E. = 1 [T (C,k 5t + C)k ot ) ( ot + ot (17)
We conclude that r LOE
TN - 2 L O(PA?) (18)

r2 —1 rz—1

We now assume that the highest order term is insignificant. It remains to show that the second term
(L.O.E.) on the right-hand side of Eq. 18 is of lesser significance (on average) than the first. We assume
here that all quantities have been previously scaled by appropriate reference values, so that we are dealing
only with dimensionless quantities. It particular, lengths have been scaled by the wavelength of the largest
eddies, and time has been scaled by the large-eddy turnover time. From Eqgs. 8 and 2, to leading order in

A, the resolved turbulent stresses are given by

A? /9w, (01, .
=3 () (%) +od (19)

In scaled variables, on the basis of reasonable assumptions and approximations (omitted for brevity), it can be
argued that the L.O.E. above is relatively unimportant whenever the dimensionless frequency 1 = Aw <<'1
(provided the filter is of first- or second-order, as will be shown). Specifically, for example, if Q. =~ 0.1, an
entirely reasonable value in practice, then, Eq. 18 is approximated simply as

r? —1

(20)

Tij ~

Remarkably, Liu et al.” arrive at a result similar to Eq. 20 from ezperimental measurements in a turbulent
jet. Specifically, they obtain several components of the SGS stress tensor of a jet by two-dimensional
particle velocimetry. Whereas eddy-viscosity closures correlate poorly with the measured residual stresses,
the resolved stresses correlate well. They propose the simple stress-similarity model

Tij = cLLij (21)

where the coefficient ¢, is empirically derived. For r = 2, they obtain ¢f = 0.45 £+ 0.15 for a “clipped” (no
backscatter) SGS model by matching the exact and modeled SGS dissipation rates. For a model without
clipping the optimal coefficient is approximately unity (Meneveau, personal communication). Either way,
their result corroborates our observation that the residual and resolved turbulent stresses should be highly
correlated.

The implications of our present results for the practice of dynamic SGS modeling are both troubling
and hopeful. Because the effects of numerator and denominator of the modeled residual stresses essentially
“cancel” in the present analysis, dynamic SGS models, viewed in the present light, are ultimately independent
of the form of their underlying model (whether Smagorinsky or otherwise)! This unanticipated result suggests
that the whole concept of dynamic modeling needs re-examination.

In hindsight, it appears to the author that the basis of dynamic models in the Germano identity is
fundamentally flawed. The Germano “identity” is actually tautological, having been derived simply by
regrouping and renaming certain quantities from the starting point 7;; = #i;. This is not to say that the idea
of dynamic modeling is flawed, only that there is no necessity for the Germano identity, as will be shown.
Moreover, not only is the Germano identity unnecessary, it results in the practical difficulty associated with
the vanishing denominator of the model coefficient.



4 Alternate Approach to Dynamic Modeling

In light of the discussion above, it is natural to ask: Can the residual stresses be modeled by the resolved
turbulent stresses without appealing to the Germano identity?

By applying the general Taylor expansion Eq. 3 to Eq. 6, we obtain
Tij = (€8 — 2e2)ufufA? + (cyep — 3es) (ujuf + ujuf)A% + H.O.T. (22)

where H.O.T. denotes higher order terms. Because the SGS-stress tensor 7;; arises solely from the quadratic
nonlinearity of the NS equations, it is quadratic at leading order in A, provided that the filter is of either
first- or second-order. On the other hand, if the filter is of order n > 2, then 7y; is of leading order n. Because
the Smagorinsky model is of second-order in { (or equivalently, in A), it can be concluded immediately from
Eqgs. 10 and 22 that the model is appropriate only in the context of first- or second-order filters. Moreover,
the use of Smagorinsky-based SGS models is totally inconsistent with spectral filters (which as we have said
previously, can be considered of infinite order). This conclusion should hold regardless of whether filtering
is accomplished in space or in the time domain. Our results are supported by experimental evidence. Liu
et al.” find high correlations between 7;; and £;; when filtering is accomplished consistently with either
Gaussian or physical-domain top-hat filters (both of which are first-order in our terminology). On the other
hand, negligible correlations exist when a sharp cut-off filter is used in Fourier space (i.e., a spectral filter in
our terminology).

