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Abstract

Speeding up inferénces made from large knowledge bases is a key to scaling up knowl-
edge based systems. To do so. a system must have the ability to automatically iden-
tify and ignore information that is irrelevant to a specifi¢ task. Identifving irrelevant

knowledge is also key to énabling reasoning in environments in which several systems .

(and their respective knowledge bases) interoperate. This dissertation considers the
problem of reasoning about irrelevance of knowledge in a principled and efficient man-.
nér. Specifically. it is concerned with two key problems: (1) developing algorithms

for automatically deciding what parts of a knowledge base are irrelevant to & query

and (2) the utility of relevance reasoning.

As a basis for addressing these problems, we present a formal framework for analvz-
ing irrelevance. The framework includes a space of possiblé. definitions of irrelevance,
based on a proof theoreti¢c analysis of .the notion. Within the space of definitions,
we identify the class of strong irrelevance claims, that has two desirable properties.
Strong irrelevance claims can be efficiently derived automatically and are guaranteed
to lead to savings in inference.

The dissertation describes a novel tool, the querystree, for reasoning about irrel-
évance. Based on the query-tree, we develop several algorithms for deciding what
formulas are irrelevant to a query. These algorithms dramatically speed up inference,
especially when the knowledge base includes a large data base of ground facts. The
query-tree has been investigated primarily for Horn rule knowledge bases with inter-

pretable constraints (e.g., order and sort constraints), and several more expressive

extensions. For certain cases, the algorithms are shown to be ¢omplete, in that they
detect all the irrelevant formulas. An important aspect of the query-tree is that it
¢an be built by examining only a small part of the knowledge base (e.g., ¢nily the
rules), and therefore, can be built efficiently. The query-tree is also used to derive
the consequences of irrelevance knowlédge given by a user. The dissertation preseiits
an empirical analysis of the algorithms when doing backward chaining on Horn rules,
showing that in practice. significant savings (often orders of magnitude) are obtained
by relevance réasoning.

Gur general framework sheds new light on the préblem of detecting independence
of queries from updates. We present riew results that significantly extend previous
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work in this area. The framework also provides a setting in which to investigate
the connection bétween the notion of irrelevance -and the creation of abstractions.
We propose a néw approach to research on reasoning with abstractions, in which we
investigate the properties of an abstraction by considering the irrelevance claims on
which it is based.. We demonstrate the potential of the approach for the cases of
abstraction of predicates and projection of predicate argurnents.

Finally, we describe an application of rélevance reasoning to the domain of fnod-
eling physical devices, We consider the task of seélecting a4 model for &4 dévice and a
query by composing model-fragments, each describing single phénomeéna in the phys-
ical world at different lévels of abstraction and approximation. We present a novel
model-composition algorithm based on irrelevance that composes a model with ap-
propriate abstrac¢tions and perspectives for answering the query.
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Chapter 1
Introduction

The distinguishing characteristic of research in Artificial Intelligence (Al) is that it

attempts to automate cognitive tasks that are natural to humans and at which humans.

are proficient. Prime examples of such .research in¢lude computer vision, natural
language understanding, automatic planning and the formalization of common sense
reasuning. In performing cognitive tasks, humans have the natural ability to ignore
irrelevant infofmation. We have constant a¢cess to very large amounts of information,
either in our memory or through external sources. However, when given a specifi¢
task, we are able usually to focus.on .the knowledge that is relevant to that task, thus
enabling us to reason in a.timely fashion. .

In .order for machines to be able to reason efficiently in the presence of large
ameounts of information, they too must be able to ignore irrelevant information. In
fact, the inability of current Al systems to ignore irrelevant information is a major

obstacle in scaling up such systems. It is well known that the performance of inference .

engines in Al systems that use declarative representations degrades quickly as the size

of the knowledge base increases. Two of the major sources of inefficiency of inference-

engines are due to this problem:

e In its search for a solution, the inference engine ¢onsiders many facts in the
knowledge base that are irrelevant to the query. Consequently, it spends signif-
icant effort pursuing useless solution paths.

e A kiowledge base is designed to accommodate a variety of tasks. Therefore, its
concéptualization of the domiain must be detailed enough for all-of them. Con-
sequently. giver a spccnﬁc task the knowledge base is likely to be téo complex
for it, leading to inefficient reasoning. For example, it may make unnecessary
distinctions bétweeii obJects in the domain or between properties of these ob-
jects. In order to achieve efficient performance, an inference engine must be able
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CHAPTER 1. INTRODUCTION

to abstract automatically the répresentation by removing irrelévant distinctions
in the representation.

Both of these issues will become even more important in the context. of future
large scale Al systems (e.g., [Fikes ef al.. 1991; Genesereth, 1992]). Such systems will
have access to large amounts of kriowledge coming from multiple autonomous sources.
The knowledge will overlap in many ways and will be represented in multiple levels
of abstraction. Reasoning mechanisms in such systems must.be able to decide auto-
matically what knowledge is relevant to a specific task. and what level of abstraction
is most adequate.

To illustrate these issues, consider the following simple example kriowledge base.

flight(X,Y. 81, E;,C)A (S £ S1)A(E 2 Ey) = path(X,Y, S, E,C)

bus(X.Y, 81, E1,C) A (S S)A(E 2 E) = path(X. V.S, E,C)

path(X,Z, 8, Ey, C1).A path(Z.¥, Ey, E,C2) A (Cy + Cy < C) = path(X, Y, S, E.C)
flight(X.Y,S,E,C) = (C.> 70)

The atom flight(X,Y, S, E,C) (bus(X,Y, S, E,C)) denotes that there is a direct
flight (bus) from city X to city Y, departing at time S and.arriving at E. The cost
of the flight is.C dollars. .The atom path(X,Y, S, E,C) denotes that .there is a path

(i.e., sequence of flights and busses) from X to Y, .leaving and arriving between $

and £ and costing at most C dollars. Finally, all flights are known to cost more than

$70. The knowledge base also_contains ground atornic facts for the relations flight

and bus.
Suppose we are given the query path(SF, LA,8am,4pm,$50). With respect to
this query, the first rule in the knowledge base and all the flight ground faéts are

irrelevant. Ground facts of bus that cost more than $70 or do not run between.

8am and 4pm are also irrelevant and ¢an therefore be ignored. Doing so will result
in significant savings in answering the query. In ¢ontrast, a conventional backward
chainer reasoning with this knowledge base will encounter irrelevant facts at various
points in its search: In the best séenario, it will immediately realize that a fact is
irrelevant (by propagating the constraints) and backtrack. Otherwise, it will continue
its search producing a search subspace based on the use of an irrelevant fact, and
realize later that the subspace could be eliminated. Even if the backward chainer
does realize immediately that a fact that it encounters is irrélevant, there may be
many such irrelevant facts, and considering each of these will be very expensive.
Alternatively, suppase we only want to know if there exists some path between two
cities using the connections in our knowledge base. In such a case, we can abstract
the representation of the domain and modify the rules appropriately. Specifically, the
predicates can be reduced from arity 5 to binary (e.g., flight(X,Y) denoting that
there is a flight between X and Y). Moreover, the distinction between flights and




busses is also irrelevant. and theréfore we can abstraét the distinction between flight
and bus {and othér travel media we may have). In doing so. we would replace évery
flight {and bus) ground fact by a ground fact of a new predicate direct(onnéction.
Our knowledge base would now be

)

directConnection(X,Y) = path(X.Y
V.Y. S5 E.C)

path(X.Z) A path(Z.Y') = path(.

This Knowledgeé base will vield a much smaller search space and will still énable
us to answer the query.

Aside from its use it controlling inference, the need to identify irrelevant knowledge
also arises in other ¢ontexts in Al:

¢ Nonmonotonic reasoning: In nonménoctonic reasoning, a conclusion drawn .

from a set of formulas is.niot guaranteed .to hold when.additional formulas are
considered. Consequently, the inferences made depend in subtle ways on which
forrulas are considered. A Key property that has been the focus of several non-
monotonic formalisms (e.g., {Pearl, 1990; Geffner and.Pearl, 1990}) is designing
reasoning schemes in which the addition of irrelevant formulas does not change
the conclusions. However, the notion of irrelevance has been treated informally
thus far in this work.

¢ Reasoning by analegy: Often, properties of one object can bhe used to con-
clude properties .of .another, if there is some analogy between the two objects.
However, for the reasoning to be meaningful, the analogy between the objects
must be relevant to the property being concluded. Automating such reasoning
requires a good understanding of the notion of relevance.

e Learning: A drawback of many learning systems is that they produce overly
specific descriptions of ¢oncepts being learned. This happens when the learned
descriptions contain irrelevant information. Using overly specific concept de-
seriptions often degrades the preformance of systems (e.g., EBL). Removing
irrelevant information is key to making such ¢oncept descriptions useful in prob-
lem solving [Etzioni and Minton, 1992].

This dissertation studies. the issues involved in reasoning about irrelevance. It
presents a genéral framework and speéific methods that énable a system to reason
about irrelevance of knowledge to a query. Relevance reasoning is done both by using
additional knowledge specified by the user.and by automati¢ methods for analyz-
ing the knowledge base and a specific query. Additional Knowledge is specified to
the system in the form of ineta-level irrelevance claims in a language given in the
framework.




4 CHAPTER 1. INTRODUCTION

1.1 Components of the Problem
We break down the problem to the following components:

I. As a basis for stating knowlédge about irrelevance and reasoning with it in a
principled manner, we must:
e Formally define the meanirg (or meanings) of irrelevance.
¢ Identify the different types of irrelevance with which we want to reason.

o Devise a language for éxpressing knowledge about.irrelevance,
2. In reasoning about irrelevance, we consideér two questions:

¢ Given a knowledge base and a query, can we .decide automatically which
facts in the knowledge base.are irrelevant to the query (and can we do so
efficientlv)?

¢ How can we derive logical conclusions from meta-level irrelevance claims
that are given to the system?

3. Using irrelevance reasoning to control inference:

¢ How can we modify inference me¢hanisms to exploit knowledge about ir-
relevance?

¢ What is the utility of relevance reasoning (in theory and in practice)?

1.2 . Overview of thée Solutions

We present an overview of the solutiofis we propose for the questions we address as

well as a description of an application of our framework to the problem of selecting
models for physical systems:

1.2.1 Analyzing Irrelevance

The notion of irfelevance has been. used in many contexts in research in Al and
related fields. However, most of the time researchers use the term informally. Formal
analyses of irrelevarice have been discussed by philosophers as early as (Keynes, 1921],
[Carnap, 1950] and [Gardenfors, 1078]. The main thrust of these analyses was to try
to capture our common sense notions of irrelevance by a formal definition. Most of
the work focuses on formulating properties of the notion of irrelevance and finding
definitions ihat satisfy the properties. Consequently, the work has not been concerned




1.2, OVERVIEW OF THE SOLUTIONS
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with how to uée irrelevance for speeding up inference or how to design algorithms for
detecting irrelevance.

Within Al the notion of irrélevance was investigated in thé context of proba-
bilisti¢ reasoning [Pearl. 1988] and used there to control inference in Baysian belief .
networks. In the context of logical knowledge bases, Subramanian [Subramanian,
1989] investigated several formal definitions of irrelevance. However, the issues of
deriving irrelévance claims and the utility of irrelevance reasoning were left largely
open.

We want our definitions of irrelevanée to make sufficient distinctions to make them
useful in déeveloping algorithms for detecting irrelevance. To do so, we analyze irrele-
vance at the level of the possible dérivations (or more generally, solution paths) that
a problemn solver can pursue in the solution of a goal. In contrast, other analyses have
been at the model theoretic level (Gardenfors, 1978] or the meta-theoretic level [Sub-
ramanian, 1989}. Furthermore, we do riot purport to provide a single best definition
of irrelevance. Instead, ve provide a space of possible definitions of irrelevance and
analyze how the properties of irrelevance change as we move in the space.

We begin by considering the question of defining irrelevance of a.single formula
to & query. Specifically, if A is a knowledge base, ¢ is a query and f is some formula,. __.
we will define when f is.irrelevant to g with respect to A. .

The first distinction made.in our space iz between weak irrelevance and strong
irrelevance. .In the former, f will be irrelevant to ¢ if there is some derivation of ¢
that does net use f. In strong irrelevance, f will be ¢onsidered irrelevant if it is not
used in ary derivation of ¢ from A. Each of these classes can be further refined. by
considering only a specifi¢ set of derivations in ‘he definition. For example, we can
define f to be strongly irrelevant to q if it is not used in any minimal derivation of
g.! Furthermore, definitions vary in the way we define what it means for a formula
to be used in a derivation. For example, we can define f to be used in a derivation D
if it appears somewhere in D, or, alternatively, if it is implied by the formulas in D.

Besides irrelevance of formulas, the framework also considers irrelevance of other
subjects. For example, we define irrelevance of predicates, objects, refinements of
predicates and distinctions between objects. These kinds of irrelevance are later used
as justifications for creating abstractions.

The framework has enabled us to make several important distinétions. For ex-
ample, the ¢lass of strong irfelevance claims is shown to have several properties not
shared by weak irrelevance. In many cases, it is possible to find all strongly irrelevant
formulas efficiently. Furthermore, removmg strongly irrelevant formulas is shown té
speed up inference significantly and is guaranteed never fo slow it dowr. Finally,
several instances of strong irrelevarce satisfy propettiey that have been argued to be
desirablé of a common sense notion of irrelevarice ini the philosophical literature.

'Given some deﬁnition of minimality of derivations,
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The framework is shown to be general in that it encompasses definitions discussed
in the past. These include definitions given by Subramanian [Subrarmanian, 1989
and definitions given in analvsis of databases [Srivastava and Ramakrishnan. 1992]
and [Elkan. 1990]. The framework providés impartant insights into the problem of
detecting indepéndence of queries from updates in databases. enabling us to develop
new algorithms for solving the independence problem.

1.2.2  Automatically Detecting Irrelevance

A major focus of the thesis is the investigation of the problem of automatically de-

ciding which formulas are irrelevant to a given query. We first address the following
question:

¢ (iven a knowledge base A and a query q, which formulas in A are irrelevant to
q? .

We.later use the techniques developed to answer this question in order.to solve
the problem of deriving logical conclusions from irrelevance claims that are. given
to the system by an external source. We consider the problem for knowledge bases
containing Horn rules, and several more expressive extensions.

In general, deciding which formulas are irrelevant to a given query can be more
expensive than solving the query itself (without relevance reasoning), especiaily in
large knowledge bases.. Furthermore, if the knowledge base changes, the relevance
reasoning needs to be repeated. In order for our algorithms te be of practical interest,
we must derive irrelevance claims by examining only a small and stable part of the
KB, and derive claims that will hold independent of any changes that are made t6
other unexamined parts. In many applications using Horn rule knowledge bases it is.
the case that the bulk of the KB is ground facts, and the ground facts are much more
prone to frequent changes. Often, the ground facts will be stored in some database.

Therefore, we address the following question. Suppose a knowledge base consists of
a sét of rules P and a set of ground atomic facts D.

o Given a set of rules P and a query q, which rules in P and which séts of ground
facts are irrelevant to q for any choice of ground facts D?

We consider the problem for several ¢ases of strong irrelevance:. For weak ir-
relevance, the problem is in general undecidable even for simple languages (e.g., no
function symbols or recursion). Algorithms that provide sufficient conditions for weak

itrelevance are discussed in Chapter 5, The following example illustrates the reasoning
we perférm,

]
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Example 1.1: Consider the following set of rules:

ry 1 bad Point(X) A path(X,V) A good Point(Y') = good Path(X.Y').
rp : link(X.Y) = path(X,Y).

ra :link(X, Z) A path(Z.Y) = path(X.Y).

rq:step(X.Y) = link(X.Y).

rs : bigStep(X,Y) = link(X.Y).

The predicates stép and bigStep describe single links between points in a space.
The predicate path denotes.the paths that can be constructed by composing single
links. The predicate good Path denotes paths that go from bad points to good ones.
A knowledge base contains these rules and various ground facts using the predicates
step, bigStep, good Point and bad Foint. Futthermore, we are given that all the ground
facts that may appear in the knowledge base satisfy the following constraints: .

badPoint(X) = 100 < X < 200,
step(X, Y)= X <Y,

goodPoint(X) = 150 < X < 170.
bigStep(X,Y) = X < 100A Y > 200. .

Figure 1.1 is a symbolic representation of the possible derivations of facts.of the.
form goodPath(X,Y). By analyzing the structure of the rules and the constraints

appearing in them, it can be seen that rule r5 will not appear in any derivation of the .

query, and is therefore strongly irrelevant. Similarly, ground facts in the knowledge
base of the form step( X, Y.) that do not satisfy 100 < X and Y < 170 are also strongly
irrelevant to the query. i

The main difficulty in irrélevance-reasoning is that we need to establish properties
of all the possible derivations of the query. However, we need to do it without enu-
merating all the derivations. To do so, we have developed a novel tool, the query-tree.
The query-tree is a finite AND:OR tree that symbolically encodes all the possible
derivations that ¢an be generated for the query from the given set of rules (the query-
tree of Example 1.1 is shown in Figure 1.1). In building the query-tree, we fieed to
address two issues. First, a simple minded top down ¢onstruction of the tree will
not terminate if the rules in the Knowledge base .are recursive. Therefore, we need
some principled method to términate the expansion of the tree. Second, we need to
carefully manipulate the interpretable ¢onstraints that appear in the rules in order
to be able to derive all the irrelevance claims.

The query-tree generation algorithm addresses these issues by attaching a set of
labels to nodes in the tree. For example, in Figure 1.1 the labels of the nodes describe
the constraints that need to hold on instances of that node in valid derivations. We
assign labels to nodes in the tree as we expand it, and we only expand a goal-node
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goodPath(X.Y). {100 < X < ¥ < 170.Y > 150}

|
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i —

bad Point(.X) —_— path(l.\'. ¥) \gdodpoinl(}')
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{100 < X < ¥ < 170.Y > 150}

e

Figure 1.1: An example query-tree

in the tree if there is no other node that is éxpanded and has an isomorphic label.
The labeling scheme of .nodes in the tree is chosen to satisfy two c¢onstraints. First,
the number of possible- labels must be finite. This propérty guarantees .that the
construction of the tree will terminate. Second. the labeling scheme is chosen such
that the resulting tree will encode precisely the set of desired derivations._

If the query-tree encodes precisely the set of derivations of interest, it provides a.
basis for a sound and complete inference procedure for strong irrelevance. Specifically,
a rule is strongly irrelévant to the query if and only if it does not.appear somewhere
in the tree. For example, in Figure 1.1, rule rs does not appear in the tree, and is
therefore strongly irrelevant to goodPath(X.Y). A ground fact is strongly irrelevant
if and only if it does not match some node in the tree. In Figure 1.1, ground facts
of step(.X,Y') for which X < 100 will not match any node in the query-tree and are
therefore strongly irrelevant.

We show that we can devise labeling scheémes for nodes in the tree that enable
us to encode precisely all derivations (and therefore all strong irrelevance claims)
for function-free Horn rules that allow a wide class of interpretable ¢onstraints (e.g.,
order constraints, sort constraints). We also discuss a labeling scheme that enables
us to encode precisely all the minimal dérivations of the query. Finally, we discuss
a labeling schemé for encoding precisely all valid derivations of the query when rules
may have limited forms of negation in their antecedents.

In some cases (e.g.. recursive rules with funétion symbols) it is not possible to .
devise an appropriate labeling scheme, and therefore, the query-tree encodes a su-
perset of the valid derivations. In these cases, the query-tree provides only a sound
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inference procedure for strong irrelevance. This means that if a rule (or ground fact)
does not match some node in the query-tree then it is strongly irrelevant to the query.
However. if it does match. that does not necessarily imply that it is not strougly ir-
relevant, Conséquently, using the querv-tree énables us to remove only a subset of
the strongly irrelevant formulas in the knowledge base.

An important aspect of the query-tree is that it can be built efficiently (and
the. “fore strong irrelevance can be derived efficiently). The size of the query-tree is
linéarin the number of rules in the knowledge basé.? Its size depénds on the number
of different labels we attach to nodes in the tree. This number may be éxponential
in the arity of thé predicates in the KB. However, arities of predicates tend to be
very small in practice (e.g.. frame systems usually émploy only binary predicates).
Furthermore, finding examplés in which the exponential running time occurs requires
careful crafting of the rulés. Moreover. since the query-tree is built only based on the
rules. it need not be recomputed when the ground facts change. Therefore the cost
of building thé tree can be amortized over many queéries. .

The query-tree is relatéd to.severa! graph-like structures discussed in the liter-
ature. such as connection graphs [KKowalski, 1975], problem space graphs [Etzioni.
1993}, compilation graphs [Bruynooghe ¢t .al., 1939} and rule-goal graphs {Ullman,
1989]. The -main.property distinguishing the query-tree from other structures is the
principled treatment of recursion and intérpretable constraints. As a result, it is the
only structure that computes thé tightest constraints on the possible ground facts that.
appear in derivations, and therefore only the query-tree provides a compléte inference
procedure for strong irrelevance. Second, the method.of building the query-tree is.
more general than the methods used for building otheér structures, and therefore we
are able to extend it to encode other sets of derivations, (e.g., the set of minimal
derivations).

1.2.3 Using Irrelevance to Control Inference

We investigate several methods of using irrelevance reasoning to speed inference:

1. Remove irrelevant formulas: The first method is a. siraple usage of the query-

tree. Given a query (or class of queries) we build its query-tree and decile which

formulas are not strongly irrelevant to the query. We then ignore the irrelevant
formulas when solving queries of this class, by building a specialized jndex only on
the relevant formulas.

2. Ignore irrelevant solutions paths: Aside from encoding only the relevant rules
and ground facts, the query-treé also encodés all the sequences of rule applications

2More precisely, it is linear in the numbér of rules that are connected to the query through a
simple reachability analysis.
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that can lead to answers to the query. We show how to modify a backwara chainer
so that it follows only these sequences.

We describe the results of experiments designed to nmieasure the impact of these
savings in practice when performing backward chaining on Horn rules. The experi-
ments show that significant savings are achiéved by creating specialized indices, while
the cost of building the query-tree and of building the indices is insignificant. More-
over, the results suggest that these methods will scale up to larger knowledge bases
and will be especially effective there. For instance. in Example 1.1 when the query-
treé deemed 65% of the ground facts in the knowledge basé irrelevant to the query,
inference was sped up by a factor of 15. When 80% of theé ground facts were deemed
irrelevant the speedup grew to a factor of 90.

We also discuss how the quéry-tree can bé used to exténd more sophisticated query
evaluation schemes such as message-passing schemes [Van=Gelder, 1986] and magic

set_transformations {Ullman,.1989].

3. Detecting irrelevant updates: A frequent operation in persistent knowledge
bases is recomputing a query aftér an update is made to the knowledge base. However,
in mary cases this computation is wasted because it can be shown that the update
will not affect the query, evern without actually computing it. We discuss. how to
detect independence of queries from updates by formulating the problem in terms
of relévance.reasoning.. Wé show how to use the query-tree and other techniques
developed in Chapter 5 to detect independence efficiently.

4. Automatically creating abstractions: As stated earlier, having a more par-
simonious representation of the problem domain will lead to more efficient inference.
Abstracting a representation to eliminate irrelevant distinctions will result in rmore
parsimonious représentations. We show how thé creation of abstractions can be posed
as a task of relevarce reasoning, based on the intuition that.a good abstraction is one
that removes irrélevant details. We present several algorithms for automatically cre-
ating abstractions, based on algorithms for detecting irrelevance.

1.2.4 Irrelevance Reasoning in Automated Modeling

An important domain in which.relevance reasoning plays a key fole is the domain of .
modeling physical systemns. We apply the framework in this domain to the task of .

autornatically selecting a model for a given.system that is appropriate for answering

a given query. . Briefly, the problem we consider can be formulated as follows. The.

input consists of three elements:
e Domnain theoty

e A system deéscription.
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e A quéry about the system.

The domain theory consists of a set of nodel fragments {Falkenhainer and Forbus,
1991], Each model fragment describes & single phénomenon in the physical world. For
example, a model fragment may describe the dependence of the voltage of a battery on
its charge level, or it may describe the process of fluid flow through a pip¢ connecting
two containers. The same phénomenon may be described by several model fragments,
that differ it the lével of detail and the abstractions and approximations made. Each
model fragment has a set of operating conditions statirig when it is applicable. An
adequaté model of the system is a set of model fragments from the domain theory
that have ¢onsistent operating conditions.

The system description is a set of facts about the system, including structural

specifications and initial values on some of the system parameters. The query is some,
parameéter (or sét of parameters). and the answer to the query is a description of the .

changes of that parameter over time.

The output of the model formulation problem is a.set.of model fragments from the
domain theory that can be used to answer the query about the device. The goal of th
model formulation problem is to find the simplest model that can explain ¢oherently
the value of the query parameter over time.

Our approach to the problem is based on the observation that several of its aspects
can be viewed as instances of relevance reasoning. First, in order to decide which
phenomnena need to be in¢luded in a model of the device, we need to determine
which aspects of the domain are relevant to the specific query. This requires that
we follow the possible causal influences on the-query parametér. Second, in selecting
among multiple model fragments representing different ways of modeling a specifie
phenomenon, we need to reason explicitly about the assumptions being made by each
rodel fragment. We show that many of these assumptions <an be stated as irrelevance
¢laims about some aspects of the domain. Finally, the focus of our application is to

select a model for simulation of the device over time. However, we do not krnow all .

the conditions that may arise in the states of the simulation. Therefore, our task is
comiplicated by the fact that we need to select a mode! based only on partial knowledge
about the states that may occur in the simulation. This is analogous to the problem
faced by the query-tree of deciding irrelévance by inspecting only a small part of the
knowledge base.

We describe a novel model formulation algorithm based on the above observa-
tions. The algorithm selects the phenomena that can affect the query by following
thé possible causal influences o the query parameter. After selecting a phenomenon
to include in the model, it chooses among the multiple ways of describing the phe-
nomenon by reasoning explicitly about the different assumptions distinguishing the
various descriptions, and choosing the simplest one that does not contradict assump-
tions made earlier. In making the selections the algorithm also in¢orporates domain
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specific knowledge that may be available from experts. This domain specific knowl:
edge 15 expressed using the language provided in thé framework.

The algorithmi has several desirable properties. First, it is guaranteed to select an
adequate model for the simulation. Seécond, given the partial knowledge it has about
the possible states of the simulation. it selects the simplest possible model. Finally.
the running time of the algorithm is polynomial in the size of the resulting model.

| The algorithm has several advaintages over previous algorithms [Nayak, 1992a:
| Falkenhainer and Forbus, 1991: Addanki ef al.. 1989]. First. it addresses the problem
| of formulating a model for simulation without ¢reating a complete envisioriment of
the possible states (as in [Falkenhainer and Forbus, 1991]). Second, the following of
possible causal paths by the algorithm frees the user from specifying possible causal
interactions explicitly (as in the component interaction heuristic [Nayvak, 1992a]). This
advantage is important since specifving these interactions is & laborious and error-
prone task. Finally. unlike the algorithm proposed by Nayak [Nayak, 1992a] that
begins with the most complicated model and .iteratively simplifies it, our algorithm
starts with the simplest model possible and makes it more complex only as required
| by the maodeling assumptions. Consequently, our algorithm is more likely to_scale up
| to larger devices..

1.3 Contributions of the Thesis

The thesis makes the following important.contributions:

framework crystalizes the issues involved in relévanc¢e reasoning; it makes sev-
eral important distirictions in the analysis of irrelevance, and it generalizes and
usiifies previous analyses.

e It presents a novel tool, the query-tree, for reasoning about irrelevance. The
query-tree is used for:

— Developing efficient algorithms for detecting strong irrelevance, The al:
gorithms are sound and compléte for knowledge bases containing funcétion
free Horn rules with a wide ¢lass of interpretable ¢onstraints. The query-
tree-can also be designed to be complete for deriving strong irrelevance
réstrictéd to minimal derivations and for rules having limited forms of
negation in their antecedents. For arbitrary Horn rule knowledge bases,
the query-tree providés a sound inference procedure for strong irrelevance.

— Pushing the tightest constraints possiblc from a given query to the ground
facts in the database, Consequertly, a filter can be applied to the ground
facts béfore evaluating the query.

o It presents a general proof theoretic framework for analyzing irrelevance. The.
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- Algorithms for deriving logical conclusiong from irrélevanee ¢laims that are
given to the system by an external source.

~ A backward chaining algorithm that is guarantéed not to pursue uséless
paths.

o [t describes experimental results showing that in practice, relevance reasoning
leads to significant speedup of inference.

e It describés an application of the framework to the problem of detecting inde-
pendence of queries from updates. resulting in:
~ New de¢idable cases for.detecting independence.
— Novel algorithms providing sufficient conditions for independence.
o It describes an application of the framework to the problem of modeling phys-
ical systems. Along with providing important insights into that problem, it

presents a novel algorithm for automated model selection for simulation based
on relevance reasoning._

e. It presents a formal connecétion between relevance reasoning and reasoning with

multiple levels of abstraction. The -connection.enables better analysis of the. ..

utility of reasoning with abstractions and.the development of algorithms for
automatically creating abstractions for a given query.

The main ¢ontributions of the thesis are in the fields of knowledge representation
and control of reasoning. It is important to note somé of the contributions that the
thesis makes from the perspective of related fields. Some were outlined in the opening
of this chapter, and severa] are mentioned below.

Deductive databases and logic programming: Much of the work in the the-
sis ¢an be couched in the terminology of these fields. A major contributién of the
query-tree is that it shows how te push constraints from the query t6 the database.
Consequently, a filter ¢can be applied to the database before query evaluation, lead-
ing to significant savings. The query-tree and the algorithms discussed in Chapter 3
make significant contributions to the optimization of query evaluation and of logic
prograrns. Specifically, the query-tree ¢an be viewed as a method for partial evalua-
tion of constraint logic programs, extending previous methods in this field.

Knowledge acquisition and knowledge engineering: The framewark discussed
in the thesis provides a basis for acquiring knowledge about irrelevance,.both by
providing an expressive language and by indicating where additional knowledge is
required. The query-tree can also be used as a tool for knowledge acquisition by
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illustrating the connections betweer pieces of knowledge in a knowledge base and by
determining the éffects of adding knowledge to the KB.

Reformulation: Subramanian [Subramanian. 1989] first analvzed irrelevance with
the goal of automating reformulations. The work.presented in this thesis advances
Subramanian’s analysis and suggests specifi¢ methods for discovering irrelevance.and
créating abstractions. Therefore. it provides a basis for research on automati¢ refor-
mulation.

1.4 Readers’ Guide

The thesis is arganized as follows. Chaptér 2 discusses the issues atising in analyzing
irrelevance, and the proof theoretic framework we propose. It also discusses properties
of irrélevance within the framework. Chapter 3 discusses the query-tree. It presents
the general.method for building a query-tree and .describes several of its instarées.

Chapter 4 discusses the usages of the query-tree in speeding inference. It presents

details of experimental. results validating the impact of the méthods.in practice.. It
also.describes algorithms for deriving logical coriélusions from given irrelevar:ce claims.
Chapter 5 irivestigates the problem of detecting independence of queries fror updates.
By translating the problem to reasoning.about irrelevance, it provides.new algorithms
for detecting independerice. Chapter 6 makes the formal ¢onne-tion between relevance
reasoning and the.¢reation of abstractions, suggesting a new approach to research on

reasoning with abstraction. The chapter demonstrates the utility of this approach by.

considering the examples of predicate abstraction and removal of predicate.arguments.
Chapter 7 dis¢usses the application of the framework to the domain of rmodeling
physical systems. Chapter 8 concludes with a summary of the contributions, and
directions for future research.

