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Abstract 

Speeding up inferences made from large knowledge bases is a key to scaling up knowl
edge based systems. To do so. a system must have the ability to automatiCally iden
tify and ignore information that is irrelevant to a specific task. Identifying irrelevant 
kno\\'ledge is also key to enabling reasoning in environments in which several systems. 
(and their respective knowledge bases) inter6perate. This dissertation considers the 
problem of reasoning about irrelevance of knowledge in a principled and efficient man-. 
nero Specifically. it is concerned with two key problems: (1) developing algorithms 
for autbmatiGally deciding what parts of a knowledge base ate irrelevant to c.. .query . 
and (2) the utility oLrelevance .reasoning. 

As a basis for addressing these problems, we present a formal framework for anal~rz
ing irrelevance. The framework includes a space of possible. definitions of irrelevance, 
based on a proof theoretic analysis of .the notion. Within the space of .definitions, 
we identify the claSs of strong irrelevance claims, that has two desirable properties. 
Strong irrelevance claims can be efficientlY,derived automatically and are guar.anteed 
to lead to savings in inference. 

The dissertation descri bes a novel tool, the query~tree, for reasoning about irrel
evance. Based on the query-tree, we develop several algorithms for deciding what 
formulas are irrelevant to a query. These algorithms dramatically speed up inference, 
especially \vhen the knowledge base includes a large data base of ground facts. The 
query-tree has been investigated primarily for Horn rule knowledge bases with inter
pretable constraints (e.g., order and sort constraints), and several more expressive 
extensions. For certain cases, the algorithms are shown to be complete, in that they 
detect all the irrelevant formulas. An important aspect Of the query-tree is that it 
can be built by examining only a small part of the knowledge base (e.g., only the 
rules), arid therefore, can be built effiCiently. The query-tree is also used to derive 
the consequences of irrelevance knowledge given by a user. The dissertation presents 
an empiriCal analYSIS of the algorithms when doing backward chaining on Horn rules, 
sn6wihg that in praCtiCe. SIgnificant savings (O(t!!ll orders Of magnitude) are obtained 
by relevance reasoning. 

Our general framewor.k sheds new light on the problem of detecting independence 
of queries from update!). We present new results that significantly extend previous 
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work in this area. The frar'n~work also provides a setting in which to investigate 
the connection between the notion of irrelevance 'and the creation of abstractions. 
We propose a new approach to research on reasoning with abstractions, in which we 
investigate the properties of an abstraction by considering the irrelevance claims on 
which it .is based.. We demonstrate the potential of the approach for the cases of 
abstraction of predicates and projection of predicate arguments. 

Finally, we describe an application of relevance reasoning to the domain of mod~ 
eling physital devices. We consider the task of selecting a model for a device and a 
query by composing model-fragments, each describing single phenomena in the phys
ical world at different levels of abstraction arid approximation. We present a novel 
model-composition algorithm based on irrelevance that composes a model with ap.:. 
propriate abstraGtions and perspec:tiyes for answering the query. 

\' 
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Chapter 1 

Introd uction 

The distinguishing characteristic of research in Artificial Intelligence (A 1) is that it 
attempts to automate cognitive tasks that are natural to humans and at which.humans. 
are proficient. Prime examples of such .research include computer vision, natural 
language understanding, au tomatk planning and the formalization of common sense 
reasuning. In performing cognitive .tasks, humans have the natural ability to ignore 
irrelevant information. We have constant access .to very large amounts of information, 
either in our memory or through external. sources. However, when given it. spedfic 
task, we are able usually to focus.on .the knowledge that is relevant to that task, thus 
enabling us to reason in a. timely fashion .. 

In .order for machines to be able to reason efficiently in the presence of large 
amounts of information, they too must be able to ignore irrelevant information. In 
fact, the inability of current AI systems to ignore irrelevant information is a major 
obstacle in scaling up such systems. It is well known that the performance of inference. 
engines in AI systems that use declarative repre~entations degrades quiCkly as the size 
Of the knowledge base increases. Two of the major soUrces of inefficiency of inference. 
engines are due to this problem: 

• In its search for a solution, the inference engine considers many facts in the 
knowledge base that are irrele\;ant to the query. Consequently, it spends signif
iCant effort pursuing useless solution paths . 

• A kllowledge base is designed to accommodate a variety of tasks. Therefore, its 
conceptualization of the domain must be detailed enough for aU-of them. Con
sequently. p:iven a specific task the knowledge base is likely to be too complex' 
fot it, lc.atii71g to ineffiCient reasoning. For example, it may ma.ke unnecessary 
distinctions betweeil objects in the domain or between properties Of these ob
jects. In order to achieve efficient performance. an inference engine must be able 

~~---- - ------



tH_-\PTER 1. INTRODrCTION 

to abstract automatically the rE>presentation by rf>n'ioving irrelevant distinctions 
in the repr~sentation. 

Both of these issues will become even niore important in the context ()f future 
large scale AI systems (e.g., [Fikes et al .. 1991: Genesereth. 1992]). Such systems will 
have access to large amounts of knowledge comirig from multiple autonomous sources. 
Tht:" knowledge will overlap in many ways and will be represented in multiple levels 
bfabstraction. Reasoning mechanisms in such systems must .be able to decide auto
matiCally what knowledge is relevant t6 a specific task. and what level. of abstraCtion 
is most adequate. 

To illustrate these issues, consider the following simple example knowledge base. 

flight(X, }". 51, EI , C) A (S ~ Sd A (E ~ Ed ::;. path(X, 'l, S. E, C) 
bus(X. }",.5" E1, C) A (s. ::; Sd 1\ (E·? Ed :::} path(X. Y. S, E. C) 
path(X, Z, 5, E1, C1 ).A path(2. F, E}., £, C2 ) A (C1 + C2 ::; C) => l!!!!h(X,Y, 5, E, C) 
fligh.t(X. }",S, E,C):} (C.> iO) 

The 'atom flight(X, }.~ S. E. C) (bus(X, Y. S, E. C)) denotes that there is a direct 
flight (bus) from city X to city }~. departing at timeS and.arriving at E. The cost 
of the flight is. C dollars. J'he atom path( X. F, S. E, C) denotes that .there is a path 
(i.e., sequence of-flights and busses) from X to }.', .leaving and arriving between S . 
and E and costing at most C dollars .. Finally, all flights are known to cost more than 
$iD. The knowledge base also.£oiltains ground atomic facts for the relations flight ____ _ 
and bus.. 1 

Suppose we are given the query path(S F. LA. 8am, 4pm, $50). With respect to I 

this query, the first rule in the knowledge base and all the flight ground facts are 
irrelevant. Ground facts of bus that cost more than $70 or do not run between. 
Sam and 4pm are also irrelevant and can therefore he ignored. Doing so will result 
in SIgnificant savings in answering the query. In contrast, a conventional backward 
thainer reasoning with this knowledge base will encounter irrelevant facts at various 
points in its search: In the best scenario, it will immediately realize that a fact is 
irrelevant (by propagating the constraints) and backtrack. Otherwise, it will continue 
its search produCing a search subspace based on the use of an irrelevant fact, and 
realize later that the subspace could be eliminated. Even if the backward chainer 
does realize immediately that a fact that it encounters is irrelevant, there may be 
many such irrelevant faCts, .and considering each of these will be very expensive. 

Alternatively, suppose we only \vant to know if there exists sortie path between two 
Cities using the connections in our knowledge base. In such a case, we can abstract 
the representation of the domain arld modify the rules appropriately. Specifically, the 
prediCates ean be reduced from arity 5 t6 binary (e.g., /light(X, Y) denoting that 
there is a flight between X and }'}. Moreover, the distinction between flights and 
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busses is also irrelevant. and therefore w(> can abstract the distinction bet\\'een flight 
and bus (and other travel media we may have), b doing So, we would replace e\'cty 
flight (aIld bus) ground fact by a ground fact ot a new predicate directCoT/7iectioTi. 
Our klio\vledge base would no\\; be 

direci.Connection(X, }') => path(X. }') 
path( X, Z) 1\ path( Z, }') :::} patli( X. }'. S, E. C) 

This knowledge base \<Jill yield a much smaller search space and will sti\) enable 
us to answer the query. 

Aside from its use in controlling inference, the need to identify irrelevant knowledg~ 
also arises in other contexts in AI: 

• Nonmonotonic reasoning: 1n nonmonotonic reasoning, a conch.,:sion drawn. 
from a set of formulas is. not guaranteed .to hold when,additional formulas are. 
considered. Consequently, the inferences made depend in subtle ways on which 
formulas are considered. A key property that has been the focus of several non" 
monotonic formalisms (e.g" (Pearl, 1990; Geffner and.Pearl, 1990]) is designing 
reasoning schemes in which the addition of irrelevant formulas does not change 
the conclusions. However, the notion of irrelevance has been treated informally 
thus far in this work. 

• Reasoning by analogy: Often, properties of one object can he used to con
clude properties .of.another. if there is some analogy between the two objects. 
However. for the reasoning to be meaningful, the analogy between the objects 
must be relevant to the property being concluded. Automating such reas.oiling 
requires a good understanding of the notion of relevance. 

• Learning: A drawback of many learning systems is that they produce overly 
specific descriptions of concepts being learned. This happens when the learned 
descriptions contain irrelevant information. Using overly specific concept de
scriptions often degrades the preformance of systems (e.g., EBL). Removing 
irrelevant information is key to making such concept descriptions useful in prob
lem sol ving [Etzlonl and Manton. 1992}. 

This dissertation studies the issues involved in reasoning about irrelevance. It 
presents a general framework and speCific methods that enable a system to reasoIi 
about irrelevance of knowledge to a query. Relevance reasoning is done both by' using 
additional knowledge speCified by the user .and by automatiC methods for analyz
ing the knowledge base and a speCific query. Additional knowledge is speCified to 
the system in the form Of meta-level irrelevance claims in a language given In the 
framework. 



4 CHAPTER 1. ISTROOCCTIOS 

1.1 Components of the Problem 

We break down the problem to the following components: 

1. :\s a basis for stating knowledge about irrelevance and reasoning \\'ith it in a 
principled manner. we must: 

• Formally define the meaning (or meanings) of irrelevance. 

• Identify the different types of irrelevance \\'ith which we want to reaSon. 

• Devise a language for expressing knowledge about. irrelevance. 

2. In reasoning a.pout irrelevance. we consider two questions; 

• Given.a knowledge base and a query. can we .decide automatically which 
facts in the knowledge base. are irrelevant to the query (and can we do so 
efficiently)? . 

• How .can we derive logical conclusions trom meta-level irr.elevance claims 
that ate giyen to the system? 

3. Using irrelevance reasoning to control inference: 

• How ca.n we modify inference mechanisITls to exploit knowledge about ir'· 
relevance? 

• What is the utility of relevance reasoning (in theory and in practice)? 

1.2 . Overview of the Solutions 

We present an overview of the solutions we propose for the questions we a.ddress as 
well as a descriptioIi of an application of our framework to the problem of selecting 
models for physiCal systems. 

1.2.1 Analyzing Irrelevance 

Tile notion of irrelevance has been. used in many contexts in research in AI and 
related fields. HO\','ever, most 0( the time researchers use the term informally. Formal 
analyses of irrele\;~U'lCe have been discussed by philosophers as early as [Keynes, 1921), 
ICatnap, 1950] and [Gardenfors, 1978]. The main thrust of these analyses was to try 
to capture our common sense notions of irrelevance by a formal definition. Most of 
the work focuses 6n fOrIl1ulating properties of the notion Of irrelev'ance and finding 
definitions that satisfy the properties. Consequently, the work has not been concerned 
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with how to lise irrelevance for speeding up inff'r'ence or how to design algorithms for 
detecting irrelevance. 

Within AI the notion of irrelevance \\'as investigated in the context of proba
bilistiC reasoning [Pearl. 1988] and used there to control inference in Baysian belief. 
networks. In the context of logical knowledge bases, Subramanian [Subramanian, 
1989] investigated several formal definitions of irrelevance. However. the issues of 
deriving irrelevance claims and the. utility of irrelevance reaSOnIng were left largely 
open. 

We want our definitions of irrelevance to make sufficient distinctions to make them 
useful in developing algorithms for detecting irrelevance. To db so, we analyze itrele~ 
vance at the level of the possible derivations (or more generally, solution paths) that 
a problem solver can pursue in the solution of a goal. In contrast, other analyses have 
been at the model theoretic level [Gardenfors, 1978] or the meta-theoretic level [Sub
ramanian, 1989}. Furthermore. \Ve do not purport to provide a single best definition 
of irrelevance. Instead, v. e provide a space of possible definitions of irrelevance and 
analyze how the properties of irrelevance change as we move in the space. 

We begin by considering the question of defining irrelevance of a .single formula 
to a query. SpeCifically, if ~ is a knowledge base, q is a query and f is someJormula,. __ 
we will define when f is. irrelevant to q with respect to ~ .. 

The first distinction made. in our space b between weak irrelevance and strong 
irrelevance . .In .the former, f will be irrelevant to q if there is some derivation of q 
that does nct use J. In strong irrelevance, / wiH be considered irrelevant if it is not 
used in any derivation of q from~. Each of l' hese classes can be further refined, by 
considering only a s'pecific set of derivations ill I he definition. For example, we can 
define f to be strongly irrelevant to q if it is not used in any minimal derivation of 
q.l Furthermore, definitions vary in the way we define what it means for a formula 
to be used in a derivation. For. example, we can define f to be used in a derivation D 
it it appears somewhere in D, or, alternatively, if it is implied by the formulas in D. 

Besides irrelevance of formulas, the framework also considers irrelevance of other 
subjeCts. For example, we define irrelevance of predicates, objects, refinements of 
predicates and distinctions between objects. These kinds of irrelevance are later used 
as justifications for creating abstractions. 

The framework has enabled us to make several important distinctions. For ex
ample, the Class of strong irrelevance claims is shown to have several properties not 
shared by weak irrelevance. In many cases, it is possible to find all strongly irrelevant 
formulas efficientl.y. Furthermore, removing strongly irrelevant formulas is shown to 
speed up inference slgiiificantly and is guaranteed never to slow it down. Finally, 
several instances of strong irrelevar:ce satisfy pr6pcttiett that have been argued to be 
desirable of a common. sense notion of trrele.viuite in the philosophiCal literature. 

IGiven some definition of mtnimality of derivations. 

1------------------------------------
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The framework is shown to be general in that it encompasses definitions discussed 
in the past. These include def1nitio;'1s gi\'en by Subramanian [Subramanian, 1989] 
and definitions given in analysis of databases [Srivastava and Ramakrishnan. 1992] 
and [Elkan. 1990]. The framework provides important insights into the problem of 
detecting indep.endence of queries from updates in databases. enabling us to develop 
new algorithms for solving the indep~ndence proble.m. 

1.2.2 Automatically Detecting Irrelevance 
A rnajor focus of the thesis is the in\lestigation of the problem of automatiCally de
ciding which formulas are irrelevant to a given query. We first address the following 
questipn: 

• Dit'fn a knoll'ledge base ~ and lJ. query g! which formulas in ~ are irrelevant to 
q'? . 

We. later use the techniques developed .to answer this question in order. to solve 
the problem of deriving logical conclusions from irrelevance claims that are. given 
to the system by an external source. We consider the problem for knowledg~ bases 
containing Horn rules, and several more exp.ressive. extensions. 

In general, deciding which formulas are irrelevant to a given query can be more -
expensive than solving the query itself (without relevance reasoning), eSp'ecially ~n 
large knowledge bases .. Furthermore,.if the knowledge base changes, the relevance 
reasoning needs to be repeated. In order for our algorithms to be of praotical interest, 
we must derive irrelevance claims by examining only a small and stable part of the KB, and derive claims that will hold independent orany changes that a.re made to 
other unexamined parts. In many applications using Horn rule knowledge bases it is . 
the case that the bulk of the KB is ground facts, and the ground facts are much more 
prone to frequent changes. Often, tne ground facts will be stored in some database. 
Therefore, we address the following question. Suppose a knowledge baSe consists of 
a set of rules P and a set of ground atomiC facts D. 

• Given a set of rules 'P and a qurr iJ q I wh ich rufes in P and which sets of ground 
facts are irrelevant to q for any choice of ground fads D? 

We consider the problem for several caSes of strong irrelevance; For weak ir~ 
relevance, the problem is in general undecidable even for Simple languages (e.g., no 
function symbols or recursion). Algorithms that provide suffiCient conditions for weak 
irrelevance are discussed in Chapter .5. The follOWing example illustrates the reasoning 
we perform. 

\ 
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Example 1.1: Consider the following set of rules: 

rl : badPoint(X) 1\ path(X. \') 1\ goodPoznt(}') => goodPath(X. }'). 
r2 : link(X. Y) => path(.", }'). 
r3 : link(X. Z) 1\ path(Z.l') => p'ath(X. }'). 
rot : step()<. n => link(X. l"). 
r.'i : big$tep(X. n => iink(.Y. }'). 

The predicates step and bigStep describe single links between points in a space. 
'the predicate path denotes the paths that can be constructed by composing single 
links. The predicate goodPath denotes paths that go from bad points to good ones. 
A knowledge base contains these rules and various ground facts using the predicates 
step, b'igStep. gbodPoint and badroint. Furthermore, we are given that all the ground 
facts that max appear in the knowledge .base satisfy the following <;onstraints: 

badPoint(X) => 100 < X < :200. 
slep(X. Y.) => X <:"}'. 

goodPoint(X) => 150.< X < 170. 
bigStep(X, Y) ~ X < 1001\ }., > 200. 

Figure 1.1 is a symbolic representation oCthe possible derivations of facts. of the. 
form goodPath(X, Y). By analyzing the structure of the rules and the constraints 
appearing in them, it can be seen that rule rs will not appear in any derivation of the 
query, and is therefore strongly' irrelevant. Similarly, ground facts in the knowledge 
base of the form step(X, Y.) that .do not satisfy 100 <: X and Y < 170 are also strongly 
irrelevant to the query. I 

The main difficulty in irrelevance-reasoning is that we need to establish properties 
of all the possible derivations of the query. However, we need to do it without enu
merating all the derivations. To do so, we have developed a novel tool, the query-tree. 
The query-tree is a finite AND:.QR tree that symbolically encodes all the possible 
derivations that tan be generated for the query from the given set of rules (the query
tree of Example 1.1 is shown in Figure 1.1). In building the query-tree, we need to 
address two issues. First, a simple minded top down construction of the tree will 
not terminate if the rules in the knowledge base .are recursive. Therefore, we need 
some principled method to t"!rminate the expansion of the tree. Second, we need to 
carefully manipulate thE:' interpretable constraints that a.ppear in ~he rules in order 
to be able to derive all the irrelevance claims. 

The query-tree generation algorithm addresses these issues by attaching a set 6f 
labels to nodes in the tree. Fot example, in Figure 1.1 the labels 6f the nodes describe 
the constraints that need to hold on instances of that node in valid derivations. We 
assign labels to nodes in the tree as we expand it, al1d we only expand a goal..:node 



badPoint('\") 
{lOO < .\ < liD} 
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goodPath(X. n. {IOO < X < }' < liD.}' > ISO} 

I 
rl 

path(.\:. n 
{100 < .\" < r < liD. r > 150} 

~ 

good?ointp') 
{l50 < }' < liD} 

r2 r3 

{lOO<.\"<}'<170.}'>loO} I ~ 
l" k( \' n link(.\". Z). path(Z. n 

r- _~. {lOO < '\,< Z < liO} {IOO < Z < Y < liD. Y > loO} 

L-rs-, _ -J r4 r4 
, I . 0 

step(.\". }') step(.\". Z) {I 0 <.\" < Z < liD} 

{IOO < .\" <}' < liD.}' > 150} 

Figure 1.1: .An. example query-tree 

in the tree if there lsno other node that is expanded and has an isomorphic label. 
The labeling scheme of-nodes in the tree is chosen to satisfy two constraints. First, 
the number of possible· labels must be finite. This property guarantees ,that the 
construction of the tree will terminate. Second, the labeling scheme is. chosen such 
that the resulting tree will encode precisely the set of desired derivations._ 

If the query-tree encodes precisely the set of derivations of interest, it providesa. 
basis for a sound and r.omplete inference procedure for. strong irrelevance. Specifically, 
a rule is strongly irrelevant to the query if and only if it does not -appear somewhere 
in the tree. For example, in Figure 1.1, rule rs does not appear in the tree, and is 
therefore strongly irrelevant to goodPath(X, Y). A ground fact is strongly irrelevant 
if and only if it does not match some node in the tree. In Figure 1.1. ground facts 
of step(X, }') for which X < 100 will not match any node in the query-tree and are 
therefore strongly irrelevant. 

We show that we can devise labeling schemes for nodes in the tree that enable 
us to encode preCisely till derivations (and therefore all strong irrelevance claims) 
for function:.free Horn rules that allmv a wioe class of interpretable constraints (e.g., 
order constraints, sort constraints). We also diSCUSS a labeling scheme that enables 
us to encode precisely all the minimal derivations of the query. Finally, we discuss 
a labeling scheme for encoding precisely all valid derivations of the query when rules 
may have. limited forms of negation in their antecedents. 

In soine cases (e.g .• recursive rules with function symbols) it is. not possible to . 
devise an appropriate labeling scheme, and then'fote, the query-tree encodes. a su
perset of the valid derh'ations. In these cases, tne query-tree provides only a sound 

\ 
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inference procedure foI' strong irrelevatite. This means that if a rule (or ground fact) 
does not match some node in the query-t.ree then it is strongly irrelevant to the query. 
However. if it does match. that does not necessarily imply that it is not strollgly ir
relevant. Consequently. using the query-tree enables us to remove only a subset of 
the strongly irrelevant formulas in the knowledge base. 

An important aspect of the query-tree is that it can be built efficiently (and 
the. 'fore strong irrelevance can he derived efficientl);). The size of the query-tree is 
linear'in the number of rules in the knowledge base. 2 Its size depends on the number 
of different labels we attach to nodes in the tree. This number may be exponential 
in the arity of the predicates in the 1\B. However. arities of predicates tend to be 
very sma.ll in practice (e.g .. frame systems usually employ only binary predicates). 
Furthermore. finding examples in ,,;hich the exponential running time occurs requires 
careful crafting of the rules. ~Ioreover. since the query-tree is built only based on the 
rules. it need not. be recomputed when the ground facts chan~!... Therefore the cost 
of building the tree can be amortized over many queries .. 

The' query-tree. is related to. se\iera! graph-like structures discussed in the liter
ature. such as connection graphs lhowalski, 19i5], problem space graphs [Etzioni. 
1993], compilation graphs [Bruynooghe et .al., 19 19] and rule-goal graphs [Ullman, 
19.89]. The·main.property distinguishing the query-tree from other structures is the 
principled treatment of recursion and interpretable constraints. As a result, it is the 
only structure the.t computes the tightest constraints on the possible ground facts that. 
appear in derivations, and therefore only the quer.y-tree provides a complete inference 
procedure for strong irrelevance. Second, the method .of building. the query-tree is. 
more general than the methods used for building other structures, and therefore we 
are able to extend it to encode other sets of derivations. (e.g., the set of minimal 
deri vations ). 

1.2.3 Using Irrelevance to Control Inference 

\Ve investigate several methods of using irrelevance reasoning to speed inference: 

1. Remove irrelevant formulas: The first method is a. simple usage of the query
tree. Given a query (or class of queries) We build its qtiery-tree and decille which 
formulas are not strongly irrelevant to the query. We then ignore the irrelevant 
formulas wnen solving queries of this classi by building a specia.lize,QJndex only on 
the relevant formulas. 

2. Ignore irrelevant solutions paths: Aside from encoding only the relevant rules 
and ground facts, t.he query-tree also encodes a.ll the sequences of rul~ applic~tions 

2Mbre preCisely, it is linear in the number of ruleS that are conr.ected to the qut!ry through a 
simple reachahility analysis: . 
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t hat ('an lead to answers to the query. We show how to Inodify a backwara chainer 
1'0 that it follows only these sequeIl('('s. 

We describe the results of experiments designed to n'leasure the impact of thesc 
savings in practic(' whcn performing backward chaining on Horn rules. The experi
ments show that sigllifitant savings are achieved by creating specialiied indices. while 
the cost of building the query-trec and of building the ilidices is insignificant. More
over. the results suggest that these lJl(>thods will scale up to larger knowledge bases 
arid will be especially cffective there. For instance. in Exalhple 1.1 when the query
tree deeriled 6.1% of the ground facts in the knowledge base irrelevant t.o the query, 
inference was sped lip by a factor of 15. When 80% of the ground facts were deemed 
irrelevant the speedup grew to a factor of 90, 

We also discuss how the query-tree can be used to extend more sophisticated query 
('valuation schemes such as message-passing schemes [V~n"Gelder., 1986} and magic 
set-transformations [tIllman .. 1989]. 

3. Detecting irrelevant updates: A frequent operation in persistent knowledg~ 
bases is recomputing a query after an update is made to the knowledge base. However, 
in many cases this computation is wasted because it can be shown that the update 
will not affect the query, evert without actually computing it. We discuss. how to 
detect independence of queries from updates by formulating the problem in terms .. 
of relevance. reasoning.. We show how to use the query·tree and other techniques 
developed in Chapter 5 to detect independence efficiently. 

4. Automatically creating abstractions: As stated earlier, having a more par· 
simonious rep~esentation of the problem domain will lead to more efficient inference. 
Abstracting a representation to eliminate irrelevant distinctions will result in more 
parsimonious representations. We show how the creation of abstractions can be posed 
as a task of relevance reasoning, based on the intuition that.a good abstraction is one 
that removes irrelevant details. We present several algorithms for automatically cre
ating abstractions. based on algorithms for detecting irrelevanc~. 

1.2.4 Irrelevance Reasoning- in Automated Modeling 

An important domain in which.relevance reasoning plays a key tole is the domain of. 
modeling physical systems. We apply the frame\vol'k in this domain to the task of . 
automatically' selecting it model fot a given.system that is appropriate for answering 
a given query .. Briefiy, the problem \ve consider can be formulated as follows. The. 
inpu.t consis'~s bf three elements: 

• D.omain theory 

• A system description. 
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• A query about the system. 

The dc>rnain theory consists of a set of 71iodd fri1.!J11lcnt,~ [F'alkenhainer and Forbus. 
1991]. Each model fragment describes a single phenomenon in the physical world. Fbr 
example, a nlodel fragment may destrib(> t.he dependence of the voltage of a battery on 
its charge level. or it may describe the process of fluid flow through a pipe connecting 
two containers. The same phenomellon may be described by several model fragments, 
that differ hi. the level of detail and the abstractions and approximations made. Each 
rhodel fragment has a set of operating conditions stating when it is applicable. An 
adequate model bf the system is a set of model fragments from the domain theory 
that have consistent operating conditions. 

The system description is a set of facts about the system, including structural 
specifications and initial values on some of the system parameters. The query is some. 
parameter (or set of parameters). and the c..nswer to the query is a description of the 
changes of that parameter over time, 

The output of the model formulation problem is a.set.of model fragments from .the 
domain theory that can be used to ans\ver the query about the device. The goal of th~ 
model formulation problem is to find the simplest model that can explain coherently 
the value of the query parameter over time. 

Our approach to the problem is based on the observation that several of its aspects 
can be viewed as instances of relevance reasoning. First, in order to decide which 
phenomena need to be inCluded in a model of the device, we need to determine 
which.aspects of the domain are relevant to the specific query'. This requires that 
we follow the possible causal influences on the'query parameter, Second, in selecting 
among multiple model. fragments representing different ways of modeling a specific 
phenomenon, we need to reason explicitly about the assumptions being made by each 
model fragment. We show that many of these as~umptions <:an be stated as irrelevance 
Claims about some aspects of the domain. Finally, tne focus of our application is to 
select a model for simuiatitm of the device over time. However, we do not know all . 
the conditions tha.t may arise in the states of the simulation. Therefore, our task is 
complicated by the fact that we need to select a model based only on partial knowledge 
about the states that may occur in the simulation. This is analogous to the problem 
faced by the query-tree of deciding irrelevance by inspecting only a small part of the 
knowledge base. 

We describe a novel model formulatioIi algorithm based ort the above observa
tions, The algorithm selects the phenomena that can affect the query by following 
the possible causallnfiuences on the query parameter. After selecting a phenomenon 
to include in the model, it chooses arnong the multiple ways o( describing the phe
nomenon oy reasoning expliCitly about the different assumptions distingUishing the 
various descriptions, and choosing the simplest one that does not contradkt assump
tions made earlier. In making tne selections the algorithm also incorporates domain 
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spedfic knowledge that may be a\'ailabl{' froI'll experts, This domain specific kno\\il~ 
edge is expressed using the language provided iIi the framework. 

The algorithn1 has several desirable properties. First, it is guaranteed to select an 
adequate model for the simulation. Second, given the partial knowledge it has about 
the possible states of the simulation, it selects the simplest possible model. Finally. 
the running time of the algorithm is polynomial in the size of the resulting model. 

The algorithr'n has several aci\'alitagt>s over previous algorithms [Nayak. 1992a: 
Falkenhainer and Forbus, 1991: Addanki d ai., 1989]. First. it addresses the problem 
of formulating a model for simulation \\lithout treating a complete envisioriment of 
the possible states (as in [Falkenhainer and Forbus. 19911). Second, the following ot 
possible causal paths by the algorithm frees the user from specifying possible causal 
interactions expliCitly (as in the comppneilt interaction heuristic [Nayak. 1992aj). This 
advantagf:' is important since specifying these interactions is a laborious and error
prone task.- Finally, unlike- the algor.ithm proposed by Nayak (Nayak. 1992a] that 
begins with the most complicated model and .iteratively simplifies it, our algorithm 
starts with the. simplest model possible and makes it more complex only as requited 
by the modeling ,assumptions. Consequently, our algorithm is mbre likely,to scale up 
to larger devices .. 

1.3 Contributions of the· Thesis 
The thesis makes the following irrip~rtant.contributions: 

• It presents a. general proof theoretic framework for analyzing irrelevance. The. 
framework crystaliies the issues involved in relevance reasoning; it makes sev" 
eral important distinctions in the analysis of irrelevance, and it generalizes and 
unifies previous analyses . 

• It presents a novel tool, the query-tree. for reasoning about irrelevance. The 
query-tree is used for: 

- Developing efficient algorithms for detecting strong irrelevance. The al~ 
gorithms are sound and complete for knowledge bases containing function 
ftee Horn rules with a wide class of interpretable constraints. The query
tree 'dm also be designed to be complete for derIving strong irrelevance 
testricted to minimal derivations and for rules having limited forms of 
negation iti their antecedents. For arbitrary Horn rule knowledge bases, 
the query-tree provides a sound inferelice procedure for strong irrelevance. 

- Pushing the tightest constraints possibie (rom a gIven query to the ground 
facts in the database. Consequently. a filter can be applIed to the ground 
facts before evaluating the query. 
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- Algorithms for deriving logical ('ollc!usic>I1S ftotil irr<"\p,,i\nc(' c1ainis that art' 
gi ven to the system by all external source. 

- :\ backward chaining algori t hrn that is guaranteed not tb pursue u~eless 
paths. 

• It describes experimental results showing that in practice, relevance reasoning 
leads. to significant speedup of inference. 

• It describes an application of the framework to the problem 6f detecting inde
nendence of queries from tip-dates. resulting iIi: 

New deCidable cases for. detecting independence. 

- Novel algorithms providing sufIlcieIlt conditions for independeIJ.f~. 

• It describes an application of the frame\vork to the problem of modeling phys
ical sXstenis. Along with providing important insights into that problem, it 
presents a. novel algorithm for automated model selection for simulation based 
on r.de.vance teasonin~ 

•. It presents a formal connection between relevance reaSoning and reasoning with 
multiple levels of .abstraction. The ·connection. enables better analysis of the ... 
utility of reasoning with abstractions and. the develoP!l1ent of algq,r.tt]lms for 
automatically creating abstractions for a given query. 

The main contributions of the thesis are in the fields of knOWledge representation 
and control of reasoning. It is important to note some of the contributions that the 
thesis makes from the perspective of related fields. Some were outlined. in the opening 
of this chapter. and several are mentioned below. 

Deductive databases and logic programming: Much of the work in the the.:; 
sis can be couched in the terminology of these fields. A major contribution of the 
query-tree is that it shows how to push constraints from the query to the database. 
Consequently, a filter can be applied to the database before query evaluation, lead
ing to significant savings. The query-tree a.nd the algorithms discussed in Chapter :i 
make significant contributions to the optimization of qu~ry evaluation and of logiC 
programs. Specifically, the query-tree can be viewed as a method for partial evalua
tion of constraint logic programs, extending previous methods in this field. 
Knowledge acquisition and knowledge engineering: The framework discussed 
in the thesis ptovides a ba~is for acq\.iirin~ knOWledge about irrelevance,_both by 
pr'bvldit'lg an expressive language and by i11diCating where additiona.l knOWledge is 
required. 'the query-tree can also be used as a tool for knowledge acquisition by 
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illustrating the connections between pieces of knowledge in a knowledge base and by 
determining the effects at adding knowledge to the 1\:B. 
Reformulation: Subramanian [Subramanian. 1989] first analyzed irrele\'ante \\Iith 
the goal of. automating reformulations, the work. presented in this thesis ad\l~iIlCeS 
Subramanian's analysis and suggests specific methods for discovering irrelevance.and 
creating abstractions. Therefore. it provides a basis for research on automatit refor· 
mulation. 

1.4 Readers' Guide 

The thesis is organized as follows. Chapter 2 discusses the issues arising in analyzing 
irrelevance. and the proof theoretic framework \ve propose. It also discusses properties 
of irrelevante within the framework. Chapter 3 discusses the query-tree. It presents 
the general.method for huilding a query-tree and .describes several of its instances. -
Chapter 4 discusses the usages of the qt!,ery-tree in speeding inference. It presents 
details of exp.erimental.results validating the impact of the. method~.in practice .. It 
also.describes algorithms for df.:riving logical conclusions from given irrelevar~te claims. 
Chapter.) itive::;tigates the prclblerh of detecting independence of.queries froln updates. 
By translating the problem to reasoning. about irrelevance, it provides.fiew algorithms 
tor detecting independence. Chapter 6 makes the formal conne-tion between relevance 
reasoning and the.creation of abstractions. suggesting a new approach to research on 
reasoning with abstraction. the chapter demonstrates the utility of this approach by. 
considering the examples of predkate abstraction and removal of prediCate.arguments. 
Chapter i discusses the applicat ion of the frame\vork to the domain Of rhodeling 
physical systems. Chapter 8 cor'lciudes \\'Ith a summary Of the contributions, and 
directions (or future research. 

The relevant related work is discussed at. the end of each Ghapter. Chapter 8 
contains a tabular summiuy of the references to related work made in the thesis. The 
thesis is written so that it can be read even by skIpping the proOfs. The proofs that 
are included in the chapters ar'! only the rhost important ones or ones that can add 
to the understanding of the text. Others appear in Appendix A. 

Some of the material covered in the thesis ~.ppe:ars in shorter conference length 
publications. The material in Chapter 2 and SectiQu 4.2 ~ppears in [Levy and Sagiv; 
1993a). Chapter 3 is covered in [Levy and Sagi". 1992; Levy et al.. 1993]. The 
111aterial of Chapter 5 is presented in (Levy arid 5agiv. 1993b), Finally, ttle material 
of Chapter 7 is descriBed in {Levy et al .• 1992: Iwasaki arid Le\iYi 1993]. 



Chapter 2 

Analyzing Irrelevance 

The notion of irrelevance is used in many contexts in .AI research. However, it IS 
typically used informally. Our goal is to state declaratively knowledge about irrel-_. 
eVance and to reason with such knowledge in a principled manner .. As a basis for 
pursuing this goal. this chapter presents a general framework for analyzing formal 
definitions of irrelevance. The framework is based on a proof theoretic' analysis of ir~ 
relevance. Section 2.1 begins by describing the motivations for analyzing irrele.vance. 
Section 2.2 describes the issues that arise in the analysis of irrelevance and the pos- . 
sible approaches one can pursue. Section 2.3 describes our framework, consisting of 
a space of definitions of irrelevance. It also discusses prop.erties of definitions in the 
space .. Finally, Section 2.4 formally presents the. problem of automatically deriving 
irrelevance claims. -.---------

2.1 Motivations for Analyzing l.rrelevance 

The main goal of our analysis of irrelevance is speeding up inference, or, more gen
erally, pr6blem-solv~ng. Irrelevance analysis can be used in speeding up inference in 
two ways. First, by determining that certain forrnulas in the knowledge base are irrel
evant to a given query, the inference engine dm ignore these formulas, and therefore 
prune its search significantly. Second, by identifying distinctions in the represen
tation that are irrelevant to a specific query; we can create an abstraCt and more 
parsimonious representation. We dm then translate the knowledge base into this ne\\i 
representation. resulting in more efficient inference, 

The analYSIS of irrelevance is also important in other contexts iIi AI for purposes 
other than speeding up inference. In Sonle cases an .understanding of irrelevance is 
needed in order to determine whiCh inferences can be made l as the following examples 
illustrate. 

15 
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1. Non monotonic reasoning: In lIon monotonic reasoning, the addition of 
knowledge cart cause previous conclusions to be retracted. Consequently. con~ 
elusions drawn in non monotonic reasoning formalisms depend in subtle ways 
on which knowledge is considered. The following example (from [Pearl. 1990J) 
illustrates that dependency: 

Example 2.1: Consider a knowledge base containing the follQ.wing: 

Birds typically have u.'iflgs. 
Birds typically fly. 
Penguins are birds. 
Penguin? don't fly 

Suppose our query is: Do penguins have wings'?, The difficulty in answering the 
query is that penguins are abnormal.with .respeot to flying, and. therefore, may. 
be abnorrhal in other ways too, such as having wings. However, the fact that 
a specific bird is a penguin b irrelevant to whether it has wings .or not, and 
therefore we would like.to ignore.the abnormality of penguins. and to conclude 
that penguins do have wings. 1 As another example, suppose our query is Can 
red birds Jly?- Here too, we are asking ~bout a prop.erty- of a subclass of birds, 
which, as with the subclass of penguin3, may be abnormal with respect to fiying. 
However, the fact that a bird is r.e.d is irrelevant to its flying ability. I 

Designing non monotoniC reasoning formalisms that are able to ignore irrele
vant information has received a lot of attentivn recently [Pearl, 1990; Geffner 
and Pearl, 1990; Bacchus et al., 1993]. However, in t:lat work the notion of 
irrelevance is either treated informally, or .t.he definitions that are used are very 
simple minded. 

2. Reasohing by analogy: In reasoning by analogy we conclude properties of one 
object from prop~rties of anothel\ based on a possible analogy existing between 
the two objects. However, for the reasoning to be meaningful. the an!\logy 
between the objects must be relevant to the property being concluded. For 
example, suppose we state the analogy: Fred is like a fire-engine. Intuitively, 
we may use that to conclude that Fred is loud, or that his activity level is high. 
However, it seems improper to conclude that Fred's color is ted, or that his fuel 
consumption is medium, since these properties are Irrelevant to the analogy 
between Fred and a fire:.engine. 

lit may be argued that having wings u relevant to the ability of a bird to fly. However. this is 
not explici~ly stated ill I.he·knowledge bMc. The first statement of this example can also be replaced 
by any property of oir'ds that is completely unconneCted to flying. 
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The notion of irrelevance also plays an irnportaiH role in designing algorithms for 
abductive reasoning [Levesque, 1989J and for belief revision [Carderifors, 19881. 

2.2 Issues in Analyzing Irrelevance 

In this section we discuss several of the issues that arise in an analysis of irrelevance. 
and provide the motivations underlying our approach. Throughout this chapter we 
will be concerned with defining jotmtlla-irrelel'unce, i.e .. given a knowledge base of 
formulas ~, a query q and a formula f (not necessarily in ~), when do we say that 
f is irrelevant to q with respect to~. Irrelevance of other kinds of subjects, such 
as predicates, objects. predicate refinements and object refinements are considered in 
Chapter 6. 

Two Possible Approaches: Common Sense Formalization vs. Problem 
solving ~nalysi.§ 

Broadly, we distinguish two possible approaches to ~nalyzing irrelevance. The first. 
approach, which has been pursued by several philosophers ([Keynes, 1921~ Carnap, 
1950; Gardenfors, 19781), is to try to capture our common sense notion.of irrelevance 
\v.ith a formal definition. In. that approach, .we would consider a formal definition .of 
irrelevance and check. whether it satisfies proper~ies which we consider natural for our 
intuitive notion Of irrelevance. 

The second approach is to analyze the ways in whiCh irrelevance arises in problem
solving. Here too, we would consider various definitions Of irrelevance and investigate 
their properties. However, the properties of interest will be those that are informa ... 
tive in designing inference methods that utilize irrelevance. To illustrate this point, 
consider the following exaIllple. 

Example 2.2: Suppose we have the following knowledge base Ao: 

1'1 : attendClass(X, }") => pas.s(X, }"). 
r2 ; passExarn(X. }") :} pass(X, }'}. 
1'3: pass(X. }") 1\ tookGtadCourse(X) => CimTA(.\", }'}. 
" .. : pass(.l[, Y) 1\ (}'. 2: 200) => tbokGrailCotlfse(X). 
91 : attendClass( Fr'ed, lOl). 
{h : passExam( Fred, IOl). 
g3 : passExafn(Fred, 1(1). 
g4 : passExam( Frea, 123). 
9s : pass E xam{ Fred, 20'i). 

1'----------------- ---~--~ -~~-
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And let our query be q : catITA(Frfd. 1(1). 
Each of the ground atoms gl-fj-t can be considered ittelevalH to the query iii 

isolation. because for each .of then'!. the qUl:'ry tan be derived without using them. 
However. there are differences bet\\'el:'l1 these irrelevance daims. Fur example. 93 and 
g4 will not be part of any derivation of the query. and therefore tan be both ignored. 
Even though the query can be derived without gl or g2. one of them is alwa:'s needed, 
and therefore. We can not remO\'e both. The ground atom canTA.(Fred. 2(t!) can also 
be considered irrelevant to the query. but in a somel .... hat weaker sense. Although it 
is never part of any derivation of the query. it is, always e.ntailea by the formulas used 
in the derivation of the query. 

Cbn;,ider the query cil7lT.4.(Fred. :W2). The atom passExam(Fred.21()) can be 
part of a derivation of this query (if it Were in the I\B). but such a derivation would 
not be minimal. in. the sense that the set of ground atoms that it uses from the KS . 
is not minirrlal (i.e .. using 95 is enough for entailing the query). Finally. the rule 

p,assExa.m(X. F) 1\ O' ? 200) =* canTA.(X,':V) 

could also be .considered irrelevant .. since the. query can be .derived without.it. How.· 
ever. for ,some inference mechanisms. it may be the case the this rule will speed. 
inference •. since the query can .he derived using one r.ule application instead .of two. I 

The analysis p.resented in this dissertation is based on the ways in which irrelevance 
arises in prqblem solving. for two reasons:. 

1. Our prime concern is speeding Up' inference. and therefore, we desire that our 
analysis provide the distinctions necessary ·to exploit irrelevance in inference 
methods, such as those illustrated in the example. 

2. ~toreover, even if we could agree on a singLe best formalization of our common 
sense notion of irrelevance, it vl'ill have many different manifestations in infer
ence dependIng on the form of the knowledge base and the Inference method. 
It is therefore important to distinguish these manifestations in order to develop 
methods for speeding up inference; 

Clearly, these two approaches to analyzing irrelevance are not independent of each 
other. On the one hand, the analysis of irrelevance that we consider is inspired by 
our common sense notion of the concept. and the definitions \ve examine mirror it in 
various ways. We \viII also see that the distinctions made in our analysis correspond 
to properties of the common sense notion of irrelevance. On the other hand, given a 
formalization of the common sense notion of irrelevanec, analyzing it in our fram~ 
work WIll provide a ,vay Of using it for speeding up inference. However, it should 
be emphasized that the approach ,'ie have taken is intended to be e\;aluated on its 
usefulness.for speeding up inference, not on hm,; well it captures int.uitive notions of 
irrelc\'ance. 

.. ..-.. ·1 

I 
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Irrelevance With Respect to Given Evidence 

;"luc'h of the "'ork on formalizing irrelevance (including the work in the philosophy 
literature) has focussed on t h~ following question: 

• Given a set of et'idencf. E and (I',lery q. which formulas are irrelevant to q \vith 
respect to the evidence'? 

In our analysis. the knowledge base acts as the evidence. and therefore the question 
we address is the following: 

• Which parts of a given knowledge base ~ are irrelevant to q? 

The difference between the two tIuestions is that in the first, the set of evidence 
formulas is given special treatment by being giyen priority over the other formulas. In 
the second .. the KB. D. acts as our evidence; however, bur goal is to. find which parts 
of the evidence- are irrelevant to -the. query. It may seem that the second que:ltion 
can be considered. an instance of the first by equating ~ a.nd t.'). However, several 
assumptions made in addressing the first question (e.g!, [Gardenfors, 1978]) make it 
impractical to use the solutions for the second question. For example, one assumption 
is that any formula f E S \ .... ill be considered irrelevant to the query (since it is already 
known and does not change the .state of affairs). Another property considered is 
independence of the forn'} of the evidence, i.e., if £1 is equivalent to £2, th"'~l. the 
formula f is irrelevant to if w.r.t. £1 if and only if it is irrelevant. to q w.r.t. £2. 
In Section 2.3.4 we will see that our framework is general enough to accommodate 
definitions of irrelevance that .gIve speti~l treatment to a subset of evidence formulas. 

Irrelevance as Belief Revision 

Intuitively, a formula f is irrelevant to a query q with_respect to a KB ~ if f can 
be removed from ~ and q will still be derivable. This intuition can be generalized 
by relating irrelevance to the notion of belief revision. SpeCifically, a formula f is 
irrelevant to a query q w.r.t: il KB D.. if the result of revising A so that it does 
not entall j does not affeCt its entililrtlent of q. Formally, let 0 be a belief revision 
operator. Given a knowledge base ~ and a formula d>, ~ 0 ti> returns a (consistent!) 
revision of ~ that entails cPo Vsing this operator. we can define irrelevance as follows:3 

2 Another way to relate these tWo questlons is by considering the set 6f evidence empty: However; 
in such cases, the proposed solutions to the firsl question lfiviidize. 

3Note that if A is consistent. then either (A 0 f) or (.:1 0 -'f) will be simply .:1 U f. 

1-----------------------------·- ----
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~Iany definitions haw' beeri proposed in the litetature for a beliefr€i\'ision operator 
(e.g .. [Dalal. 1988: Winslett. 1990: Fagin d at.. 1983: ~ebel. 1989: Alchburron et al.. 
1 9S.Sj). There is little agreement on a single best definition. and the properties that are 
\\'idely considered desirable of sudi an operator (e.g .. the AGM postulates [Alchourron 
tf al .• 198.5]) give us little iMbrrrtation about the resulting properties of irrelevance. In 
this disserta.tion \\'f~ address directly t he notion of irrelevance. However. investigating 
connections between OUf analysis and helief revision is an interesting area of research. 

Our Approach 

In order for our analysis of irrelevance to be useful. we desire that it enable us to 
make sufficient distinctions to answer the following questjons: 

1. Can we decide automatically which formulas are irrelevant to a given query? 
Can. we do so..efficiently'? . 

2. If an irrelevant formula is removed. is inference guaranteed to be more efficient? 

3. HO\\, can we automatically deri.ve additional irrelevance claims? For example, 
does irrelevance of a formula imply the irrelevance of a syntactically related 
formula? 

In order. to capture the distinctions needed to answer these questions. we present 
an analysis of irrelevance in terms of the possible paths that. an inference engine 
may pursue in the solution of a query. \Ve present a.space of possible definitions of 
irrelevance and investigate the properties of various definitions in the space. In our 
discussion. we focus on inference mechanisms that attempt to construct derivations 
of answers to the query. and therefore. paths are actually the possible derivations 
that the inference mechanism may consider in its search. However. the framework is 
general and can accommodate other types of problem solving methods. An example 
of other methods \vill be discussed in Chapter i when \ve consider reasoning about 
physical systems. As examples of definitioPs in our space. we may consider f to be 
itrele\;ant if there is some derivation of q that does not use f. or if f is not used in 
any derivation of q. or if f is not used in any minimai del'ivation of q. The next 
section presents the space of definitions of irrelevance. 

2.3 J-\ Space.of Definitions 

2.3.1 . Preliminaries 

In our discussion we assume the theory bf the domain is represented by a knowledge 
base of closed formulas ~. in first or'det predicate calCulus. \Ve assume that the 
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inference mechanism employs a set of sound inference rules S. .-\ derivation D of 
a dosed formula t' from ~ is a sequence of formulas. 01 •••.• On, such that an == l.' 

and for each i (1 :S i :S n). either a', E ~. 0, ,is a logical axiom. or a, is the result 
of applying a rule in S to some elements ail" ..• 0" that appear prior to a,. The 
formulas a'l" ..• ai, are said to be immediate subgoills of a,. The set of formulas 
in D that do not have any subgoal is called the bas€ of the. derivation, denoted by 
8ase( D). The set Base( D) represents a "support set" for '1/.' in the knowledge base. 
We consider only derivations in which eyery Qj is a subgoal. of It· (not necessa.rily an 
immediate subgoal) . 

.-\ query is represented by a formula lj •. If~' is a closed formula (i.e., has no free 
variables), then the ans\ver is true if the inference mechanism can find some derivation 
of ~. from ~. and false otherwise.4 If li·. contains free variables, the answer is the 
set of assignments for the free variables. such .that the resulting closed formulas are 
derivable, froni ~;5 in this case. a derivation is a set containing a single derivation for 
each answer. A query may have seyeral derivations from a given knowledge base, and 
we denote the set of those derivations by 1)1t.(~) (note that if 'Ij' has free variables, __ 
then 1)1t,(~) is a set of sets of derivations}. 

Our goal is to define the meaning of an inelevance-claim stating that a formula 
<p is irrelevant to a query ~. w1th respect .to a knowledge base A. The. formula ¢ is 
called the subject of th~ irrelevance claim. 

2.3.2 The .Axes 

As stated, we describe a space of possible definitions of irrelevance. Definitions in 
the space vary along two axes. In the first axis we consider different ways of defining 
derivation irrelevance, i.e., irrelevance of a subject ¢ with respect to a single derivation 
D Of the query t/J. Derivation irrelevance is given by defining a binary predicat~ 
DI(¢, D). The following are a few examples of how I)J can be defined: 

• DI1(¢, D) iff ¢ ~ Base(D). 

• DI2(¢, D) iff ¢ ¢ D. 

• DI3(d;, D) iff 8ase(D) ~ cPo 

• D 14( ¢, D) Ifl Base( (}) ~ ¢, -.¢. 

"We can return unknov'n if neither i;) nor -I¢ are derivable. However t.hat does not a.ffect our 
discussion. 

1\ An alternative definition often considered (e.g .• in Prolog) is finding one variable binding that 
satisfies lhe..query formula. However. this distinCtion doei; not affeCt our discussion. 

I----------------------------~----,-~· -
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Definition DII requires that 0 not. be in the suppott set of the derivation D. Definition 
Dl2 is stronger and requires that 0 not be anywhere in D. Definition DJ3 is even 
stronger and requires that 0 not be a logical consequence ot the forr'nulas in Base(D), 
and D 14 requires that -,ep not be a logical consequence either. The relationship 
between these dennitions of D 1 ca.n .therefore be summarized as follows: 

Requiring that D 1 holds for all possible derivations of the query may be too re
strictive. Therefore. in the second axis We consider different subsets of the derivations 
of the query for which we require DI to hold. Formally. given the possible deriva
tions of '1/.' front ~, 'D~,(.:.l), we consider a subset 'Do(.:.l} of 'Dt:,(~) .• (which may be 
Vt.!,(~) itself). and require that DI nold for derivations in Vo(.~). For example, we_ 
can require D.! to hold only for the set of minimal derivations. In section 2.3.4. we 
consider several definitions of minimalit)i for a derivation. As another example, we 
can consider only the set oLderivations bounded. by Some. resource constraint. 

Given a choice for DI and 'Do .. we give two. definitions of i~Televance, depending 
On whether Dr is.required to hold for. all derivations in 'Do(~) or for some derivation 
in Vo{.:.l).6 Formally, a definition of irrelevance in our space is..given as follows: 

Definition 2.4: Suppose we are given:' 

L a. knowledge base A .. 

2. a closed formula ¢ (the subject), 

3. a query w, 
4. a predicate D/(i, D) specifying when a formula i is irrelevant witn respect to 

a derivation D, 

5. a subset 'D6(~) of 'D",(~). 

The formula ¢ is said to be weakly irrelevant to lJ' with respect to ~, D! and 'Do, 
denoted by WI(~,ljJ,Ll,DI,'D6), if DI(ip,D) holds for some Jj E Vo(Ll). 
The formula ¢ is said to be strongly irrelevant to t/.> witn respect to Ll, D I and 'Do, 
denoted by SI(¢,~"Ll,D!.'Do), if DI(¢.D} nolds for every D E 'Do(Ll). 
It 'DIJ'(.~) is empty (Le., 1/-1 is not derivable from ~ using $), the formula. rP is both 
weakly and strongly irreleva.nt to tp .. 1 

tlWe can also consider other ways of quantifying over.the set 'Da(A), such as requiring that DI 
holds for some percent of the derivations in 'Da(A}. Here we consider only universal and existential 
quantification. 
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In our discussion we want to refer to irrelevance of a et of formu las . Formally. 
we define irrelevance of a et of formu las by extending the defin ition of D I : 

Definition 2.5: If $ is a <;e of formulas. D I (<P . D ) holds If D I ( 0,. D) holds for every 
0, E <P . I 

The definitions of strong and weak irrelevance remain unchanged . It will also be 
u eful to state irrelevance claims that hold for a set of knowledge bases. For example. 
in the context of Horn ru le knowledge bases. we will want to know whether a rule is 
irrelevant with respect to all the knowledge bases that differ only in ground atomic 
facts . We extend the definitions to sets of knowledge bases as follows : 

Definition 2.6: Let ~ be a set of knowledge bases . We say that. ~ is weakly irrelevant 
to 1/.' with respect to ~ . denoted by tV I (<t> . ti. .. ::., Dl. '00 ). if <P is weakly ir relevant . to 
1./' with respect to every 1\8 in ::. i. e .. if I'V I {¢.v.',~. DI , '00) holds for every ~ E ~ . 
The definition for strong irrelevance is extended likewise. Note that . '00 is actually a 
function that for every given ~ E ::. returns a subset of V1t.( ~) . I 

Set of 
derivations 
to consider 

derivations 

Minimal derivations 
(no loops) 

All derivations 

Strong irrelevanc 

...-W1: 

51: 
Not used 
many 

derivation 

Not used in some 
derivation of the query. 

Derhation·lrrelevance: Irrelevance 
w.r.t a single derivation, D1. 

Figure 2.1: A space of definitions of irrelevance. The first axis consists of different 
definitions of derivation irrelevance. The second axis consists of the set of derivations 
considered . Weak irrelevance and strong irrelevance differ .00 the way we quantify 
DI, over the derivations cho en in the second axis . 

The space of definitions is summarized in Figure 2.1. In Example 2.2 presented 
earlier. we can see different kinds of irrelevance claims . The atom 91 (as well as the 
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atom 92) is weakly irrelevant to the query q == cal1TA(Fred.lOl). since there is a 
derivation at q that does not use 91 (i.e .. uses g~ instead), Consequently. n: 1(92. 
q. ~o. D 12 , 'Dq) holds. the atom 93 (as \':ell as 9~) is strongly Irrelevant to q. be~ 
cause nune of the derivations of q, use it. Consequently. S 1(93. q. ~o. D 12• 'Dq) and 
SI({g3.94}.q.~0.DI2.'Dq) hold. 

The atom qi = cimTA(Fred. '20'2) is strongly irrele\'ant to q if we consider deriva
tion irrelevance based on DI2• However. if we consider derivation irrelevance based 
on D 13 • it is not strongly irrelevant. since the .formulas used to derive q can alsq be 
used to derive qt. 

Finally. if \\le consider the set of all derivations of the query ql. 'Dill' then the atom 
passExam(Fred.210) is not strongly irrelevant to the query. since it can be used in 
a derivation of qi (to derive tookGradCourse(Fred)). However, if we consider only 
derivations iIi which Base( D). is minimal (Le., there is no subset of Base( D) that is 
enough, to derive the query), then passE:ram( Fred, 210) would not be part of any 
derivation ot i:JI' and would therefore be strongly irrelevant to it. _ .. __ .... ___ ._., 

2.3.3, Properties of Definitions In The Space 

Several general properties of definitions in the space will be useful in the analysis of 
specific definitions. The following lemma establishes an ordering, on definitions in the 
spate. and will enable us to derive properties of defini.tions based on, properties of 
other definitions in the space. 

Lemma 2.7: Lei DI. D Ii and D I) be definitions of derivation irrelevance. Let 4> be a 
set of formulas,1/.' be a query and E. Sl and ~2 be sets of knowledge bases. Finally, let 
'DOl VI, 1)2 be fU'iu;tions that given a 1\"8 ~,and a query 'Ii'. return. a subset of'PtJ!(t:1). 

1. If Dlt(r. D) =* Dlj(r, D) for any set-of formulas r and derivation D, then for 
any sel of fOf1'n.uias 41, q,uer.y t/-!, set of k.nowledge bases ~ and set 'Do 

and, 
W /(41, t/-.,~. Dlj, Va) ~ U'[(4), ~'.~, Dij , 'Do). 

2. If'DI(~) C 'D2(~). for any knowledge bilse.a E !:, then for any set of jor-mu/as 
4>, quet·y 11' and definition D 1 : 

holds. For weak irrelevance. the opposite holds 

. 

--I 
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. j. For any .... ff cP,l.', DI. '£. and 'Do 

S I ( tp ...... 52 \ D l. 1)0) :::} 1 r 1 ( cP, li. .. 52. D I. 'Do). 

$I(CP.I.', ~2' DI, 'Do) ::} SI(tp, t/." ~h D/~ 'Do) 

tV 1(4). It', '£.2. Dl. 'Do) => It'I(4), tb, ~l' DI. :Do) 

Proof: The proofs follow straightforwardly from the definitions. Consider Part 1. 
Suppose SI($, 1/.', t, DI

" 
'Do) holds and let ~ E !;. Therefore, for every deriva

tion D E 'Do(.~). D 1,($. D) holds and therefore, by the assumption of the lemma, 
DIJ ($, D) holds. Consequently, DI)($, D) holds for every D ~ 1)o(~), and so 
S 1 ( $, tb, '£., D Ij, 'Do) holds. The proof for IV I is similar. 

Part 2 about. strong irrelevance follows from the observation that if D I holds for 
ali derivations in the.set V 2(.l), it will hold also for all derivations in its subset 1)1(i~). 
For. weak irrelevance, the claim follows from the observation that if a property holds 
for some derivation in VI (.~). it w.il! obviously hold for some derivation in 1)2.(~). ,_ 

Parts 3 and 4 are immediate consequences of the definitions .• 

An important property of irrelevance tlairrts is whether they ,are closed under the 
union,of their subjects. This is important when a. system needs to determine whether 
it can use all the irrelevance claims it has, or whether using ce.rtain ones will falsify 
others. 

Observation 2.8: Closure under union: .Weak irrelevance claims are not closed 
under the union of their subjects in g~neral. In contrast, for strong irrelevance claims 
(and combinations of strong and weak irrelevance) we have a sufficient condition for 
closure. that depends onb' on. D I. Sp-ecifically, whenever 

DI(¢'l, D) 1\ DI(4)2' D) :::} Dl.(4)1 U 4>2~ D) 

holds for any derivation D and sets 4>114>2 , then for any .choice.of 'Do and I;, 

S 1l4> I , '1/.', !:, D I ,tJo) 1\ S 1 ( cf;)2, t/J, E. {) I. Va) ~ S 1(4) 1 LJ cf;)2, tP, ~, tJ I, 'Do) 

and 

However, 

~v /(4)1' lb,!:. DI,Do) 1\ HU(cf;)2; 1/', E, DI, 'D6) => W 1(4)1 U 4>2, tP, X:, Dl, 'Do) 

does not hold in general. 
The rever.se holds for all definitions, i.e .. jfJIGs..lrtel<:,.Y.anLt.6...1P and $1 C 4>, then 

4>1 is Irrelevant tfLtJ.'. 

1 
I 
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Proof: Suppose SI(¢I' 1/. .. ~. Dl. 'Do)" 81(<fJ2'l'.~, DI. 'Do) holds. and let ~ E ~. 
arld D be a derivation in '])0(.).). Since both DI($I' D) and DI(<fJ z• D) hold. also 
DI($1 U cI>2. tJ) holds. Because this holds for any D E 'Do(~) and ~ E ~, then 
8/($1 u ¢2.lt·,~. DI.Vo) holds. 

The proof for the second claim is similar. \\'e simply consider the derivation D for 
which DI(4)2. D) holds, and D/(<fJ 1 U <1>2, D) will hold. The weak irrelevance claims 
for 91 and 9'). iii Example 2.2 present a counterexample of the third implication. I 

Observation 2.9: Non-monotonicity: In order to exploit irrelevance claims. it is 
important to know whether their truth changes when the knowledge base changes. 
In general, adding new formulas to the knowledge base may cause a formula that 
waS irrelevant to become relevant. or .vice versa. a formula that was. not irrelevant can 
become irrelevant .. Weak irrelevance claims can change even when.the added formulas 
are logical consequences of the· knowledge base. In contrast. strong irrelevance claims. 
are mote .robust. Definitions of strong irrelevance claims have the property that they' 
do not change when t.he added knowledge is obtained by reasoning with the original 
knowledge base.7 Specifically. if ~ I- T and ~ is consistent, then 

Hence a strongly irrelevant formula can not become relevant by reasoning oli existing 
knowledge.s 

Proof: Suppose that SI("".v.." D.. DI')., 'Do} holds and suppose in contradiction that 
D is a derivation of 1/.., from AUT such that til E D and i/> ~ 4>. We create a derivation 
D' of 1/.' from A such that TED'. The only modification to D is to replace every 
appearance of T as a leaf in the proof tree by the derivation of t from ~. The result 
is a derivation of 1/J from A that includes 4>. Consequeiltly. 51(4). '1/.1, A, D I')., 'Do) does 
not hold. I 

As stated in our original motivations, (or most definitions of irrelevance (and in 
partiCular all the definitions we consider here), if <i> is irrelevant to '/f', it can be safely 
l'emoved from the knowledge base: 

Observation 2.10: Fot any definition of irrelevance that USes a definition of derlva:. 
tion irrelevance DI such that DI(rP. D) :::} DI\(ip; D), then 8 != 1/.' holds if and only 
if (A - ¢) F '1/..'. 

1This property also seems natural for our tdrilmon sense .notion of irrelevance. 
1\ Assuming our inference is monotonic. 
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Proof: Suppose IF I(6./;'.~. DJ. 'Do) holds. This means that it ~ I'- ~'. then 'Do(~) 
IS not en'lpty. and l.-' has SOI11f derivatioIl D .for which DI(<p. D) holds. The formula 0 

is not a member of Base( D) because D II (6. D) also holds. Therefore, the derivation 
D will also be a valid derivation from ~ -- <P. I 

The utility of removing an irrelevant formula is a more subtle. issue. Removing 
a formula that is only \\'eakly irrelevant may not speed inference. In fact, explana-
tion based learning systems [~linton et al.. 1989] do exactly the opposite, they add 
redundant rules. (which. ir .. our framework. would be considered weakly irrelevant). 
The utility of adding such rules is a subject of ongoing research (e.g. [Minton, 1988; 
Etzioni, 1990; Greiner and Jurisita. 1992: Etzioni and Minton, 1992]). 