Of fundamental importance in dynamic models is the resolved turbulent stress tensor £;; (Eq. 8). As
mentioned previously, the resolved turbulent stresses can be directly computed by filtering the resolved
velocity fields @,. Let us now expand £;; analogously to Eq. 22 above. To this end, we presume that the
grid and test filters differ only in their respective filter widths. More precisely, if the grid filter is defined by
Eq. 3, then the test filter is defined by

W(t, ) = F [u(t, ), A] = ut e (FA) + ea(rA)2u + c3(rA) ! + .. (23)

with the same coefficients ¢; as in Eq. 3. From Egs. 3, 8, and 23, and with the aid of Mathematica, it follows
that
Lij = (¢ — 2co)ufu] (rd)? + (c3r? — 2c1097? + creor® = 3esr®) (ulnff + u;ug’)Aa' + H.O.T. (24)

From comparisons of Eq. 22 and Eq. 24, we conclude that the SGS stresses can be approximated to leading
order by the resolved stresses scaled by r?; that is,

Ly
Tij R T«f (25)

How good is the approximation? Let the approximation error E be defined

Li;
E,‘j =Tij — '—21 (26)
r
From Egs. 22 and 24, we obtain
Ei; = [8¢s(r — 1) + c1ea(3 — 1) — ] A%(uin] + wjuf) + HO.T. (27)

From Egs. 22 and 27, we immediately conclude the following:

1. If the filter is of either first- or second-order in A, then the approximation error is of higher order (3)
than is the SGS stress (2), and the approximation is likely to be reasonably accurate (given additional
constraints to be addressed shortly).

2. On the other hand, for any filter of order n > 2, the approximation error is of the same order as 7
itself; hence, 7 is likely to vanish in the noise of the approximation.



3. If the filter is of order two (¢; = 0.0, ¢; # 0.0) then

Ei; = 3e3(r — DA% (wjn] + wju)) + HO.T. (28)

4. Far from being inadmissible, as implied by the conventional dynamic modeling approach, r = 1 is
optimal for second-order filters in that the leading error term vanishes.

5. Because the residual stresses can be approximated directly from the resolved turbulent stresses, the
Germano identity is unnecessary for the development of dynamic SGS models.

5 Discussion

Although, for brevity, the present results were derived using time-domain filtering, similar results could
have been obtained for spatial filtering, albeit by more arduous mathematics. For example, Eq. 19 is the
time-filtered analog to the space-filtered result of Clark et al.3 as interpreted by Speziale!l, who reports that

A% 9w\ (0T, 3
L= kD) <3_1:k> (E) +0(A%) (29)

Although Egs. 20 and 25 are similar and in reasonable agreement for moderately large r, they are not
identical. Whence the difference? Because the former originates from the Germano identity and the latter
explicitly avoids it, we speculate that the discrepancy follows from the assumption that 7;; and Tj; of Eq. 7
can both be modeled by formally identical models, despite some formal dissimilarity.

If both analysis and experiment conclude that the residual stresses correlate closely with the (com-
putible) resolved stresses, then it is tempting to suggest for LES the use of SGS models that contain only
scale-similarity terms. However, it is well known (e.g., Liu et al.7), that scale-similarity models alone are in-
sufficiently dissipative, and such calculations are almost guaranteed to blow up, particularly if the numerical
scheme is non-dissipative. Our interpretation of the situation is as follows: the SGS models of LES must
unfortunately play two roles: one physical and one mathematical. Whereas scale-similarity models appear
sufficient to capture the physics of SGS energy transfer, additional dissipation (e.g., a Smagorinsky-like term)
is necessary for mathematical reasons; i.e., to stabilize the numerical scheme whenever resolution is marginal.
These roles are somewhat separated by mixed models (e.g., Bardina2), which include both scale-similarity
and dissipative terms.

Although our results are completely consistent with the experimental results of Liu et al.7, they are
only partially consistent with the DNS results of Piomelli et al.9, whose a priori tests show good agreement
between modeled and exact stresses both for a mixed model with a Gaussian filter and for the Smagorinsky
model with a sharp cut-off filter. Whereas the former result is consistent with our findings, the latter is not.
However, as Piomelli et al.9 are careful to point out: “The fact that the SGS stress is essentially zero when
the cutoff filter is used on the present [DNS] grid indicates that, with that filter, the grid may be capable of
resolving the Reynolds stress and no model is needed.” Thus, the inconsistency may be more apparent than
actual. We are currently conducting a priori tests to further validate our present analysis.