The relevant related work is discussed at.the end of each chapter. Chapter 8
contains a tabular summary of the references to related work made in the thesis. The
thesis is written so that it ¢an be read even by skipping the proofs. The proofs that
are in¢luded in the chapters are only the mést important ones or ones that can add
to the understanding of the text. Othérs appear in Appendix A.

Sceme of the material covered in the thesis apnears in shorter conference length
publicatioris. The material in Chapter 2 and Seétion 4.2 appears in [Levy and Sagiv;
1993a). Chapter 3 is covered .in [Levy and Sagiv, 1992; Levy ef al.. 1993]. The
material of Chapter 5 is presented in [Levy and Sagiv, 1993b}, Finally, tlie material
of Chapter 7 is deséribed in {Levy ef al., 1992 Iwasaki and Levy, 1993].




Chapter 2

Analyzing Irrelevance

The notion of irrelevance is useéd in many contexts in Al research. However, it is
typically used informally. Our goal is to state declaratively knowledge about irrel- _.
evance and to reason with such knowledge in a prin¢ipled manner. .As a basis for

pursuing this goal, this chapter presents a general framework for analyzing formal _

definitions of irrelevance. The framiework is based on a proof theoretic analysis of ir-
relevance. Section 2.1 begins by describing the motivations for analyzing irrelevance.
Section 2.2 describes the issues that arise in the analysis of irrelevance and the pos- -
sible approaches one can pursue. Section 2.3 describes our framework, consisting of

a space of definitions of irrelevance. It also dis¢usses properties of definitions in the —

space. .Finally, Section 2.4 formally presents the.problem of automatically deriving
irrelevance ¢laims. e e

2.1 Motivations for Analyzing Irrelevance

The main goal of our analysis of irrelevance is speeding up inference, or, more gen-
erally, problem-solving. Irrelevance analysis can be used in speeding up inference in
two ways. First, by determining that certain forrnulas in the knowledge base are irrel-
evant to a given query, the inference engine can ignore these farmulas, and therefore
prune its search significantly. Second, by identifying distinétions in the represen-
tation that are irrelevant to a specific query; we can create an abstract and miore
parsifionious representation. We can then translate the knowledge base into this new
representation, resulting in more efficient inference.

The analysis of irrelevance is also important in other ¢ontexts in Al for purposes
other than speeding up inference. In some cases an.understanding of irrelevance is
needed in order to determine which inferences can be made, as the following examples
illustrate.

15
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. Non monotonic reasoning: In 1ion meonoténi¢ reasoning, the addition of

knowledge ¢an cause previous conclusions to be retracted. Consequently. con-
clusions drawn in nén monotonic reasoning formalisms depend in subtle ways
on which knowledge is considered. The following éxample (from [Péarl, 1990})
illustrates that dependency:

Example 2.1: Consider a knowledge base containing the following:

Birds typically have wings.
Birds typically fly,
Penguins are birds,
Penguing don't fly

Suppose our query is: Do pengiins have wings? The difficulty in answering the
query is that penguins are abnormal.with respect to flying, and. therefore, may.
be abnorinal in other ways too, such as having wings. However, the fact that
a specific bird is a penguin is irrelevant to whether it has wings .or net, and
therefore we would like to ignore.the abnormality of penguins.and to ¢onclude
that penguins do have wings.! As another example, suppose our query is Can
red birds fly?. Here too, we are asking about a property of a subclass of birds,
which, as with the subclass of penguins, may be abnormal with respect to flying.
However, the fact that a bird is red is irrelevant to its flying ability. 8

Designing non rmonotonic. reasoning formalisms that are able to igriore irrele-
vant information has received a lot of attention recently {Pearl, 1990; Geffner
and Pearl, 1990; Bacchus et al., 1993). However, in that work the notion of
irrelevance is either treated informally, or the definitions that are used are very
simple minded.

. Reasoliing by analogy: In reasoning by analogy we conclude properties of one

object from properties of another, based on a possible analogy existing between
the two objects. However, for the reasoninig Lo be meaningful, the analogy
between the objects must be relevant to the property being conéluded. For
example, suppose we state the analogy: Fred is like a firezengine. Intuitively,
we may use that to ¢onclude that Fred is loud, or that his activity level is high.
However, it seems improper to conclude that Fred's ¢olor is fed, or that his fuel
consumption is medium, since theése properties are irrelevant to the analogy
between Ired and a firezengisie.

‘It may bé argued that having wings 1s relevant t6 the ability of a bird t6 fly. However, this is
not explicitly stated in the-knowledge base, The first statement of this example can also be replaced
by any property of birds that is completely unconiieéted to flying.
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The notion of irrélevance also plays an important role in deésigning algorithms for
abductive reasoning [Levesque. 1989] and for belief revision [Gardenfors, 1988].

2.2 Issues in Analyzing Irrelevance

In this section we discuss séveral of the issues that arise in an analysis of irrelevance,
and provide the motivations underlying our approach. Throughout this chapter we
will be concernéd with defining formula-irrelevance, i.e.. given a knowledge base of
formulas A, a query ¢ and a formula f (not necessarily in A), when do we say that
f is irrelevant to g with respect to A. Irrelevance of other kinds of subjécts, such
as predicates, objécts, predicate refinements and object refinements are considered in
Chapter 6.

Two Possible Approaches: Common Sense Formalization vs. Problem
solving Analysis

Broadly, we distinguish two possible approaches to analyzing irrelevance. The first .

approach, which has been pursued by several philosophers ({Keynes, 1921; Carnap,
1950; Gardenfors, 1978]), is to try to capture our common sense notion.of irrelevance
with a formal definition. In.that approach, we would consider a formal definition of
irrelevance and ¢heck. whether it satisfies properties which we consider natural for our
intuitive notion of irrelevance.

The sécond approach is to analyze the ways in which irrelevance arises in problem-
solving. Here too, we would consider various définitions of irrelevance and investigate
their properties. However, the properties of interest will be those that are informa-
tive in designing inference methods that utilize irrelevance. To illustrate this point,
consider the following example.

Example 2.2: Suppose we have the following knowledge base Ag:

r, : attendClass(X,Y) = pass(X,Y).

ra: passbzam(X,Y) = pass(X,Y).

ra : pass(X,Y) A tookGradCourse(X) = canTA(X,Y).
re s pass(X,Y) A (Y 2200) = tookGradCourse(X).

g1 : attendClass(Fred, 101).

2 : passEzxam{Fred, 101).

gs : pass Ezam(Fred, 161):

gq : passEzam(Fred, 123).

gi : passEram(Fred, 202). | __
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And let our queéry be ¢ : ¢canT A(Fred. 101).

Each of the ground atoms g,-g; can be considéred irrelevant to the query in
isolation, because for each.of them. the query ¢an be derived without using them.
Howeéver. there are differerices between these irrelevance ¢laims. For example, g3 and
g4 will not beé part of any derivation of the query. and therefore can be both ignored.
Even though the query can be derived without g1 or g, one of them is alwavs needed,
and therefore, we can not remove both. The ground atom canT A(Fred.202) can also
be considered irrelevant to thé query. but in a somewhat weaker sénse. Although it
is niever part of any derivation of the query. it is always entailed by the formulas used
in the derivation of the query.

Consider the query canT A(Fred. 202). The atom passExam(Fred,210) can be
part of a deérivation of this query (if it were in the KB), but such a derivation would
not be minimal, in.the sense that the set of ground atoms that it uses from the KB
is not minimal (i.e., using gs is énough for entailing the query). Finally. the rule
passEzam(X.Y) A (Y > 200) = canT A(X.Y)

could also be .considered irrelevant. since the query can be derived without .it. How-

4

éver, for .some inference mechanisms, it may be the case the this rule will speed. .

inference,.since the query ¢an he derived using one rule application instead.of two. §

The analysis presented in this dissertation is based on the ways in which irrelevance
arises in problem solving, for two reasons:.

I. Our prime concern is speeding up inference, and therefore, we desire that our

analysis provide the distinctions necessary to exploit irrelevanée in inference .

methods, such as those illustrated in the example.

2. Moreover, even if we could agree on a single best formalization of éur common
sense notion of irrelevance, it will have many different manifestations in infer-
ence dépending on the form 6f the knowledge base and the inference method.
It is therefore important to distinguish these manifestations in order to develop
methods for speeding up inference:

Clearly, these two approaches to analyzing irrelevance are ot independent of éach
other. On the one hand, the analysis of irrelevance that we consider is inspired by
our commion sense notion of the ¢oncept, and the definitions we examine mirror it in
various ways. We will also see that the distinctions made in our analysis ¢orrespond
to properties of the common sense riotion of irrelevance. On the other hand, given a
formalization of the ¢ommon sense notion of irrelevanice, analyzing it in our frame:
work will provide a way of using it for speeding up inference. However, it should
be ermphasized that the approach we have taken is intended to be évaluated on its
uséfulness for speeding up inferenée, not on how well it captures intuitive niotions of
irrelevance,
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Irrelevance With Respect to Given Evidence

Much of the work én formalizing irrelevance (including the work in the philosophy
literature) has focussed on the following question:

o Given a set of evidénce £ and query q. which formulas are irrelevant to g with
respect to the evidence?

In our analysis, the knowledge base acts as the evidence, and therefore the question
we address is the following:

o Which parts of a given kriowlédge base A are irrelevarnt to ¢?

The difference between the two yuestions is that in the first, the set of evidence
formulas is given special treatment by being given priority over the other formulas. In
the second..the KB. A acts as our evidence; however, our goal is to. find which parts
of the evidence.are irrelevant to the. query. It may seem that the second question
can be considered. an instance of the first. by equating 4 and £.2> However, several
assumptions made in addressing the first question (e.g.. (Gardenfors, 1978]) make it
impractical to use the solutions for the se¢ond question. For example, one assumption
is that any formula f € £ will be considered irrelevant to the query (since it is already
known and does not change the .state of affairs). Another property considered is
independence of the form of the evidence, i.e., if £ is equivalent to &, thea. the
formula f is irrelevant to ¢ w.r.t. & if and only if it is irrelevant.to q w.r.t. &.
In Section 2.3.4 we will see that our framework is general enough to accommodate
definitions of irrelevance that give spe¢ial treatment to a subset of evidence formulas.

Irrelevance as Belief Revision

Intuitively, a formula f is irrelevant to a query ¢ with.respect to a KB A if f can
be removed from A and ¢ will still be derivable. This intuition ¢an be generalized
by relating irrelevance to the notion of belief revision. Specifically, a formula f is
irrelevant to a query ¢ w.rit: & KB A, if the result of revising A so that it does
not entail f does not affeét its entailmient of q. Formally, let o be a belief revision
operator. Given a knowledge base A and a formula é, A 0 ¢ returns a (consistent!)
revision of A that entails ¢. Using this operator, we can define irrelevance as follows:®

Irrelevant(f.q.A) &= (Ao f)Eq & (Ao~f) Eg)
?Another way to relate these two questions is by éonsidering the set of evidence empty: However,
in such cases, the propésed solutiéns to the first quéstion trivialize.
INote that if A is consistent, then either {A o f) 6r (A o =f) will be simply AU f.
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Many definitions have been proposed in the literature for & belief révision operator
(e.g.. [Dalal. 1988: Winslett. 1990: Fagin €t al.. 1983: Nebel. 1989; Alchourron et al..
1985]). Theére is little agreement on a singlé best definition. and the properties that are
widely considered desirable of such an operator (e.g.. the AGM postulates [Alchourron
¢t al., 19383]) give us little information about the résulting properties of irrelevance. In
this dissertation weé address directly the notion of irrelevance. However, investigating
connections bétween our analysis and béliéf revision is an interesting area of résearch.

Our Approach

In order for our analysis of irrelevance to be useful, we desire that it enable us to
make sufficient distinctions to answér the following questions:

1. Can we decide automatically which formulas are irrelevant to a given query?
Can.we do so.efficiently?”

2. If an irrélevant formula is removed, i¢ inference guaranteed to be more efficient?

3. How can we autornatically derive additional irrelevance claims? For example,
does irrelevance of a formula imply the irrelevance of a syntactically related
formula?.

In order.to capture the distinctions needed to answer these questions, we present

an analysis of irrelevance in terms of the possible paths that.an inference engine -

may pursue in the solution of 4 query. \We present a.space of possible definitions of
irrelevance and investigate the properties of various definitions in the space. In our
discussion, we focus on inferenée mechanisms that attempt to construct derivations
of answers to thé query, and therefore, paths are actually the possible derivations
that the inference mechanism may consider in its search. However, the framework is
general and ¢an accommodate other types of problem solving methods. An example
of 6ther methods will be discussed in Chapter 7 when we consider réeasoning about
physical systems. As examples of definitions in our space, we may consider f to be
irrelevant if there is some derivation of g that does not use f, or if f is not used in
any derivation of q. or if f is not used in any minimal derivation of . The next
section presents the space of definitions of irrelevarice.

2.3 A Space of Definitions
2.3.1 .Preliminaries

In our discussion we assume the theory of the domain is represented by a knowledge
base of closed formulag A, in first order predicate caléulus. We assumie that the
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inference mechanism eémploys a set of sound inference rules S. A derivation D of
a closed formula + from A is a sequence of formulas, a;.....ay, such that a, = v
and for each i (1 < i £ n). either a, € A, a, i$ a logical axiom. or a, i$ the result
of applying a rule in S to some elements a;,.....a, that appear prior to @,. The
fsrmulas a,,,....q; are said to be immediaté subgoals of &,. The set of formulas
in D that do not have any subgoal i$ called thé base of theé.derivation, denoted by
Base(D). The set Base(D) represents a “support set” for v in the knowledge base.
We consider only derivations in which every a; is a subgoal. of v (not necessarily an
immediate subgoal).

A query is represented by a formula ¥. If 4 is a closed formula (i.e., has no free
variables), then the answer is true if the inference mechanism can find some deérivation
of ¥ from A, and false otherwise.* If v contains free variables, the answer is the
set of assignments for the tree variables, such that the resulting closed formulas are
derivable from A:% in this case, a derivation is a set ¢ontaining a single derivation for

each answer. A query may have seveéral derivations from a given knowledge base, and .

we denote the set of those derivations by Dy(A) (note that if ¥ has free variables,
then D, (A) is a set of sets of derivations).

Our goal is to definé the meaning of an irrelevance-claim stating that a formula
¢ is irrelevant to a query ¥ with respect to a knowledge base A. The.formula ¢ is
called the subject of the irrelevance ¢laim.

2.3.2 The Axes

As stated, we describe a space of possible definitions of irrelevance. Definitions in
the space vary along two axes. In the first axis we consider different ways of defining
derivation irrelevance, i.e., irrelevance of a subject ¢ with respect to a single derivation
D of the query . Derivation irrelevance is given by defining a binary predicate
DI{#, D). The following are a few examples of how DI can be defined:

o DI,(¢, D) iff ¢ & Base(D).
o Diy(¢,D)iff o ¢ D.
o DI3(é, D) iff Base(D) ¥ o.

o DI1(é, D) \fl Base(D) b= ¢, ~¢.

4We can return unknown if neither @ nor =@ are derivable. However that does hot affect our
discussion. ] ] o '

®An alternative definition often considered (e.g., in Prolog) is fiding one variable binding that
satisfies the query formula. However, this distinction does not affect our discussion,
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Definition DI, réquires that o not be in the support set of the derivation D. Definition
DI, is stronger and requires that o not be anywhere in D. Definition D/; is even
stronger and réquires that ¢ not be a logical consequence of the formulas in Base(D).
and DIy requires that —o not be a logical consequence either. The relationship
between these definitions of D/ can therefore be summarized as follows:

Proposition 2.3: D/y(o. D) = Di3(0. D) = DI(6.D) = DI(0. D).

Requiring that D/ holds for all possible derivations of the query may be too re-
strictive. Therefore, in the second axis wé consider different subsets of the derivations
of the query for which we require D/ to hold. Formally, given the possible deriva-
tions of ¢ from A, Dy(A), we consider a subset Dp(A) of Dy(A), (which may be
Dy () itself), and require that D/ hold for derivations in Dy(A). For exarnple, we_.
¢an require DI to hold only for the set of minimal derivations. In section 2.3.4 we
consider several definitions of minimality for a derivation. As another example, we
can consider only the set of.dérivations bounded by some.resource constraint.

Given a ¢hoice for DI and D, we give two.definitions of irrelevance, depending
on whether D/ is.required to hold for all derivations in Do(A) or for some derivation
in Do(A).® Formally, a definition of irrelévance in our space is_given as follows:

Definition 2.4: Suppose we are given:-
1. a knowledge base A,
2. a closed formula ¢ (the subject), .
3. a query ¥,

4. a predicate DI(r, D) specifying when a formula 7 is irrelevant with respect to
a derivation D,

5. a subsét Da(A) of Dy(A).

The formula ¢ is said to be weakly irrelevant to ¥ with respect to A, DI and Dy,
denoted by Wi(¢,¢,A, DI, Dy), if DI(#, D) holds for some D & Dy(A).

The formula ¢ is said t6 be strongly irrelevant to ¥ with respect to A, DI and Dy,
denoted by S5I(¢,¢, A, DI, Dy), if DI(¢. D) holds for every D € Dy(A).

If Dy.(A) is emipty (ie., ¥ is not derivable from A using S), the formula ¢ is both
wea.kly and sttongly n‘relevant to AN |

°\\re can also ¢onsider other wa.ys of quanufymg over.the set Do(A), such as requiring that D/

holds for some percent of the derivations in Do{A). Here we consider only universal and existential
quantification.
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In our discussion we want to refer to irrelevance of a set of formulas. Formally.
we define irrelevance of a set of formulas by extending the definition of DI:

Definition 2.5: If ¢ is a set of formulas. D/(®. D) holds if DI{¢,. D) holds for every
NN |

The definitions of strong and weak irrelevance remain unchanged. It will also be
useful to state irrelevance claims that hold for a set of knowledge bases. For example,
in the contéxt of Horn rule knowledge bases. we will want to know whether a rule is
irrelevant with respect to all the knowledge bases that differ only in ground atomi¢
facts. We extend the definitions to sets of knowledge bases as follows:

Definition 2.6: Let T be a set of knowledge bases. We say thz' ¢ is weakly irrelevant
to ¢ with respect to I, denoted by W/i(o.v'.E, DI.Dy). if @ is weakly irrelevant to
v with respect to every KB in &, i.e.. if W/I(@.¥. A, DI, Dy) holds for every A € T.
The definition for strong irrelevance is exténded likewise. Note that Dy is actually a
function that for every given A € £ returns a subset of Dy, (A). 1

Strong irrelevanc

Set of -
derivations ——
to consider
Minimal support
derivations dirreleval o
Minimal derivations Not used
(no loops) - any
All derivations 4 " derivation
;{ Wi
Not used in some
DI DI, DI, DI, derivation of the query.

Derivation-irrelevance: Irrelevance
w.r.t a single derivation, DI

Figure 2.1: A space of definitions of irrelevance. The first axis consists of different
definitions of derivation irrelevance. The second axis consists of the set of derivations
considered. Weak irrelevance and strong irrelevance differ on the way we quantify
D1, over the derivations chosen in the second axis.

The space of definitions is summarized in Figure 2.1. In Example 2.2 presented
carlier, we can see different kinds of irrelevance claims. The atom g, (as well as the
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atom g;) is weakly irrelevant to the query g = canT A(Fred, 101), since there is a
derivation of ¢ that does not usé g, (i.e.. uses ¢» instead). Consequently. W' /(ga.
q. Ao, DI>.D,) holds. The atom g3 (as well as gy) is strongly irrelevant to q. be-
cause nuné of the derivations of q use it. Consequently, S$I(gs, q.No. DI2.D;) and
S1({g3.g4}. 9. Ao. D12, Dy) hold. .

The atom q; = canT A(Fred.202) is strongly irrelévant to q if we consider dériva-
tion irrelevance based on D[;. However, if we consider derivation irrélévance based
on DI3, it is not strongly irrelevant, since the .formulas used to dérive ¢ can also be
used to derive q.

Finally. if we consider the set of all derivations of the quéry q;, D,,, then the atom
pass Exam(Fred.210) is not strongly irrelevant to the query. since it can be used in
a derivation of q; (to derive tookGradCourse( Fréd)). However, if we consider only
derivations in which Base(D).is minimal (i.e., there is no subset of Base(D) that is
enough.to derive the query), then passEram(Fred,210) would not be part of any
derivation of g;. and would therefore be strongly irrelevant to it.

2.3.3. Properties of Definitions In The Space

Several general propertiés of definitions in the space will be useful in the analysis of
specifi¢c definitions. The following lemma establishes an ordering on definitions in the
space, and will enable us to derive properties of definitions based on.properties of
othér definitions in the space.

Lemma 2.7: Let DI.DI; and DI, be definitions of derivation irrelevance. Let & be a
set of formulas, i be a query end £, X, and T, be sets of knowledge bases. Finally, let
Dy, D1, Dy be functions that given a KB A.and a query ¥, return a subset of Dy(A).

L. If DI(t. D) = DIj(r, D) for any set.of formulas v and derivation D, then for
any set of formulas ®, query i, set of knowledge basés ¥ and set Dy

SI(®,¥,%. DI;, Do) = SI1(®.4, T, DI;, Do)

and .

WI(®,¢,Z, DL, D) = WI(®, .S, DI}, Dy).

[ £

IfDy(A) C Di(A), for any knowledge base A € S, then for any set of formulas
¢, query ¥ and definition DI

SI®,¢.S.DI.Dy) = SI(®,¢, S, DI, Dy)
holds. For weak irrelevance, the opposite holds

WI(®.¢.S.D1.D;) = WI(®.u, 5, DI, Dy).
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3. For any set . v, DI.E and Dy
SH®. S DIL.Dy) = W v, S DI, Dy).
4. If S, C %y then
SI(®.v.Se. DI, Dy) = S1(®, ¢, 54, DI, Dy)
WI{d w.S3.DI.Dy) = WIS, ¢, 5, DI. D)

Proof: The proofs follow straightforwardly from the definitions. Consider Part 1.
Suppose SI{($.v.L.DI,,Dy) holds and let A € E. Therefore, for every deriva-
tion D € Dg(.\). DI,($. D) holds and therefore, by the assumption of the léemma,
DI,(®, D) holds. Consequently, DI[,(®, D) holds for every D & Dy(A), and so

| SI{(®,%,X,DI;, Dy) holds. The proof for W[ is similar.

Part 2 about. strong irrelevance follows from the observation that if DI holds for —

| ali derivations in the.set D,(A), it will hold also for all derivations in its subset D;(A).
For.weak irrelevance, the claim follows from the observation that if a property holds
for some derivation in D;(A). it will obviously hold for some derivation in Di(A). __

Parts 3 and 4 are immediate consequences of the definitions. §

§ An important property of irrelevance ¢laims is whether they are closed under the
| union.of their subjects. This is important when a system needs to determine whether
it can use all the irrelevance claims it has, or whether using certain ones will falsify
others.

Observation 2.8: Closure under union: Weak irrelevance claims are not closed
under the union of their subjects in general. In contrast, for strong irrelevance claims
(and ¢ombinations of strong and weak irrelevance) we have a sufficient condition for
closure.that depends only on. DI. Specifically, whenever

DI(®,,D) A DI(®;,D) = DI(®, U ®,, D)
holds for any derivation D and sets €, ®, , then for any choice.of Dy and X,
SI(®,¢,Z, DI, Do) A SI{(®2,¢,5, DI, D) = SI(®, U dy,%, X, DI, D)
and
SH®1, ¥, S, DI, Dg) A W I(®4,9, 5, DI, Do) = WI(®, U &g, 0,5, DI, Do),
However,
WI(®,,¢,E, DI, Dy) A BI(®g, v, 5, DI, Dy) = WI(®,Ud;,9,%, DI, Dy)

does not hold in general. ’ _
The reverse holds for all definitions, i.e.. if @ is irrelevant t6 3 and &; C &, then
¢, is irrelevant to y.
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Proof: Suppose S/(¢, ¢ S.DI. Do) A S1(®;. 0. 8. DI.Dy) holds, and let A € €.
and D be a derivation in T%(2). Since both DI(®,.D) and DI(®,. D) hold. also
DI(®, U ®,. D) holds. Because this holds for any D € Dp(A) and N € N, then
SH{@U ¢z v, S, DI, Dy) holds.

The proof for the second claim is similar. We simply consider the derivation D) for

which DI(®3. D) holds, and DI($, U ®,, D) will hold. The weak irrelévance claims

for g1 and g3 in Example 2.2 present a counterexample of the third implication. §

Observation 2.9: Non-monotonicity: In ordeér to exploit irrelevance claims, it is
important to know whether their truth changes when the knowledge base changes.
In general, adding new formulas to the knowledge base tmay causé a formula that
was irrelevant to become relevant, or vice versa, a formula that was. not irrelevant can
become irrelevant. Weak irrelevance claims can charige even when the added formulas

are logical conseéquences of the knowledge base. In contrast, strong irrelevance claims.
are more.robust. Definitions of strong irrelevance claims have the property that they -

do not change when the added knowledge is obtained by reasoning with the original
knowledge base.” Specifically. if A+ 7 and A is consistent. then

SI(®. 9. A, DIy, Do) = SI(®,¥,AU 7, DIz, D)

Hence a strongly irrelevant formula can not become relevant by reasoning on existing
knowledge.®

Proof: Suppose that SI(®,v,A.DI;, Dg) holds and suppose in ¢ontradiction that
D is a derivation of ¥ from AU T such that € D and ¢ € ®. We create a derivation
D' of 4 from A such that = € D'. The only inodification to D is to replace every
appearance of 7 as a leaf in the proof tree by the derivation of 7 from A. The result
is & derivation of ¥ from A that includes ¢. Consequently, SI(®.4, A, DI3,Dy) does
not hold. §

As stated in our ériginal motivations, for tnost definitions of ifrelevance (and in
particular all the definitions we consider here), if ¢ is irrelevant to w, it can be safely
removed from the knowledge base:

Observation 2.10: For any definition of irrelevance that uses a definition of dériva- .

tion irrelevance DI such that DI(¢. D) = DI,(#, D), then A k= % holds if and only
if (A= ¢) =9

"This property also seemis natural for our ¢ormon sense .notion of irrelevande.
8 Assumiing our inference is monotanic. —
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(M)
-1

Proof: Suppose W /{é.1'. A, DI.Dg) holds. This means that if A F ¢, then Do()
i5 not empty, and ¢ has some derivationn D for which D(o. D) holds, Thé formula ¢
is not a member of Base( D) because DI(o, D) also holds. Therefore, the derivation
D will also be a valid derivation from A ~ ¢. B

The utility of removing an irrelevant formula is 2 more subtle issue. Removing
a formula that is only weakly irrelevant may not speed inference. In fact, explana-
tion based learning systems [Minton et al., 1989] do exactly the opposite, they add
redundant rules (which, in our frameéwork, would be considered weakly irrelevant).
The utility of adding such rules is a subject of ongoing research (e.g. [Minton, 1988;
Etzioni, 1990; Greiner and Jurisica. 1992; Etzioni and Minton, 1992)).

For strong irrelevance, savings are guarantéed for many cases. For example, when
considering all derivations of the query (i.e., Dg = Dy), if SI(®,9¥, A, Dij, Dy) holds,
then deriving ¥ from A —~ ¢ costs no more than deriving it from A. .This property
also holds if we consider a set of derivations Dg(4), such that the inference engine
is always guaranteed to find one of the derivations in Do(A) before. it finds others.
Removing strongly-irrelevant formulas vields savings from several.sources:

e Removing irrelevait formulas prunes whole branches of the search space.

o Much of the cost of reasoning in a large knowledge base is in doing database.

lookups. Removing a large number of irrelevant ground facts at the outset will
significantly reduce the cost of each lookup operation.

e If updateés are made to the KB that ¢oncern only_irrelevant formulas, then we-

need not recompute the answer t6 the query.

e Space savings aré achieved from removing the irrelevant formulas.

2.3.4 Examples of Definitions

In this section we describe séveral instances of definitions in the space. We begin by
showing how definitions in prévious work ¢an be ¢ouched in the space.

Other Definitions From the Literature

Subramanian investigates several definitions of irrelevance, which are all instances of
weik irrelevance in our framéwork. Thé main definition investigated in [Subramanian,
1989) is the following:

Definition 2.11: Let ¢ bé a formula, ¢ be a query and A be a knowledge base,
The formula ¢ is said to be irrelevant to ¢, denoted by W1i(¢, 9, A) if there exists a
subset Ay of A, such that &\, £ & and A, = ¥. B
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This definition can bé couched in our framework as follows:
Obseérvation 2.12: For a complete set of inferénce rules S,
Wihle.v A= Wi(e, 0. A. D, D,).

Proof: Suppose W/ (&, v, A) holds. Therefore, there is. some subset A of A such
that A; = ¢ and A B ¢ and there is some derivation D of ¢ from A,. Clearly.
Base(D) ¥ ¢, and consequently, W /(o. ¢ A, D3, Dy) holds.

Conversély, assume W (o, v, A, DI;.Dy) holds. Consequently. there is some
derivation D of ¢ from A such that Base(D) l& é. The KB consisting of Base(D) is
a subset of A and does not entail é. Consequently, W I,(#,%,A) holds. &

A variation of this definition that is described.in [Subramanian and Genesereth, .

1987) can be formulated as Wi{¢, ¥, A, DI, Dy). Couching Subramanian’s defini-
tions in our framework highlights some of the propertiés of her definitions, mainly
the fact that removing irrelevant formulas may not always lead to speeding up infer-_
ence.

A definition of irrelevance.is described in [Srivastava and Ramakrishnan, 1992].
Their definition is equivalent to strong irrelevance when DI, is quantified over the
set of all derivations of the query, i.e., it is equivalent to SI(¢, ¥, 4, DI, Dy).

Several.resolution strategies are based .on removing irrélevant.clauses. For ex-
ample, for refutation resolution, clauses containing pure literals® can be shown to
be strongly irrelevant (with respect to DI, and D), and ¢an therefore be removed.
Tautologies ¢an be shiown to be weakly irrelevant (with respect to DIy and Dy) and .
therefore are rerioved by the tautology elimination strategy [Genesereth and Nilsson,
1987].

The question of detecting when a query is independent of an update is closely
related to the aotion of irrelevance. In Chapter 5, we show that definitions of in-
dependence investigated by Elkan (Elkan, 1990) and Blakeley et al [Blakeley et al.,
1989] are equivalent to weak irrelevance (specifically, WI(é,%, 4, DIy, Dy)). This
observation enabled us t¢ dévelop new algorithms for detecting independence.

Irrelevance with Minimal Derivations

Interesting definitions of irrelevance are obtained by considering ¢ases in which DI
is required to hold only for minimal derivatiéns, i.e., where the ¢hoice Dy along
the second_axis is the set of minirnal derivations. There are many ways of defining
minimality of derivations. Here, we consider three possible definitions: Recall that

%A literal is pure if and ouly if it has no instance that is complenentary to an instance of another
literal in the knowledge base {Genesereth and Nilsson, 1987].
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a deérivation is a séquencé aj..... an. and it can bé viewed as a tree formed by the
subgoal relation. The following aré three possible definitions of minimality.