For strong irrelevance, savings are guaranteed for many cases. For example, when 
considering all derivations of the query (i.e., 'Do == 1),;.), if SI(lp,v>,A, DI2, Vrp) holds, 
then deriving ti' .from ~ - $ costs no more than deriving it from ~ .. This property 
also holds if we consider a set of derivations 1)o(A), stich that the interence engine 
is always guaranteed to find one of the deri'.!ations in 1)0(6) before. it finds others. 
Removing strongly-irreleva.nt formulas yields saving~from severaL.sources: 

• Removing irrelevalit formulas prunes whole branches of the search space. 

• Much of the cost of'reasoning in a large knowledge base is in .doing database. 
lookups. RemOVIng a large number of irrelevant ground facts at the outset will 
significantly reduce th~ cost of each lookup op~ration. 

• If updates are made to the KB that concern onlyJrrelevant formulas, then we' 
need not recompute t.he answer to the query. 

• Space savings are achieved fr.om removing the irrelevant formulas. 

2.3.4 Exanipl~s of Definitions 
In this section we describe several instances of definitions in the space. We begin by 
showing how definitions in previous work can he couched in the space. 

Other Definitions From the Literature 

Subramaniall irivestigates several definitions of irrelevance, whiCh are all instances of 
weak irrelevance in our frameworK. The main definition. investigated in [Subramanian, 
1989] is the following: 

Definition 2.11: Let <P be a formula, ~) be a query and A be a knowledge base. -
The formula $ is said to be irrelevant to 'iJ.I, delioted by W 11 (4J, tPl 6.) if there exists a 
subset 6 1 of A, such that ~~I ~ 1> and 8\ 1= W. I 
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This definition can be couched in our framework as follows: 

Observation 2.12: For a complete set of inference rules S. 

Proof: Suppose n'/do. I;"~) holds. Therefore. there is. some subset ~l of ~ such 
that ~1 ~ 1/.' and ~ ~ <i> and there is some derivation D of ~, from ~I' Clearly, 
Base( D) ~ </>, and consequently. H' I( O,It'.~. D /3, V.;.) holds. 

Conversely, assume W/((j).!;.·.~.D/3,Vll') holds. Consequently. there is some 
derivation fJ of ~I from ~ such that Base(D) ~ <P. The KB consisting of 8ase(D) is 
a subset of ~ and does not entail cP. Consequently. Wll(¢.1L'.~) holds. I 

A variation of this definition that is described. in [Subramanian and Genesereth. 
198il can be formulated as H"I(<I>, 1/.'.~. D14 , V rt.}. Couching Subramanian's defini
tions in our framework highlights some of the properties of het, definitions, mainly 
the fact that removing irrelevant formulas may not always lead to speeding up infer=
enee. 

A definition of irrelevance. is described in [Srivastava and Ramakrishnan, 1992J. 
Their definition is equivalent to strong irrelevance when DI2 is quantified oVer the 
set of'all derivations of the query. Le .• it is eq\!ivalent to SI(¢,.,p,~. DI2! 'DtjJ). 

Several. resolution strategies are based .on removing irrelevant-clauses. For ex" 
ample, for refutation resolution, clauses containing pure literals9 can be shown to 
be strongly irrelevant (with resped to iJ I 1 and 'DII.), and can therefore be removed. 
Tautologies can bt sl.lown to b~ weakly irrelevant (with respect to DIl and 'DIP) and. 
therefore are rer.lOved by the tautology elimination strategy [Genesereth and Nilsson, 
1987]. 

The questioil of detecting when a query is independent Of an update is closely 
related to the :lotion of irrelevanct;. In Chapter 5, we show that definitioflS of in
dependence investigated by Elkan (Elkan, 1990] and Blakeley et al [Blakeley et al., 
1989] are equivalent to we~k irrelevance (specificallY, W [('P, 1/.>,~, DIll VIJI)). This 
observatlon enabled us t(} develop new algorithms for detecting..inde~en~enc~. 

Irrelevance with Minim,tl Derivations 

Interesting definitions of irrelevance arc obtained by considering cases in whiCh DI 
is required to hold only for ininimal derivati6no, i.e., \vhere the choiCe 1.'0 along 
the second_axis is the set of mitlirhal derivations. There are many ways 6f defining 
mirlimality of derivations. Here, We CO!lsider three po~sible definitions. Recall that 

\l A llteral is pure if and ouly if'it haS no instance that is complementary to an instance of another 
literal in the knowledge base [Genesereth and Nilsson, 19871. 

i , 
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a derivation is a sequence 01." .. On, a11d it can be viewed as a tree formed by the 
subgbal relation. The follo\\'ing are three possible definitions of minimality . 

. \11: A derivation D is minimal it does not have two identical formulas, 0 1 and 
0) suth that 0 1 is an ancestor of 0) . 

. \12: A derivation D is millinHd if whenever 01 and 02 are two identical nodes 
in the tree, their subtrees are identical. (essentially this means that if a formula 
is used In t\\'O plac(?s in the proof. then its derivation in both places is identical) . 

. \13: A derivation D is minimal if there is no other derivation of the query iJ' 
such. that Base(D') C 8ase(D) and 8ase(fjl) ¥: Bas(D). 

To see the difference between tne classes of derivations. consider Example 2.2 and 
assume we also had a rule 
rs : canTA(X. }') =* pass(.\', }'). 

Figure 2.2 shows three derivations. Deri.vation (a) is not a member of Ml because 
pass(Fred,202.) is a subgoal of the.Q4ery. Derivation (b) is a member of Ml but 
is ilot a member of M2 because pass( Fred, 202) is derived in two different ways. 
Finally. derivation (c) is a member of MI and M2, but not a member of M3 betause 
the quer)~ ·can be derived using a subseLof the base of the derivation (using only 
passExam( Fred, 202) and the rules). 

Note that Ml 2 M2 but Ml ~ M3. Interestingly, the definitions of strong 
irrelevance for M 1 and. M2 turn .out to be eq,uivalent: 

Lemma 2.13: .the definitions of strong irrelevance .are equivalent for Ml and ~/2. 

SI(</1, rJ"~' D 12, Ml) E: S l(iP, v.1, t, DI2, M2). 

Strong ir'relevance for M3 is stronger than the other two. i.e" 

Proof: Since )\11 ;2 M2, it follows from Lemma 2. i that 

To show the converse, we show that if D is a derivation of t/J from a knOWledge base 
~ E ~ such.thal-€/> E D and D.E MI, then there is a derivation (Y (of~) from A), 
suth that {jJ eJJ.! 'and D' E M2. Consequently. 
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,paSs ( Fred.:W2) 
I 

rs 

canTA(Fred.202) 
I 

r3 
~ 

eanTA(Jred.202) pass(Fred.202) tookGradCourse(Fred) 
I I I 

r3 r2 r4 

~ 
pass(Fred.202) tookGradCourse( Fred) 

1 . .1 
p'assExam.lrred.202) pass(Fred.202) 

I I I 
r~ "4 rj 

I.. I 
passExan'l (Fred .202) pass( Fr~d .202) 

, I. 
attendClass( Fred .202) 

I 

I .. 
pass Exam (Fred .202) 

(a) 

canTA (Fred .202) 
I 

r3 

~ 
pass(Fred.202) tookGradCburse(Fred) 

I I 
r2 r4 

(b) 

I. . I . 
passExam(Fred,202) pass(Fred,2101-) __ 

I 
r:! 

I, . 
passExam (Fred, 210) 

(e) 

Figure 2.2: Minimal derivations 

and therefore 
SI(4),?jJ, E, D/2, M2) => 51(4),?jJ, t, D12, MI). 

Let D a derivation such that i:/> E D and D E MI. Suppose T is a formula that 
appears twice (ot' more) in D with n6n identical subtrees, TI "nd T2• Let T be one of 
these subtrees in whiCh ¢ appears (if 4> does not appear in eitherTI or T2 then cho6se 
one arbitrarily). Replace all the subtrees 6f Tin D by t. Note, that since 4> E Ml, this 
transformation is well defined, Denote the resulting derivation by D'. The derivation 
iJ' is a valid derivation of the query, it includes q) and furthermore, i has a unique 
subtree in every appearance. \\;e repeat this transformation until we cannot find a 
formula T which appears with h\'o (or rTIOl'e) non identical derivation subtrees. The 
resulting derivation will be it. member Of M2 and will inClude ¢. Note that the number 

\ , 

,- . ~ ... ~ 
: 
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of. transformations must be finite. oecause the number of transformations we perform 
is at lnost the number of distinct formulas ill D. 

To show that strong irrelevance for .\13 entails the other two. we show the fol
lowing. Let D be a derivation such that <!> E Base(D) and D E lf3. We construct 
a derivation D' such that <p e 8ase({Y) and D' E JU1 as follows. For every pair of 
identical nodes i1. i'J E D such that i1 is an ancestor of i2. We replace the subtree of 
il by the subtree of 'f2,10 The resulting derivation D' is a member of All. Moreover. 
if tP E Base(D) then ¢ E 8ase( [J'). otherwise. D would not be a. member of .~f3. As 
before. this construction shows that 

and therefore 
SI(¢, It" s:, Dft. All) =? SI(<p.1}.·,~. DII , .\13). 

I 

It. should be. noted that r.emoving formulas that do not appear in minimal deriva
tions (of the. type Ml) will sp.eed up inference for many 'search strategies. employed. 
by inference.engines. For example, an inference mechanism performing depth-first 
search or .breadth first search w.ill always find a derivation of the query that belon,gs 
to Ml before it finds one that does not. 

In Chapter 3, we describe an algorithm for automatically deciding which formulas 
are strongly irrelevant to a ('~uery when considering M1 (and therefore also M2) for 
Horn rule theories. We also show that deciding which formulas are strongly irrelevant. 
for ft.13 is undecidabl~ in general. However, Lemma 2.13 implies that the algorithms 
of Chapter 3 provide a sufflciel)t condition for strong irrelevance for M3. 

Relationship to Truth Maintenance Systems 

Strong irrelevance for M3 can be charact~rized in tenns of labels in an assumption 
based tmt,h maintenance system (ATMS) [de Kleer, 1986]: 

Ob!;el'vation 2.14: Assume i.1 complete set of inference rules and let </J be a formlil.l 
and 'IjJ be a query. SI(</J, 1/',~, DIll M3) holds if and anly if ¢ does fiot appear in ailr 
ArMS label of T/J. 

Proof: An ATMS label of 11' is a set of support 5 such that S 1= tt, and such that 
there does not exist a subset 5' C S such that 5' 1= tt'. Clearly, S I( tP, tP, /)., DIll M3\ 
does not hold if and only if thete is some derivation D such that Buse( D) is a minima.. 
support set for v.,. The sel Base(D) \.;ill be the ATMS label fbI' t/J. I 

IOlf there Ilre several such pairs .. we do 80 in an arbitrary order. 
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This observation shows that e\'en though finding all formulas that cannot appear 
in the :\ T~lS labels of a query is undecidable, the algorithms that we present tor 
deciding strong irrele\iance can be used to prune formulas from consideration when 
computing AT~fS labels. 

Evidence nased Definitions Revisited 

As described in the beginning of this chapter. much ot the previous analysis of ir
relevance was done in a slightly different context. Specifically. it has addressed the 
following question: 

• Given a set of evidence £ and query q. which formulas are irrelevant to q with 
respect to the e\;id~nce? 

As stated, our analysis differs in that we want to know which part of our knowledge 
base.( that can be vie!.\'ed as evidence )Js irrelevant to the query. To_reconcile the t·,YO, 
we can ask the following qu~stion;_ .. 

• Given a knOWledge base ~ and a subset of it £ called the evidence, whiCh parts 
of ~ are irrelevanLto qd;iven the evidence? 

Intuitively. the formulas in £ ·are. basic assumptions about the domain that we 
want to use if possible. \Ve can define such a notion in our framework in several 
' .... ays. One way is to limit the set of derivations considered to those in which formulas .. 
in S, if they appear in a derivation D. must be in 8ase(D). This means tha.t we 
do not allow evidence to be detived from other formulas. A slightly stronger way of 
formalizing tLs notion is by considering derivations of the query that have minimal 
support with respect to the evidence e. denoted by 'De. ,as follows: 

Definition 2.1.5: A derivation D is said to have minimal support w.r.t. the evidence 
t if there does not exist a strict subset S §; 8ase(D) such that S u £ f- t/,J. I 

Intuitively. derivations in 'De use the formul.as in the evidence as much as possible. 
Returning to our example, if the query is q == canTA(Fred, lOll and the set of 

evidence is empty, then the at6nl passExam(Fred; 101) is not strongly irrelevant 
to the query. However, if our evidence includes the atom {pass(Fred, lOl)}, then 
passEiam( Fr'ed, 101) becomes strongly irrelevant to q; 

2.4 Aut.omatically Derivhlg Irrelevance Claims 
A key question that \ve address in this dissertation is how (and whether) irrelevance 
claims can be derived automatically. SpeCifically, \ve are interested. inJ:,vo_prohlems. 
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First. given a knowledge basco a query and a specific definition of irrelevance. we 
want to find automatically which formulas in the knowledge base are irrelevant to the 
query. Second. given an irrelevance claim. we want to derive other irrelevance claims 
that logically follow. We focus on solving the first problem. In Chapter 4 we show 
how results pertaining to the first problem can be used to solve the second. 

In general, deciding which formulas are irrelevant to a given query will be more 
expensive than answering the query itself, especially in large knowledge bases. Fur
thermore, if the knowledge base changes, the relevance reasoning neeas to be repeated. 
In order for our algorithms to be of practical interest, we will derive irrelevance claims 
by examining only a small and stable part of the I\B. and will derive irrdevance claims 
that hold independent of any changes that are made to other unex'amined parts. Fur
thernlore, our irrelevallce claims will hold for. a family of queries (giv~n by a query. 
schema). . 

We examilie the question .of automatically derh~ing irrelevance claims for Horn 
know ledge bases that consist of.a set of Horn rules.1' and a set of ground atomic 
facts G. We.distinguish two sets of predicates in the KB: base predicates (often called 
EDB predicates) and derived predicates (IDB predicates). The base predicates are 
those .that appear in .the ground facts of G. The derived predicates are those that 
appear in t.he.consequents of the rules. For syntactic. convenience,. We assume that. 
base predicates do not appear in the consequents of rules. The KB consisting of Given 
a set. of rules P and ground facts G, can also be yiewed as defining relatiol'!s for the 
derived predicates .in terms of the base predicates. 

Many of the interactions between rules in a knowledge base can be deduced by 
considering the semantics of some of the predicates that appear in them, such as order 
predicates (=, :j:, $, <, ~, » or sort predicates. For instance, in Example 2.2, 93 
and·g4 were deemed strongly irrelevant by considering the semantics of the predicate 
~. We therefore distinguish a subset of the predicates which we name constraint 
predicates (or interpreteiJ predicates). These predicates will be treated much like 
the EDB predicates, with the difference being that their semantics will be enforced 
in our relevance reasoning. A constraint formula is a formula in some language 
[, for expressing constraints that involves only literals Of constraint predicates and 
logical connectives (e.g., disjunction, conjunction. negation). For example the formula 
Even (x) 1\ (x > 100) is a constraint if the predicate Even is a sort predicate. We 
place few restrictions on the properties that the constraint predicates need to satisfy. 
Formally, a formula f (in the language [,). with free variables Xl;'" , Xn, describes 
a (possibly infinite) relation Rj(X1, ••• , Xn), whiCh is the set of all tuples satisfying 
the constraiIlts expressed QY f. We assume the following properties of constraint 
fOrmulas: 

Closure: GIven fflrrhuhls Ii and /2, it is possible to effectively construct formulas 
tha.t express: 
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• The join bf lilt and Rh' 

• A projection of Hit (i.e .. ;:I. rl;'iation consisting of only it subset of the atgu· 
ments of Rlt ). 

• A selection (ft=;Rit. where i and j are some columns of Rit (i.e .. a relation 
consisting of only tuples in which columns i and j are equal). 

• A selection (j.;:!!:cRh' where i is some column of HIt and G is a tonstant in 
the language £. 

Equivalence: Giv(:n formulas_fl <},nd 12. it is decidable whether R!.t = Rh . 

Satisfiability: Given a formula I. it is decidable whp.ther Rj i,s nonemp~y.l1 

Finiteness: Let C be a finite set of constants in the language £. and let j: be a. 
finite set bf formulas in the language·C that have at most 1i free variables (for. 
some fixed, n) and only constants from C. Then. applications of the operators 
(discussed in the ClOsure Property) to furmulas.in :F maY"create only a finite 
number of nonequiyalent formulas over n (or fewer) free variables. 

Moreover , if f is. a formula with a tree variable X, then f can imply X = c, 
\V,here c is a constant of the language £, only if c appears in f. 

The Closure condition guarantees. that We can perform the basic manipulations 
of the constraints, within ,our .constraint language. The second an third conditions. 
guarantee that we can identify two equivalent constraints. Tl:e Finiteness constraint 
guarantees that we only have a finite number of non isomorphiC constraints. In 
Chapter 31 we discuss the case in which the Fiuiteness condition does not hold. the 
procedures needed to compute the closure operations, equivalence and satisfiability 
are assumed to be given.1Z 

These conditions 'cover a wide class of interpreted constraints. The following are 
it few examp.les: 

• Ord~r constraints: Th'e language consist.ing of the predicates =, :f, ~I <, 
;:::. > and the connectiw;s 1\ and V. If we allow only conjl''1ctions, the Closure 
condition will not be satisfied. This special case is treated in Section 3.2.1. 

• Sort constraints: A constraint language based on a finite sort tlie.rru:cily, and 
the connectives A, V and ...,. 

II Note tllat if we have a formula FALSE in our language, denoting the empty tel",tion, then the 
Satisfiilbility Property will follow from the Equivillence Property. 

12Typically, these procedures are effiCient. For exil\'nple, for order constraints, testing equivalence 
is cubic in the number of variables. 
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• Finite, given relation: Often, a given relati6!1 that is relatively small and 
stable tan be best viewed as a constraint. Any given finite relation satisfies the 
properties that we require. 

Hereafter, a constraint will refer to a constraint formula In some constraint lan
guage C. 

Finally, we also consider cases in which the rules contain negated literals in their 
antecedents (and are therefore no longer Horn). In such cases, we assume: 

• The negation is stratified [Ullman, 1989}P 

• The negation is safe, i.e., if a variable appears in a negative literal in the an
tecedent then it also appears in, a positive literal in the antecedent. . 

We consider queries that are. atoms which are either,ground, (i.e., is p(a) entailed 
by PUG?.), or contain free variables (i.e., find some, or all, x such that p(X) is 
entailed by 'P U G). .. 

In many applications,using Horn,rule knowledge bases, it is the case tha.t the, bulk 
of the ·KB is ground facts, a.nd the ground facts are much more prone to frequent_ 
changes than the remainder of the KB. Ther.efore, we address the irrelevance problem 
for the set .of knowledge bases that. differ only on ground facts. Specifically, we 
address the following question. Let 'P be a set .of rules, and let. ~p be the 'set of. 
knowledge bases of the form 'P U G, where G. is a set of ground atomic facts for the 
EDB predicates. The question then is whether we can decide whether a given fact ¢ 
is irrelevant to the query 1/.', i.e., does SI(¢,'I/J,Ep,D/2,t» or WI(¢,'I/J,Ep,DI2,t» 
hold. Note that in Horn rule KBs, D II and D 12 are eq4ivalent for the rules and the 
EDB formulas. For IDB formulas, D II, is trivially true. Therefore, we consider the 
definition D 12 in our investigations. 

A summary of the decidability results pertaining to this question is shown in 
Table 2.1. _ As we prove below ~ weak irrelevance is undecidable whenever the rules 
contain recursion. In contrast, strong irrelevance is efficiently decidable for a larger 
class of languages. In Chapter 3 we present algorithms for deriving irrelevance for 
several cases of strong-irrelevance, including irrelevance under minimal derivations. 
Chapter 5 describes an a.lgorithm fot detecting weak irrelevance in the presence of 
constraints. In the next section we prove a few undecidable cases of irrelevance. 

The complexity of the algorithms we describe are all linear in the number of rules 
in the KB and do not depend on the number of ground facts. The complexity is 
exponential in the arity of predicates. When we consider irrelevance under minimal 
derivations, the algorithms are doubly exponenti~l in the arity of the prediCates. 

l3The rules iue stratified if there are no dependency cycles that involve negations between the 
predicates in the KB. The dependency graph of the KB haS one node for every predicate and there 
is an arc from p lO.q if p appears in the antecedent of iI. rule whose consequent is q. 

1----------------------------------
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However. arities of predicates tend to be \'ery small (e.g .. frarne systems usually 
employ mostly binary predicates). Furthermore. we believe that exponential running 
time is not likely to occur in practice (since finding examples with exp<;mential running 
time requires careful crafting of the rules),14 and so, the algorithms we present will 
be efficient in practiCe. 

.. .. .. . .. 
Language Strong .1rrelevan£e Weak Irrelevance 

All 1 ~Iinifual Minimal Support All 
-. _. Derivaqons Derivat.ions Derivations Derivations 

Horn rules "lith Decidable Decidable 
no reCU1.:-'on Follows from [~ir.er. 1988J Follows from [~agi v. 1988] 
:\0 recursion + Decidable Decidable 
<;onstrai nts Follows from. <:,hapter 3 Chapter 5 
Datalog Decidable Undecidable 

~hapter 3 Lemma 2.17 1 Lemma 2.16 
Datalog with _ Decidable Undecidable 
constraints Gh.~pter 3 Lemma 2.17 I Lemma 2.16 . -
Genez:al Horn rules Undecidable Follows from lAbiteboul and Hull. 1988J. 
Datalog with Undecidable _ 
Stratified Negation Lemma 2.18 Lemma 2.17 I Lemma 2.16 
Negated base Decidable Undecidable 
predicates Section 3.4 .. Lemma 2.17 1 Lemma 2.16 
Unary base Decidable 

.. predicates [Levy et ol.. 1993J 

Table 2..l;J)eCidability of deriving irrelevance claims 

2.4.1 A Few Undecidable Cases 

The following shows that weak irrelevance is undeCidable even for function-free Horn 
rules (i.e., datalog): 

Lemma 2.16: Let P be a set of datalog rules and V! be a query. Determining whether 
WI(iP,'li','Ep,DI2 ,'D..;.) holds is undecidable even if the rules have no interptetedpred
icates. 

Proof: Let r E 'P and 1/.' be a query. We prove .the lemma by showing that the 
claim W l(r, 1/.1, ~p, DI2 , Z,II') holds if and only if r is redundant, i.e., the set of r.ules -
'P-r is equivalent to the set 'P. In proof. suppose that IVI(7\1/..I,'tp ,DI2,'DI/I) holds, 
then for any knowledge base.~ E'~p, W l(r, 1/..',~, Dl2, 'DtJ.) holds. Therefore, if there 
is a derivation Of '1/.', then there is one.that does not use r. Consequently, t can be 
----------~.~--~----~---

14Specifkally. it requires rules that create in their consequents permutations of the variables from 
their antecedents 

'1 
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removed from P without changing the answer to ti'. regardless of the ground fact5 
in the KB. and therefore. r is redundant, Conversely, if r is redund.'l.!!t.. that means 
that for ever>' ~ ESp. if t' is provable. there IS a derivation that doe::.r. \ contain r. 
Therefore. I·V 1(1', ti'. ~P. D12• Vr:.) holds. 

Hov,'ever. it follows from [Shmueli, 198il that redundancy. i~ undecidable for dat
albg theories. Therefore. weak irrelevance i:, undecidable. I . 

It should be noted that SubI'amanian [Subramanian, 1989] states a similar result 
fer D 13 , but does not give a proof. The following lemma shows that strong irrelevance 
under minimal-support deri\'ations is also undecidable: 

Lemma 2.17: Determining whether SI{¢.'I1I,'f.'P,DI~, 1\13) holds is undecidable JOI' 

data/og. knowledge bases without interpreted predicates. 

Proof: We prove the. lemma by reducing the containment problem of datalog prO
grams to.the strong irrelevance problem for M3 . . Since it Jollows ftom [Shmueli, 1987] 
that containment is undecidable, strong irrelevance for M3 is also. undecidable .. 

Let P1 and P2 be two datalog programs .. Let e be a new EDB Eredic.ate appearing 
nowhere in PI or P2• We construct a program P3 as follows: 

PI (X) A e(X) => P3(X) 
P2(X) :::} P3(X) 

We show that SI(e(X),P3(X), !;P3, D12 , M3) holds if and only .if Pi ~ P2• Suppose. 
P1 ~ Pz holds. We· show that fer'any given constant a, e(a) cannot be part of a 
minimal-support derivation of P3(a). Suppose G is a database from which e(a) is part 
of a minimal support derivation D of P3(a). We can assume that G contains only 
the ground atoms in Base(D}. The database G - e(a) is therefore enough to derive 
Pl{a). However, since PI ~ P2, the database G - e(a) is also enough for deriving 
P2{a), and therefore, P3(a). However, this would mean that D is not a minimal 
support derivation because the derivation of Pa(a) through p2(a) uses a strict subset 
of Base(iJ). 

Conversely, suppose PI ~ h. Therefore, there is a database G and a constant a 
such that Pl(a) E FI(G) and P2(a) ¢. P2(G). Consider the database G U e(a), and let 
D be it. minirnal'-support derivation of Pl{a). The formula. e(a) will now be part t f 
a minimal support derivation of P3(a), constructed from D and e3{a), using the first 
r.ule. Conse~uently. S/{e(X).P3(X). ~P3\ D12 , M3) does riot hold. I 

Finally, we .sho\\' that strong irrelevance is undecidable when we allow the rul~s 
to have stratified negati.:>n. in our discussion, we assume..perfeltt mo..tel semantiCs of 
the rules (d. [Ullman, 1989]) .. 15 

15The perfcc,t inod~l of a set of rules is the one computed in a bottonl"UP fashion,_stratun'Lby 
stratum. 
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Lemma 2.18: Lef P bt~ a set of datalog rults lL'ith stratified negation arid rEP. De
termining whether 5'[(7'. t\ .!;p, D12 , T\.) i8 11lldeddabIF, fPen. ifP has no inferprrfed 
predicates. 

Proof: Testing equivalence of two datalog programs ;s undecidable [Shmueli, 19871. 
We will reduce the equivalence problem to the irrelevance problem of a rule in a 
stratified program, i.e., we show that if there is an algorithm for deciding whether a 
rule r 'in a datalog knowledge base P is strongly irr~leyant, then We can design an 
algorithm for testing equivalence of two programs. 

Let PI and P2 be two programs with query-predicates PI and P2. 16 \Vithout loss 
of generality we can assume that PI and P2 have distinct sets of IDB pred;cates. To. 
test equlvalence, it is enough to test whether PI ;2 1'2 and P2 2 Pl' Let Q be the 
program containing the rules of 'PI and. P2 and the rule 

where q is the query predicate of Q and it appears nowhere in PI or P2 • Note that 
Q is a stratified program, sinc(> 7' .is the only rule containing negation. Clearly, l' is 
strbI'J.gly irrelevant to q if and only' if 'P2 ;2 'Pl. since l' will be used in a derivation 
if and only irthere is some database in which some ground tuple is a member of .pI 
and not. of P2. In a similar fashion, we can create ;i program with a rule 1" which 
will be strongly irrelevant if and only if PI ;;2 P2• Consequently, if .rule irrelevance 
is decidable f6rprograms with stratified negation, then program equivalence will. be 
decidable .• 

Chapter 3 and [Levy et al., 1993] describe restrictions on stratified. negatipQ .. in. 
which strong irrelevance is still decidabie. ____ _ 

2.5 Summary and Related Work 

'Ve have presented a general framework for analyzing and comparing definitions of . 
irrelevance. The framework is based on a proof-theoretic analysis of the notion of 
irrelevance, and therefore enables us- to address the two key issues in relevance rea
soning: automatiCally deriving irrelevance claims and the utility of removing irrele
vant formulas. Aside from suggesting new definitions of irrelevance, the framework 
encompasses previous definitions that were discussed in the literature. For example, 
as will be discussed ill Chapter .S, the frame\vork sheds ne.w light on the problem 
of detecting independence of qu~ries ftom updates. Within .the framework, we have 
identified a class of irrelevance claims. narnely strong irrelevance, which hav.e~several 

1
6 Recall that the programs Pi and P2 arc equivalent if for any datilba:se. the relation computed. 

for P! is lht' same as that computed for P2. 
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desirable properties. First. remo\'iIlg strongly irrelevant formulas is guaranteed nevcr 
to slow inference (and usually speed it up significantly). In Chapter 4 we \\'ill present 
E.'xperimental results to \'alidate th<:' impact of these speedups. Second. We demon~ 
strate in Chapter 3 that for some languages, it is possible to. efficiently decide which 
formulas are strongly irrelevant to a given query. Finally, strong irrelevance satisfies 
several properties that have been argued to be natural for the common Sense notion 
of irrelevance (such as closure under union and some forms of monotonicity). 

The notion of irrelevance has been formally investigated in the philosophy litera
ture [Keynes, 1921: Carnap, 19.50; Gardenfors, 19i81. As stated earlier, the focus of 
the discussion there waS on form?.lizing a notion of irrelevance that would fit common 
sense notions of the word. The discussion did not concern itself with the computa
tional aspects of reasoning about irrelevance. as we focus on here. Moreover, the focus 
of the discussion.in .that literature.is on analYZing irrelevance \V.r.t. a set of evidence. 
which is usually. treated as a closed theory (i·.e .. independent of changes in .the ·form 
of the formulas. or the .inference mechanism). In our analy.sis, we are concerned with 
finding irrelevant formulas in a largt: 1\B .. where the form of the KB and the inference 
mechanism play key roles. 

A related concept discussed in the formal logic community is of relevance logics 
(e.g .. , [Anderson and Belnap, 19i5; Dunn, 1986; Avron, 1992}). The key idea in 
relevance logics is to modify the logic and the. inference rules such that only Televant 
implications r.an .be made. HO\vever, two issues are still largely open in this field. 
The .first is ..devising clean and. intui.tive semantics for these logics, and the second 
is p.roviding tractable inference for them. In contrast, our analysis of irrelevance 
assumes that the underlying·logic remains unchanged. 

Within AI. the notion of irrelevance was used rather informally in various works, 
such as RLL [Greiner, 1980] and compositional modeling [Falkenhainer and Forbus, 
1991]. Irrelevance was investigated extensively in the context of probabilistic reason" 
ing [Pearl, 1988]. However, in that context, irrelevance has a natural definition based 
on the notion .of conditional iIidependence. This notion does not carryover to the 
context of logital knowledge bases. 

The work most related to ours is the analysis of irrelevance given by Subra
manian [Subramanian and Genesereth, 1987; Subramania.n, 1989]. Subramanian's 
motivations for analyziflg irrelevance are similar to outs, namely, reformulating the 
knowledge base to create Olle that iR sithpler and will therefore lead to more effiCient 
intE'rence. However, her framework does !lot pro\;ide suffiCient distinctions .to enable 
Olle to ai1alyze the issues of deriving irrelevance claims. and the utility of doing so. 
Our frarhewor.k cari be viewed as a rennernent ot hers, where in. addition to. conSid
ering the fortn of the l\B. we-also consider the possible derivations that an inference. 
mechar'i~<)in cail pursue._ The sp(Scifir definitions that she considers are formulated in 
bur frAmework as variations of Wt'ak irrelevance. Subramanian also defined Ii class of 

1---------------------------------
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corllputationa/-i rrelevtlTit:e c1ai ms whose exploi tat ion leads to com pu ta t ional savings. 
but only gave some straightforward examples of suth cla.ifns. Our class of strong; 
irrelevance claims is a prime example of computatior'tal"iI'relevaI'lce claims. 

It should be noted that in [Subramanian and Genesereth, 1987], a definition 
of strong-irrelevance is given. However. instances satisfying this definition are not 
necessarily instances of computational irrelevance. For instance. under her defi
nition. in Example 2.2, the atoms 91-94 are also strorigly irrelevant to the query 
cariTA(Fl'ed, 101). Finally, Subramanian discusses several algorithms for detecting 
irrelevance. However. they focus on the case of propositional logic I\Bs and require 
solving the query as part of the algorithm. Consequently. their utility is questionable. 
She considers an extension of the algorithrll to the first order case, using the concept of 
a definability graph. This graph d('Iiotes or)ly .the dependencies between predicates in. 
the KB. and therefore does not enable relevance reasoning beyond simple reachability 
tests. -------------_._-'----_._. 



Chapter 3 

The Q1:lery-tree 

In the previous chapter We posed the. problem of automatically deriving irrelevance. 
claiiTIs. This chapter describes algorithms for automatically deriving strong in'de-. 
\iarlce claims. Recall that a formula is strongly irrelevant to a query if some condition 
(D I) holds for all the derivations in some set Va of derivations of the query. There
fore, in order to deem a formula strongly irrelevant, we need to meet two challenges. 
The first is to establish p~operties Of a possibly. infinite. set of.derivations by a finite. 
procedure. The second is that even inhere. is only a finite number of derivations, an 
algorithm that. actually enumerates all of them will be of little.interest, both theo
retically and in practice. Therefore, we would like an efficient method .of establishing 
Rroperties of a set of derivations without actually enumerating them. 

This chaptet describes a novel tool. the query-treE, (see example in Figure 3.2) 
that is used to establish effiCiently the properties Of a set of derivations. The query
tree is a data structure that encodes a (possibly infinite) set of derivations So that 
profJerties of that set can be established by inspecting the tree. For example, by 
inspecting the query-tree we can check whether it. certain formula can be part of some 
derivation of the query, and therefore decide whether it is strongly irrelevant to the 
query. The query-tree is a general method for encoding a given set of de'rivations. 
Query-trees differ depending on which set of derivations \ve want the tree to encode. 
The challenge in building it. query-trer is t6 ensure that it encodes all and only the 
derivations in which we are inter:. ,ted. When it does, inspecting the query-tree is 
akin to inspecting the entire set of derivations. 

We begin in Section 3.1 by describing the principles underlying the query-tree -
111cthod. We present a general inethod for building a query-tree that encodes a 
desired set of derivations. In the subsequent sections describe several instances of 
the query-tree. obtained by follmving the general method. Section 3.2 corlsiders the 
problem of building a query-tree for function"ftee Horn-rule Knowledge bases with in
terpreted predicates (in this chapter Wf' assume> that the interpreted predicates satisfy 

11 
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the conditions given in Section 2.4). \\,p show how to build a query-tree that ericodes 
precisely the set of possible derivations bf the query. It also dIscusses extending the 
algorithm to the case where rules may have function symbols. In Section 3.a \\'e de~ 
scribe now to build a query-tree that encodes only the set of minimol derivations of 
the query: Section 3.4 considers an extf'lnsion beyond Horn rule knowledge oases. We 
show hbW to build a query-tree that encodes precisely the set of derivations of the 
query when the rules have negated EDB literals in the antecedent. 

3.1 The Query-tree Method 

3.1.1 Symbolic Der.ivations 

In the context of Horn rule know.!edge bases, \ve view a derivation as a tree consisti.ng 
of goal-nodes and rule-nodes. {see Figure 3.1(a)) .. The root of the tree is a goal-mide 
containing the query atom. If a goal-node 9 was. derived using a rule r and the 
antecedents gl,'" ,gm, then r is.the child of g.and its children are 9.L~., .. ,gm' The 
leaves of a derivation are grourid atomic facts from .the database. 

Since the query-tree will be built based only on the rules in the knowledge base 
(without looking at the. ground atomic formulas), it will encode-a set of derivations 
by encoding a .set of symbolic derivations (see Figure 3.1(b)). Like a deriyation, 
the·root of a symbolic derivation tree is a goal-node.of.the query atom (which does_ 
not have to be ground). __ 'the child of a goal"node is a .rule-node containing a rule 
whose consequent unifies with the goal-node. The rule-node has a goal~node child 
for every conjunct in its antecedent 1 and the contents of each such goal~n6de is the 
corresponding conjunct in the unification of the rule with g. The leaves of a symbolic 
derivation tree contain atoms of EDB predicates 61' atoms of interpreted predicates. 
A symbolic derivation tree contains only variables and constants that appear in the 
rules. If a rule-node r' in a sYll'lbolic derivation tree contains the rule r from the 
knowledg¢ nase, we say that r' ir a rule of r. Similarly, it 9 is a goal-node containing 
an atom of the predicate p, we say that 9 is a node of p . . We assume that the variable 
patterns in a symbolic derivation tree implicitly. represent all the equalities implied 
hy the interpreted constraints, i.e .. it the conjullction of the interpreted constraints in 
the rules imply that h .... o variables.\' and }' niust be equaL I then (he same variable 
appears in all the positions of .\' and }'. 

A symbolic derivation represelits the sN of derivations that can be obtained by 
assigning constants to the vatiiih!ps in the derivation. Therefore. a set of sYlnbolic 
derivations represents the union of derivutiolis rer!reserHed by each element of the.set. 

In order to build a query-tree that eliablC'!:l liS to establish sonie prop¢rty of a set 

I For exanlple. one rule contains thr literal X 5 r and the other conlilliis .\' ~ )', 
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Figure 3.1: (a) is a ground derivation. (b) is a satisfiable symbolic derivation and (c) 
is an unsatisfiable symbolic derivation. 

of derivations V, we first identify a set of symbolic derivations rt, such that encoding 
the set IT will enable us t6 deduce the properties we need about 'D. For example, if 
we are building a query-tree to encode all aerh;ations of the query when interpreted 
preditates may exist in the rules. the set n will be the symbolic derivations with 
tne property that the interpreted constraints on the variables in the derivation are. 
satisfiable. We denote this set by nlQt. For example, in Figure 3.1 j considering 
the semantics of the order predicates implies that derivation (b) is satisfiable; while 
derivation (c) is not satisfiable. Given such a set IT, our goal will be to build a 
query-tree that encodes fm~cisely the symbol it derivations in n. In our discussion. 
we use n both to denot(; a set of symbolic derivations or to denote the property that 
distingllishes symbolic o&rivations in the s('t. 
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In this chapter. we consider properties n on symbolic derivations tl1at can be 
recognized by finite labeling. Formally. t his means the following: 

• There is a finite nun'lber of labels (of finite size) that can be attached to nodes 
of symbolic derivation trees. The number of such labels. depends only on the 
size of the knowledge base .(and not 011 the size of the symbolic derivation). 

• The label of a node is computable from th(> labels of its children (or vice versa). 

• Whether a symbolic derivation tree d satisfies property n can be computed from 
the labels of d. Specifically. we distinguish one label called the Inconsistent. label. 
It should be the case that it sYrilbolic derivation tree d has the property n if 
none of its nodes has the inconsistent label. _ 

Essentially. the finite labeling.conditiofl.means that the set of symbolic derivation 
trees in n tan be recognized by a finite·tree automaton.:'!' The query-tree can be 
viewed as a recognizer. for _these symbolic derivations .. The first condition. assures 
t hat. the number of states in the .automaton is finite ·and therefore that we will be 
able to identify n using a finite structure. The second condition guarantees tnat we 
can specify the t.ransitions of the automaton. Specifically. this means that gP. en an 
input symbol and the current state. the. next state can be determined by inspecting 
the current state alonE and not by inspecting the entire path that led .to the current 
state. Finally. the third condition guarantees that examining the labels is .indeed 
sufficient to recognize symbolic deri.vations t.hat satisfy n. 'We assume that the labels 
completely specify the equality relations on the variables in the node. that are enta.iled 
by the interpreted constraints in the rules. 

Returning to our example, to encode the set oi symbolic derivhtions n"ah the 
label of a node will be a .constraint·label describing the constraints that the instances 
of that node must satisfy. Note that because \'.e require the constraint language to 
satisfy the Finiteness Property (Section 2.4). the number of non-equivalent labels will 
be finite. A symbolic derivation will be satisfiable if arid only if the constraint labels 
of the nodes are satisfiable. 

3.1.2 Building A Query-tree 

The query-tree is a sYll1bolic AND-OR tree (a.k.a. rule-goal tree). It consists of goal~ 
nodes alld.rule-nodes (see Figure 3.2). The toot of the tree is a goal~node containing 
the atorhof the query. Each thild of a goal-node containing 9 is a rule-node. containing 
a rule from the knowledge base. whose consequent unifies with g. The rule-node haS 
a goal-node.child for evcry conjunct in its antecedent. alid the contents of each such 

2Sce [Slutzki. 1985J for an cxPOSttibn bf t ire automata. 

I-----------------------------~·--· 
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goal-node is the corresponding conjunct in the unification ot the rule with g. rnlike 
symbolic derivation trees. it rule-node in the query-tree will nbt have a child fbr an 
antecedent of an interpreted ptediCate.3 

The knowledge base.! consists of the following rules: 

rt : badPoint(X) /\ path(.\:, n /\ gO(J(lPointO') :::} goodPilth(X, }'). 
r2 : link(X. n => path(S. r). 
r3 : l i 12 k (X, Z) /\ pat h (Z. }') => pa t h (S. }'), 
r4 : step(X. n => link(S. n. 
r5 : bigStep(X. }') :;. link(S. }'). 
The following constraints are given on the ground facts: 

badPoint(S) => 100 < X. < 200, . 
step(X. n => X < }'. 
gooiiPoint(X) => 150 < X < 170. 
bigStep(S, n => S < 'laO /\ }' > 20q. 

good~a,th{.'\. n {lob <:.'\ <: }., < 170. r > 150} 

badP.oint(.'\) 
{I~,\' < 170L 

I 
rl 

. ". 

path(X, }') 
{IOO< .'\.< }., <: 170, }'> 150} 

~ 

good Point(},) 
{ 150 <: r <: 170} 

r2 r3 

{IOO <.'\ <)" < 170.}' >.lSO} I . ~ ., 
l' k(\"}') link{X.Z) path(Z.}'j ,.... --?-i I {100 < .\ 1< Z <: 170} {1oo < i <: Y < 170, Y > 150} 

~L _ -J r4 1'4 

I I . {" .. 
step(X. n step(X. Z) 100 < X < Z < 170} . 

{IOO < .'\ < r <: 170.}' > I50} 

Figure 3.2: An example query-tree. Note that the rule rs is ·not expanded because 
it would result in an inconsistent constraint label. The expanded equivalent of the 
noae path(Z, }'") is path(X. }'). . 

There are two key issues in building a query-tree. First. it a knowledge base has 
recursive rules, a simple nlinded {op.down construction of the query-tree will not ter
minate, Second. we want to guarantee that the query-tree encodes preCisely the set Of 
symbollc derivatiolls that satisfy the property 11. Theretore, we l'teed some prinCipled 
method for terfni:lflting the construction of the tree by not expanding some Of the 
iiodes. We do this by attacnitig Labels to. nodes. in the tree (ultimately. these will be 

JThc constraints ililplicd bi tli{' 1I1l('i'prpl{od prrtlitatcs will oe reflecled in the labels 6f the ntitles, 
dcstribcd shortly. 
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the safne labels. we use in showing that 11 can be recognized by a finit.e-Iabeling). The 
labels..partition the possible goal~nodes that can appear in the tree into equivalence 
classes. Two nodes are rOllsidered equivalent if there is an isomorphism bet\\'een 
ther'n and between their labels (where the isomorphism is defined by a mapping on. 
the \'ariabl~s of the nodes). Based on the labels. \,ie use the following termination 
condition. A goal~node 9 will not be further expanded if: 

• 9 is a node of an EDB predicate. or 

• Thc-fC are no rules that can be unified with g. or 

• Expanding the node 9 with a rule r will result in it child. node with the incon
sistent label. or 

• There is some other goal-node in t.he tr,ee gl such that 9.anJ 91 are equivalent 
and sue, that.91 has already been expanded.4 We refer to 91 as the e:rpanded 
cquit'a./ent .of 9. denoted by Eq(g). 

lntuitiveb:. there is, no need to expalld, both 9 and 91 because the labeling.sc~eme 
guarantees that. the subtrees that would appear under the 9 a.re:precisely the ones that. 
would aRpear under 91. If a node 9 has· an inconsistent label. it means that th1s node 
carinot .appear in .derivations that satisfy n. Fot-example. in Figure 3.2, expanding 
the rule r5 will result. in .an inconsistent (i.e .• unsatisfiable) constraint label. 

In order. to complete. the sp'ecification .of an algorithm for creating a ,query-tree, 
we need some method for assigning labels to nodes in the tree. Of course, the.method . 
must guarantee that the. resulting query-tree.encodes the desired set of derivations. 
The specific methods ar.e described in the subsequent sections. Each method spedfles 
three components: 

1. .An initial label Co for. the. root Of the query-tree. 

2. A function t D Label( r, c. 9) that accepts a goal~node 9 with label c ana a rule 
r that unifies with 9 and returns a label (or the resulting tule-node child of 9. 

3. A function T Dpfoj(r. e. c, g) that accepts a label c for a rule-node containing 
a rule f that was unified with its father using a unifier e. ana a literal 9 it the 
antecedent of 7', and returns a label for the goal-node child corresponding to 9. 

Given these funCtiofls, a query-tree can be built in two steps. In the first. the tree 
is expanded in a top-down fashion. using the above termination condition and the 
labeling procedure. In the second step. we shtJ.J.:e the ti'ee by temovi.ng all the nodes 
that art' not i'eachable from the base predicates and from the rooL5 The details of 
the tWb steps arc sho\\'n in Figures 3.3 and 3.4. 

4Notc that 91 cali be ali), node in the trec. liol necessarily an ancestor of g. 
~Thi5 step i~ nrccicd brcause if a noae in the query-tree is not reachable (rom the EOa leaves, it 

. I 
j 

I . 
t 
i 
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procedure build-tree{P. q. co) 
begin 
/* Creating a query-tree T for the rules 'P and query q. */ 
/* The label of a node 11 in the quer~·-tree is ('J(n). */ 
The root of T is q with the laDel to. 
repeat 

Let 9 be a node of an IDB prediCate in T with label cJ(g). 
if there is a node g1 in T such that 9 ;§ g1 and cJ{gd ~ cf(9) then. 

Set Eq(g) = gl' 
else 

for.each rule rEP do 
if rule r unines with 9 then 

e = the mOst general unifier of rand. g; 
(';;: T DLabel(r. ef(g). g) 
if C is not in.consistent then 

Create a.child rule-node of g, containing the rule r, with label c. 
for eVeiY non interpreted literal n in the antecedent of r. 

Create. a child .. nO fOr the rule-nooe with label T Dproj(r. 0, c, n). 
until no changes are made to T. 
return T .. 
end build-tree. 

Figure 3.3: Top down creation of the q!-H~r~~ ____ ... __ _ 

Encoding Symbolic Derivations in .the Query-tree . 

4i 

As st.ated, the query-tree encodes a set of symbolic derivations. Intuitively, a symbolic 
derivation is encoded iIi the qllery"tree if it can be con5tructed by choosing one rule
node for every goal.;node. In doing so, we can expand a 1'. unexpanded goal-node with 
the children Of its expa.nded eguivalent. Formally! encoding is defined as follows: 

Definition 3.1: A symboliC derivation if is encoded b.v the query~tree l' if there 
exists a mapping tb from the nodes of el, tliat. do not have interpreted prediCates, to 
the nodes of T that satisfies the following conditions: 

EO. If 9[,: ..• gil are the children goal-nodes of fin d. then ~'(9.J)"'" 1/.'(9") are the 
children of 1,(.(1') itl T. 

El. For every rule-node fEd. the t.ule in l,!'(r) is the same. 80$ the rule in,T. 

will not be part ot a symbolic ilcrivatibn. since the leaves bf every symbolic derivation need to be of 
EOD predicates. 
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procedure shake-tree(T} 
begin 
/* Step 1: ~Iarking readability frorn thE' leaves */ 

~1ark all EDB nodes in T as aNessible: 
repeat 

if all children of a rule-node,. are accessible then mark r as accessible: 
if at least one child of a goal-node 9 is accessible then mark 9 as accessible; 
if £q(y) == 91 and 91 is accessible then mark 9 as aGcessible; 

until no new nodes are marked: 

/* Step 2: t-.'larking reach ability from the reot */ 
if 9 IS a root of T and is accessible then nlark it as relet'lmt; 
r.epeat 

if!J is a relet'ant goal-node. l' is a child rule-node of g, and 
all children of r are accessible 

then mark r and its children as. re/evilnt,' 
if a goal-node 9 is relevant and either 9 == Eq(gd or 91 = Eq(g) 
then mark 91 as, relevant: 

until no new nodes are marked; 
Rerhove all nodes that are not marked relevant. 
I· If a there IS a node 9 whIch Is-marked relevant. but Its father rule-node IS not marked 
relettant. then there must be some other node 91 In that tree such that the father of 91 IS 

mar/..:ed rdevdnt. and EIther £q(g[) = 9 or Eq(/J) ::: 9,. Let (} be the. ISomorphism between 9 
and 91 and let Tl be the subtree of g .• \lake T[ () the subtree 0/91, and remove T\ from 
the query·trt:l! . • / 

end shake-tre\~. 

I 

Figure :3.4: Shaking the qw~ry-tree 

E2. The node 1.b(r.<)ot(d)) is a rOClt in the query-tree. 

E3, If r. is a. child ,oLthe goal-node.g in d then: 

1. If ~'(!J) is expanded in r. then 11'(1') is a child of 1/.'(9). 

2. 1[!,I·(g) is not expanded in t, then u'( r) is a child Of its expanded equival~nt, 
Eq( 1:'(g)). 

Not~ that if d is encoded by the query-tree then for every goal"node, n E: d, the 
node v{n) is a varialile renaming of n. 
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Finally. given a labeling ~chen1e. \\'f' ileed to show that the symbolic derivation 
trees encoded by the lluery-tr€'e are exactly those that satisfy IT. In doing so. we will 
be aided by t he correspondence between t he labels bf t he tree and the labels given by 
the finite labeling scheme. This correspondence is captured by the label-prEserving 
prop'erty: 

Definition 3.2: Let IT be a propert.y of symbolic derivations that can be identified by 
a finite labeling scheme that assigns a label L(n) to a node n in a symbolic deri\'ation 
tree. Let T be a query-tree in which the label of a node n is denoted by TL(n). 
The query-tree T is label-preserving w.r.t the labeling schemf~ L. if for any ,symbolic 
deri\'ation d that is encoded by T, the equation ¢(L(n)) = TL(1Nn)) holds, where~' 
is the node-mapping from d to T. and 0 is the variable renaming from n to u·(n). I 

In words. the query-tree is lahel preserving if the mapping qf the nodes also 
preserves the labels. 

The Method: Summary 

The general method fot building a query-tree can be summarized. by the follo.wing _ 
steps. To establish prop~rti~s 9f a set of derivations V, we do the following: 

• Define a property IT of symbolic derivations. such that we can. establish the 
desired prope~ties of V by inspecting nodes in the symbolic derivations satisfying .. 
IT. 

• Find a finite labeling.scheme for IT. 

• Describe a method. for assigning labels to nodes in the query-tree. 

• Show that the resulting query~tree encodes exactly the symbolic derivations 
that satisfy n. 

In the subsequent sections we describe several instances of this general method. 
~toreo\'er, the general method provides a. useful conceptual frameworK in \ .... hith we 
tan devise new labelillg schemes fOI encodil1g sets of derivations. 

Complexity 

The time taken to .build the <{uery-tree (and therefote of deciding strong irrelevance) 
is dominated by the number of Ilodes in the tree. The other costs are those of checkin~ 
whether two nodes are equivalent and of treating labels. both of wnich ate polynomial 
in the size of a node. We observe that the number of inter.nal nodes in the tree is 
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bounded by the number of possihle non-isomorphic labels I. and t herdore. t he size of 
t.he tree tan be at most lb. where b is the maximum number of literals in an antecedent 
of a rule. In the cases we coniiider. the number of labels depends only on the arity of 
predicates in the KB (.and may be exponential in that number), It does not depend 
on the number or-rules in the KB (and. of cour'se. does not depend on the number 
of ground facts!). This is an important distinction because arities of predicates. tend 
to be small (e.g .. frame systems employ mostly binary predicates). and therefore. the 
algorithms will seal€> up to knowledge bases with manx rules and ground facts, 

3.2 Horn Rules With Interpreteq Predicates. 

In this section. we consider the p.rohlem of'building a query-tree that encodes the 
set of derivations of a query from a set of Horn.rules 7> that may have interpreted 
predicates from a constraint language C. Building such a querx-tree will prOVide an 
algorithm for deciding strong irrele\·tmce for. the case where 'Do = 'Pl;.!' i.e .. dedding 
S [(0. V. '!:-1'. DI2 • 'D .. l· 

Our first step' is to .. define the·set of symbolic derivations Il 3at that will be encoded 
by the query-tree. As explained earlier. these are the symbolic derivations in which the 
interpreted predicates.on the \'ariables are satisfiable. Formally, let d be a symbolic 
derivation that includes the rule-nodes rl'" .• r m , and let £1 be the conjunction of the 
literals with interpreted predicates that are children of rl' Let 

Cd = Cl /I: ..• /I.. em. 

The derivation d is a ni.emb€~ of IT3IJt jf the constraint. Cd b satisfiable. 
The property in which we are interested is finding whether a ground atomic for

mula or a rule can appear in a deri\'ation of the query. Inspecting the symbolic 
derivations in IT iat is enough to verify this prop-erty: 

Lemma 3.3:. 

1. A ground fa rnl ula p(al.:' .nn) carl be part oJa derivation of the query'l/.t if and 
only If there is some node n == P(.\'l •... , .\'n) in ii symbolic derivation dE Il"at 
such that ai, .... an Mlfisftes en. U'hEt'f Cn is the. projection of Cd .m the variables 
.\'I ..... .\'n. 

:J. A rule r in the J..:nou·leage base can be part of a derit.'dtio7i of the query li' if ana 
only if S0711t: symbolic dcnt'atioTl d E n3at includes. a tulE~node containing the 
rule t. 

Proof: To prove Patt 1. suppose there exists a symbolic derivation tree dE' n~al 
and al-'" .an satisfies the ptojPction of Cd on the variables .\'Lw...:.....!,Xri of the node 
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71 ~ d. Therefore. there is some mapping 0 of the \'ariables of d to coristants such 
that .\, = a, for 1 :::; i :::; n and such that applying 0 to d will satisfy the constraints 
Cd. Applying ~ to d will yield a derivation of L' that uses p(a) • ...• ail)' Conversely. 
suppose there is a derivation do of l.' that uses p(al .. ... a n ). We can replace all the 
constants in do by \;ariables resulting in a !,ymbolic derivation d. Clearly. the symbolic 
derivation is a member of DSdl and at .... . a n satisnes the projection of Cd onto the 
variables of the corresponding node in d. 

Part 2 follows from the observation that a symbolic derivation \\'ill have exactly 
the same rules as its ground derivation instances. I 

To encode D.,at! our labeling scheme will be the following. Given a symbolic 
derivation tree d and.a node. 71 with \'ariables X 1 ••••• .\m' the constraint-label of 
n. denoted by L~at (n) will be th~ constraint denoting the projection of Cd onto the 
variables of Xl ...... .\m. ;\ote that since the constraint language satisfies the Closure _ 
property. the label L"att n) can be exp.ressed as a sentence in the constraint language 
£: IntuitiVely. the label denotes the set of tuples that tan appear in. the node 1'1 in 
ground instances oCthe symbolic derivation d. To show that L.,at is a finite labeling 
scheme. we. observe the followi ng: ._-

1. The F.initeness pI:operty implies that.the number-OLpos!>ible labels (i.e., the 
number of non~isomorp'hic constraints) is finite. 

2. The -label. of a, node .. can be determined by, its children or. -by its father. The· 
label .of a goal-node g is the projection of .the label of its child rule-node, onto 
the variables of g., The label of a rule-node is the conjunction of the labels of 
its children. 

3. A symbolic derivation d is a member of n if and only if all its labels are satis'
fiable. 

In order to build the query-tree. we need a method for assigning labels to nodes in 
the tree. The difficulty in doing so is that the label of a node inay depend on nodes, 
that appear below it in the tree. Therefore. we cannot construct the tree and assign 
labels in one top-down phase. since the decision whether to expand a node depends 
on knowing its exact label. This problem will arise also in the labeling scheme we 
consider in_Section 3.4. In \\'hat follows we describe a general fiiethod for solving this 
problem. 

The solution is based. on, t he following observation about comp)lting the labels 
L~at(n) for nodes in a given. symbolic derivation tree d. diven a tree d. we ca.n 
compllte its labels by a two phase prbcess. In the fitst phase. we start with the 
leaves of d and compute labels based otl propagating the interpreted constraints in a ---1, 
bottom~up fashion. In the second phase. we compute the labels by pr6p~~<:~i,~,~. _th_e___ . 

I 
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interpreted constraints in a top-.down fashion.tl The procedure is summarized below. 
The labels computed in the bbtt.on1-up phase are denoted by Cb and the final lalwls 
ate denoted by C i. 

for every goal-node 9 E d. co(g) = Tnle. 
for every l'ule-node r, co( r) = the conjunction of the interRreted children of 7'. 

Traverse the rule-nodes of d in bottom-up fashion. 
for each node r do: 
/* 9 is the father of rand gl •...• gm are its children. */ 

q(r) = co(r) /\ CO(gl) /\ ... /\ CO(g,n) .. 
Cb(g) = Projection of Cb( 1') on the variables of g. 
/_. Nole that Cb(gJ IS the formula. denotzn9 the relation whIch IS the projectIon 

of Rc~(r) on the lla1'lables In g. * / 
cJ(root(d)) = cb(root(d)). 
Traverse the rule-nodes of d in a top-down fashion. 
for each rule-node T do: 

cJ(r) = cJ(g) /\ Cb(7').. 
E'or every n E_gI,.' .·.9m,(:j(n). = Projection of cJ(r) on the variables of n. 

The following theorem shows. that this procedure correctly computes the constraint 
labels of .a symboEt derivation tree. The proo~ is given in A.Q.peTJ,dix A. 

Theorp.m 3.4: Let d be a symbolic derivation tree. For every node nEd, cJ(n) :;;: 
L3at(n). 

The importance of this theoteni is that we can create the query-tree in a \Vay that 
mimics the computation of'the labels in, the two phase Rrocess .. Specit1callx, we show 
below that whenever the labels can be ·computed in a two phase process, it is enough 
to precede t.he top-down creation bf the query-tree (by pro~~dure build~tree) by a 
hottom-up .computation phase. informally, iIi the bottom-up phase we compute·all 
the possible bottom-up labels for .predicates in the I\B. i.e., all the labels Cb( n) that 
can appear in symbolic. derivation trees. Based on these labels, we create a new set 
of f'cfined pr,edicates. For every label c that we compute fot a predicate p. ,ve create a 
new predicate pC. We then tteate.a set of .refined fili£:s-P1 for. the refined predicates 
by trying all the possible substitutions of the refinC:'dpredicates in the rules of P. The 
query-tree is theli created in a tOll-down fashion .using. procedure build-tree and the. 
rules 'PI' A rule 1" E 'Pi is. a r.flfinc"ment of a rule ]. E P ,. if the ptedicate names in 
r' are 'refineIilents of tli(:> correspondiug predicates in r. Not(\· that 1" and t ha\ie thE:' 
saThe variable i1a.tterns. ' 

(, A bollom-LiP ordering of the r.ulc nodes is any ordctilig for whith a nodi! t1 is travcrsrd after ali 
its dcscetidcrlts, A lOl?;:do"tiLlravcrsal is the rpversc ofdrr of a bottom-up t.raversal. 
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As an example of a bottom-up computation. consider the knowledge-base in 
Figure :3.2. The initial labels of the EDB predicates are the constraints that are 
gi\'eIl for them. i.e .. {badPoint(X). 100 < X < 200}. {goodPoi1!t(X).150 < .\' < 
ITO}. {step(.\'. }·').X < }'} and {bigStep(X. Y).X < 100.}' > 200}. \Vith the 
rules.rot and rfi. we. create the following labels for link: {linJ.·l(X, }"') . .\' < }"} and 
{link1(.\'. F). X < 100.}' > :WO}. With rules r2 and 7'3. we create {pathl(X. F). X < 
}'} arid {path2(X. }'). X < 100.}· > 200}. Finally, with pathl we create the label 
{goodPath1(X. }').100 <: X < }' < 170.}' > l.jb}. Note that substituting path 2 iri 
1'\ \\/ill yield the inconsistent label for goodPath. and therefore we do not perform 
that substitution. The refined rules that are created are: 

1'1 : badFoint(X) 1\ pathl(X. }') 1\ 9.QQdPoint(Y) :=> goodPathl(X. Y). 
r ~ : Ii 11 ki p;. }') :::;. pa t h 1 ( X. }'). 
r~ : link2(X. F) :::;. path2(X. }'). 
r1': linkl(X. Z.) 1\ pathl(Z. }') => path 1(.\;-. 1'), 
r5 : link2(X. Z) l\-pathl(Z. }') :::} path2(X, Y). 
r~ : li.nk1(X. Z) l\.path2.(Z. }') => path2p.:. }'). 
7'4 : step(.\'. }'.) => linkl(X. }'). 
1'5.: bigStep(X.Y) :::;.linP(X. Y), . 

Formally. in a two phase comp4~ation process we assume the existence.of the following: 

1. Initiallabelg for goal-nodes.in a symbolic derivation tree, cot n). We assume the 
initial label of a goa.l-node depends only on the predicate.o! the node . 

. ) A function BULabel(r.(!Jl." .. 9m).(Cb(9d .... ,Cb(gm))) that accepts a rule
node. its subgoals and their respective bottom"up labels and computes the 
bottom-up la9el Cb( r) for the rule-node. 

:3. :-\ fUIlction BUpro}(t,e.Cb(r).g) that accepts a rule-node that contains i~ rule 
r. the unifier () \\'ith .\\;hkh t waS unified with its father goal~node g, and the 
bottom-up label of the rule-node. and returns a bottom"up label for its father. 
goal-rlode g, 

4. ~~unctions TDLabd and TDProj as USed ill procedure build-tree, for comput
ing t he top-down .labels. 

We define the result of the t\\;b phase comptitatioTl as follows (which is a general
izatioll of the cOlnputation of [jal): 

•. If 9 is a leaf in the trec .. t'b(g) = co(g) . 

• If l' is a rule-node' with children 91.' . , . grn and fattier g, then 
Cb(t) = BULilbel(r.(91., .. . g;n).(Cb(91) ....• Cb(9;r1))L and 
('h(g) = Bl'proj(r.O.chlr).g). 
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• Cj(tbOt(d)) = ch(l'oot(d)). 

• C j ( 1') = T D L (/ be.l ( 1'. C j (g) . g). 

• Cj(9/) = TDproj(t.a.Cj(r).g/). 

Definition 3.5: The labeling scheme L is said to be 2-phase computable if CJ{II) :::.: 
L(11) for ('\'t"ry node in ('very symbolic derh'atioll tree. I 

The bottom-up phase of building the query-tree is shown in Figure :3.5, All the 
labels created for a predicate p in this phase use the variables XI"'" .\ri' where Ti is 
the arity of p. Therefore, we omit the second argument from BUproj. assuming it uses 
these standard variable names. The complete query-tree construction is described in 
Figure :3.6. After creating the qttery-tree we ignore the refinements of the predicates .. 
That means that if n is. a node in the tree of a preditate pC and a label c/(n). we treat 
it as if it is a node of the preditat€' n with the :-ame label. .Note that the query-tree 
may actually be a forest of trees if tll<.' bottom-up f!hase computes more th~t one label 
for the 'Ilferypredicate. 

proced ure create-refined-rules(P} 
begin 
/* COllstructing bottom-up labels P for every prediCate p. */ 

for every EDB prediCate pEP, P ==.{ co(p)}. 
for E'very IDB predicate pEP, p.: O. 
PI::: {t/* PI will be the SE't of refiried rules */ 
repeat 

Let " be the. rule ql /\ ... /\ qrn => h. 
Let C1 E Qt, for 1 ~ i :::; in. 

c = BU Label (r. (91 .... ,9m) I (Cl' " . I Cni.)). 
if C IS consistent then 

Ch = BUpfb}(r. c, h}. 
Add Ch to H. 
Add the rule qft 1\ ••. 1\ q~rn :} he" to PI. 

until rio r'lew labels or rules ate created. 
end create-refined-rules 

Figttr<> :Lr): Creating th(> refiried rules. 