6 Conclusions

1. Mathematically tautological, the Germano “identity” is suspect as a basis for dynamic SGS modeling.

2. A practical difficulty with dynamic SGS modeling, manifested in the vanishing denominator of the
model coeflicient, is directly attributable to the use of the Germano identity.

3. The Germano identity is not only problematic, it is an unnecessary basis for dynamic SGS models.

4. For first- or second-order filter operators, the computible resolved turbulent stresses, when properly
scaled, closely approximate the residual stresses, without appeal to the Germano identity.



5. In general, filters of higher than second order are inconsistent with the Smagorinsky SGS model.
6. In particular, spectral filters are inconsistent with the Smagorinsky SGS model.

7. In LES, the SGS model plays two roles: one physical and one mathematical. To separate these roles,
mixed models should be exploited. In mixed models, the scale-similarity term captures the physics
and the dissipative term prevents numerical instability. Common experience with LES reveals that the
scale-similarity term alone is insufficient.

8. The scaling of the scale-similarity term of mixed models should depend on the choice of the parameter
r relating grid and test filter widths. This has been overlooked in practice.

9. A new model for the dissipative term, directly based on the computible resolved turbulent stresses, is
sorely needed.

Acknowledgements

The author is grateful to Drs. Gordon Erlebacher of Florida State University; Kristine Meadows, Craig
Streett, Michele Macaraeg, and Bart Singer of NASA Langley Research Center; and Bassam Younis of
University College, London, for helpful discussions. He is also grateful to Dr. Sandip Ghosal of Los Alamos
National Laboratory, to Dr. Klaus Adams of ZTH in Switzerland, and to Prof. Charles Meneveau of
Johns Hopkins University for beneficial e-mail discussions and references regarding dynamic SGS modeling.
Special thanks is due Prof. Ugo Piomelli of the University of Maryland for his time, insights, suggestions,
clarifications, and numerous references. Any confusion that remains is entirely the author’s.

References

(1] A. A. Aldama, Filtering Techniques for Turbulent Flow Simulation, Springer-Verlag, Berlin, 1990.

[2] J. Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved Subgrid Scale Models for Large Eddy
Simulation,” ATAA Paper No. 80-1357, 1980.

[3] R. A. Clark, J. H. Ferziger, and W. C. Reynolds, “Evaluation of Subgrid-Scale Models Using an Accu-
rately Simulated Turbulent Flow,” J. Fluid Mech., Vol. 91, 1979, pp. 1-16.

[4] D. A. Compton and J. A. Eaton, “Development of Near-Wall Statistics in a Three-Dimensional Turbu-
lent Boundary Layers,” in Three-Dimensional Boundary Layers, FED-Vol. 237, ASME, 1996.

[5] M. Germano, “Turbulence: The Filtering Approach,” J. Fluid Mech., Vol. 238, 1992, pp. 325-336.

(6] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity
Model,” Phys. Fluids A, Vol. 3, 1991, pp. 1760-1765.

[7] S. Liu, C. Meneveau, and J. Katz, “On the Proporties of Similarity Subgrid-Scale Models as Deduced
from Measurements in a Turbulent Jet,” J. Fluid Mech., Vol. 275, No. 83, 1994, pp. 83-119.

[8] P. Moin and J. Jimenez, “Large-Eddy Simulation of Complex Turbulent Flows,” AIAA Paper No.
93-3099, 1993.

[9] U. Piomelli, P. Moin, and J. H. Ferziger, “Model Consistency in Large-Eddy Simulation of Turbulent
Channel Flow,” Phys. Fluids A, Vol. 31, No. 7, 1988, pp. 1884-1891.

[10] C. D. Pruett, “Time-Domain Filtering for Spatial Large-Eddy Simulation,” to be presented at the 3rd
Symposium on Transitional and Turbulent Compressible Flows, Annual Summer Meeting of the Fluids
Engineering Division of the ASME, Vancouver, BC, June 22-26, 1997.

[11] C. G. Speziale, “Galilean Invariance of Subgrid-Scale Stress Models in the Large-Eddy Simulation of
Turbulence,” J. Fluid Mech., Vol. 156, 1985, pp. 53-62.

[12] R.D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing, Addison-
Wesley, New York, 1988.