M1: A derivation D is minimal if does not have two identical formulas, a, and
a, such that a, is an ancestor of a;.

M2: A derivation D is minimal if whenever a; and a; are two identical nodes
in the tree, their subtrees are identical. (essentially this means that if a formula
is used in two places in the proof, then its dérivation in both places is identical).

M3: A derivation D is minimal if there is 1o other derivation of the query D'
such.that Base(D') C Bas¢(D) and Base(D') # Bas(D).

To see the difference between the classes of derivations, consider Example 2.2 and
assume we also had a rule
rs :canT A(XN.Y') = pass(X.Y).

Figure 2.2 shows three derivations. Derivation (&) is not 2 member of M1 because
pass(Fred,202) is a subgoal of the.query. Derivation (b) is a member of M1 but
is not a member of M2 because pass(Fred,202) is derived in two different. ways.
Finally, derivation (c) is a member of M1 and M2, but not a member of M3 because
the query.-can be derived using a subset.of the base of the derivation (using only
pass Ezam(Fred,202) and the rules).

Note that M1 2 M2 but M1 2 M3. Interestingly, the definitions of strong
irrelevance for M1 and. M2 turn.out to be equivalent:

Lemma 2.13: The definitions of strong irrelevanée are equivalent for M1 and M2,
i€,
SI{¢. S, DIy, M1) = SI1(¢,4, T, DIy, M2).

Strong irrelevance for M3 is stronger than the other two, i.e.,

SH{e, 0. . DL, M3) = S1(¢,¥, 8, DI, M2):
Proof: Since M1 2 M2, it follows from Lemnma 2.7 that

SHe,w, S, DIy, M1) = Sl{¢, ¢, S, DIy, M2).
To show the converse, we show that if [ is a derivation of ¢ from & knowledge base
A € U such.that.¢ € D and D.€ M1, then thereis a derivation D' {of ¥ from A),
such that @ e D' ‘and D' € M2. Consequently.

SSI{@:u 8. DI M1) = ~S1(¢, ¥, Z, DIz, M2)
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Figure 2.2: Minimal derivations

and therefore i
SI{¢,%,%, DIz, M2) = SI(¢, 9, %, DI;, M)

Let D a derivation such that ¢ € D and D € M1. Suppose T is a formula that
appears twice (or more) in D with non identical subtrees, T} and T;. Let T be one of
these subtrees in which ¢ appears (if ¢ does not appear in either. T} or T; then choése
oiié arbitrarily). Replace all the subtrees of 7 in D by T'. Note, that since ¢ € M1, this

transformation is well defined. Denote the resulting derivation by D'. The derivation
D' is a valid derivation of the query, it in¢ludes ¢ and furthermore, 7 has a unique
subtree in every appearance. We repeat this transformation until we ¢annot find a
formula 7 which appears with two (ér rore) non idéntical derivation subtrees. The
tesulting derivation will be 4 member 6f M2 and will include ¢. Note that the number
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of transformations must be finite, because the number of transformations we perform
is at most the number of distinct formulas in D.

To show that strong irrelevance for M3 entails the other two, we show the fol-
lowing. Let D be a derivation such that ¢ € Base(D) and D € M3. We construct
a derivation D' such that ¢ & Base(D') and D' € M1 as follows. For every pair of

identical nodeés m,, 7 € D such that 7 is an ancestor of 7, we replacé the subtree of -

7, by the subtree of .10 The resulting derivation D' is a member of Af1. Moreover,
if © € Base(D) then & € Basé(D'), otherwise, D would not be a member of M3. As
before, this construction shows that

~S{(d. 0. 8. DI M3) = =S1(é, v, 5. DI}, M)
and therefore

1(¢\L' -uDl] 1‘11) I(Q,L\—a D!],A[3)

It should be.noted that removing formulas that do not appear in minimal deriva-

tions (of the.type M1) will speed up inference for many search strategies. employed.

by inference.engines. For example, an inference mechanism performing depth-first
search or breadth first search will always find a derivation of the query that belongs
to M1 before it finds one that does not.

In Chapter 3, we describe an algorithm for automatically deciding which formulas
are strongly irrelevant to & query when considering M1 (and therefore also M2) for

Horn rule theories. We also show that deciding which formulas are strongly irrelevant .

for M3 is undecidable in general. However, Lemma 2.13 implies that the algorithms
of Chapter 3 provide a sufficient condition for strong irrelevance for M3,

Relationship to Truth Maintenance Systems

Strong irrelevance for M3 can be characterized in terms of labels in an assumption
based truth maintenance system (ATMS) |de Kleer, 1986):

Observation 2.14: Assume a complete set of jnférence rules and let @ be a formula
and ¥ be a query. SI(¢, 4. A, DI, M3) holds if and enly if ¢ does fiot appear in any:
ATMS label of ¢.

Proof: An ATMS label of ¥ is a set of support S such that S j= ¢ and such that
there does rot exist a subset S’ C § such that §' |= ¢. Clearly, SH($,¥,8,DN, M3
does not hold if and énly if there is some derivation D such that Base(D) is a rinima.
support set for ¢, The set. Base(D) will be the ATMS label for . 8

‘°lf there are 5cvcral such pairs, we do #o in an arbitrary order.
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This observation shows that even though finding all formulas that cannot appear
in the ATMS labels of a query is undecidable, the algorithms that we present for
déciding strong irrelevance can bé used to prune formulas from consideration when
computirig ATMS labels.

Evidence Based Definitions Revisited

As described in the beginning of this chapter, much of the prévious analysis of ir-
relevance was done in a slightly different context. Specifically. it has addressed the
following question:

e Given a set of evidence £ and query ¢. which formulas are irrelevant to g with
respect to the evidence?

As stated, our analysis differs in that we want to know which part of our knowledge
base.(that can be viewed as evidence).is irrelevant to the query. To.reconcile the two,
we can ask the following question:... .

e Given a knowledge base \ and a subset of it £ called the evidence, which parts
of A are irrelevant.to ¢, given the evidence?

Intuitively, the formulas in £ ‘are.basic assumptions about the domain that we
want to usé if possible. We can define such a notion in our framework in several

ways, One way is to limit the set of derivations considered to those in which formulas .

in £, if they appear in a derivation D, must be in Base(D). This means that we
do not allow evidence to be derived from other formulas. A slightly stronger way of
formalizing this notion is by considering derivations of the query that have minimal
support with respect to the evidence £, denéted by De, as follows:

Definition 2.15: A derivation D is said t6 have minimal support w.r.t. the evidence
& if there does not exist a strict subset S € Base(D) such that SUE F 4. 1

Intuitively, derivations in Dg use the formulas in the evidence as much as possible.

Returning to our example, if the query is ¢ = ¢anT A(Fred,101) and the set of
évidence is empty, then the atom passEzam(Fred,101) is not strongly irrelevant
to the query. However, if our evidence includes the atom {pass(Fred,101)}, then
pass Ezam(Fred, 101) becomes strongly irrelevant to ¢

2.4 Automatically Deriving Irrelevance Claims

A key question that we address in this dissertation is how (and whether) irrélevance
claims can be derived automatically. Specifically, we are interested, in_two_problems.
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First, giver a knowledge basé., a query and a specific definition of irrelevance, we
want to find automatically which formulas in the knowledge base are irrelévant to the
query. Sécond. given an irrelevance claim, we want to derive other irrelevance claims
that logically follow. We focus on solving the first problem. In Chapter 4 we show
how results pertaining to the first problem ¢an be used to solve the se¢ond.

In general, deciding which formulas are irrelevant to a given query will be more
expensive than answering the query itself, éspecially in large knowledge bases. Fur-
thermore, if the knowledge base changes, the relevance reasoning needs to be repeated.
In order for our algorithms to be of practical interest, we will derive irrelevance claims
by examining only a small and stable part of the KB, and will derive irrelevance claims
that hold independent of any changes that are made to othér unexamined parts. Fur-

thermore, our irrelevance clairms will hold for.a family of queries (given by a query

schema).

We examine the question.of automatically deriving irrelevance claims for Horn
knowledge bases that consist of a set of Horn rules.? and a set of ground atomic
facts G. We. distinguish two sets of predicates in the KB: base predicates (often called
EDB predicates) and derived predicates (IDB predicates). The base predicates are
those .that appear in the ground facts of G. The derived predicates are those that
appear in the.consequents of the rules. For syntactic.convenience, we assume that.
base predicates do not appear in thé consequeénts of rules. The KB consisting of Given
a set.of rules P and ground facts G, can also be viewed as defining relations for the
derived predicates in terms of the base predicates.

Many of the interactions between rules in a knowledge base can be deduced by
considering the semantics of some of the predicates that appear in them, such as order
predicates (=, #, €, <, 2, >) or sort predicates. For instance, in Example 2.2, g3
and. gy were deemed strongly irrelevant by considering the semantics of the predicate
<. We therefore distinguish a subset of the predicates which we name constraint
predicates (or interpreted predicates). These predicates will be treated much like
the EDB predicates, with the difference being that their semantics will be enforced
in our relevancé reasoning. A constraint formula is a formula in some language
L for expressing constraints that invélves only literals of constraint predicates and
logical connectives (e.g., disjunction, conjuncétion, negation). For example the formula
Even(z) A (z > 100) is a constraint if the predicate Even is a sort predicate. We
place few restrictions on the properties that the constraint predicates need to satisfy.
Formally, a formula f (in the language £), with free variables Xy;..., X, describes
a (possibly infinite) relation R;( X1,...,Xn), which is the set of all tuples satisfying
the ¢onstraints expressed by f. We assume the following properties of constraint
formulas:

Closure: Given farmulas /i and fa, it is possible to eflectively construct formulas
that express:
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o The join of Ry, and Ry,.

e A projéction of R, (i.e.. a relation consisting of only a subset of the argus
ments of fo ).

o A selection 0y, Ry, . wheré i and j are some columns of Ry, (i.¢.. a rélation
consisting of only tuples in which columns 7 and j are equal).

o A selection o, Ry, . where i is some column of R, and ¢ is a ¢onstant in
the language L.

Equivalence: Given formulas.fy and .f;. it is decidable whether Ry, = Ry,.

Satisfiability: Given a formula f, it is decidable whéther R, is nonempty.!!

some fixed. n) and only constants from C. Then. applications of the operators
(discussed in the Ciosure Property) to furmulas.in F- may create only a finite
number of nonequivalent formulas over n (or fewer) free variables.

Moreover, if f is a formula with a free variable X, then f ¢an imply X = ¢
where ¢ is a constant of the language £, only if ¢ appears in f.

The Closure condition guarantees. that we can perform the basic manipulations

of the constraints.within .our .constraint language. The second an third conditions.

guarantee that we can identify two equivalent constraints. Tke Finiteness constraint
guarantees that we only have a finite number of non isomorphi¢ constraints. In
Chapter 3, we discuss the case in which the Fiuiteness condition does not hold. The
procedures needed to compute the ¢losure operations, equivalence and satisfiability
are assumed to be given.!? ‘

Theése conditions cover a wide class of interpreted constraints. The following are
a few examples:

¢ Order constraints: The language consisiing of the predicates =, #, <, <,
2. > and the connectives A and V. If we allow only ¢onjunctions, the Closure
condition will not be satisfied. This special case is treated in Section 3.2.1.

e Sort constraints: A constraint language based on a finite sort hierarchy, and
the conrecdtives A,V and —.

"'Note tuat if we have a formula FALSE in our language, denoting the empty rfelation, then the
Satisfiability Property will follow from the Equivaléence Property.

12Typically, these procedures are éfficient. For example, for 6rder constraints, testing equivalence
i5 €ubié in the number 6f variables.

| Finiteness: Let C be a finite set of constants in the language £. and let F be a.
| finite set of formulas in the language -£ that have at most 7 free variables (for.
|
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e Finite, given relation: Often, a given relation that is relatively small and
stable can be best viewed as a constraint. Any given finite relation satisfies the
propertiés that we require.

Hereafter, a constraint will refer to a constraint formula in some constraint lan-
guage L.

Finally, we also consider cases in which the rules contain negated literals in their
antecedents (and are theréfore no longer Horn). In such cases, wé assume: .

e The negation is stratified [Ullman, 1989].'3

e The regation is safe, i.e., if a variablé appéars in a negative literal in the an-
tecedent then it also appears in a positive litéral in the antecedent.

We consider queéries that are atoms which are either.ground. (i.e., is p(a) entailed
by P U G?), or contain free variables (i.e., find some, or all, z such that p(X) is
entailed by PUG). .

In many applications.using Horn.rule knowledge bases, it is the case that the bulk
of the KB is ground facts, and the ground facts are much more prone to frequent _
changes than the remainder 6f the KB. Therefore, we address the irrelevance problem
for the set of knowledge bases that differ only on ground facts. Specifically, we
address the following question. Let P be a set of rules, and let.Zp be the-set of.
knowledge bases of the form P U G, where G.is a set of ground atomic facts for the
EDB predicates. The question then is whether we ¢an decide whether a given fact ¢
is irrelevant to the query ¥, i.e., does SI(¢,¢,Ep, DIz, D) or WI(¢,%,Yp, DI, D)
hold. Note that in Horn rule KBs, DI, and DI, are equivalent for the rules and the
EDB formulas. For IDB formulas, DI, is trivially true. Therefore, we consider the
definition DI, in our investigations.

A summary of the decidability results pertaining to this question is shown in
Table 2.1.. As we prove below, weak irrelevance is undecidable whenever the rules
contain recursion. In contrast, strong irrelevance is efficiently decidable for a larger
class of languages. In Chapter 3 we present algorithms for deriving irrelevance for
several cases of strong-irrelevance, including irrelevance under minimal derivations.
Chapter 5 describes an algorithm for detecting weak irrelevance in the presence of
constraints. In the next section we prove a féew undecidable cases of irrelévance.

The complexity of the algorithms we describe are all linear in the number of rules
in the KB and do not depend on the number of ground faéts. The ¢omplexity is
exponential in the arity of predicates. When we consider irrélevance under minimal
derivations, the algerithms are doubly exponential in the arity of the predicates.

13The rulés are stratified if thére are no dependency cycles that involve negations between the
predicates in the KB. The dependency graph of the KB has dne node for évery predicate and therée
is an arc from p to g if p appears in the antecédent of a rulé whose consequent is ¢,
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However, arities of predicates tend to be very small (e.g.. frame systems usually
employ mostly binary predicates). Furthermore, we bélieve that exponential running
time is not likely to o¢cur in practice (since finding examples with exponential running
time requires careful crafting of the rules),’* and so, the algorithms we present will
be efficient in practice.

Language Strong lrrelévance . Weak Irrelevance
All Minimal Minimal Support All .
. ) Derivations | Derivations Derivations __ Derivations
Horn rules with Decidable Decidable
no recuizion Follows from [Kifer, 1988) | Follows from [Sagiv. 1988]
No recursion + Decidable Decidable
constraints Follows from Chapter 3 Chapter 5
Datalog Decidable Undecidable
) o Chapter 3 Lemma2.17 | Lemma 2.16
Datalog with . Decidable . Undecidable
constraints ~ Chapter 3 Lemma2.17 | Lemma2.16
General Horn rules Undeécidable Follows from [Abiteboul and Hull, 1988].
Datalog with Undecidable
Stratified Negation Lemma 2.18 _ Lémma2.17 | Lemma?2.16
Negated base Decidable Undecidable
predicates Section 3.4 _ Lemma2.17 | Lemma?2.16
Unary base Decidable
_predicates [Levy et al., 1993)

Table 2.1: Decidability of deriving irrelevance claims

2.4.1 A Few Undecidable Cases

The following shows that weak irrelevance is undecidable even for function-free Horn
rules (i.e., datalog):

Lemma 2.16: Let P be a set of datalog rulés and ¢ be a query. Determiining whether
WI(¢. ¢, Zp, DIy, Dy) holds is undecidable even if the rules have no intérpreted pred-
1cates.

Proof: Let r € P and ¥ be a query. We prove .the lemma by showing that the
claim WI(r, ¢, Xp, DI, Dy) holds if and only if r is redundart, i.e., the set of rules ___
P —r i§ equivalent to the set P. In proof. suppose that WI(r,¢, £p, DI;, D) holds,
then for any knowledge base. A € Sp, Wi(r, ¢, A, DIy, D,) holds. Therefore, if there
is a derivation of ', then there is one.that does not use r. Consequently, r can be

MSpecifically, it requires rules that create in their consequents permutations of the variables from
their antécedents .
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removed from P without changing the answer to ¥, regardless of the ground facts
in the KB, and therefore, r is redundant. Conversely, if r is redundant. that means
that for every A € Tp, if v is provable. there is a derivation that doesn™ contain r.
Therefore, WI(r,v.Zp, DI;. D) holds.

However, it follows from [Shmueli, 1987 that redundancy is undecidable for dat-
alog theories. Therefore, weak irrelevance i undecidable. I .

[t should be noted that Subr‘am_ania_n [Subramanian, 1989] states a similar result
for D13, but does not give a proof. The following lemma shows that strong irrelevance
under minimal-support derivations is also undecidable:

Lemma 2.17: Determining whether SI{(¢.%, Sp, DI, M3) holds is undecidable for
datalog knowledge bases without interpretéd predicates. .

Proof: We prove the.lemma by reducing the containment problem of datalog pro-
grams to the strong irrelévance problem for M3. Since it follows from [Shmueli, 1987]
that containmeént is undecidable, strong irrelevance for M3 is also.undecidable. .

Let P, and P, be two datalog programs. .Let e be a new EDB predicate appearing
nowhere in Py or P,. We construct a program P; as follows:

pi(X) A e(X) = pa(X)
p2(X) = pa(X)

We show that S1(e(X),p3(X),Xp,, DIz, M3) holds if and only if P, C P,. Suppose .

Py C© P, holds, We show that for'any given constant a, e(a) cannot beé part of a
minimal-support derivation of p3(a). Suppose G is a database from which ¢(a) is part
of a minimal support derivation D of p3(a). We can assume that G contains only
the ground atoms in Base¢(D). The database G — é(a) is therefore enough to derive
pi(a). However, since P, C P, the database G — ¢(a) is also enough for deriving
p2(a), and therefore, ps(a). However, this would mean that D is not a minimal
support derivation because the derivation of ps(a) through p;(a) uses a strict subset

of Base(D).

Conversely, suppase P; € F,. Theréfore, thereé is a database G and a constant a
such that p;(a) € P,(G) énd pz(a) € P2(G). Consider the database G U e(a), and let
D be a minimal=support derivation of p;(a). The formula e(a) will now be part « f
a minimal support derivation of ps(a), constructed from D and es(a), using the first
rule. Consequently, S{(e(X).p3(X) Sp,, DIz, M3) does not hold. 8

Finally, we show that strong irrelevance is undecidable when we allow the rulzg
to have stratified negation. In our discussion, we assume_perfect mouel semantiés of
the rules (cf. [Ullman, 1989)).!°

!5The perfect mddal of a set of rulés is the one computed in a bottom:up fashion, stratum_by
stratum.
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Lemma 2.18: Let P be a set of datalog rules with stratified negation and r € P. De-
termining whéthér SI(r. 0 Sp, DIy, D) is undecidable, cvén if P has no interpreted
prédicatés.

Proof: Testing equivalence of two datalog programs is undecidable [Shmueli, 1987)].
We will reduce the équivalence problem to the irrélevance problem of a rulé in a
stratified program, i.e., we show that if there is an algorithm for deciding whether a
rule »-in a datalog knowledge base P is strongly irrelevant, then we can design an
algorithm for tésting equivalence of two programs,

Let Py and P, be two programs with query-predicatés p; and p,.!8 Without loss
of generality we can assume that P, and P, have distinct sets of IDB predicates. To.
test equivalénce, it is enough to test whether P, 2 P, and P, 2 Pi. Let @ be the
program containing the rules of P, and. P, and the rule :

i p(X) A -pe( X) = g(X).

where ¢ is the queéry predicate of Q and it appéars nowhere in P, or P,. Note that
@ is a stratified program, since r.is the only rule containing negation. Clearly, r is
strongly irrélevant to ¢ if and only if P, 2 P,. since r will be used in a deérivation
if and only if there is some database in which some ground tuple is a member of P

and not. of p;. In a similar fashion, we can create » program with a rule » which .

will be strongly irrelevant if and only if P, 2 P;. Consequently, if .rulé irrelevance

is decidable for programs with stratified négation, thén program equivalence will. be
decidable. &

Chapter 3 and [Levy et al., 1993] describe restrictions on stratified. negation in
which strong irrelevance is still decidable.

2.5 Summary and Related Work .

"Ve have présented a general framework for analyzing and comparing definitions of .

irrelévanice. The framework is based or a proof-théoretic analysis of the notion of
irrelevance, and therefore enables us.to addtess the two key issues i relevance rea-
soning: automatically deriving irrelevance claims and the utility of removing irrele:
vant formulas. Aside from suggesting new definitions of irfelévance, the framework
encompasses prévious definitions that wére discussed in the literature. For example,
as will be discussed in Chapter 5, the framework sheds new light on the problem
of detecting indéependence of queriés from updates. Within .the framework, we have
identified a class of irrelevance claims. namely strong irrelevance, which have.several

'®Recall that thé programs P and P, are équivalent if for any databasé, the relation coinputed .

for pi i$ the samé as that cofmputed for ps.
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desirable properties. First, removing strongly irrelévant formulas is guaranteed never
to slow inference (and usually speed it up significantly). In Chapter 4 we will present
experimental résults to validate the impact of these speedups. Second, we demon-
strate in Chapter 3 that for some languages, it is possible to. éfficiently decide which
formulas are strongly irrelévant to a givén query. Finally, strong irrelevance satisfies
several propertiés that have been argued to be natural for the common sénse notion
of irrélévance (such as closuré under union and somé forms of monotonicity).

The notion of irrelevance has been formally investigated in the philosophy litera-
ture [Keynes, 1921; Carnap. 1950; Gardenfors, 1978]. As stated earlier, the focus of
the discussion there was on formalizing a notion of irrelevance that would fit common
sense notions of the word. The discussion did not concern itself with the computa-
tional aspects of reasoning about irrelévance, as we focus 6n hére. Moreovér, the focus
of the discussion.in that literaturé.is on analyzing irrelevance w.r.t. a set of evidence,
which is usually tréated as a closed theory (ile., independent of changes in .the form
of the formulas or the inference mechanism). In our analysis, we are concerned with
finding irrelevant formulas in a large KB..where the form of the KB and the inference
mechanism play key roles.

A related concept discussed in the formal logic ¢community is of relevance logics
(e.g., [Andérson and Belnap, 1975: Dunn, 1986; Avron, 1992]). The key idea in
relevance logics is to modify the logic and the.inference rules such that only relevant
implications can be made. However, two issues are still largely open in this field.
The first is devising clean and. intuitivé semantics for these logics, and the second
is providing tractable inference for them. In contrast, our analysis of irrelevance
assumes that the underlying-logic remains unchanged.

Within Al, the notion of irrelévance was used rather informally in various works,
such as RLL [Greiner, 1980] and compositional modeling [Falkenhainer and Forbus,
1991}, Irrelevance was investigated exténsively in the context of probabilistic reason-
ing [Pearl, 1988]. Howeveér, in that contéxt, irrelevance has a natural definition based
on the notion .of conditional independénce. This notion doés not carry over to the
context of logical knowledge bases,

The work most rélated to ours is the analysis of irtelevance given by Subra-
manian [Subramanian and Geneseréth, 1987; Subramanian, 1989]. Subramanian's
motivations for analyzing irrelevance are similar to ours, naniely, reformulating the
knowledge base to creaté one that is simpler and will therefore lead to more efficient
infererice. However, her framework doés not provide sufficient distinctions to enable
one to analyze the issués of deriving irrelevance claims.and the utility of doing so.
Our framework can be viewed as a refinernent of liers, where in. addition to. ¢onsid-

éring the form of the WB, we-also consideér the possible derivations that an inference.

méchariism can pursue..The spécific définitions that shé considers are formulated in
our frameéwork as variations of weak ifrélevancé. Subramanian also defined a class of
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computational-irrélévance claims whosé exploitation leads to ¢omputational savings.
but only gave some straightforward éxamples of such claims. Our ¢lass of strong
irrelevance claims is a prime example of computatioral=irrelévance claims.

It should be noted that in [Subramanian and Genesereth, 1987), a definition
of strong-irrelevance is given. However, instanées satisfving this definition aré not
nécessarily instances of computational irrélévance. For instance, under heér defi-
nition. in Example 2.2, the atoms g,-g, aré also strongly irrélevant to the query
canT A(Fred,101). Finally, Subramanian discusses several algorithms for detecting
irrelevance. However, they focus on thé case of propositional logic KBs and require
solving the query as part of the algorithm. Consequently, their utility is questionable.
She considers an extension of the algorithrn to the first order case, using the concept of

a definability graph. This graph denotes only the dependencies between predicates in .

the KB, and therefore doés not enable relévance reasoning bevond simple reachability
tests. _—




Chapter 3

The Query-tree

In the previous chapter we posed the.problem of automatically deriving irrelevance .
claims. This chapter describes algorithms for automatically deriving strong irreis- -

varnce claims. Recall that a formula is strongly irrelevant to a query if some condition
(D1) holds for all the derivations in some set Dy of derivations of the query. There-
fore, in order to deem a formula strongly irrelevant, we need to meet two challenges.

The first is to establish properties of a possibly.infinite set of derivations by a finite.

procedure. The second is that eéven if there is only a finite number of derivations, an
algorithm that.actually énumerates all of them will be of little.interest, both theo-
tetically and in practice. Therefore, we would like an efficient method of establishing
properties of a set of derivations without actually enumeérating them. .

This chapter describes a novel tool, the query-tree, (see example in Figure 3.2)
that is used to establish efficiently the properties of a set of derivations, The query-
tree is a data structure that encodes a (possibly infinite) set of derivations so that
properties of that set can be established by inspecting the tree. For example, by

inspecting thé query-tree we can check whether a ¢ertain formula can be part of some ...

derivation of the query, and therefore decide whether it is strongly irrelevant to the
query. The query-tree is a general method for encoding a given set of derivations.
Query-trees differ depending on which set of derivations we want the tree to encode.
The challenge in building & query-tree is to ensure that it encodes all and only the
derivations inn which we are inter:.ted. When it does, inspecting the query-tree is
akin to inspecting the entire set of derivations.

We begin in Section 3.1 by deséribing the principles underlying the query-tree
nicthod. We present a general method for building a query-tree that encodes a
desired set of derivations. In the subsequent sectioris describe several instances of
the query-tree, obtainéd by following the general method. Section 3.2 ¢onsiders the
problem of building a query-tree for function:free Horn-rule khowledge bases with in-
terpreted predicates (in this chapter we agsume that the interpreted predicates satisfy
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thé conditions given in Seéction 2.4). We show how to build a quéry-tree that encodes
precisely the set of possible derivations of the querv. It also discusses extending the
algorithm to theé case where rulés may have function symbols. In Section 3.3 we de-
scribe how to build a query-tree that encodeés only the set of minimal derivations of
the query, Section 3.4 considers an exténsion bévond Horn rule knowledge bases. We
show how to build a quéry-tree that éncodes precisely the set of derivations of the
query when the rules have negated EDB literals in the antecedent.

3.1 The Query-tree Method

3.1.1 Symbolic Derivations

In the context of Horn rule knowledge bases, we view a derivation as & tree consisting
of goal-nodeés and rule-nodes. (see Figure 3.1(a))..The raot of the tree is a goal-nude
containing the query atom. If a goal-node g was. derivéd using a rule r and the
antecedents gy,...,gm, then r is.the ¢hild of g.and its children are gi,... «gm. The
leaves of a derivation are ground atomic facts from .the database,

Since the query-trée will be built based only on the rules in the knowledge base
(without looking at the. ground atomic formulas), it will encode-a set of derivations
by encoding a set of symbolic derivations (sée Figure 3.1(b)). Like a derivation,
the-root of a symbolic derivation tree is a goal-node .of the query atomn (which does—
not have to be ground). .The child of a goalnode is a rule-node containing a rule
whose consequent unifies with the goal-node. The rule-node has a goal-node child
for every conjunct in its antecédent, and the contents of each suc¢h goal-node is the
¢orresponding conjunct in the unification of the rule with g. The leaves of a symbaolic
derivation tree contairi atoms of EDB predicates or atoms of interpreted predicates.
A symiboli¢ derivation tree contains only variables and ¢onstants that appear in the
rules. If a rule-node r' in a symbolic derivation tree contains the rule r from the
knowledge base, we say that r' ir & rule of r. Similarly, if g is a goal-node containing
an atom of the predicate p, we say that ¢ i$ 4 node of p. We assumie that the variable
patterns in & symbolic derivation tree implicitly.represent all the equalities implied
by the interpreted ¢onstraints, i.¢.. if the conjunction of the interpreted constraints in
the rules imply that two variables X and Y niust be equal.! then the same variable
appears in all the positions of X and Y.

A symbolic derivation represents the set of derivations that ¢an be obtaired by
assigning constants to the variables in the dérivation. Therefore, a set of syrbolic
derivations represénts the union of derivations represented by each eiement of the set.

In order to build a query-tfee that enables us to cstablish some property of a set

'For exaniple, one tule contains the literal X < Y and thé other contaims X > Y.
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|
r
///'\" '
badPoint(X). path{X,Y) goodPoint(Y)
{100 < X' < 200} rl,q {150.< ¥ < 170}
link(X.Y)
|
rs
A . b
{X < 100AY > 200) bigStep(.X, Y)
(¢)
Figure 3.1: (a) is a ground derivation. {b) is a satisfiable symboli¢ derivation and (c¢)
is an unsatisfiable symbolic derivation.

of derivations D, we first identify a set of symbolic derivations I1, such that encoding
the set Il will enable us to deduce the properties we need about D, For example, if
we are building a query-tree to ercode all derivations of the query when interpreted
predicates may exist in the rules, the set I1 will be the symboli¢ derivations with

the property that the intérpreted constraints on the variables in the derivation are.

satisfiable. We denote this set by Il For example, in Figure 3.1; considering
the sernantics of the order predicates implies that derivation (b) is satisfiable;, while
derivation (c) is not satisfiable. Given such a set II, our goal will be to build a
query-tree that encodes precisely the symboli¢c derivations in [1. In our diséussion,
we use [1 both to denote a set of synibolic derivations or to denote the property that
distinguishes syvmbolic derivations in the set.