The following ttleoretn states thttl.whellcver there is a. 2-phase computable labeling 
scliCl11~ fur .the set of sytl1bolic derivations n, the!l the procedurc.build-query-tree 
will build a qllcry·tt('e that (;nrocips precisely til(' spt of derivatiolls n, 

---------------------.-.. -.~ 
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procedure build-query-tree(P. q) 
/* P is the set of rules. q is tilE' query prt>dicate. */ 

PI =create-refined-rules(P): 
for e\ery label c of q do 

Tc = build-tree (PI, cr', c): 
Query-tree = U~EQ shake-tree (T~): 

end build-query-tree. 

Figi.lre :3.6: Buildin~uer..:.v_-t:..:.r-,"-ee,,--__ 
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Theorem 3,6: Ld L bf a :!"phaM computable fi1iitC labeling scheme for the set oJ. 
.~ymbolic dait'atibris n. Ld T be Ihe query-tree gf.lieraled by procedurc build-query
tree: 

1.. If d. is a I:'ymbolzc df'l'it'atioT! If'cE if! I'I. then d is encoded i71 T. and the encoding 
is labd-.ptESfrt·ing. 

:!. Let d1 be Ii .partial symbolic def.'It'ation tree encoded by. the quer.y-tree (i.e .• somf. 
o!.the leal'cs hat'e IDB predicates). then there is a symbolic derivation tree d.E n. 
such .that c4 is ii. prcfiz of d and the l!rlcoding (limite~ to the nodes mapped to 
d1 ) is label preserving. 

J. A node n appears in a sYT7ibolic derit'aiion tree in IT with label L( n) if and only if 
therE is sOT1ie node in the (l.uery-tree u'zth label cJ{n) sllch that L(n) is equivalent 
t(1 C/(l1). 

Proof: In the proof "~Ie asSume that the query is of the form q(.\') \\'here S is a set 
of distinct variables. Therefore. we refer to the query simply as tne predicate q. Note 
that we can always transform the query into such a form. 

We nrst prove Part 1. Let.d he a symbolic derivation .. A simple bottomoup 
induclion on the nodes of d shows that the bottorTP'up labels of d were computed hy 
create-reflned-rules. specifically: 

• For every goal;i~')de 9 E d. of the predicate p arid bott6nl-llp label c = c,,(g). p: 
is a predicate in 'PI' . 

• Suppose r is a rule-libdc in if containing the rule ql " ... " qm ~ p. SUPPQse r's 
father is 9 and childI'eri arr gp ...• gnp then the follo\\~ing rule is in 'PI: 

1-------------------------········.··· 
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:-\ext. \\.{' show that tI is {'ncoded by the query-tree by mimickilig the ('x{>cution of 
pI'ocedure build-tree. \\,p corlstruct ti1{' ('ncoding nUlppings 1.;' ot the rlodes as we go 
along. 

We begin with th(' root of d and its child rule-node r. Let c denote cb(root(d)). By 
the bottom-up construction we know that qC is one of the renned predicates. and that 
there is i\ rule rI iil PI that is a refiIH'!1icrit of the rule in r. and its antecedent is q':. 

Therefore. procedure build-tree will hfi called with qC. The procedure build-tree 
will begin with a node 71 with pr{'ditate qC and the label c. and it will expand qC with 
the rule 1'1' Th<"refore, L' will map root(d) to 11 and will map r to rl' The mapping 'Ij'. 
will map children of r to the respecth'echildren of 1.'(r). The bottotn-up alld top-down 
labels of root(d) are the same, and therefore t, is. label preserving for root(il). Since 
the labels specify completely the ('quality relations bet\\;een the variables, li'(root(d)) 
is a variable renaming of root(d). Consecluently. since 7"1 is.a refinetnent of. the rule 
in r (and. therefore they have the same variable. patterns), the top-down. labels of 
1.'(1') and its children are. determined by L'(1'oot(d)) (using the functions TDLabel 
and TDP1'oj) in the same way that the.top-aown labels of r and its children are- -
determined from root (d). Therefore, the mappi ng t' is also label preserving for r. and 
its children. and specifically. /.:·(n) is a variable renaming of 12 tor. n being r or one of 
its childrer1-

Let rl '.' . , • rtl be a top-down ordering of t.he rule-nodes of d. We .prove the claim 
by induction on the i th rule-node. We assume by induction that we have. built an 
encoding mapp.!I1g C' that satisfies the conditions of Definition 3.1 for all the rulE::. ... 
nodes rl" ...• rl"'l. and .their children goal-nodes. Note that for i =-1 this is exactly. 
the base case discussed above. \Ve prove that Part 1 holds.for r l and for its children. 
Furthermore. we assume by induction that it 9 is a goal~node in d, then 1/.J(g) is 
actually a goal-node of pCb(91, when the refinements of the goal~nodes in the quety- . 
tree are considered.'i' ~ote that this assumption holds .for the toot of d. 

Let 9 be the father of r l iIi d. and assume that 9 is a node of the predicate p. By 
the inductive assumption, 1/.'(9) is a node of the predicate pCb(9), Assume 1/.' (9) was 
expanded in the query-tree. It would have been expanded \\iith the rule 

where CI •••• , ern are the bottom-up lab<>ls of the children of g, and r' is a refinement 
of the rule in 7\. Denote the resulting rule-node in the query-tree by 7'. The olapping 
l.' will n)ap 7'1 to. the node r anti the subgoals of r l to the subgoals of i' (therefore 
satisfying condition EO of Definition .:l.1) .. r\ote that 1:1 is a refinetnent of the rule in 
r l , and we ignore the I>rediCat.e refiller'!knts i.n .the resulting query-tree,. the rule in r l 

and in I.:,(rl ) ate the same (as required by conditioI1 El). Furthermore, cor:tdition E3 

'1.1' ... wr consider lh,.. rrfined prl'dlcatE's in thr rllll's 'PI' 
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is. also satisfied by 1:'. As ill the base case. siIlce r l arid 1.'( r, ) rOIHain the same ruk. 
and 1 • .'(9) is a variable renaming of.g, the top-down labels or 1.·(f·) and.its childl'eli 
are determined by l'(g) (using the functions T D LabEl and T D PT'oj) in the same way 

that the top-down labels at t and its children are determined from g. Theretore. the 
mapping t!' is also label preserving for r and its children. and specifically. t·( n Lis a 
variable renaming of.n. when 1/ is either r or one of.its children. 

If t'(g) was Ilot expaIided in the query-tree. it. would be because Eq(L'(.t})) is 
expanded. In that case. 1: would be a child at Eq( l'(g)). In this caSe. E3 is still 
satisfied by the second clause in its definition. EO and E1 hold as before. Since the 
label of Eq(t'(g)) is isomorphic to the la.bel of ~)(g) (and in particular. Eq(t;·(g)) is a 
variable renari1ing of t'(g)). the mapping ~. \\·jll be label pt'eservipg also for r l and its 
children. 

To complete the proof of Part.t "we must show that none of the nodes. t·( 7i) for 
tl.E d were deleted fronl the ·query-tree in the shaking phase. However, a simple 
bottom-up in.duction 011 the nodes of d, will shmv that all nodes ~,( n) were marked 
accessible. and a top-down induction will show that they _\vere all marked relevant 
and therefore nbt deleted. . 

We prove. Part 2 in two parts. First, \ve show that every partial derivation en
coded by ,the query-tree is .a.prefix of a complete symbolic derivation .encoded by the 
tree. Next we show that every sy.mbolic deri\ration encoded by the tree is a symbolic 
derivation in IT. 

To pr:ove the first part. we note that every goal:.node in the query-tree is the toot 
of some symbolic derivation (and the label of that node is the label of the root of 
the tree). In proof. if 9 is a node in the query-tree, then there is a sequence of nodes 
ri I, ... ,7im such that nm ::: 9 and HI was marked accessible because of some n] for 
j <:: i. The node 9 is a head ot a symbolic derivation consisting of nl!"" tlm. :\ 

simple induction on the reverse order of tnese nodes sho\\'s that they. were all marked 
relet'ant and are therefore all in the query-tree. 

Consequently, given a partial derivation tree dl encoded in the query-tree, \ve 
can complete every IDB leaf of al \vith a symbolic derivation, thereby constructing a 
complete det'ivation. 

To complete the proof of Part 2. let d' be a symboliC derivation encoded by the 
tree. Simply consider the symbolic derivation tree d with exactly the same structure 
(i.e., the same rules). Because the labeling is 2-phase computable, the labels of d' will 
be identical (0 the labels of d. Since the query-He does not contain nodes with the 
inconsistent label, d' will he; a nH"mber bf n. 

Part 3 follows [ron1 t he first two parts and the observatioIl that every node in the 
query-t,ree appear~ in some I'lartial derivatiorl tree encoded by. t.he query-tree, • 

We completf.' this section with the following corollary that shows ·that the query- .. 
tree provides a sound and ('oillplet.(' illf~rente ptored.ure for stro(lg~irrele\'ance fol' 
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Horn-rule l\Bs with interpreted prediEatfs. 

Corollary 3.7: Lff 'P be a sti of I'lLifS 1l'lth l11fuprfftd predicates that satisfy the 
Closlirf. Eqult·alf1lCf .. Satisfiability and FIllltcnEss ptopfrtit.r;. Lei T bf Iii,; q.ucry.trfe 
created /01' the l'ult.s P- alld the quay q. 

1. A Jormllia pta!, .... a n ) is stl'OTig/y irl'dn'/iTl/ to q u·.r.t. ~P. (U .. the irrele
l'anCf claim SI(p{a! ..... an).q,l:1'.D1l.'D,,) holds}. if and only ifthert /s no 
nbdf 11 ofp in T. such that Clj ..... an sb.iisjies the constraiTit label ofn. cj(n). 

2 . .4 rille t is stroligly irreifvimt to q iJ alld only U It does not appear in T. 

Returning to the example in Figure :3.:2. the rule 1'5 is strongly irrelevant to 
goodPatli because it does not app.ear in the qu(:'ry·tree. The atomic formulas of 
.slep('\", }') for \\·hich. X :s lOOor..r~ liO are also strongly irrel~\'ant to the q!lery. 

3.2.1 Conjunctiv.e.'Dense·order Constraints 

One of the constraint languages which was..covered by the discussion in the previous 
section is !".v. i.e .. dense-order constraints with conjunction and disjunction. An 
importanLrestricted languag(> is that of dense-or-cler constraints in which only con-· 
junctions are allowed. which we denote by!". The atomic formulas of this language. 
are of the (orm (.X () }') or (X () <'1). where X and }' are variables. a is a (onstant. and 
(j E.{ <. $ .. >,~. =. ¥.}. Formulas in the language are either atomit or conjunctions of 
atomic formulas. In [rllman. 1989]. a complete polynomial-time decision procedure 
fat this language is presented. Fnfortunately. this language does not satisfy the Clo
SlIre property we. require .. Specifically. given a sentence c in £I'. there is not always 
a sentence iIi C/' that expresses the projection of c on a subset of its variables. The 
[ollo\\'ing is an p.xan'lple of such a case. 

Example 3.8: Consider the conjunction: 

This cOiljunction implies only oile tOlljuflCtive constraint. XI :s .\" among the vari· 
abies XI. X2 • '\3' However. that does liot fully describe all the constraints among 
Xl. ,Vh aria .\J. The constraint X3 ;t:·.\l V X3 ¥= X, is also implied by this conjunc
(ioil. but siuce out language does not aliM. disjunctioils. we cannot express this when 
trying to project the above CO!ljullction_onto XI; X7 • and '\3, I 

In c[eatiilg a qUery-tree for consttailits expressed in e". we modify.the·projection 
fUnctions (Be pro) and T DP1'Oj). Since we callnot always express the exaCt projection 
of i\ ronstraillt iil C/'. these filhction!' retlirn i\ \\'~ak('r constraint. Specifically. given a 
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constraint con \'ariables .\' and a subset f ~ .\'. the functions return the conjunctioll 
of all the- atomic constraints on variables iIi f that are implied by c. In our exampl('. 
the projection would be .\1 :S Xl' 

Consequently. the la.hf'>ls computed for nodes in the query-trec. whkh we d-enot(' 
by C/(lI). are weaker than the labels gl\'eli by the laoelilig scheme Lsat . Therefore tliey 
do not describe die tightest constrailH on ,<;,\,ery node in the query-tree. Fortuliat-ely. 
\\,(1 can show that these lahel~ ar~ closely related to the labels gh'erl by Lsat and that 
\\.(' can use then1 to deduce strong irrelevance. Informally. toe difference beh\'een the 
rcsulting labels c1(n) and L.at(n) is that cj(1/) may be missing some disequalities 
(#) between the variables. Formally. we show the relation bet\,,1een them through the 
lcast cqu at it y e:r/e1zsiori of.a conj urict i ve label. defined as follows: 

Oefinition 3.9: Let C .he a constraint on the variables X\ ..... Xfj and constants 
at ... ·. am. The least (,<[uality extension of c. denoted by Max,l:(c.), is 

I 

The least equality extension simRly adds disequalities between every pair of vari-_ 
abIes (or \'ariable-and constant) that are not required to be equal by c. Note that 
the least equality extensiorl.is unique and therefore well defined since it Cail be·built . 
incrementally by examining. each pair of variables (or variable and constant), and 
the order of the construction does not matter .. In our. exampl~, the least equality. 
extension of X: 5 X2 is {Xt :5 X2 !\ Xl i= X:\ !\ Xi ¥ X3}' 

The following theorem relates cj(n) to cJ{n) (which was shown to be equivalent 
to Lsat{n)). It shows that the label cj(n) is never stronger than c/(n) and t.hat c/(n) 
is liever stronger than i\-Ia.1·:;t(c'(n)). Recall that Cd denotes the conjunction of all the 
iIlterpreted constraints on variables in a symbolic derivation d. 

Theorem 3.\0: Let d be a symbolic dcrit'aiion tree /01' which Cd is not necessarily 
SI.ltisjiable. For ft't'ry node tl E d. 

I. Cj(t1) F c,( 11) 

~~. I/c/(rz) issalisjiablr. tltol.Ha.l':;t(c/(rl)).F=cL(iz). 

;]. If for all n, c,(il) is sali.';fiablc. the/l fbI' all rlOi!cs 7i. C/(I1) is saizs/iable. 

the first atld second I)arts guarantee the relationship bebveefl the la.bels in th£:' 
(juery-tt'<"e cOllstructed with C/' and the. labels of L.at . the third. part guaranteC's 
that when we build a qIlPry-tr(>p with lftbp\s ('/, the tree will not have atiy nodes that 

------- -----

I 
! 

I 
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shOUldn't be included. i.e., all nodes are satisfiable (since they an" wE>aker than the 
satisfiable constraint .\laI~dn)). Thf' proof of the theorel11 is given in Appendix A. 

As stated. the labels in the r{'sulting query-treE> will not be the tightest ones 
possible. That means that if c is a label of a goal-llode 11 in the query-tree. then 
actual tuples that can appear in valid derivations of the qllery may be a strict subset of 
those satisfying c. Formally. we can lise the tesultillg qtlery-tre..e to deduce irrelevance 
rlaims as follows: 

Corollary 3.11: Let P(~l, .... (ln) bf il ground alimiic Jormula. 

1. If al,'" ,an does Hot satisfy any oj the constraint labels of nodes oj p in the 
qUfry-ttee. then if is sfl'ollg/y irrfiev.ant to. the .query. 

2. Let 9 be a .. node. of the prcdicatr. p in the query~tree. U al,'" .ar! .satisfies 
MaIt,(cj(g)). then p(at .... ,an) /s not strongbi irrelet'ant to the Q1Lery. 

1. A. 1'ule r is in the qUC,iny-frff ij'mzd only iJ r i8 riM stroH!}ly irrelevant to the 
qllery. 

Proof: The query-tree encodes the seL of symbolic deri\;ations d in which for all Tl E d 
the labels cj(n) are satisfied. Part 1 follows from Part 1 01 Theorem 3.10 and Part 2 
follows from Part :2 of that theorem. For Part 3, consider a syrrtboiic derivation tree 
d encoded by·the query·tree that uses a r.ule 1'. All of its.labels.ate·satisfiable, and 
therefore, by Part. 3 of Theorem 3.10, .Cd is also satisfiable. Consequently, there is a 
syrnbolic derivation of the query that satisfies l1!at and includes r. Since the query-· 
tree encodes a superset of the derI\'ations in n. then clearly if t does .D.9t appear in 
the query-tree, then it is strongly irrelevant to the query .• 

Note that (-\'en though we do not get the tightest .labels bn the riodes when we USe 
the language £", there may be advantages to usitlg it oVer uSing £.",Y. Specifically, 
when we allow disjunctions, the constraints may become long (many disjuncts), and 
furthermore, checking equivalence ot two constraints involving disjunctions is a more 
expensive overation. Ther(>fore. the tinle to build the query~tref:' can ht? significantly 
affected. 

The N un'lber 6f Labels 

As stated earlier. the titne tOlllplcxity of buildirig the query-tree is domiflateu by the 
i1111nber .of possible labels we can attach to nodes in the tree. j' 'I, 

Consider the case of del1se-ordel' (Olist rai nts expressed in f./"v. In that case, every 
constraint label describes a set of possible orderings 011 the viLriables and constants iIi . I 
the rules. Given 7i Val iables and m COIlstantS. the number of possible total. orderings --
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bn them is {>xporiential in n + m. Therefore. the number of constraint labels is doubly 
exronential in n + m. However. we note that it is sufficient to consider only total 
Ol'derings on thf' variables and constants. and therefore the query-tree can be built 
in time that is singly exporierltial ill n '+- m. However. in practice. the number of 
constraints that will be computed will be much smaller than the number of total 
orders and therefore. it is better not to limit ourselves to total brders. The number 
of labels expressible in [/' is exponential iIi n + m. because it contains a subset of 
atomic formulas of which there is a Pblynomial number. 

3.2.2 Rules With Function SYlllbols 

When the set of rules co~tains function symbols, the Finiteness property may not 
hold. The source of the problem is that when a goal-node is unified with the_ head 
of a. rule. new terms may be created. ana therefore the number of labels that can be 
created may be infinite ... .conswer the following example.._ . ____ . 

Example 3.12: The following rules define the set of'integers: 

.'il : (X = 0) => integer(X.) 
82: integer(X) => integer(.\'.:t:. 1) 

As shown in Figure·3.i(a}, a top-down expansion of the. tree for these rules will result 
in an infini te number of labels {Zt = X - i} for every in~eger t i. Therefore, the 
construction bf the query-tree will not terminate. I 

integer.(X) {} 

A 
SI S2 integer(X) {} 
I' . 1 x=o integerp') {}'=X-I} 

A 
SI 52.. 

A I . I . 
X == () integer(Y) {} 

I I . . r = 0 i71icgcr(Z) {Z = X - 2} 

(a) (b) 

Figure a;i: QlIery-tref> with function symbols, 

To build a. query-tree ill. this case we can assign the nodes in the.query"tree one of 
a finite set of labels C. When w{> projf>ct a constraint on a subset of its variables, \ve 



62 C'HAPTER:J. THE Qt'EFn:-TREE 

proceed by the fbllo\\;ing strategy. Given a constraint c and a subset of its \'ariables .\'. 
if there is no label inC \\;hich descri bl"s the t'xact project ion cis, we assign a member 
Cl of C such that cis F= CI and stich that there is no other constraint C2 t: C such that 
C'1 t= CI and clx F= C2' The constraint CI can be viewed as the best appro:rimation 
to cis out of the finite number of labels C. Consequently. the resulting labels in 
the query-tree are weaker than the tightest ones possible, and therefore. the query
tree provides only a sufficient condition for strong irrelevance. That meC.ns that a 
ground atomic formula which does not match any of the nodes in the tree is strongly 
irrelevant, but not. vice versa. 

One way to assign such a finite set of labels .is to not allow new terms to be 
created in the labels (ot" to allow a maximum of i.: new terms, where k is fixed). For 
instance, in our exampl~, if we do not allow new terms, we get. the query-tree shown 
in Figure 3.7(b}. 

Finally,. it should be noted that. the p'roblem with function symbols arises only 
when the rules are. recursive. If they are not. then the number of labels will neces
sarily be finite (because the number of unifications is finite .. and each unification may· 
intro.duce only a finite number of new terms). Consequently, in such cases, the query
tree still provides a complete.inference procedure for strong irrelevance (assuming the 
constraint language satisfies the properties described in the previous section). 

3.3 . Encoding Minimal Derivations 

In this section, we consider another instance of the query-tree algorithm in which the 
query-tree is built to encode only the minimal derivations of the query. The definition __ 
of rriinimality that we consider (M 1 from Chapter 2) states that a derivation is minimal 
if there are no two identical nodes, nl and n2, such that nl is an ancestor of n2. 
In Chapter 2 we showed that strong irrelevance \V.r.t. this definition :~ equivalent to - - _ ... 
strong irrelevance w.r.t. the stronger definition M2, and provides a sufficient cor.dition 
for strongjrrelevance under the condition M3. 

Exarhple 3.13: Consider the following kr.owiedge base, where e is the.EOB predicate 
and p and PI arf;> I.D B predicates. 

i', : p(F, X) :::} p(X, }"). 
1'2. : e(X. r) :::} p(X, r). 
1\3 : p(.\', X) ~ pdX). 

The rule 1;, can only appeal' in nOiH'ninil11al derivations of .0,. Note howf;>ver, that rl 

will apPf;>ar in minimal derivations of jl. I 
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As before. bur first step is to find a s~t of symbolic derivations that the query
tree will encode. We build a query-tre~ that encodes the following set of symbolic 
derivations UnltTl • :\ derivation d is it member of nl1ll7i it: 

1. dE Usa/ and 

2. There is nb pair of nodes p( Xl .. , , ,Xn ) and p( }'l. , ..• } ~) for any predicate p. 
such that Cd F (Xl == }'!l /\ .. , /\ (Xn == } ~), and such that. p(X1 , .. .. Xn) is 
an ancestor of p(} '1' •••• } ~), (~ote that in this case. the two nodes in the tree 
would be identical), If two such nodes exist \\;e would say that the tree contains 
a loop, 

In shb\\'ing the properties of IT mtn • we make the following additional assumptions 
about the constraint language used in the rules: 
Density:: Suppose that RJ.(X1 ••••• Xn) is the relation consisting of the tup.les satis
fying the formula J. and.for all 1 ~ i < j ~ 71. formula f does not imply Xi = X) or 
XI = a •. where a is a constant. Let Xl ... " X k be k columns in the relation Elf! and 
let RI be. the seLbf all tuples in Rf in which column i, 1 ~ i ~ k has the constant aI' 

where ai", ..• aR are arbitrary "Constants. The Density Property requires that R' be 
an infinite set or an empty set. 

Intuitively. the property guarantees that if we are given a partial assignment to 
variables that. satisfy a certain constraint. then we. can complete the assignment in 
arbitrarily many ways. The reason the assumption .is needed is that we want. tb 
guarantee that if a symbolic derivation tree ti is in ilmil'll then we can always find a 
corresponding ground derivation in which every variable in d is mapped to a distinct 
constant, and will therefore be a minimal derivation. 
Equality connectivity: Suppose the yariable X appears in the goal-nodes [JI and. 
92 in a symbolic derivation tree d. Let 9 be the least common ancestor goal-node of 
91 and 92 in d. Then X appears in every goal~node on the path from 9 to 91 and on 
the path from 9 to 92. 

:\ote that both ot these assumptions hold for constraint languages using order 
predicates, as long as the domain of the variables is assumed to be dense, or for the 
constraint language containitig only equality. When the rules do not contain inter
preted predicates. they cali be viewed as using the constraint language of equalities,8 
and therefore the Density property is satisfied. Furthermore, It should be noted that 
it these properties are not satisfied. then the query-tre still provides a sound infer
erlce procedure for strong irrelevance. This means that a node may appear in the 
query-tree and still be strongly-irrelevant to the query. It should be noted that even 
when these assumptions do Iiot hold. finding examples in which the que.ry:-ttee is not 
complete requites careful crafting of the rules. 

8Betause equalities cali be rCf)tPsrntpd impliCitly by 111ultiple occurrenceS of the same varlacle. 

I---------------------------~-~~--.~- .. 



CHAPTER.1. THE QL"ER) '. TREE 

rnder tht?se assumptions, we can deduce prop~rties of minimal derh'atiotls hy 
inspect ing symbolic deri"at ions iil TI nitn as follows: 

Lemma 3.14: 

1. If PI d I_ .... an) docs not satl.:;jy any of tlie labels of. nodes of p in any tree d E 
ITmrn. then plal .... . a n) dOfS 110t appeal' il1 any minimal del'it'atioTl of the quay. 

) [f mal.···. an) satisfies thf ('an.~f1'Qint.-label of ~·~ome node 1l (of the. p/'edicatt p) 
i11. a symbohc dO'it'ation .trfe d E rt mln . and the equality relations betu'een the 
constants a I' _ •.• an a/'e orlly thnSf that ar~ entailed by fhe ccmstmint label. then 
thaf is some minimal dfT'il'atiOTl of the q1!ery that lises p(al ... . :a,\.) . 

. J . . A rule r is used in a minimal del'iraiiol1 of the q!l!ry if and only If r appears in 
some .sY77~90Iic dtrit'atioll d E nmtn . 

Proof:. To p~o~'e Part 1. if p( al.' ... arll does not match any ,Pode-in symbolic deriva
tions in n-mtn. there are two possibilities. The.first is that p(al, ... , ard does not match 
any node in symbolic derivations in IT$at • .If this is the case. dearly p(al ... , . an) does 
not appear in any derivation of the query (.by Lemma 3.3). The other possibility is 
that it only appears in derivations.of TI$at whose -corresponding symbolic derivations 
contain a loop .. However. every:instance of a symbolic derivatioILthat contains a loop 
will contain. a loop. and will therefore not be minimal. .. 

Part :3 is .prm'ed.as tollows .. If d'E IT min uSes the rule-r. then d E n~at'. Therefore. Cd 

is satisfiable. Consider an assignment 1.' of the \'ariables in d that satisfies Cd and such 
that I.> assigns two variables .\\ and X2 the same \Ialue only if Cd j=; XI = X 2 - Since 
d contains no loops, the derivation dl;.' will be a minimal derivation. If it were not, 
that would imply that there are two nodes gd.\') and glef') such that Cd \=.S = f. 

Conversely. if there is a minimal derivation that uses. r. consider. its corresponding _ 
symbolic derivalton d. Clearly. d E IT mtn . 

The proof bfPart:.? requires the Density property. Let Xl.' i,. Xm be the variables 
in d and assume Xi .... ,Xn are the variables that appear in the node whose label is 
satisfied by p(Cll •...• an}. We sho\\' that there is an assignment v to the variables of 
d that satisfies Cd and such that: 

.) for 1 S; i.j ~ nl. X, = XJ (ot X t = a) only it it is implied by Cd. 

Applying I.' to d will yield atninimal derivation of the qUery that uses p(dl, ...• tLft). 
\\'e start by assigiling X,. = at Jor.1 S; i S; 71. ~ote that this mapping satisfies the 

second condition .because Cl-I •••• ,an OIlly satisfies the equalities requited'by tile label 
it matches. We proceed by jnduct ioil on i. Gi\'en assigrllnents to X\ .. ... X t ',"i! need 
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to assign a \'alue to '\1+1. If Cd ~ Xifl = Xl for j :s; i. then we assigI1 .\/TI the value 
assigned to X) (similarly. if Cd ~ X I +1 = (I. we assign a). 

\\'e now show that there .are an irlfinite i1umber of assignments al+1 to X1+1 slich 
that a\ .... , ai+1 will satisfy Cd. and therefore we can choose a value (1;+1 that is rlot 
assigned to any of Xl ..... XI' 

Let b1-r2"'" bm be an assigment to the variables .\1+2 •.•.• .\m such that the tuple 
consisting of 1;.,(.\'I}, •••• l'(XI ).b1+2 ••.• ,bm satisfies Cd. :\ote that bi+2 •..•• bm tnust 
exist because 1,:'(.\'1) •...• 1;'(.\'1) satisfies Cd. Now consider the selection on Cd in which 
X) == t!·(X)) for 1 ~ j ~ 1 and X) = b) for i + 1 ~ j ~ m. This is the subset of Rd 
that is equal on the columns XI" ..• XI' .\'i+2.' . " .\'rr!' and therefore. by the Density 
property must be infinite. This means that there are an infinite number of values 
that X I +1 can take that will be consistent with.l;>(X1) •••• , I.·(X:') and \\'ith Cd. I 

It is important t.o note t.hat Lemma :3.14 implies that if we can .build a query
tree to encode tI m1n , t.hen strong irrelevance under minimal derivations is decidable. 
The only:subtle point that needs to be considered is when we have atoms of the 
forn1 p.(at ....• <i rt ) that fatisfy someJabel in some.derivation tree in nmtn , but where 
al •...• an satisfy additional eClualities.not implied by the label. In such a case we can 
create a specialized predicate t/ that enforces these eq~alities. For example, if we had 
an atom p(X,.\'), we would create a predicate p'(X) defined. as p(.\'. }') 1\ (.\' == }") .. 
We then consider every rule in the KB in turn. Whenever a rule can use the predicate 
p, we tnake another version of it that uses p'.9 We then build a query-tree for the 
KB that includes the rules _with p" and check if p'( a~, ... , a~) matches. a node in 
that query-tree (where a'l' ...• «~ is the result of "removing duplicate constants froYIl 
al,· .. ,a n ). 

Our next step.is to de,'ise a labeling scheme for nmirt. A label of a node n, denoted. 
by Lmin(n) will be a pair (c, t) where c = L~at(n) and t will be the tag of n, defined 
as tollows. We denote by \:'(g) the variables that .appear in the node g. 

Definition 3.15: Let 9 be a goal-node in a symbolic derivation tree. Let S be the 
set ot its ancestor goal-nodes that have. only variables ftom V(g) or constants. If S' 
contains a node that is identical to g. the tag of 9 is inconsistelli. Otherwise, .the tn[ 
of g. denoted by 1'(g) is Su {g}. The tag of a rule-node rEd is the tag ofjts fathCI 
goal-node. I 

Two labels (CI. t 1 ). and (C2' t 2) are t.he same if there is an isomorphism between CI 

and C2 which is also an isornorphi.sm between t I and i2• 

Lemma 3.16: The labeling L71ltrl is.a .finite Labeling sthenie Jor-IT fnin . , There triM 
Junctions BL'mtn and T Dinm such that Lmlll is f! phas.e computable. 

---------------------!llf P appears in two or mot!' subgbals of a rule r we tiiake a vE'rsiol1 for P\'er~oa\. 

I----------------~--~--·------------- -
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Proof: To !'how that ther(' is it finite> llullIbet' of lab(>ls, it ;mHin's to shu\\' that thn(' 
is only a f1nit(, !lumber or possible' tags. Consider the atoms 01 a predicat(' p in a 
tag. Tht" 1l1lI11\wr of dif1('['('nt atoms of p is t h(' lIumber of possible variable patterns 
of th(' argull1Cnts 01 p. which is the number of ways to partition the arguments 01 j> 

into equivalence classes. This numb('r is ('XPOIl('I1.t ial ill the arity of p (cf. [Graham 
d ai., 1989]. pg. :nt). 1'her('for('. til(' lIumber of atoms that may appear iIi a tagjs 
('XPbIi('tltial iI1 tlit' maximum arity of predicates ill P. Consequently. siIice a tag is 9-

S('l of atoms. the nllI'nber at possiblf' lags is doubly exponential in the arity. 
:'-i(,'xt. we observe that the tag of a goal~node can be de.termined by the tag of 

its father. Let 9 h<.> a goal-llOJe whose grandfather gO~l.I-node is gl \ and suppose 
91 E 7'(g), i.e .. tl is an ancestor of g that has only \'ariables from \ '(g) or constants. 
By the Equality connectivity .asslimption, \""(g') ~ \"'(91) (because gl is ort the pJl.th 
from gl to g), Tlierclore g' E 1'(gl)' ana 9' \\'ill be.in T(r.), ,where I' is. the. lather 
rule-node of g. C'ollst'<iupntly, 1'(g) can lw determined by inspecting oIlly t.he atoms 
ill T(r). 

Since T(g) can h<.> determinpd by the tag of its father. it also follows the L mln 

is ~ phase. cOnlputable. In the first phase, the ('orhputation is identical to that of 
L.~<ll' and so we define Bl. 'min to be identical to BU LabeL In the second phase. the 
function TD IlIIII (7',O,(C. T(1')),g) will campULe a label (e' , T(g)) as follows. The first 
cornf>OlH'Ilt is simply that computed by .TDLabel,-i.e.\ c' = TDLabel(t,O.c,g), To 
compute .the tag of g. simply il1SIH~"t.:t. the at.omS in the tag ot its father r,. Aside from._ 
9 itse.lf. any aton1 that includes only variables from 9 and constants will be ir1 T(g). 
If 9 E T(r) then 1'(g) will be iTlcoti.<;is,trn/~ 

Finally, we need to show that n mlll cart, be verified by inspecting the labels Lmln 
of t.he Ilodes in the trt.'t' d. This follows -from tht' tollO\\'ing observation: d E ilmtn if 
and.oilly if for .all. 11 E d, Lmln (n) is not IIlconsistent, i.e .. , if L mln = (c, t). tlien c is 
satisfiable and t is flot mC011s2stent. 

lIi proal, sllPI~o"e.there arf' two identical nodes ttl and 712 in d such that 11.1 i:s an 
ancestor 01112. and let r b~ the father of 712., Tht' tag T(7:) would contain 711 (because 
or the Equality conrlecti v.ity aSsuulptioil) and therefore •. when ('omputlrig T( IL'l) we 
would get ail inconsistent label. C'onvt'-rsely, if j"')f son'lc 1100e n 1'( ri) is inconsistent\ 
it Iilust bp the case that n E Ttl') .. whet~ 7' i~; th(' ,athee' of..7L_,Thls rfleans that one of 
t Iw ail('~st.ors of 71 is identital to 7.l. I 

The corollary ht;lo\\, follows frOill Lt"tnma :3. Hi ,'l.r"ld Theotelil :3.(). 

Corollar.y 3.17: TIlt proc/'durf build;query:-tree Il'ith jllilcfions·JJl'lrIlI. aud.tDlTllii 
will ro.inp ul fa-I} 11 t'Ty-1 /'a f 11 (! i f 71 c'och S 117'1 ('I.".1.1!l I II (' .... II 7tw.b.li.c.. d (ri l'at iotls til ll"ui~' 

Th(~ following i"xalllpl<" illustrat(>s t"ht, I1se af tags ane shows thaI. tl"I(-'Y atc itl(j('>('>d 
1l(lchisary iiI order 10 df'ri\"(; stt:oii~ irtc'ic"'van('(' uitdcr millimal derivatioils. 
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Example 3.18: Consider thp followirig knowledge base. 1'h(' fj'S are the EDB pr('d
kates. 

1'\ : q(X. Z) 1\ C(Z. }') =? q(X. Z) 
/'2 ; c\(X. }') =? q(.\', }') 
r3 : p(.\'. F) ::::} q(X. }') 
1'4.: E2(X, }') :::;. p(.\'. }') 
7'5 : q(X. }') =? peX . .}.') 

Since there aTe rio illterprE'ted constraints in the rules and no equalities bet,,;een 
\·ariables. the constraint labels of all the nodes in the query-tree (see Figure 3.t)(a)) 
will have the Tritt: constraint. ~ote. that ,'ie do not expand the node q()a:. }') with 
rule r3 because it will.l'f>sult in a subgoal p(.\'. f) which is identical.to the root bf. 
the tree, and \\'ill thereforf> produce ali-intonsistent tag. However. we can expand the 
node q( X :Z) with rj without trcating a loop', Therefore it is impq~t.ant to distinguish 
between q(X. }') and q(X. Z) c\'en though they have the same constraint label Lsar ' 

Since L'rntdq(X. Z)) is the same as Lmtn(q(X, Y)), we do not expand the latter. node, 
Figure 3.8(b) shows the ql1~ry-tree that. would be obtained using the labeling L,at' 

In this case, the node q(X. )') would have been expanded witll..1'3 and therefore. the 
query-tree would encode also non-minimal derivations. I 

3 .. 4 Rules with Negations in the Antecedents 

Recall. from Chapter 2 that it we have a set of. rules with stratified. negation, then 
strong irrelevance is undecidable (Lenirr1a 2.18). In this section We discuss a restricted. 
case bf stratified rules· in. which.orily literals of rDB predicates may appear negated 
in the rules, In.this case, a derivation can be viewed as a tree as befote, except that 
some of the leaves of the tree may be negated literals, A negated literal --e( a) is 
considered to be satisfied it the ground atom e( ci) is not in the knowledge base, 

As before, the query-tree will cllcode a set of symbolic derivations. in this case' 
derloted by nneg. :UYDlholit deri\'at.iOIi d wilLhe..a...Iuemlkr of nneg if 

1. d E itat and 

2. TIlCr'I.' is ilO pair of gr(}lilld atoms dX) and .... c.(f) such. that Cd F (S = fj.. 
i.c\. th~r('> is no pair of contradictory leaf atoms. 

The sctolid condit iOll !!,ual'ailtc('s that the syi11bblic dcrh;ation is satisfiable. i.e .. 
it oni'<; nut ff'quirt' that both ail atom and its ncgat.ioli be iIi the knowledge base. 

'[he' followillg tlicornil shows that ('!ltading 11"1'9 \\'ill enable us to d<,ci(\c strong 
irrelevance: 
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p(.\'. n {p(.\'. }')} p(X.}') 

7'4~r5 
I 

q(.\'. }') 
I 

C:1(x. }') 
I 

q(.\', n {q(.\'. n.p(.\', }')} 

/---..-. 7'J~rl 
A 

q(.\', Z) e(Z. }') 
I 

tdX, n I 
y(.\'. }') 

I /~ 
cd.\'. }') q{.\'. Z) e(Z. n 

{q(X.Z)} 

r_?~~,. • 1 J 

(b) 

I A 
ed.\'.2) q(.\'. T) ('(T. Z) 

I 
p(X,Z) {p(X.Z).q(X,Z)J 

{q(.\'.T)} 

(a) 

I 
r4 , 
I 

f«.Y. Z) 

Figure 3,8: (a) A query-tree with node-tags (shown only for IDB goal-nodes). (b) 
The query-tree that would !:aVf> beell produced without considering tags. 

Lemma 3,19: 

1. If p(ai ..... an) docs not ,<iatisfy any of the labels of nodes of jJ ili ilny tree d E 
nncri' thcH p(.al.' .. ,an) dots not aPpear in any t·a/id dC7'it'oWm oj the query .. 

!!. If p(a' ... " (In) satisfies the COTistrairit-label of sonte 1lode n (of the predicate 
p) III iI. SYTTibolic derivation tree d E nne.g. and al;' .. i an satisfies only the 
f(jtlalilics feqt.ll1·ed by the cotlstraint labEl. then the,," is sofTIe database in uthich 
p(a) .. , .. (i,d is lisftim fl dC7'll'atiOTl oftht qufI',IJ. 

,J, :l rIlle apJ)car$ iTl a '~!itjlbnlif rln'it'atioTl m I1 neg if imd only 1/ it i.~ not ,~tr'O'ig'Y 
ii."rltt·tHit tn thr. qi/fry. 

Proof: Tht' -proof is \,(,j-y sirhilar to that of Lcmr'na 3,14. For Part 1. _ suppose 
p( a I, . , .• ah) was part of a valld deri vatioI) d' of thp (!uQry, and It?t d b<". a symbolic 
deri \'at iori rbrr<-spoiiciiligJ,Q_dl._Cl.catly. iiI E tI Il~,q' 
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TIlt' proof of Part '2 follo\\'s trolll tilt" ('laim ShOWli iIi tlip proi:>f of Leri11l1a :3.1·L 
Theft· we proved tht' following claim. Let Xl .... , Srn be the variables iI) d and 
assumc Xl.:'" X'I are til{' variable!' that appt'ar in tht-' node whose label is satisf!pd 
by p(al •••. • a n ). Then there is an assignmt'nt 1.' to the variables of d that satisfies Cd 

and such that: 

.) for 1 ~ i.j ~ m. 1.'(.':1) = I.'tXJ) (or l'(X1) = a) only if the f'q)Jality is irnpli('d 
by ('d. 

Suppos(' we apply I.' to d, Sinct' d E ITneg. d does not have two contradicting 
literals. 1'h('refor('. el1.' will ha\,(' two contradicting literals only i[two distinct variables 
X, arid Xj .. such thaLcd \;t X, = .X). were mapped by v tb the_sanH~_constant._ 
Howp\·er.. .. that contradicts tlic.assllmptior1 on I. ... Therefore. du' is a valid derivation 
of the query that.uses p(al •... . an ). 

Part :3 is proved exactly as in the proof of. Lemma 3.14. I 

:\s in the case ot miriil'nal-derivations. it. should be noted that if we can huild 
a qllery-tn'e to l'llcodp precisely Dllrg • then strong irrelevance is decidable for such 
rules. The n0xt step is to devise a labeling scheme for Onego For clarity, we begin 
with t.he case in which tht"'re are-no-interprcted predi{'ates in the rules. Furthermore, -
we assume that no positi\'p suhgoal or head b[ a rule in the KB has the saine variable 
itl (\\"o or tIlore. columlis. Rules that do not satisfy this assumption can be converted 
into suth a fonl'l lIsing equality cbnst raints and willtherefore be covered later. 

:\ote that the Dehsity property holds trivially in this case. Furthermore, all Ulii
fieatiollS of rules with subgoals are trivial. Our labeling scheme iIi this case will be 
Lnr:;, \\' hieh is defined as follO\\'5. :\ label of a node 11 is a pai r (c\ e), where c == L.sat (11 ) 
aiid f is the EDB~/b.bd of 7i. defined as follows: 

Definition 3.20: EOS-Iabel:. Let l' be a rule-nbde ill a symbolic derivation tree d 
and let 9 be its father goal-node. Let S be the set ot all EDB literals that appear iTl 
tilt' subtree rooted in r. Wf' say that the set S is consistent if it does riot contain arl 
atoni :1 and its negatiori .... A. c If S is cOIisisterit, then tlie EDB-Iabel of rule-node.f' 
dr') is the set of lit.rrals of SO that <.'ontaitl only variables from fJ or COl1stants. it S is 
I:ot tbnsistent. then t htc'.E D U iabcl of l' is the inCOlisisterit label. The ED B-label of ali 
lOB ~oai-ilbd(> [j is the Salil<' as the 1<':'013 lahel of its thild r.ule-!Iode. The EDB-Iabel 
of all EOB goal-node is th(~ s{,t C'Olltaiiliilg itself. I 

:\s befof<",Ji.\·o sets of literals tl and f2 are considered to be identital EDB-la~els it 
tlt('r(' is l-l..I1lapping l.' of tll(· \'ill'iables of ('1 til thj> \'Miabl("~ of e2 ~!tch that V'(cd = C.·l' 
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Example 3.21: COllsic:ier the following knowledge base: 

T 1 : (' ( X. }') ::;. p( X. ) ') 
T'2 : t( X. Z) /\ ..... g( X) 1\ -'g( Z) 1\ p( Z. }') => P( X. }') 
T:3: P(X. }') 090') 1\ --("lX. }') => ('(X. )'} 

Rules 11 aIid 1'2 define a p (path) ["{'Iation in terms of EDBs f (edge) and 9 (good 
nodes), Rule T3 defines a c (connrctivity) relation. Figure :3.9 sho\\' a symbolic' 
deri.\'atioll tree created from this knbwlf'c1gf' base with its EDB labels. I 

r(,\ n {-,g(X).!iO'),-,e(X. )')} 

T~ 

~ 
{-,g(X)} Pt.\". n gLU -,e( Y,.LJ-

I 
12 
~. 

/(.\'.2) -,g(.\') -'fl(Z). p(Z). )'){d2. )')} 
i 

Tl 
I 

e(2, }') 

Figure 3.9: SYtllbolic derivation tree with EDB labels 

The following proposition shows that an EDB-label can be computed from the 
EDB·lahels of its subgoals. 

Proposition 3.22: The EDB~'o.bd oj (/ fule·,iodc r eim be corhpuied by the EDB~ 
lo.bds CI' •..• fm oj Its 8ubgoals as fiJI/oIL's. l.Et S he fl U ... U em. If S is consistent, 
then thE EDB·/abei afr is the set of literals in S that contain only V,i1riables appearin[} 
in r's father, g. Otherwise, the ED,T3=label of f is incorislsteni, 

Proof: The proo!' follows frotn the ECluality Connectivity assumption. Specifically. if 
i\ variable .\ appears in two Ilodes 1I( alid Tl2 iii a sYli1bolic derivation tree such that. 
1/ I is ali ancestor of rl2, then it appears in every goal~nbde on the path froth TIt ~o 
Ill. Therefore. if an EDS,literal g( contaiI1S oilly variables that appear ill one Of its 
all{:(;stors g. then ~ithcr gi- is a subgoal of 9 or there is a subgoal 91.of 9 which is an 
ancestor of 9~. Ii! the .Iatt.er. case. g, will be in the EDS·label of fJi because ali the 
variables of fir niust appear iIi 9\. 1,1 hoth cases. tie will be in the set S' d~fined above. 
I 

---.... ------------------------~ .. __ .• 
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Lemma 3.23: 

1. Thr IIl1nibfl' oj EDB-labels i.s ji,l/it. 

2. A symbolic dfl'it,tzlit)1! I,.tf il i ... il TTiembfr of nn~g if and only if TlOlif of thf 
l'ldr-nodts of d has Ihr illconsi ... drnt label. 

;J. Thcre f.TiSI fIl1iCfit)1!." Bl'lIe!; and T Dllfg • .such that Lneg i.<;:J phase computable. 

Proof: To l'>rove Part 1, \\.(' ob!Serve as in the case of node tags, that the number 
of atorns that can appear in an tDB label is exponential in the maximum arity of 
predicates ill P (though iIi. this case. t he number is double since they can either 
appeal' positively or. negatively). Sirice an EOB-Iabel is a set of atoms. the number. 
of tDB-labels is doubly exponential in. the arity of the predicates. 

Part 2: .Suppose d has a node 1" with .an inconsistent label (note that the incon
sistency tan only come from th(' £DB-Iabel. since·eq,l,1alit): constraints are always 
satisfiable). That means that r has an. atom and its negation .in its subtree, and 
ther.efore. d ~ .nneg. Con\'ersely. suppose d cOritains an atom .-\ and its .m)i~ation -,,.4 .. 

Let r be the least (ammon ancestor goal-node. of A and ....,.4, The EDB-label of. r will 
be inconsistent. 

To prove Part 3. we denne twoJurlctioIlS BUneg and T DTieg. r\.ote that under the 
assumptions we have made. the constraint part of Ln~g. is always the True constraint. 
The EOB-Iabel part is COrllPuted by BC1ieg as defined in Proposition .3.22. The 
functionT Dneg. is sitnply the identity function. since the EOB-label does not change 
itt the top-do\vn phase, The proof follows from Pr.oposition.3.22. I 

Corollary 3.24: The procedure build-query-tree u;ith the junctions BUneg and 
T Dlltg tl'il! c(H1ipute Q qUfry-irre ihai fllcode,~ precisely the set of derivations Oneg' 

Returning to Example 3.21, the first step of the query-tree algorithm will produce 
the following EOB laoels. ~ote that to avoid confusion. we u~e variables in the 
EDB~labels tha.t are disjoint from those that. appear in the tree. Rule 11 derives 
the EDB label {e(Xt. Xl)} for p. l'sing the EDB label {e(X1, .\':d} for p, rule T2 
deri\'~s the EnB label {-'g(Xd} for 1'. Using the EOB label {-.g(Xd} for p in rule 
T2 generates the isomorphic label {-'g(Xd} for p. Thus. no more EbB labels for p 
(ail b~ derived. Using the EDB label {-'g{X\)} for p. rule T3 derives the EOa label 
{:"g(Xd.g(X2 ),-'t"(X\,X2 )} for c. llsitlg the EDB label {e(X1,X2)} fot p in rule 13 
getierates an iIlCOlisistcncy. aiid ilo nt'w EDn label is de'rlved. Consequently the set 
of tenried. wit's is t he following:' 

Tl' : d.\'. }') ~ p(e{X,.x2 )}{X. }',) 
T2~ : C(X. }') 1\ -'g(X) 1\ -'9(Z) 1\ p{~(X,.x~))(z.}') ~ lj{.;g(Xi)}P:, }') 
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T2b: f(.\'. }') 1\ -'g(X) 1\ -'g(2) 1\ p{~9(.\'tll(Z. }') ::::> p{~9(Xtl)(X. )') 
T:3': p{-'9(Xdl(X. }') 1\ gO') 1\ -,t(X. }') :!:::> c{~g(XIl.g(X2l,~'(Xl,X11}(X. ):) 

The query-tree created [or this example is shown in Figure :3.10. :"ote that we do 
nut expand the rightmost node phiJ(X11}(Z. F). since its EDB label is the same as the 
EDB-Iabel of node p{..,g(X!l}(.\'. )'). 

c{-.grxtl 9 XJl.~"'Xl.Xii} (,Y, }') 

I 
T~' 
~ 

pj~g(Xll}(X, }')g()') ""f(X .. r) 

T2~ . . T2t, 

'IX.Z)~~!.!'tIZ .. I') 'IX.Z~""X'IlIZ.I·) 
711 

I 
e(Z. }') 

Figure -3.10: The qUt:>ry-tree built for the program Pl' 

Adding Interpreted, Predicates 

In the previous section we. shQ.\\ied that we can compute Lneg in a 2 phase procedure. 
However, that result depended on the observation that we knew all the equality 
relations between variables, in the tree during the bottom-up phaSe. Specifically, if a -
variable in the body of a rule must be equal to a variable in the head, then we 'Nould 
know that in the bottom-up computation ofBUneg. The assumptions we made in the 
previous section guaranteed that property because rules could not imply any equality 
relations between variables. However, \\'hen we allow the rules to have interpreted 
literals, this assumption may not hold. and tnerefore, the EDB~label computed may 
not De correct. 'The follo\\;ing example illustrates the problen1, 

Example 3.25: Consider the following rules: 

1'\ : tdX .. )') 1\ €2(Z) 1\ X.:;; Z ~ }' :=;> li(X, }') 
1'2 : €3(X,)'; 7') 1\ -,c2!T.} 1\ X ~ T ~ }'-=:u;(X. Y. T) 
rJ : p(.'\:, }').I\ {/(Xi ~'. T) => s.(X. )') 

The EDB-labels would be con1puted as tollows. l'sing 1'1, we first treate a label 
{tt{:'q,X2)} fl)r p. Note that €i(Z) is not irttluded ill the EbB-label because Z does 
not appear in the head Of Tl nor is tLklibwn to br ('qual to bne of the variables in it. 

. i 
, , , 
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:\ext. with 1'2 we will crell.te a label {(:l(X1.X2.XJ),,",f2lXj)} lor q. f:'irially. with ).:.\ 
w{' will create a label {( I (XI. X:d} tor s. E')wever. cOr'lsidering the constraint label 
ot $( X. )-.) implies that X = }' = T. and therefore .Y = }' == Z. Consequently. the 
symbolic derivation of " is inconsistent because it contains both EZ( i) and "'e:i( T). 
However. the EDB-labels computed. \\'ere all consistent and so we were not able to 
detect the cOlitradictioll. I 

Fortunately, there is an easy fix fot this pi'oblem. F{ecall that after computing 
the constraint labels L4at of nodes in a svmbolit deri\'atibn tree, the labels are a~ 
restrictive as possible. and therefore describe all the equality constraints bet\\'een 
variables. Thus. we Can create a new set .of adorned predicates and rules from the 
query-tree that have the constraints cOIhpletely propagated. Specifically. if 9 is a 
goal·node ot the. predicate pin.the·query-tree (built \\cith BULabel and tOLabe/). 
and .Lsadg) == c .. then we <'r.eate an adorned predicate pC. If r. is a rule-node i'Cl the 
query·tree, and we erecued an adorned predicate pC from its father and predicates 
<1\'1., I •• q;'m .fmm its <;h.ilcl.r~n. t.hen we create the adorned r.ule 

in which none of the positive 'literals in the antecedent have ·the same variable in 
different columns. \Ve denote the neW set of rules by ·'PI. We, note that the rules 'PI 
are equivalent to 'P w.r.t the query q; This meallS that ('P U 0) I-: q(a) if and only 
if ther~ is some c such that (PI U 0) f- qC(a). Moreover, when we build a query
tree for PI then .the constraint labels are completely know.n in thebottom.:up phase. 
and theref(jre. we can compute the EDB-Iabels in parallel with the constraint labels. 
Returning to our example, we would create the. following rules from the query-tree 
(note that every. predicate has only one adornment, so we do ll.Qt .Gha,pge the predicate 
names): 

1'1: el(X,Y) 1\ e2(Z) 1\ X = Z::::·}: ~ p(X. }') 
1'2 : f3(X, }~. T) 1\ '"'e2(T) 1\ X = T == }' ::;. q(X, }'. T) 
1'3 : X = } .. = T /I. p(X. }') 1\ q(X. F, T) ~ s(X. Y) 

C'orhpllting EOB-labe-Is with these rules will result in an inconsistent label for s. 

3.5 Compl~xity 

As stat,cd .iIi the outset. the tin1t:'. complexity of building the query-tree. deperids on 
the rtumber of different labels that can be. attached to the nodes in.the tree .. We have 
seen that the humber of labels we tnay hav(> fot LUI with the constraint language 
C/"v is exponential in the' arity of the predicates. The number of labels we may have 

i 
I 

I 
i 
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for Lmln ot L,,~y may be doubly expbnt>mial in til(' arity. Th€' followillg theorem 
:-Iiows that we cannot expf>ct to do r11tlch better than that. Specifically. it sho\\'s 
that once Wp introciun' the pr('dicate ::j:.. the 10\\,('1' bound on the problem of detecting 
strong irrelevance is exponential iIi tht· arity. Tht' same is true for encoding Lmlll even 
without int~rpr(>ted predicq..tes. 

Theorem 3.26: Gil'fn a sft of nilr.5 P. a qUEry prfdicate q. arid a rule rEP. 
deciding S I( r. q. ~P. D 12, 'Dq) i.'\ hard for r.rpo71fTltial tiltlf If the rules may contain -

the predicate =j:.. 
Decidirig SI(r.q.~p.{)f2.'\!l).i.'i hard jor e.rponenf.ial time t?t'eTi ifP does not 

contain any interpreted. predicate.". 

The proof is based.ori reducillg the acceptance problem of a linear-sp?ce alternat
ing Turing ma.chine (:'\T:"1) to_the problel'n of detecting strong irrelevance of rules. 
The details of the proof are given in ApfH>l'tdix A. 

3.6 Summary' 

In this chapter we presented a genei~l method for encoding.a set of derivations, there·· 
fore enabling us to deduce pr:.op~rties. of that set efficiently. Specifically. the method _ 
enables us to deduce strong irrelevance. claims. The method involves constr.ucting 
a query-tree that finitely. encodes all the p<..>ssible. derivations. iIi. the given set. The 
key issue in the construction of the·query-tree is itl'. termination condition w.hich is 
based on a. labeling scheme we have devised. The labeling scheme depends on the 
specifk set of derivations. we wish to encode. We have shown three instances of the 
quer,X-treC' method: (1) encoding the set of all derivations for Horn rule KBs with 
interpreted predicates. (2) encoding the set of all minimal derivations of a query and 
(3) encoding the set of valid derivations when rules tuay have negated EOB literals 
iIi their antecedent". Importantly, in these instances. the number of possible labels 
and therefore the size of the qu€ry-tree. does not depend on the number of rules in 
the knowledge base. only ort the arity of t he predicates. Consequently. the query-tree 
algorithm is likely to scale up to lal'ge knowledge bases. In additiotl to the three 
instances described. the method provides a powerful cOliceptual fra.mework in which 
devising new labeling schemes hrcomes much easier. 

3.6.1 Related Work--

\ 

! 
Tne irHuition .behind the query-tr('e algorithm cOIi1es from translating the pr.bblenl I 
into a decisibIl problern fot tree-autbmata.. 1o hl fact. \\'e-have argued that a_finite __ I 

IOS{'p [Vardi. 1989] for a discussion of tlil' ill1pprtailCf' bf t ret:' aUtoma.ta IIi database tncdry_. ______ -;i 
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labeiiilg schpme essentially guarantees that the st:'t of deri\'ations can be' recognized 
by a reachability test on a finite tree atitomaton. With respect to tree.autbmata. tilt' 
coritributioIl of our work is twofold. The fitst is sho\\'ing that the probleril can be' 
recognized by a tree automaton. This im'o!\"es coming up with the labeling s(;hemc 
(i.e .. the states of the automaton). showing that indeed it is sufficient to encodt> 
precisely the set of symbolic derivations of interest. and showing that t'>xamini·og this 
set of symbolic derivations is enough to decide irrelevance. The second is developillg 
the query-tree which IS a more efficient arid natural recognizer of the set of syn'lbolic 
deri\'ations. The query-tree essentially combines the creation of the tree automaton 
and the reachability test into. one algorithm. ~loreover. the :''''.ery-tree will usually 
produce only a subset of the stateS of the automaton needea w recognize the set 01 
deri\'ations. and working with the query-tree is conceptually simpler than .working 
directly with tree automata. :\s we see in the next chapter. the query·tree will also 
lend itself t.o other natural usages. 

Several other authors .have considered static analysis.of 'rules for different pur-._ 
poseS. such as explanation based learning [~tzioni. 1993] .. partial .evaluation .of logic' 
programs .[Smith and Hickey. 1990: Lloyd and Shepherdson, 199.1; Bruynooghe et ai .. 
19911 . .automated reasoning [Kowalski. 19L5~ Bruynooghe et al., 1989] and deduc-'_ 
tive databases [Srivastava. and Ramakrishnan. 1992: llllman. 1989]. Some have also 
used graph-like representations of the rules. such as problem sp.ace graphs [Etzioni •. 
1993], connection graphs [l~owalski. 19i5L. compilation graphs [Bruynooghe et al.. 
1989] and rule/goal graphs [rUman. 19891. Others have used rule foldingjupfolding 
in their analysis. 

The Key issue common to work that utilizes graph-like representations of rules or 
fold/unfold transformations is when to terminate the creation of the graph (or when 
to stop unfolding t.he rules). The query-tree is novel in that it gives a well motivated 
termination criterion based on manipulation of the interpreted constraints that ap
pear in the rules. Consequently, with the exception of [Srivastava and Ramakrishnan. 
1992]. only the quer.y-tree can be shown to be complete in more than straightforward 
cases (i.e., in the pres~nce of recursion and constraints). Recall that completeness 
guarantees t hat the query-t ree encodes precisely the set of desired derivations. [Sri
vastava and Ramakrisnnan. 1992] have a. similar result to oursl\. but only for the 
case of Lut (and not for the case of conjunctive order constraints). Their techniques 
cannot be extended to the cases (overed by our general method. 

Another important difference is the size of the query-tree. which depends only Oil 

the arity of-the .predkates. In contrast. in previous tree-like structures (e.g., [Etzioni. 
1993]), the termination condition .bf the tree involves checking whether a node is 
isomorphic to one of its ancestors. This leads to a tre~cliose..size tan be exponential 
in the number of rules. 

lIObta1l1cd Simultaneously with outs. 

I------------------------~-----·--·-··---· 
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Connection graphs [Kowalski. !9i.!)j were also developed for the purpose offocusing 
a theorem prO\'er by precomputing all the possible pairs of resolvable clauses. Clearly. 
if a certain c1au5:f' appears in a component of the graph that is Ilot connected to the 
cOnlponent of the negation ot the qpery. it can be removed from the KB (i.e,. it 
is st rongly in'.eh·\'ant). However. cOlirlection graphs. only capt ure a su bset of the 
possible dependencies .bE-tween clauses. Specifically. they only show that two clauses 
connected to a link are unifiable. but say notning about the relationship between 
clauses connected via longer paths in the graph. Other ~\'ork [Sickel. 19;6: Chang. 
19;9] has considered following only certain tl'alks on the,graph. however. these walks 
are not guarantef>d to encode valid dc>ti\'ations. as are the p'aths encoded. in. the q]..lery-
tree. 



Chapter 4 

Uses of 1":.·~··e Query-Tree 

The ,query ... tree, as described in the previous chapter. is.a po'werful tool for relevance 
reasoning and speeding up inference .. In this chapter'\\;e describe uses of the query
tree for these purposes. Section 4.1 describes two useS orthe query-tree for s~eeding 
up .inference . .In the first. the q4ery-tree is used to decide l\'hith ground formulas are 
strongly irrelevant to the query. Based .on that determination, we create specialized 
database indices that see only the ground formulas that are (possibly) relevant to a 
class of queries. Using these indices for fetching ground formulas significantly speeds 
up inference., The second use of the query ... tree is based on the observation that the __ _ 
tree also encodes all the possible sequences of rule· applications and database lookups 
that can result in derivations of the query. We can therefore use the query-tree to 
guide the search of a backward chainer t.o follow only these sequences. We present 
and analyze experimental results which show. that both these uses.yield significant 
savings in practice. 

Section 4.2 considers the problem of deriving logical conclusions from irrelevance 
claims that are given to the system by an external source . .It describes an algorithm 
based on the query-tree for deriving suc:h conclusions. It also describes an algorithm 
that uses the query-tree to derive logical conclusions from relevance-claims, Le., claims 
that state that certain formulas are necessarily used in derivations of the query. FI
nally. Section 4.3 describes tiow the query-tree dirt be used to extend other query 
evaluation methods. 

4.1 Using The Ql!ery-Tree to Speed l)'p Inference 

The first use of the query-tree is based on the.observation. (Corollary 3.7) that it tells 
us exactly which formulas lilay be I'e\(:,\itl.llt.to a query (or set of queries). Specifically. 
a rule is strongly irrelevant to the query if and olily ifit does not appear in the tree. A 

11 
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ground formula is stroilgly irrele\'ant if and only if if does not satisfy the cOflstraint
label of any goal-node in the tree with which it can be unified. Consequel1tl~l, whe:1 
answering the query, these rules and ground formulas can be ignored. For instance. in 
the goodPatl! example (repeated in Figure ·1.1). the rule 7'5 can be ignored, Similarly, 
formulas of the relation step that do not satisfy {IOO < X < }' < liO} can also be 
ignored. 