{100 € X < 200) rl, {150 < ¥ < 170} -
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In this chapter. wé considér properties [1 on syvmbolic dérivations that can be
récognized by finite labeling. Formally. this means the following:

¢ There is a finite number of labels (of finite size) that can be attachéd to nodes
of symbolic derivation trees. The number of such labels.depends only on the
size of the knowledge base (and not on the size of the symbolic derivation).

e The labél of a nodeé is computable from the labéls of its children (or vice vérsa).

o Whether a symbolic derivation tree d satisfies property Il can be computed from
the labels of d. Specifically. we distinguish one label called the inconsistent label.
It should be the case that a symbolic derivation tree d has the property IT if
none of its nodes has the inconsistént label, _

Essentially, the finite labeling condition .means that the set of symbolic derivation
trees in Il ¢an be recognized by a finite-tree automaton.?- The query-tree ¢an be
viewed as a recognizer.for thesé symbolic dérivations. . The first condition. assures
that.the number of states in the.automaton is finite and therefore that we will be
able to identify Tl using a finite structure. The second condition guarantees that we
can specify the transitions of the automaton. Specifically, this means that given an
input symbol and the current state, the.next state can be determined by inspecting
the currerit state afone and not by inspecting the entire path that led to the ¢urrent
state. Finally, the third condition guarantees that examining the labels is indeed
sufficient to recognize symbolic dérivations that satisfy II. We assume that the labels
comnpletely specify the equality relations on the variables in the node. that are entailed
by the interpreted constraints in the rules.

Returning to our examplé, to encodé the set of symboli¢ derivations 1,4, the
label of a node will be a.constraint:-label describing the constraints that the instances
of that node must satisfy. Note that because v.e require the coustraint language to
satisfy the Finiteness Property (Section 2.4), the number of non:equivalent labels will
be finite. A symbolic derivation will be satisfiable if and only if the constraint labels
of the nodes are satisfiable.

3.1.2 Building A Quéry-tree  _

The quéry-trée is a symbolic AND-OR trec (a.K.a. rule-goal tree). It consists of goal:
nodes and.rule-nodes (se¢ Figure 3.2). The toot of the tice is a goal:node ¢ontaining
the atori of the query. Each ¢hild of a goal-node containing g is a rule-fode, containing
a rule from the knowledge base, whose consequenit unifies with g. The rulé-node has
a gol-node.child for every ¢onjunict in its antécedent, and the contents of each such

See [Slutzki, 1985] for an exposition of téee automata.
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goal-node is the corresponding conjunct in the unification of tle rule with g. Unlike
symboli¢ derivation trees. a rule-node in the query-treé will not have a child for an
antecédent of an interpreted ptedicate.

The knowledge base X ¢onsists of the following rulés:

ry : badPoint (X)) A path(X. Y) A good Point(Y') = good Path(X.Y).
ro  link(X,Y) = path(XN.Y).

ra t link(X.Z) A peth(Z.Y') = path(X.Y).

rq s step(X,Y) = link(X.}Y).

rs s bigStep(X. Y} = link(N. Y).

The following constraints areé given on the ground facts:

badPoint(.X) = 100 < X. < 200. .
step(X,.Y) = X <Y,

goodPoint(X) = 150 < X < 170,
bigStep(X.Y) = X <100A Y > 200.

goodPath{X.Y) {100< X <Y < 170.Y > 150}

™

badPoint(X) =" path(X,Y) goodPoint(Y)
{100 < X < 170} {100 < X < ¥ <170, ¥ > 150} {150 < ¥ < 170}

T2 T3

{100 < X < ¥ < 170,Y >.150} | k(X 7_)/-A-\ 2.y
TR matx, 4 pa '
— _%\"){100«\52‘070} {100< 2 < Y < 170.Y > 150)
L_Z"_ _ T4 I'y
1 Lo L
step(.—\'. Y) step(z\.Z) {100 <X<e?Z < 170)

{100< X 2 Y <170, Y > 150}

Figure 3.2: An example query-tree. Note that the rulé rs is-not expanded because
it would result in an inconsistént constraint label, The expafided equivalent of the
node path(Z,Y) is path(X.Y').

There are two Key issues in building a query-tree. Figst‘ if a knowledge base has
récursive rulés, a simple mindeéd top-down cénstruction of the query-treé will not ter-
minate. Second. we want to guaranteé that the query-tree encodes precisely the set of

method for terminating the construction of the tree by not expanding some of the
flodes. We do this by attachiing labels to nodes.in the tree (uitimately, these will be

IThe constraints implied by the interpréted predicates will be refleéted in the labels 6f the nodes.
described shortly.

symboli¢ derivations that satisfy the property [1. Therefore, we ficed some principled .
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the same labels.we use in showing that 11 can be recognized by a finité-labeling). The
labels partition the possiblé goal-nodes that can appear in the tree into équivalence
classes. Two nodes are cousidered equivalent if theére is an isomorphism between
them and between their labels (where the isomorphism is defined by a mapping on
the variables of the riodes). Based on the labels, we use the following termination
condition. A goal:node g will not be further expanded if:

e g i5 a node of an EDB predicate. or
e Ther¢ are no rules that can be unified with g. or

¢ Expanding thé node g with a rule » will result in a child. node with the incon-
sistent label, or

e There is some other goal-riode in the tree g, such that g and g, are equivalent
and suc: that.g; has alréady been expanded.® We refer to g, as the erpanded
équivalent of g, dénoted by Eq(g).

Intuitively, there is no need to expand both g and g, because the labeling scheme

guarantees that the subtrees that would appear under the g are-precisely the ones that.

would appear under g;. If a node g has-an iriconsistent label. it means that this node
carinot .appear in.derivations that satis{y Il. For.examplé. in Figure 3.2, expanding
the rule rs will reésult.in an inconsistent (i.e., unsatisfiable) constraint label.

In order.to complete. the specification .of an algorithm for creating a query-tree,
we need some method for assigning labels to nodes in the tree. Of course, the.method
must guarantee that the resulting query-tree.¢ncodes the desired set of derivations.
The specific methods are described in the subsequent sections. Each method specifies
three Cornponénts:

1. .An initial label ¢p for.the.root of the query-tree.

(K]

. A function TDLabel(r,c, g) that acéepts & goal:node g with label ¢ and a rule
r that unifies with ¢ and returns a label for the resulting rule-node child of g.

[I%]

- A function T Dproj(r.8.c.g) that accepts a label ¢ for a rule-node containing
a rule 7 that was unified with its father using a unifier 8, and a literal g in the
antecedent of r, and returns a label for the goal-node ¢hild corresponding to g.

Giveri these functions, a quéry-tree can be built in two steps. In the first, the tree

labeling, procedure. In the second step, we shakeé the tree by femoving all the nodes
that are not reachable from the base préedicates and from the root.> The details of
the two stéps are shown in Figures 3.3 and 3.4,

‘Note that g, can bé any hoc‘ie‘_ in the tree, ol néeéssarily an anéestor of §. ]
3This step is needéd because if a node in the query-tree is not reachable from the EDB leaves, it
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procedure build-tree(?.q. cg)
begin
/+ Creating a query-trée T for the rulées P and query g. */
/* The label of a nodé n in the quéry-trée is ¢y(n). «/
The root of T is ¢ with the labél .
repeat
Let g bé a node of an IDB predicate in T with label cs(g).
if there is & nodé gy in T such that g £ g, and ¢s(g,) = cy(g) then .
Set Eq(g) = g1.
else
for each rule r € P do
if rule r unifies with ¢ then
6 = the most general unifier of r and. g.
¢ = TDLabel(r.cs(9). 9)
if ¢ is not inconsistént then
Create & .child rule-node of g, containing the rule r, with label c.
for éveiv non interpreted literal n in the antécedent of r,
Create. a child. n6 for thé rulée-node with label T Dproj(r.8,c,n).
until no changes are madeé to 7.
return T..
end build-tree.

Figure 3.3: Top down creation of the query-tree

Encoding Symbolic Derivations in the Query-tree .

As stated, the query-tree encodes a set of symbolic derivations. Intuitively, a symbolic
derivation is encoded in the query:tree if it ¢an be ¢onstructed by choosing one rule-
node for every goal-node. In doing so, we can expand ar. unexpanded goal-node with
the children of its expanded equivalent. Formally, encading is defined as follows:

Definition 3.1: A symbolic derivation d is éncoded by the query-tree T if there
exists a mapping ¥ from the nodes of d, that do not have interpreted predicates, to
the nodes of T that satisfies the following conditions:

E0. If g1, ..., gn are the children goal-nodes of 7 in d, then ¢(@),...,¥(gn) are the
children of v(#) in T.

El. For every rulé-node © € d. the tulé in y(r) is the same &s the rule in.r,

will not be part of a symbslié derivation, sifice the leaves of évery symbolic derivation need to be of

EDB predicates.
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procedure shake-tree(T)
begin
/+ Step 1: Marking reachability from the leaves x/
Mark all EDB nodes in T as acéessible:
repeat
if all children of a rule-node r are accessiblé then mark r as accessible:
if at least oneé child of a goal-nodeé g is accessible then mark g as accessible;
if £¢(g) = 1 and ¢, is accessiblé then mark g as accéssible;
until no new nodes are marked:

/* Step 2: Marking reachability from the rcot x/

if ¢ is & root of T and is accessible then mark it as relevant;
repeat

if g is a relevant goal-node,  is a child rule-node of g, and

all children of r aré accessible

then mark r and its childrén as.relevant:

if a goal-node g is relevant and either 9= Eq(g1) or g1 = Eq(g)

then mark g, as. rélevant:
until no new. nodes are marked;
Remove all nodes that are not marked relévant.
/% If a there 1s a node g which 1s.marked relévant, but 1ts father rulé-node 1s not marked
relevant, then there must be some other node 91 n that tree such that the father of g, 1s
marked relevant, and either Eq(g,) = g or Eq(g) = g,. Let  be the.1somorphism between g

and g, and let T\ be the subtree of g. Make T10 the subtree of g1, and remove Ty from
the query-tree. s/
end shake-tree,

Figure 3.4: Shaking the query-tree

E2. The node ¥(root(d)) is a root in the query-tree,
E3. If r is a.child of the goal-node g in d then:
L. If ¥*(g) is expanded in T'. thén y(r) is & ¢hild of ¥(g).

2. Ifv(g) is not expanded in T, then u(r) is & child of its expanded equivalent,
Eq(v(g)). -

Note that if d is ericoded by the query-tree then for every goal:node. n & d, the
node v(n) is @ variavle renaming of n.
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Finally, given a labeling schénie, we need to show that the symbolic derivation
trees encoded by the query-tree are exactly those that.satisfv II. In doing so. we will
be aided by the correspondence between the labels of the tree and the labels given by
the finite labeling scheme. This correspondence is captured by the label-preserving
property:

Definition 3.2: Let Il be a propérty of symbolic derivations that can be identified by
a finite labeling scheéme that assigns a label L(n) to a nodé n in a symbolic derivation
tree. Let T be a query-tree in which the label of a node n is denoted by TL(n).
The query-tree T is label-préserving w.r.t the labéling scheme L. if for any symbolic
derivation d that is encoded by T, the equation ¢(L(n)) = T L(¥:(n)) holds, where ¢
is the nodé-mapping from d to T, and ¢ is the variable réenaming from n to @(n). B

In words, thé query-tree is label preserving if the rnapping of the nodes also
preserves the labels.

The Method: Summary

The geéneral method for building a query-tree can be summarized. by the follawing _

steps. To éstablish properties of a set of derivations D, we do the following:

¢ Define a property II of symbolic derivations, such that we can. establish the

desired properties of D by inspecting nodes in the symbolic derivations satisfving =~

Il.
e Find a finite labeling scherme for I1.
o Deéscribe a method. for assigning labels to nodes in the query-tree.

e Show that the resulting query-tree encodes exactly the symbolic derivations
that satisfy I1. i
In the subsequent sections we describe séveral instances of this general method.
Moreover, the general method provides a useful conceptual framework in which we
can devise new labeling schemes for encoding séts of derivations.

Complexity

The time taken to build the query-tree (and therefore of deciding strong irrelevance)
is dominated by the iumber of nodes in the tree. The othér costs are those of ¢hecking
whether two nodes are equivalént and of creating labels, both of which are polyriomial
in the size of a node. We observe that the number of internal nodes in the tree is
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boundéd by the number of possible non-isomorphic labels /. and therefore. the size of
the tree can be at most (b, where b is the maximum number of literals in an antecéedent
of a rule. In the cases we consider. the number of labels depends only on the arity of
predicates in the KB (and may be exponential in that number). It does not depend
on the number of rules in the KB (and. of course, does not depend on the number
of ground fac¢ts!). This is an important distinction because arities of predicdtes.ténd
to be small (e.g.. frame systems employ mostly binary predicates), and therefore. the
algorithms will scale up to knowledge bases with many rules and ground facts.

3.2 Horn Rules With Interpreted Predicates.

In this section. we consider the problem of building a query-tree that encodes the
set of derivations of a query from a set of Horn.rules  that may have interpréted
predicates from a constraint language L. Building such a query-tree will provide an
algorithm for deciding strong irrelevance for. the case where Dy = D,.. i.e.. deciding
Slow . Sp. D1, D).

Our first step is to.define the-set of symbolic deérivations II,,, that will be encoded
by the query-tree. As explained earlier, these are the symbolic derivations in which the
interpreted predicates-on the variables are satisfiable. Formally, let d be a symbolic
derivation that includes the rule-nodes ry.....r,, and let ¢, be the conjunction of the
literals with interpreted predicates that are children of r,. Let

Ca=¢CtA... \NCy.

The derivation d is a mémbeér of I1,,, if the constraint ¢; is satisfiable.

The property in which we are interested is finding whether a ground atomic for-
mula or a rule can appear in a derivation of the query. Inspecting the symbolic
derivations in T4 is enough to verify this property:

Lemma 3.3:.

1. A ground formula p(ay.:. .an) can be part of a derivation of the query v if and

only if there is some nede n = p(Xy...., X.) in @ symbolic derivation d € T4
such that ay,. ..., ay datisfies c,. where ¢, i the projection of ¢j an the variables
n\’l llllll \ ’n!

2. A fule v in the knowledge base can be part of a derivation of the query v if and
only if some symboli¢ dervation d € g includés. a rule-node containing the
rule 7,

Proof: To prove Part 1. supposeé theré exists a symbolic derivation tree d € M,a
and ay.:..,a, satisfies the projection of cq on the variables Xp,..., X, of the node
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n € d. Therefore. there is some mapping 8 of the variables of d to constants such
that X, = a, for 1 < i < n and such that applying 6 to d will satisfy the constraints
¢q. Applying 6 to d will yield a derivation of v that uses p{a;.....as). Conversely,
suppose there is a derivation dp of v that uses p(ai..... a,). We can replace all the
constants in do by variables resulting in a symbolic derivation d. Clearly. the svmbolic
derivation is a member of 1,4, and a;..... a, satisfies the projectiorn of ¢4 onto the
variables of the corresponding node in d.

Part 2 follows from the observation that a symbolic derivation will have exactly
the same rules as its ground derivation instancés. §

To encode I, our labeling scheme will be the following. Given a symbolic
derivation tree d and.a node.n with variables Xj.....Xn, the constraint-label of -
n. denoted by L,u(n) will be the constraint denoting the projection of ¢4 onto the

variables of Xi......Xm. Note that since the constraint language satisfies the Closure ..

property, the label Ly(n) can be expressed as a sentence in the constraint language
L. Intuitively, the label denotes the set of tuples that can appear in.the fiode n in
ground instances of the symbolic derivation d. To show that L, is a finite labeling
scheme, we, observe the following:—

1

1. The Finiteness property implies that the number_of possible labels (i.e., the
number of non-isomorphic constraints) is finite.

>

The dabel. of a node. can be determined by. its children or-by its father. The-
label of a goal-node g is the projection of .the label of its child rule-node.onto
the variables of g. The label of a rule-node is the conjunction of the labels of
its children.

3. A symbolic derivation d is a member of I if and only if all its labels are satis-
fiable.

In order to build the query-tree, we néed a method for assigning labels to nodes in
the tree. The difficulty in doing so i$ that the label of a node may depend on nodes .
that appear below it in the tree. Thérefore, wé cannot construct the tree and assign
labels in one top-down phase, sinceé the decision whether to expand a node depends
on knowing its exact label. This problem will arise also in the labeling scheme we
consider in.Section 3.4. In what follows we déscribé a general méthod for solving this
problem.

The solution is based .on. the following obsérvation about computing the labels
Lia(n) for nodes in a given.symbuolic dérivation tree d. Given a tree d, we can
compute its labels by a two phase process. In the first phase, we start with the
leaves of d and compute labels based on propagating the interpieted constfaints in a
bottom=up fashion. In thé second phase, we compute the labeéls by propagating the

rr——




52 . CHABPTER 3. THE QUERY-TREE

interpreted constraints in a top~down fashion.® The procedure is summarized below.
The labels computed in the bottom-up phase are deroted by ¢, and the final labels
are denoted by c;.

for every goal-node g € d. co(g) = Trueé.
for every rule-node r, cp(r) = the conjunction of the interpreted children of r.
Traverse the rule-nodes of d in bottom-up fashion,
for each node r do:
/* g is the father of r and gi.....gm aré its children. */
es(r) = co(r) Acalgi) Ao A colgm). '
cs(g) = Projection of ¢(7) on the variables of g.
/* Note that cy(g) 1s the formula dénoting the relation which 1s the projéction
of RC,(,) on the varwables in g. x/
cs(root(d)) = cy(root(d)).
Traverse the rule-nodes of d in a top-down fashion.
for each rule-node # do:
cs(r) = cp(g) A cy(r).
For every n € g1.....gm. ¢;(n). = Projection of ¢;(r) on the variablés of n.

The following theorem shows.that this procedure ¢orrectly computes the constraint
labels of a symbolic derivation tree. The proof is given in Appendix A.

Theorem 3.4: Let d be a symbolic dérivation tree. For every node n € d, ci(n) =
Lyae(n).

The importarice of this theoren is that we can ¢réate the query-tree in a way that
mimics the computation of the labels in the two phase process. Specifically, we show
bélow that whenever the labels can be-computed in a two phase procéss, it is enough
to precede the top-down creation of the query-tree (by proseduré build:tree) by a
bottom-up -computation phase. Informally, in the bottom-up phase we compute-all
the possible bottorm-up labels for predicates in the KB. i.e., all the labels cy(n) that
can appéar in symbolic.derivation trées. Based on these labels, we créate a new §ét
of refined predicates. For eévery label ¢ that we compute for a predicate p, we create a
new predicate p°. We then ¢reate.a set of refined rules-P, for the refined prédicates
by trying all the possiblé substitutions of the refined predicates in the rules of P. The

quéry-tree is then ¢reatéd in a top-down fashion.using procedure build-trée and the .

rulé’s Pi. Arule ' € Py is a reéfinemeént of a rule » € P, if the predncate names in

' aré refinements of the corrésponding predicates in r. Note-that # and r havé the
same variable patterns. .

5A botteni-up ordering of the rulé nodes is afiy ordefinig for which a nodé n is traversed after ali
its déscéndenits. A top-down traversal is the revérse ofder of a botlom- -up traversal.
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As an example of a bottom-up computation. considéer the knowledge-base in
Figure 3.2. The initial labels of the EDB predicates are the constraints that are
given for them. i.e., {badPoint(X).100 < X < 200}, {goodPoint(X).150 < X <
170}, {step(X.Y).X « Y} and {bigStep(XN.Y). X < 100,Y > 200}. With the
rules.ry and rs. we.create the following labels for {ink: {link!'(X,Y).X < Y} and
{ink*(X.Y). X <100, > 200}. With rules r, and r3, we create {path*(X.Y). X <
Y} and {path?(X.Y). X < 100.} > 200}. Finally, with path' we create the label
{goodPath'(X,Y).100 « X <Y < 170.Y > 150}. Note that substituting path? in
m will vield the inconsistent label for goodPath, and therefore we do not perform
that substitution. The refined rules that are created are:

ry : badPoint(X) A path'(X. Y) A goodPoint(Y') = good Path'(X.Y).
ra  LnKY X, Y) = path'(X.Y).

2 Lnk* (X, Y) = path?(X.Y).

ry i link! (X, Z) A path*(Z.Y') = path*(X.Y).
2 lnk?(X, Z) Apath' (Z.Y) = path?(X,Y).
ry: inkY(X.Z) Apath®(Z.Y) = path*(X,Y).
re o step( N Y) = LinkY (X Y).

rs.: bigStep(XN.Y) = link?(X.Y).
Formally. in a two phase computation procéss we assume thé existence.of the following:

1. Initial labels for goal-nodes.in a symbolic dérivation tree, cy(n). We assume the
initial label of & goal-node dépends only on the predicate.of the node.

[ £

A function BU Label(r.(g;..... gm).(ce{g1)s. .- cs(gm))) that accepts a rule:
node, its subgoals and their respective bottom:up labels and computes the
bottom-up labél ¢y(r) for the rulé-node.

3. A function BUproj(r.8.cy(r).g) that accepts a rule-node that contains « rule
r. the udifier § with which # was unified with its father goal-node g, and the .
bottom-up label of theé rulesnode, ard returns & bottom-up label for its father
goal-node g.

4. Furictions T DLabel and T'DProj as used i1 procédure build-tree, for comput-
ing the top-down Jlabels,

We define theé result of the two pliase computation as follows (which is a general.
ization of the computation of L ):

o If gis a leafl in the tree, cy(g) = co(g).

o If ris a rulé-node with children Jiov oo gm and father g, then

en(r) = BU Label(r, (gr.....gm).(cs(g1). ... cs{gm))), and
cn(g) = BUproj(r.8,c(r). g).
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¢ c;(root(d)) = cy(root(d)).
o cj(r)=TDLabel(r.cs(g). g).

® c;(g) = T Dproj(r.8.c/(r) g.).

Definition 3.5: The labeling scheme L is said to be 2-phase computable if cy(n) =
L(n) for evéry node in every symbolic derivation tree. §

The bottom-up phase of building the querv-tree is shown in Figure 3.5. All the
labels created for a predicate p in this phase use the variables X;,..., X,. where n is
the arity of p. Therefore, we omit the sécond argument from Bliproj. assuming it uses
these standard variable names. The complete query-trée construction is déscribed in

Figure 3.6. After creating the query-trée we ignore the refinements of the predicates. .

That means that if n is.anode in the tree of a predicate p° and a labél ¢s(n)., we treat
it as if it is a node of the predicate p with the same label. .Note that the quéry-tree
may actually be a forest of trees if the bottom-up phase computes more that one label
for the query preédicate.

procedure create-refined-rules(P)
begin
/+ Cotistructing bottom-up labels P for évery predicate p.o*/
for every EDB predicate p € P, P ={co(p)}.
for every IDB predicate pe P, P= {}.
Py = {} /+ Py will bé the set of refined rules x/
repeat
Lét r be the.rule gy A... A g = h.
Lete, € @, for 1 < i< m,
¢ = BULabel(r.(g1.....gm) (c1. 0 em)). .
if ¢ is consistent then
ch = BUproj(r.c, h).
Add ¢; to H.
Add the rule git AL A ¢S = hih to Py,
until fio new labeéls or rules aré created.
end create-refined-rules

Figure 3.5: Creating the refined rules.

The following theorem states that.whenever there is a 2-phasé computable labeling
scheme for the set of symbolic derivations I1, then the proceduie.build-query:tree
will build a query-tree that eéncodes precisely the set of derivations II.
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procedure build-query-tree(P. g)
/» T is the set of rules. ¢ is the query predicate. */
P, =c¢reate-réfined-rules(P):
for esery label ¢ of ¢ do
T. = build-tree (P,.4". é):
Query-tree = | J.zo shake-tree (T.):
end build-query-tree.

Figure 3.6: Building a query-tree

Theorem 3.6: Let L be a 2:phase computable finite labeling scheme for the sét of
symbolic derivations I1. Let T be the query-tree genérated by procédure build-query-
tree:

I. Ifd. is a symbolic derivation tree in 1, then d is encoded in T, and the encoding
is label-preserving.

.

Let dy be a.partial symbolic derivation tree encoded by the query-tree (i.¢., some.
of the leavés have IDB predicates), then there is a symbolic derivation tree d € I1.
such .that dy is a.préfir of d and the encoding (limited to the nodes mapped to
dy) is label preserving,

3. A node n appears in a synbolic derivation tree in I1 with label L(n) if and only if
thereé is some node in the query-tree with labél ¢;(n) suéh that L(n) is equivalent
to cg(n).

Proof: In the proof we assume that the query is of the form g(.X') where X is a set
of distinct variablés. Therefore, we refer to the query simply as the predicate q. Note
that wé can always transform the query into such a form.

We first prove Part 1. Let .d be a symbolic derivation.. A simple bottom:=up
induétion on the nodes of d shows that the bottom-up labels of d were computed by
¢reate-refined-rules, specifically:

e For every goal:node g € d. of the predicate p and bottomi-up label ¢ = cu(g). p°
is a predicate in 7. |

e Supposé r is a rulé-niode in d containing the rulé g; A...Agn = p. Suppose r's
father is g and children are gy:.. .. gm. then the following rule is in Py:

q‘ljslsn) AL A (?;?(Qm) = I-,Ca(?)'
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Next, we show that & is encoded by the query-tree by mimicking the exécution of
procédure build-tree. We cornstruct the encoding niappings v of the nodes as we go
along.

We begin with the root of d and its child rulé-node r. Let ¢ denote c(root(d)). By
the bottom-up construction we know that ¢ is one of theé refined predicates, and that
there is a rule r; in 7, that is a refinemeént of the rulé in r. and its antecedent is q°.
Therefore, procedure build-tree will bé called with ¢°. The procedure build-tree
will begin with a node n with predicate ¢° and the label c, and it will expand ¢¢ with

theé rulé r;. Therefore, v will map root(d) to n and will map r to ;. Thé mapping 7.

will map children of 7 to the respective children of 1'(r). The bottom-up and top-down
labels of root(d) aré the same, and therefore - is.label presérving for rooé(d). Since
the labels specify complétely the equality relations between the variables, ¢ (root(d))
is a variable rénaming of root(d). Consequently, since r, is.a refinement of. the rule
in r (and. therefore they have the same variable. patterns), the top-down. labéls of
v(r) and its children are. determined by v(root(d)) (using the functions TDLabel

and TDProj) in the same way that the.top-down labels of r and its children are -

determined from root(d). Therefore. the mapping v is also label preserving for » and
its children. and specifically. v'(n) is & variable renaming of n for. n being r or one of
its children.

Let ry,....ry be a top -down ordering of the rule-nodes of d. We .prove the claim
by mductxon on the i** rule-node. We assume by induction that we have built an
encodmg mapping ¢ that satisfiés the conditions of Definition 3.1 for all the rule-

nodes ry...., 7. and their children goal-nodes. Note that for i =-1 this is exactly .

the base case discussed above. We prove that Part 1 holds.for =, and for its children.
Furthermore, we assume by induction that if g is a goal-node in d, then ¥(g) is

actually a goal-nodé of p*9), when the refinements of the goal:nodes in the query-

trée aré considered.” Note that this assumption holds.for the root of d.

Let g be the father of r, int d. and assume that g is a node of the predicate p. By
the inductivé assumption, ¥(g) is a nodé of the predicate p®t¢), Assume P(g) was
éxpanded in the quéry-tree. It would have been éxpanded with the rule

g AL A GER = hoele)

where ¢,....cn ate the bottom-up labels of the children of g. and. ' i3 a refinement
of the rulé in r,. Dénote the resulting fulé-node in the query-tree by r. The mapping
v will map r, to.thé node r and the subgoals of r, to theé subgoals of 7 (therefore
satisfying condition E0 of Definition.3.1)..Note that ' is a refinétnent of the rule in
r. and we ignore the predicaté refinements in the resulting query-trée. the rule in r,
and in v(r) are the same (a5 required by conditionn E1), Furthermore. condition E3

Le., wé consider the réfined predicates in the rules 7.
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is.also satisfied by v. As in the basé case. sinceé r, and v*(r,) contain the same rule.
and v'(g) is a variable renaming of.g. thé top-down labels of v'(#) and.its children
are determined by v'(g) (using the functions 7D Label and T D Proj) in the same way
that the top-down labels of r and its children are détermined from g. Therefore, the
mapping v i§ also label preserving for r and its children. and specifically. ©(n)_is a
variable renaming of n, when n is either r or one of .its childrén.

If v(g) was 1ot eéxpanded in the querv-trée, it would bé because Eq(v(g)) is
expanded. In that case. » would be a child of Eq(t(g)). In this case, E3 is still
satisfied by the second clause in its definition. E0 and E1 hold as before. Since the
label of Eq(v(g)) is isomorphic to the label of ¢*(g) (and in particular. Eq(v(g)) is a
variable renaming of ¥*(g)). the mapping v will be label preserving also for r, and its
children.

To complete the proof of Part..l we must show that noné of the nodes. v(n) for
n.€ d were deleted from theé -query-tree in the shaking phasé. However, a simple
bottom-up induction on the nodes of d will show that all nodes w(n) were marked
accessible. and a top-down induction will show that they were all marked relevant
and therefore not deleted.

We prove Part 2 in two parts. First, we show that every partial derivation en-
coded by the query-tree is a.prefix of a complete symbolic derivation eéncodéd by the
tree. Next we show that every symbolic derivation encoded by the tree is & symbolic
derivation in II.

To prove the first part, we note that every goal-node in the query-tree is the root
of some symbolic deérivation (and the label of that node is the label of the root of
the tree). In proof, if g is a node in the query-tree, then there is a sequence of nodes
My, ... 7, such that n, = ¢ and n, was marked acéessible because of some n, for
j < i. The node g is a head of a symbolic derivation ¢onsisting of ny,...,nm. A
simple induction on the reverse order of these nodes shiows that they were all marked
relevant and are therefore all in the query-tree.

Consequently, given a partial derivation tree d, éncoded in the query-tree, we
can complete every IDB leaf of d; with a symbolic derivation, thereby constructing a
complete dérivation.

To complete the proof of Part 2, let &' be a symbolic dérivation éncoded by the
tree. Simply consider the symbolic dérivation trée d with éxactly the same structure
(i.e.. the same rules). Because the labeling is 2-phase computable, the labels of &' will
be identical to the labéls of d. Sincé the query-tié doés riot contain nodes with the
inconsistent label, d will hé a miember of II.

Part 3 follows froni the first two parts and the observation that every node in the
query-free appears in somé partial derivation tree encoded by thé query-tree. 1

We comiplete this section with the following corollary that shows that the query-..

tice provides a sound and complete inferénce procedure for strong-irrelevance for




ot
b

CHAPTER 3. THE QUERY-TREE

Horn-rule KBs with intérpreted predicates.

Corollary 3.7: Le¢t P be a set of rules with mterpreted predicates that satisfy the
Closure. Equivalence. Satwsfiabilety and Fimiteness properties. Let T be the query-tree
crcatéd for the rules P.and the query q.

A formula play.....a,) is strongly irvelevant to ¢ w.rt. Sp. (i.é.. thé irrele-
vance claim S(play.....an). q. Sp. DI;. D) holds). if and only if there ts no
node n of p in T, such that ay..... an $alisfies the constraint label of n. cp(n).

A rule r is strongly irrelevant to q if and only if it doés not appear in T.

Returning to the éxample i Figure 3.2, the rulé rs is strongly irrelevant to
good Path bécause it doés not appear in the querv-trée. The atomic formulas of
step(N. Y} for which X <100 or Y. > 170 are also strongly irrelevant to the query.

3.2.1 Conjunctive -Dense-order Constraints

One of the constraint languages which was.covered by the discussion in the previous
séction.is £, i.¢.. dénse-order constraints with conjunction and disjunétion. An

ifniportant.restricted language is that of dense-order constraints in which only con--

junctions are allowed. which we denote by £*. The atomic formulas of this language.
are of the form (.X  Y) or (X 6 a), where X and Y’ are variables. a is a constant, and
§ € {<.<.>. 2. =.#}. Formulas in the language are either atomi¢ or conjunctions of
atomic formulas. In [Ullman. 1989]. 4 compléte polynomial-time decision procedure
for this language is presented. Unfortunately, this language does not satisfy the Clo-
sure property we require. Specifically, given a sentence ¢ in £*, there is not always
a senténce in £" that expresses the projéection of ¢ on a subset of its variables. The
following is an example of such a case.

Example 3.8: Consider the conjunction:
Xy €2, Z&N5. Z2# X,

This conjunétion implies only oné conjurictive constraint, X, < X5, amiong the vari-
ables X;..X;. X35, However, that does not fully describe all the constraints amorig
X1, X,. and X3, The constraint X #.X1 V X3 # X3 is also implied by thi§ conjunc-
tioil. but since our language does not allow disjunétions, we cannot express this when
trying to project the abové conjunction.onto X,: X,. and X3, 1

In creating a query-trée for constraints expressed in £, we modify the projeétion
functions (BUproj and T Dproj). Since we cannot alw ays express the éxact projection
of a constraint in £, thése funictions réturn a weaker constraint, Specifically, given a
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constraint ¢ on variablés .\ and a subset ¥ € X, the functions return the conjunction
of all thé atomic constraints on variables in Y that are implied by ¢. In our example,
the projection would be X} < X,.

Consequently. the labels computed for nodes in the quéry-tree, which we denote
By ¢ (1), are weaker than the labels given by the labeling scheme L. Theréfore they
do not describé the tightest constraint on evéery node in the query-tree. Fortunately.
weé can show that these labels aré closely relatéd to the labels given by L, and that
we can use them to deduce strong irrelevance. Informally, the difference between the
tesulting labels ¢}(n) and L. (n) is that ¢}(n) may be missing some disequalities
(#) between the variables. Formally. we show the rélation between them through the
least equality erténsion of a conjunctive label, defined as follows:

Definition 3.9: Let ¢ be a constraint on the variables X;...... X, and constants
ay.....am. The least equality extension of ¢, denoted by Mazz(c), is

AN EX, BN, =X, A <ij<n}A{NEa|CEX =aAL<j<m)
'

The least equality extension simply adds disequalities between every pair of vari-
ables (or variable-and constant) that aré not required to be equal by ¢. Note that
the least equality extension.is unique and therefore well defined since it can be-built .
incrementally by examining, cach pair of variables (or variable and constant), and
the order of the construction does not matter.. In our.example, the least equality.
éxtension of Xy € Xp 18 {X, £ XoA X # X3 A X # Xi).

The following theorém relates c7(n) to cs(n) (which was shown to be equivalent
to Lsar(n)). It shows that the label ¢}(n) is néver stronger than ¢;(n) and that ¢,(n)
is never stronger'than Mazx(c}(n)). Recall that ¢s denotes the conjunction of all the
interpreted constraints on variablés in a symboli¢ derivation d.

Theorem 3.10: Let d be a symbolic derivation tree for which éq is not necessarily
satisfiable. For every node n € d,

I cj(n) = cf(n)

2 If cp(n) is satisfiable, then Maxg(c}(n))k ¢j(n).

3. If for all n, ¢}(n) is satisfiable, then for all nodes 1, cyp(n) is satisfiable.

The first and second parts guarantee the relationship between the labels in the

query-tree constructed with £ and theé. labels of L. The third part guarantees
that wheén wé build a queéry-tree with labéls ¢}, the tree will not have aiiy nodes that
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shoutdn't be included. i.e., all nedes are satisfiable (since théy are weaker thian the
satisfiable constraint Marg(n)). The proof of the theorem is given in Appeéndix A.

As stated, the labels in the resulting quéry-tree will not be the tightest ones
possible. That means that if ¢ is a label of a goal-node n in the query-tree. then
actual tuples that can appéar in valid derivations of thé query may be a strict subset of
thoseé satisfying c. Formally. wé can use the resulting queéry-tree to deduce irrélevance
claims as follows:

Corollary 3.11: Lef p(a;..... Un) be a ground atomic formula.

Lo Ifay ... an doés not satisfy any of the constraint labels of nodes of p in the
quéry-tree, then it is strongly irrélévant té. the query.

0

Let g bé¢ a.nodé of the prédicate p in the querystree. If ay,....aq satisfies
Mazy(cs(g)). then pay.. ... Uy ) s not strongly irrelevant to the query.

3. A rule r is in the query-trée if ‘and anly if v is not strongly irrélévant to the
query. .

Proof: The query-tree encodes the set of symbolic derivations d in which for alln € d
the labels ¢}(n) are satisfied. Part 1 follows from Part 1 of Theorem 3.10 and Part 2
follows from Part 2 of that theorem. For Part 3, consider a symboli¢ dérivation tree
d encoded by-the query-trée that uses a rule ». All of its.labels.are-satisfiable, and
therefore, by Part.3 of Theorem 3.10, ¢4 is also satisfiable. Consequently, there is a
symbolic derivation of the query that satisfies I1,,, and includes 7. Since the query--
tréé encodes a superset of the derivations in II. then clearly if 7 does not appéar in
the query-tree, then it is strongly irrelevant to the query. i

Note that eéven though we do ot get the tightest labels on the nodes when we use
the language £", there may be advantages to using it over using £V, Specifically,
when we allow disjunctions, the constraints may become long (many disjuncts), and
furthermore, ¢chécking equivalence of two constraints involving disjunctionis is a more
expensive operation. Therefore, the time to build the query-tree can he significantly
affected.

The Number of Labels .

As stated earlier, the time complexity of building the query-tree is dominated by the
numbeér .of possible labels we can attach to nodes in the tree.

Consider the case of densé-order constraints éxpressed in £V, In that case, every
¢onstraint label describés a set of possible ordérings on the viriables and constants in .
the rules. Given # variables and m constants. the number of possible total orderings
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on thém is exponential in n 4 m. Therefore. the number of constraint labels is doubly
exronential in n + m. However, we note that it is sufficient to consider only total
orderings on the variables and constants. and therefore the query-tree can be built
in time that is singly exporiential in n 4 m. However, in practiceé, the number of
constraints that will be computed will be tuch smaller than the number of total
orders and therefore, it is better not to limit ourselves to total orders. The numbeér
of labels expressible in £* is exponential in n + m, because it contains a subset of
atomic formulas of which thére is a polynomial number.

3.2.2 Rules With Function Symbols

When the set of rules contains function symbols, the Finiteness property may not
hold. The souree of the problem is that when a goal-node is unified with the.head
of a rule. new terms rnay be created. and therefore the number of labels that can be
créated may be infinite..Consider the following example.

Example 3.12: The following rules define the set of integers:

s X = 0) = integer(X)
s v integer(X') = integer(X 4 1)

As shown in Figure-3.7(a), a top-down éxpansion of the tree for these rules will result
in an infinite numbér of labels {Z, = X — i} for every integer, i. Therefore, the
construction of the query-tree will not terminate. il

integer(X) {}
st /\ $2 integer(X) {} .
X l: 0 teger(Y) {¥ =2 X =1} 8 $a.
s1 sa X =0 integer(Y) {}

l , .
Y =0 intéegér(Z) {Z =X -2}

(a) ’ (b)

Figute 3.7: Quetv-tree with function symbols.

To build & query-tree in.this case wé ¢an assign the nodes in the.query-tree one of
a finite set of labels C. Wheén we project a constraint on a subsét of its variables, we
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proceéd by the following strategy. Given a constraint ¢ and a subset of its variables X,
if there is no label in C which déscribes the exact projection ¢|y. we assign a member
¢y of C such that ¢|x k= ¢; and such that theré is no other constraint ¢; € C such that
c; = ¢ and cl; | c;. The constraint ¢; can be viewed as thé best approrimation
to c|g out of the finite number of labels C. Consequently. the resulting labels in
the quéry-tree are weaker than the tightest ones possible, and therefore. the query- *
tréé provides only a sufficient condition for strong irrelévance. That meens that a
ground atomic formula which does not match any of the nodes in the tree is strongly
irrelevant, but not vice versa.

Oné way to assign such a finite sét of labéls .is to not allow néw térms to be
created in the labels {or to allow a maximum of & new terms, where k is fixed). For
instance, in our éxample, if we do not allow new terms, we gét the query-tree shown
in Figure 3.7(b).

Finally, it should be noted that.the problem with function symbols arises only
when the rulés are.recursive. If they are not, then the number of labels will neces:
sarily be finite (because the number of unifications is finite. .and each unification may-
introduce only a finite number of new térms). Consequently, in such cases, the query-
tree still provides a complete.inference procedure for strong irrelevance (assuming the
constraint language satisfies the propertiés déscribed in the previous section).

3.3 . Encoding Minimal Derivations

In this section, we considér another instance of the query:tree algorithm in which the
query-tree is built to énicode only the minimal derivations of the query. The definition .

of minimality that we ¢onsider (M1 from Chapter 2) states that a derivation is minimal

if theéré are no two idéntical nodes, n; and n;, such that n; is an anceéstor of n,.

In Chapter 2 we showed that strong irrelevance w.r.t. this definition is equivalént to . - .. .
strong irrelevance w.r.t. the stronger definition A2, and provides a sufficient cor.dition

for strong_irrelévanéé under the condition A3, -

Example 3.13: Consider the following knowledge base, where e is the. EDB predicate
and p and p; are IDB predicates.

fep(Y LX) = p(X.
s e(XLY) = p(X,
ra ot p(XLX) = py(.

Theé rule #; can only appéar in non-minimal dérivations of p;. Noté however, that r,
will appear in minimal derivations of p.
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As before, our first step is to find a set of symbolic derivations that the query-
tree will encode. We build a querv-tree that encodes the following set of symbolic
derivations [1,,,. A derivation d is a member of y,p if:

1. d € I, and

2. There is no pair of nodes p(X;...... X.) and p(Yi.....},) for any predicate p.
such that ¢y = (X = Y1) A A (X, = Y,), and such that p(X;,..... X.) is
an ancestor of p(Y¥7.....},). (Note that in this case. the two nodes in thé tree
would be identical). If two such nodes exist we would say that the tree contains
a loop:

In showing the properties of [I,;,,. we make the following additional assumptions
about the constraint languageé used in the rules:
Density: Suppose that Ry(X,...... X', ) is the relation consisting of thé tuples satis-

fving the formula f. and.for all 1 i < j < n. formula f does not imply X; = X or .

X, = a..where a is a constant., Let X!, ..... Y* be k columns in the relation R, and
let R' be the set.of all tuples in R, in which column 7, 1 < i < k has the constant a;,
where a,,....a; are arbitrary constants. The Density Property requires that R' be
an infinite set or an empty set.

Intuitively, the property guaranteés that if wé are given a partial assignment to
variables that. satisfv a certain ¢onstraint. then we.¢an ¢omplete the assignment in
arbitrarily many ways. The reason the assumption.is needed is that we want.to
guarantée that if a symbolic derivation tree d is in Iy, then we can always find a
corresponding ground derivation in which every variable in d is mapped to a distinct
¢onstant, and will therefore bé & minimal derivation.

Equality connectivity: Suppose the variable X appeéars in the goal-nodes ¢; and.

g2 in a symbolic derivation tree d. Let g be the least common ancestor goal-node of
g1 and gz in d. Then X appears in every goal-node on the path from g to g; and on
the path from g to ga.

Note that both of these assumptions hold for constraint languages using order
predicates, as long as the domain of the variables is assumed to be dense, or for the
constraint language containing only equality. When the rules do not contain inter-
préted predicates. they can be viéwed as using the constraint language of equalities,®
and therefore the Deénsity property is satisfied. Furthermore, it should be noted that
if these properties are not satisfied, then the query-tre still provides a sound infer-
ericeé procédure for strong irrelevanceé. This means that a node may appear in the
query-treé and still be strongly-irrelevant to the query. It should be noted that even
when these assuriiptions do rot hold, finding examplés in which the query-tree is not
compléte requires caréful crafting of the rules.

8Bcrausé equalitics can be represented impligitly by niultiple occurrenées of the same variable,
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Under these assumptions. we can deduce properties of minimal derivations by
inspecting svmbolic derivations in I, as follows:

Lemma 3.14:

L If play.....ay) does not satisfy any of the labels of nodes of p in any trec d €
[Loin. then play.. ... a,) does not appear in any minimal derivation of the query.

2 If pray..... an) satisfies the constraint-label of some node n (of the predicate p)
in.a symbohic derivation trée d € M. and the equality relations between the
constants ay.....a, are only those that ar¢ entailed by the constraint label, then
theve is some minimal dérivation of the query that uses p{ay....,a,).

3.7 A rule r is used in a minimal devivation of the query if and only if r appears in
some.symbolic derivation d € Tl ,n.

Proof:. To prove Part 1. if p(a,.....a,) does not match any node-in symbolic deriva-
tions in [ln.n, there ave two possibilities. The.first is that p(a;.....a,) does not match
any node in symbolic derivations in Il If this is the case, clearly p(a,.....a,) does
not appear in any dérivation of the query (by Lemma 3.3). The other possibility is
that it only appears in derivations.of 1, whose corresponding symbolic derivations
contain a loop. However, everyvinstance of a symbolic dérivation.that contains a loop
will contain. a loop, and will therefore not be minimal.

Part 3 is proved.as follows. If d '€ s uses the ruler. then d € I1,4.. Therefore ¢y
is satisflable. Consider an assignment ¢ of thé variables in d that satisfies ¢; and such
that v assigns two variables X; and \; the sameé value only if ¢z = X} = X;. Since
d contains no loops, the deérivation di will be a minimal derivation. If it were not,
that would imply that there are two nodes g;(X) and g,(Y) such that ¢4 =.X =Y.

Conversely. if thére is a minimal derivation that uses.r. consider its corresponding

svmbolic derivation d. Clearly. d € [Tpyn.

The proof of Part 2 requires the Density property. Let Xi,.....\,, be the variables
in d and assume Xj..... X, are the variables that appear in thé node whose label is
satisfied by p(a;.....an). We show that theré is an assignment v to the variables of
d that satisfies ¢z and such that:

. for 1 €1 < n. X, =a, and
2 for 1 <ij<m X, =X, (or X, =a)only if it is implied by cg.

Applying ¢ to d will yiéld a minimal derivation of the query that uses p(a;,...,a;).

We start by assigning X, = a, for.1 £ < n. Note that this mapping satisfies the
second condition becausé a,.....a, oily satisfies the equalitiés required by the label
it matches. We proceed by induction on i{. Givén assignmeénts to Xj...... X, we need
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to assign a value to X, 4. [f ey & Xigy = X, for j <i. then we assign .\, the value
assigned to X, (similarly. if cq = Niy1 = a. we assign a).

We now show that there are an infinite humber of assignments a,4) to X4, such
that a;....,a;4; will satisfv ¢4, and theréfore we can ¢hoose a value a;4; that is 1ot
assigned to any of X...... \,.

Let bygo. ... by be an assigment to the variables X, ,o...... \» such that the tuple
consisting of (X)), ... (X)) biga. ... by satisfies ¢;. Note that biya.. ... b, must

exist because '(.X1).....v(.Y,) satisfies ¢4. Now consider the selection on ¢q in which .

X, =wv(X))forl £j<iand X, =0, for i+ 1 < j < m. This is the subset of R,
that is equal on the columns X,.....X,. Xig2...., X, and therefore, by the Density
propérty must be infinite. This means that there are an infinité number of values
that X4, can take that will be consistent with..2(Xy)..... (X)) and with cg. |

It is important to note that Lemma 3.14 implies that if we can build a query-
tree to encode Il,.q, then strong irrelevance under minimal dérivations is decidable.
The only subtle point that needs to be considered is when we have atoms of the
form p(ay.....a,) that ¢atisfy some.label in some.derivation trée in Il,,,, but where

Apee. ., a, satisfy additional equalities.not implied by the label. In such a case we can .

créate a specialized predicate p’ that enforces these equalities. For éxample, if we had

an atom p(.X..X), we would create a predicate p'(X) defined as p(X. Y ) A (X = Y)..

We then considér every rule in the KB in turn. Whenever a rule can use the predicate
p. we make another vérsion of it that uses p’.° We then build a query-tree for the
KB that includes thé rules with p” and check if p'(a}....,a);) matches.a node in
that query-tree (where ai..... a;, is the result of removing duplicate constants from
Ay ey a,,).

Our next step.is to devise a labeling schemeé for [1,,is. A label of a node n, denoted .

by Lmin(n) will be a pair (c.t) where ¢ = L, (n) and t will be the tag of n, defined
as follows. We denote by 1/(g) the variables that appear in the node g.

Definition 3.15: Let g be a goal-nodc in a symbolic derivation tree. Let § be the
set of its ancestor goal-nodes that have.only variables from V(g) or constants. If &
contains a node that is identical to g, thé tag of g is inconsistent. Otherwiseé, the tag
of g. denotéd by T'(g) is SU {g}. The tag of a rule-node r € d is the tag of its father
goal-node. 1

Two labeéls (¢y.t;).and (cz,12) are the samé if there is an isomorphism between ¢,
and c; which is also an isomorphism betweeén t; and ;.

Lemma 3.16: Theé labeling Ly is.a finite labeling scheme for-Imin.  There grist
functions BUp, and T Dinyp such that Ly, i8 2 phase computable.

Il p appeéars in two or inote subgoals of a tule r we ridke a version for évery_subgoal.




6i6 CHAPTER 3. THE QUERY-TREE.

Proof: To show that there ix a finite umber of labels, it suffices to show that there
is only a finite number of possible tags. Consider the atoms of a predicate p in a
tag. The number of different atoms of p is the uumber of possible variable patterns
of the arguments of p, which is the number of ways to partition the arguments of p
into equivalence classes. This number is exponential in the arity of p (cf. [Graham
¢l al., 1989]. pg. 244). Thercfore. the number of atoms that may appear in a tag js
exportiential i the maximumn arity of predicates in P. Consequently. sitice a tag i a
sei of atoms. the number of possible tags is doubly expoenential in the arity.

Next, we observe that the tag of a goal-node can be determined by the tag of
its father. Let g be a goal-node whose grandfather goal-node is g;, and suppose
g € T(g). i.e.. ¢ is an ancestor of g that has only variables from 1'(g) or constants.
By the Equality connectivity assumption, V'(¢') € V'(g,) (because g, is on the path

from g¢' to y). Therefore g’ € T'(g1). ana ¢’ will bé.in T(r), whereé r is the father .

rule-node of g. Consequently. T'(g) can be determined by inspécting only the atoms
in T(r).

Sinice T(g) can be determined by the tag of its father, it also follows the L4
is 2 phasc. contputable. In the first phase. the computation is identical to that of
Lsar. and so we define Bl pn to be identical to BU Label. In the second phase, the
function T'Dyn(r. 8. (c. T(r)). g) will compu.e a label (¢, T(g)) as follows. The first
component is simply that computed by TDLabel,i.e., ¢ = TDLabel(r.8.c.g). To

compute the tag of g, simply inspéct the atoms in the tag of its father r. Aside from..

g itself, any atomi that includés only variables from g and constants will be in T(g).
If g € T{r) then T'(g) will be inconsistent.

Finally, we need to show that I1,,,, can. be verified by inspecting the labels L n;n
of the nodes in the tre¢ d. This follows {rom the following observation: d € My, if
and.only if for.all.n € d, Lya(n) is not mconsistent, i.e. if Ly = (e.t), then c is
satisflable and f is not nconsistent.

In proof, suppose.there ate two identical nodes n, and ny in d such that ny is an
ancestor of n,, and let r be tlie father of n,.. The tag T'(2) would contain n, (because
of the Equality tonnectivity assumption) and theréfore,.when computing T(n,) we

would get an inconsistent label. Conversely, if for some nodé n 7'(#) is inconsistent, .

it must be the case that n € T(r). whete r is the father of ni..This means that one of
the ancestors of n is identical to n. §

The corollary below follows from Lémma 3.16 and Theorem 3.6.

Corollary 3.17: The procedure build=query-tree with functions. Bl and.T'D
will coinpule a-quéry-iree thal encodes precisely the symbalic derivations m 11

mif

mis ¢

The following éxample illustratés the use of tags anc shows that they are indeed
necéssary i order to derive strotig irtélevance uider mintmal dérivations.
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Example 3.18: Consider the following knowledge base. The €;'s are the EDB pred-
icates. -

McgNVZ)Ae(ZY) = g X Z)

e (XN.Y) = q(X.})

r3:p(X. YY) = (Y. Y)

fei e XoY) = p( X Y)

rs (X Y) = p(XY)

Since there are no interpreted constraints in the rules and no equalities between

variables, the constraint labels of all the nodes in the query-tree (see Figure 3.8(a))
will have the True ¢onstraint. Note, that we do not expand the node ¢(X.Y") with

rule ry because it will.result in a subgoal p(X.Y) which is identical .to thé root of .

the tree. and will therefore produce an.inconsistent tag. However, we can expand the
node ¢(.\'.'Z) with r3 without ¢reating a loop. Therefore it is important to distinguish
between ¢(.X.}") and ¢(.\X, Z) even though they have the same constraint label L,q4,.
Since Limin(g(X. Z)) is the same as Lo (q(X.T)), we do not expand the latter. node.

Figure 3.8(b) shows the query-tree that would be obtairned using the labeling L,q;.
Int this case, the node q(X.}") would have been expanded with.a; and therefore, the
query-trée would encodé also non-minimal derivations. 8

3.4 Rules with Negations in the Antecedents

Recall.from Chapteér 2 that if we have a set of rules with stratified.negation, then

stronig irrelevanceé is undécidable (Lemma 2.18). In this section we discuss a restricted .

case of stratified rulés.in. which.only literals of EDB predicates may appear negated
in the rulés, In.this case. a derivation can be viewed as a tree as before, except that
some of the leaves of the trée may be negated literals. A negated literal -e(a) is
consideréd to be satisfied if the ground atom e(d) is not in the knowledge base.

As belore, the query-trée will ericodeé a set of symbolic derivations, in this case
denioted by Il,eq. A_symboli¢ derivation d willbe a member of 1,4, if

1. d € [l,, and

2. There is no pait of grond atoms ¢(.X) and =¢(¥') such that ¢g f= (X = Y.
i.6.. there is no pair of contradictory leaf atoms.

The sécond condition guatantées that the symibolic dérivation is satisfiable, i.c..
it does ot fequire that both an atom and its negation be i the knowledge base.

The following thicorcrit shows that encoding .y will eriable us to decide strong
ifrclévance:
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(N Y) {p(N.¥)) »X.y) .
Ty //\ T4 /\ rz
| |
€2 X, }) gl V) {o(XN V) pNL YY) &l XY ¢(X.Y)
§ /\ . . 4\ .
. | | AN
9(X. 2) e(Z.Y) (XYY p(XLY) QN Y) ¢(N.2) e(2.Y)
{e(X.2)}

e (X, 2) q(.\'.T) e(T.2) p(X.2){p(N.2).9(X.2))

rs
{

(a) f:(-\('oZ)

Figure 3.8: (2) A query-tree with rode-tags (shown only for IDB goal-nodes). (b)
The query-trée that would have been produced without considering tags.

Lemma 3.19: s

L If plaj..... a,) docs not satisfy any of the labels of nodes of p in any tree d €
ey, then pla,. .. .. an) doés not appear in any valid derivation of the guery.

20 0f plag..... an) satisfies the constraini-label of some node n (of the predicate
p) i a symboli¢ derivalion tree d € ey, and ayi....a, satisfies only the
equalities required by the constraint label, then there is some database in which
play... .. dyi) is used m a derivation of the query.

J. A rule appears in @ sgmbolic derivation i 1, if and only if it is not stronigly
threlévatit to the. guery,

Proof: The proof is very similar to that of Lemma 3.14. For Part l,.suppose

play, ... a,) was part of a valid derivation @ of the guery, and lét 4 be & symbolic
derivation correspordinig to d'._Cleatly. d e [

 isdasaesda o neg-




The proof of Part 2 follows from the claim shown in the proof of Lemma 3.14.
There weé proved the following claim. Let X,...... X', be the variables in d and .
assumeée Xy......X, are the variablex that appear it the node whose label is satisfied
by p(ay.....an). Then there is an assignment ¢ to thé variables of d that satisfies ¢y
and such that:

I for t <i< 0 v(X,) =aqa, and

2for L i) S moe( X)) = o)) (or v(X,) = a) only if the equality is implied |
b)' cy- -

Suppose we apply v to d. Since d € Il,.4. d does not have two contradicting
literals. Therefore, di- will have two contradicting literals only if two distinict variables
X, aiid X,..such that.c; ¥ X, = .X,, were mapped by i+ to the same _constaii..
However. that contradicts thie.assumption on v'. Therefore. dy is a valid derivation
of the query that.usés play.....a,).

Part 3 is proved exactly as in the proof of Lemma 3.14. 1

As in the case of minimal-derivations, it.should be noted that if we can build
a query-tree to encode precisely [1,.,. then strong irrelevance is decidable for such
rules. The next step is to devise a labeling scheme for [In,. For clarity, we begin -
with the case in wliich thére are no.intérpreted predicates in the rules. Furthermore, -
we assume that no positive subgoal or head of a rule in the KB has the same variable :
in two or fore.columns. Rulés that do not satisfy this assumption can be converted i
into such a formi using equality constraints and will therefore be covered later.

Note that the Density property holds trivially in this case, Furthermore, all uni-
fications of rules with subgoals are trivial. Our labeling scheme in this case will be
Loney. which is defined as follows. A label of a node n is a pair (c, ¢). where ¢ = Lya(n) o
and € is the EDB:label of 11, defiried as follows: i

Definition 3.20: EDB-label:. Let » be a rule-node in a symboli¢ derivation trée d
and let g be its father goal-node. Let S be the set of all EDB literals that appear in
the subtrée rooted in r. We say that the set S i5 consistént if it doés not contain an
atoni A and its negation =4, If § is consistent, then thie EDB-label of rule-node. r
¢(r) is the set of literals of & that contain only variablés from g ot constants. If S is
rot consistent, then the EDB label of r is the incousistent label. The EDB-label of an
IDB goal-nodeé ¢ is the same as the EDB label of its child rule-riode. The EDB-label
of an EDB goal-node is the set containing itself. 8

As before. tivo sets of litérals ¢, and €3 are considered to be identical EDB-labels if
there is 1-L.mapping v of the variables of ) to the variables of ¢, such that (ey) = €.
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Example 3.21: Consider the following knowledge hase:

Ti:e(X.Y)= p(\.})
T2:¢(N.Z)A-g(N)A-g(Z)Ap(Z2.Y) = p(X.Y)
T3 :p(NYVAGYTA =~ XY ) = (X))

Rules T'1 and T2 define a p (path) relation in térms of EDBs ¢ (edge) and g (good
nodes). Rule T3 definés a ¢ (connectivity) relation. Figure 3.9 show a symbolic¢
derivation tree created from this knowledge base with its EDB labels. 8

r(.\". V) {=alX). g(Y). me(X. V)
T3

{~g(X)plXLYY g3 =elXLY)
[
T2
} N .
HN.Z) =g(X) -} P(Z,-Y)(E(Z.Y)}
{
T1
e(Z.Y)

Figure 3.9: Synibolic derivation tree with EDB labels

The follo“mg proposition shows that an EDB-label can be computed from the
EDB-labels of its subgoals.

Proposition 3.22: The EDB:label of a rule-rode © can be computed by the EDB-
labels €...., €m of 1ts subgoals as follows. Let § he ¢, U... U ey, If § is consistent,
then the EDB-label of r is the set of literuls in S that contazn only variables appearing
in r's father, g. Othérwise, the EDB:label of ¥ is inconsistent.

Proof: The proof follows from the Equality Connectivity assurnption. Specifically, if
a variable .\ appears in two nodes n; and nj ifi a symbolic derivation tree such that
ny 18 an ancestor of ng, then it appears in every goal-iode on the path from n, to
ny. Therefore, if an EDB.literal g, contairs only variables that appear ini ore of its
ancestors g. ther either g, is a subgoal of g or there is a sibgoal g, of g which is an
ancestor of g.. In the latter casé. g will be in the EDB-label of gl because all the

variables of g. niust appear in g;. I both cases, g, will be in the set § defined above.
|
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Lemma 3.23:
1. The number of EDB-labels is finute.

2. A symbolic deérvivation tree d is a mémber of Mlney if and only if none of the
rule-nodés of d has the inconsistent label.

3. There exist functions Bl neg and T Dnég, such that Lye, is 2 phase computable.

Proof: To prove Part 1, we obsérve as in tlie casé of node tags. that the number
of atoms that can appear in an EDB label is exponential in the maximum arity of
predicateés in P (though in this case. the number is doubleé since they can either
appéar positively or. negatively). Since an EDB-label is a set of atoms, the number
of EDB-labels is doubly exponential in. the arity of the predicates.

Part 2: Suppose d has a node r with an inconsistent label (note that the incon-
sistency ¢an only ¢ome from the EDB-label, since-equality constraints are always
satisfiable). That means that r has an. atom and its negation in its subtreé, and
therefore. d € Il,.y. Conversely. suppose d contains an atom A and its.negation —.A4.
Let r bé the léast common anceéstor goal-node.of A and —.4. The EDB-label of r will
bé inconsistent.

To prove Part 3, we define twofunctions Bl/neg and T Dneg. Note that underthe____

assumptions we have made, the constraint part of Ly, is always the True constraint.
The EDB-label part is computed by Bl'neg as defined in Proposition 3.22. The
function T Dneg is simply the identity function, since the EDB-label does not change
in the top-down phase. The proof follows from Proposition.3.22. 1

Corollary 3.24: The procedure build-query-tree with the funétions BUneg and
T Dnég will compute a query-tree that encodes precisély the set of derivations I, .

Returning to Example 3.21, the first step of the query-tree algorithm will produce
the following EDB labels. Note that to avoid confusion. we use variables in the
EDB:labels that are disjoint from those that. appear in the tree. Rule T'1 derives
the EDB label {e(Xy. X;)} for p. Using tlie EDB label {e(.X;, X3)} for p, rule T2
derives the EDB label {~g(.X{)} for p. Using the EDB label {~g(.X,)} for p in rule
T2 generates the isomorpliic label {=g(.X{)} for p. Thus, no more EDB labels for p
cain be derived. Using the EDB label {=~g(.X})} for p, vule T3 derives the EDB label
{=g(X1) g(XN2) ~é(Xy, Xq)]} for c. Using the EDB label {¢(X;,X3)} fof p in rule T3
genérates an inconsistency, and no new EDB label is derived. Consequently the set
of refiried.rulés is the following:

TV e(X.Y) = pletdudalx y)
T2 e(X Y)Y A =g(X) A =g(Z) A pletXeXal(z.y') = pleld0d X y)
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T.Zé ' F(-\" }) A "lg(.\') A —\g(Z) A I){‘.’J(-\'I”(z‘ }-)‘:‘é p{“?('\'l))(_\" }.)
T pOaIN X Y)Y A g(Y) A me( XL YY) = clmaldatda et Ny 30y

The query-tree created for this example i$ shown in Figure 3.10. Note that we do
not expand the rightmost node p{~#X17H( 7 }"), since its EDB label is the sameé as the
EDB-label of node p{"#X (X Y1),

C{-.g(Xﬂ g x;\,qet'/\'l..\'i'l}(‘\'. })

Ty
pirgt XUl Y)g(Y)  =e(XLY)

T2, - i -T2
f(.Y,Z)m&;"E”(Z.D') €(X.Z) ~g(X) ~g(Z) plret¥l(z.y)
TV —
e(zl.v)

Figure 3.10: The query-tree built for the program £,.