\\:e can uSe this property of the query-tree to speed up inference for sets of queries 
that occur frequently, Given such a set of queries, we build a query-tree for it and 
create specialized indices only on .the formulas that are not strongly irrele\'ant to 
queries in the set. The cost of preprocessing.the kno\\'ledge base in such a way involves 
the cost of' building the query-tree and the cost. of one pass over the kno\\'ledge base 
to build the specialized indices. However. the p~yoff of removing irrelevant formulas 
can be significant because the size of the space that an inference mechanism needs 
to search can be drastically reduced, Specifically, it is guaranteed that every dme _ 
a ground formula is retrie\'ed. the formula may be 'part of a derivatioILof the qu,ery 
since.it satisfies the.constraint label of some node in the query-tree, This is especially 
significant when lookups are made with some unbound variables. For instance. in our 
example, th~re will be many. lookups of the form step(a. }'), where a is some constant 
and}' is unbound, r sing the specialized index on the formulas of the predicate step, 
guarantees. that every formula retrieved will satisfy {IOO < }' ~ liO}. In contrast, 
retrieving a formula that does not satisf~: this ('onstraint. can generate a whole search 
subtree that is guaranteed. to be useless. :':ote that e~'en if the reasoning mechanism 
detects immediately (by checking the available constraints) that the retrieved formula 
is irrelevant, the cost of doing all the useless lookups and checking the constraints 
can be arbitr.arily large. I .. 

The second use of the query-tree is based on the obser\'a~ion that the tree also 
encodes the sequences of rule ~pplications and database lookups that can result.in 
derivations of the query. \Ve can use this observation .to..1urther control our search. 
To illustrate. consider the following example. 

Example 4.1: Consider a knowledge base defining a relation dessert M.eal with the 
following rules. Its query-tree is shown in Figure .. 1.2. 

/'\ : chtap.\!cczl(DI' H'd 1\ meat(Dd 1\ fxpf71sft'c.\!eal(D2• H'2) I\dcssert(D2) =? 

dessett.\lt-a/ (D t • I "I, D2• W2 ) 

1''2.: dish(X, Z) 1\ (Z :S 1.5) 1\ compatible(.\'. n ::::} .cheap.\lea/(.\' •. r) 
7'3: dish(.\'. Z) 1\ (2 > 15) 1\ corrtpiitibld.\'. n ::::} apf71sit·e.\Ua/(X, }") 
7'4 : befj(.\') 1\ rt'dWine(r) :::;> cotnpatib/t~X. n 
7'5: dtsSf7·I(.\') 1\ S!ccctlriric(l'}::::} cbtllpatible(X. }') 

I Note that Iii order to detect irrelevant forriluias inlnlediately. the reasoning mechanism 111USt 

propagat~ the constraints in {lie same fasliioil done irLcreating the query·tree 
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The kllo\\'l('d~(' base,.}, consists of the follbwing rules: 

/'1: badPoillt(X)/\ patil(.\', n-" goodPoint(r) :::} goodPath(X. n, 
/''2 : li n k ( X. }') :::> liat h ( X. }'). 
1'3: link(.':. Z) /\ path(Z. }') :::} path(.\'. }'), 
1'4 : sttp(X. r) :::} link(.\'. )'). 
1'5 : bigStep(X. }') :::;. link(X. n, 
The following constraints art> gi\'en on the gr,bund facts: . 

badPoint(X) ===> 100 < X < 200, 
sttp(X. }') ===> X < r, 
goodPointlX):::;, 1.50 <.\' < 170. 
bigStcp(.Y. }') :::;. .\' < 100/\ }' > :200. 

goodPath(X, }') {IOO < X < }~ < 1iO.}' > 150) 

badPoint(.\') 
{lOa <.\" < liD} 

I 
rl 

path(X. }') 
{lOO < .\' < }' < 170.,Y.::LloO} 

1'" --------------- l' • 3 

goodPointp') 
{150 < }' < liD} 

{lao < .\" <)' < liO.r > 150} I ~ 
/' k( Y n link(.\'. Z) path(Z. }') 

r- _~' {lOO<'\,<Z<liO} {100<z<)r<liO,}'>150} 

I..J'L _ ....J 1'4 -, to! , • 

step(\'. }'j step(~\'. Z) VOb < .\" < Z < 1 iO} 

{.loa < x < }' < 170.)' > 150} 

Figure 4,1: The query-tr~e tor goodPath. , 

The predicates meat. beef and dessert are sort predicates (des$ert is disjoint from 
the other two). The relation compatible represeiHs pairs tunsisting of a wine and a 
dish that are compatible with each other. The relation dish represents the available 
dishes and their prices, Consider formulas of the relation dish. Any forn ula that 
satisfit:s either (beef(Dil/\ Z :5 15) or (dessert(D'2) /\ Z > 15) may be relevant to the 
query dessetU/eal. However. as a su bgbal of r2. we need only consider tOl'muiaS of 
dish that satisfy the first constraint. whereas as a subgoal bf r3, orily formulaS that 
satisfy the second constraint are ileeded. Moreover,.the query-tree shows that rule 7'" 

can only be applied to a subgoal of r2. and not 011'3 (and vic':e versa for t s), I ' 

To exploit this additional control knowledge, we create specialized indices for every 
leaf ,in the query-,tree and rtl0dify the inference mechanism to follow. only the paths 
permitted by the quety-tn:~e. In our exatnple .. we create orie ifldex fot beef dishes 
under 815 and another for dessert dishes over that Fli-iGe, To follow the query-tree 

1--------------------------- --~---.. 
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dn~trt .\U;zl( 0 1.11'1. O2• 1!'2) {bf'f f( 01)' drs,~rrl( D2 )} 

I 
rl 

. /~, 
{bf( I( DI )} "heali,\! uzi (DI ' 1\'1) r J.'peTisi t'f ,if f'a/( D2 • H'2){ di'.~,""rl (O:?l} 

I I 

/~ .~ 
{beef(Dd.2'$. 15}dish(DI • Z) cbmpafiblr(DI.\l'd di$h(D2. ZdcMnpatiblt(D2.lr2) 

I {dpssert(D2 ), 2\ > 15} I 
I'~ rt, 

~ 
rlcsscrt (Doj) su'ed Winc(U ':d 

Figure 4.2: :\ voiding s('atch paths using the query-tree 

during inference. we attach to every suhgoal n in our search a il0d-: in the·query-tree 
0(11). \Ve start by assigning the.root oLthe query~tree to the query. At every step, 
if n is a database lookup subgoal (i.e .. a subgoal of an EDB predicate), we perform 
the lookup using the specialized index of o( ri). Otherwise, we expand n only with 
the. rules that are children of the expanded equivalent of 6(n).2. We assign to, the 
subgoals of 11 theappropriale subgoals of the rule-node iii the query-tree. As a result. 
the. inference engine follows only the pat hs encoded by the query=tree and in every. 
database lookup it r.etrieves onl~ ground formulas that can be used in derb.:ations in 
the current path. ' 

4.1.1 Experimental Results 

'the iriipact of the savings achieved by using the query-tree \\iere tested using a depth 
first search backward chainer on Horn l'ules. 3 Given a knc)\\iledge base ~ and a query 
!-ichema q (i.e.\ a query with free variables). we built a quel'y-~ree for q and two sets 
of indices on ground formulas iIi .~. The first 8('t 1\ ilicluded an index on every 
relation that includes only the forfliulas that. w('re oeefned not strongly irrelevant by 
the query-tree. SpeCifically. a grouud formula c( (II • •••• an) is inCluded in the index 
for the relation e iIi 1\ if (Lt, .• ,' an satisfies thp. constraint label.of sOrne leaf of the 

2\\'hlCh iflay be the nodI' Cl{n) itself. 
3the p(lffofmancf' of the backward ,haincr (,ol11~iilrcd favorably with that of i:'I"'ikit (a COlIlnlcttial 

IIliplemelitat ion of MRS [Russell. 19B!}}) , f'urthcririore. the spe!'dups attained by temo\'ing irrelevant 
formulas (BC2 below) y.'t're also tcsleti using ttie backYiar'd chaincr of Epikit and the speC-dups 
attained were P\'1'1l beller than those r('poi"tfld ht'rf.'. in the rxprrinlerlts we t<istea 5c\'crail'u\c ana 
goal ordcriligs, The results arc shown for the ordering that yi"ldcd tlie b(;st results comistt:'nti)' for 
cill three \'crsiolis of the oack ... hird chailIPr' 

IL-.------------------------------------ -
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predicate c in t 11" cluery-tI'ee.-t The sN:ond set of indices I~ included one illitex for 
{'vpry EDB leaf iI1 the query-treE'. We m('asllred three funning times.:... 

• BCI - the backward chainer on ~ llsing the original indices in the 1\B. 

• BC2 - the backward chaiuer on ~ using the indices II. i.e .. ignoring stl'ollgly 
irrelevant formulas. 

• BC3 - A backward chaineI' that l\~{>S the indices I2 and only tollows the paths 
allowed. by. the query-trce. 

We tested over 20 que!'y. schema:; takell from t he following tour. domains: 

L A travel domain using a database of real airline data describing flights between 
cities in the..l:.S (&xamr.les 3=-6 in the tables). 

2. :\ wine domain consisting of a.klim\'ledge base of 50.rules describing various 
wines and dishes and compatibilities between them (based in paft on [Rombauer 
and Rombauer-Becker .~9i51 ).( examples ;-8). 

~). :\ student-advisor domain using a knowledge base about .Computer sCience Ph.D 
graduates. including ad\;jsor. school and. graduation dates (examples 9-10). 

4. The goodPath example, usi.Ug the tules.in ExampleA.l ((!xampl~s 1-2). 

The first and fourth domains usually yield deep recursive search.trees, even though 
the llumber of rules is small. The second domain is .non-recursive and Yields shallow 
but bushy (i.c .• large branching factor) search trees. hi the third domain, search trees 
havc a low branching factor (which \\las frorti. student to advisor). 

Table 4.1 presents the results of the experiments for the case whereo wt are looking 
for all solutions to a query (e.g., find all X. }' suth that goodFi:J.th(X, };) is de'riv~ble). 
In the table, Filtering Time includes the tinie taken to build the query·tree and 
create all the indices (both II Mid t 1). Percent il'reiel'imf is the percent of ground 
formulas in the knowledge base that were deemed strongly irrelevant (and therefore 
not iliduded in Id. The riext columns show the tirne taken to fina all the solutions 
to-the query. The respective running timet bf Bel, DC2 and BC:i aN shown. as well 
as the ratios of running times. In addition to measuring rUnIling times. the Ilumber 
of Hodes eXIJanded ill the search waS also counted. Thc." last two (oiumns show the 
ratio:. of the number of nodes expanded by HC2 and BC3 compared to BCl. 

The results show significaflt speeaUI)S fOl: both BC2 and BC3. For BG2. the slleedups 
\,'ere hsi.wlly in excess of a factor of :Lranging up_ to 31 (mean: 10.4). The results 

~ :\olr that thl' ongtnal knowlrdgf' ha.'IP h"d 1\11 itidt'x for f'adi groilnd ri\lat ion 
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show that by [ollo\ving the query-tree using BC3 \\if: often gflt additioilal illlf)rove!l1f'J1ts. 
The speedups of sca over BCl were llsually in excess of 5. rallglng ttp to 1190 ,mean: 
·H. excluding example #6)," In ttdllS of nodes expanded. the a\'en\ge speedup for 
BC2 was 10. while the average speedup for BC3 was 3i (excluding example #6). The 
results clearly show that if \\'e are looking for all solutions to the q1lery. building tIl(' 
query-tree and the specializ('c! indices Will yield significant savings. 

.. ... .. --KB size Filtering Percent Solution time (sec.) ~odes 

Time irrelf'vi\l1t t>xpanded 
Facts Rules (sec.) RCI B\~ BC! sea Bel BC! BC'! . .. 7rr'., .~., 'm;., 'iir'i 

%., ~50 IL. 1.8 6a 2780 !~f 15 183 15 .. I Q.~') 10.5 -2. :~f>0. 6 1.~ ~~ . 618 2~.1 2.7 2.?~ 2} 2.!l 2~~ 
~. 

.. 200 18 6.5 6~. 372 .1.4 27 8.-6. 43 ~2 28 
4. 200 1~ 1).q 6Q _2~. 5.5 4.5 4.~ Q .. 6 4.7 6 

I-;:- , 

;). 209. 18 2Q.7 64 3n9. 205 19 la 309 17, .. 2~5 
6. 20.0. 18 14:7 ~8 1278 41 ~.l 1..1 1190 31 1630 
L .. .1~00 47' 15 59 8i4(l 8720 1 ~6~ 24,. _ I 14 
8. 1300 47' 11.6. 60 ~.9 42 1.7. 11 4.5 I .) ~.~ .. 
9. 150 Ii 0.8. .. 5H ,35 i,5 1·6 i.n ~.o 4.5 4.5 -
10. 11)0 17 0,6 59 ~,8 0.4 ~~.6 0.4 7.6-1 4.8 4.8 

Table 4.1: Experimental r~::ults: finding all solutions. 

Tab-Ie 4.2 presents the results oC the experiments for the case in which we use the 
query-tree built fot a query schema to solve ground queries or to find the first solution 
to a query with free \iariables (i,e" the query-tree·was built for gooilPath(X, }") and 
the query is !),oodPath(l30. 160). or we are trying to find the first biliding for X 
arid 1:). The sE':'ond and third columns show the ratios ,of the number of nodes 
expal\ded for ground queries. The IiE-Xt coluri1l1~ show the node ratios of finding -the 
fitst solution to the query. The next columll compares the preprocessing time and 
the tirhe to find solutions to the cluery. It shows the numher of calls (each looking 
for the next solution) after which the preprocessing time equals the time to answer 
the queries. The last column shows the numher of solutions found for the query. The 
rrsult.s illdicate that often the preprocessing pays off aftf't a very snudl number Qf 
solutions and therefore it is beneficial to build a query-tref:' {,\len in rasf'S whf'ri Wf> are 
~Nu('hing for few solutions. 

4.1.2 Analysis_ 

tht ('~:i)(?l'iniel1ts showed that the savillgs achieved by using the <Jlwry·tr(>c arc affected 
by se\.'('ral factors. In. this section We' descrihe tht.;se effects, 

~Exat'llt)i(' #!) Wl>..:i pxi:llld~d from lhr ii'lran hecaus(i the.speedups it yiclclt.'CI wct~ exceptionally 
IlIgh .- .... -.- ----.-.~- -.. -... ~ ."., ........ -... ' - ......... -
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, .. 
Ground queries FInd first solution sblutiblis needed nuniber of 
RCI BCI BC.! RCI to break cven solutions IiC~ BC:i Rt"~ ... i'fR 

~'I 

1. 5.8 6.1 85 85 I ,. 18i .. , 
2. 1.8 1.8 -til 4.5 1 18i' 

~' .. 33 i4 2.5 2.6 1 49 
4. 4.6 i ti.l 6 .. 2 6 3i 
5. 15 290 1 I 1 12 
6. 33 15qO :31 l{}30 1 .. 0 o. 

~. .. 1 .2 1.4 - 2~ 115 41000 
8. o. 1.1 1.4 1.6 4.5 8.1 ~~O 
9. 1.3 1.3 123 l.~~ .. ~ 353 
10. I I 4.8 4.8 1 0 

Table 4.:2: Experimental results: ground queries and finding the first solution. 

Percent of Irrelevant. Formulas 

The.analysis of the algorithm suggest that the speedups obtained will be significantly. __ 
affected by the percent of .formulas in _the. knowledge base that are fbund to be irrel
evant to the query. To test this effect, we tan several variants of .each example, that 
differed only in the constants appearing in the rules (which had the effect of.varying 
tht> percent of irrelevant fOrI'nulas). The results, shown in Table 4.3, shO\y,that the 
speedups grow significantly. as the percent of irrelevant formulas increases, For ex~ 
ample. wherl 90% of the facts are found to be strongly irrelevant, we get speedups 
greater than a factot of 100. 

It is important to note that we have the flexibility of building a query-tree at differ
ent levels of generality and thereby to achieve varying percents of irrelevant formulaS. 
For example. instead of buJlding a query-tree for the query schenia 9;;;'lbdPath(X, Y), 
we dm ouiid one for' gooilPath(l20, }'). Doing so will result in deeming additional 
formulas irrelevant (e.g., step(X, },~) for 100 < X < 120 in this case). However, the 
indites created by this query-tree \vill be usable for a smaller set of queries. Con
sequently, in using the query-tree one should attempt to identify the most accurate 
chariv.:teriiations of frequently occurring s£'ts of queries . 

. - .. 
. - Exaniple I Examplc 3 . ..... Example 9 
Percent Solution time Prrcenl Sol Ulton time Petcent Solu'.lon tIme 

lrrcleyant 80 
~.~. 

ReI 
~ irrrl('vanl [lei 

Tic'> . £SA irrelcyant PCI 
ii"C2 

lJQ 
"i'i'C3 

45 5 5. 2! l.~ :tI 4 1.1 1.1. 
c--

63 1.5 15 ,15 4.5 i.6 I~ l.3 1.3 
iQ IO! 10.1 1)9 2i 43 .... 59 ~.6 ~.6_ 

92 1250 1240 92 3tH 4ti 82 23,5 .- 23)) 

Table ,1.3: Changing the pf'ITf'rit of irrelevant formulas 
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The Number of Ground Formulas in the Knowledge Base 

The second factor that affects tne speedups. that \\;as suggested by the initial results 
is the number of ground formulas in the original knowledge base, To test this effect. 
we rari ,each of the examples with databases containing a different number of ground 
formulas, The results. shown in Table 4..1. show that the speedups increased as the 
size of the databases grew. even if the percent of irrelevant formulas remained roughly 
the same. The growth ran be explained by the fact.tha.t the cost of backward chaining 
is more Lhan linear in the number bf formulas. Therefore, the effect of removing some 
constant percent of formulas will be greater when the o\;erall number of. fon:.ulas is 
greater. These results are significant in that they suggest that out methods will scale 
up to large knowledge bases and be even rhore effective there (recall that the. cost of 
building the qu~ry-tree is independent of. tht.:> number of ground formulas) . 

=-'-- .. - , 

... ExarnpJ~ 1', .. ExaITlP!e 3 .. Examp.!e .7 .. 
I\B size Solution lime I KB size I Solution tilile KB size SolutIon time 

Bel ID I.~ BC! BCI BCI 
Rr" .. , ". 1fC3 .. , Be') nr'3 

~50 12.6 12!4 100 .~L 3.1. 540 1.3 11.3 
3.5,0 15 15 ~.OO 2I 43 930 1 20 
550 20 20 :WO 31) 58 130.9 1 24 

Table 4.4= Changing the size of the database. 

Placement of Interpre,ted .Literals in the Rules 

A final fa(;tor iri the speedups achieved from using the query-tree is the way the 
interpreted literals are placed in the rules. To iIJustratp.. consider the following set of. 
rules defining the existence of a flight (perhaps with stops) between two Cities in the 
tounttj' subjeCt to time constraints (given by the constants So and eo): 

UI : p(.\". };. 51, Ed 1\ (so $ St} 1\ (eo ~ Ell ~ time/yCimnect(X. }'} 
U2 : JI(X. F, S. E) ::;. p(X, Y, s, E) 
U3 ; fi(X, Z. s, T) 1\ (T $ 1\) 1\ p(Z. }'. tJ, E) ~ p(X. }'. S. E) 

To drscribe such paths, the rules fai~ also bp' wtitteri as follows: 

t!1 : 1)(.\'. }', 81• Ed ::;. tifni:lyCiHlnect(X, Y) 
l'2 : fl{ X. r, S. E) 1\ (S ~ so) A (E ::; to) :::;. MX. }', S. £) 
t':} : jl(X. Z .. ~' .. T) 1\ (1' : Td 1\ (8 ~ 80) A (t :5 co) 1\ p(i. r. TI • £) ::;. p(X. }', ,5. £) 

the difference hN\\feell the t\\iO SE'ts bf rulE'S is that the. second set is crafted 
to ('xploit th{' constraints entailed by th~ interprelE'd constraints 6n tzmdyConned. 
Specifically. whene~ler ,\Ie retrieve' it Hight f6rnH.tia that violates the COrlstraints (i.e., 
(-'nds later thari ('0 or hegins heforf' .~()). \\'C will irTil'riediately backtrack. In contrMt. 
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when using the first set of. rules. we will compute all possible paths (in a bottom up 
<'omputatiOtl) and check the constraints in the last. step of the derivation. Conse
quently. when using the first set of rules. a strongly irrelevant formula max be the 
root of an arbitrarily large tree. whereas when using the second set, no such trep 
will be generated. Consequently. remo\iing strongly irrelevant formulas will have a 
greater effect for a set of rules like the .first Olle. The experimental results confirm 
this observation. The example pairs 1 &: 2 and 3 &.: 4 are instances of rules differing 
exactly in this fashion. 

Sf'vern.1 points should be noted with respect to this issue: 

• Although the speedups are significantly bigger using the first set of rules in each 
pair. we still achie\ie significant savings ev~n when the rules are carefully crafted 
such .that. the constraints are Ilsed to control the search. 

• \Vtiting rules with such built-in control.has many' disadvantages ([Clancey. 
1983J ).- It is extremely.difficult to write such rules in .practice and is a very 
error-prone task. Consequently, We exp~ct rules would usually be written with
out such crafting. 

• Crafting a ,set of rules with such built-in control can however be done easily
using the ql!ery-tree (as we did in Section 3.4.). Specifically, we can .create a , 
new rule for every rule-node in the query-tree that includes the. constraints .of 
that node. The resulting set of rules will be equivalent to the original set with. 
respect to the query predicate (i.e., will produce the same answer regardless 
of the database of ground facts). However, using the neW set, the tightest 
constraints Will be enforced on the bi.ndings immediately w.hen they appear. 

Applioabillty to Other Inference Mechanisms 

The experiments described above were done with a depth first search backward chain- . 
ing inference mechanism. However, the toechniques we described can be applied to a 
wide range of If'aSOI,ing mechanisms. The first use of tne tree, the rerrioval6f strongly 
irrelevant formulas, is independent of the reasoning scheme used. FollOWIng the query
t.ree din also be integrated easily to any reasoning mechanism. 1'he only requirement 
is that nodes in the search space be associated with nodes in the query-tree, ellld the 
particular order in which the space is searched is uniwpoI'tant. 

Finally, there are s{>v('ral. possible schenies for integrating the construction .of the 
query .. tree and the indites \\;ith search for the solution. One possibility is t6 treatf> 
a speCialized iridex for a relation only if it is <l\..tually referenced in. the search. This 
way one can avoid treating iildkcs that will tiot be used. 

1'-------------------- ---~----- --- - ---
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4.2 Irrelevance Claims from an External Source 

l'ntil riow we. havt:' us('d ttl(' C[uE'ry-tree to decide automatically \\'hich formulas are 
irrelevant to a given query. Often a. user may be able to supply the system with 
additional irreievarice claims based on his/her knowledge about the domain and about 
the ground formulas in the 1\:8 (or those that may appear in the KB). Specifically. 
tht:' user may know that a set of formulas <I> is strongly irrelevant to the query q, given 
the possiole gtound formulas that rnay occur in the knowledge base. This knowledge 
may not. be expressible as explicit constraints on ground formulas. which can be used 
directly by the query-tree. For exatl'iple. this knowledge m3.y be based on the fact 
that the join at t\\'O relations is empty. which is not expressiqle using Horn rules. 
Alternatively, this knowledge may be heuristic in nature. 

Clearly. if we are told .thata forniula (JJ is strongly irrelevant to q. we-can ignore 
<:> when answering q. However. we may also be able to conclude that other formulas 
are irrelevant as well. This section describes an algorithm.for deriving suth conclu~ 
sions using the query-tree.. In Section 4.2.1. we consider a different kind of external 
knowledge in which the system is told that some formulas are necessarily. relevant to 
the query. 

Formally. the p!'9blem we consider here is .as follO\ .... s. Suppose that P. is a set of 
rules and let I be an irrelevance claim stating that a set of formulas 4! is strongly 
irrelevant to a query q. ~lore precisely. I actually states that the set of possible KEs 
is some subset ~' ~_~P. such that .O:U(4),q .. "£/., D12• Dq) holds.s -We assume that <P 
is composed of. a set of rules 4>r ~ P and a set of. ground. formulas 4>9 specified .as a 
set {p(S) I C(S)}, where p is some IDB predicate; and C(.\') is a formula with only 
interpreted predicates.a Our goal is to find which strong irrele.vance Claims follow 
tram. L. i.e .. for which formulas (JJI.the following holds: 

To deriv(> logical cOllclusions from I using the query-tree, oiJr strategy is to create 
a set of rules 1\, such that When forIi1ulas from <I> are excluded. PI and 'P produce 
the same derivations of the query q for every set of ground facts G. We then create a 
query-tree for 1\ and find all fOflllulas that are strongly itrelevailt to q. If a formula 4>1 
is found to be strongly irrelevant \\;ith resj)ect to PI, then it is also strongly irrelevant 
with respect to P whcne.\'er I holds. 

ti[\;ote that tliNi' Iliay be I'n1.'.tiY such 5UOllPls ~'. In our algorithm and analysis we will assume 
tliat t' the maxitl1al such subset, but bur conclusions will hold for ani such subset. 

7Nole that the caSe of EOB prtodlclltp-s cail be hana\ru in a straightforward fashion by the query· 
lire alg6ritlJli·1. 

114> .an illCiudc a collcctiofl of such sets. Hoy/ever, for simplicity of exposition w~ assume that 
tHere III only on(' 

.. -----·~·--·t 
i 
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Formally, given that <I> = <l>r U {Ji(.V) I C(,v)}. the set of nti{'s 1'[ is defined as 
follo\\'s: 

1. If rEP and.r ~ 4>r and the head of r is not p, then r E 1'[. 

2. If t E l' and r is of the form q[(.Vd 1\ ... q{(.\;t} => p(,V), r f!. <1> .. and 

..... C(.V) == Dd.V) V ... V am(.X'). 

where each d. is a cOTljunction of literals bf interpr(?te-d predicates; then 1'1 
includes rules of the form 

for (1 :5 i ::; m). For future reference we denote these rules by 'P[ (r). 

Example 4.2: Suppose that we are told that the set <I> == {path(.\', Y) I X <: 120} 
is strongly irrelev'ant to the query g,obdPath in F.igure 4.1. The rules in 'PI would 
include rules r[. 7'4 and r!), as well as the following ru.1es for t.he predicate path: 

link(X, Y) 1\ (X ~ 120) :::} path(X, }"). 
link(X, Z) 1\ (X ~ 120) 1\ path (Z.,.Y) ::;. pa.th(X, Y). 

The query-tree for 'PI will. show that the formulas {badPoint(X) I X < 120} are 
strongly. irrelevant to goo.l/.P_ath(X, Y). I 

To prove the correctness of our algorithm, we show that 'P[ produces precisely the 
same derivations as those F,rod1,lced bx P, except for derivations including formulas 
in <1>: 

Lemma 4.3: Let P be a set of Horn rules and let 1'1 be the set of r.utes produced 
by our algorithm, given that the formulas ~ qre ilTclevant to the query. Let D be an 
arbitrary set of gr'ound facts. 

A derivation d that does not use formulas from <I> is a valid detivaWm of the query 
from D U 'P if and only ij thefe is a t,a/id derivation ti' oj the query from D U 'P1 t such . 
thilt the only difference between d and d' is that eVE'/,y instance oj a rule t oj p used 
in d is replaced in d' by an itiMarice of a rule in Pd r). 

Proof: Let ti' be a derivation of the query frotn D UP,. Clearly, if \Vc replaced each 
of the rules of p used in d' by its original rule in P, the resulting derivation would be 
a valid derivation Of the query from P because the original rule does not contain the 
additional literal of the interpreted predicate' (d l ) in the antecedent. 

Conversely, let d be a derivation of the que·ty from D UP. Since d does not use 
formulas from <1>, it does not include rules from tl>r. To compiete the proof, supp6s(> 
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the formula p(a) is used as a part of the derivation d and was derived using the 
instantiated rule qt(c'id ,\ . .. q/(iit).::} p(a). Since p(ii) rJ. <Pg. there must.be some i. 
s·.eh that a satisfies cll • Therefore. p(ii) can also be derived using the instantiated 
rule ql(iitl/\ ... q/(lz/) /\ dl(ii)::} p(a), which is an instance.of a rule in PI' 

Consequently. every rule of p in tl can be replaced by a rule of PI, and so we can 
construct a derivation for the query from the rules of PI' I 

The following corollary shows that inferring strorig irrelpvance claims from the 
query-tree of PI is sound: 

Corollary 4.4: LEi PI be the sct of /'ules constructed j)'om P and the irrelevance 
claim I stating that <P is strongly irtelevant. i.e .. I == SI(<P.q. ~' . .012 • 'Dq). If r:b l is il 

ground atoinic forri!1da and S /( <1>1. q. 'f.P1 • .D f 2 .'Dq ) hol~s, then 

holds. If 61 is f1 rule. and for allr.!...e Pd.6). 51(1". q. ~'Pl' DI2' 'Dq) holds. then 

I::} SI(C>I.q. "f':/. D12 , 'Dq) 

holds. 

Proof: By Lemma 4.3. a formula 11>1 can be used in a derivation of the query q from 
P and some database D if and only if either: 

1. 1>1 is used in a . .derivation of q from P U D that inrlJ'des some formula from <P 
or 

2. 91 is a grQund atomic formula and can be used in a. derivation. of q from PI U D 
01' 

3. 01 is a rule and tnere is some t' E PI (01) that can be used in a derivation of q 
from PI U D. 

Consequently, if t, is a set of databases in whiCh the formulas <P are strongly irrelevant 
to q, then • he first possibility is ruled out. In the case of <PI being a ground a.tomic 
formula. since S I (61. q, !:.].'l' D h. 'Vq ) holds, the second possibility is ruled out. and if 
01 is a rule. then because all the rules .irl 'J:\(<t>d are not ill the tluery-tree, the third 
possibility is ruled out. ConsequeI,1tly. the. c6rollar); holds. I 

the same algorithnl can be used to derive logiCal conClusions from .external weak 
irrelevance claims. 

.1 
I , 

I 
I 

.11 
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Corollary 4.5: Let 'Pi be the .'\e! of rules constructed from 'P and the .;,et of i7'7'f/ct'n11t 
form ulas ~. Supposc Iii.! = W I( 4>. q, !:', D 12• VI))' If 01 is a ground. atomic form ilia 
and S I (<:JI' q. ~PI • D 12 , V q ) holds. lh en 

I :::} W 1(01. q. ~'. DI2 , 'Dq } 

holds. [f<1>1 isa rule. andforallr'E'PI(t;;), SI(r'.q.'Y:,PI.DI2.Vq) hoMs. then 

1:::} W[(ol,q.~/.D[2.'D1) 

holds. 

Proof: Suppose 1w holds. This implies that for any database DEE', any answer 
to the query has a derivation d that does not use formulas in ell. Therefore. by _ 
Lernma.4.3. there will be a derivation d' of the query from 'PI U D corresponding to 
d. If ¢l is a ground formula. then since S1{OI, q. ~PI' D/2 , 'Dq} holds, then d' does not 
use 4>1, and therefore d does not use ¢1 (because d~ contains.a superset. of the ground 
formulaS in d) .. Similarly, if r.!>1 is a rule. then since SI(r',fl'~PI.DI'J,1)q) holds for 
every r4,le r' in 'PI (<I>I ) .• d does not use 4>-1' I 

Our. inference procedure i., .not complete .. In fact, in general, it is not possible to 
find all the consequences oran irrelevance claim I, even if.ell indud.{~$ a single rule. 

Theorem 4.6: SUppOSE: that 'P is a set of function-free Horn rules with.no irder.preted 
predicates. Let [ be the irrelevance claim stating that a rule rEP is strongly irrelevant 
to the query q. i.e., the set of possible hOBs is !:', where ~' is the maximal subset of 
!p such that SI(r,q, !}', D12, 'Dq) hOlds. There is no algorithm that will determine 
whether S /( 01, q, ~'. D [2, 'Dq) holds for ~n arbitrary formula 01. . 

The proof is based on a reduction from the rule redundancy problem, and its 
details are given in Appendix A. 

Example 4.7: As an example of a knowledge base for which our algorithm will not 
find all the conclusions of /, consider the following rules: 

SI ; e(X) :::} PI (X) 
82 : e(X) ~ Pi(X) 
83 : fidX) ~ p(X) 
84 ' Pi (.\') ::} p( X ) 

Suppose I states that rule 051 is strongly Irrelevant to p. Our algorithm will build a 
query-tree that will consist of the rules 052 arid 84 and will deem 83 to be strongly 
irrelevant. HOWe\ier, since the derivations using 81 ate isomotphic to the derivations 
using 052, strong irrelevance of 81 implies strong irrelevance of 8'2 and 84 as ~eii. • 
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As can be seen in this examp.1e, we can combine out algorithm with algorithms for 
deriving weak irrelevance claims (see Chapter 5), and the resulting algorithm will be 
able to derive additional irrelevance claims. Furthermore. using the results described 
in Sections 3.3 and 3.4. we can also use the query-tree to derive additional strong 
irrelevance claims by looking only 'at minimal derivations and in knowledge bases 
that include some forms of negation in the!r antecedents. 

4.2.1 Relevance Claims 

A different kind of knowledge that a user may be able to provide a system is positive 
relevance knowledge. For example. the llser may ~now that a certain formula must 
be used in ,:ver.y possible derivation of the query. Such knowledge may be available 
in several contexts .. For example. (as .we often see in. textbooks), we may be given 
a hint that a certain lemma must be used in a proof of a theorem. As a~lOther 
example, suppose a new . .formula is added to a knowledge ·base, and We want to find 
the new .derivable conclusions. In suth a case~ we know that the derivations. of the new 
conclusions must include the updated formula. As in the case of external irrelevance 
claims. we may be able to use a relevance claim in order to deduce that some other 
formulas ate irrelevant to the query. In this section we show how to.use the query-tree 
to. deduce such conclusions. In theory, it is .possible to construct a space of definitions_ 
for. relevance analogous to the space we constructed for irrelevance. However, here we 
consider only one such definition: 

Definition 4.8: A formula cP is relevant to a query q with respect to a set of knowledge 
bases ~, denoted. Relellani( 4>, q, E), jf ¢ appears. in every derivation of q from each of 
the KBs in ~. I 

To derive irrelevance-claiP.1s that are logical consequences of a given relevance· 
claim we rely on the following observation. If a formula 4>1 cannot appear in any 
derivation that includes 4>, and 4> is known to be rele\'ant to the query q, then 4>1 
must be strongly irrelevant to q. The query .. tree enables us to find such relations. 
between formulas in the knowledge base, formalized by the following exclusiveness 
condition: 

. Definition 4.9: TWd iorn:ulas <PI and </12 are said to be exclusive with respect to a 
set of rules P if there is flo set of ground formulas G such that there is a derivation 
of an hns\ver to the query from 'P U G that uses both ¢I and .¢2' I 

91 and rP'7, being exclusive is a sufficient (!onditiofl for. deriving strong irrelevance. 
The [ollowing lemma follows from the definition:::: 

--------------~--,-~~."------------
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Lemma 4.10: If!:' i8 a ..,d of databases 811ch that Relet'aTlt(ol' q. S:') holds. and 01 

arid 02 atE fJ"clusit~. then 5 J( 02. q. ~/, D [2. 'Dq) holds. 

Proof: If 01 appears ii1. €>\'ery derivation of q from databases in ~/. and 01 and 02 

cannot appear .in the same derivation, then C>2 does not appear in any derivation of q 
from databases in ~/. I 

The exclusiveness condition tan be determined using the query-tree. Figure 4.:3 
describes an algorithm that finds all the formulas <P such that <P and r are exclusive 
with respect to 'P. where l' is a rule. 9 Informally, the algorithm begins from every 
appearan.ce, 1'0\ of r in the query-tree and marks all the nodes .that can appear in a 
derivation together with 1'0. It labels abopf. .any node that can appear above ro in a 
deri vat ion tree, and labels be/ou' any node that can appear in .such a tree, but not 
necessarily above 1'0. T.he .correctness of the algorithm IS e ,tablished by the follo~ving 
theorem. 

procedure find~exclusive-formulas(To. r) 
begin /* To is the query-tree tor. the rules P. */ 

for every appearance. ro E To of r do: 
repeat 

label r(j above and .below. 
I: if a rule-node.n is marked above. label its father goal-node above. 
2: if a goal-node n. is lharked above. 

then label its father above and its siblings below. 
3: if a goal-node n is labeled above, label above any. of its unexpanded equiyalents. 
4: if n is marked below label its children below. 
5: if a gbal~node n is marked below and m is its expanded equivalent, labeL m as below. 

until no new nodes are marked. 
Any node that has an instance marked above or below is marked non~ert:l!JslVe. 
Remove all above and below markings. 

end for 
end. 

Figure 4.:3: AlgQrithro 1Q[ finding exdusive r.ules. 

Theorem 4.11: Given a st.t of rules 'P. a:query q and a rule rEP, procedui'e find
exclusive."formulas will 11iar;k an instance oj tule s in the quer.y-tree. ij and only if oS 

is not exclusive with respect to t. The rule r and the atom p( a 1, •• i , an) are exclusive 
if al, ..•• an does not satisfy the c01istraint label of any node Df p. that w.o.", marked 
nori~eidusive .. 

!'The algorithr'n can be extended in a straightf6r .... 'arc\ manner to the .ca.'>c where r is a set of 
formulaS. 

: ! 
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Proof: We prove the '''only if" part by showing that if a node 71 was marked .n011-

f..rcllLsit'f by the algorithm when the marking began with an appearance 7'0 of 1', then 
there is a symbolic derivation tree d encoded hy the qtlery-tree (by a mapping 1.') 
such that there are two nodes 111 and 712 in d sucn that l."(nd = 11 and 'v(ll;!l = r. 

We prove the claim by induction on the order of the marked goal~nodes, Specif
ically, we show that for e\'f?ry node 11 that is marked there is a partial symbolic 
derivation tree el' ,10 encoded by the, qu(>ry-tree usitlg a 11'12,pping 4' such that: 

• Ifa node n is Jnarked abO/If. then 71 is I.'(root(d' )) and r appf'a~s in d' . 

• If a node 11 is marked btlotl." then. ther-e is a leaf in d' , n', such that 1.'(11') = 11, 

and d' includes r. 

As a consequence_of these claims, we can show that. an appropriate syrnbolic derivation 
tree d exists .. _Given the partial tree d', we tonside, a symbolic derivation tree ~ncoded 
by the query-tree in which one of the nodes t1 is mapped to l..'(root(d')). We replace_ 
the. subtree r.ln with d': Arid cornplete the leaves of the resulting symbolic derivation 
arbitrarily (note that Part 2 of Theorem 3.6 guarantees that the completion Cali be 
done). The I'esulting symbolic .derivation is encoded by the .query-tr.eeand satisfles 
the tequirement~ .. 

The claim holds trivially for the base case thaLincludes the node ro and its. father 
and children, sii1<:f.' (by Part 3 of Theorem 3.6) there is a symbolic-derivation tree 
encoded by the qu(>ry-tree that includes roo The derivation tree dl .includes the rule
node in r, its father and children. In the. inductive case, there are several cases in 
which a node m could have been. marked, corresponding to the conditionals in. the 
algorithm: 

1. The dode m jr a father rule-n.ocle of n (case 2), By the inductive assumption, the _ 
node 7i is a toot of. d' that includes r. Consider a partial symbolic derivation 
tree Q'I created by adding the rule in m as the father of the root of d~. The 
mapping of the nodes-in d' stays unchanged. The root of d1 is mapped to the 
father of m (covering case 1 of the algorithm) and the top rule.::node .is mapp.ed . 
to m. The sibllngs of tl are leavf's in ell and they are mapped to the $iblings of 
:;'\"oot(dd)· 

2. The node m is an expanded equivalent 01 a goal-ilutle 11 (casc. 3). Since t.here' 
exists a partitd syrtlbolit derivation di for whkh.~'(r-bot(d')) = n, We can just as· 
,,;e!l.lTiake l,:'(I·oot.(d~) = m, and the encoding conditions of Definition :3.1 still 
hold. 

IOThe derivation d' is partial becaus(' its leaves arc lio' necessarily EOS t'tbdcs .aild its toot in 
Ilu\ppcd to an arbitrary goal-node 111 thl" qUftrY·lrcl'. ncit lirtc'sllariiy a root. 

1----------------------------·--------------- ._-- .-
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:L In C(I.se 4 of the algorithm, it 11 i~ marked bclou'. thp.11 by the inductive assunip
tior1. thell there is a leaf 11' in (II such tnat I • .'(n') == 12. Ther">{ore. if I" is a child 
rul~·node of n. \\'e call ('onsidel' a partial symbolic derivation d, in \\1hiCh 11' is 
expanded with the rule in r'. The mapping It' will map the child of H' to ri and 
the children rule-nodes to the correspor-ding children of r'. 

4. In case!) of the algorithm. the same argument of Case 4 holds, Consider the 
detivation.d' in which 1/1 is expanded with one.of the children of its expanded 
equivalent. nt. ~lodify I.' so that ~"(11') == m. 

To cOrilplete the proof. we flltlst show that if a node n can lip,pear with the rule to il'!. 
a symbolic derivation, then it \\'ill be marked by the algorithm. Let d be a symbolic 
deriyat ion encoded by the qUf>fy-tree and ~' be the' mapping of the nodes oLd to the. 
nodes in the query-tree .. Assume that there is sotne node r' E d such that ~,b( r/) ;::; ro, 
We need to show that for ('wry H E. d, l[t(n) will be marked.by.the algorithm, Since 
1'0 is nUirked bEloll', all the nodes 11 E d that are. below r' will be marked below by a 
comhination of conditionals 4 alld ,j. Let.m be the fa.ther goal"-node of r'. The node 
/i, ( 1n) will be fHarked either by 1 or by :3. The father node bf ~I'(m) will be marRed 
abot·(· hy 2. and l,'(171)'5 siblirtgs will.be marked beiolL' by 2. Consequently, if t~ is the 
father of m. then for any nodf'.1l in its subtree. v'(n) will be marked by the algorithm. 
We can continue in the sanw fashion for r~. and shO\v that ljl( n) will be marked for 
e\;ery node 1i that is a descendent of t he top rule-Q.Qg~.liui.:.... Fln4Uy. tb( root (d)) will 
be marked. by 1. II 

Example ~.12: Consider the following rvles: 

rl : waills( X. F, C) " canAl lord( X, } ,C) => buys(X, }", C). 
t2 : u'ants(X, F, C) "canGet Loan(X. Cd 1\ (C1 ~ C) => buys(X. }~, C) 
r3: See.5(X, F.C) tdikes(X. }') => wants(X. }',C) 
7'4 : priceD I (}." C) " nasC ash( X, C) 1\ (C <.: 100) :':? canAj lord( X, }', C) 
/';;.: customer(S. B) 1\ credit Llmii(X, B, C) => canGet Loan(X, C) 

The atolh buys(S. }',C) detlotes that X will buy item rat pricf C, Th.e.persOIi X 
will buy}" only if sh.e wants it. If she does. she ,,'ill buy it if she has enough cash 
at halid 01' if she can get a loan from a bank to cover the expense. the .query-tree 
('onstruC'ted for b·uyA(X. }',C) appears ill Figure 01.4, In this example, rules r4 and 
1'5 are exc\u:;ive, Therefort-. suppose we are given that r~ .must be.used tb answer 
tilt' qllery buys(.Suc. }',Z) (because we know that Sue used cash for all her purchases 
lately), the algodthm .will iliark the nodes in the query-tree as shoWil.il'l, Figure 4.4, 
and thel'cfbre the rules 7'fi atld h will hf' d('>i'rTi('ct strongly irrelevant to the query. I 

------------------_._-------_. 
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buys!.\". }',(,,) 

I 
{C 1 > C} r:! 

~~. 
u'arzts(.\', }',CJ ccinGttLbatl(.\".Ctl 

I I 
ta 1'1\ 

A A 
sees(.\'. r.C) W .. ('s(X. n ('ustomer( X. 8) credit Lit7lit( X. B. Cd 

{C < lOOt bt/ys{.\.. }';C) {clb9J!.e} 

I 
r.l {gbot'e} 

~ 
{bdbtii} wants(,Y. LC) canAl /ot'd(X.)', C){ iJbgft}_ 

I I 
{belouI} 1'3 _ r" {above,below} 

A .A 
secs(.\'. }'. C) likes(.\'. n priceO/D'. C) hasCash(X, C) 

{i!eloU!} {be/ou'} {be/bUI} {b€/o,tl!} 

Figure 4.4.: The query-tree of Example 4.12. 

4.3 Additional Uses of the Query-Tree 

[n this section we briefly outline several ways ill which the quel'y-tree can be used to 
c.'{tend other q.uery evaluatlon methods. 

Combining with Magic Set Transformation 

two priniary strategies for (,valuating a query with.il. given set of rules are top:. 
down (e.g .• backward chaining) and hottoill-UP (e.g .• forward chaining). Top-down 
techniques haw tlk advantage that they are, more goal-directed. since they exploit 
the irtfotrrtatioIl ill the query (e.g .. the cillery-ptedicate and bindings that app~ar iil 
the (Iuery). However. top-down techniques have th!" disadv'antage that they I11ay
rf'sult in infinite loops and that thc'Y require tile bpNatlon of unification. instead of 
tht' cheaper operation of tpim-matthing. used iii bottom-up evaluation. lil contl'ast. 

------------------------------.• --~----. -
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bottom-up techniques will not g€'t into infinite loops (\\Ihen the rules do not ha\'(> 
function syrl1bols). hut liiay computt· niany factS lhat are not relevant to the query. 
The goal of the magic-set transformation method [lillIiulri. 1989] is to combine the 
ad\'arHages of top-down and bottom-up ('valuation r'nethods. It transforms a given set 
of ruleS P ~o a n{'\\' set 'Pl. RllCh that J:\ is c<lui\'alcnt to 'P with respect to the query 
i)redicate. ~loreo\'er. a bottom up (·valuation bf PI provides the goal~directedness 
fbcliS achi{'\'ed by top-dm .... n t'\'aluation. To illustrate. consider the following rules for 
ttansiti\'{' dosur<" with additional intf'fpret{'d constraints: 

r I : c(.\'. }') /I. (X < }.) ::::;. p(.\'. }.) 

l'~ : I"(.\'. Z) 1\ (X <: t.) 1\ p(Z. }:) => p(X. }O) 

and .suppose our <IlIery is to fhld.all F such that p(a, Y) is derivable. where a is some 
constant. The transformed sN of rules will be the following: 

81 : 1Tip(a). 
82 : Hlp(S) 1\ dX. 2) 1\ (X < Z) ::::;. .n!p(Z) 
"':1 :-tI!p(X) 1\ dX. Z) 1\ (X < Z) 1\ f>l7.. }.) :::;. p(X. r.) 
'';4 : 17I p (X)1LqX. }.) /I. (X < r);:} p(X. }.) 

The pr~dicate-mp is the "magic predicate ot p" and is used to constrain the tuples 
that will be- computed in .the bottom~uP. evaluation of the. rules. Essentially, mp is 
the ~et of constants that may appear in the .. ti!~t argument Of facts of p that are used 
in_a derivation of p(ci.Y). 

The limitation of the magic-set transformation is that it can only use binding 
inforthatiori ill the query. In the above example. it was able to use the fact that the first 
arglllnent of p in the query is bound to a. However. it canne.t ·use information about 
constraints on possible bindings. For example. if the query was p(a, F) 1\ (Y < 2). 
the Illagic !;(>l transformation would not be able t6 exploit the constraint}' < 2. 

The <'Iuery-tree effectively pushes such constraints from the query to the other 
rules of the knmvledge base. Consequently, We can use it in order to extend the magic 
set transformation with constraint pushing. Specifically. we can attach bf adornments 
to labels of the nodes iIl the query·-tree. The adortlrhent speCifies which arguments 
bf thr lIode are free and whiCh are hOllrld. Adornments can be determined in a tow 
dmvll fashIon as in the nlagir-set lranSfol'matiOll algorithm. We can then refine the 
(·qi.tivil.lence relation Otl ilOdes in th(" trrf> by H'qlliring that the ad6rrlments be the 
same. The resulting rules will have the IInlquf.bl1lditlg Ilroperty needed in order to 
crpate a magiC prografl1 (5('(1 Wilman, IM~)I. Algorithhl 13,1. pg, 828). Applying the 
il1agic-scts l'\lle transfofIi1atiOli t.o this spt of rules will yield the f6110willg rules for the 
(t'I<.'ry p(fl,}') 1\ (}' < 2): 
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... ~:mp(a) . 

. ~~ : nip(X) A dX. Z) A lX < Z < ~) ::;. /1l p(Z) 
'<3: 71I p(X) (\ d.\'. Z) A (X < i < ~) A p(Z,}') => p(X, }') 
,~~ : Hlp(X) A dX. }') A (X < r < ~) => p(.\'. }') 

).'ote that with these rules. facts of the form p(X. }') with }' ~ 2 will r'iot De produced 
in a bottom-up computation. Since t!J{i rules crtiated by the query-tree are equivalent 
to tlie original rules \\'ith respect to til(' query. it tollows from Theorem 1:3.1 in [rJlman. 
1989] that our transfonnation is correct. 

It should be noted that uSIng the query-tree to propagate the constraints lia.s ari 
advantage over ptt'>vious tf>chniques. slIch as the use of bcj adornments [Mumitk et al., 
19901. 1'hat technique attaches a f adornment to an arguri1ent of a goal-node if there 
is so1Tie known constraint .01'1 it. In contrast. the qucry-tree.considers the semantics 
of the int<>rpret«?d lit('rals to complltf' the. actual constraint on the arguments. 

Message-Passing Qu.ery Evaluation Schemes 

In a T1/f.s.'~ag(' passillg scheme for query evaluation [Van-Gelder, 19861. query. evaluation 
is viewed as a system of cooperating processes communicating_by message passing. 
Each process computes soriie set of tuples (essentially a subset cf the relation for some 
rE'lat ion). The. messages between th(o processes represent the needs. of a .process arid 
the solltions iLgenerates. A Ilced tnf'ssage is generated by a process that needs some 
r&lation in order to compute its output relation. For example, a process computing the 
r('lation fdl, E) £Xl E2(}',Z) will send a Inessage to a process computing the relation 
Ct. specifying that it needs the subset of (:1 with the first argument bound to 1. After 
computing the desired relation. the latter ~rocess ~vill send a solution message, with 
the possible bindings ot }". 

The tnain advantage of a message passIng scheme is that by breaking up the 
problem to such modules with \vell defined interfaces, we are able to exploit existing 
operating systetil features in order to faCIlitate and speed query evaluation. Such 
[t'atures include scheduling. Ill{'ssage passing. and .nlUlti-tasking. This schenie is also 
a first step towa.rds parallel impleriientatioll of query ('valuation. 

To faCilitate such an evaluation scheme. we need to determine what processes will 
(lxisl alld how they will communicate. To do s'O, Van (~elder uses a rule-goal tree 
which resembles a sirhple \'ersioli of the query-tree. Each goal-node ili the tree is 
considered to be a different process in the sysierl1:The termination condition that he 
uses ill cbrlstructing the rule-goal tree df'pt:'nds onlY on an isomorphism of the variable 
imltcrrlS of the goai-flOdes and of. thp adbrrimerits. Consequently, information about 
interpreted lit('rals is not jlropagat('d ~\ld thc\,('fofP not tlspd to df't('rmine the Sf.'t of 
processes. 
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The quety'tree tan be llsed directly to ('>xtend \'an Gelder's stllctne to incoq'>oratt" 
I.;llbwledgc about interpreted literals. \\'(> can siniply r('fihe the lahels of the iiodes 
in the query-tn~'(' with the adornments used in his cOlistructioil. As a result. we will 
be able to distinguish bet\\'een parts of a relation that can he computed in parallel 
and are independent of each othf't'. tor illstanc(', consider tht'> rules of Example .1.1 
repeat.ed below. 

1'[ : chriJ.p:\fr.allD(. It'd 1\ mcM(/)il" t.:tjH'Tlsit·d/cal(Di,lri) 1\ desStrf(D2 ) => 
rtf ,I,so'f.\! fell (D I, WI, D:z. 1t·2 ) 

"2 : dii!;h(X. Z) 1\ (Z $ l,~) 1\ co/11patibh(X.) ) => cheap;\Iwl(X. }') 

":\ : dish(X. 2) 1\ (2' > 15)!\ tompatib/e(X. }') => cxpeTlsit·eMfal(X. n 
r-t : baj(X) /\ f€dWine(}') ~ compatible(.\'. }') 

r" : i/(SsertlX) 1\ sweetWiTicO') => coTiipatibldX, n 
Ordinarily. we would. have one process. for the. predicate dish that \\'ould send its 

answers to. processes of cheapMeal and e,rpensi'l.'eMeal. HO\\'cver. constructing a 
111essage passing.scheme based on ..the query-tree ,viII result in two processes for dish. 
one computing cheap beef dishe:;; (arid sending its answers to the process cheapM eal) 
and the ·)ther cotnputing expensive dessert dishes. As a result, the cost to compute 
the j9ins (in rules 7'2 a!id tfJ) is significantly red.llc~-,-

Deriving o.ptimaJ. Search Strategies 

The query-tree imp,licitly encodes the spac~ of. derivations that an inference engine 
should search. The novelty of'the query-tree is that it encodes a ~tlbset of the Space 
that WQuid have been searched by ordinary backward chaining. and therefore follo'wing 
the query-tree enables pruning of parts of the search space. A different approach that 
was considered to speeding up inference is findIng optima.l strategies for searching a 
given space [Slhith. 1986; Greiner. 1991; Greiner. 19921, 

The query-tree dm be used to complement and extend these methods in two ways. 
First, by delimiting the actual space that needs to be searched, some search paths cim 
be eliminated from consideration when looking for the ol'>timal search strategy. Set
ond. t.he methods described by Smith and Greiner rrquire a graph-like representation 
of the possible deri,;ations of the 'juery, Tlie ejuery-tree provides such a represen
tation wliich treats rccursio/l and interpreted literals in a principled way, unlike the 
t<'presentations that are ctlrrelHly llsed, COllsequentiy. it tall hi' used as a basis for 
extending surh t('chnicjucs to fully itkorporate knowledge about inteq)reted llterals. 
hi particular. the query-tree can he IIst'>d to t'xtend Grciner's.algol'ithm IGreiner. 1991} 
:'r knowledge bases \\;ith recursive rlll('s. 

The goal of Explariation Based Learning 1~lintofl dill .• 1989] is also to speed 
up iilferenc(>s. In EBL. Ilew tules arc adci('d to the kllbw.ledge basr that compress 
S('qllt'llces bf infererice into a siligl~ rule, The ~j{'qitcllccs art" learned by cxarilinitlg 

1----------------------------------- --------------------------- --------



der.ivations of observed queries. The ki'y issuf' ifl this approach is tht' IItility of the' 
added ruk!i [~liIitbn. 1988: Etzioni anti ~linton. 1992). Adding too ri'lany rules may 
ha\'e the iIl\'erse l'ffect of slowing down inferellC'e. :\lbreover. the leartlf'd rules may 
be long and rf'quire marlY unification operations. Etiioni [Etzioni . .l99:3j has shown 
that much of the spee.dups obtained by EBL can be obtained by merely doing static 
analysis of the rules in the knowledge base. l'sing a tree-like representation of the 
rides in the knowledgf' base. called the Problem SpacE Graph (PSG). he shO\ved how 
to glean from it new rliles that were thore.effective than those learned by standard 
EBL techniques. 

the problen'l space graph is similar in principle to the query-tree. However it does 
110t consider the semantics of interpreted literals in the rules. It also uses a very simple 
termination conditiorl in the case of rAC'ursibn; a node is not expanded if It is a variable 
renaming of one of its ancestors. It is therefore possible to extend E:tzioni's techniques 
by refining the. construction of t he PSG. with tne labeling schemes employed by the 
query-tree. By attaching_!;onstraint labels to the nodes .. we can discover additional 
s<'qllences of actions that are guaranteed to .fail. We tan also attach tag-labels to 
nodes and use them to nnd sequences of actions that necessarily corUain loops. A key 
difference between the PSG and the <!l!ery-tree is that the decision. whether to expand 
a node in the P~G depends partiallx on its ancestors. In contrast. the information 
Ilsed in order to decide whether to expand.a node in the query-tree 'is encoded in the 
node itself. T6 fully irHegnite the q!Jery-tree and the PSG we need to find methods 
to termina.te the construction of .the PSG based only on local criteria.. It should be 
noted tnat if the termination condition depends on the ancestors of a node; the size 
of the resulting tree can he exponential in the number .of rules. In contrast, the size 
of. the query-tree may be exponential only in the arity of the predicates. 

The Query-Tree in Knowledge Acquisition 

A different use of the query-tree is as a tool for knowledge acquisition and knowledge 
base mfmagemelit. The query-He!' essentially gives tiS a t'jeu' (or picture) of the 
knowledge base relative to a query. It 8110\\'5 lis p.xactly whiCh derivations can be made 
aild what formulas can be used in !iuch derivations. A key problem in .knowledge 
acquisition is that {lS the kno\\;ledg(;'.ba~(' gtows. it is very hard to understand the 
interactiollS bet wee Ii the rules and the effects of changes. The query-tree shows us 
\'isually the deperH:ierlce between rules and forrhulas. If a rule is removed, it can tell 
Us that certain f0rrhulas hav(' b("corh(' irrcle\ifmt to the query. \\;hereas if a rule is 
added. it cali show us a dep('odency we' hav(' riot anticipated. In that way it can.also 
helpJls find errorlcous rules (e.g .• ali oVc'r sinlpliflcd or overly specific rule). 

1------------------'-"------------·----·-· ..... . 
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4.4 Summary 

The query-tree is a very useful tool for many purposeS. In t.his chapter we have 
explored 6nly a few of its uses. We have shown that using the query-tree we dui 

obtain significant speedups of inference. sonletimes a few.orders of magnitude. We 
have shown the que.ry-tre€'. to be a useful tool in deriving conclusions froni external 
irrelevance c1a.in1s and in extending other existing query evaluation methods. 

Based on the observati6r'ls made in this chapter. we can address one of the (unda
r'nental questions .regarding t.he. usage of explicit irrelevance claims. Namely, should 
we enable users to give a systern expliCit irrelevance claims that are based on addi
tional knowledge that they niay \ave. or should we require that they give the system 
the knowledge about the domain that underlies these irrelevance claims and develop 
methods for exploiting suth knowledge to.control..inference. For example. instead.of . 
telling the ~ysteni that flights are irrelevant to the query Route{S.F, LA, $90), tell the 
system that: 

• A II flights cost more than $100. 

• Costs of busses and flIghts are all positive numbers. 

• The sum of"two p~sitive numbers is gositive, etc. 

The system could then automatically derive that flights will be irrelelfant to this. 
query. The advantage of this approach ll is that .the underlying knowledge may be 
used in more flexible ways (e.g., it may be used for. other queries as well). If the 
knowledge underlying the irrelevance claims changes, the system can automatically. 
derive new irrelevance Claims. 

In general, this argument has much merit. When the knowledge underlying the 
irrelevance Claims is available, there are clear advantages to giving a system that 
knowledge. In fact, the query-tree is a method for exploiting such kno'wledge effec
tively. However, thel'e are se\;eral cases in which explicit Irrelevance claims will be 
very useful: 

1.. It may riot be possible to I)tovide the Knowledge underlying the irrelevance 
claims because of the expressive limits of the language being used. Goiflg be
yond the exprcssivity of tile given language rnay affect the performance of th~ 
system significantly (even assuming it catl support inference in s'nore expressive 
languages). For example. stating that the join of two relations is emR1liannot 
be done y,;ith Horn rules. 

11 Ad"'ocalcfi to me by Ma~t Ginsherg I 
I 
I 
; I 
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2. Providing the additional domain knowiedge underlying an irrelevance claim may 
require adding a level of detail that is unwanted. Fot exan'lple, it may require 
adding new ohjec:-ts or predicates (in our example. the a:doms of arithmetic). 
that will ultimately make t.he represerHatioI1 more complex and 510\\' down in
fen'nce. 

:3. The knowledge underlying the iI'rele\'~mce claims may be of heuristic nature. 
and the user may not know tnt.:' knowledge underlying it. 

4. Irrelevance claims can be based on cached inferences made from the underlying 
domairi knowledge. As long as their justifications are maintained, using them 
at run-time will lead to significant savings .. The experimental results presented 
in this chapter can be viewed as a \'alidation for this argument. The computa
tion done by the query-tree and .the indices created are actually precomputing 
irrelevance claims. Though these computations can .. be done at run-time, the 
experiments show that it is much less beneficial to do so . 

. 5. As we see in Chap~er i, in sori1e contexts we .are gi\;en theories in which certain 
simplifying assumptions are made about the domain. In such cases, an .expliCit 
representation of these assumptions (via irrelevance claims) is useful in deciding 
when to use the given theories. 

4.4.1 Related Work .. 

IIi addition to the \vork described in the previous section, there are several other. 
works related to the topics discussed in this chapter. . 

Building a. query-tree and the corresponding indites lor a query can be viewed as 
an instanre of a general framework for knowledge compilation discussed in [Selman 
and Kautz, 1~91]. In their framework. a new simpler knowledge base is created such 
that it will yield faster ansWers for a large number of the queries. For example, 
they show how to create Norn approximaiiiJT}s of a theory that can be used in many 
cases to ans\ver the query. One key difference bet\veen these approaches is tha.t our 
transformed knowledge base is built with respect to a known set of queries .. and for 
these queries interenc(' will be more efficient. . 

A related approach is that of partial evaluation al'ld in particular. partial eval
lIatiOli of logiC programs [Snlith and Hickey, 1990: Lloyd and Shepherdson, 1991j 
Bfuynooglie d al .• 1991]. Partial evaluation attempts to compile a set of rules in a 
way that ·\\'ill he efficient for a known set of queries .. The query-tree method can be 
viewed as a generalization of previous n'lethods for partial eva\UatiOll of constraint 
logic progran'ls. In particular. work itl logic programming has not emphasized the 
distinct ion between thr rules in tnc program and the set Of ground formulaS. whereas 
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our approac.h argues that this distinction is necessary for our algorithni.s to be 01 
practical interest. Mop:over\ the quer~r-trpe is the only partial evaluation procedure 
that yields the tightest constraints on the possible ground formulas that can appear 
in derivations of the query .. 

We have sno\\'n that the query-tree can be used tb derive.logical conclusions bf 
irrelevance claims that are gi\'el' to the system. A different approach, described 
in [Subramanian and Genesereth. 198;: Subramanian. 1989] is to give an axiomatiza
tion of irrele\'ance and use t he axioms to reason about irrelevance claims. Conceivably. 
the same could be done in our framework by giving axiomatizatlons (or partial ax
iOri1atizations) to the various kinds of irrelevance claims in our space of deflnitioflS 
(IIi fact. Chapter 2 presents properties of irrelevante claims that can form a basis for 
stich an axiomatization). -However. we preferred tb pursue the algorithmic ap'proacn 
since it is likely to he more (>ffkient and its results are easier to tharact@rize. 



Chapter 5 

Independence of Queries Fr.om 
Updates 

This chapten:onsiders the problem of detecting when a query i~ independent of an. 
update .to the knowledge base .. This .problem is primarily important b'Cc<i.ust: it enables 
us. to save the computation needed .to reevaluate a query after updates. Detettlng in-.. _ 
dependence is also a key issue in_developing heterogeneous and distributed knowledge 
base systems [G.enesereth, 1992; Litwin et al .• .l990]. In.such systems, updates. in 9ne 
knowledge base may trigge.r updates in an other. For example, an impo!'tant applica .. 
tion that gives riSe to such.a setting is concurrent engineering [Cutkosky et a/., 1993; 
Levitt ei aI., 1991]. where several agents may be working on different parts of one 
design. D(:sign decisions made by one agent may impose constraints on the possible 
design decisions of another agent, and therefore must be communicated. However, in 
order not to be burdened by excessive communication, only the changes that affect the 
other agents must be communicated. In database systems, detecting independence is 
important for several reasons. It tim be used in order to maintain materialiied views 
effectively.' In transaction scheduling We can provide greater flexibility by identifying 
that orie transaction is independent of updates made by another. Finally, we can 
use inde!J' ndente in query optimization by ignoring pafts of the database for which 
updates do not affect a specific query. 