Adding Interpreted. Predicates

In the previous section we showed that we can compute Ly, in a 2 phase procedure.
However, that result depended on the observation that we knew all the equality
relations between variables.in the tree during the bottom-up phase. Specifically, if a
variable in the body of a rule must be equal to a variable in the head, then we would
know that in the bottom-up computation of BUneg. The assumptions wé made in the
previous section guaranteed that property because rules ¢ould not imply any équality
relations between variables. However, when we allow the rules to have interpreted
literals, this assumption may not hold. and therefore, the EDB-label computed may
not be correct. The following example illustrates the problem.

Example 3.25: Consider the following rules:

Fe e (N Y)Ae(Z)A XS ZS Y = p(X.Y)
r2 e N Y TYA~&T)AX 2 T 2 Yomg(X. Y. T)
ra i (X Y)AGIN Y. T) = 8(X.Y)

The EDB-labels would be coniputed as follows. Using 7y, we first ¢reate a label
{e1(1,.X32)} for p. Note that e3(Z) i5 not included in the EDB-label because Z does
not appear in the head of ry nor is it-known to be equal to one of the vatiables in it.
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Next. with r; we will créate a label {e3( X1, N7 X3). »e2(X3)} for ¢. Finally, with. ry
we will créate a label {e,{.X. X;)} for s. However, considering the constraint label
of s(X.Y') implies that X' = } = T, and therefore X = ¥ = Z. Conséquently. the
symbolic derivation of s is inconsistent because it contains both e(Z) and =és(T).
However, the EDB-labels computed were all consistent and so we were not able to
detect the contradiction. i

Fortunately, there is an easy fix for this problem. Récall that after computing
thé constraint labels Ly, of nodes in a symbolic derivation tree, thé labels are as
restrictive as possible, and theréfore describe all the equality constraints between
variables. Thus., we can createé a new set .of adorned predicates and rules from the

query-tree that have the constraints completely propagated. Specifically, if g is a .

goal-node of the predicate p.in.the query-tree (built with BU Label and T D Label),
and.Ly(g) = c..then we create an adorned predicate p°. If  is a rule-node in the
querv-tree, and we created an adornéd prédicate p¢ from its father and predicates
¢y s g5 from it children, then we create the adorned rule

qi' N A G A Lar(r) = p°

in which none of the positive literals in the antécedent have the same variable in
different columns. We denote the new set of rules by P;. We note that the rules P,
aré équivalent to P w.r.t the query q. This means that (P U D) k ¢(a) if and only
if thére is some ¢ such that (P, U D) F g¢°(a). Moreover, when we build a query-
tree for P then the constraint labels are completély known in the bottom:up phase,
and therefore, we can compute the EDB-labels in parallél with the constraint labels.
Returning to our example, we would create the. following rules from the query-tree
(note that évery predicate has only one adornment, so we do not change the predicate
niames):

Cel( N Y)Ae(Z)AX = Z =Y. = p(X.Y)
(N Y. T)A~e(T)AX =T =Y = g(X,Y.T)
XN =Y =TApX.Y)AQX.Y,T) = &(X

Computing EDB-labels with these rules will result in an inconsistent label for s.

3.5 Complexity

As stated .in the outsét, the timie complexity of building the query-tfee depends on
the number of different labels that can bé attached to the nodes in_the tree.. We have
seen that thé nunmiber of labels we may have for L,q with the constraint language

LY is exponeiitial in the arity of the predicateés. The number of labels we may have
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for Linm of L.y, may be doubly exponential in the arity. The following theorem
shows that we cannot expect to do much better than that. Specifically. it shows
that once we introduce the predicate #. the lower bound on the problem of détecting
strong irrelevance is exponential in the arity. The same is true for encoding L., even
without interpréted predicates.

Theorem 3.26: Given a set of rules P, a quéry predicate q. and a rulé r € P,
déciding S1(r.q.Sp. DI;.D,) is hard for exponential time if the rules may contain
the predicate #.

Deciding SI{r.q.Sp. DI2. M1).is hard for erponential time éven if P doés not
contain any interpretéd predicates.

The proof is based. ori reducing the acceptance problem of a linear-space altérnat-
ing Turing machine (ATM) to.the problem of detecting strong irrelevance of rules.
The details of the proof aré given in Appendix A.

3.6 Summary

In this chapter we presented a genera! method for encoding a set of derivations, there-
fore enabling us to deduce properties. of that set efficiently. Specifically, the method
enablés us to deduce strong irrelevance.claims. The metlod involveés constructing
a query-tree that finitely. ericodes all the possible.derivations.in the given set. The
key issue in the construction of the-query-tree is its.términation condition which is
based on a labeling sclieriie we have devised. The labeling scheme depends on the
specific set of defivations. wé wish to encode. We have shown three instances of the
query-trez method: (1) eéncoding the set of all derivations for Horn rule KBs with
interpreted prédicates, (2) encoding the sét of all minimal derivations of & query and
(3) encoding the sét of valid derivations when rules may have negated EDB literals
in their antecedents. Importantly. in these instances, thé number of possible labels
and therefore the size of the quéry-treé, doés not depend on the number of rules in
the knowledge base, only ot the arity of the predicates, Consequently, the quéry-tree
algorithm is likely to scalé up to large knowledge bases. In addition to the three
iistances described, the meéthod provides a powerful coriceptual framework in which
devising new labeling schémes hecomes muchi easier.

3.6.1 Related Work_..

The intuition behind the query-tree algorithm comes from translating the problem
into a decision problém for tree-automata.!® In fact, we_have argued that a-finite

19864 [Vardi, 1989] for a discussion of the importance of tree automata 1 database theory,
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labeiing schemé esséntially guarantees that theé set of dérivations can he recognized
by a réachability test on a finite tree automaton. With respect to treé automata. the
contribution of our work is twofold. The fitst is showing that the problem can be
recagnized by a tree automaton. This involves coming up with the labeling scheme
(i.e.. the states of the autoniaton). showing that indeed it is sufficient to encode

precisely thé set of symbolic derivations of interest, and showing that examining this -

set of svinbolic derivations is enough to decide irrelevance. The second is developing
the query-tree which is a more efficient and natural recognizer of the set of symbolic
derivations. The query-tree essentially combines the creation of the trée automaton
and the reachability test into.one algorithm. Moreover. the ~ery-trée will usually
producé only a subset of the states of the automatoen néédéa (o recognizé the sét of
derivations. and working with the query-tree is conceptually simpler than.working
directly with tree automata. As we see in the next chapter, the query-tree will also
lend itself to other natural usages.

Several othiér authors.have considered static analysis.of rtules for different pur-.
poses. such as explanation based learning [Etzioni, 1993]. partial evaluation .of logic*
programs{Smith and Hickey. 1990: Lloyd and Shepherdson. 1991; Bruynooghe et al..
1991]. automated reasoning [Kowalski, 1975; Bruvnooghe ef al., 1989] and deduc-.
tive databases [Srivastava and Ramakrishnan, 1992; Ullman, 1989]. Some have also
used graph-like representations of the rules, such as problém spacé graphs [Etzioni. .
1993], connection graphs [Wowalski, 1975],.compilation graphs (Bruynooghe et al.,
1989] and rule/goal graphs [Uliman, 1989]. Others have used rule folding/unfolding
in their analvsis.

The key issue common to work that utilizes graph-like representations of rules or
fold/unfold transformations is when to terminate the creation of the graph (or when
to stop unfolding the rules). The query-tree is novel in that it gives a well motivated
términation criterion baséd on manipulation of the interpréted constraints that ap-
pear in the rules. Consequently, with the exception of [Srivastava and Ramakrishnan,
1992], only the query-tree can be shown to be complete in more than straightforward
¢ases (1.e., in the presénce of récursion and constraints). Reécall that completeness
guaranteés that the quéry-treé encodeés precisely the set of désired derivations. [Sti-
vastava and Ramakrishnan. 1992] have a similar result to ours'! but only for the
case of L, (and not for the casé of conjunctive ordér constraints). Their techniques
cannot be exterded to the ¢asés covéred by our general method.

Another itnpottant differénce is thé size of the query-tree, which dépénds only on
the arity of the predicateés. In contrast, in previous tree-like structures (e.g., [Etzioni,
1993} ), the termination condition of the trée involves ¢hecking whether a node is
isomorphic to one of its ancestors. This leads to a tree whose_size ¢an be exponential
in the number of rules.

HObtaimed stmultaneously with oufs.
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Connection graphs [IKowalski. 1975 were also developed for the purpose of focusing
a theorem prover by precomputing all the possible pairs of resolvable clauses. Clearly.
if a certain clauge appears in a component of the graph that is not connected to the
component of the negation of the query, it can be removed from the KB (i.e.. it
is strongly irrelzvant). However. cotiriection graphs. only capture a subset of the
possible dependencies between clauses. Specifically. they only show that two clauses

connected to a link are unifiable. bhut say nothing about the relationship between .

clauses connected via longer paths in the graph. Other work [Sickel. 1976: Chang.
1979] has consideéred following only certain walks on the.graph. however. these walks

are not guaranteed to encode valid derivations. as are the paths éncoded. in.the query-.

tree.
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Chapter 4
Uses of " *e Query-Tree

The quéry:tree, as described in the previous chapter. is.a powerful tool for relevance
reasoning and speeding up inference. In this chaptér-we describe uses of the query-
tree for these purposes. Section 4.1 describes two uses of the query-tree for speeding
up-inference..In the first, the query-tree is used to decide which ground formulas are
strongly irrelevant to the query, Based .on that determination, we create specialized
database indices that see only the ground formulas that aré (possibly) relevant to a
¢class of queries. Using these indices for fetching ground formulas significantly speeds
up inference..The second use of the query-tree is baséd on the observation that the
tree also encodes all the possible sequences 6f rule-applications and database lookups
that can result in derivations of the quéry. We can therefore usé the query-tree to
guide the search of a backward chainer to follow only theése sequénces. We present
and analyze experimental results which show. that both these usés.yield significant
savings in practice.

Section 4.2 considers the problem of deriving logical conclusions from irrelevance
claims that are given to the system by an external source. .It describes an algorithm
based on the query-tree for deriving such conclusions. It also describes an algorithm
that uses the query-tree to derive logical conclusions from relevance-claims, i.e., claims
that state that certain formulas are nécéssarily used in derivations of the query. Fi-
nally, Section 4.3 describés how the query-tree can be uséd to extend other query
evaluation methods. J

4.1 Using The Query-Tree to Speed Up Inference
The first use of the query-tree 15 based on the.observation. (Corplla.ry 3.7) that it tells
us exactly whieh formulas may be rélevant.to a query (or set of queries). Specifically,

a rule is strongly irrelevant to the query if and only if it does not appear in the tree. A

0
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ground formula is strongly irrelevant if and only if it does not satisfy the constraint-
label of any goal-nodeé in the tree with which it can be unified. Consequently. whe
answering the query. these rules and ground formulas can be ignored. For instance. in
the good Path example (repéated in Figure 4.1). the rule r4 can be ignored. Similarly.
formulas of the relation step that do not satisfy {100 < X < ¥ « 170} can also be
ignored.

We can use this property of the query-tree to speed up inference for sets of queriés
that occur frequently. Given such a set of queries, we build a query:tree for it and
create specialized indices only on .the formulas that are not strongly irrelevant to
queries in the set. The cost of preprocessing the knowledge base in such a way involves
the cost of building the query-tree and the cost.of one pass over the knowledge base
to build the specialized indices. However. the pavoff of removing irrelevant formulas
can be significant because the size of the space that an inference mechanism needs
to search can be drastically reduced. Specifically, it is guarantéed that everv.iime
a ground formula is retrieved. the formula may be -part of a derivation of the query
since it satisfies the.constraint label of some niode in the query-tree. This is especially
significant when lookups are made with some unbound variables. For instance. in our
example. there will be many. lookups of the form step(a.}’). where a is some constant

and }" is unbound. Using the specialized index on the formulas of the predicate step

guarantees. that every formula retrieved will satisfy {100 < ¥ < 170}. In contrast,
retrieving a formula that does not satisfy. this constraint. can generaté a whole search
subtree that is guarantéed. to be useless. Note that even if the reasoning mechanism
detects immediately (by checking the available constraints) that the retrieved formula
i$ irrelévant, the cost of doing all the useless lookups and checking the constraints
can be arbitrarily large.!..

The second use of the quéry-tree is based on the obsérvation that the tree also
encodes the sequences of rule applications and database lookups that can result.in
derivations of the query. Weé can use this observation to_further control our search.
To illustrate, consider the following example.

Example 4.1: Consider a knowledge base defining a relation dessert Méal with the
following rules. Its query-trée is shown in Figure 4.2. -

ry:cheapMeal(Dy. W) A méat(D,) A expensive Meal{ Dy, W3) A dessért(D,) =
dessert Meal(Dy W, Dy 1¥)

re.; dish(X.Z) A (Z < 15) A compatible(X,Y)) = cheapMeéal{X.Y)

r3: dish(N,Z)A(Z > 15) A compatible(X.Y) = erpénsiveMeal(X.Y)

rytbee f(X) ArédiVine(Y) = compatible(X.Y)

rs : dessert(X) A sweetii'ine(}) = compatiblé( X, Y)

!Note that 1n order to detéct irrélevant fortitulas imniediately, thé feasoninig mechanism must
propagaté the constraiiits in tlié sameé fashion done in-creating the query-trée
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The knowledge base .\ consists of the following rules:

ry tbadPoint(XN') A path( X, Y )A goodPoint(Y') = goodPath(X.Y').
ro tlink(X,Y) = path(N.}).

ralink(X.Z)Apath(Z.Y) = path(X.Y).

rq:stepl X, Y) = lnk (X Y).

rs 1 bigStep(X.Y) = link(\.Y).

The following constraints are given on the ground facts: .

bad Point(X) = 100 < X < 200.

step(X.Y) = X < }
good Point(X) = <X < 170,
bigStep( X, Y) = 100 A

goodPath(X.Y) {100 <X < ¥ < 170.Y > 150}

™
badPoint(X) — path(X,Y)  —— goodPoint(})
{100 < X < 170} {100 < X < ¥ < 170,¥ 130} {150 < ¥ < 170}
. /\ r
{100< X < ¥ < 170.Y > 150} | e ,
Link (X link(X. Z) path(Z.Y)
,___/_\/] {100 < \l<2<110} {100< Z <Y < 170.} > 150}
‘_7‘8_— — __}r4 .-.].‘4 . .

! L )
step(X.Y) step(N. Z) {100 < X < Z < 170}

{100 < X < ¥ < 170.Y > 150}

Figure 4.1: The query-tree for good Path. .

The predicates meat. bee f and dessert are sort prédicates (dessert is disjoint from
the other two). The relation compatible répreseiits pairs cunsisting of a wine and a
dish that aré compatible with each cther. The relation dish répreésents the available
dishes and their prices. Consider formulas of theé relation dish. Any formrula that
satisfies éither (bee f(D))AZ < 15) or (dessert(Da) A Z > 13) may be relevant to the
query dessert.Meal. Hoxse\'er as a subgoal of ;. weé need only consider formulas of
dish that satisfy the first constraint, wheéreas as a subgoal of rj, only formulas that
satisfy the second constraint are needed. Moréover,.the quéry-trée shows that rule r,
can only be applied to a subgoal of ro. and not of r3 (and vice versa for 7). § .

To exploit this additional control knowledge, we cteaté specialized ifidices for évery
leaf.in the query-trée and miodify the inferérice mechanism to follow. only the paths
permitted by thé quetry-tree. In our example, we create one index for beéef dishes
undeér 815 and another for dessert dishes over that price. To follow the query-treé
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déssert Méal( Dy W, Da. Wa) {bee f{ D). desisert( D))
y
{bee f(Dy}}chéapAéal(Dy. 1Y) crpensiveMeal{Ds. Wal{dédseri(Da)}

|
ra 3

{bee f(Dy). 2 < 13} dish{ Dy, )compaublr(D, 18%) disk(Dy. 2y)compatiblé(Da. 14%)
! {dFSS(’N(Dg).Z} > 15} I
'y rs

2N\
bee f{DyYrediVine(W7) dessért{Ds) sweettt ine(s)
Figure 4.2: Avoiding search paths using the query-tree

during inference, we attach to every subgoal n in our search a fiod= in the query-tree
o(n). We start by assigning the.root of .the quéry-tree to the query. At every steép,
if n is a database lookup subgoal (i.e.. a subgoal of an EDB predicate), we perform
the lookup using the specialized index of o(n). Qtherwise, we expand n only with
the. rules that are children of the éxpanded equivalent of ¢(n).2. We assign to. the
subgoals of n the appropriate subgoals of the rule-node ini the query-tree. As a result,
the inference engine follows only the paths encoded by the querystree and in every

database lookup it retrieves only ground formulas that can be used in derivations in
the current path.

4.1.1 Experimental Results

The inpact of the savings achieved by using the quéry-tréé were tested using a depth
first search backward chainer on Horn rules.® Given a knowledge base A and a query
schéma g (i.e., a query with free variables). we built a query-treé for ¢ and two sets
of indices on ground formulas in .\, The first set I; nicluded an index on every
relation that in¢ludes only the fornulas that were deemed not strongly irrelevant by
thé query-tree. Specxﬁcallv. a ground formula e(ay.....a,) is in¢luded in the index
for the relation e i Zy if ai.....q, satisfies the constraint label.of some leaf of the

Which may be the nodé é(n) itself.

The petformance of the backward chainer compared favorably with that of Lyikit (a conimertial
iniplemetitation of MRS [Russell, 1985]). Furthermiore, the speedups attained by fémoving irrelevant
formulas (BC2 below) were also tésted using tli¢ backward chainer of prkxt and the speédups
attained were even better than those reportéd here. In the éxperimerits we tésted savéral rule and
goal orderinigs. The results aré shown for the ordering that yiélded thie bést results consistently for
dall three versions of thé backward chaines




4.1, USING THE QUERY-TREE TO SPEED UP INFERENCE

o
—

predicate ¢ in theé query-trée.! The second set of indices Z; included one index for
every EDB leaf in the query-tree. We measured thrée running times:

¢ BC1 - the backward chainér on A using the original indices in the KB.

¢ BC2 - the backward chainer on A using the indices Z,. i.6., ignoring strongly

irrelevant formulas.

e BC3 - A backward chainer that usés the indices T, and only follows the paths
allowed. by the query-tree.

We téstéd ovér 20 query_ schemas taken from the following four domains:

l. A travel domain using a database of real airline data describing flights between
cities in the U.S (éxamples 3=6 in the tables),

2. A wineé domain consisting of a.kinowledge base of 50 rules describing various
wines and dishés and compatibilities between them (based in part on {Rombauer
arid Rombauer-Becker, 1975])-(examples 7-8).

3. A student-advisor domain using a knowledge base about comnputer s¢ienée Ph.D
graduates, including advisor. school and. graduation dates (examples 9-10).

4. The good Path example, using the rules.in Example 4.1 (examples 1-2).

The first and fourth domains usually yield deep recursive seéarch.trees, even though
the number of rules is $mall. The second domain is.non-recursive and yields shallow
but bushy (i.e., large branching factor) searc¢h trees. In the third domain, search trees
have a low branching factor (which was from student to advisor).

Table 4.1 presents the results of the experiments for the case where we are looking
for all solutions to a query (e.g., find all X', Y such that good Path(X,Y) is derivable).
In the table, Filtering Time includes the time taken to build the query-tree and
creaté all the indices (both I, and I,). Peréent irrelevant is the percent of ground
formulas in the knowledge base that were deemed strongly irrelevant (and therefore
not included in Z,). The next columns show the time taken to fina all the solutions
to-the query. The réspective running times of BC1, BC2 and BC3 are shown. as well
as theé ratios of running times. In addition to measuring running tirmes, the fumber
of nodes éxpanded in the search was also courted, The last two columins show the
fatios of thé number of nodes expanded by BC2 and BC3 compared to BCI.

The results show significant speedups for both B2 and BE3. For BC2, the speedups
weré usually in excess of a factor of 3..fanging up_ to 31 (mean: 10.4). The results

fNoté that the original knowledge base had an index for each ground rélation
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show that by following thé quéry-tree using BC3 wé often get additional improvements.
The speedups of BC3 over BC1 wéré usually in excéss of 3. ranging up to 1190 mearn:
11, excluding example #6).° In tc.ms of nodés expanded, the average speedup for
BC2 was 10. while the average speedup for BC3 was 37 (excluding example #6). The
results clearly show that if we aré looking for all solutions to the query. building the
query-tree and the specialized indices will vield significant savings.

KB size Filtering | Percent Solution tirie {sec.) Nodes

Timeé | irrelevant expandéd

__| Faets | Rules | (sec.) .| BCL|BC2| 24 IBcy | 4 | 891 | &4l
1. | 350 6 | 1.8 63 2780 | 182 | 15 | i83 | 15 | 10.5 | 105
2. | 350 6 18 63 618 | 231 | 2.7 | 233 | 2.7 | 25 | 25
3. | 200 18 6.5 ‘ 69 372 | 14 27 86 | 43 | 22 28
4. 200 18 5.6 . 69 23 | 55 | 45 | 45 | 5.6 4.7 6
3. 200 18 20.7 . 64 3975 | 205 19 | 13 | 306 17 1295
6. | 200 18 14.7 ° 63 1278 1 41 | 31 I.1 y 1190 { 31 | 1630
7. | 1300 | 47 25 59 8740 | 8720 | 1 | 363 | 24 | 1 14
8, 1300 47 11.6 60 . ho 42 | 1.2 11 4.h 1.2 | 28
9. | 150 17 0.8 .99 35 75 |1 46 | 73 | 4.6 4.5 | 4.5
10, | 150 17 0.6 59 28 | 04 76 | 04 | 76 | 48 | 4.8

Table 4.1: Expérimental rézults: finding all solutions.

Table 4.2 presents the results of the experiments for thé case in which we use the
query-trée built for a query schema to solve ground queries or to find the first solution
to a query with free variables (i.e., thé query-tree-was built for good Path(.X,Y') and
the query is good Path(130,160), or we are trying to find the first binding for X
and }Y.). The sécond and third c¢olumns show the ratios.of the number of nodes
expaiided for ground queries. The neéxt coluniris show the node ratios of finding-the
first solution to the query. Thé next column comparés the preprocessing tire and
thé time to find solutions to the query. It shows the number of calls (each looking
for the nest solution) after which the preprocessing time equals the time to answer
the queries. The last column shows the number of solutions found for the query. The
résults indicate that often the preprocessing pays off aftei a very small number of
solutions and therefore it is beneficial to build a query-trée even in cases when we are
searching for few solutions.

4.1.2 Analysis

The experiments showed that the savings achieved by using the queryv-tree are affected
by several factors. In. this seétion we deseribe these éffects.

SExampie #6 was excludéd from the mean because thé . speédups it yieldedt weré exceptionally

Ingh e 1+ 2 e 22 e t1en ot s 414 et 2t
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Ground queries | Find first solution | solutions néeded | nuniber of
£t Bcl gcl | Bel to break evén | solutions

I} 5.8 6.1 83 85 ‘ 1o . 187
2. | 1.8 1.8 4.3 4.5 1 187
3. | 33 74 25 2.6 1 49
4. | 4.6 T 51 1 6.2 6 37
3. 15 290 1 ! 1 12
6. 33 1530 31 1630 N 0
T 1 2 14 25 115 41000
8. L1 | 14 1.6 4.5 81 420
9. 31 13 123 | 123 2 333
10. | 1 1 4.8 4.8 1 0

Table 4.2: Experimental results: ground quéries and finding the first solution.

Percent of Irrelevant. Formulas

The.analysis of the algorithm suggest that the speedups obtained will be significantly _

affected by the percent cf formulas in the knowledge base that are found to be irrel-
evart to the query. To test this effect, we ran several variants of each example, that
differed orily in the constants appearing in the rules (which had the effect of .varying
the percent of irrelevant forrulas). The results, shown in Table 4.3, show .that the
spéedups grow significantly as the percent of irrelevant formulas increases. For ex-
ample, when 90% of the facts are found to be strongly irrélevant, we get speedups
greater than a factor of 100..

It is important to note that we have the flexibility of building a query-tree at differ-
ent levels of generality and thereby to achiéve varying percents of irrelevant formulas.
For éxample, instead of building a query-tree for the query schenia gevd Path(X,Y),
we can build one for goodPath(l"U Y'). Doing so will result in deeming additional
formulas irrelevant (e.g.. step(X,Y) for 100 < X < 120 in this ¢ase). However, the
indices created by this query-tree will be usable for a smaller set of queries. Con-
sequently, in using thé query-tréé one should attempt to identify the fmost accurate
¢characterizations of frequently occurring sets of queries.

Examplé | - Example J . .. Example 9
Percent | Solution timé Percént | Solution time Petcent | Solution Lume
irrelevant | 851 | ACL irrelevant | 861 | BCL irrelevant | BEL | ECL
45 b} 5 - 21 1.8 3.1 .4 1.1 1.1
63 15 15 45 4.5 7.6 15 1.3 1.3
9 101 10} 69 20 43 1. 59 4.6 4.6
92 1250 | 1240 92 381 417 82 23.5 | 23.5

Tablé 4.3: Changing the percerit of irfelevant formulas
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The Number of Ground Formulas in the Knowledge Base

The second factor that affects the spéedups.that was suggested by the initial results
is the number of ground formulas in the original knowledge base. To tést this effect.
we rari.each of the examples with databases containing a different number of ground
formulas. The results, shown in Table 1.4, show that the speedups increaseéd as the
size of the databases grew, evén if the pércent of irrelevant formulas remained roughly
the same. Thé growth can be explained by the fact.that rhe cost of backward ¢haining
i$ more than linear in the number of formulas. Thereforé, the effect of removing some
constant percent of formulas will be greater when the overall number of forri.ulas is
greater. These résults are significant in that they suggest that our methods will scale
up to large knowlédge bases and be évén more effectivé there (recall that the. cost of
building the query-tree is independent of . the number of ground formulas). —

. Example 1. | Example 3 .‘ " Example?__
KB size | Soluticn time B size | Solution time KB size | Solution time
BC1 BC1 BC1 BC BC1 BCl
. BCD BCa e | BAa L BCa | Hea
250 12.6 12.4 100 23 1 31 | | 540 1.3 11.3°
350 15 15 _ 200 27 | 43 930 1 20
550 20 20 300 35 58 1300 1 24

Table 4.4: Changing the size of the database.

Placement of Interpreted Literals in the Rules

A final factor in the speedups achieved from using the query-tree is the way the

interpreted literals are placed in the rules. To illustrate, consider the following set of .

rules defining the existénce of a flight (perhaps with stops) between two ¢ities in the
country subject to time constraints (given by the ¢onstants sp and eg):

u 2 p(X, Y'S’.’ E\) A (s0 £ S1) A (g6 2 E) = timelyConnect(X,Y)
uz : fI{X,Y,5.F) = p(X, Y, S, E)
uz: fUX. Z. S TYA(TETH)APZ. Y. T\,E)= p(X.Y.5 E)

To deséribe such paths, the rules ¢an also bé written as follows:

vy XY, S0 EL) = tidélyConnéct (X, Y)
e SNV S.EYA (S 2 50) A (E < o) = p(X. Y. 8. E) ‘
vy fUX.ZST)A (T 2 T AS 2 s0) AT < co) Ap(Z. Y\ T1 E) = p(X. Y. 5. E)

The differérice betwéen the two sets of rules is that the.sécond set is crafted
to cxploit the constraints entailed by the interpreted constraints on timelyConneét.
Specifically, whenever we rétrieve a flight formula that violates the constraints (i.e.,
ends later than eg or begins before sy), we will imniediately backtrack. In contrast,
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when using the first set of.rules, we will compute all possible paths (in a bottom up
computation) and chéck the constraints in the last step of the derivation. Conse-
quently. when using the first set of rules, a strongly irrelevant formula may be the.
root of an arbitrarily large trée. wheéreas when using the second set, no such tree
will bé gencrated. Consequeéntly. removing strongly irrélévant formulas will have a
greater effect for a set of rules like the .first one. The experimental results confirm
this obsérvation. The example pairs 1 & 2 and 3 & 4 are instarnces 6f rules differing
exactly in this fashion.
Severnl points should be noted with respect to this issue:

o Although the speedups are significantly bigger using the first set of rules in each
pair, we still achieve significant savings even when the rules are carefully ¢ratted
such that.the constraints aré used to ¢control the search.

¢ Writing rules with such built-in control .has many" disadvantages ([Clancey.
1983]).— It is extremely .difficult to write such rulés in .practice and is a very
error-proné task. Consequently, we expect rules would usually be written with-
out such erafting.

o Crafting a set of rules with such built-in control can however be done easily
using the query-trée (as we did in Section 3.4). Specifically, we can .create a .
riew rule for every rule-node in the query-tree that includes the. constraints .of
that node. The resulting set of rules will be equivalent to the original set with.
respect to the query predicate (i.e., will produce the same answer regardless
of the database of ground facts). However, using the new set, the tightest
constraints will be enforced on the bindings immediately when they appear.

Applicability to Other Inference Mechanisms

The experiments described abave were dorne with a depth first search backward chain- .
ing inferen¢e mechanism. However, the techniques we described ¢an be applied to a
wide range of 1easoring mechanisms. The first use of the tree, the removal of strongly
irrelevant formulas, is iiddependent of the reasoning scheme used. Following the query-
tice can also be integrated easily to any reasoning méchanism. The only requirement
is that nodes in the search space be associated with nodes in the query-tree, and the
particular ofder in which the §pace i5 searched is unimportant,

Finally, thefe are séveral possible scheries for integrating the construction .of the
query-tree and the indices with search for the solution. One possibility is to ¢reate
a specialized index for a relation only if it is actually feferenced in. the search. This
way one ¢an avoid ¢reating indices that will fiot be used.
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4.2 Irrelevance Claims from an External Source

Until riow we.have used the querv-tree to decide automatically which formulas are
irrelevant to a given query. Oftén a user may be able to supply the system with
additional irreiévance claims based on his/heér knowledge about the domain and about
the ground formulas in the KB (or those that may appear in the KB). Specifically.
the user may know that a set of formulas ¢ is strongly irrelevant to the query ¢, given
the possible ground formulas that may occur in the knowledge base. This knowledge
may not bé expressible as explicit constraints on ground formulas. which can be used
directly by the query-tree. For exaniple. this knowlédge may be based on the fact
that the join of two relations is empty. which is not éxpressible using Horn rules.
Alternatively, this knowledge may be heuristic in nature.

Cléarly. if we aré told that a formula o is strongly irrelévant to g. we.can ignore
¢ when answering q. However, we may also bé able to conclude that othér formulas
are irrelevant as well. This section deseribes an algorithm.for deriving such con¢lu-
sions using the query-tree. In Section 4.2.1, we consider a différent kind of external
knowlédge in which the systém is told that some formulas are necessarily relevant to
the query.