In this chapter \\'e relate the independence problem to our framework for reasoning 
about irrelevance. We show that detecting independence is equivalent to detecting 
weak irrelevance. Making this conneCtion sheds light on the independence problem, 
and enables us to significantly improve previous results ill this area. In general, de
tecting indep.en.dence is undecidable. However, vieWing independence as a pfl?blem 

l A view is a portion or an abstraction of a database. For example, a view may consist of an lOB 
relation. A rt}atetialiud view is one that is maintained conlputf.d, as opposed to computing it on 
demand. 
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of detecting weak irrelevance yields new algorithms that provide sufficient conditions 
~')r independence by considering ~dgorlthms that provide sufficient conditions for de~ 
tectiIig weak irrelevance. One such sufficient condition is strong irrelevance that we 
have exaI'lIined in detail in Chapter 3. 

A second sufficient condition for the case of Horn rule knowledge.bases is based 
on the observation that det.ecting weak irrelevance can be couched as a problem of 
detecting equivalence of datalog programs. The notion of uniform equivalence. intro'
duced in [Sagi\'. 1988l. can be used to provide a sufficient condition for equivalence of 
datalog programs. In order to use uniform equivalence for detecting independence! We 
extend the algorithm described in [Sagiv. 1988] to programs with interpreted literals 
and stratified negation .. The result provides new decidable cases for .indep~ndence 
and weak irrelevance and sound algorithms for the general case. 

Our results significantly extend the known previous results on detecting indepen
dence. Specifically, it is shown that the results of [Blakeley et al., 1989;.Elkan, 19901. 
only capture strong irrelevance in datalog knowledge bases without recursion with. ad-... 
ditional restrictions on the rules. Our results extend the previous. ones .in two ways. 
We provide a strong irrelevance test to arbitrary datalog KBs (and the extensions de
scri bed in Section 3.4). and w~ provide independence tests based on weak irrelevance 
which capture- a larger class orindependence than strong irrelevanc_e. _________ _ 

5.1 Definitions 

In this chapter we will consider knowledge bases containing a set of datalog (cf. [Ull-. 
man, 1989]) rules P and a set of ground formulas. We refer to the rules as a datalog 
program. \Ve also .allow the rules to have safe stratified negation. We denote the 
EOB predicates by el .... , en and the lOB predicates by i h ... , in. The input to a 
datalog program l' is an EDB, i.e., a set of ground formulas for the EDB predicates, 
E1.; •• , En. We can also view £1,"" En as relations for the EDB predicates in the 
intended interpretation of the knowledge base. A bottom-up evaluation is one ill 
whiCh we start with the ground EDB formulas and apply the rules to derive formulas 
for the lOB predicates. We continue applying tne rules until no new formulas are 
generated. 

We distingUIsh one lOB predicate as the query pr~dicate. The otitput of the 
program P for the input E1, ••• , Em. denoted p( E1 •• •• , Em), is the set of all ground 
formulas generated for the query prediC,ate in the bottom-.tip evaluation. The query 
predicate is usually denoted as q. 

A datalog px:ogram l' is said to be monotonic (anti~m6nbt6nic) in the EnB pred
icat~s if for any input EOBs Dl and D2 , Dl ;2 D2 implies that P(D1} ;2 'P(Dz) 
(P(Dd ~ P(.Di)). Containment and equival.ence of datalog programs ?ore defined as 
follows. 

I 
I 
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5.1.1 Updates and Independence 

Given it datalog program p, which \\'e call the qu€ry program, we consider updates to 
the EDB predicates of p, denoted.by CI •••. , €m. In an update, we either remove or 
add ground formulas to the extensional database. To simplify notation, we assume 
that updates are always done on the relation E1 for el' To specify the set of forI'nula.s 
that are updated in E1• we assume we na\;e another datalog program, called the 
update program. denoted by PU. The query predicate of pu is u. and its ari ty is equal 
tb that of £l. The tuples computed for u will be the set of tuples updated in E 1• 

\Ve assume (without loss at generality) that the IDB predicates bf pu are different 
from those of P. The EDB predicates of pu, however, could be EDB predicates bf 
P •. as well as predicates not appearing in P. To distinguish the two sets of EDB 
predicates, we will.use the phrase bEDB predicates" to refer exclusively i.O the EDB. 
predicates e1,' ..• em of th~ query program P; the other extensional pre.siiCates that. 
may appear in the update program are referred to as base predicates, denoted by 
b1, ••• ,b/ .. Of C0urse, some of the EDB predicates. may also appear in the update pr<r __ 
gram pu. We denote the output. of uI?.date program 'P.u as PU(E1 , ••• , Em, Bol,"" Bd, 
even if pu.. does not use all (or any) of the EDa predicates. Sometimes we refer to 
the output of pu simply by U., 

An update is either an insertion or a delt'ion and it applies to the relation 1£1 for 
the EDB predicate el' The tuples to be inserted into or deleted from El are those in 
the relation comp-uted for u. A large. class of updates consists of those not depending 
oil the EDB relations, as captured. by the following definition: 

Definition 5.3: (Oblivious Update) An update specified by an update program 
pu is oblivious with respect to a query program P if. pu haS only base predicates (and 
no EDB predicates). An update is nonobliv"ious if the update program pu has some 
EDB predicates (and possibly some base pred.icates) .• 

To define independence. suppose we are given a query program 'P and an update 
program pll. The program P is independent of the given update if the update does 
not change the answer to the query predicate. The formal definition is as follows. 

Definition 5.4: (Independence): A program P is indepehdent of al: update spec
ified by a pl'ogl'<>,m pu if for all EDB relations E\ . .. , , E'fl and for all base relations 
BI ....• 8/, , 

P(E1• E2;.·., En} == 'P!.E~. E2 , •• " En), 

where E: is ll:e result of applying the. update to E1; that is, E; == £1 U U . if .the 
update is an iilsertion, and E~ = £\ - U it the update is a deletion, where U = 
PU(E" ... ,Em.Bt, ... ,BI), I 
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We,use the following notatibl1. In"'(P. PU) means that. program P is irtdependerit 
of the insertion specifietl by the update prbgram pu, Sirllilarly. In-(,P, PII) means 
that program P is indepc>ndent of the deletion specified by the updat€' prbgtam pu, 

Example 5.5: Consider the following program PI: 

inCar(X, }',.4.) 1\ drit,e7'(X) 1\ iriCat(Z, }', B) 1\ B 2: 18 => canDtil'e(X, }', ,·i) 
cart Dri.t'E(X. }', A) 1\.4. ~ 18 => adllltDrit'et(X) 

An atom cariDrit'e(X, }',.-\) is true if person X can drive car }' and .4. is the age of 
X. According to the rule for canDrit·c. person X can dri\'~ car }., if X is a dri\ier and 
there is someone of the age 18.or older in. the- same car. An adult driver, as computed 
by the ID.B predicate adttltDrit'er, is anyone who can drive a car arid is of the..age 
18 or older. Let the update program P~ consist of the rule: 

inCar.(X. }', A) 1\ ...,drit'er(X) A A < 18 =? Ut(X. F. A) 

and supppse that the deletion defln!>d .by U I is applied to inCar; that is .. non-drivers 
under the age of 18 -are removed tram iT1Car. The query predicate adult Driver is 
independent of the deletion update P~ because the existence of non~drivers under the 
age of 18 does not affect the ability to derive that a person can drive. I 

Several properties of independf't1(,E> are.showli by Elkan [Elkan. 1990] .. ln particu
lar. he showed the.follo\\:i ng, 

Lemma 5.6: Consider a query prbgrain P and an update program pu. If pu is 
monotonic in the tDS predicates. and P is eifhff monotonic ot n.nii-rTlimotonit in 
the EDB predicates. Ihe-n 

Sir'niiarly to the above lemma. we can also prove the following, 

Lemma 0.7: Consider a query program P aud aT! update program pli. Ij pu. is 
(Iilil-tnofloionzc lTi the EDB pr~dicdtts. rind P IS flfht,. fTlonoi6r'lic Of imti-moTiotonit 
in the EDB predicates. then 

Proof:. Consider atl_EDB EI ••••• Erl • denoted as E. and relations· BI • ••. I Bml de
noted as 8. for the base predicates. The tuples or the update are given by U = 
PU( E .. f3). A deletion update transfomls t.he· EDS E into the EDB EI - CO' ; " Enl 
derlOt(>d as E-. We have to show tht'> foliowing: 

P( t-) = P( E). 

I 
~ I 
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Cbn!:iider the EDB t;- with the rc>latiblls_B for t.he base pr<'ditat('s. Let (., = 
PU( f.;-, B). Since pu is anti-monotoni(, in tl1(· EDB. e ~ [i'. 

We 110\\' apply the insertion update !;pecifi(>d. by ,l'1 = pU.( E-. H) to t-. yif'lding 

(5.1 ) 

(• '») :).- . 

If P is monotor'lic in the EDS, t.hen (ti.2) implies 

<Hid. so, from (5.1) we get 

P.( t-) == P( E). 

Similarly, if'P i.s anti-monotonic in the EDS. then (5.2) ·implies 

and, so. from (til) .. vi: get 

I 

i':ot<.< that it an update is oblivious. then it is both monotonic and anti~monotonic. 
Tlif'refore, the above. two le11lm~s irhp\y the followiilg corollary. 

Corollary 5.8: Comli1cr il query program 'P and an update p7;ograiiz pu. If the 
update is bblil'ioll.S (i.f... EDB }u·tdicdies 6/ p do rlOI apIJca7' in. 'P ti ), ..and. P is .ci. 
Ilif'1' ril{)7ioiotlit 01' anU·iiHmOib11ic iT! the upilaie,d EbB prfdicMc.<l. tllrt! the jollowing 
cqitival(.flcf aolds: 

The importarice of. Lcnlnifl 5. j aild .Corollary 5.S, M we will see iii the lwxt section. 
lies in thp faCt thii.t testing In~·('P. Pil) is usually easier than testing In-('P, P ti ). 
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5.2 Irrelevance, Independence and Equivalence 

In this sect iOIl. we formalize the (,01111('ct ion bet w('eli t Ii rei> rdated probletils: irrele· 
vance of formulas ana independence and equivalence of aatalog programs. We sho\\; 
that independence of a deletion upuc\te i!i equivalent to a form of weak irrelevance, 
Wt' also show that the independence problem tall be formulated as a problem of 
t>qui\'alente of two datalog p.rogra!11s. We exploit, this corlnection as follows: 

• We d(lvelop algorithms that provide a sufficient condition for independence 
based on strong irreleva!lce . 

• We develop nove! algorithms for detecting equivalence of datalog programs. As 
a r{'sult. Wfo gt't algor.ithms for detecting indepelidence and weak irrelevance. 

Irrelevance and Independence .. 

As stated. independence of a deletion update is.equivalent to weak irrelevance. Given 
an update program pu and a database D. (consisting the EDB relations and the base 
relations). we denote by Ef'(D) all the formulas of the form €l(al., .. ,an ). where 
Il(a\ •... • ail) E PU(D). 

Lemma 5.9: LN 'P' be a datalog progrilm with query predicate q and pu be an update 
pl'Og,l'fZnl. !l'hUe both 'P aTld PU_hfllte 710 negation. The independence In-(P, PU) holds 
d arid only if for any database D. H' I( Ef(D). q. 'P u D. DI1 , 'Dq) holds. 

Proof: Assume that In-(,P, pu) holds, and let D = Eb"" En, Bl , ... , Bm be an 
arbitrary database and let q(a) E P(D). To show weak irrelevance, we must show that_ 
q(c1) has a derivation that does hot use formulas in Ef. However, since In"'(P, PU) 
holds .. 

P(E l , •••• En) :: P{E1 - U, £2,"" En}, 

wllerl' (; = PU( D). This means that q{a) has a derivation if from £1 - (t. £2, ... ; En, 
alid d does not contain formulas in Er. 

Conversely. suppos£> that I\' I(Ef( D). q. P u D, DII • V q } holds for any database 
[). ('lear);,' .' .. 

1'(E1, .... £'11) ~ P(£I - C ...... EII). 

To show independence. \\'e I'leed to ilia\\' that 

Let qUi) E P(E" .... Ell)' Since Er is.wca,kly irrelevant-to qi q(a) \\'ill have a deriva; 
lion d that doc!) not contain formulas iIi Ef'. ThNeforf'. d will also be Ii derivation Of 

I , 
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q(£i) froni l' U EI - U. £2,"" En. and RO q(ii) t;_.P1~L=- [r ..... En) tuid tlw indcpPIl
deIlCt' holds. I 

Elkall [Elkar1. 1990] shows that detecting independel'lce in general is undecidabl{'. 
This also follows from Lemma 5.9. since weak irrelevance iR undecidgble in general. 
However. viewing iridepclldellce as weak. irrelevance provides insight into the prob· 
lem of detecting independt."nce. For exaniplE', t!w following corollary will yield all 
algorithn't for detecting ind~t)eI1dence ... 

Corollary 5.10: If fol' any aatabasE D. S'I( E:f'( D), q. P lJ D. OIl. V q ) holds. then 
in-rp. 'PU). 

The corollary follows froin Lemma 5.9 and Lemma 2. i. To detect strong irrele
vance. of .Ef. We. create a ne.\\' datalog prpgram that explicitly contains a predicate. 
representing tht" relatiOli tf. Specifically. given the rules P and PII,. we create a new 
progran'l 'PI as follow,~:. 

1. PI includes the rules of P and pll. 

2+ 'PI includes the rule 
el('\') 1\ u{.\') =>~(.\') 

that defines the relation sf'. 
:3. PI includes rules that enable using formulas of e~. whenever the corresponding 

formulas of el would.be used. Specifically, let el('\') be some occurrence of el 
in a rule r E 'P. The program PI includes the rule. r' created Ly replacing the 
literal edS) in the antecedent of r by ei('\'). 

The tollowing lemma assures that detecting strong irrelc\'ance of fortnulas Of ef. in 
'PI will entail independence of 'P tJ

: 

Lemnla 5.11: Let D be a database !l71d el(a) be a formula such that u(ii) E PIi(D}. 
The71 edii) is part of a neril'iztiim of the quei'y fT'om Pu D if and only ij e!(ii) is part 
oj a derivation of the qJ,Lcry ftol'll 'PI U D. 

Proof: Let d be a derivatioll froth P U D that contains fda}; i.e .. d uses an instance 
of a ru Ie r of t he form 

We cari assume that t,he leftmost literal in the antecedent is Cl (a). Recall that a E Er. 
anCl therefore, there is a derivation dll of I/(a) [rorn PI U D (using only the rules -j 
comiI'lg [roill PU). fhe program 'Pi contains a rule 7;' in which fhe leftmost literal in ! 
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the antecedent of r. t.odS). is replaced by tn.X'). '"to create a derivation of the query 
<I' that useS t~'(a). we replace,. ny 1'/. rhe goal-riode ft(a) is unified \\'ith the rule 
drf1nir'lg (1'. re!'iulting iri the iristantiatpd mle 

cd ii) !\ 1l( a) ::} f~(ii). 

The atom Ed ii) is obviously satisfied (because it \\'assatisfied in d). To complete d'. 
we make the atom ll(a) the head of the derivation duo 

For t.he other direction. let d he- it derivation from PI u·[) that contaillS el'(a). We 
simply reverse the transformation we performed above and.get a derivation il' of the 
query from P.u D. I 

Consequently •. if there. is no node of l:'l'in the query-tree of Pl. then Ef'(D) is 
strongly irrelevant to the query. and therefore. by Corollary 5.10. In-(P. PU) holds. 

Example 5.12: Consider again our f]QodPath example given by the rules:. 

j~l : badPbint(X) 1\ p'ath(X. }') /I. goodEaint(}') :::;. s'ood Pat h (X, }') 
r, : lillk(X. }') => path(X. }') 
1'3 :link(X. Z)_/\ path(Z. }') ::;. palh(S. }') 
r,G..step( X. }') => li7ik(X. }') 

and the addltiori.al constraints: .. 

badPoint(X) ~ 100 < X < 200 
siep(X, }') => X < }., 
goQdP{)int~X) ::} 150 < X < 170. 

Suppose we want to remove the formulas of step(X. Y) for \'/hich X < 90. We would 
add the fo1l6wiIlg rules t6 the program: 

rs : stepp':. l') 1\ (X < 90) => [owStep(S.}') 
1'6 : low8tep(X. }") :} link(X, F). 

Tlie query-tree built for gbodPath will be idelltical to the one shown in Figure 4.1 and 
will not contain a nade of the prf.'dicatc lowStcp. Therefore. goodPath is independent 
of this update. I 

Independence and Equiyalence 

The independence l>roblcll1 can also be forniulated as a pl'oblern Of detecting equiva
lence of datalog programs. To shmy that. we construct a new p:'agram that con'l[)utes 
the new value of tIle query predicate q (after the UIJdate) froin the old value of the 
EDB (hcfor(' ihe' update). Orie program. P+. is tonstrurtf'd for the case of insertion. 

-------------------------"---"-~--" "-
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and another program, p-, is constructed for the case of deletion. We then IJose the 
independence problem as tlie equiValence of the original program and P+ (or 1'-). 
Ea<.'h of P+ and P- ('OTlsists of three parts: 

• The rules of p\ after all occurrences of the pr~dicate name EI have bet:>rl replaced 
by a. new predicate narne ~. 

• The rules of the update prograrn pu. 

• Rules for the new !>redictHe s. 

'P~ and P-: differ onl~l in the third part. In'the case of inserti6n, the predkate oS in 
p,+ is intended to represent tne relation EI after the update, and therefore the rules 
for s are: 

t d .\' I ' , . "' X k) :::} S (X t •••.• -, .\' k ) 

u(X! .... ,XkJ:::} s(X1",.,Xk) 

In the case of deletion, the predicate oS in 1'- is intended to represent the deletion 
update to E1, and the rule for defining it is 

~ote that since 'P"and 'P u do. not share lOB predicates, the negation in the p- , .... ill 
be stratified. The fbllowlng proposjtions are immediate corollaries of the definition ot 
independence. 

Proposition 5.13: 11l+(1', PU) <===> P ~ P+. 

Proof: Both p' rop' ositi(iris (aHc)\\' from the observation that the relation computed for I 

s is the updated reiutic!l for E1, Therefore. since (;1 is replaced by s in the rules of the \ 
program. the new program will i.:OIilpute the relation tot q after the update. C\('arly. 
the independence holds if atid only if t he rH~\V prografn is equivaleflt to the original 
program. I 

Retllrnitlp; to Exatl11)k_~,5. hoth P+ and P- will have thc-follbwing rules: 

,'1(X.,}'. A) 1\ drillcr(X.) t\ ~~(2. }',.B) 1\ B.~ 18 :::;. cimfJril'e(X, }', A) 
t{11I D1;i t1e( X. }' • .A) 1\ A ~ 18 :::;. ({rilll t Dri llct'( X) 
it/tnd X. }'. A) t\ ..,dri!;cr(X) 1\ A < is.:::;. udX,}"; A): 

Thci IJrogrfull P+ \vill tontaiil the I'ulrs: 
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iflCilr(X, }", A) ::::} s( X, }', A) 
lid.\", y, A) ~ $(X. }', A) 

alld the progranl P- will contaIn the rule: 

inCar(X. r,.-\) A ..... udX. } '. A) => ... ( X. }', A), 

Both P+ and P- are equivalerH to the original program. ali.d therefore, the query 
adtllt Driper(X) is independent of the insertion and deletion updates of 'Pli. 

5.2.1 Understanding Previous Work 

Relating the independence problem to irrelevance enables us to understand better 
previous, \\'ork on indeRendence by [Blakeley ft al .• 1989] and .[Elkan. 1990]. Both of 
them considered restricted languages in which \\'eak irrelevance is the same as strong 
irrelevance. The result ot Blakelt:-g et at. [Blakeley et al., 1989] applies just to conjunc
tive.queries (d. [Ullman, 1989J), i.e,. knowledge bases in which the, antecedents of 
every.rule are EDB predicates. Furthermore, the rules are restricted such that every 
predicate can only.appear Oltce in the antecedent .. Elkan generalizes. the result by. 
Blakeley et al. to. deal ,with interprfted constraints and only requires that the' query. 
be conjunctive in the updated f>redicate. as defined below .. In the definition, Def(q) 
d~notes all the pr~dic~tes...Lhat c\'l.n .appear in a derivation otq: 

Definition 5.15: A query q is conjunctiv~ in the upgated predi~ate el if it is defined 
by a single rule of the form~ 

where el has a single appearance in the rule. and el if. Def( 8.) for 1 :5 i :5 n. I 

l' nder this restriCtion I weak irrele1iance is equi\'al~nt to strong irrelevance: 

Observation 5.16: Let the query q be conjunctive in the predicate el, tben for any 
formula c,(b). ~v l(etCh), q, t", D11. 'Dq) ~ S I(ci\bl. q. !:p, DII j V q}. 

Proof: We or'lly need to sho\v that H ·/(€t(b). q. t r . J) II! Z\) ~ S!(e,(bL q, Sp, Vq }. 

Assume. by contradiction that H}I(t,(b).q,~p,D{I,1)q) holds. and suppose tJ is a 
database in whiCh eIO)) is used iii a deri\;atibn d of q(a). Consider the database 
D' \\'hich is identical to D except that the rdation EI includes airIly the tuple b. 
The derivation d is stilUl valid derivation of q(a) from tJi, since t.:l is only used 
once in do However, there is no derivation ot q(a) from D' that does not use et{b), 
because soine formula of €I must be used in the d~rivatiorl of '1(0). Consequently, 
WI(CI(b),q.bPi DIH 1\) catinot hold. I 
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t'sing the query~tree to detect independence is an immediate generalization of 
Elkan's algorithm. It provides a strong irrelevance test for arbitrary datalog programs. 
thel'ehy retilOvitig the restrictions that the program cannot have recursion and that 
the query must be conjunctive in the updated predicate. 

In the next section. we describe algorithms tor deCiding equivalence of datalog 
programs a.nd therefore for dctpcting weak irrelevante. The results provide new de
cidable cases for indeperide.lice and provide sufficie-nt conditions for independen~e 1t1 
the general case, 

To illustrate the added power of.our. algorithm. consider the query adul'tDriver( X) 
when the update program is: 

inCa1'(X, r. A) 1\ ..,drit'er(X) => tl.2L\' .• }". A.), 

Sup-pose we app'l~: the dE-letioi1 defined by. U2 to the relation inGar, i.e,. we remove 
any person who is not a driver', The query adult Driver is independent of.this deletion 
lIpdate (because X and Z cari be bound to. the same constant in the rule defining 
caiIDril.e). However. there are derivations of adultDriver(X).that use adult non
drivers, and therefore the forrnulas computed by 112 are not strongly irrelevant to the 
query aduLtDtiver.- Consequently. Elkan's algori' hm will not detect the independence 
in this .example. 

5.3 Testing Eq1.~lvalence of batalog P~og~ams 

In the remainder of this chapter we consider the problem of testing equivalence of 
datalog progralns. As sUited earlier, solutions to this problem directly impact the 
independence problem. Shmueli [Shmueli, 198i) showed that detecting equivalence of 
two datal6g progtan1s is in general undecidable even if the programs do not contain. 
interpreted predicatf!s or negation. Sagiv iSagiv, 1988] introduced a weaker condition. 
uniforn'l equivalence, and showed that it is decidable for datalog programs without 
interpreted predkates 01' negati0n. Recall that the reduction of the problem of in~ 
dependence to equivalence involved testing equivalence of programs with st1:atifled 
negation. Therefore. in order to usc uniform equivalence for deteCting independence, 
we extend the algorithms described iii [Sa.giv. 1988] to handle both interpreted predi
Ca.tes (which are defined in Section 2.4) and stratified negation. Specifically, we sho\\' 
tht' following: 

Theorem 5.17: Testing whdher ci data/og progr'am 'PI is uniformly equivalent to a 
datalog pr;ogram P'l. i8. a/lt..idiLbie 'cve." il PI and 'P'l. include interpreted predicates and 
stratified negation. 

As a consequence .of this theorem. we get the fo1\ewing results fot testing inde
jWlidencc: 
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Corollary 5.18: Independence is decidable in th e follotl'ing cases: 

1. in+(P. PU) (in-(1-". PU)) is dtcidable If ooth 1'+ (,P-) and P hat'f bnly inter .. 
preted .and EDB predicates (that may appear p08ilit·ely or negatit·ely) in bodies 
of rules." 

2. Both In+(p,p U
) and in-(P,PU) are decidable.ifP is ilon-recursit·t;, izndPu 

has only rules oj the form 

where c is a conjunction 0/ int.erpreted literals such that "'c is expre8sible in the 
conslraint ltmguiJ.ge. 

P.roof: The first half of the corollary follows from the· observation that for. these 
classes of programs, uniform equivalence is also a necessary condition for equivalence. 
The second half holds becau~e in both P+ and 1',":, the rules denning s will not contain 
negation and therefore both 1'+ and 1'- can be rewritten equivalently to satisfy the 
conditions of the first half of the corollary. I 

Corollary 5.J9: 

1. In+(1'.PU) is decidable if both l' and pu are non-recursive and only EDB 
predicates appear .negated. 

!!. If, in addition, the up¢ate is oblivious. then In-(1', PU) is deCidable. 

Proof: The first half f6116ws from the observatioil that. under the conditions stated, 
both P and 1'+- can be rewritten to satisfy the condition of Corollary 5.18. The 
second half follows from the first fi.nd from Corollary .5.S. I 

5.3.1 Uniform Equivalence with Interpreted Predicates 

the algorithm for deteCting uniform containn'lerH (and equivalence) for datalog pro
grams without interpreted predicates is based on the rnodel theoretic characterization 
of the notion. shown in [Sagi\' \ 1988]. whith also holds for programs wit Ii interpreted 
prediCates. Specifically. the uniform _tonL:tinnient 1', ~u PI holds it and only if 
At("'.) ~ ,\1(1',). \vhere M(P,) d('llotes the set of all models of 'PI'S We (late that 

"We prefer to describe this caSe in tcrri15 of 15 and P+. rather than P ana piJ.. since it is Clearer. 
~Note that when We consiCier the case of Interpreted pr(>dlfate~. thc nindels of PI must map the 

Interpreted prrdicates to their natlJrai uiterpretation. 

-------------------------------------
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M(PI ) ~ M(P2) holds if and only if M(P I ) ~ .H(r) for every rule r E P2, since a 
database Jj is a model of P2 if and only if it is a model at every rule r E P2• There
fore. \\'e tan decide whether :H(P1) ~ .\1(P'1) by checKing wh<?ther M{P1) ~ ,\1{1:) 
for. every r E P2 • 

Ba.<;ed on tois observation, woen the programs have no. interpreted predicates, the 
following algorithm (frolil [Sagi\'. 19S5j) will decide whether a given rule r is uniformly 
contained in a program P. Gi\'en a rule r of the form 

we use a substitution 0 that maps ever)! variable in the antecedent of r to a distinct 
symboLthat does not appE:'ar in P or r. We then apply the program 'P to the atoms 
Ql0, .•.• ljnO. Saglv shows that the program 'P generates pO from qIO, ..•• qnO if and 
only if M{P) ~·M~r). 

Example 5.20: Suppose we are tr.ying to determine whether the rule 

rl : dX. Z) A p(Z. F) ~ p(X. }') 

is contained in the program PI: 

p{X. Z) f':. p(Z, F) ~ p(X. l") 
e(X. }"} ~ p(X. }.'), 

\Ve apply PI to the ground atoms e(xo. =0) and p(zo, yo). Since we are able to derive 
p(xo, Yo). the rule rl is contained in PI; I 

However, there is a problem in applying this algorithm to programs with inter'" 
preted pr~diCates. First, the constants used in the input to P, i.e., those that appear 
in qIO •• .. , q,/}, are arbitrary, and therefore, interpreted preditates are not defined on 
then}, Consequently, the interpreted literals in the rules (that may involve <, $. etc.) 
cannot be evaluated. Moreover, some of the derivations d pO by P depend on the 
symhols satisfying the interpreted constraints, and so the~~ cannot be discarded. 

We address this problern by associating a constraint with every faCt involved in 
the evaluation of 'P. The constraints (or a given fact f represent the conditions on the 
constants in qIO, ... , CfnO under \\;hiCh J is derivable. We manipulate these constraints. 
as \\;e evaluate p, Formally, let r be the tule~ 

(5.3) 

We denote the set of variables in r by)'. The subgoal Cr is the conjunCtion of the 
literals of interpreted predicates in 1'. We assume that all literals in r have distinct 
variables in ev&ry argunlent position. Note that t}lis requir~ment can always be 
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fulfilled by introducing additional literals using the = predicate, As in the original 
algorithm. \ .... e denne a mapping 8 that maps each variable in r to a distinct symbol 
not appearing in 'P or r, Instead,bf evaluatiIig 'P with the ground atoms ql() •. ' .• CJn(). 

we evaluate 'P with facts that are pairs of the form (q. c). where q is a ground atom 
and c is a constraint on the symbols in }'(), The input to P will be the pairs (q/).crO). 
for. i == 1, 2. " .. n. 

An application of a rule 
91 /I. •. , /I. gt /I. c => It 

proceeds as follows, Let (al.c l ), .... (a'.c') be pairs generated previously, such that 
there is a substitution l' for which 9,1' = a, (1 :::; i. :::; I), Let Ch be the conjunction_ 
c1 /\. , ./l.ci /I. CT. If Ch is satisfiable. we derive the pair (hT. cit). In words, the constraint 
of the new pair generated is the conjunction. of the constraints on the pairs used in 
the derivation and the constraints of the rule that was applied in that derivation. \Ve 
apply the rules of 'P until no new pairs are generated. Note that there are only.a finite 
number oLpqssible tonstraints.for the generated pairs and, therefore, the bottom-up 
evaluation must terminate. 

Finally. let (p.O. CI). , ..• (pO .. em) be all the pairs generated for the.atorr pO in the 
evaluation of 1'; recalLthat p is the head ot Rule (.5.3) and {} is the substitution used to 
convert the variables of that mle to nt'\\' symbols. As we will prove, the containment 
.\!(P) ~ M(r) hoids if and only, if Cr F-CI V •.. V em. where Cr is the conjunction of 
interpr<i't(;>d predicates trom tht' antecedent of Rule (5,3), 

Example 5.21: Let 'PI be the program: 

rl : e(X. Z) /\ p(i. )') => p(X, }') 
7'2 : e(X. }~)_E=> q(X, }'). 

Let 1'2 be the program:, 

81 : p(X. Z) /I. p(Z, F) => p(X. }') 
.52 : e(X. F) /I. (X :5 F) ::::} p(X, )') 
$3: e(X. }') /\ (F ;5 X) ::::} q{X. F) 
s .. : p(X. }') ~ q(X, y'). 

For a variable X of a rule r. we denote the constant X() by .ro. True denotes 
the constraint satisned by all tuples, To check the uniform containment of 1'1 in 
'Pl. the input to 'P2 would be (e(to. ':0). True) and (p(':o. yo). Tr'u(!). Rule 82 will 
derive (p.(xo, ':0), Io :s; =0) and rule 81 \\iill then derive (p{xo, Yo), .fo :s; :0)' Since 
p(xo. Yo) was only generated under .the constrairil Xa :::; =0; the rule rl is not uniformly 
contained in 'P2• 

To check the uniform containment of rule 7'2 in 'P2• we begin \vith (e(xo. Yo), True). 
Rule.5j will then derive (q(xo.yo). Yo;5 .r6). Rule 82 will derive (P(Xo~Y6), xc:::; yo). 
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and rule .5-1 wilLuse that to derive (q{.fo, yo). Io :5 yo). Since q{.i:o. Yo) was derived for 
bot.h possible orderings of Io and yo, rule r2 is uniformly contained in P2. However. 
since r[ is not uniformly contained.in P2 , the program p\ is not contained in 'P2. I 

To prove the correctness of the algorithm. the following lemma relates derivations 
of pair~ to those of ground atoms. 

Lemma 5.22: Let d bE a derit'ation of the pair (pO. c) from P and the databasE 
containing the pairs (q\O, er8). ...• (qn8, er8). and let I be a substitution that maps 
each variable of r to a constant such that the constraint c is satisfied by YI. Let el' 
be the dtril!i2tion in which et'Ery node (nO. CbO) in d is replaced by the ground formula 
nT. The derit'atiMl.d' is a valid derivation of Pi from 'P ilnd }1'T .. 

Proof: To prove the lemma. we need to shmv that in every rule application in d'. the 
constants. that are involved satisfy the interpreted constraints. The proof is based on 
the .following observation. The constraint Co in a node (nO,coO) in d is stronger than 
the constraints of its subgoals and stronger than the conjunction of interpreted literals 
in the rule.used to derive.{nO.c08). This follows from. the way we evaluated'P with 
pairs. where the constraint of the. head pair was the conjunction. of the constraints 
of 'the rule being app.lied and the subgoals used. Therefore, since Y I satisfies. the 
constraint in .the root of d, then it satisfies the constraints of all the nodes -in d. I 

Based on this. lemma. t he correctness of the algorithm is established by the fol
lowing theore.'n. 

Theorem 5.23: M(P) S;; M(r) {=? Cr 1= Cl V ... Vern. 

Proof: tor the first direction, assume Cr ~ CI V .... V cm . We need to show that 
M(P) ~ M(r). To show th~t, it is enough to show the following. If T is a substitution 
that maps each variable in }., to a cOIistant such that 

1. Y i sat isfies Cr , and 

2. q\'f .... ,qni E Al, where ,\I E .H(P), 

then pi E M. We,show that by showing that if P is applied to the inputs q\I,,;. ,qril. 

then p1 will be derived. 
Since }' i satIsfies cr there exists at least orie i, 1 :5 i :5 m. such that Y i satisfies 

Ct. Consider the derivation of (#J.c!) fr~,Hii P. Lemma. 5,22 guarantees that pT haS a 
derivation from q\ i, ... , qh i. 

For the second direction. supposc'cr ii: c\ V ... V Cm. 'ltV&. need to show that there. 
exists a model of P that is not a n16del of r. By the assumption, there must be 
sonic instai1tiation of }'. Yr" such that }'I satisfies CrT ollt does not satisfy any of 

1'-------------------·-- ---------.--.-----
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the CiT'S.6 Let ,,\If be the set of interpretations (for the predicates in rand P) which 
include ql T, ••. , qn T and do not include pi. Clearly. none of the interpretations in M 
are models of r. Therefore. all we need to show IS that there exists an interpretation 
Ma E J\It such that Mo is a model of P. and consequently AJ(P) ~ M(r). 

I.t is enough to show that pT is not generated by P and qIT •... , qnT. AJo will 
then be the least model of P that consists of qli, ... , q .. ;T. To derive a contradiction, 
suppose that pT E P(q\T, .... qnT)' and let d be a derivation of pT. We can assume 
that d is minimal. i.e., it does not contain two identical nodes 11 1 and 112 such that 
III is an ancestor of 112' We create. a derivation d' of pairs corresponding to d by 
supplementing each goal-node of d with a constraint. The constraint attached to each 
leaf in d is CfT \ and the constraint attached to each non-leaf node is the conjunction of 
the constraints of its subgoals and the interpreted literals of the rule applied. Denote 
t he resulting derivation by d'. Clearly, all the constraints in pairs of d' .are satisfiable, 
because Y'T satisfies Cr and .is a valid derivation of pT. Furthermore, we ·show bottom .. 
up induction on d', that.the nodes derived in d' would be derived bY'our algorithm. __ 
Specifically, we show that if (qT, CT) is a node h d', then. the pair (q~, cO) would have 
been derh~ed by our algorithm, where e is the mapping we used for the variables of . __ _ 
r. The claim. holds for the leaves .or d', since they all have atoms from ql T, . .. , qnT, 

and our algorithm began with the p~irs (q I 8,cr t}), ... ,(qnt},cr O) .. The inductive case 
follows from the observation that since all argument positions hav.e distinct variables 
in rules of'P, any rule application that was done in d would have been done .by 
our algorithm (because the unifications did not. rely on additional equality between 
constants, that may' have existed in YT and not in YO. All equalities were made 
explici t as separate subgoals in the rules). However, the faCt that the root of d' was 
derived leads to a contradiction. Since Y;, satisfies the root of d', there would be an 
i such that Ci F YT. I 

Our bottom-up evaluation ora program with a database contahling facts that are 
pairs of an atom and a constraint is reminiscent of the procedure used by Kanellakis 
et itl. [Kanellakis et aI., 1990]. In their procedure, an EOB fact may be a generalized 
tuple specified in the form of a constraint on the arguments of its predicate:. However, 
there is a key difference between toe. two methods. In [Kanellakis et ai., 1990], the 
constraint speCifying a tuple considers orily the arguments of the predicate involved. 
In our procedure, the constraint appearing in a. pair is a constraint on all the constants 
that appear in the initial database, i.e., all the constants in }~e, where Y is the set 
of variables of rule f. Thus, the constraint of a pair may have constants that do not 
appear in toe atom of that pair. The following example illustrates ~hy their method 
cannot be applied for detecting uniforni containment. 

6Note that We are aSsuming here that the subgoills are rectified, i.e., all equality constraints on 
the variables in r appear in Cr. 
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Example 5.24: Consider rules rand s: 

r : ql(X. }')!\ Q2(U, F) :::;. p(X. F) 
s : ql(X. Y)!\ Q2(U, \l)!\ (U ::; V) :} p(X. }') 

To check whether M(s) ~ .\/(7'). We evaluate s. with the pairs (ql('t'O'yo), True) and 
(q2(UO. va)' True). ILwe use the procedure of [I~anellakis et ai., 1990], the result is the 
pair (p(xo. Yo), True). which has no recording of the fact that its derivation required 
that '110 :5 vo- Consequently. we will conclude erroneously that :\1(s) ~ Af(r) holds. 
IIi contrast\ when our procedure applies rule s to the pairs (ql (xo, Yo), True) and 
(Q2(UO. vo), True), the result. is the pair (p(xo,yo), Ub ::; vo), making it clear that s 
does not contain 7', because Trlle ~ Uo :::; vo. I 

Complex~ty 

The complexity of the uniform containment algorithm is in the worst ta~e exponentiaJ 
in the arity of t.he predicates ip the programs. It depends ~m two far':,lrs: 

1. The number of pairs generated during th~ evaluation of 'P. _._. 

2. The cotTIp'lexity of che~king whether Cr 1= CI V ... Vem holds. 

The number of pairs generated during the evaluation of 'P may, in the.worst case, 
be exponential in .the number of variables of r. This js because the number.of non" 
equivalent constraints. on n constants is exponential in n. The complexity of the 
second part is also at most e:<:ponential in the sum of the number of variabies in r 
and the number of constants appearing in 'P. 

5.3.2 Uniform Equivalence with Strati6.ed Negation 

In this section, we describe how to test uniform equivalence of datalog programs with 
safe, stratified negation. We begin with the case of stratified programs with neither 
constants nor interpreted predicates. By definition. two programs Pi and P2 :ire 
uniformly equivalent, denoted PI ..:. u P2 , if for every databaSe D (that may have both 
EDB and IDB factsL Pi(D) == P2(D). Note that applying a stratified program to a 
database that may also have lOB facts is done stratum by s"raturri. as in the usnal 
case; in other words, P( D) is the perfect model of the program P and the database 
D (d. [Ullman, 1989]). 

SUPP9se that Pi and P2 are not uniformly equivalent. Hence, there is a database 
Do such that Pd Do) -:f. P2( Do); Do is called a counterexample. We may assume that 
P1.(DiJ) ~ P2(Do) (the case P2 (Do) ~ P1(Do) is handled similarly). 

We assume that both PI and 1>2 have the same set 6f' EDB predicates and the same 
set of ID B preditates. a.rid moreover I there is a partition of the predicates into strata 
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that is a stratification for both PI and P.2. In particular,.we assume that the lowest 
stratum consists of just the EDB predicates. and we refer to it as the zer~th stratum. 
\\le derClte by P; the program consisting of those rules of PI with head predicates 
that belong to the first i strata; similarly fot P2' Note that PP is an empty program 
(i.e., it has no rules). By definition, P1o( D) == D for every database _D; similarly for 
'0 P2 • 

We now assume that for some given i, pt :t:tl P2' and we will show how to test 
whether p;+! ~u pd+ l • The algorithm is based on the following two lemmas .. 

Lemma 5.25: Suppose that there is an i .. slich thai Pi =11 P4. If there is a coun
tere:rample database Do such that P:+l(Do) ~ P:i+1(Do). then there is some rule r of 
p';+1 'With ,a head 'pre¢icate frq7Jl stratum i+l .and a database n. such that 

1. D is a modEl.of p~+l but npt a model of r: and 

S. The number of distinct constants in D is no. more than the number of distinct 
var.iab/es in r. 

Proof: Let D~ == PH Dc): note that since D' is a perfect-model, D' =P2(D'). By the 
assumption in the lemma, P{(Do) =. P4(Do) and .. ht"nce. D' is also ~ counterexample, 
i.e., P;+l(D') g; P2+I(D~). Now let D.=- P:i+1(D'). Observe·that jj and D"have the 
same set of facts for predicates of the first i strata, since D' = P~ (.0'). In addition, 
observe that D' ~ D. These observations imply that ..pf+l(D') ~ p;+l(£I). Thus, 
P;+I(D) ~ p~+l(b),_because P;+I'(D') ~ P:i:1(D') and P~+l(D'):::: P:i+i(D). 

SO, we have shown that P1t+1(D) ~ p~+l([)), and jj is a model of p~+l. Therefore, 
there is a rule r in p;+1 of t4e forI11. 

ql (\ •.• /\ qm /\ ~Sl 1\ ... 1\ -'s/ ==> h 

and. a substitution e such that 

• .thf'.predicate of h is from stratum i + 1, 

• e is a mapping from the variables of r to constants, 

• qtO E D (1.;5 i::; m), . 

• s,O i fj (1 ~ j < -/). and 

• hO ¢ 0. 
The above atld the fact D == p~+.l (!J.). imply that the database (Lis a model of 

p~+l but not of r~+l. . -
tet D be the' database consisting of facts ftom [) that. have only constants from 

rOo Database D is also a model of p~+l. In prooC sutJp.ose that D is not a rhodel of 
P,z-fl. Thus. ther(> is a tu\(> f of p~+1 and 11 substitution 7. such that 

---j 

I 
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1. the head h of f satisfies hi rt. D. 

2. every positive subgoal ij of 7' satisfies ql E D. and 

a. every negative subgoal ~ of 7' satisfies SI rt D. 
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By the definition of D. if 9 is a ground fact having only constants from D. then 9 E D 
if and only if 9 E D; moreover. for every negative subgoal S. the constants appearing 
in 51 are all from.D. since rules are safe (d. [Ullman. 1989]). Therefore, items (1)-(3) 
hold even if we replace D with D. and so it follows that jj is Iiot a model of. f-a 
cbntradiction, since jj is a model of p~+I. and f is a. rule of P-i+1

• Thus, we have 
shown that D is a Irtodei of .P-i+1

• Furthermore. iteins (1 )-(:3) above imply that D is 
not. a model of r. So. the lemma is proved. I 

Lemma 5.26.: Suppose that P[ =U Pj. Moreover. suppose that there is a database 
D that is a model of p2+l and is not a model of some rule r 0/ P1

iH having a head 
predicate from stratum i + 1. Then Pd D) ~ P2 (D). and, hence, Pl. ¢u P2_. 

Proof: From the .assumptions in the lemma. it follows that .rule t can be applied tb 
D to generate a new fact 9 that is. not already in D. Note that 9 ~ P2 (D), since 
p2+1 (D.) = D and strata higher thaI'!. i + 1 .cannot derive -new facts with the same 
prediCate as that _of g. If we-sho\'" .that rule t. can still generate 9 even when. PI is_ 
applied to D. it would follow that 9 E PdD), and hence, P1(D) ~ P2(D). To show. 
that. recall.that P; =u Pi and D is a model of Pt l

; therefore, D is also a.model ot 
P:. Thus. rule r can still generate 9 during the application of PI to D, since nothing 
is generated by rules of lower strata .. I 

The algorithm of Figure 5.1 tests \vhether PI iE.U P2; its correctness follows from 
the above two lemmas and the follOWing proposition. 

Proposition 5.27:. P1 (D) ¢. P2( fJ) if arid only if there is some i and a database D 
such that either P;,(D) ~ P2(D) or PHD) ~ PleD). 

Proof: Clearly, if Pt{ D) ;;5 P.i( D) theli there exists SOll1e strata i such that either. 
Pi(D) g P2(D) or PHD) g; P;(D). Conversely, if P;(D) ~ pJ(D), then Pt and P2 
differ in some of the facts they generate from D for the first i stratao- Therefore. by 
LemnHt 5.26. P.d 0) ~ P"1( 0). I 

:"-Jote tliat in the algorithlil. it does not matter what the are constants in S as long 
as their lIurhber is equal to lhe rim1'1i>er of distinct viu'if1blcs in the given rule r. Also, 
i[.two databases over constants trom S are isoinorphic, it is sufficient to consider just 
one of thenL In the algorithm we- need to cheCK whether a database iJ is a nlodel of 
P2 alid not ofr. This is dOrlc.by Verifying that P2(D) =_0 and f'(D) #- D. 
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procedure check(PI , P2): 
begin 

for every rule l' bf PI do 
begin 

Let S be a set of t' distinct constants, where t' is the number of variables in r; 
for every database D that includes only constants from S do 

if D is a model. of P2 ~ut not of r then return false~ 
end; 
return trUe; 

end; 
begin /* main procedure ·l 

for I := 1 to maNiimtum de 
if not checA'(P1, Pi) or not checl.:(P~; PI) then return PI ~u Pz; 

r.eturn PI E U P2.; 
end .. ____ _ 

FIgure oj.l: An algorithm for testing P.I =U P2 , 

Example 5.28: Let PI consist of the rules: 

1'1 : own ( X I}") :;:;. I own (X I Y) 
1'2 : lives(X, Z) 1\ inHouse(Z, }') => lown(X. }") 
1'3 : bwn(X. Z) 1\ lives(\", Z) /\ [own(}'.U) => [own(X, U) 
1'4 : /ikes(X. }') 1\ ..,iown(X, }') =? buys(X. Y) 

Let P2 consist of the rules 1'1 .• 1'4 and the rule: 

1'~ ; own(X. Z) 1\ inHouse(Z, }') ~ lown(X, r) 

The EDB relation own describes an ownership relationship between persons and 
objects, The IDB relation [own represents a landlord's perspective of the ownership 
relatiOIl. The programs PI and P2 are not uniformly equivalent. Speeiflcally. consider 
the databaSe Db: 

{likes(a,o). lives(b.h), own(b.o), own(a,h)} 

The programs PI aild P2 differ already in the first stratum (in ,\vhich. the relation 
lawn is coinputed), since 10tL'ri{a, 0) Fi P2(Do) whereas lown(a,0) E P1(Do). In the 
second stratum, when \\1e compute the relation b-ztys, we get buys(a,Q} E P2(Do ) and 
buys(a,o) it PdDrj). I 
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To extend the algorithm to programs wi th interpreted predicates (and constants 
in the rules), we need to be careful about checking whether a database D is a model 
of fJz and not of t, hi order to check this we need to specify the .interpretations of 
the interprtled f>redicates on the cOlistants in S, For example. suppose t is the rule 

e(X. }') 1\ (X < }') =? IJ(X.}') 

and P2 consists bf the singl{' rule 

c(X. }') 1\ (X ~ }') ::} ciX. }'). 

t"onsider the datahase D consisting of the fact e(xo. yo). If .1'6 < Yo holds, then 
D is a model of P2 and is not a .model of. r. However, if .1'0 > Yo, then D is not a 
counterexample. " 

One conceptually simple (albeit not the most efficient) way to address .this subtlety_ 
is to. try all possible interpretations to find one in which the. database is a counterex
ample. The interpretations can .be viewed as supplements to the given .database. In _ 
the case of dense-order constraints. we \vould do the following .. Let C' be the .set of 
constants appearing in either PI 01' ?2' Instead of considering every database over 
constants from S. we should consider every database over constants from sue. 
~toreover, for each database, we should .consider every total order on the constants 
of the database such that the order is consistent with any order that may implicitly". 
be defined on· C (e.g.~ if C. is a set of'integers, then pt.esumably the usual order on.-. 
integers should. apply to C) .. For each such .pail' consisting of a database and_total. 
order defined on .its constants. we check whether the pair is a model of P2 and not of 
r. CO!lsequently, we get the followitlg theorem: . 

Theorem 5.29: UMform equil1alence for datillbg programs with safe. SI1'atifitd nega
tion and intcrpr~te.d p'fediciztes is decidable. . 

Proof: First. it should be noted that Lemmas 5.25 and 5.26 and Proposition 5.2i 
hold also \Vnen the t'ules have interpreted literals. The only difference is tnat the 
number of objects in the cburltercxample max the size of S u C. All we need to show 
is that trying all the consistent possible interpretations of the interpreted predicates .. 
for the constants in sue will suffice to find a counterexample if there is one. In 
proof, suppose we found an interpretation 1 such that D u I is a counterexample; In 
that case. sifnply replace th<:i constants in S with constants from the domain of the 
itHerpretcd predicates such that the constants satisfy the same interpreted relations. 
as the ohjects in S' and m:c COilsi~terH "iith ,I. The i'esult will be a counterexample 
database. Conversely. sUPI'JOsC,' there is sot'ne counterexample da.tabase D. Simply map 
the constimts iIi S to the corresponding constants in D, .and interpret the interpreted_ 
j>rrdkatf1s ori S' iil the sQn'u.' \,iay tliat th(' l'orrcflpol'ldiI1g tonstants in D are interpreted, 

-'l 
: 
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Clearly, our algorithm \."ould have tried that interpretation for tne constants in S. 
and would ha.ve found the counterexampJe. I 

A more efficient nlethod for checking whether a database is it tounterexaniple is 
to use an algorithm similar to the one used for uniform containment with interpreted 
l)redicates. We evaluate rand P'2 \ .... ith pairs consisting of an atom and a constraint. 
The initial pairs are (g, T1·ue). where 9 E D. Let (91, CI), ... , (gf, c/) be the pairs 
der:ved by r and for which 9. ~ D. Similarly, let (hl,dd,,,.,(hk,dk) be the pairs 
deriV\~d by P2 and for which hI rt D. Clearly, D is a model ot Pi if and only if 
interpretations of the interpreted predicates satisfy -.(d l V ... V dk), since under these 
constraints, P2 does not derive allY new facts when applied to D. Similarly, the 
database D is not a model of r if the interpretations satisfy (CI V ..• V Cl). Therefore, 
D is a. couIlterexample database for the containment of r in Pi if and only if the 
constraint 

-.( d1 V ... V dk) 1\ (CI V ... V CI) 

is satisfiable. 

5.3.3 Beypnd Uniform Containment 

For. testing uniform containment of PI in 'P2• it is enough to.check. the containment 
separately·for.each rule of Pl' Consequently, uniform containment completely. ignores 
possible interactions between the rules which may imply containment of 'PI in 1''2' 
Consider the following example. 

Example 5.30: Consider the following programs whose query predicate is p. Let 'PI 
hc!-

7'1 : q(X) A (X < 5) ~ p(X) 
ri : e(.\') 1\ (X > 0) :::} q(X) 

Alid let 'P2 be the program: 

1'3: q(X) 1\ (X < 6) t\ (X > 0) ~ p(X) 
1'4 : e(X) 1\ (X > 0) :::} q(X) . 

The ptograiTI PI is contained ill P2. because whenever () < X < 5. the atom p(.\') 
will be derived from P2 if.e.(X) is iIi tlie database. Ho\vever, rl is not uniformly 
contained iIi P2 (and, therefore, 'PI ~ tl 1'2)' For exiHI'lple, the model consisting of 
{q( -1 L e( -1.). ""p( -1)} is a model of P2 hut not a model of P/.. I 

the weakness of the.unifonl'l containnierit test stems ftoth the fact that it considers 
contairhhent of the sct of all moddsi wltlle iii ordel' to prove:> (ordiniuy) <.:6ntainrncnt, 
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it is sufficient to consider cOlitainnient of only the minimal models.; Therefore, there 
may be cases in whiCh corltainment of minirnal models holds, but containment of 
all models does not. To get a sti'onger test, we may try to transform PI into an 
equivalent program 1" with a larger set of models (but, of course. the same set of . 
minimal models, since equivalence niust be preserved.). We may then be able to show 
that 1"[('P2 ) ~ M{P') holds. where '\/(1'2) ~ M('Pd failed. One way of doing this 
transformation is by propagating constraints from one rule to another by using the 
rulef given by the query~tree. In our exar'nple, the result of constraint propagation is 
the following program 'P': 

r~ : q(.\') t\ (.\' < 5) t\ (.\' > 0) :::;. p(.\') 
1';.: e(.\') t\ (X > 0):::;. q{X) 

I'ow we can show that pi ~u 'P2• and since 'PI ::: 'PI 1 it follows that 'PI ~u 'P2. 

5.4 Conclusions 

In this chapter we studied the problem of detectiIlg independence of queries from 
updates. We provided insight .into the, problem by relating it to the .problems of. 
detecting i!l'elevance and equivalence of data,log programs. As a consequence of this 
connection, we made sev.eral contributions: __ _ 

1. Provided algorithms that guarantee sufficient conditions.,Jor detecting indepen"
dence, based on strong irrelevance. 

2. Showed additional cases in whiCh detecting independence is decidable, and gave 
effiCient algorithms for doing so. 

3. Showed cases where independence of an insertion is equivalent to independence 
of a deletion, thereby making the latter easier to COIllpute. 

Viewing the problem of independence from the perspective of irrelevance and 
equivalence also suggests that further algorithms for independence can be found by 
cOIisidering other suffiCient conditions for weak irrelevance and equivalence. One such 
direCtion, based on extending uniform equivalente~ was discussed in Section 5.3;3. 
Other suffiCient conditions can be achieved by considering strong irrelevance based on 
ininimal derivations. as described ill Chapter 3. This chapter also made contributions 
to the problern of detecting <>qui\;alcnce of datalog programs, \vhlch i~ a recurring 
[>tohlcm in qperj' optimization. . 

'7(; bur fornlaJism. a set of relations for the- EOB and IDa predicates is a minimal model if tho 
IDB part is a rhinimal monel once the BDB rads arc added to the program as rules with cmpty 
bodies. 

, I 
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5.4.1 Related Work 

As discuss('d throughout the thaI>tE"r. Blakeley et al. [Blakeley (f aI .• 1989] and 
Elkan [Elkan, 1990] have studied the prohler!) of iIi dependence. In summary. they. 
have considered the problem for rest ricted languages in which strong irrelevance is 
the same as \vea.k irrelevance. Blakeley et al. consider non-recursive knowledge bases 
without interpreted prediCates. Elkan generalizes these results and provides a deci~ 
sion procedure for strong irrelevance in the case of non-recursive knowledge bases. 
Our rest'lts extend Elkan's by prcWiding a decision procedure f6r strong irrelevance 
(and therdore. independence) for arbitrary datalog programs .. Furthermore. we shbw 
additional cases in \\;hich independence is decidable, specifically for arbitrary non
recursive knowledge bases. It should be noted that Elkan also suggested a proof 
method for detecting independence in the (ecursive case: howe\'er .. he provides no 
characterization of the power of that. proof method. but it. should be noted tha.t it 
cannot capture all cases de.tected by the query-tree. 

Our work also generalizes previolls work on containment of conjunctive queries 
with interpreted predicates by Klug [l,lug, 1988]. ("':Iug showed that if all. the con
straints are left-semiinterl'al or all constraints. are 7'i9ht-semiintetval,~ then contain
n'lent of conjunctive queries can be decided .by finding a homomorphism from one 
query to the .other. For general. conjunctive queries. he pointed out that it could 
hr done by finding a homomorphism Jor ev~ry possible ordering, of the variables and. 
COllstants in the queries. The number of such ordering~ is exponential in the number 
of variables appearing in the constraints. Recently. \ian der Meyden [van der Meyden, 
1992J has shown that the contaimnent problem of conjunctive queries with order con
straints is n~-c6mplete. In our algorithm. the complexity depends only on the number 
of orderings that are actually generated during the evaluation of P. More precisely. 
our algorithm generates partial rather than complete orderings of the variables and 
constants in the queries: Essentially. it lumps together complete orderings th~.t need 
1I0t be distinguished from each other In order to test containment. Therefore, our 
algorithm is likely to be bett(!'r in practice. albeit not in the worst case. Of course, our 
algorithm also applies to fa ore than just conjuflctive queries by considering recursive 
programs as well. 

liSe/'! [I\lug, 1988] fdl' i~r{,'cisr definittolls of thes(i frStrii'tlolis. 



Chapter 6 

Irrelevance and Abstractions 

6.1 Introduction 

In the previous chapters we discussed irrelevance claims whose subject was formulas. 
When We deteded that a fotrnula was irrelevanuo a query. that .seryed as it justifica~. 

tion for ignoriIig the formula w.hen we searched for for an answer to the query. Iglloting 
an irrelevant formula can be viewed as a simple way of abstracting a knowledge base. 
This view suggests that more interesting abstractions can bf.' obtained by consiaeriIlg 
other kinds of irrelevance claims. based on different subjects of irrelevance. 

Research on reasoning with abstractions focuses ort finding abstractions that will 
)~ield more efficient inference, The intuition underlying ,much of that research is that. 
a good abstraction is Olle that removes irrelevant detail. If the details l'emoved iz1 the 
abstractiori are iIlcieeci irrele~ant, then the solutions obtained from the abstract knowl .. 
edge base "'ill hold in the original knowledge base, or can be refined iii a structured _ 
fashion to solutions from the original knowledge base. 

'l'his chapter proposes an approach to research on abstractions that exploits the 
cOlincction bel\vCCll the notioli of irl:elevance and the creation of abstractions. It 
makC'R the first steps in formalizing this connectiOli and desc~ibeB the possible payoffs 
frolfl tlir apf)toach, We hegifl by illustrating two ne'", irrdevanrf' subjects arld th(' 
abstractions t hat they justify, The poterltial payoff of t.he prbl'>osed approach is 
dCllIollslratt·d by cOllsidering these examples in detail in S,~ction,~ 6.:3 and 6.4. The 
fl rst p.xalllpl(l i \l1I$t rat cs t lit· i fl'f'I(>vancp of l!.l'cdicatr a I'g ul1i critb' 

Example 6.1: ('otisicl<,r tll(, fbllbwirig l:ub\ dcstribirig flight routes between Cities. 
th(' third argument of-flight. and ,'ollic denolt> tosts of tll ' Oigl1ls• and their fourth 
argullit'llls df'liot(' the flirlini' of thi' flight/route. 

", : flight( X. r. C. A) ~ ,;otllr( X, r, c. A) 
7''1: Jlif/ht(X. ZJ\ . ..1) 1\ iio/iU(Z, r.C'2. A) ~ rotLle(S. f,C I "" C'1'.'1) 

1",:: wi 

--I 
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The knowledge base also contains a set of ground atoms for the predicate flight. 
The atom aitlillf:Flighf(X. }', A) deliotes that there is a rout~ (i.e" some sequence 
of flights) from X to }" that uses only airline.4. Suppose we want to query the 
kno\\iledge base for the existellc(> of a flight from SF t.o LA ori 1\'2 airlines, i.e., 
ai1'lillcFlight(S F. L.4.. 1\'2). The costs of flights are irrelevant to this query, i.e .. thl" 
third argument of flight and rOllte can be projected out to yield a smaller knowledge 
base and search spare. Specifkall~.:. ~\'e can r'ewrit(> the rules as follows: 

r~ : flighf'(X, }',A)::} 1'outc'(.\'. }',A) 
1'~ : flight'(X. Z, A) /\ rOllfc'(Z. }',.4) => 1'outc'(X. F,.4) 
7'~ : 7'Ollft'(X, LA) ::} airlincFlighf(X, }" • .4) 

We also project out the. third argument iIi the ground atoms of the. predicate 
flight. Consequently. niultinle flight fads describing different fares for. the ~ame flight 
arc collapsed to ont' fact in the knowledge base .. As a result. the knOWledge base will 
contain fewer facts and sin'lpler rules .and therefore the space searched may be sigilifi
rantly smaller than-in the original one, For example, consider the difference between 
til(' rules 1'2 and 1'~! In,rule 7'2, if \\1(' fail to join a groulld atou'l fligM(x,:.Ct.a) with 
a ground atom 1'olde(::. y, C2, a). .the backward chainer might still try to join tlw.atom 
flight(x,::,c;,a) With an appropriate atom of 1'ouie for every v.alue,c~ for which it 
finds an atom in the flight database, and will faiL on.all of them. In c.onttast, rule 7'~ 
will 110t try other costs for the same flight route. 

Although iIi some simple cases these repetitions can be eliminated by eri1pioying 
some me~hod of dependency directed backtracking, such methods will not be as gcn'-. 
eral as projecting out arguments and will also have additional costs associated \\iith 
il1ail'itaining th" dependencies. I. 

Exanlpie 6.2: COI'!i;idN it kllowl(>dg(> base' with t.ht> followiIlg f01'mulas: 

1'1 : 81wri8C a1'( X) :::} cil1'(.\') 
t'2 : jil11iilyC'ai(X)::::} Nd(.\') 
7:3: (,([7'(X):::} l'cliicldX) 
/"1: bicYc/d.\')::} t'rlticlc(X) 
)'5 : .'4]1orf.slar(X) :::} hi!JhRi,<{kln.sll1·cm('r;(X) 
I'll; cClr(X)::} ha,dloi01'(X) 
/',;, : "chic/d.\') /\ IUl8!t/{)i01'(X) ::} lIioto1'i:ca\ 'citi{:lc(X) 
91 : fa7'llily('at~(('ilitlry) . 
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COIlsickl' tIl<' query 7'notol~i=fd\:ehicldCaml'Y). Witli resp(>ct to that query. tlH' 
refiT1en1ent b('>tw(>(:'n sports cal'S and family cal's is irrelevant.. Intuitively. all t.hat 
matters abbut the Camty is that it is a car, Consequently, th(' qut'ry can be solved 
if w£' abstraN the tepreseritatibn of the domain by removing the refinement bet.wrcn 
thc predicates S7'01:tsCar and jmililyCI1.7'. to do so. we remove rules 7') and 7'2 and 
reI'>lace 9) by til<' formula: 

g~ : car( Cann'y) 

The rul(' 7'5 is also removed brcau8<.> it distillguishfS between the different typeg 
of rars, and is therefore irrelevant, Abstracting the representation will yield more 
efficieIit inft'rcllce tor severaL reasons, First, it. is no longer necessary to deriv{' that a 
Can'lry is.a car, Iti the exaI'nplc. there. are only two rules that may be used,to dt'riv(:' 
that.. but in general. there rnay be many different subclasses of cars and .the cost of 
deriving car( C a 71l.ry ) may be arbitrarily. large. SecOIid, by removing the formulas 
that distinguish betweeli tl1£' tYP€>i; of. cars, we reduce the size of th(' sparf' t hat needs 
to be st'arc hed. I 

Recently. research on abstractions and approximations has received renewed at.~ 
tention [Ellman, 1990; Ellman, 1992:.Lowry,.1992), However, two key probl('[l1s in 
this field. remain largely 0pCll. The first is how a s,Y$tem Call automatically creat(' 
an abstraction that is well suited to a particular query .. -The second challenge-is 
undt.·rstanding the utility of reasollillg .with multiple levels of abstraction. Our ap
proach addresses thes(' issues as follows, When an abstractioll is being considered, 
our approach is to articulate which knowledge is being renl0ved in the process of the 
abstraction and to justify the abstraction by tht> fact that this knowledge is irrele~ 
vant to the query at halld. Reasoning about abstractions then beconlcs a problem 
of reasoniflg about irr('levartce. The formal analysis of irreievann' will give us several 
insights irito the corresponding aDstractions: ., 

1. the problem of autor'natically generating abstractions bt'comes well defined as 
a problcm bf autol11atiCally deriving irrelevance claims. Often this can be dOllf> 

hy w~iJig C'xisting algorithtl1~ for autonhitica.lly deriving irt'<'I<"vallc<' daillls. as 
\\'f' s(;£' ill SNtiolls 6.3 aIid .6.4. 

2. ttlld('l'RtRII<iillg tlit; utility of ('xploititig irrci<'vanc(' claims giv{'s us insight into 
t h(' utility of th<' abstl'fictioll hased on it. For ~xar'nplc, if cttl abstractioli is ilased 
011 a .\\'r'ak il'rd('\'atic('. daiIiI. then it is not necessarily coriiputationally advan
t.ageous. wlic'rd:\s if it is based 011 a stroIlg irreicvitll{,(' Claim; it is guarant('C'd to 
l<".u1 to computatibllal savings, Furtherlllort'. th(' und<'i'lying irl'e)(>vaJice.claims 
('cHi illdicat<.' wh(~thcr ahstl'~tctiollR can he.col1lJ)m~('d, baRed on cOinposilig tll(' 
liil(l<"rlyiIlA im')p\,iltic(' claims. 

1 
I 

, 
I 
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3. The ability to explicitly state the irrelevante t1ain1s underlying abstractions 
provides us with a formalisn1 in \\'hich we can reason about abstractions. This 
is useful in several scenarios: 

• In general. we cannot expect a single abstraction hierarchy to be well 
suited for all possible queries. Therefore we need to tailor our abstractiolls 
for s!,>ecific queries. and ill doing so .we can often be aided by additional 
knowledge about the domain. Expressing such knowledge in the form of 
irrelevance claims and combining it with other knowledge about the domain 
provides a powerful mechanism for incorporating domain knowledge into 
the creation of abstractions . 

• Several problem solving scenarios give-rise to situations in which we are '" .. 
giveI1 multiple descriptions of aspects of a domain at varying levels of ab
straction. In such a situation our task is twofold, .Eirst~ we need to. select 
the level of abstraction that is best suited for a given .query, and second, 
we need to combine descriptions of different aspects of .the domain to cre-
ate one coherent :lnd consistent. descr.iption. By stating explicitly the 'as
sumptions underlying the multiple descriptions, we can reason.about t.heir 
consistency a.nd adequacy. The following are examples of such scenarios: 

(a) Reasoning about physical systems: In this domain (discussed in 
detail in Chapter i) we are given descriptions of. physical phenomena 
iIi the world at different.levels of abstraction. Our .task is to compose 
descriptions of relevant. aspects of the system such that we can answer 
a query about a given system. For example, suppose we are composing 
a representation for a given device that includes a battery connected to . 
a wire, each of which can be described at different levels of abstnlction. 
III particular, we can describe each of them under the assumption that 
t heir' electrical properties are irrelevant or without that assumption. 
Reasoning about tht" assumptions underlying these descriptions will 
en8U{'(' that. we do not compose a descriptioI} of the battery that ignores 
its electrical properties (e.g., its voltage) with a descriptioll of the wire 
that cOIisiders tnt'· voltagl.. of th(=' battery relevant. 

(b) Reasoning with contexts: Contexts [Guha, 1991] a.I'<' small the
ode:;; that- describ£' limited aspects of the world. A kno\\'ledge hasp 
describing a complex domain can beriefit from .being divided into COli
texts both .ill simplicity of repre~"ntatioli and efficiency of reasoning. 
Here too, .answering a query. l'equilcs that we decide which contexts 
are rcl(>\,aiit to th~ qllei'Y alid are consistent with each other. Thb can 
b(; doti<' by teasoning with. explicit statements about tll(-' aRsullIpt.iol1R 
lIudcrlyilig NH'h conti>xt. 

i 
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(c) Distributed heterogeneous databases: A distributed database 
(whether centrally managed or employing a federated architecture) 
may contain several databases with overlapping data. The databases 
may describe the data with different levels of abstraction and assurnp
tions. As in the previous two cases, given a query, the system must 
find the (parts of the) databases that are neded t.o answer the query 
and must combiIle kno\\'ledge from the different databases to provide' 
a coherent answer. An addit.ional challenge here is to minimize t.he 
tosts that may be associated v.lith accessing remote databases. 

It should be noted that in the latter two examples, before W(' can reason 
about the abstractions underlying the different contexts or databases, we. 
must resolve the sen'lantit mismatches between the destriptiolls._.used in 
each context/database.! 

6.2 New Irrelevance Subjects _ 

As explained, abstractions tan he obtained bytonsidering new kinds of .irrelevance 
subjects. This section describes informally several such subjects and shows how they 
account for abstractions wit.h which we are familiar. The. irrelevance subjects .that .. 
we discuss ('.re .broadly divided into. two classes, one. that r.oneerns relations in the:.... 
domain (and their corresponding predicate symbols) alld one invoh-ing objects in the 
domain. The ir.relevance subjects .concerning "relations include t~le follbw.ing: 

• Predicate irrelevance: We may state that a certain predicate (representing a. 
relation in the domain) is irrelevant to a query. For example, if we are modeling 
the behavior of a battery for a short period of time, the property of being a 
rechargeable battery is irrelevant. Such an irrelevance claim can justify siml>li
fying formula./{ by removing literals containing the irrelevant predicate (or by 
removing formulas complete.!y) . 

• Predicate Refinement: Irrelevance of predicate l'efillcll1erits Cail appear ill . 
t\\'O forms. IIi the first, illustrated in Example 6.2 (and further investigated 
ill Section 6.4), we have a set of predicates ql, ... I (jn and an it'relevance claim 
stating that the given (/I is irrelevant. That means we only need to kliow that 
a ('crtain object (or tupl(' of objects) belongs to one of tht, 'ii's, but lIot which 
one. Consf'quently, tht> absttactiOll .will replace CJ!, ••• , (jn by a new predicat{> q 
int<.'>iIci&d. to denote thC' union of the inU.'rpr<~tatiOlls of ql,"" qn' 

--------------.----------
t In research c;~ mbdeUlg p!lysic'a,! syst.<'liis, molit- works mak!' the aSsuml;t.ioll that all t.he desr-rip-

lidlls (if tli{' dOIlHlill are brul,'c.1 oil bnr ('o,lsislenl b:ltology. _____ _ 

1 

... _-! 
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In the. second form, we want to remove qh ...• qn because we are only interested 
in objects that belong to all the qi'S. Consequently, we will replace ql •...• qn by 
a predicate that denotes th{' inter3~'ftion of the relations denoted by ql ..... qn' 
tor example, we rna~~ have two predicates adult and citi::en. However. in a 
theory that represents the domain of elections, we wish to represent only objects 
that satisfy the intersection of these two relations. Such. an abstraction will 
enable us to remove many formulas as well as sa~re computation of inters~ttiol1S 
(or more g€nerally, joins of relations) . 

.. Predicate argument: As we Saw in Example 6.1, we can often simplify a 
regresenta.tion by reducing the arity of some predicates (Le .. project.ing them 
on a subset of their arguments). Section 6.3 will discuss this subject in detail. 

Irrelevance su bjects .concerning objec~s in the domain include. the following: 

• Object irrelevance: 'We may state that a certain obj.ecl in the domain is 
irrelevant t·o a query. For example, we may'state that. the battery orthe car 
is irrelevant to.a query regarding its transn'lisSion system. Consequently, we 
can ignore formulas in the know.ledg~~ base, that include constants (or terms) 
denoting the irrelevant object. 

• Object refinement: As with. predicate refinements,.we can state that a refine
ment between objects is irrelevant to a quer):. Given a. set ofobjects ai,' ... an, 
we. can replace them with a single object a. As in the case of predicate refine
ments, there are two ways we can interpret a. The first is to assume that a has 
only those properties that are common to each of the ai's, and the second is to 
assuIile that a has aliy property that any of the aj's has. 2 For example, sup
pose we are reasoning about a chemical reaction. We do not need to represent 
each molecule in a given solution. ~n$tead, we reason with one representative 
molecule of each different type. We ascribe to a representt'itive molecule all the 
pl:opE'rties that are shared by all molecules of its..type.3 _ 

• Object aggregation: A common abstraction that arises in many contexts 
is aggl;egation. Instead of representing a set of objects, we rppresent only a 
single object denoting their aggregate. For example, instead of representirig 
tllf'. parts of a chair. we tan represent the chair as a single object. We call USe 
this r('pl'csentatioll wheli t,he pro£>('rties ·that arc relevant to the query are only 
thos(' that apply to the. aggregate and. not to its subparts. Note that object 

!lOf course, spccitt.l cafe must be givcli to formulas bf the fOrlll ctl :f a~. 
30lie ran also d(>\'ise illcthods for abstracting object reflriements that lie in the middle- of t.hpl'lf> 

two extri:'mes. For CXfu)lple, we can associate ,vitli the rcpresClltiilivc oDject bnly the' propf'l·tif's H,i\t 
arc' lYfl1m{ of lht' Sf'! it is reprrsenting. 
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aggregation is different. from object rdill<.'ment. Her0, the new object represents 
the aggregat.ion of a :let of obj{'cts. while in the case of object refiIleIllent the 
new object denotes a reprf'~entative of objects in a set. 

• Object homogeneity: In object refinement.. \'Je replaced a set of objects by 
a single Olle. How('ver. in some cases we may need to retain all the object.s 
(e.g .. t.heir number is important). but wt' want to represent them as a set of 
homogeneous objects. Thi!-l means that \ve a.bstract all the differences between 
them except. for object. identity. For example, consider the 15 puzzle. A powerful 
heuristic for solving the puzzle is to place the first tile in place. and then proceed 
to. place the second, (while keeping the first in a fixed position) .. etc. For the 
subgoal of placing the first tile iti place, there is no need to distinguish between 
the tiles 2"-15. Two states that differ only in the location of Olle of these tiles 
should be indistinguishahle .. T\'lakiIlg this abstraction reduces the number of 
possible states from 16! (~ 101•3 ) to 15-x L6 = 240 states. 

In addition to. irrelevance subjects concerning relations and o.bjects, we can also 
consider subjects that abstract function. symbo.lso In some domains, we can also 
cOIisider morf' spf'cifk subjects. Fot' example, in planning.we can considet irrelevance 
of states. act ions or action pr('co.nditi0I1S ',0 __ •• ,_. __ 

6.2.1 D.efining Irrelevance of New Subjects 

As a basis for the approach we are proposing, we need to make a formal connection 
between abstractions and irrelevarlce. This section shows how irrelevance of neW 
subjects can be formalized in the framework we discussed iIi Chapter 2. 

The definitions of irrelevance that we. have considered were based on the intuition 
that a subj~ct, ¢ is iri'elevant to a query if ¢ can be rcmotrcd without changing the 
aliswer to the query. In the case of ¢ being a formula, removiIlg ¢ meant literally 
l'{'Iilc\iing it from the knowledge base (or revisiIlg the knowledge base so it does not 
elltail ¢). For the new irrelevance subjects, although we have an intended abstraction 
in mind for removing ¢. the actual removal involves £11htle details. i''or example, ill 
lit<' cas~' of irteleviUlc<' of a pI'('dicatc l'efinemcnt {qll" .. qn}, we would rernove it by 
replacing all OCCUrl'CnCeS of (It by a IH'W pr('ditat(' q. The intended int.t;>rPl;('~atioll of 
q is tlH' lllli()11 of tile' intcrprrtations of {ql •...• qn}. Ho\vever, in doing so we mtl!'it 
he' ral'efu!. For {'xampk', it we an' retilOving the distinction hpI W('f'!1 tlie' predicat!'s 
{8j)(?1'i,~Cat'. j amilyear}. and WP hav(' the formula 

ja11lilyCal'(X) =? -,sP01'i,.;('ctr(X) 

tlt!'il j)Nfort11ing til<> Rubstitut.ioll would result in thf~ contradiction 

, ....... _---- -------- ---,--~--,--------"--,--,---- - ---

1 
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CQ1'( X) ==;> --'icar( X). 

Assuming that \\.(' have 50111<' function Absc:> for abstracting a givC'1l knowledge 
base ..l which does not introdllc(' un\\'anted formulas. our intuit.ioll of irrelevance 
would imply that 0 is irrelevant to a query q \\'.r.t. a knowledge basr ..l if 

(6.1 ) 

Ll words. <iJ is irrel(>\'aIH to the query q if abstracting the representation by remo\'
ing (> (resulting iII the knowledge base Abs~(~)) does not change the derivabilit.y of 
the qu<'ry. As we saw in Chapter 2. a mort'> refined account of irrelevance. based on 
a proof theoretic analysis, enables us to address the. key issues regarding irrelevance. 
In.this case. we "'ant our analysis t.o hdp in developing algorithms for automatitally 
jllstifyirig .and creatin~aQstra('tions aIld in analyzing the utility of reasoning with 
abstractions. 

We no\\' extend the frame\\iork described in Section 2.3 to ne\\' irrelevance 8ubjN::ts. 
Becall t hat a definitioIl of irrelevance in our spacr was obtained by considering son'le 
condition DI (which depended .on the suhject 6) over a chosen set of derivations of .
the query 'Du .. We said that </J is strongly irrelevant to a query q if Dl(o. D) holds for. 
all derivations D E 'Db. and that it is weakly irrelevant to q if Dl{<b. D) holds.for some 
derivatioll D E 'Do..- To extend th<' fran1<~\\'ork. \\'e.consider appropriate definitions of 
t.he predicate f) 1. 

The dC'finitions \\'e consider for D /4 are.based on identifyjng formulas that are. 
lndcpC71deni of thC'. irrel{>vancC' subject ¢. Intuitively, a formula is independent of <i> it 
it doc;; not rely on C!J. i.e., it holds ('\Ien if tp is removed. Th€' definition of indepcndell(,(> 
will also be used to define the abstract knowledge base .4bstb(~) such .that.it does not. 
introduce unwanted formulas. Specifically, Abs4'>(~) will contain the abstractions· of 
t.ht> tornlUlas iIi .:l that .are independent of <p. Formal definitions of independence will 
be given ill subsequent. sections. The following exarnples motivate the concept. 

Consider ExamplQ fL2 and tll<' predirat(; refinenient {sporlsCar, jamilyCa1'} and 
t h(' ru l(~ 

/. : s]101't.~('ai·(X) :::} /'(hiclc(X). 

Th(i rul<:, 7' is iI1d('p~!ldt'llt of tli(' pl'p.dicat(' l'efhi(,lllefit, because it w~ t<,pJa('(~(1 orClll'

rPllc('s of -"lJOrfS(iai' by iamilyCm'. the l'esuitiIlg rule 

]" : fmililY('{17'( X).;;:;. t'f hide( X) 

cds() follows frolll tli<' KnowJ<.'dg(i has{'. Tht'l'('fbl'('. j'('plating 7' by tll(' j'lIle 

(,((7'(X)::::} /'('/ziclt(X) 

"Aild \\'I' do Hot dnirii tliat tllr!-l{' arr tlic...l.lllly viablt· drfillitiotls. 
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would Ilot contradict Ollr pr('vio\ls knowl('dge or add to it. In COi!i:rast. the rul(' 

,~ : spbtL,,('ar(X) =} highRis/.:Tol1ilnl1'c(X) 

is liot illdepen(\('nt of the predirati> refinC'ment because thi' rule: 

,';' : .f.a71lilyCm'( X) => high RiskTb/7!S(lrt(X) 

doC's not follow ftom thr I"':H. Based on a definition of independenc('. w(' raIL consid('r 
several d(>finitiolls of D I ill the same fashion ,\'e did in Section 2.3: 

DefirtitiOll 6.3: 

I 

• DI1(o. D) if Base(D)fi does not. contain any formula that is not independent 01 
o. 

• DI2(o. D) if D does not contain allY 101'mula that is 110t ilicicpt>udent of o. 
• Dh(.a.. D) if"Basc(D) does not entail any formula t.hat is nu! indcp(,lldf'nt of o. 

Ret uming to .Example 6.2. the predicate refineni.ent 0 =- {sport se Q1'. f amilyCa7' l
is ~trollgly irrelf'vant tothc query q == 77loiori::edFt.hicle(Camry) because the (singk) 
derivation ot q uses only formulas that are independent of $ .. 011 the otlier hand. 0 is 
not strongly (or weakly) irrelevant to the query ql = hi9lJRiskToElIslIre.(X) bec1HtS(i 
derivations of ql will use the rule rs. 

In. the .following sections. wc. consider sp€'cifk ddlllitiol\S ot..il1d~p(,l\dence (and_ 
irrelevance) and show how they are used to de\~elop algorithms for automatically 
crC'atirlg abstractions. 

6.3 Irrelevance of Predicate Argum~nts 

:\~ .illustrau,'d in Exampl(' 6.1, it is sOllwtimes possible to simplify a repn.'sentation 
hy proj('cting out argutll('ilt~,ot some pr{>ciicates. therehy reducitig-thcir arity and 
lcadiilg it) mort' efficient rt'asotiing. iIitititivCly, we can project out. the> arguments if 
th(',y al'c .irr('l(>\'ant to a qu&ry. An .argumt·tit is irrclevant to it quci",\' if the' solutioll of 
t h(' quc'ry i'('quir<'s 80liIC \'aluE'~ fbI' that argumcnt. but the actual "alues lIs('d art' lIot 

imptH'talll. and they do Hot havc to satisfy allY othel'.coltstraints. III this s('tlioli. \\'(' 
will forilializt' th<" itreic',-anc(' bf a prt>ciicate argU111ent. 

We denoH' a set Of prpdkaH' arguments by n. which is a Ret of f)aits (CI,.H , ), \\'Iwl'c 
Cli il' .i pt('dkat(' aiid III is all int('grr Ie:;:; or t'qliai.to the' ari! y ()f Cl,. {·'or (~xaI11pl~ ... til(' 

5Hrctilllhat HaU\])) i~ tlh" set of fortiHllas III the Ica\'(>s Of tlie< proof tfl'{- (lil'(> Sc'rlioll ~,:\) 
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s~t {(.flight, 3), (route. 4)} represents the third argument o( th(' predicat{' flight and 
tile fourth argunlelH of the predicate route. III projecting out the set n. w(' perform 
thr following synt.act.ic transformation fn(<b) \0 a formula m in the knowledgL' bast!: 

Let ]I( Xl).' ..• p(Sm) be th~ literals of the prcdicate p iii if; (both positi\'e 
and negative). SUJ>pos{' tlie arity atp is I and that (p,1·1), ...• (p,iJ,..) € n. 
\V(- Illtl'odu('C' a tlew predicat(' p' of arity I-k. W{> replace each atOll1 Ji(Sr) 
of ]I by all atom ]l(}:). \\'h('re }-: is the' result of projecting arguments 
i\ ..... ik out of .\\. ~otC' that p' may 1)(' of arity O . .If p is an ord(,I' 
prf'ciicate \\'e rrpla('~ its atoms by truc, 

The function In is extended in a ~ttaightforward t'nanncr to sets of formulas. [\01<.' 

that if a predicate.]J aPr'>ears in n, theIl. \,Ie replace it with the. sani" new predicate 
in e\iery formula. As explained earliel" simply applying th(> substitutioll In .to all 
forniulas ill the knowledge base may introduce inconsistencies. W(:> th('refor(' ap!,>ly 
the substitutioll only to fOrIllulas that ar(l. independent of n. Our <\efhiitions IJf 
irreievauc(, arC' also \)af;(-\d on the llotioll of independence. 

Our C\C'finition oLinciepcndclic(' is bas('d 011 the semantics of the abstraction we ar(' 
performing. SI)C'cifically. if a prt3dicat.e ]J denotes a relation P. al1d \"(' p.roject out SOI1lf> 

of the argumclits .. of p . .. t hen tiI(> resulting predicate should dcnot(' tli(' correHpollding 
projection of P. GivCIian intcrpretatioli / fol' the' symbols in a knowledge bas(' .:l. 
w<' drfinC' all illterprf'tation Ab$(1) for the symhols iIi hd~) a~; follows: 

• The inteq>tC'tations of t.('rms.in I and Abs( I) ate idclitici:tl. 

• If tlie predicatr p dO(>R not appear in. n. thell.l' is mapped to tile' samt.' tplat·ioJl 
as iIi I . 

.. If (". i I). , , . , (p. i k) E n. and JI was mapP('d to the' relation jJ. th(·1) tilt> pH~ditat(>, 
1/' is lIlaf>pii d It) f IH' rC'i,Hioll I)' ~ wht>l'{' pi is th(> l't'sull of project illg t he' arglllt'l(mls. 
. . r· /) 
il' •••• I k 011 to. 

Definition 6.4: A fc)hllUla 1.' is illd(rphl~lf'fll. otJ..lJ.LprNlitat(' arglltllCllU:i n it for al1y 

illtfl'pJ'('Ir'ttion I: 

I 
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Intuitively. a tlaus{> C is independent of Q if the formula IQ(C') doc!; not impose' 
aliy additional constraints on the possible state~ of the world. a~ described by ~ (and 
thc-rr-fort> does not add a11Y li{>\\' klio\\'!t"dgc). We define the absu'act knowlC'dge bas<" 
resulting from rellloving ?? from~. denot&d by AbsR(~)' It includes tl1(· abstractiollS 
of fortJlula~ ill ~ that are incie>pendent of n. i.e'., 

Itl Example' 6. L t h~ rule' 

is indepcndent. of thr argumrnts {(flight..:3).(1·OlltC.:3)}. but is 110t independeI1t of 
the argulllcnU; {(/Iighl..:t.). (NJIlic.4)}. To sec the latt('[', considt"r the intf'rpr('tatiotl 
I in whirh /Iight denote's the: siIiglc tuple rClatioli {(Ci.b.l.twa)} and l'oute d&notes 
tlJ(> relation {(h. c. lowziied)}. The abstract interpretction Abs(l) \\'illll1ap flight' to
{(a .. h.l)} and ?'OlLi(' to {(h.c.l)}. Tht.'rcfof(\ I i~ a model of 1'1. hilt Ab8(1) is not a 
mod{'l of r~. 

Based on independ('ll('c. W(' cali ckfllle irrt'le\,~l.llct' usiflg the definitiolis of D I.givcli 
ill Dc'filiitioll 6.3. ~"'ot example, \\'c·cati dcfine R. to be weakly. irrde\'alit. to.a query q 
if thNe is some,dcrivation of q that ('ontains only formulas iilde>I}Cndc.llt of n. The 
following titebl'clll shows that \\'t'>ak irrt'ie>varlcc provides a logical j,ustifirat.ion for the 
nh.atadibll that. fits our intuitions stated in Equation 6.1, i.e., Ilrovidcs a j\l~tificatibn 
for \lsiilg Ab.~f.(~) illstc-atl of ~: 

Theorem 6.5: UI 'l\(~) bf the sft oj dCl'ivatiotls oj th( iJllfi'Y q /,.Oi7i ihr A-,WI/IIFdgf 
UrlS( ~. 1/ It' I(R-.q.~. Ph.Vq ) holds thffl 

ami. ij q NHifa/Ii . .; '10 i,:,.cl"·a1d al'gl111lt lif.,; (i.i., q = !t.(q)) thell 

l\bll' that ·if W(' ha\,(' it ,(,Oillplt'l(i.sct of inf(otclirc' fllJc.s ('-g .. hftc'KW<tl'tI chaining for 
atolllic qlli't'irs ill flo!'il rtlit; kili}\\'j("dg<' l"1<,u.;('s). tli("li til!" aho\'(' tlWOl'(illl illlpli('sli . 

"f\riti·.,t.hat wr art- a!\sUllllli~ I hfoli~hnlll that our IIlfl'rrlirr rule!> ai'!- soulld 



CHAPTEH a, mHELE\ ':\.NCE .1.'\' D AH!:,.-tHACTIOS8 

Automatically Deriving Irrel,'f;wance of Predicate Arguments 

Tht, fol\bwiJig ohsC'I'\'atibll follows frol11 th{' d€'finitibns of irrelevance and will [Ol'll} tIlt' 
basi~ fol' algorit hms for derivilig in'(>l<'\'alic{' of Ill'Nlicate arguments: 

Observation 6.6: L<,t 4> lw it set ottlausf's stlcli that Irl(4).q.~.Dll''Du) holds. 
alid such that all diH1S('S ill ~ - 4> aI'€' indepelii.lPllt of th(' argullwnts R. Then 
I\'I(R,tI.~. DI I • 'Do) holds. ilnd 11101'('0\'01'. We' cali abstract ~ hy Ab.~r.(~ -' <1»" 

Tlw('{'f()J'('. to tkri"p in\'{('.\'au('{' of ~\ s<'t of predicate' argUllwnts n. our strategy 
will he' to find a set of'clau8es 4> stlcli t.hat ¢ is \\'eakly irr('}(>\'ant to q \\'.r.t. ~ ~\Ild 
all th(' claml('s in ~ - ¢ ate indept'ndt"l1t of n, Note that ground atoJllic formulas. 
arC' al\\'ays ind('}l('lld('lIt. of any set of ptcdkate argutn<.'nts. Thert'fon'. w(' n('('d only 
consider claus(,ldluu ..ar€' not ground atomiC'. imd our results will.br ind('p(,lldt'llt. bf 
allY c!iallgt,'s.rnadt' to grollnd atomic clauses ill our knowlt'dge basC'. 

Finding a. Sc't ell can b(, done using. any of til(' methods described so far. For 
C'xRmp'(\ iri th(\ cas(' bt Horn rule knowlcdgfl ·bases. the query-tt('(' can bc:' used .to 
filHi all the fOrlllllias. ell t hat. an' strongly irrek\'ant to the query .. .1tnd (sine<.' strong
iITclc~'ancc entails w(>ak irrcl('val1ce). th(' formulas. $ art.' w('><\kly irre\('\'ant to. the 
query as well. TIl<' algoi'ithms in Chaptet ;) cali 1)(' us('d to d('>tect. additional weakly 
il'trlc"ant formulas thftLare 1I0t detl'cted by th(' qll(>ry-tl'ee, Finally. for genpl'al clause 
tOI'I11 knowkdg<, bases, we. cau. tlSt? COlill(\c.iion graphs to derive 5ufiitic:'ut cOriditions 
1'01' strong ir.rcir.\'anc<,. 

To deri\'e irr~leval1c"<, bf pr<"diratt" argllrTlents. we n€'t'd to cheCK that tht' foI'IYitll~s 
ill th<\ !ic.>t ~ - cP are inclept~l1dt'nt of a 8&t of 1)I'('dicate argumeIlts 7\.: To facilitate this 
tliC'('k. th(~ following tht'o['em provides a syntactic condition for inde{lC'ndf'llCe. We 
aSSU!llP tllat a formula C i5 gIven iIi clauf;{'> form (d, [Gl"lieserNli alid Nilsson. 198i]). 
A lit('raJ in a c1atls(l is Il<'gativ(' if it is a flt"gatioli of an atomic fOrlllllla ('.p; .. "'q(S) 
is a Iiegativ(' litC'j·al. \Vhilp 7J(S. }') is a i)ositi,,{' literal), S('t;(C) (Po.;;(C)) d(,libt('s 
t Itt· se'l ot llC'p;at i \'(' (posi t i \'(') Iih.\rals in a claus£' (" We aSSUnl<" t ha t :\' ( g( C) ('(mtains 
oI11~' sillll)\(' t<'l'!Il~. i.C' .. \'ariftblfs or cOllstii.nts, /Ju.,;((') cfl.li {'ontaill at'\'>itl'iiry t('rlns. 
(;i\'('li a dallS(' C. W(' di'llot(' hy At /JOf.;(Ti, i; C) tlip set of t,NIlIS that aPP<';il' in tlti' itl! 
pb}i t iOll of tH'Cltrl'<"lICj i s of fI ill ('. 

Theorell1 6:/: I.tf (' bl.il ('/(111,"( (illr/.R';)( (I .... d hJ (I i/IIlT/1 mi ... , tht. rit/.II ... i (' ili mai· 
lit IIIIr ill ott? ij 1111 jillloii·ill.ri ('o/idifio1/ /told,.:; jOl' fl in'!/if/'lli t ill tiil .oiri :tLl!.u.s..~') 
jO/' I "/ i'!I (JJ, i) E R: 

"t I.-1J T I," 1I0f (/ i'nl'iabfl, thtH lLtiOC," Hoi aiJ/i({II' i,j :\'/'I,(r), 

A.!. Iff 18 {/ ,'nnllbll, fhill if lid/; (If lIlost (I .'illl.qlt aplirili'flili'i ill ;\'1'.'1(('). I 

11 

I 
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.. \.)'. Ii.,. i~ (z /,(z,.icibh a}Jpftzrillg il! .\'tg(Cj al!d appf(17"~ a/~o i1l a t('T:l1i 111 pOf'itio1/ j 
oj ii /JI'rdicatr q i71 P08~C), Ihft) (q,j) E n. 

Thf' proof i~ gi\ien in Appendix A,i It is easy to see that if C is a t1aus(> for 
which th(' Sf't of argun1ents 'RI and 1?'1 satisfy conditions A1.A2 and A:3, then til(' set 
Rl U 'Rz will satisfy tlies(' conditions too. 

Gi\,(''tl a s(>t of formulas W ana a set 01 arguments n. we can simply check whet h(>r 
(,Rch of thf' formulas in W is indepclident of n USiIlg the cOliditions of 't'lieorell1 li,i. 
How('v('r. a n'lOr(> iIltere.sting question is how \"e can automatically find th<" maximal 
sd 'R. of argllm(,lits suth that (-ach of th(' [oflliulas iii W is independent of n. gi\'(-Il a 
Si)('>cific qu('ry q.8 We IIOW describe an algorithn'l for finding such a set n. 

Gi\'el! a claus(' C and an argl1Il1('nt i of a predicate p that appears in C, two things 
may haPP(,Il. The Hrst is that thert:' is no,set of arguIllcnts n such that (p. i) E 'R. and 
C is indt'p,cncif'nt of'R. In this case we will say that (p. i) is needed ,in C. Otherwise, 
W(:' d~nott by PC( C. p, i) the minimal such set of arguments, t\ot(' that. PC( c.]1. i) is 
uni<:ju(' since it can be deteflliined bX repeatedly applying condition :\3. Furthermore. 
1I0t(' that PC'(Cl', i) can lw th(' siligletoll set cOlitailiing (p.i.).-

Ouralgorit hlfl st.arts out assuming t hat ('very.argument of e\,('ry pn.·dicatt:'. except 
for the query pr{'dicate, is irrelevallt to the quel'y. It makes 011e pass o\'{'r the c.lauses 
ill III and eitllC'1' removes argumelitH. froin the list of irrelevant argurhents, or adds 
preconditions foJ' the inclusion of. other argur'nents in. the list. Finally. it removes 
from th(' ifrel(>\'arH list any arg;U111Cl1t whose preconditiOlis art' not satisfied. Tlie 
algorithm is shO\\'Ji in Figure 6,1. 

Consider till' ap!,)licatiol1 of th~ algorithnl to the rules iIi Exa111ple 6. L \\;ith thc 
qut>ry airlillePlight(SF. LA.I\''i). The set n initially inCludes all the arguments of. 
rouU a.nd flight. Wh('1i considering the rule r'l' the aigorithnl adds the argumt'lit 
(l'ollf(, i) to tli(> preconditions of (flight. i). for i = 1. .... 4. COllsideriIig rul(' 1'2. 

tli<' algorithm f{'1110\'eS tli(' arguments (flight. 2), (flight. 4). (rolltc. 1) alid (7'OlliC.·1) 
froni 1?. As a cOllsrqut'nce. the al'gtlIllhit (jlight.l) is I'emo\'(,d from 'k brcaus(' its 
pl'Pc(muitioll \Va:; l'rlilo\'('d. Filially. in GOllsid('ring rul<" 1;3. the argulil(,lit (r"OliU,2) 
is 1'(>lho\'~d ftom 1? iH'canse th<:' argunt('Jit (llil'lirkFlight.:!) is not a lIl('mber of R .. 
TIJ('(,(,lfor{'. tlt(i algorithlll l'Nurt'ls tlHlt the arg'UllIct'lts (f/ighi.:3) atld (i'iJlif(.:n aI'<' 
ir.r<il(i\'allt to the' gi\'f'1l (I'I('I'~'. 

~:'\ oi i'i t II at I h" ('ond itlOilS AI .. \ 1 .lIld A:l arc> 1101 nC'cC'ssafy rOlldi lions for imi£-pi'lldi'ilcC'. 1l0\\'f'\'(1r. 

a IH'l'i',~safy r'olicittioll is rot\~'iIfl('rilhly Iliorf' 1;lalioratr alit! is not lii'(>M'lltC'tl Itrl"; Fot rXClll1pli', t 1)(; 
rllll; 

P(.\'. S. n ::. q(.\' . .\', n 
1;,\ incll'prlltii>111 of t lIP srI of nr~lIrl1ri1l~ {(/I, I). 1/1. 1), (q. I). (q. 2)}, hui condit iot! A ~ is ilol sati~fil'd 

H:'\oti' ihal I fir' nrguiilCiil~ or Ii nrl' l\I'SIi1l1f>c\ to 11f' fj·i{>\'a'i! to I ill" <lilf'r~' 

~------------------------------------------

... " ....... " 
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proced ure find-irrelevant-arguments( Ill. q) 
begin /t III art' thE' tialls(>s arid (I i~ I.ht' query predicatE' */ 

P = 1'ht' predicates appearing iIi Ill. and. not in q. 
n = {(p. i) I 7) E l' and i is an arglllllent of Ii }. 
for ('very,"; E n. PrE'('onditiolls(s)== fl. 
for eVN,\' CElli do: , 

for (>veQ' (?). i) ER-
if p nll!)N'trs ill C alld (p. i) i,., rH'('ded ill C then 

ternovt' (p. i) from 'R. 
else 

if PC(C, p. i) rt. R then remove (p.l) from n. 
else Preconditions ((P. i)) == Precollditiolis ((p. i)) uPC(C. p, i) - {(p •. i)}, 

repeat 
if (Ii. i) E·n .and (q. j) E l)recMdit ions ((p. i)) and (q\ j) if. n then 

rC'lllo\'(" (Ji • .i) from n, 
until no thang(ls ar(> 111ad(' to n. 

return n. 
end. 

Figur{' 6.1: Algorithni for flndirig irl'{'I(,,,~tnt pr('dkat{' atguments 

\ 

The algbrithtil finds .. the maximal set of predicate arguments that sat isnes coth i I 
ditions AI. A~ and At This follows from the observation that for ('\'ery argutiwrlt 
in th{' f<"tui'I)(~d !'i{'t. its pr{'conaitiol1 arguments ai'€, also in n. FurthertilOft'. {'very 
arguIllent tliat was rerliov<"d from 1(. \ .. 'as either rieeded, ill SOUle clause or r<"quirf'>O 
SOI11(> other argument that is not it l11embcr of n. 

To Stlll)rllariz<' t.hi~ seCtioil. \\i{l have I)rescflted fOfrhal definitions of itl;eie\'antci of 
pn'clitM('o argumcfltl'\. As a rcsult, w(> were <\ul(' to dt'>vclop an aigofithI'n for automat
ically d('ti"ilig such irr<"l('o\'allce claims. The fOfnlalizatioli also gives us ithiiglit irito 
t hi? utility of f('l1ltwillg pr<"dlrat(~ argul1li'tits, FiJil1l1y. w(' tat'l also d('viS(i algorithnl~ 
for dt'l'iving logical cOlldusibli~ [rani <,>~tertJal irreic\'anrc daillls; If W(' an' told that -
t IH~ CtI'gUIll(ilitS 'R. ar(' irrf'I(>\'lllit to a <11I<"ry q. \W' rrfilOVC ftorl! the kl1owlt"dg<' basf> all 
t 11(' fOrtilltla:-; that a 1'(', 110t ind('I){,lldpllt of n, We tht'l1 apply our algoril hillS to tli(' 
l'c"ll1ainillg s('t of formulas to dNh'(' additiOlial il'l't>!(>vcuiN; claims. 

6.4 Irrelevance of Predicate Refinements 

A pr('tiicatt' j'(,/ir'l{'lIJ('rit Is a st,t of prt~dkat{·s of (·qual al'ity Q = {ql •...• q,.} that 
id(,lltiri('!; :-;0111(' set of prol)!'I'1 i("i~ ill I·h(' dOlli~ill. 1"'01' sOIm' quel'i{·s. it is 1!9t Il('('('ssary 
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t.o di~tiliguish hetwt"('n pt'operties ql,'" ,q •.. Therefore, WC' would like to rpplac(' them 
by 011(' 1)J'C'dicatc (I which is intelided to denote the union of til£' relatiOt'lS represent('d 
by CIt ••• ,. (jn. Tlit'> pn~dkate (/ I1iay already exist iIi thC' kno\\'l('dge ba.."ic (this will 
bt'. the com mOl) cas<'). or may oe a newly introduced predicate. HeplaCilig a set of 
:}red;('a,te~ qt . .... qil by a predicate q has been considered as t.h£' problem of prrdirat( 
abstl'ilNitm [Plaisted. 1981: Tenenberg.l~mOl. OUI't.reatnientofpredicateaostractioIi 
is illspired hy th(i work of Tcnenberg. As before, we denote the result of the syntactic 
t rallsformation we Walit to perform to a forrnttla 0 by f Q( (j)). In this case. f Q( d») is 
t hC' I'esult of repJacitig every o{'currenCf> of a predicat(' ql in i:;J by the pr(>dkat<.' q. 

Our strat<'gy is t.o idC'Iltify formulas that are independmt of Q. Indel>C'Iid<"nc(' will 
bC' lls{'d both for defining ilTC'!t'vaucC' and for deciding to which torI1lula:-i t.o apply fe. 
As ill th£' cas(' of prC'dirate arguIllcnts. tlH' definition of inciepel\cienc(' is bas('d on th(, 
illtt.'llded s{'mantics of the' new predicat(' q .. Sp<"Cifically. suppbst:' I is an intcrpretat iolt ,. 
for 1he set of formulas in the KB ill which a predicat(> symbol 7) is nH\pp~'d to a relation, 
P. We' define an abstract illterprt'>tation Abs(l) for formulas .in which otcurrt'llces of 
qt. .. ... (jn at(& I'e-placed. by the predicat(' q. The interpretation Ab$( I) will. ha\(c th(' 
sanw 5<.'t of objeds as I. The relations. ill Ab.s(l) are (Rel(J) - {Qh" .. Qn}) U Q. 
\\'11e.r.:(' IUI(/) ar& the rC'lations iJ1 I. and Q is a IW\\, relatioll.n Tlw'int.{;'rpn'tatioll 
Ab,-:( I) is cic>fillC'c\ as follo\\'s: 

• th(' iltterpr{>tatiolls of t&rtils ill I allel Abs{l) arC' identical. 

.. If I' ¢ {ql' ' ..•. qn}' the I>redicate I' is I.napped .to the same rPlation as in I . 

• The pr('dic:at<' q is 11iflpped.to the union of the int(>q>tMations of fil"" .qll!J.(> .. 
Q = QI U · .. VQn., 

Based on the definition of abstract iuterpretations \ye defilif' iridt'pelidf'!lc(' as follO\\is: 

Deflliition 6.8: A formula /.:', is illdf'pendc'tit of the- pl'edicat(' I'dlncllil'lit Q\ with 
rNijH'rl to til<' knowl(lrlS,(> hft{(' ~. if for any illtC'I'I)I'etat iOll I 

I. 

We' (kfitl(' til(' ah:;t\'a('l ktJowl<'dg<' ba:k t'psulting fl'Olil !'('1ll0"iIlg Q frolil ..l hy: 

\llr {lir prl'dlt'a!e 'I airrinrly h(is!'; 111 IiiI' J'B. Iltrll (J is Ihr riilalion tn whir'lt ,/ is 1111lfJp/'11 

I 
[ 
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Note that if.1 is an inteq~retation. theli the ldllO\\;irig holds as well: 

Retutlling to Exanipie 6.2. we observf' that the rule 

8: 81Iol't8Cal'(X) :;. highRls/..'To!lllHl1't(X) 

(G·:n 

is.l1ot independerit of the predicate r't'fil'lcmeIH {sporisC a1', f a111ilyC at}. To S(,C' this. 
rOllsider the interpretation I in which fafnilyC(l7' and car are mapPQd to t.he r<'iation. 
colltaining {(Cal1l1'Y)}, and both sportsCm' and MghRisA.'Tolnsll1'£ arf' mapp('>d to 
the en'ipty l'elation. Tilt, rul(> fQ(05) 

car.(X) => high RiskTolw~ll1'(,(X) 

is.not satisfied .by Ab,~(/) (which in. this caSe contains the_same interpr:etation!; for 
car and high RiskToh7sure as I), 

As ill the. case of irrelevance 6f pr.edicate arguments t \\'eak irrelevante provideR it 

logical justification fo!' abstracting ~ by .4bsQ(~): 

Theorem 6.9: Let Vr.t,(~) be the set of derivations oj the query 1), from fht krlOwledgt 
bast ~. If W ! (Q, 1j'. ~ •. [) II. V~.) holds, fllft! 

1. If ~ ~ i', thfll Ab'''Q(~) ~ /Q(I.',), 

2. IJthe formula 1.: dOff; not.contain ]J1·edicatesfrotn Q. then ,4bsQ(~) F fQ(l:') ==> 
.:l F 1:'. 

Tilt:' proof is giv<'11 ill ApPt'ndif{ A .. 

Automatically deriving Irrelevance. of Pr.edicate .Refinements 

As iri the case of Irrelevance of predicate arguments. our strategy in deriving irrc!<'". 
vance of pr~dicat(· distirlctiOIiS is to find a.set of foI'niu\as lit that arc weakly irreievaJit. 
to tlifo query and such that the formulas in ~ - lit arc irtdcllenaent of the predicate 
WfiIlCIl1f>nt. to dcvis("stlcli a n1f'thod. we need to be abl& to verify that a fbrrilula is 
indcpc'nd('llt of tlip prc'dicatp I'dillf'llwrit. Bclo\\' we give a condition Oil clalls{>~ that 
<'liable!' LIS to \,prify irid<>p{>n<iellcP. 

Lernma 6.10: A t/all,v C i,~ indcpclidcut of the pf'fdicaff "'cjlnf1llcuf Q 1i'.1'.t, tilt 
hlOllf/cclg( base ~ if tina only if ilif jolloUlillg condition hold .... 

8u!Jp0,'l,( Nt:g(C)' i,~ fht l'(',4U/t oj.'illbstifutillfj fl.'el;,1j iJi'i'Ul'1'OlCc oJ([ lj "edicalt bjQ 
in :\(;g(I/') by ,'lome OIhcr lil;ciliNlif iIi Q using a "'lapping jl (two. brew',nleCS o/the 
,'lame /J/'fdirille in N{'g(e') ?Irtd Hoi br mappfd 10 the .'itWlC /dt.ilicah rtnilt'f' jl J, tiu'tl. 
tlin;{ fJ'i.'it" 8MIlf C''J ... url! that f'~(C'2) = rmi(jQ(C)) liml ~ F C'J U S<,g(C)',1O 
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The jJl'oof of the lemma i~ giverl in Appendix A. Note, that a dausc.' that CO(I

tains only positi\'(' literals from Q will be independent of the refhien1ent whenev('!' 
it is pro\'ahle from~. In the case of Horn rules. the definitloll boils do\\;n. to th(' 
followillg condition. It l' is a rule (whose head is not a predicate in Q). then it must 
bt" the caRe that givel] any mappilig of occurrences of a predicates iii Q iIi the ar\
tcccdent of l' to aliy otha!' predicates iIi Q, the resulting rule is still entailed by ~.Il 
For instance. in Exan1ple 6.2. we can map the occurrence ot jamily('d.1' ill the rule 
!a7llfly('ar(X) =? t'ehiclc(X) to spo'rts('ar and the resulting formula will.still be 
entailed by tl1(' kno\\;ledge ha!{c. Ground atomic formulas are ilidepC'ndent of any 
predicate refinement. 

FlIlally. notC' that the coridition given in Lemma 6.10 involves checking whether 
~ F= ('1 U :\'(g((')'. and is theretore in general undecidable. A sufficient condition 
cali be guaranteed hy cliecKing whether ('2 U !\'eg((')' E ~. 

6.5 Discussio.d and Related Work 

This chapter i'Hoposes a nt'\\' appI~oach. to research oli reasoning with multij)le I('vels 
of abstraction. At its core. the approach advocates associating an abstraction of 
a knowledge baSt' with the .removal of'some irrelevant detail. and then using the 
framework for analyziI1g irrelevance.11 gaili insights. into the specific abstraction at 
hand. Specifically. the approach prov.ides the following advantages: 

L The formal definition of irrelevance provides a logical. account of the conditions 
under which the abstraction is appropriate . 

. ) The problem of autolhatically creating an abstraction for specific queries (based 
OIl deriving irrelevance claims) is well defined. In many cast'S, we can adopt 
existing algorithms fo1' auton'latiCally deriving irrelevance claims in. o1'.der t.o 
create ahstractions. 

:30 til" analysis of irtdevance provides insights into several propert.ies of tlit' all" 
straC'tion. such as tilt.' utility.and compbsibillty bf the abstl'actioll. 

·1. AssociatiI1g abstrad.j()Jis \\'ith irrelevance clairhs mak(,s it possiblt> to compose 
kllowlcdgp bases tbat ('ach illak(' ccrtain abstractions (01' sitllpiifying assuinp
tiollS) about tli(' dorllaiIL 'this cali be dOl1(> by explicitly reasolling about the 
(·ollsistcllcy.and ad('qu(\.cy of the irr(>1c\'<lIlCP clail1ls undcr'lyir}g tlie..1!sslJtuptiolls 
b('ilig lliad(' by til('. knowledge baA('~. 

IIIf thp hpad of,' is a prrdiratr iIi Q thrll iiI addition to tlw t1HlpfJing on til!' arilpcfldi'nt lli~f!' 
rillls! bp sorlii' \ir(ldkalr qo E Q stlC'h that rCI)\acing the head prediratf> by flo still yiPlds a rlilf thai 
is pntailpd by ~ 

--I 
i 



144 CHAPTER 6. IRRELE'~4.NCE AND ABSTRACTIONS 

We have den'lonst,rated the approach (or two kinds ot abstractions, removal of 
predicate al'guments and predicate abstraction. hi both cases, we have provided a 
logical account fol' the aI'>propriatcness of the abstl'actions, arid we. have developed 
efficient algorithms for automatically' deciding which abstraction is appropriate for 
~ glven ql!ery. In the next chapter, \'\'e demonstrate how this approach can be used 
for a,ltomatically composing a knowledge base for a specific query from a set of 
knowl\~dge bas~ fragn'lelits that are given at multiple levels of abstraction. To pursue 
t.his approach, additional relevance subjects should be considered in detail, as well as 
exploring alternative definitions of irrelevance. 

It should be '.lOted that the idea of associating irrelevance with abstractiOIis was 
also mentioned by Subramanian [Subramanian, 1989], but was not formalized or 
demonstrated concretely. Subramanian also mentions some of the new irrelevance 
subjects descr'~d here. 

Our results on projecting predicate arguments are related to the work by Ra
makrishnan et al. [B.amakrishnan ct al., 1988] on. identifying.existential queries. That_ 
work presents an algorithm for detecting cases in which arguments of subgoals in 
logic programs can be remov.ed without affecting the. answer. to the query. Their 
treatment of predicate arguments .differs in that. they distinguish between different 
occurrences of a predicate in a program .. As a result, their algorithm rnay decide to 
project an argument of a.predicate p in one occurrence of p and not to project it in.a 
different .occurrence, thereby requiring two versions of the relation denoted by p. We 
can refine our treatment. in the same way by applying a syntactic transformation to 
our knowledge base in which we rename every occurrence of a predicate p such that 
110 two occurrenceS in the original knowledge base have the same predicate name. 
The definition of independence that we present in Section 6.3 is. better motivated se
mantically than the one they present and applies to more than just Horn rules. The. 
syntactic conciition for independence given in Theorem 6.7 generalizes the condition 
given in ['~an1akrishnan ct al .• 1988] to arbitrary clauses. Filially, their algorithtn for 
identifying irrelevant predicate arguments is based on building a rule"goal graph of 
the rules ill the knowledge basC'o OUI' algorithms use the query-tree and can therefore 
detect a larg<'r cla::;~ of il'I'elevance tlaitl1S by. cOllsideriIlg interpreted literals in the 
rules, inillinlal derivations and extended laliguages including negated EDB Rubgoals. 

Our tr€'at.mcnt of i)tedicate abstractioIl iII Section 6.4 is inspired by the work 
of Tencnberg [1'enenberg. 1990]. Tenenbcrg considers the prbblein of filidillg the 
maxii11al S('t of clauses that al'p independent of a predicate refinement. H(' presents a. 
constructive i)l'oof for the existcl1(,(" of such a set and shows that UIlless the klio\vledgc 
base ~ it:; ernpt)', tht> s<"t will \)(' intlIlitC'. the abstract knowledge base we consider 
Ab"'Q(~) is a finite subset of TeIlPn))(:'rg's maximal st"t. ana is crfectively computabl(' 
ill many cases. T(>I1clih(~rg also con~idcl's a finite and computable subset that h~ 
calls MC1l!/;Ab8. 110\\,('\'(>1'. MUl//;Ab ... is a suliset of Ab8Q(~)' The' cont.rihllt.ioll of 

I 

I 
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our work OIl' predicatc refiliemerits is in provk,ing a logical justificatiol1 for when a 
predicate abstraction is appropriate for a given query and providing algorit.hlTis lor 
automatically verifying t.hat the justification holds. 

Giunchiglia arid Walsh [GiUIichiglia and Walsh, 1992] present a theory of abstrac
t.ion in \>,ihich they identify two classes of abstractions. The first. TD-absiractiolls. 
requires that ari.y lormula that is derivable from t.he abstract knowledge base must 
also be derivable from the original knowledge base. The class of Tl-abstmttions re
quires that any formula which is derivable from the original knowledge base also be 
derivable from the abstract one. One of the key aspects underlying our treatment of 
the connection between irrelevance and abstractions is the intuition that removing ir
relevant knowledge should not result in the ability to derive contlusioris that were not 
derivable earlier .. As a result. in the examples we presented, the abstractions justified 
by irrell"vante claims fall under the class of TD-aostract.ions. Moreover. weak irrele". 
vance also. guarantees that. if t.he query was derivable in the original knowledge base. 
it will also be derivable in the abstracL knowledge base. Therefore, our abst.ractions 
can be. viewed as being TI~abstractions with r.espect to a spegfiC" query .. 

Historitkllly. TI-abstractions have received more attention (e.g .. lSacerdoti, 1974: 
Plaisted. 1981]). In that work, the intuition was that. in most cases the information 
removed was irrelevant to the query, and therefore the answer obtained from the . 
abstract .knowledge base would hold (or could be refined to an answer) in the original. 
knowledge base. For exan'll)le, ABST.RIPS [Sacerdoti, 1974] made' the assumption 
that the action precollditions of lower criticality values are easier to achieve.alld can 
therefore be ignored when formulding an abstract plan .. The utility of the abstraction 
depended on ho\\' often the problem solver would have t.o backtrack across abstraction 
1('\'eI8. To articulate the intuition behind these kinds 01 abstractions by irrelevance 
claims, we need to extend our framework fot reasoning about irrelevance to include 
probabilistic (or default) itrelevance claims. We need to be able to state that some 
suhject is irrelevant to a query with some probability ~or under some conditions}. To 
understarld these abstractions we also need to refine i he theory of Giunchiglia and. 
Walsh. Their theory is hn.!ied on two kinds of relatiOIls\lips b~tween t.hQ statements: 

Sl. ~ f- q and 

\\'he~'<' Ab.s(~) alld Ab8(q) are the abstractibt'l!i of the'knowledge' baHO and t.h<' quel'y 
\'('srwrtively. For TD-abstractions. tl\t'Y require 8'2 :::} 51, while for TI~abstractions 
tlicy requil'c ."'1 :::::? 82. Instead of C'onsideririg only .these two striCt relationships, wc> 

d\ll ronSid('r other possihilities. For example. \\le can require t.hat if S2 holds, thcll 
tlki'c' iSSOlIlC prcspccified condition oli q and the possible derivations of q slich that 
Sl holds. Such a conciitiOll should be lls(!ful in tdlirig us whether the answers giv(,li 
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tram the abstract knowledge base would follow trom the original knowledge hase. OJ' 

how to refine a derivation in the abstract KB into a derivation in the original KB. 
Our analysis of irrelevance of predicate argun'lents is one instance bf this more 

general class. For example. if the first argurllent of a binary predicate p is irrelevant. 
to a query. and p(a) is derivable trom A.b~(~). then this guarantees that thert exists 
some X such that p(X. a) is derivable from ~. 

Knoblock's ALPIKE system [Knoblock, 1990] is another example of this gener
alization. The ALPI:\E planner creates an abstraction hierarchy which guarantees 
that it there is a plan for a goal in the original problem space, then there will be 
one ill the abstract. space such that the original plan is a monotonic refinment of the 
abstract. plan. This condition enables the planner to considerabiy prune its search 
when it. refines an abstract solution. since it need only consider monotonic refinements 
of the abstract plan. Knoblock et al. [Knoblock ef al., 19911.present other exaI'nples
of possible relationships. between abstract arid. concrete plans which are then used to 
prune the search of a planner. 

Additional work on automatically generating abstractions is described in [Ellman. 
1990; Ellman. 1992; Lowry, 1992]. Work on anal~'sis oLthe utility of abstractions is 
described in [I{noblotk, 1990; Bacchus a!ld "ang, 1992J. 

1 
! 



Chapter 7 

Automated Modeling of Physical 
Systems 

The pre\fious chapter described how relevance reasoning can Rlay a key role, in facil
itating reasonitig ill complex domains that require extensive use of abstractions. An 
important domaill with such characteristics is.that of modeling of physical sy.stems. 
In this domain, \ .... e are g}ven.a theory of the physical world, a.descriptionof a specific 
system and a query about that system. Our goal is to. choose a representation for the 
system that will enable us to ans),ver the quer.y effectively. Physical systems can be 
represented in. multiple ways, using several levels of detail,. abstraction and differing 
perspectives. Ther.efore, the main challenge in solving this problem is choosing among 
alternative possible represent.ations of the system. The chosen representation must 
be adequate for answering the query, but must also be as parsin1Qniolls as poshible, 
in order to allow efficient inference. 

This chapter considers the automated modeling problem from the perspective 
of relevance reasoning. In doing so, we shed light on the problem, showing that 
certain aspects of it can be automated by simple considerations of relevance reasoliing. 
Furthermore, we show how additional domain knowledge, which is needed for model 
selection, call be expressed in the fOl'm of irrelevance claims. We combillc these 
obs(~rvations into a novel model ~election algoritlim, based on rclevalH'(' reasoning. 
SeCtion 7,1 describes t.he model formulation problem and its relation lo rckvance 
f('asoning. Section i.2 dcscri bt's out algori t hIll and S{'ctioll 7.:3 pr('sent s an ana IYRis 
ot its prop<'rties. 

7.1 Problem Formulation 

In order to i'easoll about a physical systell1 for tasks such as simulation, design or 
diagllosis, we lleed SOlnC r<"pr('sPllt.atioll of 111(> syst(·lll. Wi:' ('all Ruch A. n:'presPlitat.ioll 

II 
I 
I 
I 
I 

I 

I, 



148 (,HAPTEH i. ATTO!l1ATED ;\10DEU!\'O OF PHYSICAL S'~s:rE.\lS 

a model for tilt' system. III this chapt<.'r, a ll10del relcl's to a repn:sentatioll of a s~·stC'l1l. 
W(' liSE' t.il(' phrasC' lo,qical-modd to I'cfcr t.o thE' (,OIltt'pt of a .lllodd ill ~lathernati('al 
l.ogic (c'f. [En<it"I't on, 1972]). 

For complex physical sygtems. t hC'rC' is typically no single model of t ht, system that 
will be adt~qllatp and ellable t'fficiC'llt infcrt'nce for all p()~sibl(' <lueriC's. Consequcntly. 
the goal of t.hp automat('d modeling problC'111 is to find a model for a systf'll1 tha.Lis . 

best ,uiH'd for a ,pPc:il~ query.. • I 
7.1.1 COlnP9s1tlonai Modehng i 

Wc. construct a l1lodrl f01: a given phY$ical system iJast"(\ on the ..('ompQsifiimal Mod.· I 
ding approacli d('scribed. in [Falkenhaitler aIle! .fo'orblls. 1991], -In this .approach. a 
physical sit.uation is modeled as-a collt-ctiol! of mod.el j1'agmcnt:;. Each model frag-
me-ni. reprNK'lits some atomic-aspect of a .physical object or a physical pli(>nomeliol1. 
For example. a model frC:Wnent 111ay describe the_dep~ndeIlcc 01 th<' voltage of a bat-
tery on its charge level (as shown in Figure i,I), or it may. describe the procE'ss of 
fluid flow- j hrough a pipC' connecting two containers, 

A model fragment containR_a.set of participants. which ;:-tre t.he Ret of objects in 
the> domain that arc taking part in the phel1otnenon being describ.<'d. All instantiated 
1ll0dC'l fraglllcnt is a bitlding of each of thf' Ilarticipants to an objcct ill tilC' domain. 
TIl<' model fragment ('olltains a set ot optrating_conditio1~." which th(> partidpants [l(>('d 

t.o sat.isfy in ord.<"r for tli(> instantiatioll to be valid. The behavio1'...('OllditiOllS of thc 
1l10deJ .. fragnlt'nt. spfcjfy the behaviot of the parllicip.'=!.Ut objects in the phrlloIllcnoli 
Iwing l11od('kd. 

A modd for a .system in a giv(m st.at.e is a set 01 i11statltialed model fragments 
whos(' operating condit iOllS are sat.isfied. 1'hf' union .01 tilt:, behavior ronditions of th<: 
irlstantiated [t'lOci('1 fragments gi\'('s risC' to a si71wlafion mode! for that statc. The 
siIl1ttlat ion model is USN! to-determine the next stale 01 tIl(' Ryst.em. in which ~l ll~\\' 
sim tt lat iOIl modd is chos(,l1. 

A [l1o<\rl frap;n'I<'nt cOllsist s of L\J(' followil"lg ('0111 pon~\l1ts: I 

Participants:. Th.(,s(' ani t hc' sOl of .objects partici.jlating ill a lI10dH fragIlH'lil. ili
:-itallc('. :\ )iarticipalit cail 1)(\ \'i('\\'('d as a unary fUlIctioll from.it !l\odel ftag['i1t'llt 

illstan('(~ tot he' ob j('cts of tite dOillai II. In Figure i.l. 111(' pC! 1'1 ici Prlil j. is all 

iilstann' of <-lass bat.t.ery. 

Variables: thesc' an' t.ill1(> d('pc'[ldc'Jlt \,ai'iables assbciati'd. with. t he· participallts in 
C\ Illode] frap;1IJ('III illst all(,('. \\'(' distinguish .1 \\'0 kinds. of \'ariahlp~. 1'1)(' fif:st, ____ . 

whirh an' also ntllC'd qllaJ.Jfllif 8. are' variables t bcil aN' rOlltillllOlis 0\'('1' tilile ('.g .. 

I For 1\ ('I1l1lp\('1 (. [ormal dll;rll~~IOIl or !llnd('1 rfa~lil('IlIS.·S('{· r Farquhar d (II , I !Hl:IJ, 'I'll!' dpli('i"II\1 inil __ , ___ .• 
Iwlnw lIlcilldf's olll.y.l.lii' i\:;pi>l'is r"li1vafli If) our (hSC'llSliioit ~ 

I--------------------------~--· .. ~-·· .. --'- . 



i.1. PROBLE.'!. EORz\1ULATIO.\· 

Charge-sensitive-voltage ( X : battery) 
\'ariables: 

voltage(X), chargeLevel(X) , damaged(~) 
bi')erating cOJlditions: 

...,damaged (X) 
6 < charge-level(X) < 30 

~loclc'lillg conditions:, 
Relevant (rethargeableBattery(X» A 
R~levant(thargeL~vel(X» A 
Relavant(voltage(X» 

Bcha\'ior conditions: .. 
voltage(X) = f(dhargeLevel(X» 

Figure i ,1: An cxampk model fragmeht 
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voltagt'. cUr\'C'nt). Thi' second kind ar(' binary \'ariables that may chatige, over 
liIl1(' (i.>.g .. damagtd(battcry).o11(,'HL'itch)). Binary \'ariables are represcrlted.by 
ground atomic litprab;.2 In ollr ('~>:alllplc~ the quantities are the \'oltage and 
chargt'I('\'c-J of t}l(' battery alld dwnag.aL(X) is a binary variable. 

Operating conditions: These conditions specify -wben ati itistance of tlif' model 
fragment.exists. They are conditions on the participants bf.th~\ mbdel fraglncnl 
and on its ,variables. They include both structural constraints on tlie'partic
ipants as \\'&1\ as constraints oli ,thf' ranges bf th .... variabll'5. In our example. 
Wi' r<.'quire. that t.he' battery ilOt be claIl1aged and that th(' charge level bf the 
IHltt(>ry be h('\\\'(,Cll (j and :30. 

1\1odelillg conditiolls: Thl'Sl> art' conditions Oil th(o Illod(') of th~ syst(,1ll thaI !1<,('d 
to 1)(' ~a t isfi<'cl iil 01'(\£'1' for ail i l1~t ann; of t IWlllodcl fragmellt to ('x ist. .'1' Ii<"y cHI' -

tl~['d ill OI'd('1' to dist il1guisiJ ,diff(>l't'llt \\'ay~ of Illode'ling the- salllt' pitetl()m(>tloil. 
We di~titigili~h two class('s of modeling cOllditions. T!tt' fil'HI dass cOllsisl!'l of 

reJ('\'nllt:t~ daltlls. As ('xplaincd ill ('haplei' 6. rek'\'(\lic<' daim~ call he' lIsed to 
t'xpn'ss tlJ(' iiS!'IUlllj)tiom; unc\('rl:,'inp; ctll ah(.;trartlon. Fot' ('xatll!.>I£', a description 
of t he bat tt'ry thai ignorf>!i it.H I \t<'rtllal asp~'cts fnay he bas(\d on tli(' irr('I(ivall("(' 
claim statill~ that 11t(, prNlicat.<' 1('1111lu'atlll'f is irrc!(l\'allt tu tlit' qt!l'ry. \\'('.ns
!'Itliiw that all tlli' il~r('I('\'alli'(' dalills used ill \ h<' llludt,linp; (,OIlditiolls,arf bas(,d oli 
(I sill!~I(' ddhdtioll of ii·L't'l('\,iHt('('.ill oul' span'. Iti th<' nloddili~ c'onciitiolls w(, ils(' 

~ \'Ol!' t hId tI}{' tllil!' at~tllll(;lli nf all \'at:nblr:; i!i Irtf lliipl.!.!l.l..!..tr"J.!..I' __ 

.: 
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t 11<' predicatC' /'c/rl'(iIii , which shbuld br thought of as delloting tilt' tompkl11t'nt 
of i 1'l'd fra 11 t, 'I'll(' second class of 1l10deli Ilg const rainb incJ udC's assum pt iOlis 
abou t the problelll sol vi ng task, Tht's{' in dude assumptions allou t 1 he desi red 
accuracy of tilt' at'lswer and the' 1 (,I111'>ol'al grallularity of tlie model «'.g,. w(' 

will model a battery diff{'!'t'lltly dcpeflding 011 ",hrther wc ai'e ('onsid<'l'.ing it!' 
beha "iOt" ovrj' one s{'cond or 0\'('>1' olie year). 