Formally. the problém wé consider here is as follows. Suppose that P is a set of
rules and let / be an irrelevance ¢laim stating that a set of formulas & is strongly
irrelevant to a query ¢. More precisely, [ actually states that the set of possible KBs
is sorne subset &' € Sp, such that SI(®,q. S, DI;.D,) holds.® “We assume that ¢
is composéd of.a set of rules . C P and a set of ground formulas @, specified .as a
set {p(.X)] C(X)}, where p is some IDB predicate” and C(X) is a formula with only
interpreted predicates.® Our goal is to find which strong irrelevance ¢laims follow
from. I, i.e.. for which formulas o, the following holds:

SH®,q. & D1 D,) = Sl{o).q.5. DI, D,).

To derive logical conclusions from / using the query-tree, our strategy is to ¢reate
a set of rules P,. such that when formulas from ¢ are excluded, P, and P produce
the same dérivations of the query g for évery set of ground faéts G. We then ¢reate a
quecy-treé for Py and find all forniulas that are strongly irrélévant to ¢. If a formula o,
is found to be strongly irrelévant with fespect to Py, then it is also strongly irrelevant
with réspect to P wheneéver [ holds.

"Note that thieré miay be fmany such subsets £'. In our algorithm and analysis we will assume
that ¥ the maximal such subset, but our con¢lusions will hold for any such subset.

"Note that the casé of EDB predicates can be handled in a straightforward fashion by the query:
trée algorithsm.

8¢ can include a collection of such sets. However, for simplicity of exposition we assume that
thiéré 1s only one
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Formally, given that & = ¢, U {p(X) | C(X)}. the set of rules P, is defined as
follows:

l. If r € Pand.r € @, and the head of r is not p, then r € P).
2. If r € P and ris of the form qi (X)) A ... q( X)) = p(X). r € &, and

~C(X) =2 DXV ... Vdn(X).

where each d, is a ¢onjunction of litérals of intérpreted predicates; then P
includes rules of the form

X)) A qi{ X)) A d(X) = p(X)
for (1 £7 £ m). For future reference we denote these rules by P;(r).

Example 4.2: Suppose that we are told that the set @ = {path(X.Y) | X <« 120}
is strongly irrelevant to theé query goodPath in Figure 4.1. The rules in P, would
includé rules . ry and rs, as well asg the following rules for the predicate path:

Lnk(X. Y)A (X 2120) = path(X,Y).

link(X,Z) A (X 2 120) A path(Z,Y') = path(X,Y).

The query-tree for P, will show that the formulas {badPoint(X) | X < 120} are
strangly. irrelevant to good Path(X,Y). &

To prove the correctness of our algorithm, we show that P, produces precisely the

same derivations as those produced by P, except for derivations including formulas
in ¢:

Lemma 4.3: Let P be a set of Horn rules and let Py be the set of rules produced
by our algorithm, given that the formulas ® are irrelevant to the query. Let D be an
arbitrary set of ground facts.

A derivation d that does not use formulas from ® is a valid derivation of the query
from DUP if and only if there is a valid derivation d' of the query from DUP,, such .
that the only differenée between d and d' is that every instance of a rule ¥ of p used
in d is replaced in d' by an instanée of a rule in Py(r).

Proof: Let d be a derivation of the query fromm D U P,. Clearly, if we replaced each
of the rules of p used in d' by its original rule in P, the resulting derivation would be
a valid derivation of the query from P because the original rule does not contain the
additional litéral of the interpreted predicate (d,) ini the antecedent.

Conversely, let d be a derivation of the query from D U P. Since d does fiot use
forinulas from @, it does not include rules from ®,. To complete the proof, suppose
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the formula p(a) is used as a part of the deri\ation d and was derived using the
instantiated rule gi(a,) A...q(a;).= p(a). Sinceé p(a) € ®,. there must.be some i,
s'.«ch that @ satisfies d,. Therefore. p(@) can also be derwed using the instantiated
rule g (@) A...qa;) Ad,(a) = p(a). which is an instance of a rulé in P;.

Consequently, every rule of p in ¢ can be replaced by a rulé of P,, and so we can
construct a derivation for the query from the rulés of P;. 8

The following corollary shows that inferring strong irrelevance claims from the
quérv-tree of P, is sound:

Corollary 4.4: Let P be¢ the set of rules coﬁstructed from 75’ and the irrelevance
claim [ stating that @ is strongly irrelevant. ie.. [ = SI(®.q. 5. DI,.D,). If ¢, is a
ground atomic formula and S1{oy. q. Sp,. Dl.D,) holds, then

[ = Sl{o.q. . D[Q,Dq)
holds. If oy is a rule. and for all v..& Py(). ST(r',q.Sp,. D12, D,) holds, then

I = S[(Ox.q.sl. Dlg,Dq)
holds.

Proof: By Lemma 4.3, a formula @; can be used in a derivation of the query ¢ from
P and some database D if and only if either:

1. ¢y is used in a.derivation of ¢ from P U D that inrlndes some formula from &
or

I~

¢y is a ground atomic formula and can be used in a derivation.of ¢ from P, U D
or

3. ¢y is a rule and there is somé ' € Py(d,) that can be used in a derivation of g
from P, U D.

Consequently, if &' is a set of databases in which the formulas @ are strongly irrelevant
to ¢, then *he first pOSSlblllt) is ruled out. In the case of ¢; being a ground atomic
formula. since $1(é&,.q. I, DI;. D) holds, the second possibility is ruled out, and if
¢y is a rule, then because all the rules int Py(¢y) are not in the query-tree, the third
possibility is ruled out. Consequently, the corollary holds. 8

The sanie algorithm can be used to derive logical ¢onclusions from .external weak
ifrélevance claims,
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Corollary 4.5: Let Py be the set of rules constructéd from P and the set of irrélevant
formulas ®. Suppose I, = WI(®.q.X, D, D,). If &, is a ground. atomic formula
and SI1{@;.q.Sp,. DI;. D,) holds, then

I = WI(&1.q.. DI, D,)

holds. If &, is a rule, and for all ' € Py(¢), SI(r'.q. Zp,. DI.D,) holds, then

= Wi(0.q.5.DhH.D)
holds.

Proof: Suppose [, holds. This implies that for any database D &€ ¥’, any answer

to the query has & derivation d that does not use formulas in ¢. Therefore, by
Lemma.4.3. thére will be a derivation d' of the query from P, U D corresponding to

d. If ¢, is a ground formula, then since SI{y,q.Zp,, D12, D,) holds, then d' does not

use ¢, and therefore d does not use ¢, (because d’ contains a superset.of the ground

formulas in d).. Similarly, if ®, is a rule, then since SI(r',g, ¥» . DI;,D,) holds for
every rule v in Pi(¢,), d does not use ¢;. §

Our.inference procedure is.not complete..In fact, in general, it is not possible to
find all the consequences of an irrelcvance claim I, éven if @ includas a single rule.

Theorem 4.6: Suppose that P is a set of function-free Horn rules with.no interpreted
predicates. Let I be the irrelevance claim stating that a rule v € P is strongly irrelevant
to the query q. i.c., the set of possible KBs is &', where T' is the mazimal subset of
Yp such that SI{r,q,%, DIy, D,} holds. There is no algorithm that will determine
whether S$1(¢y,¢, %', D13, Dy) holds for an arbitrary formula &,.

The proof is based on a reduétion from the rulé redundancy problem, and its
details are given in Appendix A.

Example 4.7: As an example of a knowledge base for which our algerithm will not
find all the con¢lusions of [, consideér the following rules:

s1te(X) = pi
s2: e(X) = pa(
s3: ;(X) = p(.
¢ : pa(X) = pl
Suppose [ states that rule s, is strongly irrelevant to p. Our algorithm will build a
query-tree that will consist of the rules $; and s4 and will deem s3 to be strongly
irrelevant. However, since the dérivations using s, are isomorphic to the derivations
using ss, strong irrelevanée of sy implies strong irrelevance of 57 and s4 as well. §
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As can be seen in this éxample, we can combine our algorithm with algorithms for
deriving weak irrelevance ¢laims (see Chapter 5), and the resulting algorithm will be
able to derivé additional irrelevance claims. Furthermore, using the results described
in Sections 3.3 and 3.4, we can also use the querv-tree to derivé additional strong
irrelevance claims by looking only at minimal dérivations and in knowledge bases
that include some forms of negation in their antecedents.

4.2.1 Relevance Claims

A different kind of knowledge that a user may be able to provide a system is positive .

relevance knowledge. For example. the user may know that & certain formula must
be used in every possible derivation of the query. Such knowledge may be available
in several contéxts.. For example, (as we often see in.textbooks), we may be given
2 hint that a cértain lemma must be used in a proof of a theorem. As another
example, suppose a new.formula is added to a knowledge base, and we want to find
the new derivablé conclusions. In such a case, weé know that the derivations of the new
conclusions must include the updated formula. As in the case of éxternal irrelevante
claims. we may be able to use a relevance claim in order to deduce that someé other
formulas are irrelevant to the query. In this section we show how to.use the query-tree
to.deduce such conclusions. In theory, it is possible to construct a space of definitions —
for.rélevance analogous to the space we constructed for irrelevance. However, here we
consider only one such definition: - —

Definition 4.8 A formula ¢ is relevant to a query ¢ with respect to a set of knowledge

bases T, denoted. Relevant(¢, q, T), if ¢ appears in every derivation of q from each of
the KBs in £. 8

To derive irrelevance-claims that are logical consequences of a given rélevarnce-
claim weé rely on the following observation. If a formula ¢, cannot appear in any
derivation that in¢ludes ¢, and ¢ is known to be relevant to the query g, then ¢,
must be strongly irrelevant to gq. The query-tree énables us to find such relations .
between formulas in the knowledge base, formalized by the following ezclusiveness
condition:

" Definition 4.9: Two iorniulas ¢; and ¢, aré said to be erclusive with respect to a

sét of rules P if there is o set of ground formulas G such that there is 4 derivation
of an answer to the query from P U G that uses both ¢; and ¢;. 1 .

¢y and ¢, being exclusive is a sufficient condition for deriving strong irrelevance.
The following lemma follows from the definitions:
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Lemma 4.10: [f ¥ is a s¢t of databasés such that Relevant(oy.q. ') holds, and o,
and o are exclusics, then S1{03.q. '\ DI Dy,) holds.

Proof: If o, appears in. every derivation of ¢ from databases in X', and ¢, and o;
cannot appear.in the same derivation, then @, does not appear in any derivation of q
from databases in &/, 1

The exclusiveness condition ¢an be determined using thé quéry-tree. Figure 4.3
desé¢ribes an algorithm that finds all the formulas ® such that @ and r are exclusive
with respect to P. where r is a rule.® Informally, the algorithm begins from every
appéarance, o, of r in the query-tree and marks all the nodes that can appear in a
derivation togéther with ry. It labels above any node that can appear abové rp in a
derivation trée, and labels below any node that can appear in.such a trée, but not
necessarily above ro. The correctness of the algorithm 1s e:tablished by the following
theorem.

procedure find-exclusive-formulas(7p, r)
begin /= Tp is the query-treé for the rules P. »/
for every appéarance, rg € Ty of r do:
repeat
label ry dbove and .below.
1: if a rule-node .n is marked above, label its father goal-node above.
2: if a goal-node n.is marked abovs,
then label its father above and its siblings below.
3: if a goal-node n is labeled above, label above any. of its unexpanded equiyalents.
4: if n is marked below label its children below.
5: if a goal-node n is marked below and m is its expanded equivalent, label m as below.
until no new nodes are marked.
Any niode that has an instance marked above or below is marked non-ezclusive.
Remove all above and béfow markings.
end for
end.

Figure 4.3: Algorithm for finding éxclusive rules.

Theorem 4.11: Given a sét of rules P, a-query ¢ and a rule r € P, procedure find-
exclusive-formulas will mark an instance of rule s in the query-treé if and only if 5
is not erclusive with respeét to . The rule r and thé atom p(ay,...,a,) are exclusive
if ai,....an does not satisfy the constraint label of any node of p that was marked
non-exrélusive..

*The algorithm can be exténded in a straightforward manner to the.case where » is & sel of
formulas.
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Proof: \We prove the “only if" part by showing that if a node n was marked non-
erclusive by the algorithm when the marking began with an appearance rg of r, then
there is a symbolic derivation tree d encodéd hy the query-tree (by a mapping 2)
such that there are two nodeés ny and ny in d such that ©(n;) = and ving) = r.
We prove the claim by induction on the ordeér of the marked goal-nodes. Specif-
ically, we show that for evéry node n that i1s marked there is a partial symbolic
derivation tree d',!° encoded by the querv-tree usirig a mapping & such that:

¢ If a node n is.markéd abore, then n is t'(root(d’)) and r appears in d'.

¢ If a node n i$ marked bélow. theén. there is a leaf in &', ', such that v(n') = n,
and d' inc¢ludes r.

As a conséquénce.of these claims. we can show that an appropriate symbolic derivation
tree d exists...Given the partial tree d’. we ¢onside. a symbolic derivation tree eéncoded

by the query-tree in which one of the nodes n is mapped to v'(root(d’)). We replace—_

the. subtree of n with d”. And complete the leaves of the resulting svmbolic derivation
arbitrarily (note that Part 2 of Theorem 3.6 guarantees that the completion can be
done). The resuliing syrhbolic derivation is éncodéd by the queryv-tree.and satisfies
the requirémeénts..

The ¢laim holds trivially for the base casé that.includes the node rg and its father
and children, since (by Part 3 of Theoréem 3.6) there is a symbolic. derivation tree
encodeéd by thé query-tree that in¢ludes rg. The derivation tree d' includes the rule-
node in r, its father and children. In the inductive case, thére are several cases in
which a nodé m could have been. marked. corresponding to the conditionals in_the
algorithm:

I. The uode m i a father rule-node of n (case 2), By the¢ inductive assumptinn, the
iode 7t is a root of d' that includes r. Considér a partial svmibolic derivation
treé oy created by adding the rule in nt as the father of the root of d. The
mapping of the nodeés.in d' stays unchanged. The root of d; is mapped to the

father of m (covering tasé | of the algorithm) and the top rule=node is niapped .

to.m. The siblings of n até leaves in d; and they are mapped to the siblings of
wiroot(d,)).

2, The node m is an éxpanded equivalént of a goal-niude n (case. 3). Since there -
exist§ a partial symbolic dérivation ' for which .¢(root(d')) = n, we can just as-

well.make (roat(d)) = m, and the éncoding conditionis of Definition 3.1 still

hold.

'9The derivation d' is partial bécause its leaves are ot necessasily EDB nodes.and its root is
mapped to an arbitrary goal-node in thé query-tree, fot riccessarily a foot.
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3. In case 4 of the algorithm, if n is marked below, then by the inductive assump-
tior, then there is a leal n’ in ' such that y'(n’) = n. Therefore, if *' is a child
rulé-node of n, we can consider a partial symbolic dérivation d, in whi¢h n’ is
expanded with the rule in ». The mapping v will map thé ¢hild of n' to r' and
the children rule-nodes to the correspending children of r'.

4. In casé 5 of the algorithm, the same argumeént of case 4 holds. Consider the
derivation.d’ in which n’ 1§ éxpanded with one.of the children of its expanded
equivalent. m. Modify ¢ so that v(n')=m. .

To complete the proof. we must show that if a node n ¢an appear with the rule rg in.
a symbolic derivation, then it will be marked by the algorithm. Let d be a symbolic
derivation encoded by the query-trée and i* be the mapping of the nodes of .d to the.
nodeés in the query-tree. Assume that there is some node r’ € d such that @(r') = rg.
We need to show that for every n € d. ¥(n) will be marked.by.the algorithm. Since
ro is marked below, all the nodes n € d that are.below r' will be marked below by a
tombination of conditionals 4 and 5. Let.m be the father goal:node of +'. The node
¥(m) will be miarked éither by 1 or by 3. The father node of ¥'(m) will be marked
above by 2, and v(m)'s siblings will be marked below by 2. Consequently, if #| is the
father of m. then for any node.n in its subtree, ¥s(n) will be marked by the algorithm.
We can continue in the same fashion for r{, and show that ¥'(n) will be marked for
évery node 1 that is a descendent of the top rule-node in_d. Finally. vi(root(d)) will
be marked.by 1. 8

Example 4.12: Consider the following rules: —

rowants(X,Y,C) A éanAf ford(X,Y,C) = buys(X,Y.C).

ro rwants(X, Y, C) A éanGetLoan(X,C)) A (Cy 2 C) = buys(X,Y,C)
r3: Sees(X, Y. C) A likes(XN.Y) = wants{ X, Y,C)

rq 2 priceO f(Y,C) A hasCash(X,C)A (C < 100) = canAf ford(X,Y,C)
rs.: customer(X, B) A ¢redit Lumit(X, B,C) = canGet Loan(X,C)

The atom buys(XN.}Y,C) derotes that X' will buy item Y at price C. Tlie person .X
will buy ¥ only if she wants it. If she does, she will buy it if she has enough cash
at haid or if she can get a loan from a bank to cover the expense. The query-tiee
constructed for buys(X,Y,() appeéars in Figure 4.4. In this éxarnple, rules ry and
rs aré exclusive. Thereforé, suppose we are given that £y must be.used to answer
the query buys(Sue.}, Z) (because we know that Sue used cash for all her purchases
lately). The algorithm will mark the nodes in the query-tree as showii in. Figure 4.4,
and therefore the rules 5 and rg will be deemed strongly irfelevant to the query. 8
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buys( . Y. ()
{Cy>C) ra

/ . .
wants(X.Y.C) canGélLvan( X, Cy)

| |

7'3 rs

sees{ N, Y.C) likes(X.Y)  custornér(N,B) creditLimit(X, B, Cy)

{C < 100} buys(X.. Y, C) { aboye)

r1 {abore}
{below} wants(XN,Y.C) canAfford(X.Y,C){above}
{below} ra ra {above, below)

sees(X,Y,C) likes(X.Y) priceOf(Y.C) hasCash(X,C)
{ below} {below} {below) {below}

Figure 4.4; The query-tree of Example 4.12.

4.3 Additional Uses of the Query-Tree

In this section we briefly outline several ways in which the query-tree can be used to
extend other query evaluation methods.

Combining with Magic Set Transformation

Two priniary strategies for evaluating a query with.a given set of fules are top-
down (e.g., backward chaining) and bottom-up (e.g., forward c¢haining). Top-down
téchniques have the advantage that they are.more goal-directed, sinée they exploit
the information in the query (é.g.. the query-prédicate and bindings that appear in
the query). Howeveér, top-down tecliniques have the disadvantage that they may -
result in infinite loops and that theéy fequire the operation of unification, instead of
the chéaper operation of tefm-matching, used iti bottom-up evaluation. In contrast,




4.3. ADDITIONAL USES OF THE QUERY-TREE  ~ 95

hottom-up techniques will not get into infinite loops (when the rules do not have
funétion symbols). but may compute many facts that are not relevant to the query.
The goal of the magic-set transformation method [Ullman, 1989] is to combine the
advantages of top-down and bottom-up évaluation methods. It transforms a given set
of rules P o a new set Py, such that P, is equivalent to P with respéct to thé query
predicate. Moreover, a bottom up evaluation of Py provideés the goal-directedness
focus achieved by top-down evaluation. To illustrate, consider the following rules for
transitive closuré with additional interpréted constraints:

(N YIA(N <Y) = plN YY)
vyt e(NZ)ALN € Z)Ap(Z.X) = p(X.Y)

and suppose our query is to find.all ¥ such that p(a,Y’) is derivable, where a is some
constant, The transformed sét of rules will be the following:

slznp(a).
2t mp(X) A (X ,Zj/\(\ <Z)=>m,,(7)
Lo X) A (XL Z) A (X < Z)ApLZ.Y) = p(X.Y)
semp(N) AN YIA (XN <Y) = p(X.Y)

The predicaté-my, is the “magic prédicate of p" and is used to constrain the tuples
that will be.computed in the bottom-up evaluation of the rules. Essentially, m, is
the set of constants that may appear in the first argument of facts of p that are used
in.a derivation of p(a.Y).

The limitation of the magic-set transformation is that it can only use binding
informatiori it the query. In the above example, it was able to use the fact that the first
argument of p in the query is bound to a. However, it ¢annct use information a.bout
constraints on possible bindings. For example, if the query was p(a,Y) A (Y < 2),
the magic sét transformation would ot be able to exploit the constraint ¥ < 2.

The query-tree effectivély pushes such constraints from the query to the other
rules of the knowledge basé. Consequently, we can use it in order to extend the magic
set transformation with ¢onstraint pushing. Specifically, we ¢an attach bf adornments
to labels of the nodes in the query-tree. The adornment specifies which argumenits
of the node are free and which are hound. Adornients ¢an be detérmined in a top:
down fashion as in the magic-sct transformation algorithm. We can then refine the
équivalence relation on fodes in the tree by requiring that the adornments be the
samé. The resulting rules will liave the unique-dimding property needed in order to
create a magic prograni (se¢ [U'llman. 1989]. Algorithin 13.1, pg. 828). Applying the
fagic-sots rule transformation to this set of rules will yield the following rules for the
query pla, Y)YA (Y <2):
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syt my(a).

Gimy(X)A N ZYA (N < Z <2Y = mpu(Z)
Srmp(XN)A (N Z)A (N < Z <2 AplZ.Y) = plX.Y)
Semp(N)Ae(XY)IA (XN <Y <«2) = p(X.Y)

Note that with these rules, facts of the form p(X.}') with ¥ > 2 will riot be produced
in a bottom-up computation. Sinée the rules créated by the query-tree are equivalent
to the original rules with respect to the query. it follows from Theéorem 13.1 in [Ullman.
1989] that our transformation is correct.

It should be noted that using the query-tree to propagate the constraints has an
advantage over prévious techniques, such as the use of cf adornments [Murmick ef al.,
1990}. That technique attachés a ¢ adornment to an argument of a goal-node if there
is some known constraint .on it. In contrast, the query-tree.considers the semantics
of the interpreted literals to computé the actual constraint on the arguments.

Message-Passing Query Evaluation Schemes

In & message passing scheme for queéry evaluation [Van-Gelder, 1986], query. évaluation
is viewed as a system of cooperating processes communicating by message passing.
Each process computes soriie set of tuples (essentially a subset of the relation for some
relation). The.meéssages between the processes represent the rneeds.of a process and
the solations it genérates. A need message is generated by a process that needs some
relation in order to comipute its output relation. For example, a process computing the
relation )(1,Y) M ez(Y, Z) will send a message to a process computing the relation
¢y. specifying that it needs the subset of e; with the first argument bound to 1. After
tomputing the desired relation. the latter process will send a solution message, with
the possible bindings of Y.

The main advantage of a message passing schéme is that by breaking up the
problem to such modules with well defined interfaces, we are able to exploit éxisting
operating $ystem features in order to facilitate and speed query evaluvation: Such
features include scheduling, message passing, and nulti- -tasking. This schenie is also
a first step towards parallel implerientation of query evaluation.

To facilitate such an evaluation scheme, we néed to determine what processes will
¢xist and how they will communicate. To do so, Van Gelder uses a rule-goal tree

which resembles a siriiple version of thé query-tree. Each goal-node in the tree is .

considered to be a different process in the system. The termination condition that he
uses in constructing the rule-goal tre¢ depends only on an isomorphismi of the variable
patteriis of the goal-nodes and of.the adorriments. Consequently, information about

intérpreted literals is not propagated and therefore not used t6 determine the set of
processes,
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The query:tréc can be used directly to éxtend Van Gelder's sélieme to incorporate
Knowledge about interpreted literals. \We ¢an siniply fefine the labels of the nodes
in the query-tree with the adornments used in his construction. As a.result. we will
be able to distinguish betwéen parts of a relation that can be computed in parallél
and aré independent of each other. For instance. consider the rules of Example 1.1
repeated below.,

ry:cheapAMeal\ Dy W) A meat(D)) A erpensiveMeal(Dy W) A dessert(Dq) =

dessertMeal(Dy. Wy, Dy, W)
ryt dish(X,Z) A (Z < 13) A éompatible(X,Y ) = cheapMeal(X.Y)
ry: dish(X,Z) A (Z > 15) A compatible(X.Y) = crpensiveAeal(X,Y)
rqtbee f(X) A redWine(}) = compatible(X,Y)
rs : dessert(X) A sweetWine(Y') = compatible(X, V)

Ordinarily, we would have orie process.for the predicate dish that would send its
answers to.processes of cheapMeal and expensiveMeal. However, constructing a
message passing.scheme based on the query-tree will result in two processes for dish.
one computing cheap beef dishes (and sending its answers to the process cheaph éal)
and the other computing expeénsive dessert dishes. As a result, the cost to compute
the joins (in rules 7, and ry) is significantly reduced.

Deriving Optimal. Search Strategies

The query-tree implicitly encodes the space of.derivations that an inference engine
should search. The rovelty of ‘the query-tree is that it encodes a subset of the space
that would have been searched by ordinary backward chaining, and therefore following
the query-tree enables pruning of parts of the search space. A different approach that
was considered to speeding up inference is finding optimal strategies for searching a
given space [Smith, 1986; Greirier. 1991: Greiner. 1992).

The query-tree can be used to cornplement and exténd these methods in two ways,
First, by delimiting the actual space that needs to be searched, some search paths can
be eliminated from c¢onsideration when lookinig for the optimal search strategy. Sec-
ond. the methods described by Smith and Greiner require a graph-like representation
of the possible derivations of the query. The query-tree provides such a represen-
tation wlhich treats recursion and interpreted literals in a prificipled way, unlike the
representations that are currently used. Consequently. it can he used as a basis for
extending such techniques to fully incorporate knowlédge about interpreted literals.
In particular, the query-tree can be used to extend Gréiner's algorithm [Creiner, 1991)
~r knowledge bases with recursive rules.

The goal of Explanation Based Learning [Mintoni et al., 1989] is also to speed
up inferénces. In EBL. riew fules are added to the knowledge base that comipress
sequénices of inférerice into a singlé rule. The sequerices are learned by examining
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derivations of observed queries. Tlhe key issue in this approach is the utility of the
added rules {Minton. 1988: Etzioni and Minton, 1992]. Adding too many rules may
have the inverse éffect of slowing down inference. Moreover, the learned rules may

be long and requiré many unification operations. Etzioni [Etzioni. 1993] has shown .

that much of the speedups obtained by EBL can be obtained by mereély doing stati¢
analysis of theé rules in the knowledge basé. Using a tree-like representation of the
riles in the Rnowledge base, called the Problem Space Graph (PSG). he showed how
to glean from it new rulés that were more.effective than those léarned by standard
EBL techniques.

The probléem space graph is similar in principle to the query-tree. However it does
not consider the semantics of intérpreted literals in the rules. It also uses a very simple
termination conditior in the case of recursion; a node is not expanded if it is 4 variable
rénaming of one of its ancestors. It is therefore possible to extend Etzioni's techniques
by refining the. construction of the PSG. with the labeling schemes employed by the
queéry-tree, By attaching constraint labels to the nodes, we can discover additional
sequénces of actions that are guaranteed to fail. We can also attach tag-labels to
nodes and usé them to find sequences of actions that necessarily contain loops. A key
difference hetweéen the PSG and the query-tree is that the decision.whether to expand
a nodé in the PSG depends partially on its ancestors. In contrast, the information
used in order to decide whether to expand .a node in thé query-treeis encoded in the
node itself. To fully integrate the querv-tree and the PSG we nieed to find methods
to terminate thé construction of the PSG based only on local criteria. It should be

notéd that if the termination condition depends on the ancestors of a node, the size .

of the resulting tree ¢an be exponential in the number of rules. In ¢ontrast, the size
of the query-tree may be eéxponential only in the arity of the predicates.

The Query-Tree in Knowledge Acquisition

A different use of the query-tree is as a tool for knowledge acquisition and kriowledge
base management. The query-tiée essentially gives us a view (or picture) of the
knowledge base relative to a query. It shows s exactly which derivations can be miade
and what formulas can be useéd in such derivations. A key problem in Knowledge
acquisition is that as the Knowledge -base grows. it is very hard to understand the
intefactions betweeri the rules and the eflects of changes. The query-tree shows us
visually the dependerncé between rules and formulas. If a rule is removed. it can tell
us that certain fermulas have becomé irfelevant to the query, whereas if a rulé is
added. it cari show us a dependency we have riot anticipated. In that way it ¢an.also
hélp us find érroricous rules (e.g.. an over siniplified or overly specific rule).
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4.4 Summary

The query-tree is a véry useful tool for many purposes. In this chapter we have
explored only a few of its uses. We havé shown that using the query-tree we ¢an
obtain significant speedups of inference. sometimes a few.orders of magnitude. \We
have shown theé query-tree to bé a uséful tool in deriving conélusions from external
irrelevance clainis and in extending other existing query evaluation methods.

Based on the observatioris made in this chapter, we can address one of the funda-
mental questions regarding the.usage of explicit irrelevance claims. Namely, should
we énable users to give a systém explicit irrelevance claims that are based on addi-
tional knowledge that they may “ave, or should we require that they give the system
the knowledge about the domain that underlies these irrelevance claims and develop

methods for exploiting such knowledge to.control.inference. For example, instead. of .

telling the system that flights are irrelevant to the query Route(S.F, LA, $90), tell the
system that:

e All flights cost more than $100.
e Costs of busses and flights are all positive numbers.
o The sum of two positive numbers is positive, étc.
The svstem could then automatically derive that flights will be irrelevant to this

query. The advantage of this approach!! is that the underlying knowledge may be
used in more flexible ways (e.g., it may be used for. other queries as well). If the

knowledge underlying the irrelevance ¢laims changes, the system c¢an automatically .

derive new irrelevance ¢laims.

In general, this argument has much merit. When the knowledge underlying the
irrelevance ¢laims is available, there are clear advantages to giving a system that
knowledge. In fact, the query-tree is a method for exploiting such knowledge effec-
tively. However, there are several cases in which explicit_irrelevance claims will be
very useful:

1. It may not be possible to provxde the Knowledge underlying the ifrelevance
¢laims because of the expressive limits of the language being used. Goifig be-

yord the expressivity of the gwen language may affect the performance of the .

system sxgnlﬁcantl) (even assuming it can support inference in rmore expressive
languages). For examnple, stating that the join of two relations is émpty cannot
be done with Hern rules.

" Advocated to mé by Matt Ginsberg
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2. Providing the additional domain knowledge underlying an irrelevance claim may
requiré adding a level of detail that is unwanted. For éxample, it may require
adding néw objects or predicates {in our eéxample, the axioms of arithmetic).
that will ultimately make the representation more compléx and slow down in-
fererice.

3. The knowledge underlying the irrelevance claims mayv be of heuristic nature.
and the user may not know the knowledge underlving it.

1. Irrelevarice claims can be based on cached inféerences made from the underlying
domain knowledge. As long as their justifications aré maintained, using them
at run-time will lead to significant savings.. Thé experimental results presented
in this chapter can be viewed as a validation for this argument. The computa-
tion done by the query-tree and the indices created are actually precomputing
irrelevance claims. Though these computations can.be done at run-time, the
experiments show that it i3 much less beneficial to do so.

5. As we see in Chaptér 7, in some contexts we .are given theories in which certain
simplifying assumptions are made about the domain. In such cases, an .expli¢it
representation of these assumptions (via irrelevance claims) is useful in deciding
when to use the given theories.