In out discussion We asstll11<' t!If' following cOll\'C'lltibll about the' interpreta
tion of prC'ciicatC's \l!-ied in th{' 1110drling conditions. :\ positi\'(' literal of a 
I>r(>dkat('> is as~ul11ed to d('i'1Ote all assumption that yiC'lds a morC' COll1plitated 
inodC'1 of a phell0l11C'1l01i. A nega t i v(> literal denot t"s a Ml1Zplijyillg asst1m pt iOll. 
For C'xalllple • . -.rc!t'I'al1t(Tnl1pcrat,Il1·c(batit'ry)) states t.hat the' r('prN;cntation 
i~ simf?lifi(1d t.o ignore tlu' thel'mal asp('fl of th<' .battt.'ry. whereaf\ .th('.litt'.'ral 
/'lltl'allt(1'c711]J{ ra(u7'(:(batk1'Y)} if 1 the, modelillg condit-ions states tliat. the' 
model fragment ('(Jllsider!'. the temperatur(' aspect bfthC' battery. As anotll('!' ('x-. 
ample. the literal -;1 'Il'gqti71l( ."·('ale) stat('s·that tIl(' t('l)r~selltatiol1 i~ simplific>d 
to igliol'{' IOIlgC'r tc>wl-cff('cts 011 the hatlery.3 

hi oui .. C'xamplc,. tll('- Iliodd_ fragJl1ent r<"q~lircs that tilt> chal'g(' k,\,(,! alld the 
\,oltag<, are considef(:'d relevant prop<'f'tics. alld that th('. tcchargeability aspC'ct 
of th<' battery b(· r<,l<'vtHlt as well. ~loJeling.cbl1ditions are distinguished frOlil 
operating conditiolls in that they an' ('onditiolls about tIl(> model (i.(.'.. I1lcta-
1<'\,<,1 cOIlditic>I1s)..a!; opposed to cOllditiOIis.o1l til(' domain and statc._. 

Behavior conditions: Tlt(, statemcnts ill the behavior cOliditiolis ate; tnlt' wh<'I1€,\'<'1' 
tlie illstanc('.of thC' ntodd fragment exists. t:sselitially. tli(·tie st'ntcllc('s (kscrib(> 
th(· plleHOill{'!1on bciIig modeled, We distinguish thrt'e kinds of behaviol' cOlldi
tiOIlS, Th(' Ittst kiHd descrilk continuous pli€'lioi11cna (e.g .. a fluid flow) by a set 
of ('(tuM iOlls in\,oh'illg tht' rblltiflUous quantiti<'s of the model fraglll<'lIt. TIl(' 
(·quatiolls lilay bi' quantitativi' (alg<"bi'aic alid ordinary diff&l'cntial <"<llIatiofl!')) 
and call also hi' ql1alitatiw' (c,g .• th<' t;ale' of (t\'ai)oraiion llegcHivdy aff(lcts tlie 
al1101lli I of. water ill I he Cll p), 'i'hi' s('cond ki lid of hehavior ('(md i t iOlls <\cscri bi' 
ifistantall('ous chang(~s of Iltc' hillary varia.bles of tht, model fragnH"rH (c".g .. tUt'il
illg ofr a switch). FilIally, lh(' third kiild of h"havior ('onditic'llls d<'~trihl' iiill<' 

il!d('P(illrl('til propc'rtipi; of jHl.rt icipallfs hulk 1110d('1 fragment. \\.{, aSS1I111{' I hat 
a 1Il()(i(il ftagllHo,'it cotll aifls brha\'ibr condit ions of ollly 011(' killd. lit btii' dis
('ussioiLw(' aSSlllll(' that t b(' hc'ha\'ior cOIiJit.itHls do lIoI colitain .iil('ifitCl\ii il"s 011 

a SOillt' rui/itlilipi lOll!' Illny bi> lillll ti \ al u(ld. For ('xalll illf', I rIP t lill(' srt'llt· IIItlY. Iii' ('1 tlif'r smitll. mocHum' 
of large. 'fill' al~orlthljl'i WI' d,'sdihf' III lhi~ t'liaplPr ('all bi' I'Xlt'lid(;d iIi il Slr'aiglitforward fa:-.ilioli 

10 dfal wli\J Sill'll iiSSlllllptlnil~ Ilo\\'t'\,l'r. fnr clanly \\,{, i\'~~lIl1li' !tNt' Wat illOd('lilig a~:-lIillptHlIl~ iire 
IHilary 
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quallt It It'S, Tilt' beha\'iol' ('onditioIlS 01 th(' model tl'agnwllt ill olll't'xampi(' <jp

scrib(· til(' fUllctional relationship h!'t",{'ell the "oltagl' and the ch~l.I;g(l 1('\'('1 of a 
bat tery. 

The sem~\Iitics of model fragments call be sumnHl.rized as fo 11 o\\' 5. Let Ii.,.,. /'1 
b(> tlk participants of a lilodel fragnlent M. Let 0(X1 ....• X II ) b(' its opf'ratilig COI1-
ditions. (/(X 1 ••••• Xii) bi' tllf" modeling conditiolls. ,\lid b(XI"" .XII ) be its oi'lia\'ibr 
condit ions. First. whel1('\'(,I' a set of obj('cts satisnt3 s the operating ibid mod<"lillp; 
cOliditions. then' e~\i!".t!i an instal1(,(' 01 th(l mode'l fragment. Formally: 

\1.\'1"" \ XlI [.(O(XI. •.... Xu) /\ ti(X1 ••••• Xn)) # (3 m).\1(m) /\ A~I=l..rJ(m) = X.I ] 

The exist encC' of t h(' Iltod('l.fragfnent also im pliet: that. t he, variables lnelit iOllt'c\ ill 
it art' d('fiI1('d. lfurthermol'('. thl' cxisH'll{'t' of the 111(}dcl fragllwlit impli('>s that t \)(' 
behavibr conditions hold: 

Compo~ng.Sir'nulatiQn Models -._ 

Gi\'{'il a dcsnipt iOIl of the .physical rollfigul'atioll of a systl'lll"a-pattictilat stat(' it is 
in. and a q Ul'l'Y, abou t t\t(, state. j he task is to fOfliHtla t('· a i110del that 1'('11 1:(,S(,11 t s t 11(' 
physical ph('1I011l€'lla occtl1:rillg in tht' state. Such a reptcscntatiot'ds ('ol11pbs('d ot it s(>t 
of instantiatl'd Il1odi'1 fragnWlits whose op!?ratillg conditions and .lJIodo!1ng conditions. 
ar(' satisfird iii that state. Thf'S(, tnodE'1 f!'agri1{~IH inslallC<.'S are called tlip 8Pt of artll'f 

1110dPl fragnlt'tits ill that statl'. alid together will cOnipris(> the si11llilafioll model ft11' 

that sUUt'., the' behavior conditiollS of tl1(' modd fragments iiI th<> simulation nibdl'l 
gi\'<" rist' to a Sl't of eqllatiOll~ iuid logkal torl11l1l~s that must hold allloflg, participants 
cl.nd the' \'ariahles as a ('onst'qurnee bf tlw i>ht'liolilt"lia taking plilt·f>. Th('y al'('> lls('d to 
d('tf'rlllin(l tltc' lit":d state; of the sysl,cl1l iii which a np\\' simulal iOIl l11Od('1 is spl(>l:ott"d. 

TIi(' (Ilain ad\,afiUtgc' of compositional inodeliIig tlial makes it appropriat(· for 
0111' I ask i~ its ll1o<!idarity. Writing model fragments. <'ath dt'scrihillg a single' jl\t('

IltHt\{·lI01i. is a illllch {'asi('r I ask t hall COillpu:iillg a ('ollipli'tii illO(ld [oi' ('\,efy pilssihh' 
syst(\ill and qlwry. Adding Illodel fragll)('lIt!'l to all existing lihi'ary is also mllcli ('a~if>r. 
Fli rt Ii ('('Ill on'. lil()(kllril~III('"t s ('all hr' j'(\UsNI i II allY a P}l('ol'ri a! (, ('(lIlt ('x i . 

7.1.2 The Model Fragnlent tiLrary 
To facilitaH' ('oillposit iemallllodding.w(.itnpos(.additionalstfllctlln!onth<.llloi.l( •• 
rnt~lili'II' lihi'iir~·. SpNifiC';l\ly. lJIocit,i ffagllli'ilts ai'("i p;\'oilj)(;d iilt () ('{ilil;!()8Itr lilfir/t I 
J'·11f//II'1I( ... ,('\IFs). Hlld (,~lF!' aI'<' flirt II£'!' gWUIH'tI into (1.'i,"/l11/jitIOII rlil. .. , .. ;. ... Ikfol't, Wi' 

disC'lIss t hi's!' COllst rll("~. \\'(' bl'i('f1y di's(·rilH' t hr' fiot ion of rallsal oJ'(kri!l,i!; of qllCllit it if'·~. 
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Causal Ordering 

Equatiolls iIi mod!'l fl'agl1H'lits d('~krihe tlI(> I'<,latiollships alllong tll<' rOlltinuot\~ \'ari
ahle:-; ill\'Olr{,d in tIl<' !lindel('d plknom&rlOn, Thes(' f<>latibns haw:' 110 causal illlport. 
f'or exatnpl<" the' t-'qnatiol1 for Olltl1'S law, \' = iF? only states th<' relatioIiship b<,
t\\'('(,I1 tlie curJ'('Ilt. tli<, volta!!;<, and the I'esistanrt', hi building a mod<>l fol' ~ systC'lli 
and ('xplaillilig it. Wt' ()ftC'1l waut to kllow exact ly Iio\\', the \'ariabks art"' d(itt'l'lllili('i:I. 
i,P H what ai'(' th(> causal d('pend<'nci(>s bN\\'e(,1l the qUciIititi('s in til<' nibdt'l. For ex
alI1pi('. ill a model containilig Ohm's law, w(' nifty say that the volt.age is ciet{>f1iiilied 
hy tlit> C(ilT0nt and tla' r<'sistartn'. A C{llLscil ordf1'illg [Iwasaki alld SiIiHm, 19~(); 
dp I\!<"<,r and UfO\\,I'!. HiS(lj spp('ifi(;s the d{'p('nd<'li('Y structure alllOng the qualHities 
ill tl!(' IIJt)d('1 fragll1(,Ilt.-t It is sppcified by cRusally orit1ntirig &"f'fY equation iIi tlip 
mode'l fraglil('!1t. i,t' .. ~u;so('iatillg 011(' quantity /(t) with e\'(\r.y <"quatioll t in the fl1odel. 
Tilt, quantity f«) lilus! })(' part of l, Rnd.Intlst ilOt be> associated with allY 01.11('1' equa
tioll ill tbe 1l1()(!d fragment (i.e .. if (1 ¥ C'l thell Jkd i- j{c-z)). Th(\ qualititit"s ill the 
illocid frag'Illcnt tliat art' lIot assoriat('d with. any ('quatiorl arc called (.rogCl/ou." iIi t.he' 
causal brckri liP. J. The exog<'llous <juant i ties arr asStlllkd to be detum i 11(\(\- hy ot her 
phellOll1<'nn ((iC'sC'!'i b"d hy ot hef. !liodcl t ragin<:'litS), and, can t heretor" he cOllsidN('d 
as i1qjut..J.o t hI' rurn'Ilt Illo<i(,Lfragmcnt. Gi\'('11 a causal ordering j. WI' say that a 
<f!t<illttty /'1 causally af[c,rts a quaritity iIi it: 

• 'I'll<' quallt ity !'l.,iipp<,ars l!l t lie ('quatioll <. aJld 1J () = {':t, or 

• Tilt,\'(, (\xiS.t~-SbIlH' quantity 1'3, such that 1'1 causally affeC'ts t':1 alld 1':\ caltsally 
af[(lets I'~, 

If I' is a {'ollti11ltOllS \'arif:lble, \\'(> say that a fl10del fragment 111 dm d<'terl11ine it 
if thPI'(' hi ~Ol\l(, rausal OI'QNitlg of thi' quantities ill 71/ Stich that t' is 1I0t exogC'lIolis. 
If I' is il. biliary variablt'" w(' say that it CRn be' deterrilinccl by ni it it appears ill its 
b<,'havior cOliditiollS, 

'flit' )-i('1 of \'Miabli's t!tat Call he i:\pINliliIH'd h~' a model fraglilf'llt are' rall(;(/ its 
olltPllt I'or/able ,-, W(, no\,' dc'srribt' tli(> st I'urllll't's in tll(" mbdd fragni{;lit library, 

Coniposite Model Fragments 

SOI1It' 11J(Hkl fraglllPlits d{'s(:ribp t h(' :o;HIIll' phf'lIolliellOIi. bilt di{!'('1' only ill ! Iwir (1)('1'

atiilp; 1'(;~iollS, i.t' .. liti' ,'altle' 1;~1I1P;('S asslIIlwi\ f()r thi' continllotls \'ariahl('s ill tli(' illOdd 
rril~lIIhlt. FOj' (':O:c\llIph .. t II<' rlllli'! iOIl d('~n~ihillp; til<' d(ipPiHI{ill('(' of i ~I(> \,(jHa~{i of ,\ ' 

ha t t ('I'Y oi 1 i h i'ba rAe h',,!,! dHlIIg('S d(;p('jHI it1g on t ht, wd Ut' of t,I1(' c!laI'g(' h'wl: 

chargeLeveL:::: 6 ~ voltage • 1i (chargeLevel) 

--, 
i 



<5 < chargeLevel < 30 ~ voltage:: f2(chargeLevel) 
chargeLevel ~ 30 :::;. voltage:: f3(chatgeLevel) 
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lll.~clertillg a model that will be adequate:' tor 111Ultiple states of a sililulatioli. it is 
rasier to think .of such model fragillf.'l1ts as being grouped ilitO a single· cOlli}Jo..;if( 

model Jragliiffli (C~tF). A ('~lF i~ a set of nlock,! fragtilellts describilig the elitire_ 
opl'I'ating ralig<' bf tl1£1 variables pal'tiripating ill th(, pht'liolllPlion. In ('very statt' of 
the Sillltl\~tioll. the' opprat illg conditions wil! g\larantN: that only 011(' 1110d('·1 fragl1lPlit 
from (>\'('I'y C:\1F will \)(' intiudpcl in the' simulation Iliode!. Cl~arly. a (,~lF clw also 
h" a sillgletolJ sd. 

Assumption Classes 

ComposiH' mockl fragmcnts ·art' furtlier grouped irito assumption_class,:s.? An as~ 
Stll11ntioll cla!'ls is a set of ('~lFs that desrribt' t.he samE' phenomelionbased on diITer
(;nt and cOlltritdictory 1l1odcling condit ions. As slatf'd •. modeling condit.ions ('xpr£'ss 
the a~sulllntiollS that. \\'f' arf' making iIi tli('.r<"pr{'s<'lltatioli of th<' syst<:'m. Th<,y (.'x
prcss tlw lilid(:riyilip; abstractiolls and al)proximatiolls that ate a~sull1('d hy tIlt' 11'1Odei 
fragment. r~igur("':? shows an aSSllTll ptioll class consist ing of dif1c:-.ent ways of df'
~crihillg tlI(' voltage of.th{' battery. 011(' way to niode! tht" voltage- is to a~SUI11f' it is 
consUlflt, Anothcl' way is .to assun1t> it degrades over tiIiw. Mol'<" {'omplicatf'd ways. of 
llIodf'\ing the battery cOllsidpr aspects such as the. charg<; level and. the tNllpcl'at lIrC'. 
Si[]t("(,~lFs in all asslll11ptiolLdass are contradic.tory. any COIlsist(,llt set of modclillg 
asstlmptioliS will includf' at most olie .('1\11" from a single instantiated assl1Illpti<>f1 
class. 

C~'lFs iIi an asstll1"lIit.ion class ar(' partially ot<l('rE'<I by a ... i7llplicify relation, dc>· 
llot{>d by tlic' prNiicat(' <:. l\ ('~lF ('I is said to br siil1pler than a CMY;' CJ if c! 1l1aKt\s 
a sll!)('rsf'\ of the> simplifying asslll1ll)tiollS !lui.de hy CJ • The trar'lsiti\'c c1osur{> of < \\'ill 
hi' d('l1ot('d by t IJ(' pl'edicat{' <-. In tht' figure. tli<.' iiitl'lplirity \'{'lat iOIl is <lellot<.,d by 
the din'ct<,'d arcs. \\'t' assllill<' that ('very asslIll1ptiot'l class ha!'l c't. sing\t' most rOlnpli
('ilt('d c~H' alld H. siI'lgk silllpkst eM F. The former i'eprcseflts the IllOl't o{'tailNi way 
llf d('scrihillg a plwnollwlloll. whilt' til(' lattcI' r{'pr<"s('iits th<"' silllpl('st way of doing so 
«'.g., the \'olt age; of (Ju', hatt('I'Y rail be'> 1l1ocit"\(;d as toilstant). Fillail~'. "'c' asstllll(' thilt 
if ('I < ('J t he'll: 

I. 'i1l~(}11tj)lit viP'alMs of <') ai'(, a StlIH'l'SC't of LIl(' output variahlc!> of ('I' 

-, It /1 is a {:atisal ordl'rill~ of l h(' \'<"lrii\hl('~ of (',. th('11 UWI'I' exists a rat1~al ordPi'il\~ 
f; or c) sudl thal..t 1)(' ('aHsal 1'('\(ltioli:.; aillong \'itl'iaIMs in (', (gi\'('1J by 11) Hr<' a 
suhs!"'! of lilt, causal r('lal i()[ls allH)lig \'ariahl(,s ill eJ (gi\'NI hy f;). 

~tlW Ii-rIll itHSlilllplloll-r!as:; I~ IIse'd lil ordrr 10 hr' rOliHiHtf.lil 'I'itli [Falkeflli(iiilC'r and Forhll; •. 
\\In 11. IIni-Ilf'I'nllsl~ II I~ dijiPf'lillly aNnojlrlatfo 

[L.-. __________________ ._~ ___ ... 

I 
I 

I 
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Battery-voltage~assumption~class 

~6nstimt-Voltage Normal.degrildlng Chilrge-Ievel.scmsitive 

TIME TIME 

Binary·voll.tge Tempefilture,sensitive 

CL 

Figu!'<) /.'2: Battery voltage assuniption claSH 

All ot these prope-rlies follow if We' assuliw that \dlCI1CVer c,. < c)' then (', IS a causiJ./ 
a]Jp1'oiil1iatioll of c) [Nayak. 1992bl. r,ayak has showli.that causal apprQximat~ons 
cO\'cl' niost appro:drnatioli reiatioIis ('ntolllitercd in .practice. 

in contrast to prpvibui; treatinelit::; ot assunlptioil c1ass(>s. we assunic that the mod" __ 
elillg cOllditiblis ot C~lFs in ali aSRuml)tioll class pl'(Cisciy characteriie the- difren'llces-
of a.sStlrilptioi\$ madt, h~' (,~IFs in the· assullli)tioll dass. S!,>(>cificaJly; this is f(mlHi.!ized 
as follows. Suppo~\(' th~ tilO(kljll~ conditiolis of l\ t'~Ji.' cis the conjuIlct iOli of tli(' 
litl'i'als in tl]('s('t "\'<;,-. and ~.alppOS<' (', < ('J' ThNl W(' can atlilOtat(i tl1(' link from 
(', to (') wit-It it sci of poslti\'(i IiU'rals Til, .. , .1Iia. which mNtlls that (', is lI1akirig tll(,
Silllplif\illg HSSlItllpi iOils {~1') .. '" .... p.l} iiI addition to tllti sill1j'>l.ityiug assul11pi ions 
illac\e hy c

J
• or fOl'iiJally. __ ... 

thl' art jClllat i()/1 of tilt's!' di(f('!'i'IIt'i's will play rill illJpol'lant rolf' ill s<'ii·ct inA t hi' siill

pl{'~t iilOdf'l. 

---------------------._----
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Other Assumptions About the Library' 

Composing non~contradictory model fragments: :\ \'arihbl(' n1ay be aff('ct,('d 
by mor(' than OIlt' phcnomellon alid thereforE' by more than one assumpt ion r1asii. 
For exan1ple. tlk amount of watc" ill a ('ontainer dui be affetted hy all evaporation 
process and by a condensation proc<"ss. These two pheliolnt:'na are l'epI'esentC'd by 
different assun1pt ion classes. On£' of the key assun'ipt ions oli. IilOdC'! ftagr'nelHs ill t.ilP 

compositional modelilig approach is that they be cOlllposable. Spt;cifkally. this means 
tll{' hllowillg. Lfit 1111 and 1111 bt, two model fragmeIlts that have cOllsistent operating 
ronditions and Illodelilig c'onditibllH. stIch that both can detern'liIl(> a vadabli' t'. Then. 
111} and 1111 can be Cbl'nposed to a sillgle tnodel fragIl1ent m3 describing th(' union of 
tht' phr-l1o\ll('na in 1/11 and 1112' Th<".pl'oc('dure for_creating 1723 is assul1wd.to be givC'll. 

Coherence of the Library 

ThE> library. ('ohtrc1I('( assumption (:'ssentially r<..>quires that if w(;' have a s('t of model 
fragments that hav<, consistent tl10deling assumptions and whose operating conditions 
ar.e satisfied. thcIl th(' resulting set of equations will not be over ..constrained (i.e .. will 
110t have more pquatiolls that quantities). Formally. this assumpt.ion is defined as 
follm\'s: 

O€,~:A;i.101i.7.1: A model fragmentJibraty satisfies the library.coherellc(' assumptiOJi 
if the following condition holds. Let .\1 be aliy set of model fragllicnts in the library 
alld A be any state such that: 

1. the.conjunction of l'nodding conditions bf model.fragrhehls iIi M. a( M), arc 
cOllsisiClit. 

2. If a( M) l= RdCl'(lnl( tId, then t'! appears in some model fragment in .\!. 

:3. The conjunction of the operating cotlditiOlis of ll10del fragnknts iti M ar0 sat
isfi('d ill ,.;. . 

'1'h(·I1. the; s('1 ({ <"quatiolls gi\,<'ll hy lht; U!iiOJI of the bt'havior condit i01ls bf .\1 hl'.C--__ 

!Hlt {)\f('!' CO(lst t'aill('d. I 

Ntlt<- that .1 s(>l. of.{'<!tI1Hibt'ls t.hat ar,e; Hot O\'('r ('ollstrailwd ran always hc;, !lIAd(' 
('olllplt-hi h~' assumillg t hat SOllie"- variables arp C'xog('!10tls. 

7.1 .. 3 ather Modeling Constraints 

Ext'c'pt (or tli(' IHbddhig totHlitions attached to each !l1odel.fragiilClH. \\'r a~sllt'!J(' 
a IniC'kgmlt lid f !lpory of tiwdcl i rig ('ollst raints, (" We use· C to h: PI'<'SS Mid it iOflal 

1 II 

I 
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rOllstraintl' 011 the possible models, The constrailits can either be domain ilidepelldent 
(e,g,. general constraintS entailed by rele\'all('C' claims) or domain specific constraints, 
For ('Xiuilple. th£' followillg cOllstraitH states that if tlit> refiller'ncnt of ohjects along 
t h(' property l' is rele\'1mt for an object 0 t hat is relevant to the query. and 1'(0. X) 
holds. t.herl .\' is r<"levant to tlie query:t5 

i'clfl'(illfObjat ih Jillf1HC11t( O. R. G) /\ 1'( O. X) /\ teiel'a 1it Object ( O. (,') ::::} 
7'r/f'l'Cl1ltObjl'ct( X, G), 

Th(' constraints in C may also be heuristic ill natUrt', ror example .. the follo\\'ing 
cOl1straillt~ arp a \'ariation all tht, object c.rpizrisioll heuristic.used in [ralkenliaillf'r and 
Forbus, 1991], Th{'y ar(' 11sed to cnforc(' th(' rdC\'aJ1CC> of certaill objects in a l'ystem. 
gi\'t~n th~ initial set of r£,lc\tant objrcts. 

stl'Uci lIral H i c7:ar.chy8Iot(])) /\ rcl cpant Object ( X, G)/\ 
l'rln'alltObject Hl JillC1llUZt(X.P. G) /\ 71tS, }') ::::} 1'elel'cintObjc.cl0 " (. ) 

strutturalJlicra7'chySlot(p) /\ p(X, }') /\ i'elet~antObject(X, G)I\
rdcl'Q7/10bjfctO', G) ::::} rdfT(intObjcctRc.jillonent(X, p) 

The h('uristic. stat(!5 that if the objects 8J and $2 ar(' both relf'vant to tht, qU('Q', 

and l is theiueast C0l111'11011 anccslot' iIi ,thp'sttuctural hierarchy, thcti ariy objPct ill 
t\if> ltiNardiy that. is <"ither iIi btotWf'CLl t a!'ld $1 (al' bctwpen t and $;?). or a child aL 
stich a ohj<'ct. will bt> considered rt'l('vant to th" query,. 

Ess{'ntially. ronstr.aints dm be c>xpressed using arbit.rary first order formulas, For 
efficiency rpasolls .. \\'{' assume that th(> constraints in Care e'xpressea using only Horn 
rules, III practice. Hom rules ha\,(' beer) expressive enough for the r'lloddin~cOlj
straints \\'& luw(' ('ricount('ted, 

7.1.4 The Model Formulation Problem 
Informally, thp model [brmulatiOli prahlct'll is to thoos(> a .simulatioll 1110d(\) (i,t'., a 
~f>t of irisli'ultiat('iI 1II0d(,1 fl'agn1t.'llls) tliat cafl ans\\'er a given (Iuery ahollt a systcm 
ill ci sp(·rifk sta!(>, 110\\'(,\'('1'. it siillulatioll of a system 1l1ay go tlil'bugh illall), staU's, 
alld ~\'('o do lIot \\'cUll to 1'('IH'at tlic' costly se\{'ctiOli process at ("\'t'Q' stat('>, Tlwi'{'for('. 
'V(' POSt' t he' model [(mlJlIlatiol! i)tohl(,ll1 as s<"Ii'('ting a small Sf'! of ('\1 Fs, callN\ the 
I\ri'l/(il'io 111 odd, The sc<hial'io l1lc)c!<'1 has til(' propcrty.that its Iliod<'ling ('onditiolis c\l'c' 
('Oflsisl(iilt, and t hett at (>\'t'rY stall'. W(' ('an ('hoost' a sil11tilatibil 1110 <I £'1 frol11 it (\asily, 

F(H1llally, the 1110d('1 forniula! itlli I>roblelh is to choo~(> a. sC(illai'ib Ilwdi:'1. giv(,11 the 

dOlllain t h('ory (i.e., moth,l Craglll('lit library and hackgl'otllJd r!1ot!('lillg constraillts). 
a :-Yllt<'1l1 (k'sCi'ilHioll alld H qn('I'Y. tkHIINI as follows: 

":'\ot{' thai wi' liS!; lijJ£.clflr j)Trdi('at(' I\aiili's ill ordrr In Illakp til" Iypf' of ill!' stll)J,,(,t ill tlip 
rrlC'\'ltl!c'i> dalt'u PXI)llf'il 
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• System description: A set of facts about a physical system and it~ init ia! 
state. This description typically includes a sd of illdi\'iduals (i.e .. compoli<."nls 
of the system). tlieir I)hysital structure and the initial values of variable's.in t 11<, 
systeI'n . 

• Query: 

- :\ \'al'iable /' (or list of variables) ",hasC' hehavior we want to predict ill tlw 
simulation of th{' system. 

- A list E of C'xogenous variables and terms (i.e .• ground atomic formulas). 
The elements ill E ar0 assumed to be given and are outside the scop(> of 
t.he sil11tllation for which We' are constructing a scenario model. We can 
lise Eto circumscribe.tht> set of stat.es for which \\'e are. creatilig a sC(lnario 
mode-! (e.g .. we l1iay construct a scenario modeLonly fol' ~tates ill which 
the' battery is not daniaged). 

A list 111il of modding constraint~Lthat we want to enforce. Implir.itly. 
11li! includcutlc/'a71t(1\').' ... 

A sC(".llario model is a. set oCinstalitiated CMFs \\'hose modeling conditions are 
consistent. At .('very stat.e the system checks ti1(' operating conditions arily of th€
C~lEs in th(' scenario mode\. The conditions of at most one thode! fragment. from 
each C'ivlF .. willl..i(" satisfied~in the st.ate. and these model fragnielit.s will comprise the 
silTlula.tion model of the state. We detiote the scenario model by S and the sin1ulatioll 
!'nodel created from it. ill stat(' ." by S~. 

Th(' resulting scenario model must satisfy several properties .. First,.it lllust be 
adequate for answering th~ q\lery. This means that it must be coh('rent and sufficient 
as follows: 

Definition 7.2: A :-iccflario.lllodel S is adt'quatc if 

('1. ThcI'(' is a logical-lflOc\cl .\1 for tlie background constraints C such that 

A. All tilt> tlloddi!ig cOliditiolis 01 Ci\tFs iIi S arc. satisfh'd ill "'. 

B. If Hcl<'t'(mt(l'd is satisfit'd in M and I'! is a.vai"iahlt\ tlif.'>li SOll\(' eMF iii 
S illcltl(\('s /'1; 

( .. ) For any stat(, ,~ of tll«:' siimtlatioll. t Itt'. (lCluatiO!iS al'tslllg iIi S.~ can Iw madf\ 
romp/fit. (i.e .. !loL OV{'l'.collstrail1('i\ Or UIl(\C'I' coM;tl'ained) by addillg <,xog('llOUS 
\'ariabl(;s. i·1urt lit'rlllorc, the'.(>quatiolis iIi S~ include; thp variable I', and t' is lIot 
it,xbg(\llol\~ in the' cOl1lpl(>tc SfOt (and th('rt'lo!'e w(; rim !')ay..t.hat 53 dl'tel'fllitl{,~ 1'). 

'Not(' that thrsp l'OilstraiJiUi cnll alg(J hI'> srlf'rifi{>ci as liarl orc. Htw,l(?\1pr, il is 0(1(\11 inorf' f1ntuml 
10 sll'cdry !Iif'!'! n." paTI.of tilt qurry 
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In order fuI" a scelliuio nlOdcl to be useful. it should be as simple as possible: 

Definition 7.3: A scenario model 8 1 is simpler than 52 if t.here is a mapping cD : 

$1 -'-7 52 oli the CMFs of SI. sudl that 

1. For every c E SI' d>(c) is fl'om the salllf:' in~tal1tiated assumption class as c. 

2. Either c = d>(c) or c <" cp(c). 

I 

The model selection prnblem is to find a scenario model that is adequat.e and suth 
that there is 110 simpler aci<'-quate scenario [node!. 

7.1.5 Model Formulation as Relevance.Reasoning 

The approacli to the model formulation problen1 advocated in t his chapter is based ori 
the intuition that Se~'e!'al aspects of the problem can be viewed as relevance reasoning. 
We eXp'lain our view in this section. 

Intuitively. the model formulation probleril. can be viewed as .. a cori1bination of 
. wo.subproblems. The first is to determine which phenomena (and therefore which 
variables) are relevant to the q:Jery variable, The second problem is to determine the 
l('>vel of detail at which to model the relevant phenomena. These problems are closely 
related, because the decisioIl to model a certain phenomenon .at a. greater level of 
detail. may require modeling additional phf'nornena. 

Selecting the Relevant Phenomena 

'fh{'> first pari of thl' model formulation problem is to decide which variables ar(' 
l't'I('\'arH to tla." qllt'ry variable (and therefore. decide which plier10meria should be 
Illocldt.;d), Intuiti\'dy. a variable 1l is relevant to the query variable v if tl ('an causally 
liljlllf1lCf 1'. i,<, .. ('it her (1) there is some state of tlk System in which 11 causally affe('ts 
l' or (2) it tall caust' a chang(· ill th(' stale of the r.ystem (and therefore indirectly affect 
t hi' \'aIUf> of 1'), C'Olls<'CIU('ntly, finding the tele\;ant variables ciui be done by following 
tlw possihk causal inflllcilc('!i bC't\\'fo(,ll \'a.riables, .1'h(> algorithm .that We' dCSCl;ib<.' in. 
this chapteif' trac(>s through all tlH' possibl('> causal influ(,llces OLI the queQi variabl(', 
r\ot.i' that t h{' intuition ulid(>rlyillg this algorithm is similar to t.lie inluition underlying 
tli(' tOllstrudion bf til<' qlwry-t.r('(\ whi'r(> We' rc!,>rf'Aent(>d all til(' possibl(' derivations 
of t lie; (IU('!')', 
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Selecting the Level of Detail 

The second part of the model selection problem is determining the level of detail 
at which to model each phellomcnon. This entails decidilig which abstractions and 
approximations can be made ill. modeling the system. As described in Chapter 6. 
knowledge underlying such decisions call be stat.ed as relevance claims and bet.ter 
understood whell stated in that form. In our algorithm, we bring relevance knowledg<' 
to bear in two ways: 

• We articulate the difference between CrvlFs in an assumption class by the model
ing constraints, .expressed partially by relevance claims. Previous treatments of. 
assumption classes require t.hat every CMF have a set ot modeling constraints. 
but. they_ do not require that the 'constraints be related in any way (except 
for being ,mutually exclusive). Articulating the precise differences between the 
C~"lFs is a more principled n1ethod of building .assumPtion classes and enables 
llS to determine when to switch frotl1 one model fragment..!:o another. 

• Engineers have gpod general heuristics for selecting relevant detail in model
ing of physical sy~tems. We use the modeling constraints C to express these 
heuristics-rledaratively and reason with them .. 

Our modeling algori.thm will use both kinds of this knowledge to select the simplest 
sc<.'nario model. 

Partial Knowledge about the Simulation. States 

Our algorithm selects a scenario model for a set of possible states of the system. 
Envisioning all the possible states that the system may reach beginning from the 
initial state is a very expensive operation [de }\leet and Browll, 1984]. which we do not 
want to perform as part of the model formulation process. Therefore, our. algorithm 
seleds the scenario til0del based only on partial kliowledge of the possible states. 
This knowledge is given implicitly by 1.hE' set E of the variables that arC' assumed 
to 1)(' exogE'notis and the time invariant facts ill the (h:>'scription of the system. Tht' 
problem we [acf.' here is analogous to the relevaI1ce teasolling problem considered iii 
Chapter 3. in which \\;e wanted to decide which ground formulas are irrelevant to the
<jucry without actually knowing the contents of the database. 111 analogy to what 
we did th(>I'e, thi~ ell tails that we assuriH~ that the system can actually reach any 
state that is consistent with our partial knowledge. As ili Chapter 3. any additional 
knowlNlgC' about the l'eachable states may enable U~ tb select a sirllplcI' scenario modd. 
Assumilig partial knowledge about tlw world is a kf'Y aSI?f'ct _ ill making t<"ll'vanci' 
l'rasolliflg practical. 
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7.2 Model Formulation Algorithm 

Based 011 these obsel'Vat ions. we now descri be our model formulat ioll algori t11l1)' I n
formally, the algorithm follows all possible infiuenc:es on the query ill order to find 
all the variables that can affect the query. For each such variable. the algorithm 
selects the simplest CMF that describes it. such that the set· ot selected CMFs make 
consistent modding assumptions. 

To find all the \'ariables. that can affect t he query. the algorithm begins by consid
ering cdl the assumptioIl dasses in which the query variable may be an output variable. 
From each f.urh .assumption class we select one C;\lF and recursively consider all the 
\'ar.iables that can .. affect (he query through the chosen C~IF. These include: 

LJf v'is a quantity. we include all the quantities that appea~ in the saIl1{, equation 
with i ' . . 

2. All thE' variables thaLappear. in th(' operating ('ondi..tions of the model fragment. 

The recursion bottoms out when we reach the exogenous variables given in E. 
To selec.t a. C~lF from an assumption class. we maintain a list. Rei. of modeling 

assumptions made thus far about the model. The list initially includes the assump
t.ions given in Inii (and in p'articular. the relevance of the query). At every step. we 
choose the simplest eMF that does not contradict the assumptions in RtL 

Adding a Ilew eMF to the. scenario model may imply that we add additional 
assumptions to Rei. and that we need to revise previous choices of CMFs. We perform 
adjustment steps (via the while-loop in select*scenario-model) until all the choices 
of C~1Fs are consistent. The details of.the algorithm are shown in Figure i.3. Note 
that Pos(Asc) denotes the positive literals in the assumptions made by a C~'IF c. The 
function Deductil'eClosilre( D) returns the set of ground atomic formulas derivable 
from D and the rules in C. In what follows, we illustrate the execution of the algorithm 
with <ill ('xan'lple. 

Example 

The e;"'llmpk' is a sirnplt' circuit containing a solar array (SAl) and a rechargeable 
batt('ry (BA1). shown in FigurE' 7.4 .. Figllf~ i,5 shows the scenario dE':;criptiOil and 
Figur(' i.G shows th{' lIIodel fraglllentl:l ill the library. Fot each Cl\IF in the domain 
theory. the (,~1 F'~ behavior conditions and the' list bf variables appearing in its operat
ing conditio!}::> ate shown. 'the annotated assumption c.lasses are shown ill Figure 7.;, 
The <!u(-'ry i:-l Voltage (SAl). wit It a.list of exogenous variables which includes all the' 
variables t1lt't1tionf'd ill the s((,nario d(>ii('tir~tioli {'xt{'pt bamaged (BA 1). T1H' set. of 
iliocit'lillg ('ollstraiiHs is empty_ 



protedtIre sclect-scenario-model{t,. E. hUt. C) 
begin 

Q:::: it'}. 
Ref ::: Init. 
.\1 odd ::: niL 
repeat 

q ::: dequeue( Q). 
As == assumption classes in which q call be ali output variable and 

whose operating conditions do 1l0l contradict £. 
fot carh a E As do: 

select-froni.-aSStllllption-class (a, q). 
\vhile there is a pair (c. q') E .\1 odt( suth that ""1' E As(' and p E Rcl 

removE> (c. q') frot'll .\! odd .. 
selett-from-assunlptioll-class (At. q'). 
1* .4(, is the assumption das:, from which t' \\'as chosen *1 

until Q. is empty._ 
return the set {c·1 (c,q') E Mbdd}. 

end select-scenario-model. 

procedure select-from-assumption-class ( .4.. q ) 
1* A is an instantiated assumption class determilling q . • j 
begin 

c::: The simplest.C~IF ill .4. such that .ll p(""p EAse /\)1 E Rfl). 
Model::: .Hodclu {(c,q)}. 
Rei :::-Deduct.i,,€Closure(C U Rei U Pos(Asc)). 
inputs = the union of: 

The quantities that appear in equations with q and 
The tern1S in the operating c'OliciitiollS bf c. 

for ('very X E inputs do 
if.X has not been in Q and X rt. E then 

enqueue X ontb Q. 
if relctJtlllt(ql) E Rei and q1 ~ E andqj has not beel1 ill Q then 

Nlqueuc ql olito Q. 
mid select-from-assulllptiou .. class. 

Figure i.a: t\lodel selection argotit~"111. 

161 

Tht' query variable Vbltage(BA1) is the only item on the queue initially, and so 
we identify Battery-voltage-ac(BA1) as an assumption class that can affect~it.K To 
select a C~l F Ollt of tbis asslIlllption class, we start from the simplest. Constant-vol
tage-CMF. SinCe> tlwre art' no earlier modeling assUl11ptioI1S, this choict< is consistent, 
and we se\('('t this Ct\lF, This r~stllts ill addition of the following to 0"1' modelillg 

1\ We a..'iSui}!(' lha.t t hert' i:-l a dat a struct uri' I hal t"liablcs us to rfRciri111y find the assul11 pI ion da..'ist's 

thaI affi'cI a ~ivi'll \'ariahlt- wit houl scarchillg t hi- wliole fnodfil fragmenl library. 
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t3 

BA1 

Figure'iA; All f'x?lI1ple circuit. SAl is a sola.!' array and BA1'is a r(>charg<"ahl(' batt<>ry .. , .... , .. _ .. 

Scpuario Description 
Solar.arraY(SA 1) 
BaltPrr(BA I) 
HCc-!larg('ab\t.'( BA 1) 
HI us- tprm inal (B.,'\ 1 ) =14 
~linus-t.pmtiilal(B'-\ I )=t:l 
Plli!-i-lprliiinal(SA l)=f.:! 
\linus .. tcrl11iilal(Sl' 1 )=1 I 
EI('cltically-colllWCI ('d (.11.14) 
L':b'( r.il·aIIY-I'ollIH'rtpd(t I.t:!) 
.,I);illlflghl( BA I). 

Legeud 
C'L: Chargp'!i'.\"pl(X) 
\": \"oltagc-produ('('d(X) 
TEM P: Tt'1l1p<>rat.ur('·of(X) 
I: ell rri' II t ( P ItIS'! t'nlli nrtl (X)) 
nOD; A \'('r.agp·dppth-of-dischargp(X) 
TS 1.('. Tii1H'·~ilhcr·lt\st .condil.lonillp;(X) 

Figllt,(, .j':>: The' illitial state of the .syste'111 

aSSlIlllj)t iOIl list. Uti: 
Relevant(Battery(BA1») and Relevant(Damaged(BA1»). 

SillC(, tit!.' \'ariabl(· Voit.age(BA1) rail h(' inllu('llcc'd hy fill' variahle Damaged(BA1) 
(t IiwlIgh t b(' ('f\! E Constant -VQ ltage-CMF(BA 1) ) whirh is !lot ('XUg('lllllt~_ til(' "cHi
ablc· Damaged (BA1) i!' plac('c! 011 lhl'. qU<'IW and 1)('('oll1<'s t lit; Ill'\\ ClU'l'<'lIt goal. \\'i' 
lilld till' assUfupt ion class BattElry-datnage-due-to-overcharge-ac t hat. call affi'ct 
Damaged (SA 1). Ollt .of which Batter.y-damage-CMF is s('kctC'd sii}('(l it is t ht.·.-nllly 
1I1C'1Il1H'r. Tlli:-- s('li'ct iotl caI'lS('S I hi' liki'rtls: 

Itelevant (Recl'iargeable(aA1.)) afl<! 

Relevaht(Chatge-level(BA1)) 

to 1)(' add('d to /Yd. llowh'('I', litis llIHk('s tilt' as:,t\III).}lioll lisi illCOIlSisil'llt SI1)(,(' 

I)ot Ii ..... Relevatit~Rechargeable(BA1)) i1l1d -,Relev .... fit (Charge-level (BAl)) \\('\'1' 

assttlll(·d hy Constant.;.voitage-CMF. .. 
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., 

I r~lF Bpha\'ior Variabl('s in O/)crat ing ('orid, 
Bat t Ny-\'ol tag£> assumptiqri da~s: 

Canst ant-volt ap;p-C'l\t F \. = eu Battrry(X), ..,Dalliagrd(X) 

r3illary-\,oltagf'-C;\l F \' = { 0 ifCL<co Battery(X), -i,Oalnagt'>d(X) 
l'l if CD;::: Co 

:"1ort1lal-degradillg-C'~ 1 F \. = !(Tilllc) Bat t(lry(X) ...... Oalllagrd(X) 
('hilql;<'-Hf>nsiti\,C'-(' M F - \. = f(ef.) BAt.tety( Xl. -,11 a III agt'd( Xl., 

RC'ciJarg(\ablP( X 1 
'{"f'1ll pC'rat II fC'-Sf'llsi t i vp-(' ~1 E \. = !(TE.H P. (,I.), _ BattNY(X), -'Damagcd(X) .. 

Recharg<,able( X) 
Batt<,ry-chargt'-Ie\,el assUI1.1ptioil cla..'is: 

('onst ant -rhar~v'-IC'vel-.cl\1 F ('1. = CI BaltPr'y(X), -:>Dalhagf'd(X) . 
:"1ortilal-accufnulat ion-C;\l F ('1. = Idl BattC'ry(X) . ..,Danlaged(X), 

!{edtargeablf'( Xl· 
"\('('ufllulat ion-wit h-agiilg-C';\l F (,L = Idt -' f(DOlJ, TSLC') Bat trry(X). -,Damaged(X), 

HC'char~E'abjp( X) 
Bat.t I:'ry-damagcd-dl.l(;- to-o\,erchargt' asSllll1 ption dass: 

Bat !C'ry-damagl' .. ('M F ] DCl71iagrd(.\" ) Hattery(X) . ..,Damaged(X). __ 
Rcrhargpablp(X) CL(X) . 

. -
Figt1rt.> 'Ui: Sn'Ilatio dcscri pt iOIl cHid 1110<1{'1 fragll1{,lIts 

Bjlt!cO".ChiIiC~ 

C6nst~Jlt.ch'a;$~-II'vel.tMF) 
ReleVant(ll 
Rele\'ar.t(Recharg~.ble·bittel:)'(Xl) 

ReleYilnt(DODl. . 
ReltVilht(TSLC) 

~um\JI.l'ion~wj;i,-i\ging-<;.\.ii) 

Coru~nl.Voltig~MF 

NdtVinUCL) 

Figlll'i> i, i: :\SStlil1pt ion ('Iassf's 

Tu I'('soh!(' tILl' in('oilsist(,llc,'" WI' adjust I hi' choicc' of Constant-'voltage-CMF, Cii!d 

WI' 11m" ~('I('ct Charge-sen:~n t 1 'ie-CMF. whtdl i~-t.h(' silllpiest ('~lF t hat d()('~ Ilol 

(,Ollt radiel til<' nlITe'ilt, IlIodl'ling asslIIII pt iOilS, 

Thu rlllTC'111 goal \'ai'iahlc' 110\\' hr'<'oiIH'S Charge-level (SAl), '1'111' HSSIlillpt iOIl 

class I Ittlt call alrd'l I hi~ \'(triahlc:' is Battery-chargc-level-ac. ,[lid "'C' scl('ci frolll 

it t hI' (' jj F Norrnal-accumulatlon-CM'F(BAi). whit,lt b tli(' siiilplr'sl, (.'~1 t:: I hat is ('on
sisti'll t wi tit t hi' (' lIl'i'/'rlt Hlndilli Ill-!; asstl ill pI iOfis, Current (Pl us-terminal (SA 1» call 

ill!ll\('IWI' Charge-level (BA1) thi'ough thi~ ('~tF Jlm\·('\,("i. silln' 'tt is aIL (;XO~('lJllll~ 
\'(\i'irlhl{', il is Hoi plac(;d Oil till' qUI'tll', 'rhi' ql'('IIC' i!' tlO'\' (llllp1,\'ilndt h(' pJ'lH'-('<iuri' 
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ter.millates. Tlip rpsulting !;cpnario model cOLltain~: 

Charge-sensitlve-CMF(BA1), 
Battery-damage-due-to-6vercharge-CMF(BA1), 
Normal-accumulatlon-CMF(BA1). 

and makes 1 h(' following IllodC'liilg assuntptiolls: 

Relevant(Battery(BA1», Relevant (Damaged(BA1», 
Relevant (Rechargeable(BA1» ) Relevant(Charge-level(BA1»). 
Large(TPOG), Small (Granularlty), 
~Relevant(Temperature(BA1),~Relevant(DOD),~Relevant(TSLC) 

~()t(' that th(i proceciurC'.t('rmiflates at this })oint in tite' (>xampJe bC'cawi(' the \'ariahl<' 
Current (Plus-terminal(.BA1» was spccifiNI as exogenous ill. the (IUery. Hat! it not 
IW(;li specifipd <'XOgC'IlOllS. the' procedure would have added niorc> C~lf:'i to t.he Illodel. 
induding t hO!:i{' f('-{Hqi{'lit iug at hcr...c.mn.pollellts and proc(1!-;ses aITe\! illg the currc-lit. 

7.3 Analysis 

[11 this s<'ctioll W(' proVe that-our algorithil1 product's th("!.siiilpl(>st aUt'quat{' scC'nario 
1~1lJd('1 fO!' ans\\'(>ring the quNy. \\,p.disniss the al'isuIl1ptiol1~ uI10(,f whidl this re
sult hold!' .aIld discuss the cO!l~eqtiehc(>s ot relaxing, them. Th(i followiIlg theotem 
{'$tabIish~'s the' main properties of tile algorithm: 

Theorerl1 7.4: Let.\1 b( (I library oj 1i1Oa(/ jf'agmolts df,~(,l'ibillg lhi dO.f!lain. dlid C 
lj( (l .' .. ('/ of moddl1lfj tor/.'~[tilmls. Irf S be a df'.iir1'lpfio71 bf d :;ystrtn min (I" E, Ipit) 
bl a qllf-t'y aboil.t tilt sy,<ih IiI. l.ct S bt ;;t{ SCfiull'io model l'f'.'lUiluig fl'011l dlyonihm 
select-scenatiO"'-ll1odel. Fur.thermo;·!, (i,<;SIl1llf flia!: 

• Th( Ilbl'({1'lI ('ailrT't 1/Ct Q:;8lltflptiall holds. 

• lic i (l1!(1 r l lI/'t-lll'O C'.\!f.:", 111 atl flsSlllnptWf/ dli .... " ..... /Icll Ihal t'l < C'J' thtll ('I I." 

(I t'nIJ.'i(il (l-JIl'l'O.ri11/aii()1I of ('J. 

• :111 llIodi/hl!1 (·o1/. .. iral1lt .... /I C {/i.( tiihfl' ground afOlTllf formula .... 0/' 110m ndt ,'. 

• Thf 1//(Jsl I'OIIIJilir·aitd .... f( ila;'/(j modt'!. i"hjit/f d io hI allilii ilOssi!J1f 11l.·;fallfia{WII8 

of ('.\IF ... Ihai at' Ihf 1//081 (OliljJltdtiu/m ill!", (/ ..... ~llf1/ptlml rli18 ..... 18 (lelililWlt 

for f/ll.'ill'il'li1fJ Ihi fjUf./·y.!I 

'j :'\01 C' I hal 111(' 1110:11 rOllllJltnif foci :;criHitio moe/PI II ('i'd1"; 10 iiH"ludCi only llip !·(iilll ithi 11ill iallOIl~ ot 
lilorli'l ffagrnPllli\. 1.{' .• ilii\tallliai.loil" iiI wlllrh IIH' (lbjc'rt~ liallsfy IlIr iYIlf' ('ol1ciltiolu; ill till' drfifllllOll 
of thr fllOdi·1 fft!~1ll6ill and fill; (illl(' hwntirilil fnet!> ill Ihr (h·scri,lI1011 of iii!' sy~Li.;I\\. 



Thcll, S i~ afl tulcqilfil£ 8cf'llal'io motlrl f(JI' (1', E./nit) and thc/'( i ... I/t1 ,:;cQUJ)'1() 

llIbdri Si Slich fhat SI i .... ,.:;imph /' thall S. 

Proof: Fi!'~.;t wt, 110t(' that Iwcalls{' of til(' la~t assul11i)tioIl ill t.h(' litat(>111el11 of the 
theoret'll. th€' al~()rith111 (i,{' .• the "'hilt:' IOOi) in select-scenario-modell 11111st tNmi
natf'. This is bt"caus<,.\\'(' ('all alway~ adjust a thbi({~ of a (,~lr to a inor£' cbillplitated 
(,~lF that dof'S liot coIitraciict the assuIllptiol'tS ill Rd, Ultimately. \\'(' will ('!lei up 
wit h the most complirat£'d scc'nario model wliich is guarantc&d tt) })(' ad('lcplat£'. 

We hrst cOllsidl:'r tlll:' adt'quacy of S. Conditioll ('1 of adequacy rN(llirps that 
t 1I('f(' ('xist a logical-lllOdl:'l .\1 of t 11(' modd i ng const rai nt sCi n wh icll all dll:' tnodeli I1g 
assttmpt ialls bf t hp C't>.l Fs inS arC' sat ishcd (condit ion :\) a Ilel sticli that any \'aria hl(', ,I' 
for whicli Hd( 1'(11I1( 1') is satisfi£'d iIi JJ.is included in.oll<' bf tlttl C~lFs ill S. (condition 
B). \\\l dcfilH' M to \)(\-thr logical-model which satisfies the positi\'{'.literals in.Hel. 
alld tIl(' lIC'gatioll of positi\'(' litc-rab 110t aplwaring in Rd. ,\! is a logical-mod('1 of 
C hC('(1\15(, Rei uC is dosed uIldcr t.lrc\ut'tioIl. COilditioll A is satisfi(,d hpratls{' tIl<' 
following holds itl th{1 algt>rithm: 

(2) \\"h<'ll('vC'r son1(' siniplifyillg asslImptiOJi of <1 C't\1 F c::: is not sat isfi('d ill Hd (i.(".. 
-." EA . .:." htlt. l' E ad). \\'(' adjust- th(' choic('!._o[c. 

B('caus(' of ( 1). all t Ii" posi t i \'(; Ii t('r<t Is in C are sat isfie'd ill ,\1, 13('ca tlS(' ..oL(.:.n. all I he 
I\(\g~lt i\'(~ lit('rab of c ate' satisfied ill M. 

Condititm B is satis!t('ti hy .\1 b('call~c ",hellh'ct' acl('('(wt(l'z) E HrI, whe'J't' i'l IS 

a \'ai"iablc. t hpli ('ith£'r 

• ('1 E E, 01' 

• 1'1. wa!' pllt Oil t hi' <juNt(', and SOIl"\(' aSStlillptioll class that cail aff('ct 1'1 was , 
!\It1lS(lqll('ut Iy (\dd(~d to S. . 

Th('rdoN~. ill hoth cas!',s. Swill cOlltal1l Cl (,~lf.' that illt'ill<it's 1'1' 

To COll'lpk((' TI\(l proof of neli'Clllne,\' we Iw{·d io show Ihat ('Oildit~Oll (':! is satisfi('d. 
L{' .. \ hClt ('\'pry ,'{'stilI illg siiJl\lJat ion !(Jod('1 5,. fOl' a st.\I" ," (1({1l hi' Ill<t(it"- COlilplc-\(' I)~' 

c\(ldill~ N:()g('1l011~ \'(\i'\Hhh\~ alld thai (1\'('I'~' ~Il("h 1110<1<'1 d('1<'rljlill('~ Ilw tpll'ry \,ai'i"bh, 
I'. 

ill huildillg I ht, S(,(,llario modi'l \\'(' COllsilit'I'NI all tli{' aSSlllllpf iOIl class{'s that Cilll 

afl'{'('1 I'. TIl<' ()pNat iug ('()fldlt ioils of a CM E ftom at l~ast 01\(' ot t h('S(",a~,!Hill1j)ti()11 
classes lilllS! \)(' ill 5.,. SiIH'(' oth('l"wis{' I hat would iitl\tly.that nwr(' i~ ilb fliodi'l.lM 
11i{1 ~~:sl ('111. "l'II(,("('fot(· S~ indllcl(·s t IH' \'Ciriabk I'. TIt(, librar~' colih'C'Il(,(' CiSSlIIIlpl iOIl 
guaralll{'h; thaI tl\(' s('1 of ('quatioils ill 5", \\'hich wi' cif'lIote hy r:Cls. is lll.)t ()\'('j' 

nll\st raill('d. \\'(' lli'peI to slit)\\' t hnt I hN'(' b a cl\(">ii'(1 ()f {'xtlP;{'ilbllS vat'iall!(;s which 

" 

Ii 
I 
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doC's not include l' that will make tlw eqllatiol1s f't/s (otl1plt't.e. 1f E(i.~ includes 111 

('quatic)Jls and I > 111 \'atiables, \\'r t'1f'&O to thom;(' /- 111 (>XOg<"tl0US variables. We (.\11 

as1iUl11r that l:.'qs dews lIot ('ont (lin a rOIYlpld(' ~tthi;c't of rq.uations, If it docs. tit '\'c 

a\'C' t \\'0 rases: 

1. It cOIlt.ains a cOll1pl(,tt' stlbsi'! l~'ql thilt indud(,s /'. It! this case, we simply 
('onsider any choiti' 01 \'ariablt's that nlakf'~ l:-'q., - l:iqI ('omp\(>t(l. SilJ(,(> I' IS 

dr(eI'JllilJt'd by SOInt' \'iuiablc ill Flit. t iI(' choit-c for Jj'qs -:- Jj'ql will suffir(,,10 

.) It ('ontains a cOllll)irtf' subset t:qi that oat's not inciuof' t', III this cq.si'. w{> soI\'(' 
t'h<' ('quatio!ls in EqI and ('olisidel' the equations £q'}. resultiI1g trom rt"'placilig 
th(' a~)p('aranc('!; of vLiabl(3S frOli'l l~'ql ill I~qs - Eql. by their solutioll \'alu('s,11 
Tbc rt'·sult illg s('( of pquatiol1s ",iii not h,;; ()\'<'tronstrailled (uecau::;{' we rt'du('('d 
tl1(' llumh,,!' of ('q~l?-ti9I1s._a.lid tl1(' Il.tIllll)('r.of variables hy the ~aIl'lc 11umhel·). 

Lc't "i-hC' a \'ariabk ill Eqs. \\'(i show that set. L'q = Eq..; u t.r( I',) is noL 0\,('1' 

('ollst.railwclY..! Suppose, t.o t.he con! rary. that i.t. is ave!' ('onstrained. Thcr<'>. would 
th<'Il be a ~'iub:wt of E q. that COllt ai ll~ nio!'e Nluat iOllS than variables. Tha t Stl I>S('t of 
l'..'q !11ust .contaill tltt, equation E.r(l'I)' because. ot.herwise Eq~. would ha\'(' b(>('li over 

cOllstraill('d. Furthermore. that. subsN must contain. t', in SOI11(' other <'quat lOll as 
\\'('11. .~ow consider tl1(' Slit of cquatiOlis Eq - t:,r(1\). 1'l1at set contains the salllC' 

llUllIhN of variabl<:,s as iii Eq, wit II OIlf' kss equatiol1._ Tliereforc .... it III list either b<' 
o\'('r (,Ollst rained. cOllt.radicting t hi' a~sul11ptibI! that Eq.; is.. Ilot 0\'(>1' constrailled. or he .. 
C'olllplete, contradic·ting the a~sllI1lI)tioll tliat Eq~ dot's tlot ('oiltaiIi a compkte subset 
()f pCluat ion::;, 'l'h('\"(lfon'. w(' cali clioos(' a variabk if 1 '~'(i~ which is Ilot /' <uid mak(' 
it ('Xbg<'Iiotls, ailclthe ~(>t 01 equations will (,ithC>i' he COIl1I>I{'(e (ill \\'hidt case we an" 

dbt1<') or will still be uilder cOllstraiI1Pd (ill.which case. W(' choose ilt"lOth&r vatiablf')' 
:\ft(;r tho()sing I - HI variables. ,til(' £;quatiolls will be coIliplt"'t<". COIlS<"qU('litly. C:.? 
holds. 

Filially, w{' Ileed to ~hb\\" that the' illodf'1 is as.simpl!' a~ "(Issibl{>. In this proof it i~ 
important tu n\IlI<'mlH'1" thai ;'V(' have' olll.\' partial kIlbwlf'dg(' ahollt the' pos~ibk state::; 

t Itat tIl<' S,\'stt'11l Iilay ri'aell, SpN'ifically, all w(; kno\\' j::; that ·th(·. t.iIlli' .iIld('p(inc\('li.t 
facts gi\'('il ill ,1](, syst(JI11 dt'>script iim Inllst hold alld that till' \'alll(' of billClry \,af'ia!jll,i' 
gi\,(~ll ill F CnllIlOi citang(', 

In tIl(' pi·Ol)f. W(, aSSIIIIH' thelt S wa:; ('Ollstructf,d by addilI~ til<' (,~lF'i (', from 
asstllllptioll ('\as~ ti, at th<" it I! itt'I'.atiol1 ofselect::frOlii.-nSsumlltion-ciass, );()!(> that 

1(i~()lp thai if I' 1H'loll~:; lil It sillgl('toil lipt of ("ollilllpl(' ('C!uiltiollli. tli.'1!. this IIIl'ilil~-1hal WI' ha\'(' 

a IlIodi'l fra/otlll('ill linn IS 1l1Od{'Ii(I~ I' a.'i rOlistant. Sifwp tllP i11odC'lillg ('olldillOlIS III (hI' slall' ,\n' 

('oilSISIi'lIt, tliih i:.; an adi'<tllnf(' :-;iillulatio"l f1fodl'l. 
II [\;oi(' 1 hill whf'lI SOh'lll~ a !id oLcjualit al jv(> ';qllatloll!'i, lili1 sohitibfl Iftay ('oiit aili swili.' nllibi~lllt~ 

~l (' . sP\'i'ral jlossiblp :;oluIIOII:-;), \\'i' alltl ilPt'd lo coil:;idpt eadl solullofi iii luitL 
I ~'I"lrl' ('quat 1011 l~'i( r',) drilOl(is I.I~at I hi' ~·ai'ii.\bll' i'l is (>xogri!olls. 



SOI11<' of t 11<' c,':.; Illay hav(' IH.'(,11 \'('lllO\'NI subsequent ly hy clioosing a 11101'(' tompliraH'd 
('~1fi' from tlw same assumptioll da~~, \\"{\ pro\'(' the followilig hy illduction b11 i: 

A!. Th~r(' 111llst bf' il C~lF ill SJ'rbm til(' aSSllll1ptioll class (it, 

A:!. til(' ('!'.1.F c, is til(' Silllpipst ('!\IF that call ht' dlos(,li froll1 a,. \\'.r.t. C . 

.. \:L For eacli \'ariabk /'j all tli(',qlH'(H'. wi' must includ(' all til(' phel10l11(,Ila that raIl 
afkct 1'1 Clild C}I.U OCCUI' ill Olle of tlw possibl(' states of tilt' systelll, 

COllditions :\ 1 and :\:.~ gllal'antp(' that all thf' IlhE'nol1lf'na modded in S arc' IlPcessary., 
:\2 guaranteps that all tl1<'s(' phe1101l\{'IlCl ClI'{' modeled ill the sill1pl('st way possible 
with respC'd to thr liioC\<"ling tOllstrClill.ts~ C, The simplicity of S. follo\\'s fro111 tilC's(' 
claims. 

TIl<' ba~;(' cas(' intlllci<.'s all th(' ci.ssun'lptiQII c1ass{>s that call affect tlif' query \:ariabk' 
/', Clearly. Al is satisfied betaus{' w(' llE'(,d ali assumption class, that tall d(>terIhill(' {'. 
alld t hC' OIlt'S t ha L\\'err ChOS(,ll W('f(~ those' t hat are (,Ollsistellt witli t he' I~Qssi ble' st a tc~ 
bf tiIe $ystCnl, Silic('-seled-frOIil-assumptioll-dass selects the' sim()kstmodC'1 frag
m<'lits in thes<." assumption das$('s that db not contradict Rd. fOlldition A:.? is satisHi'll, 
Condition A:3 i:>~atisH{>d hpciltls(:' if.a Variabl(' 1'1 app<'aI's witli l' in the.same equa-
I iou. tl\('11 1'1 cat'l causally illflllC'IIt'{\ 1'. If I't is IIot {'xog{,llOtlS. then any plt('f10111f>liOll 
t hat ('all illflll('\UC(, 1'1 Inust b(' included ill tite model. Similarly, if. t'l appears ill the., 
operat.ing COliditiOl'lS of a C;-"lF that NUl dt:'t.ermillc (' and is not exop;eliolls. t.hen all~' 
pIW110I1WIiOIl t.hat call affect til must b<' includt;d ill, tlit" Iltodel. 

\V(' asslllli(l th~ <'iflilils for I and \\'P pro\'(' tht'ni. for i + 1. the' c~lf e,+1 (ould 
hav(' 1;('('11 addl'd, in, t\\'o ways. III tiJ(" first. w(; uS(' the butel' Ibop (i.e .. adding a 
ne\\' Cl,:S511ll1ptioll class ,\\'h~lI popf>ing a variable from th(' qu~U(,;). By tlit, itiducti\'(' 
aSS[1I1ipt iOIl. \\'f' inust ilwllld(' all the' j)h<"1l0111f:'lia tliat Ci:lrl aff(;ct thc' ';aI iable oil the top 
of t 11(' q ll('II(~. '1'11<.'1'('[01'(\. addilig (' 1\1 F froll! (/ ,+ 1 is IiN'cssary. alld so :\ 1 is sat i~fii;d, 
:\~ hefon ... :\~ al1ciA:~ (\1'(' satis{i(\d bc-ca!ls(' select~from-aSslllhptlol1·,da$s st'kcts 
thi' silllpiest ('1\IF (' !hitt satisfh's tlit' clSSlIlili)ttOlls l11fl<it' so far UIHI atld::; o11ly tilt' 

IlN't'sS(I ty variabl(js t{) t ht, q Ill'lit'. 

til(' s('(o11d possibility fiJi' addill~ (',+1 is by tit(' iilllt'I'.looj) (i,e .. hy acljlistillp; a 
Pl'i'\'i(lIIS clioic(' frolll an iU;SU(l'lptioli class), III this casi", tlk illclusioli of [\ (,~IF fl'Olll 

11,+1 was jllstified h~' a pr('\'ioils ('i\IF atllh·d to S, Sillni.{!l(' lIIoddilig ilSl'IlIlilj>tioliS in. 
Uillildut.k olll~' tlilJsc' t !iilt al'c; ('lltai\('d hy C and pr('vio!ls IlllH\clillp; asstlmpt iOlls, t hl'y 
an' i hi'J'{,n)I'(' til(' miJlimal sN of assllillptioliS. alii! sil'tr<" (',+1, is i lit' simjJi<:'st ('~,1 F f(,(Jill. 

(/,+,1 t.hat (:al1 hi' lilchidt1d jil the s('(,liario ilH>d<"'1. .,:\2 is th('l"<'fol'<·. satisli(i{\Y!, f"illally. 
til(' "cll'iHblt's lint! wr'r(' pUt. Oil thi' qll('\\(\ Whl'll C,+I is put, ill S ,dt' il('('('ssai'Y lI~iil!i. 
tli(\~SrHll(i al'gulil{'lIt as hdoJ'('_ ~lor('o\'h:,. ariy '>'ltl'ial>l(> that is ,',ll'('ariy oli tli(\ qtH'\I(i 
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docs not. ha\,f to he remo\'ed. because the Ci\lf rl'T"l is replacing a ('~lF c) that is 
a causal al)proxin1atioll of C,+I. and thereforf'. any causal influence that was possible 
through r) will be' possible through C,+I' I 

Toe followirlg tliC'orenl 5hO\\'5 that S. is huil.t in.time that is polynomial in the size 
of the problem: 

Theorem 7.5: Lef d be. the. fnaJ'ifnt1111 riufflber of CMFs in an assumption class and 
lEt n bf the ri!/Tiiber of instantiated assllfnptioTl claSSES in S. Let I be the. sum of the 
8i:c of C arid thE rluTTiber oj ground atoms that appear if! the instantiated modeling 
condItions oj C.HFs in S .. The ,'urmiT!9 timE of jirid.ing S. is polynomial in 71, d arid I. 

Proof: Since the .rnodelirlg constraints are Horn, tomputing the logical closure of the 
set ot modeling assumptions i!) dOlle in time polynomial in I . . This is done every time 
we call the i)rocedure select-from-assumptic:m-class.. The number of times this 
urocedute is called is at most rid. This can be seen by. observing that every call to 
select-from-as5.umption-class may. ~t \\lorst. replace a eMF' by' another one that 
is more coni.plicated than it. Since there are n ins.tantiated assumption classes in S 
and at niost d. Cj.1fs-per class. this can only be done Tid times. ConsequcnJ.lY, the 
overall rurining time of tIl<' algorithm is polynomial in 11, d and LI 

7.3.L. Relaxing the Assumptiqns 

In this section we discuss the (;ff<:'ct of relaxing some of. the assur'nptjo]1s made In 
Theoretn '7.,1. 

The Library Coherence Assumption 

The most signiHcatit assumption that we made is the library coherence assumption. 
Although the assumption may seem it bit strong, there is a compelling argument for. 
it. Specifically, if the assumption does not hold, this indicates a problem with the 
madel fragment library. If we have a set of model fragnlents that satisfy the modeling 
cor'lstraints but give rise to an OVCl' fonstraiIied set of equations, this is an undesirable 
feature' of th{; library, that calls for .'l.dditional hlOwledge acquisition. It shbuld be 
llott'd that the library coherence assllm.i')tiori is inL,de implicitly in [FalKerihainer and 
Forbus. 19911. lrl fact,. if w(> assunW (as ill Qunlitative Process theory [Forbus, 
1 v~·tl) that all e<luatibils are lllliquely"callsaHy oriented, tlien the library coherence
aS5ulliptlotl follows when we mak('> the C'tHlsal al'>ptoximations assumption .and the 
ClSSllill[)tibti tllat the illost complicated scellil.rio model is adequate. 

WI:' dm relax the library cbherC'llce assumptioll at the cost of doing more work at 
M~c'rY stat.e of the sil11ulatioll. SpeCificalLy, iIi the absence of the coherence assump
tloll; titti s((inario n'lQdel created hy Ollr algorithm is guaranteed to produce it set of 

----.~----------------------------------~----~~--------------
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equations at every state from which a complete model can be extracted (perhaps by 
removing some equations). We call extract the complett' model (·fficiPlltly \Isirig tli£' 
Ill('thods described in [~ayak. 199:2aJ. 

Causal Approxin'lations and Horn Restriction 

The only role of the cansal approximations assumption and the restriction that the 
modeling constraints must be Horn is to guarantee efficient performance. of the model 
formulation algorithm. The causal apprpximations assumption guarantees that when 
we select a more complicated Cr..·lF in an assumption class, the set at simptifying 
modeling assumption.decreases (i.e., more p.ositive literals are added to Rei). The, 
Bont restriction guarantees that once a I)ositive literal has been put in .. Rel. it will 
not be ret.racted. Relaxing <-ither of these two.assump'tions will require the·algorithm 
to perforn1 arbitrary backtracking al'!.ci ('onstraint satisfaction .. As shown in [~ayak. 
1992aJ. this will cause the n)odel selection Rroblem to be intractable. 

7.,4 Related. Work 

Several researchers have .considered the problem of model formulation. Their work 
addresses one or both of the two aspects of the modellormulation problem, namely 
niodel construction and model simplification. . 

:'\ayak [;'\ayak. 1992aj addressed both aspects. Nayak describes an algorithm for 
constructing a model for. the single state case .. His algoritnm also follows P9ssible 
(ausal influences; however. these influences must be given explicitly 'lsing the compo
flfnt i1licmcfi(J1l heuristic. In contrast. our \vork exploits the structure of the model 
fragrnelits to derive these links. thereby not burdening the U$er \\;ith the error prone 
task of puttiilg thefIi iIi. It should be noted. however, that user intervention, as in 
:\ayak's scilen'le. can enablt' a [urther focusing of the search by iT}5crting only a subset 
of the lirlks. 

In choosing a model fragmerH. fran'! e\'~ry assurhpt.ioIl ,class. ~ ayak chooses the , I 
most compliCated one. and then uses a procedure to simplify the resulting modeL 
Our algorithni builds the model by selectiilg t.he sili1plest eMF possible in every class 
and oli.iy adjusts the choic.£' if Iiect'ssary. In cases where the CMFs in an assumption 
class vary signitlcat'ltly in their .c:on1plexity. our approach leads to substat'ltial savihgs 
in the srarcli, since we OIilx introduce the complichted models if. necessary. It should 
be ell1l)hasized Uiat the 111or( tOI11!)licated Ct\·lFs .will il1\~olve mbr'r variables that \vill 
br iJUt on the stack and will tlier{'fote result iii a much larger scenario model. Finaliy, 
it sh01ild be ilOted that l\ ayak 's methods fOf inodel siniplification can be applif'd to 
tli(l simulatioll model generaU.;d at evcry state from out scenario model. 
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Falkenhainer and Forbus' work on compositional modeling [Falkenhainer arid For"" 
bus, 1991J describes the representation aspects bf compositional modeling and ad· 
dresses the Ii10del construction prohlem. In their framework, every model fragment 
has a set of relevance conditions corresponding to our .modeling conditions .. Our uSe 
of relevance claims enriches their language (specifically their Consider predicate) and 
provides it with a forfnal basis. In their model formulation algorithm, they first selp.ct 
the physical scope of the model (by identifyirig the lowest. object down the partonomic 
hierarchy that subsumes all the. objfcts mentioned in the query) and .then select the 
relevant properties of these objects. They rely on heuristics to select types of prop
erties to be modeled. This approach ('an easily lead to inclusion of. model fragments -
that are not causally_related .to the query, and it cannot guarantee the sufficiency of 
the model produced. OUf algorithnl provides more flexibility in. that the. selection of 
the physical scope of the scenario model.and .the selection of the relevant prbp~rties 
are done in.a uniform way, (by reasoning about the modeling constraints) and. can 
therefore affect each other. Furthermore, we only select properties to model that can 
casually influence the qu.ery Fmally, to.select. the. simplest model, they generate. all 
pos!;ible consistent sets of modelirig assumptions and choose the simplest based on.a_ 
very.infotr'11al criteria of Simplicity .. Our selection of the simplest .model is based on 
explicit. representation ot-the differences b(3tween model fragments and on teasoning 
with formulas expressing t.hese differences. 

Rickel.and. Porter's work on model formulation [Rickel and Porter, 1992] is similar 
to ours since it makes use of graphs of interaction path::, among variables to select _. 
relevant model fragments. Their graph of interactions is less general tnan the causal 
influence graph created by our algorithm, since it only includes variables, while we. 
include.all terlTIS (inCluding variables. predicates arid relations) that could directly or 
indirectly influence the goal terms. Their approach also does not provide guarantees 
of sufficiency or simplicity. 

The idea of explicitly representing the differences between Cr ... 1FS in an assumption 
class is similar to the graph.of models by Addanki et a1. [Addanki ei al., 1989]. Their 
work addresses the proolem of selecting aniorig complete rri.ode!s. Since the models in 
their graph are complete models irist(>ad of fragments, the space ['equirement bf their 
approach Illcreases exponentially as tlie r.u!TIber of possible modeling aS8urr'qJtions 
increases. Our approach can .be vi('\\'('d as ('on1bini~tg the idea of a graph qf models 
with. compositional modeling. 

'the rhodel simplification i)!'oblpili has been addressed by Williams ['vVilliatns, 
1990a] and Weld [Weld, 1990). WiliiamsaIso makeS use of. (;il.u!>al influence graphs to 
simplify a model. 80th Weld and Williams assllrilc a coniplete model of the situation 
as an input. Williams also makes ll~p of the idea bf follcnving causal influences in his 
work on innovt\,tive design ["'.-"illiams, 1!l90bj, 

I 
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7'.5 Summary and Contributions 

This chapter de~cribed an application of relevance reasoning to the domain of mod-
eling physical systems. Aside frorh showing that relevance reasoning is a viable ap
proach to solving the model forrl'lulation problem. we have also shown that the mod" 
elirig problem can significantly benent from being considered from the perspetti\'{' 
of l'('le\tante reasc.ning. Specifically. we have shown that some aspects of the model-
Lng problem can be approached using general considerations of relevance reasoning. 
(i.e .. backward chaining on causal influences and articulating the differences between 
C~1Fs in.assumption classes). ~\"loreover. we have shown how to incorporate engineer-
ing knowledge and heuristics. for modeling in a declarative fashion, .using relevance 
reasoning. The ability to dedaratiyely express.modeling heuristics has "several advan
tages. Since it is easier to inspect and modify 'declarative knowledge, experimenting 
with different. modeling. heuristics becomes viable. In contrast, other methods w!re 
in their modeling heuristics. and therefore modifying them requires. rewri.ting code ...... . 
The.result of Our approach was a novel model formulation algorithm which efficiently: .. __ .. ___ ---, 
selects the simplest model for a sy.stem .. and a query. An important aspect of our : 
algorithm is that it chooses.a model tor a simulation onhe system without knowing 
pr('cisely which states the system can reach. 

the .algorithm has.been implemented as part of a system called Device."Modeling 
Environment (DME) [Iwasaki and Low, 1992], which is a device modeling program to 
provide a computational environment for design of electromechanical devices. Given 
a topological description of a device, O~'lE formulates a behavior model of the device 
using the comporitional modeling approach and simulates its behavior. Prior. to 
implementing ollr algorithm, the system would prompt the 'user to select a set of. 
model fragments to be considered in the scenario model, thus creating a significant 
knowledge acquisition bottleneck. DrvIE.checks the operating conditions of every 
model fragment in the scenario model to determine the simulation model for- each 
state. The systerii works on several exarnples. including the electrical power system 
of an earth orbiting satellite, of which the example used in this chapter is .a..muth 
siniplified version. 

ile::earch on compositional modeling ;8 in its infancy. The discussion in this chap
ter cont ribute's by crystalizilig some of the main questions l'egarding the approach that 
req~ile additional research. The key issues. that cam~ to bear in this chapter are (1) 
how ,to .write model fragments (i.e .. how to decide what phenomena can be described 
ill a slngle.model.fragment,.af1d .what assumptions.to maKe regarding the contents of 
a model fragment), (1.) how to organize model fragments.in it. library and (3) \vhat 
assumptions can be made about .the model fragment library. We have contributed. to 
solvirig problem (2) by suggesting the concept of compositi~>nal model fragment.s and 
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by requiting explicit representation bf the differences betwf~en Ci'.lFs in an assump" 
tion class. In our discussion we made several assumptions regarding questions (1) and 
(:3). In generaL we see a tradeoff between (1) and (3). If more assumptions are made 
about jndividual model fragments. then tewer constraints need to be placed on the 
model library as a whole, and vice versa. Finding the optimal point in the sp~ctrum 
of possibilities requires additional research and practital exp.erlence building systems. 
We belie\'e that imposing some structure on the model fragment library is necessary. 
and beneficial in the long run to facilitate knowledge acquisition and reuse. 

Finally, as mentioned in Chapter 6. the problem of model formulation can be 
"iewed as one instance of a problem soh'ing setting in which a system. needs to reason 
about :ts own .kno\\'ledge before answering a query. In dOing so, it must choose 
among alternative representat.ions of the domain that make. different assumptions and 
abstractions. Other instances of'this problem are also currently under investigation. 
such as reasoning with contexts and qt.lery evaluation in heterogeneous databases. We 
belie\'e that the te.:+niques. dew·lop.ed in this chapter C?11 form the basis for reasoning 
mechanisms in theSt· other problem solving tasks. 



Chapter .8 

Conclusions 

The ability to automatically-identify and ignore irrelevant information is a key to pro," 
viding efficient. iuterences from.large ·knowledge based systems and for a system t.o be 
able to cr.eate appropriate abstractions in a complex domain. The main contribution _ 
01 this dissertation is showing that it is possible to reason effectively about relevance 
of knowledge in a principled manner and that such reasoning can significantly impact 
the preformante of knowledge based systems. This chapter. begins by summariiing 
the sp'ecific contrIbutions of this dissertation. We-then present a tabular summary of ~ 
the main references to related work. Detailed discussion bf related work is scattered 

I 

I 

I 
! 

at .the relevant points throughout the dissertation. Finally~ section 8.2 concludes witL ___ , -'-1 

a description of directibns for future research. I 

I 8.1 Summar.y of Contributions 

The two key issues that need to be addressed in relevance reasoning are (1) how 
to automatically decide what knowledge is irrelevant to a query and (2) what is 
the utility of relevance reasoning. As a basis for addressing these. two issues, we 
presented a formal framework for analyzing irrele~'ance. The framework included a 
space of possible definitions of irrelevance based on a proot theoretic analysis of the 
notion. The framework enabled us to compare the properties of different irrelevance 
claims. Within the space of deHnitions, We identified the class of strong irrelevance 
claims that .has t\VO desirable propertiesj "namely, strong irrelevance claims can be 
efficiently derived automatically and are guaranteed to lead to savings in inference. _ 
The frame\vork also shed "lleW light on the problem of .deciding when a query is _ 
indep'enden~ of an update to· the knowledge base and enabled us to signinGantly 
extend .previous results. in this area. 

'the fralilework provided a .settiw; in which we could investigate the conriectioll 
between the notion of irrelevance and the cteation of abstractions. This connection led 

li3 
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Table 8.1: References to related work. 

to a new approach to research on reasoning with abstractions in which We investigate 
t he properties of an abstraction by considering the irrelevance d.\irhs on which it. 
is baseci, We den'lbnstrated the approach C'n the cases bf predicate abstraction and 
argur'nent projection. In both cases, the analysis of the corresponding irrelevance 
daims led to efficient algorithrns fot automatically creating abstractions and tc better. 
lIIlcierstanditlg of the utility of the resulting abstractions. 

\Ve.investigaled in detail the problem of automatically deriving irrelevance claims 
for HorrL rule knowledge bases. and several extensibns. Our analysis was based 011-
the observation that in order for relevance reasoning to be practical, \ve must derive 
Irrelevarice claims hy considering orl1y a small aild stable part of the knmvleage base, 
while not assuming anything about the unexamined parts: We cOlislr.ered the prbblem 
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of automaticall\' deriving irrE'le\'ance claims that were based only on t.he·ruks In til(' 

1\B and were independent of the ground formulas. As a result, our algorithms wcr(' 
efficient and the irrelevan('(' claims derivl'd were independent of changes to the ground 
forIi'1ulas. 

Our algorithms for del'j\'ing il'relevance \\'ere based on a no\'el tool. the query
tree. \\'hich is one of the main contributions ot this work. The query-tree is a firtite 
structure that gives us a 1'ic u' 01 the knowledge' base. It encodes precisely the set of 
possible derivations of t.he query. Consequently, it tells us exactly which rules arid 
ground formulas tan appear in derivations at the query, thus providing the basis for 
a sound and complete inference procedure. for several classes 01 strong irrelevance. 
claims. One of the .key. aspects.of. the. query-tree is that .it considers _the semantics 
of the interpreted literals that appear in .the rules. which often enabll:i5 us to detect. 
additional interactions bet.ween the rules. The query-~ree tan also be built to encode 
only t he minimal derh'at.ions of the query, or only the satisfiable .derivations in cases 
\',here EDB literals may appear negat.ed in _the antecedent5 of the tules. We .. also -
showed how the query-tre€> can be used to derive logical consequerices of irrelevance 
claims .t.hat are given to the system by 9-n external source, and to guide the search 
of a backward chaineI' so that it fo.l1ows only paths that can_yield deriVations of the 
query. 

We presented experimental results which showed that using; the query-tree to filter 
out irrelevant formulas often yields speedups of orders. of magnitude, while the cost of 
building the query-tree is negligible. Additional sp~edups were obtained. by using the 
query-tree to guide the search of the bacl\\vard chaineI'. Both the theoretical analysis 
and the experimental resultg shO\\led. that our methods will scale up and be even. more 
effective in larger .kn~wledge bases. 

Finally, we applied the relevance reasoning framework to the domain of modeling 
physical devices. "We considered the task of selecting a model for a device to answer a 
given query by composing inodel-fragments, each describing a single phenomenon in 
the physical world at different levels Jf abstraction and using; different.approximations. 
We presented a novel tnodel selection algorithm hased on relevance teasoning. The' 
algorithm used relevance l'ea~iOiling in order _to (l) determine. wnich phenomena. are. 
relevant to the query (and til(>retore should be included .in the model). and (2) to 
reason about. the abstractioilS underlying the model-fragments which present multiple 
descriptions of these phenoI11ena itl order to determine the abstrl'tction level most 
ai)propriate fot the query. 

8.2 Future Work. 

Tht' work described in thisdlssertatioll can he extended. in st>verat ways. In this 
Hectior} we describe several dikctiollS for future r.esearcn. 
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Anaiy'sis of Irrelevance 

Our fI'am(>\\'ork for analyzing irrC'lf'val1ce should he extellded in several ways in order 
to make it applicable in a wider \'arif'ty of settings. One important e:ttension is 
to incorporate probabilistic irrelevanct> claims intb the framework. i.e .. claims stating 
that some formula in the knowledge base is irrelevant to a query with some probability. 
A clear understanding of the mealling of such irrelevance c' .Ins is needed as. well 
as algorithms for automatically deridng them and methods for exploiting theni in 
infererice. SecoIld. our analysis focused on the rase in which answeririg a query is 
done by searching for a derivation. using sonie given set of illference rules. Although 
many problem solving situationl'i Can he.cast in that way. doing So will not always yield 
useful results. Therefore. an important extension to the framework is to formaliie 
irrelevance for general problem solving. For example. whereas no\,' the framework. 
revolves around the pd.ssible derivations of it query. a more general frame\\'ork \\'ill 
revolve around paths in a state space. FitUl.lIy. in our discussion we considered only the 
cases ·in which reasoning is monotonic: An interesting problem is to deRne-irrele\'ance 
(and develop .the correspondirig algorit hms) in ~he setting of non"monoton!,:: reasoning. 

As mentioned in .chapter 2. the notion of irrelevance is.very dosely related .to 
the .notion of belief revision. :\ more thorough investigation o£ this connection could 
yield interesting results. On.the one hand, considering definitions of irrelevance based 
on belief re\'ision will yield more semantiCally ba.sed definitions of irrelevance. On 
the other hand. associating a definition of belief revision with irrelevance'may shed, 
light on the plethora or-dennitions .of belief revision. Additionally. the problem of 
developing efficient algorithms for belief revision has received little attention to date. 
Algorithms for deriving irrele\;ance claims might prove to be a key tool in developing 
efficient belief revision algorithms. 

The Query-tree 

The query-tree has proven to be a powerful tool in relevance reasoning and controlling 
inference. and it is therefore interesting to extend it to a wider class of languages. 
One iinportant extensiorj is to widen the tlass of iIHerpteled COllstril.;nts that can be 
liandled by the query-tree. Currently. except for constraint literals in the rules, the 
query-tree can also fully incorporate cOflstraints that are given Oil the argunients of a 
r'dation in the knowledge base. One \\'ay to extend the tree is to consider constraints 
that include arguments from rilOre thaii Olle tdatiorl (a.k.a. integrity constraints). 
Ali eXilIilple of such a tOilstraint is statillg that a join of tWo (or more) teiatiolls 
is empty. Another important extensiOli to the query-tree is to consider rules \'dth 
furittion symbols: Although il1 general. the qllety·tl'e~ ca(lIiot provide a complete 
inferetice procedure for strong irreiemnce when function s)'nlbQls are pres'ent. it is 
iflijJortimt to find limited cases hi whiCh such a procedure can be found. In cases 
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where completeness cannot be guaranteed. one could develop methods that will detert 
a wide class of irtelevance claims encollntered in practice. 

Tile lise of tlie query-tree to control infei'ence should also be investigated furtlwl'. 
The uses we described and with \\'hiCh we €xpf>rinielited were straightforward applira
tions of the query-tree. As discussed in Chapter 4. the query-tree also enables gE·tlel'
alization other query-optimization methods such as ~lagic-sets and r'nessage passing 
schemes. Given the query-tree. Wt:' are in a position to devise a more general frame
work for query-optimization t.hat will incorporate ~lagir-sets. message passing. tail. 
retursion optimizations and pushing s('lections and projections. 

Filially. a key contribution of the query-tree is that it provides descriptions of 
specialized indices for ~cressing the ground formulas in the knowledge base. Tht"se 
indices are tailored for a specific set of queries. An important question that needs .to 
be addressed.in the context of any large system. is how to conibine. the indices gh'en 
by tne query-tree with current database indexing techniques. 

lrrelt'vance and Abstractions 

One of the major areas tor future work spawned by t.his dissertation is the connection 
between the notion of irrelevance and the creation of abstractions, .as described in 
Chapter 6. The approach _pronosed there is to associate 'an abstraction with an 
irrelevance claim. stating which knowledge 1S rl"tnoved in tnf;' abstract theory. Ali 

understanding of the abstraction is obtained by an analy~is of the' correspollding 
irrelevance claim. Chapter 6Jisted several kinds of irrelevance claims that should 
each be investigated further. Of particular interest. are the questions of (1) finding 
algorithms for automatically treating an appropriate abstraction. (2) understanding 
th(> utility of reasoning with the abstraction and (3) determining when and how 
abstractions can be composed (by composing the corresponding irrelevance Claims). 
As W(o saw iil Chapter 6. our trea.tlnents bf irrelevance of predicate arguments and. 
predicate refinements had mailY similarities. A longer term goal is to develop.a general 
framework for. treating a large class of irrelevance subjects, 

Modeling of Physical Syst~ms 

C'bnipositiotial modeling is a power.ful paratligrtl for building systerl1s that reason 
about physical systems. Ho\\,('\,er. the basiC building blocks of the appn .lth require 
a tilllch better .understanding. S pt'ri fie ally. we li{'ed a clearer definitiOll of.what is a 
model-fragment. i.e., what .plicnOl'iH?lUl should be considered a siri~le rhodel fragrhelH. 
and what -assumptions can w(; ·make about I'node! fragments. Second. we Ileea to 
utidersUi.nd lib\\' to build libraries of inude! fragnieiits. Such libraries are not randoli~ 
cullections of nlodel-fragrllelits. but fatiter ha\;(> a lot of impiiCit alid explicit struc
ture. Sigliifieant leverage in dpvising conipQsiti6nal l1iddeling algorithms \\iiii come' 
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Irom discovering the underlying stl'l.:-ture arid exploiting it. The work described i.I 
Chapter i makes a few contributions in this direct ion. but much work remains to b ~ 
donf'. Building larg('> experimental syst{'!~·.(' will provide significant insights into the::€' 
issues. 

Finally. we cannot expect a model~fragment library to contain nlodel-fragments 
that describe a certain pnenomenon at all possible levels of abstraction that may 
b('> needed in solving clueries. Therefore. an interesting tesearcll problem is to auto
matically neate niodel-fragments with the desired level of abstraction by abstracting 
model .. tragments from the library. 

8.3 Final Word 

The work described in this dissertation is at the border between artificial intelligence 
and database systems .. I beiieve that. research combining techniques frorh these two 
fields will be of prjme importance in future years. One of the major technological 
innovations ill upcoming years will he the availability of largt' amounts of information 
in practically every. household. Developirig systems that will provide intelligert access 
to information. presents a unique 0PiJOrtunity in which.techniques from both artificial 
ititelligence and databases will m.ake a great impact on society. I believ..e that the 
combination of techniques from the'se two fields. as. demonstrated in this dissertation,_ 
"'ill provide tlH? essential building blocks of successful systems of the information age. 



Appendix A 

Proofs 

A.I. Proofs of Chapter 3 

Proof of Theorem 3.4 

Proof: In the proof it is more. convenient to refer_ to .the relations denoted by the
labels, rather than the labels themselves. T.he conjunction of two labels CI and C2 .is 
represented by the join of their corresponding relations, denoted by Rei D<l Rei' Recall 
that since-the constraint language satisfies the Closure property, we can express a 
join of two relMiOllS. and a projection of a relation on a subset of its variables as --I 

I a $entellce in the. given. cOllstraint language £.. . \Ve tlenote the relations repr~sented 
by co(n).q(71) i\nd c1(rz).by Ro(n).Rb(n) and R,(n.) respectively. \ye.9~I)ote the 
projection of a relation R on a subset of its variables.\' by Rig. 

Let rl .... , 7'/ be the top-down orderi!lg of the rulegnodes in d that \\;as -used in 
the second ph.ase of the algorithm. Recall that by the definition of Cd .(the global 
constraint brt the variables in d). Cd = co( rd J\ .•• A C6( 1'1). or in notation of relations. 
Rd =- R~o(rj I !Xl , •• ~ Rco(r,)' We deRi1e a sequence of relations as follows: 

• Ro = Rb{root(d)) 

• R, ::; Ri __ 1 !Xl Rb(r,) 

We prove that the followiilg properties hola fot the sequence Ro •... \ R/: 

D i: RI::; R-/. i,P H the fUial rf'iatioll is tht' saine as the global constraint on d. 

D2: If'.\''1 i~ tlH~ ~rt of variahles that ;q'lpfiRI' ill R
" 

thf'1l 

i)2.1: N:+Iis.= R, and 
tn.::?: fl,l r • ::::: if j(i\). 

179 
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This means that onc(> a set of \'ariable::; appears in an ilHerniediatt> rplation. th(l 
suhsequf'nt relations do not challge with resp<'ct to that suhs<,t. 

The theorem follO\\'s from properties D 1 alid D'2 as follows. Let 1'1 be the ith 

rule-node in d and let .\'1 be til(' variables that appear in the fath{'r or the childrell 
of rl' It tollo\':s from D'2 that RI(I'I) == Rd,\',. and by D1. that RI = Rd. therefore. 
R/ ( f l ) = Rdl.\, holds which is_the way R/ ( I'rJ is denned. 

[0 prove D1. we observe that H.I = Rb(I'\) t><l ." N Rb(tl~ (i.e. the join of the 
labels obtained il1 the bottom-up phase). Therefore. it is enough to show that Rd == 
Rb(td txl ... t><l Rb(rt), to show this we prove that for every rule node l' in the tree 
and its father node 9 the following ltold: 

(a) Rb(l') ~ Ro(r). Rb(~ Ro(gJ, and __ _ 

(h) Rb(r-.) '2 Ifdl r • Hb(g) '2 Rdlg 

Sinc" Rd.= Ro(1',) t><l , •• t:<l Ro(7·t}, (a) gin's us that RI ~ Rd. From the p~operties of . 
the join operation and from (b) we get. RI 2 Rd. Hence. HI == Rd •. 

The proof of (a) and (b) proceeds by induction on the elements 01 rl.,' ..• rl in 
reverse order (i.e .. the bo"tom-up order). ~~ote that the second parts M(a) and (b) 
tollow from their first parts. since R(g) is the projection of. R( r) on the variables in 
g. The base case consists of all the rule .nodes. whose. children are all leaves; For each 
such_node 7', Rb(l') =-Ro(t) and therefore, (a) and. (b) hold trivially, 

Assume (a) and (b) hold for all rule nodes rlf'h' .. ,rl' \Ve need to show that it 
holds for 7\. Claim (a) holds because RI>(f l ) is the intersection of Ro(i\) with the 
bottom-up labels of its children. To .p,rove (b). let g, •... • 9m be the children of rl' 
By the induction assumption. Rb(91) ;'2 Rd19, fOl' ea<;h subgoal 9" Clearly, by the. 
definition of Rdl r ,. llo(r l ) ;2 Rdl,.·,. Therefore. since Rb(7\) is artually the jom bf 
r.elatiorls that all contain Rdl,.,.' Rb(r\) '2 Rdlr,. 

We prove D2 by induction on I. For the base case I = O. ""'e note that HI is simply 
1f~(I'I)' Therefore. since the Rb(root(d)) is the pi·ojection. of Rb(rd on the variables 
of root(d). 02.1 holds. ~loreo\'er. siilce Hf.(I~d = Rb(f l ). D2.2 holds too, 

We assurile the claim nolds for all) < I. alld prove that it holds for i. We first 
i)tov(' tn.2, Let 9 be the father of' "1+1 at'ld 1'1 be the father of g. By the inductive 
as~tltnption. !?II,.. = Rj(r l ). and thc'rdor<' tile Sanlt: holds for the goal nooe fl, i.e .• 
ilr!7 =}l/(y) ~torcovet. 

---"'--- ,,------
I Mott;' preclscly. lhp relattohs l~b(9-1)' . IIb(g;;a).llo(r.) cOlltaili ilie fespf'f.tiv~ proJeG~ions Of Rrt 

ori thclr variables 
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HO\\'pVPL since the \'ariables common to 1',+1 and to R, are only those in g, the join 
a(lc1 the projt'ction commute. i.e .. 

To sho\\' D2.1. it is enough to show that R,Lq == R,+dg, since the variables ap· 
pearing in 9 arp the only OIlt'S con-inioll to R, and Rb(r ,+1). or equivalently. we,can. 
slio\\' 

(A.! ) 

The proof uses the followirig observation: 
If A is thf P1'Ojecfio1l oj a re/aUorl R on a subset of its vatiables, and B C A, then 

jOl1lirlg B u'ith Rand P"Ojfctillg OTl thf .lianif I'ariabifs wzll result in the relation B. 
In. our casC:', 

(A.2)_ 

Clearly. Rf {l'} ~ Rb(r) and Rb(l')l p ~ Rb(9), and thetefore .. since.RJ(g) == RJ(r)19 it 
follows that 

(A.3) 

Finally. recall that 

(A.4 ) 

Therefore. the above observation together with A.2, A.3 and :\.4 entail A.1. I. 

Proof of Theorem 3.10. 

We begin by defining an intel'mediate langt' age. £,. whicn is less expressive than 
£"'v but !norf" expressive than £". rnd will haole the Closure pl'operty, .We denote 
by Cs the language. that allows only the prediCate ~ and conjunCtion, and by £~.\I 
the language that allows both disjunction and conjunction but oIily the predica.te -:f. 
Note that all the pt'editatrs call be expressf'd by torljUIiGtions of :5 arid :f.. 

Definition A.I: The lciliguagc C,j contains all the sentences of the form rjJ/I. t/.', where 
cb E C~ and 1/' E £#,\1 ..• 

Lemnla A.2: The language C .• has the Closure lH;operty. 
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Proof: The join of two relations r{'presented by the t\\'o sentences 01/\ l.'1 and 02/\ 1,.'1 

is simply the sentence (01 /\ 02) 1\ (1,.'11\ 1,.'2). which is ill CJ • Selection can be expressed 
by simply adding conjuI1cts of the (orm XI == X) 01' XI = C. To show that .c~ is closed 
under projection. let c = 0/\ /:' we a sentence in C.,. We tan assume that I.' is in 
disjunctive normal torm. Let .\' be a subset of the variables in c.-

1 he language C~ is has the closure property (it simply represents a transitive 
relatioIi on its \·ari~bles). Therefore \\'(> have a sentence Ox describing the exact 
projection of <!> on .X'. 

Given a tuple a that satisfies o.~·. it \\'ill be in the projection of c on .\' it it can 
be extended to the \'arii=lbles in c ill such a -way that t..', is satisfied. However, we note 
that a contradiction between an e;<tension of a and 1,:' can only arise trom that fact 
that the extel'ision satisfies too nHuiy equaiiti'es. 

Therefore, in order to construct a sentence that is equivalent to clx. all we need to 
do is check all.the possibilities for equalities between the variables of c. and exclude 
the ones that contradict-v. Specitlcally. let k be a partition of the variables .X' and the 
constaIits appearing in c, and .let c=(k) be the conjunction of all the atoms X = Y", . 
where X and}' are in the same partition. Let k! ..... kn.lte....the partitions for which 
c /\ c=(I .... ) is unsatisfiable. WE> define ex by-

It is. easy to see. that any t'lple !lot satisfying this formula will not be a member 
of Cx (since it either violates ¢,\;. or belongs to one of the unsatisfiable partitions).
Any tuple that dbessatisfy this formula satisfies ¢x, and furthermore the equalities 
that it satisfies are consistent with c. I 

Suppose d is a symbolic derivation tree and we are computing the labeling L~ilt .. 
Recall that in the rules we tan only have conjunctive constraints (i,e., thp conjunction 
of the literals of interpreted predicates). These constraints are therefore expressible 
in C.,. Furthermore, labels Lsat afe computed by join and projection operations on 
these constraints, and therefore. since C, has the Closure property, all the labels in 
Lsat can be ex!"ressed in C,. This observation enables us to characterize the difference 
between the labels created by C" and C"'v: 

Lemma A.3: Let d be U symbolic dCI'll'ation trf'C and lei 1l E d. Let Cb( fI) == cp /\ ~', 
be the boltom-up iabtl bln. where" E £~ aTld 10' E'C~'v: then cb'(n) = d>/\ t/1LL-YJ.!J.ere 
11'1= lh. Thf $Uil'li: rdatlOtlShtp holii.~ bfflltt'fTl cJ{tl) allli cl(r'l). 

Proof:. The key.obseI'vation.tltlder'lyit1g the proof is. the follO\ving. Suppose c = ¢.A tJ.' 

is a sentence in .c •. _ dod X is a. subset of its variables. Let ef{ = ¢I /\ ii't. be the. 
j).rojcctibli of c on .\'. Stippose that f is t hf> sPrite,llcc in C,A thi'l.t. is most dose to (still 
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\\'eaker toan) t.'t (rt0te that "most close" is well defined and unique). It T is writtt'n 
in .c~ as 02/\ 1..'2, then 01 = 02 and VI 1= 1.'2· 

Ther(>fore, by prbj<:>cting a Sf.'litence into .c". Wt' bnly make the ¥ part weaker. 
Based on this observation. Wp can prove thE:' lemma by a b9tt01h=Up induction on the 
nodes of d followed by a top-down induction. 

Fbr the leaf nodes. the claim is trivially true. since cb(n) == c~(n); Consider a 
rllle~r'iode r. and suppose tlw daim holds for all subgoals of r, 91 .... ,9m. The label 
c"(r) is computed by conjoining c(r) and <,"(gl)"" .c"(Ym)' Since the conjunction 
can be done separately for the two components of the labels and since the labels of 
91 ..... gm satisfy the inductive assumption. the claim will also hold for cb(r). To 
('ompute the label bf the father 9 of r. we project c:-()·) on the variables of 9. Based .. 
on the observation above. and since thE:' claim holds for r, the resulting label of 9 can 
Oilly be weaker than Cb(g} in the second (#) component. The pr90f is completed by 
a top-down irtduction on the nodes of d in a similar fashion .• 

P.ro.of of Theorem 3.10: Part 1 of the theorem follows directly from Lemma A.3. 
Part 2 can be shown as follows. Suppose that cJ(n} = <p !I. 7/'and lhatcj(n) ::::: (P-/).. 1,:'1 

such that 1j' 1= 1.'1' We can assume that ~. is in disjunctive normal form and at least 
one of its disjuncts (assume it is the first) is satisfiable. in conjunction with </>. Suppose 
its first disjunct til is·...,PI /\ ... /\ -"PI. where each of the PI'S is an equality. Since<;b/\ UI 

is satisfiable. that means that (1J ~ PI for any 1 :5' i :5 t. .Therefore, ""PI will be 'a 
conjunct in Max;i:(cj{n)) (note that Max¢(cj(n)) can be computed using <I> aI9ne). 
Consequently Max#(c,(n)) I=UI and therefore Max;i:(cj(n)) 1=4>/\1/). 

Finally. the third part of-Theorem 3.10 is prolled as follows. Starting from the 
root of d.we show that if all the labels of cj(n) are satisfiable. then we can construct 
a mapping 1./' of the variables of d to constants that satisfies all the constraints in the 
rules .. 'therefore, .if .'.ve have such a variable mapping, it must be the case that Cd is 
satisfiable and therefore c/(n) is satisfiable for every nEd. 

We begin by assigning values to the variables that appear in the root of d, in a 
way that is !'onsistent with cj(root(d)). \Ve assign distinct values to variables X, and ... __ 
X j unless cJ(root(d)) implies.that X. ::::: X) (and unless X. == a is implied. we assigIj 
to X, a value other than a). 

We construct the variable mapping t:, in it top-down order On the rule-nodes in il. 
Let t be a rule-node with father {J and interpreted 5ubgoals c,.. \Ve assume that the 
variables of- 9 have already been assigned values that are consistent with cj (9) and 
contain.6nly equalities .that are ifliplied by c'!UJ). We extend "1/.' to the variables that 
appear in subgoals of r but. do 110t appear in g. In doing so, we choose values that 
are consisterH with c ~ c'}(g) 1\ c,.. buLonly contain equalities that are implied by c. 
To cOlnplete the proof, we ncf'O to shO\v: 

1. tilt; constraint c is satisfiabl(> 

-, 
I 
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:2. (gv) e cia' 

The first condition guarantees that c call be satisfied. and the second guarantees 
that it C?!1 be ~atisn.::d by extending the rhappiog created thus far (for the variables of 
g). To prove 1. recall that cj{r) is satisfiable. However, c?(r) was tofnputed by first 
computing .Cl := c';(g) 1\ cb'(r). and then finding the. stro~gest constraint in C/\ that is 
weaker thatl Cl. Therefore c, must have also been satisfiable. ~IOreO\ier. c~(r) l= Cr. 

and therefore. c i., satisfiable. 
To prove 2. suppose c1(g) == 01 1\ VI when written in [,!. and suppose c = 02/\ 1,:'2' 

Recall that 0219 = 0, because the laliguage .c~ has the Closure property. ~Ioreo\'er. 

gv satisfies cj(g) and has o~ly equalities that are implied by c1(9). Therefore. g'!;.! 
will satisfy t.·z and will therefore satisfy t19' • 

Proof of Theorem 3.26 

We begin. by considering the case of S·I(r.q.'5:.p.DI2.Vq ) \vhen the rules have tr.e 
predicate =/=. The. theorem is proved by reducing the acceptance problem of a linear
space alternating Turing machine (AT~l) [Chandra et ai., 19S1] to the problem.of 
finding irrele\'ance of rules. _ The execution of an AT~l is described by a sequence. of 
instantaneous descriptions. id·s. each descri!Jing the state of the. machine at con Sec'" 
utive stages of the execution. i.e .. the contents of the inp'ut tap~, the location of the .. 
head and the state of the machine. An ATM is similar to a Turing machine, excep~ 
that its transition function .gives a pair of moves for each. combination of state and 
symbol. Furthermore, every state is either' an and-state or an or-state. If q is an and
state. then an id having state q leads t(, acceptance of the input it both its successots 
lead to acceptance. If q is an or-state, then an id having state q ~~0.ds to acceptance if 
either one of its successors leads to acceptance .. The states of the machine alternate 
in the sense that the successors of an and~state are ot-states, and the successors of 
ali Of-state ate and~states. 

Instantaneous descriptions are represented by a symbol for every cell on the tap~. 
The symbol can either be an input symboL or a composite symbol including an 
ir1put symbol ~.nd a state of the machine. In a legal id; all cells but one contain the 
input symbol that is on the tape in that state, and the cell on whith the head is 
placed contains a composite symbol containing the input symbol in that cell and the 
ititernal state of the machine. The union of the input symbols and.composite symbols 
is defwted by 13. 

The reduction is based on represefltingicfs as tuples of a prediCate id, whose arity. 
is linear in the size of .the input tape. n. Each cell in the.id is represented by a 
block of variables of size 181. The variable X appears in the block in the position 
('orresponding to the symbol appt;arillg in tne rell (ywe assume some arbitrary ordering 
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on the (>Ienwnts of B). All atht'r rolumns ront·ain the \'ariable \\'. Thus the arity 
of the predicate id is 111111. The tuplcg .v, are used to denote blocks .of \'ariables 
rorrespOIiding to ol1e ("('ll. The tuple {', denbtcs a block ot variables rep.rt'-sent illg a 
cell with the symhol i. (i.e'" X appears in the position of i in B and all other l)ositions 
arc H'). 

Intuitively. we construct. the prbgram such that id(.\;) is derivable it and only if 
.\' describes a legal id and leads to acceptance. Gi\'en an AT~1. M. and an input 
.\"111> \\'c const rurt a program as follows. First we need rules representing transitions. 
between.consecutive states. Suppose o(c. q) = HdJ.s 1• R). (dz• 52. L)}2 is a transition 
of .\1. If q is an or~stat{'. then for every i. (1 ::; i ::; n)3 and evety input s~'mbol b. the 
program (ontains til(' following rules:4 

id( .V1 •••• , .. V,-'l' ('(~2.b). (di' .V'+l' ..... V/I) =* id(,-,Vl" ..• . Xt-'l' abo t(c.q),!",X;+l" .... Xn) 
If q is an and'-state then for every I. (1 :5 i :s 71) and every pair of input symbols bl • b2 , 

the program ront.ains the following rule: 

id(_XI' ...• . V'·_'l.l\. Cd.1.! D(31.b2)' .~t+2' . ; .•. Rn)/\ 

id( .VI •••••• Rt - 2 • ((3j.btl, L'd2 , Ob2' ,VI+2' ... , .Vn ) ~ 
id(,VI' . ; ; .. VI - 2 • (\. C(c.q). Qb2' .X1+2 •••.•• Vn ) 

To complete the 'prbgram, a few more rules are necessary. Denote by ·.Rjtna1 .the . 
tuple representing M's (unique) accepting,state. and by .RIn'! the tuple representing 
the initial state. Rl places the initial st~te as. a subgoal of tht" query: 

R2 and R3 will lead from the accepting Sd\te to all EOB node. Note that e is the only 
tDi3 predicate ..... 

R2: a(X, W) =* id(.R/ ,ilal ) 

R3: (X:f H') /\ e(.\, \ \') =*.(1 (X. \ r) 

We denote the set of rules hy 'P !-oJ'he following theorem establishes the correctness 
of the reductions. 

:?The Land R are arbitrary. 
3if j = n. the head cannot mo"£' to the right. it i = 1, it cannot move to the left. 
"The exact form of the rule d£'pellds oil. the di~ection-Of the head movement. These rules are 

shown. to rdlecl the transition shuWIl. 
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Theorem A.4: ~;I(R1,p,'5:,1',DI2''Dp) holds if and only If J! doe.~ 110/ accept its 
inpILt with the initial stntf X!nlt. 

Proof: We first flote that any derivation of p(X, W) \\'ill contain only two constants. 
This lollows from the fact that in all rules. all variables appearing in the body ot 
the rule appear in the bead too. Therefore, the only constants in the derivation 
will be those assigned to X and lr. Furtht'tmore, since a derivation must iriclude 
the rule R3, these constants must be distinct. Therefore. we \vill refer to them as 
X atld It' hereafter. ~loreo\'er. if X and tr are distinct, an id subgoal can only 
be unified with itself in the head of a rule. This can be seen by considering each 
block in the id. If they differ in the position of the X variable (or if one ot them 
does not contain exactly one occurrence of .X), it will force X' and W to unifys. 
Therefore, because of t.he way the transition rules. are written, the subgoals of any id 
node are the instantaneous descriptions bf its successor. states. Consequently. if the 
top. id .goal~node .in.a derivation .is the node describing the initial state, then eVery 
partial derivation of p describes a possible execution tree of the ATM .\1. Therefore, 
because the only \~ay to get to and tDB subgoal is through rules R2 and R3, every 
derivation of p must describe an accep,ting execution trace of M. Therefore, if p has 
some derivation, then there .thert there is execution of AI that will accept .\'j'lI!' 

Conversely, suppose ·M accepts its input. A simple trace.of the machine's execu
tion will produce a. symbolic-derivation of p(X, \,,1-") which must contain R1. I 

To show .the claim for 8I(r. q. ~p. D [2, .Ml). we modify 'P as follows. We replace 
the rule R3.by 

113 I: e(.\', W) :::;. atX', tV) 

and we add the rule 

R4: apr,X)::::} a(.\'. W). 

The reduction follows from the following theorem: 

Theorem A.S: SI(R4,p.~1" D11 . . \[1) holds if and only if M does not accept its 
input tl.'ith the initial slate Xlrilt I 

Proof: The proof is similar to that of Theorem :\.4, with the follo ..... ing differeIlces. 
In any minimal derivation of .the query that uses R4 the variables X and HI must be 
d.istinct. ~loreover, every derivation of the query that d.oes not use R4 can be modified 
to use R4. We simply apply R4 to a subgoal of rule R2 and R3 to the subgoal of R4. 

~This aSsumes each block is at least of size 3. If this doesn't hold. we simply add another dummy 
column to each block. and leave it unchangerl iIi alL!.h ..... e ..... l'l .... II,....!!$4-____ _ 

-_ .. _ .... -. '~1 , 
I 
i 
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Theretore, if there is a rninimal deri\'ation of p that includes R4. then .\1 will (\(,(,(,pt 

its input. 
COIl\'erseiy. suppose ,\! ac('epts its input. We can assume the machine does not 

enter a state with an id identical to one of its ancestors. A simple trace of the 
machine's execution will produce a minimal symbolic-derh'ation of p(X, \V). and like 
before, it can be made to contain R4. I 

FInally. it should be noted that the size 01 the program P is linear in n. the size 
of the input tape of .\1. therefore the ('onstruction takes time linear in the size ot the 
input. 

A.2 Proofs of Chapter 4 

Proof of Theorem.. 4.6 

In proving the theorem we will use the following .lemma: 

Lemma A.6.: Let P and Q be two dalalog programs such that P 2 Q, i.e., for any 
given database D, the ansu'ers obt.ained for the query predicate of P .is a superset of 
those. obtained for .the query predicate of Q. The problem of determining whether.P 
and Q arc equivalent (i.t: .. produce t~(! same answer for any database tJ) is undecid
able. 

Proof: In [Shmlleli. 198il it is shown that ,determining \\'hether tw.o arbitrary datalog 
programs are equivalent is undecidable. SUPR9se there is an algorithm A. to. determine 
equivalence of two programs P and Q when it is known that P. 2 Q. Let Sand R 
be two arbitrary datalog programs, and assume (without loss 01 generality) that. they 
do not share any IDB predicates. Let G be the program consisting of the rules of S 
and R and the following rules: 

s(.\') => g(S) 
r(.\') ~ g(.\') 

where 9 is the query predicate of G. The result of G is the union of. the results of 
Sand R. and thetefolc,. G 2 Sand G 2,n. Clearly. the programs S and Rare' 
equivalent it J.rtd only if 

• G and S ar.e equivalent and 

• G and R are equi\'~~ent. 

Each.of these can be determined by the algorithm .4.. Therefore. the existence of
A leads to a.contradiction. I 
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Based 011 this leIilIl1a we tan prove Theorem -*.6 as follows. 
:Pr(Jof: We will show that if determining S /( 01. q. ~'. DI2 • 'Dq) is decidable. this will 
contradict Lemma A.6. Let P and Q be two datalog programs with query prpdic~ttes 
]I and q respectively ana such that P 2 Q. aBd assume without loss of gelierality that 
P arid Q have no [DB predicates ill common. Consider the following program G that 
includes the rules of P arid Q and til(' following rules for its query predicate g: 

fl : p(.\') 1\ f(S) ~ g(.V). 
1'2: q(.\') /\ c(X) ~ g(.\'). 

where e is a ne\\' tDB predi<:ate that appea.rs nowhere in P or Q and has the same 
arity as p.and q. 

To prove the theorem. we establish the following claim. Let I be the irrelevance. 
claim that states that 1'2 is st.rongl:, irrelevant to g. Then I::} SI(rl.g.~'.DI2,'Dq) 
if and only if P and Q are. equivalent. 

If P and Q are equivalent. then the join of q and € is empty exactly when the .. 
join of p and e is empty. Therefore. if D is a database in which r2 is not used in an)' 
deriVC'.tion.of g. then fl will not be used iIi any derivation of 9 either. 

Suppose P and.Q are not eCluivalent, i.e., p.~ Q, and P ¥: Q. Then. there is 
some database {] in which the difference between ]1 and q (denoted by p - q) is not
empB'. Consider the d.ltabase.D'. that consists of D and the facts e(.\') for .. X such 
that S .E P ~ q. The database D' is sllch that r2 will not be used iIi any derivation of 
g. nowever. rl \\'ill be used. Therefore. I ~ Sl(rl.g. !:', D/2 • 'Dq) cannot hold. I 

A.3 Proofs of Chapter 6 

in our proofs we lise thdollowing lemma. that is proven by Plaisted [Plaisted. 1981}: 

Lemma A.7: Let fbI': a mapping on literals. wh ieh is extended in a straightforward 
!tzsh,iin'l to (z rhapping 071 clauses. Suppose j satisfies the following properties: 

1. !(-.L) = -.j(L) jor any lde,'al L. 

!!. If C and D are claUSES and D is (ZIt iTlstance oj C, then j( D) is an instance oj 
j(C), 

itt C\ fwd c.2 be two clausc", alld C:3 be OHf. oj their resa/vents. TJz.eu the ciause 
LtC)) is SUb~lLT1icd by some T'eso/t'ftit ofJ.(CLL.!WdJ(C2)· 
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Thi~ lemr'na inlplies thc> followillg proposition: 

Proposition A.~: 

1. Lrt C\ and ('2 be cltzlL,~f,'i that atc mdtpfntifnt oj the pi'cd/cilic Ql'gUlnOits R. 
ilnd suppose e3 i,~ a I'fSO/t'fllt fJjC1 and e1. Thm frdC':l) IS subsumed by smil( 
I'f,'iO!z'fT/t oj Jr..(C1) (/ni! .t~((·l)' 

.:. Lei C1 (ind C"2 bt clill/Sf . .; that (lrt independcnt oj the jJ,'cditaie "fjinemflit Q. 
and suppose e3 is a I'j..;nh·mt of Ct. and l2· Thm f d lj) IS subsllnied by stJ11if, 
resoil·tTlt oj j~(ll) .and j~(C~). 

Proof: The. proof follo\\'s from the bbser\'at iOIl that both mappings. jn and J ~ sat isfy 
the conditions bf Lemn'la A.i. I 

Proof of Theorem 6.5 

Proof: 1'1](' first hulf of the th<:'orem follo\\'s from .Proposition A.8. Let D be the ._ 
derivation for which D/(R. D) holds. By the proposition. if Base~D) I- C then there 
is somc ciallse (" that subsumes fn(l) ~uth that j7~(Ba$(!(DJ) I- C'. Therefore .. 
JrdBase(D)) I- In(C). 

For the converse, suppose ir..(.1) F' jR(q) and let I be a model of ~._.i.e .. I != ~. 
We need to show that I.F· q. By the definition of independence. A.bs(l) F Absn{..l) 
and therefore • .4bs( I) F= jn (tl.). However \ since q contains no irrelevant arguments, the 
relftt ions denoted by predicates occurring in q arid identical to the relations denoted 
by predit?-tes occurting in fn(q). and therefore I F q. I 

Proof of Theorem 6.7 

Proof: Suppose that A 1- :\:3 hold as required. L~t I be a model of ~ (and therefore. 
[ F e). and let Ii' be- an arbitrary variable assignment to the variables of j'R(C)' To 
show that Abs(1) F= jde) we need to show that .4bs(J) F frdC)fl.'. 

Note that it 11 is an arbitrary {lxtensiOl1 of fl.' to the variables of C, then since 
I \-= l holds. then I F (' j1 holds. Therefore. I satisfies at least one of the literals of 
Cp. Thctr an:' three possible cascs: 
Case .1: There i~ soi1'ic ('Xt(lllSioll Ii. slich tHat one of the satisfied lit.erals L is of a 
predicate 11 (either positive or ilf:>gative) alid jJ does ilOt appeat in n .. In this case. 
jfd.L) ::; L holds and therefore. Ab.s(!) 1= jn ( L) holds because the relation denoted 
by I} ill I is the same as dCIloted in Abs(l). 
Case 2: There is SOIlle-(ixteflsiOli 11. suth that one of the satisfied literals is ~ positive 
literal p{.\'). wikrc I} app~'i\l:S in R. and In{ll(,\')) = I"(}/). If I 1= Jl(.\')"i thpn 
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.-\6,';( /) F= p'(f)Il' silin' fll' is a projf'dioll ot X,I alld the I'platiOli dt'llot('>d by pi is 
t h<' CO!T{>spOIid i ng proj('('t ion of till' 1'('1 a t ion denot pel by p, 
Case 3: If neither of the fir~Lt\\'o ('asps happf'll thf'1l it mllst hf' the- CRSt' tliat for 
('\'f'ry ('xt ensiOli II of II' t lie Ii teral ill (' t bat is sat isfled is of t he form '""p( _X') \\' here 
p appf'ars in R, :\gaitl, we d('>note fr. ('""fi( S)) by ""p'( f), In order to prove that 
C is inde\lendent. \\'e Ilef'd to. SilO\\' that thert.' is a single literal ""p, (.\'1) E X rg( C) 
such t hat for any extension It of J/. I l= '""PI ( SI )/L If there exists such a literal. then 
Ab,~(I) l= ""'/>: (};) holds hecause t lit, pt(lject ion of the relatioIl denoted by 111 all };I/ 
is t'lllpty, This follows from thll fact that flo constants app('>ar iIi argument positions 
of -'PIl.t) that are projectrd .. 

To prO\'(' that tlwrf' exists sllch a litc'ral. aSSllIl1e the wntrary. fhat tneatlS that 
Wl',f\ssuriw that for ('\,pry negati\'p literal . ....,p,(.\,) E C'such that PI appears in n,_ 
t herl' is-some- extension, Ii of /1' such t hat I F 12.t (.t )/L To show the contradicti()n, we 
will build all.extension Ito of pi such that I ~ C/lu, 

If (p,_ i) E R and X is a variable- such that X :.E At Po.s(p. i). ther! X does not 
appear in fr.(('). This is because it has only one appNl.rance in Neg(C) (by :\2) 
and all its app'~arances in Po,:; ( C) ha\'('> been proj~cted out (by :\3) .. Therefore, jn 
t'xtending pi to flo we are free to assign a value to.X, 1f "'PIC.t) E -Neg(C), then in 
/10 w('.assigll to the variables ill .\', - f;H-tbe values that make PI(.t) satisifable in 
f. t\ote that such atl assignment exists be-cause of our assumption. Furthermore, the 
('hoicl' of assigntnt'nts. for the variabll's in .\', - f; does not affect variables in.the other 
literals or Scg(C) (because of :\2), and therefore can be done ,iildep~ndently fot every 
litpral in .\'fg(C). \'ariables ill \'ar(C)- \'ar(jn(C')) that appear-ouly iIi Pos(C) are 
assigned arbitrary value'S. Because of our assurl1ptio!ls, none of the literals in.N eg( C) 
are satisfied with t he variable assigmne'nt J1o. [1,16reover, none of the positive literals 
are satisf1(>d because neither cases 1 or.2 oc(.'uI'.red.- Therefore, I ~ C holds which is 
a (,ontradictiori. I 

Proof.of Theorem 6.9 

Proof: The first half of the theOr('tl1 follows frol11 Proposition A.S. Let D be the 
deri\'ation for which DI(Q, D) holds. iJy the proposition. if BaM:(D) f- ¢ then there 
is SOnIe clause d:/ that "ubsumes f~(i») ~uch that j~(Bast(D)) r-4/. Therefore. 
f~( LJa$e( D)) f- /~(o). 

For the (,OllvNse. suppose J..:?(.j.) ~ f..:?(q) and ld I he a model of ~, i.e .• I F: .:.1. 
We !'teed to show that I p q. By the ot'finition of iridependence Abs( I) 1= AbsQ( A) 
holds and thefefOt;e, Abs\l) f: fdq). Howe.v{'f, sitlce q docs not contain predicates 
from Q. t he relations denoted hy pn,ditates occllr'lt i!ig iIi q a.r('~detJtiCat to the relations 
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denoted by prf'dicat('s occurring in f~((n, and therpfor(> I f= q. I 

Proof of LeMma 6.10 

Proof: Suppose the c1aus(' C is iI1depeIlClelH of the predicate tcfinemeIlt Q. Let 
Seg(C)i bf'> the result of replacing occun'entes of predicates in Q by arbitrary other 
predicates in Q. We defil\(" Co! as follows. c.~ includes the literals in Pos( C) as \\'ell 
as the following literals. If plX) E Pos(C) and p E Q. then ('2 includes the literals 
q\(.\') ....• qn(.\')' We dpriote by C" the clause containing the union of literals in 
Sfg(C)' and ('.1' ~ote that f~(C2) = J~(Pos((')). We show that ~ F t'. 

Let! be a l1'lodel of ~ (and therefore ot C) alld let f.1 be an arbitrary assignment 
to the variables in- C (which arc the same as the variables in. C' ). We need to sho\\' 
tliat. I 1== C'Il· 

Clpar.iy. I F= ell and SO.sotlle literal ill C Jl is' satisfied. by I. it .the satisfied literal 
is either positL\'{> or ill\'ol\'es a predicate. that does not appear in Q, then thLsame 
lit(>ral ,viII a}Jf),ear inC" «Ild therefore. I ~ ('til. 

Otherwise. th(' satisfied lit€'ral is of the form ~qt(.\'). where ql E Q. In C' the literal 
-'ql(S) is Il1apped to -,q)(S). Recall that by.our assumption. Abs(l) F j~(C), and 
therefore. Abs(l) F f~(C)~. Let- L = r(}") be a literal (either positive or negative) 
satisfied ill fdC)/l,_There are three cases: 

Case 1: Tht're is a satisfied literal.such that r (j. Q. In this case. the literal t(f") 
appears in C ar'ld (" and therefor~ I F ("p/ 

Case 2: There is a satisfied positive literal L of the form q(:\') where q is the ne\ ... · 
preclitate. Thb means that for-some ql E Q. CJI(.l:)P E QI' where QI is the relation 
denoted hy ql iIi I. The literal (It(.\') is.also in C2• and therefore ( F C'f.1. 

Case 3: The satisfied literal L is negative aIid of the form -,q(.X'). This means that 
for all predicates CI, E Q. q,(S )/-1 rt. Q,. In particular. it is true for q)\ and ther~f6re~. 
the literal ~q)(S)p is satisfied. and f 1= Citl. 

For the other direction. let C be a Clause and assume the condition of the lemma 
holds. Let I be a inodel of ~. We 11eed to show that Abs(/) F f~(C). 

Let i1 be ali arbitrary assignrtif'rit to the variables of C. We need to show that 
Ab.s(l) F j~(C)/1. Ch~arly. I F l/l. Ther!' are tliree cases: 

Case 1: If one of thr satisfied literals involves a predicate tl'lat is not in Q; then that 
literal will also apl)ear idClltically in.j ~(C') ana the relation denoted by the predicate 
of th(, literal will be the sall1C ill.! and Abs(l). Therefore. Abs(l) F= /Q(C)1-1. . 

Case 2: If one of the satisfied literals is a positive literal of the form ql('\')' ,.,'here. 
ql E Q. then corresponding literal in f~(C) will he q(S). However, since the relation 
dClloted by q in Ab8( I) is inCludes ttt£' r('lillion denoted by q, in I. then Abs(/) will 
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satisfy q(S))1. !\toreo\'PI'. if there is atiy lit(>ral of tht' form (/I(X). where' Cit E·Q such 
th·:tt I F= q,('\:)I1. then Abs(l) ~ q(·\:)i~· 
Case 3: If neither bf the previolls casf'S occurrf'd. tllen the set bf satisfied literals 
must be of the form -'qdSI).' .. , :(/1:( Sk), \vherf' fI. E Q. for 1 ::; i ::; f..:. To COniplete 
the proof by showing that fot at least one of these literals, Abs( l) 1= -.q( St). Suppose 
the contrary. i.e .. for each of these litcrals. .-\bs(/) ~ q(.t). This means that for i. 1 ::; 
i::; k there exists a predicate qg(t). stich that qg{.) E Q and .tJ.l E Qg(l). Consider the 
set of literals Neg(C)~ obtained by I'<.'plating (It(.t) by qa(')(.\")' By the assumption 
of the lemIna. there exists some l\et of literals l'2 such that jQ(C'}.) = jQ(Pbs(C)) 
aIld ~ F Neg(C)' u C2 and therf'fore, I F (.Veg(C)' U ( 2 ))1. Cleariy. each of the 
satisfied literals in.(.veg(CVUC~dJl must be a positive literal illvolving a predicate in 
Q. However. since j,~.(Cl) = JQ{ Po • .;(C)), this would contradiCt the fact that case 2 
did not occur .• 

----------------------------------- -- -
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