4.4.1 Related Work .

In addition to the work described in the previous seétion, there are several other.

wotkKs related to the topics discussed in this chapter.

Building & query-tree and the corresponding indices for 4 query ¢an be viewed as
an instance of a general framework for knowledge compilation discussed in [Selman
and Kautz, 1691). In their framework, a new simpler knowledge base is created such
that it will yield faster answers for a large number of the queries. For example,
they show how to ¢reate Horn approzimations of a theory that ¢an be used in many
cases to answer the query. One keéy difference between thése approaches is that our
transformed knowlédge base is built with fespect to a known set of queries, and for
these queries inferénce will be moré efficient.

A relatéd approach is that of partial évaluation and in particular, partial eval-
uationi of logi¢ programs [Smith and Hickey, 1990: Lloyd and Shepherdson, 1991;
Bruynooglie et al., 1991]. Partial évaluation attempts to compile a set of rules in a
way that will be efficient for a known set of queries.. The query-tree method ¢an be
viewed as a generalization of previous niethods for partial evaluation of constraint
logic programs, In particular, work in logic programming has not emphasized the
distinction between the rules in the program and thé set of ground formulas, whereas
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our approach argues that this distinction is nécessary for our algorithms to beé of
practical interest. Morzover, the query-tree is the only partial evaluation procedure
that vields the tightest constraints on the possible ground formulas that can appear
in derivations of the query..

We have shown that the query-tree can be used to derive logical conclusions of
irrelevance ¢laims that are given to the svstém. A different approach, described
in [Subramanian and Geneseréth. 1987; Subramanian. 1989] is to give an axiomatiza-
tion of irrelevance and use the axioms to reason about irrélevance claims. Conceivably.
the same could be doné in our framework by giving axiomatizations (or partial ax-
iomatizations) to thé various kinds of irrelevance claims in our space of definitions
(in fact, Chapter 2 presents properties of irrelevance claims that can form a basis for
such an axiomatization).. However. we preferred to6 pursue the algorithmic approach
since it is likely to he more efficient and its results aré easier to characterize.




Chapter 5

Independence of Queries From
Updates

This chapter-corsiders the problem of detecting when a query is independent of an.

update to the knowlédge base. .This problem is primarily important because it eénables
us.to save the computation needed to reevaluate a query after updates. Detecting in-
dependence is also a key issue in.developing heterogeneous and distributed knowledge
base systems [Geriesereth, 1992; Litwin et al...1990]. In.such systems, updates. in one
knowledge base may trigger updates in an other. For example, an important applica-
tion that gives rise to such.a setting is concurrent engineering [Cutkosky et al., 1993;
Levitt et al., 1991], where several agents may be working on different parts of one
design. Design decisions made by one agent may impose constraints on the possible
design decisions of another agent, and therefore must be communicated. However, in
order not to be burdened by excessive communication, only the changes that affect the
other agents must be communicated. In database systems, detecting independence is
important for several reasons. It ¢an be used in order to maintain materialized views
effectively.! In transaction scheduling we ¢an provide greater flexibility by identifying
that onie transaction is independént of updates made by another. Finally, we can
use inden’ ndence in query optimization by ignoring parts of the database for which
updates do not affect a specific query.

In this chapter we relate the independénce problem to our framework for reasoning
dbout irrelevance. We show that detecting independence is equivalent to detecting
weak irrelevance. Making this connection sheds light on the independence problem,
and enables us to significantly imiprove previéus results i this area, I general, de-
tecting independence is undecidable. However, viewing independence as a problem

A view is a portion or an abstraction of a database. Fof example, a view may consist of an 1DB
relation. A materialized view is one that is maintained coniputed, as 6pposed to computing it on
demand.
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of detecting weak irrelevance yields néw algorithms that provide sufficient conditions -
‘r independence by considering dgor’ithms that providé suf‘ﬁciér'lt cOnditions for de~
have examined in detazl in Chapter 3.

A second sufficient condition for the case of Horn rule knowledge. bases is based
on the observation that detecting weak irrelevance can be couched as a problem of
detecting equivaléncé of datalog programs. The notion of uniform eguivalence. intro-
duced in [Sagiv, 1988]. can be used to provide a sufficient condition for equivalence of
datalog programs. In order to usé uniform équivalence for detecting independence, we
exterid the algorithm described in [Sagiv, 1988] to programs with interpreted literals
and stratified negation.. The result provides new decidable casés for independence
and weak irrelevance and sound algorithms for the general case.

Our results significantly extend the known previous results on detecting indepen-
dence. Specifically, it is shown that the results of [Blakeley et af., 1989;.Elkan, 1990]
only capture strong irrelevance in datalog knowledge bases without recursion with ad-..
ditional restrictions on the rules. Our résults extend the previous.onés in two ways.
We provide a strong irrelevance test to arbitrary datalog KBs (and the extensions de-
scribed in Section 3.4), and we provide indépendence tests based on weak irrelevance
which capture-a larger ¢lass of independence than strong irrelevance.

5.1 Definitions

In this chapter we will consider knowledge bases containing a set of datalog (cf. [Ull-.
man, 1989]) rules P and a set of ground formulas. We refer to the rules as a datalog
program. We also .allow the rules to have safe stratified negation. We denote the

EDB predicates by €;....,e, and the IDB predicates by i,,...,i,. The input to a
datalog program P is an EDB, i.e., a set of ground formulas for the EDB predicates,
Ey....,E,. We can also view E),..., E, as relations for the EDB predicates in the
intended interprétation of the knowledge basé. A bottom-up evaluation is one in :
which we start with the ground EDB formulas and apply the rules to derive formulas .
for the IDB predicates. We continué applying the rules until no new formulas aré
generated.

We distinguish one IDB predicate as the query predicate. The output of the
program P for the input £,,..., Ex, denoted P(Ey,....Ep), is the set of all ground
formulas generated for the query predicate in the bottom-up evaluation. The query
predicate is usually denoted as g.

A datalog prograin P is said to be monotonic (antizmeénotonic) in the EDB pred-
icates if for any input EDBs D, and Dy, D, 2 D, implies that P(D;) 2 P(D;)
(P(Dy) € P(D3)). Containment and équivalence of datalog programs are defined as
follows.
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Definition 5.1: (Containment) A datalog program P; contains & program Py,
written P; € P, if for all EDBs E,,.... E,, thé output of P, contains that of P,
i.e.. PQ(E[ ..... Em) QT’;(E; ..... Em)= |

Two programs P, and P, are équivalent, written P, = P,, if P, € P, and
P, € P,. Containment of datalog programs is undecidable {Shmueli, 1987], even for
programs without interpréted predicates or stratified negation. However, a weaker
condition, uniform containment, was introduced and st -vn to be decidablé in [Sagiv,
1988] for programs without intérpreted predicates or stratified negation. In defin-
ing uniform containmeént, we assume that the input t6 a program P consists of re-
lations for the EDB predicates Ey...., En, as well as initial relations for the IDB
predicates .f7,..., [2.2 The output of program P for Ej,..., Ex, I?,..., I, written
P(Ey,....En, I2,...,I2), is computed as earlier by applying rules bottom-up until
no néw formulas are generated. When .dealing with uniform containmeént (equiva-
lence), we assume that the output is not just the relation for the.query predicate
but rather relations for all the IDB predicates I;,..., I, computed for the predicates
i1+ ..+ in, Tespectively. An output /y,..../, contains another output Ii,..., [, if
LS (1s7<n)

Definition 5.2: (Uniform Containment) A program P, uniformly contains P,
written P, €* Py, if for all EDBs.Ey,..., E;, and for all initial IDBs I0,..., I2,

P Eryees By I8 ) S PYErse o B IO, IO).

Two programs P, and P, are uniformly equivalent, written P, =4 Py, if P, C¥
Py and Py €% P;. Uniform containment can also be explained in médel-theoretic

terms [Sagiv, 1988]. The uniform containment P, C* P, holds if and only if M(P;) € |

M(P,), where M(P;) denotes the set of all models of P,.* Furthermore, for prograrms
having only EDB predicates in bodies of rules, uniform containment is the same az
containment. Note that a non-recursive program with fio negation can be transformed
into this form by unfolding of the rules. Coriséquently, uniform équivalence provides
a necessary condition for equivalence for non-recursive programs.

’Note that in défining equivalence, the initial relations for the IDB predicates are assumed to be
émply. ‘

3Note that, in contrast, containment holds if the set of funnsmal fized:pomnt models.of Py are
conitained in-thosé of P3.
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5.1.1 Updates and Independence

Given a datalog program P, which we ¢all the query program, wé consider updates to
the EDB predicates of P, denoted.by e;.....em. In an update, we éither remove or
add ground formulas to the extensional database. To simplify notation, we assume
that updatés are always done on the relation E, for ;. To specify the set of formulas
that aré updated in E;. we assume we have another datalog program. called the
update program. denotéd by P*. The query predicate of P! is u, and its arity is equal
to that of €. The tuples computed for u will be the set of tuples updated in E,.

We assume (without loss of generality) that the IDB predicatés of P* are different
from those of P. The EDB predicates of P¥, however, could be EDB predicates of
P,.as well as predicates not appearing in P. To distinguish the two sets of EDB
predicates, we will use the phrase “EDB predicates” to refer éxclusively vo the EDB.
predicates €y,....en of the queéry program P; thé other extensional predicates that.
may appear in the update program are referred to as base predicates, denoted by
by,....bi.. Of course, some of the EDB predicates may also appear in the update pro-...
gram P*. We denote the output of update program P* as P¥(E,,..., En, Bi,..., BY),
even if P* doés not use all (or any) of the EDB predicates. Sometimes we refer to
the output of P* simply by U'..

An update is either an insertion or a delc‘ion and it applies to the relation E; for
the EDB predicate €,. The tuples to be inserted into or deleted from E, are those in
the relation computed for u. A large.class of updates consists of those not depending
on the EDB relations, as captured.by the following definition:

Definition 5.3: (Oblivious Update) An update specified by an update program

P is oblivious with respect to a query program P if. P* has only base predicates (and

no EDB predicates). An update is nonoblivious if the update program P* has some
EDB predicates {and possibly some base predicates). §

To define indepéndencé. suppose we are givén a quéry program P and an updaté
program P¥. The program P is indepéndent of the given update if thé update does
not change the answer to the query predicate. Thé formal definition is as follows.

Definition 5.4: (Indépendence): A program P is independent of ar: update spec-
ified by a program P if for all EDB relations Ey...., Ejs and for all basé relations
B,....,B, '

p(El‘ E2i‘ . -»En) = PIEiv E?wHaEr’i)&
where E{ is the result of applying the update to Ey: that is, E! = £, U U.if the

update is an insertion, and E| = E, — U/ if the update is a deletion, where U =

'pu(Eh-.u,Em‘Blw"\Bl)‘ '
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We.use the following notation. /n™(P.P¥) means that program P is independérnt
of the insertion speécifiedl by the update program P%. Similarly, In={P.P*) means
that program P is indépéndent of the deletion specified by the update program P,

Example 5.5: Consider the following program P,:

mCar(X. Y. A) Adriver(X)AinCar(Z.Y,B)A B> 18 = canDrive(X.Y. 4)
canDrive(X. Y. A)A A > 18 = adult Driver(.X)

An atom canDrive(X.Y. 4) is true if person X can drive car }' and A is the age of
X. According to the rule for canDrive. pérson X can drivecar ¥ if X' i3 a driver and
there is someone of the age 18.or older in.thé same car. An adult driver, as computed
by the IDB predicaté adult Driver. is aniyonie who can drive a car and is of the age
18 or older. Let the update program P! consist of the rule:

nCar(X. Y, A)A ~driver(N) A A <18 = (X, Y. 4)

and suppose that the deletion defined by u; is appliéd to inCar; that is..non-drivers
under the age of 18-are removed from nCar. The queéry predicate adult Driver is
independent of the deletion update P} becausé the existénce of non=drivers under the
age of 18 does not aflect the ability to derive that a person can drive, §

Several propertiés of independence are.shown by Elkan [Elkan, 1990]. In particu-
lar. hie showed the.following.

Lemma 5.6: Consider a guery program P and an update program P*. [f P¥ is
monoténic in the EDB predicates, and P is eithér monotonic or anti-rnanotonic in

the EDB predicatés, then ___
In~(P,BY = [n¥(P,P*).
Similarly to the above lemma, wé can also prove the following.
Lemma 5.7:  Considér a query program P and an update program P*. If P* is
anti-monotonic ui the EDB predicatés, and P s éithér monotonic or anti-monotonic
in the £DB predicates, then
(PP = In~(P.PY). _
Proof:. Consider an.EDB E,.....E,. denoted as E. and relations. By...., B, de-

noted as B. for the base predicates. The tuples ‘ot: the update are given by U =
P E. B). A deletion update transfornmis the-EDB £ into the EDB E, = (/... E;,
denoted as E. We have to show the following:

PE™) = PE).
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Consider the EDB E- with the relatioiis_B for the base predicates. Let [ =
PY(E-, B). Since P* is anti-monotonic in the EDB. (' € [, _
We now apply the insértion update specified. by [ = P*(E~, B) to E~. yvielding
(Ey = (YUl Fy By
Since In*(P,PY) is assumed. we gét.

PE) = PUE=I)UL" Eo... . E,). (5.1)

Moreover, " C [ implies

E,-U C E € (E,-U"hul', (5.2)
If P i5 monototiic in the EDB. then (4.2) implies
P(E") € P(E) € PUE -U)UU' Ey..... Er).

and, so, from (3.1) we get

Similarly, if P is anti-monotonic¢ in the EDB, then (5.2) implies
P(E”) 2 PE) 2 P((E.-U)UU" Es,... B,
and, so. from (5.1) wé get

P(E) = PE)

Note that if an update is oblivious. then it is both monotonic and anti-monotonic.
Therefore, the above two lemmas imply the following corollary.

Corollary 5.8: Consider a query program P and an update program P*. If the
update is oblivious (i.c., EDB predicates of P do not appear in.Pt), and P is-éi-
ther monotonic or antizmonotonic in the updated EDB predicates. then the following
équivalence holds:
In=(P,PY) «= [n* B PY).
The imiportance of Lenima 5.7 and Corollary 5.8, as we will see inn the next section,
ligs in the fact that testing In*(P.P) is usually casier than testing In=(P,PH).
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5.2 Irrelevance, Independence and Equivalence

[n this section. we formalize the connection between three rclated problems: irrele-
vance of formulas and independence and equivalence of datalog programs. We show
that independence of a deletion update i3 equivalent to a form of weak irrelévance.
We also show that the independence problem can be formulated as a problem of
équivalence of two datalog programs. We éxploit this conriection as follows:

e We develop algorithms that providé a sufficient condition for independence
based on strong irrelevance.

e We develop novel algorithms for detécting équivalence of datalog programs. As
a result, weé get algorithms for detécting independence and weak irrelevance.

Irrelevance and Independence

As stated, independeénce of a deletion update is.équivalent to weak irrelevance. Given S
an updaté program P* and a database D.(consisting the EDB relations and the base '
relations), we denote by EU(D) all the formulas of the form ey(ay.:..,ay), where

ulay.. ... an) € PYD).

Lemma 5.9: Let P be a datalog program with query predicate ¢ and P¥ be an update
program, whére both P and P*_have no negation. The independence In=(P, P*) holds
if and only if for any database D, WI{EY(D).¢.PU D, D1,,D,) holds.

Proof: Assume that In~(P,P") holds, and let D = E;....,E, By,...,B,, be an
arbitrary database and let ¢(a) € P(D). To show weak irrelevance, we mist show that _
q{@) has a derivation that does not use formulas in EL. Howevér, since In=(P, PY)
holds..
p(Eh'- e En) = 'p(E‘l - U\ E?w -HEn)-

where {7 = P*(D). This means that ¢(@) has a derivation d from Ey — !, Ep, ..., E,,
and d does not ¢ontain formulas in EV, _

Cornversely, suppose that WI(E(D).q.P U D, DI,.D,) holds for any database
D. Clearly, . .

PEy,....E)) 2 P(E, = U.....Ey).

To show independence, we need to show that
Pllre B CPE = Ey).

Let gla) € P(Ey,...,E,). Since Ef' is.weakly irrelevant.to ¢: g(a) will have a deriva-
tion d that docs not contain fornulas in EY'. Therefore. d will alsé be a derivation of
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gla) fram PUE, -~ U Ey..o.. Eq. and so gqla) € P(E ~['..... E,) and the indepén-
dence holds. §

Elkai {Elkan, 1990] shows that détecting indepénderice in general is undecidable.
This also follows from Lemma 5.9. sincé weak irrelevance is undecidable in genéral.
However, viewing indépendence as weak. irrelévance provides insight into the prob-
lern of detecting independence. For éxamiple, the following eorollary will yvield an
algorithm for detecting indépendence..

Corollary 5.10: If for any database D, SI{EY(D).q. P W D.DI,.D,) holds, then
In=(P.PY).

The corollary follows from Lemma 5.9 and Lemma 2.7. To detect strong irrele-

vance.of .£!'. we.créate a new datalog program that explicitly contains a predicate.

represénting the relation EY. Specifically. given the rules P and PY. we create a new
program P, as follows:,

1. P, includes the rules of P and P,

2. P, includes the rule ]
E(X)Au(X) =€

that defines the relation E%'.

—
.
W
p——

3. P, includes rules that énable using formulas of e, whenever theé corresponding
formulas of e, would be used. Specifically, let e;(X) be some occurrence of e,
in a rule r € P. The program Py includes the rule r' created by réplacing the
literal e;(.X') in the antecedent of r by e*(X).

The following lemma assures that detecting strong irrelevance of formulas of e} in
P, will entail independence of P*:

Lemmia 5.11: Let D be a database and ey(@) be a formula such that u(a) € P D).
Then ey(a) is part of a derivation of the queiry from PU D if and only if e¥(a) is part
of a derivation of the query from Py U D.

Proof: Let d be a derivation from P U D that contains €;(a): i.e.. d uses an instance
of a rule r of the form

er{a) A sy(d) AL Asi{a) = p(d).

Weé cart assume that the leftmost literal in the antecedent is e;(@). Recall that a € EV,
and therefore, thére is a derivation dy of u(a) from Py U D (using only the rules
coming from P®). The progiam Py contaiiis a rule # in which the leftmost litefal in
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the antécedent of r, ¢;(.\'). is replaced by e¥(.X'). To creaté a derivation of the query
d' that usés el{a), we replace r by r' Thé goal-node e}(a) is unified with the rule
defining €¥. résulting in the mstantnated rule

é(a) A u(a) = ej(a).

The atom e,(a) is obviously satisfied (because it was satisfied in d). To complete d'.
we make theé atom u(a) the head of the derivation d,.
For the other direction. let d bé a derivation from P, U-D that containis é¥(a). We

simply reverse the transformation we performed above and.get a derwatlon a" of the
query from PU D. 1

Consequently, .if there.is no node of €} in the query-tree of P, then EV'(D) is
strongly irrelevant tq the query. and therefore. by Corollary 5.10, [n=(P. 'P“) holds.

Example 5.12: Consider again our goodPath example given by the rules:.

rbadPoint(X) A path(X,Y') A goodBaint(Y') = goodPath(X,Y’)
ro  link(X.Y) = path(X.Y)

ra clink( X, Z).A path(Z.Y) = path(X.Y)

risstep( X, Y) = link(X.Y)

and the additional constraints...

badPoint(X) = 100 < .X < 200
step(X,Y) = X <Y .
goad Péint(XN') = 150 < X < 170.

Supposé we want to rernove the formulas of step(X.Y) for which X < 90. We would
add the following rules té the program:

re s step{ X, Y)Y A (X < 90) = lowStep(X.Y)
P i lowStep( X, Y) & link(X,Y).

Tlie query-tree built for good Path will be identical to the one shown in Figure 4.1 and
will not contain a nede of the predicate lowStep. Tlierefore, good Path is independent
of this update. 8

Indeperidence and Equivalence

The indépendence problem can also be formulated as a problem of detecting equiva-
lence of datalog programs. To show that. we construét a new program that computes
the new value of the query predicaté g (after the update) froin the old value of the
EDB (before the updaté). One program, P, is constructed for the ¢ase of insertion,
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independence problem as the equivalence of the original program and P* (or P).
Each of P+ and P~ consists of three parts:

e The rules of P, after all océurrencés of the predicate name ¢, have been replaced
by a new predicate name 4.

¢ The rules of the update program P,
o Rulés for the néw predicate s.

P+ and P differ only in the third part. In'the case of insertion. the predicate s in
Pt is intended to represent the relation E) after thé update, and therefore the rules
for s are:

(N X)) =2 s(X L X
u(Xy...... Ne)= s(Xiy o0 Xi)

In the case of deletion, the predicate s in P~ is intended to represent the deletion
update to £y, and the rule for defining it is

e Xi o X)) Amu( Xy, X)) 2 s( X, XD

Note that since P and P* do.not share IDB predicates, the negation in the P~ will
be stratified. The following propositions are immediate corollaries of the definition of
independence.

Proposition §.13: [n*(P,P!) & P = P+,
Proposition 5.14: In~ (P, PY) <= P =P".

Proof: Both propositions follow from the observation that the relation computed for
s is the updated relatica for Ey. Therefore, since ¢, is replaced by s in the rules of the
program, the néw program will compute the relation for ¢ after the update. Clearly.
the independence holds if and only if the new program is equivalent to thé original
program. i

Returning to Example 5.5, both P+ and P~ will have the following rules:

S(XLY, A) A driver(X) A s(Z.Y.B) A B2 18 = canDrive(X, Y, A)
canDrive(X. Y. A)A A 2 18 = adult Driver(X)
mCar( X, Y, A) A ~driver(X) A A < 18.= u (XY, 4):

The piogram P* will contain the rules:
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mCar(X, Y. ) = s(X. Y. A)
(XY, 4) = s(X. Y. )

and the program P~ will ¢contain the rule:
inCar(X, Y. A) A =y {X. Y. 4) = s(\N. Y. ).
Both P* and P~ are equivalent to the original program, and therefore, the query
adult Driver(X') is indépendent of the insertion and deletion updates of P,
5.2.1 Understanding Previous Work

Relating the independence problem to irrelevance enables us to understand better
previous. work on independence by [Blakeley et al.. 1989) and .[Elkan, 1990]. Both of
them considered restricted languages in which weak irrelevance is the same as strong
irrelevance. The result of Blakeley et al. [Blakeley et al., 1989] applies just to conjunec-

tive. queries (cf. [Ullman, 1989]), i.e.. knowledge bases in which the antecedents of

every rule are EDB predicates. Furthermore. the rulés are restricted such that every

predicate can only .appear orice in the antecedent. Elkan generalizes. the result by
Blakeley et al. to deal with interpreted constraints and only requires that the query,

be ¢onjunétive in the updated predicate. as defined below. In the definition, Def(q)
denotes all the predicates that can.appear in a derivation of.g: .

Definition 5.15: A query q is conjunctive in the updated predicate e, if it is defined
by a single rule of the form:

(VYA X)) AL Asa(Xa) = g(X),
where e; has a single appearance in the rule, and e; € Def(s,) for 1 < i< n. §
Under this restriétion, weak irrelevance is equivalent to strong irrelevance:

Observati(_)n 5.16: Let the query g be conjunctive in the predicate e, then for any
formula e (b), Wi(e(b),q, Xp, D). D,) &% Sl{c;ih).q.Xp, DIy; Dy).

Proof: We only need to show that W /(e (). q.S», DI Dy) = §I(e1(d),q, ¥p, D).
Assume by éontradiction that W [(e (b}, g, Zp, D1,,D,) holds, and suppose D is a
database in which e;(b) is used in a derivation d of g(a). Consider the database
D' whith is identical ta D except that the relation E, includes anly the tuple b.
The derivation d is still ‘a valid derivation of ¢(a) from /7', since €, is only used
once in d: However, tliere is no derivation of ¢(a) from D' that dces not use ey (b),
because some formula of ¢, must bé used in the dérivation of §(a). Consequently,

W1(e1(b),q.5r. DI D,) cannot hold. §
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Usifig the quéry-tree to detéct independence is an immediate generalization of
Elkan's algorithm. It provides a strorig irrélevance test for arbitrary datalog programs.
thereby removing the restrictions that the program cannot havé recursion and that
the query must be ¢onjunctive in thé updated predicate.

In thé néxt section. we deéscribe algorithms for de¢iding equivalence of datalog
programs and therefore for detecting weak irrelevance. The results provide new de~
cidable cases for indépendence and provide sufficient conditions for independenée in
the general case.

To illustrate the added power of-our algorithm, consider the query adult Driver(.X)
when the update program is:

nCar(X. Y, A) A =driver(X) = up( X Y. A).

Supposé we apply the deletion defined by us to the relation inCar, i.e., we remove
any person who is not a driver. The query adult Driver is independent of this deletion
update (bécause X and Z can be bound to. the same ¢onstant in the rule defining
éanDrive). However, thére are derivations of adult Driver(X).that use adult non-
drivers, and therefore the formulas computed by u, are not strongly irrelevant to the
query adult Driver..Consequently. Elkan's algori’ hm will not detect the independence
in this example.

5.3 Testing Equivalence of Datalog Programs
In the remainder of this chapter we consider the problem of testing equivalence of

datalog programs. As stated earlier, solutions té this problem directly impact the
independence problem. Shmueli [Shmueli, 1987] showed that detécting equivalence of

two datalog programs is in general undecidable even if the programs do not ¢ontain .

intérpreted predicates or negation. Sagiv [Sagw 1988] introduced a weaker condition.
uniform équivalence, and showed that it is decidable for datalog programs without
interpréted predicates or negatien, Recall that the reduction of the problem of in-
depéndence to equivalence involved testing equivalence of programs with stratified
riegation. Therefore, in ofdér to use uniform equivalence for detecting independence,
we extend the algorithms described in [Sagiv, 1988] to handle both interpreted predi-
cates (which are defined in Section 2.4) and stratified negation. Specifically, we show
the following:

Theorem 5.17: Testing whether a datalog program Py is uniformly éguivalent to a
datalog program Py is. decidable -even if Py and P, include interpreted predicates and
stratificd negation.

As a consequencé .of this theorern, we get the follewing results for testing inde-
pendence:
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Corollary 5.18: [ndependence is decidableé in the following casés:

L Int(P,PY) (In~(P,P¥)) is décidable if voth Pt (P~ ) and P havé only inter-
preted .and EDB predicates (thal may appear positively or negatively) in bodies
of rules?

[28)

Both In*(P,P%) and In~(P.P*) are decidablé .if P is non-récursive. and P*
has only rules of the form .

where ¢ is @ conjunction of interpreted literals such that ~c is erpressible in the
constraint language.

Proof: The first half of the corollary follows from the observation that for these
classes of programs, uniform equivalence is also a necessary condition for equivalénce.
The second half holds because in hoth P* and PZ the rules defining s will not contain
negation and therefore both P* and P~ can be rewritten equivalently to satisfy the
conditions of the first half of the corollary. 8

Corollary 5.19:

L. In*(P,P%) is decidable if both P and P* are non-recursive and only EDB
predicatés appear .negated.

2. If, in addition, the update is oblivious, then In~(P,P¥) is decidable.

Proof: The first half follows from the observation that under the conditions stated,
both P and P* ¢an be rewritten to satisfy the condition of Corollary 5.18. The
second half follows from the first &nd from Corollary 5.8. 8

5.3.1 Uniform Equivalence with Interpreted Predicates

The algorithm for deteéting uniform containment (and equivalence) for datalog pro-
grams without interpreted predicatés is based on the modél theoreti¢ characterization
of the notion, shown in [Sagiv, 1988], which also holds for programs witlh interpreted
predicates. Specifically, the uniform.containment P; C* P, holds if and only if
:\!(751) C M(P,), where M(P,) denotés the set of all models of P,.5 We note that

*We prefer to deseribe this casé in terims of B and P+, ather than P and P, since it is cléarer.
$Note that when we consider the case of interpréted predicates, the nindels of P, must map the
inferpreted predicates to their hatural uiterpretation,
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M(P,) © M(P,;) holds if and only if M(Py) G M(r) for every rule r € P, since a
database D is a model of P, if and only if it is a model of every rule » € P,. There-
fore. we can deécide whether M(P,) € M(P,) by checking whethér M(P,) C M(r)
for every r € Ps.

Based on this observation, when the programs have no interpréted predicates, the
following algorithm (from [Sagiv, 1983]) will decide whether a given rulé r is uniformly
contained in a program P. Given a rule r of the form

GgN... NGy = p,

we usé a substitution 6 that maps every variable in the antecedent of r to a distinct
svmbol.that does not appear in P or r. We then apply the program P to the atoms
¢10.....q.0. Sagiv shows that the program P generates pf from q10,....¢.0 if and
only if A[{P) T M(r).

Example 5.20: Suppose we are trying to detérminé whether the rule
i e(N.Z2)YAp(Z.Y) = p(X.Y) _
is contained in the program P;:

p(X.ZYAP(Z.Y) = p(X.Y)
e(X.Y) = p(X.Y).

We apply P, to the ground atoms e(zo. %) and p(zo, o). Since we are able to derive
p(70, yo). the rule ry is contained in Py: 8

However, there is a problem in applying this algorithm to programs with inter-
preted predicates. First, the constants used in the input to P, i.e., those that appear
in qi0....,qs:0, are arbitrary, and therefére, interpreted predicates are not defined on
them. Consequently, the interpreted literals in the rules (that may involve <, £, eté.)
tannot be évaluated. Moréover, some of the derivations ¢f pf by P depend on the
svmbols satisfying the interpreted constraints, and so thesz cannot be discarded.

We address this problem by associating a corstraint with every fact involved in
thie evaluation of P. The ¢onstraints for a given fact f represent the conditions on the

tonstants in ¢16, ..., ¢n0 under which f is derivable. We manipulate these constraints

as we evaluate P. Formally, let 7 be the rulei
QA NG N e P ' (5.3)
We denote the set of variables in r by Y. The subgoal ¢, is the conjunction of the

literals of interpreted predicates in r. We assume that all literals in r have distinct
vafiables in evéry argumient position, Note that this requirerment can always be
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fulfilled by introducing additional litérals using the = predicate. As in the original
algorithm, we define a mapping 6 that maps each variable in r to a distinct symbol
not appearing in P or r. Instead of evaluating P with the ground atoms ¢,6.. ... gnb.
we evaluate P with facts that are pairs of the form (g, c), where ¢ is a ground atom
and c is a constraint on the svmbols in Y'6. The input to P will be the pairs (g;6. c:8).
fori=1,2,....n.
An application of a rule
N Aghec= h

proceeds as follows. Leét (ay,c').....(a. ') be pairs generated previously, such that
there is a substitution 7 for which g7 = a, (1 < i <), Lét ¢, be the conjunction.

' A...Ac Aer. If ¢y is satisfiable. we derive the pair (A7.ck). In words, the constraint .

of the néw pair generated is the conjunction.of the constraints on thé pairs used in
the derivation and the constraints of the rule that was applied in that derivation. We
apply the rules of P until no new pairs are génerated. Note that there are only a finite
number of.possible ¢onstraints.for the generated pairs and, therefore, the bottom-up
evaluation must terminate.

Finally, let (pd.¢))..... (pb.cm) be all the pairs generated for the.ator p@ in the
evaluation of P; recall.that p is the head of Rule (5.3) and @ is the substitution used te
convert the variables of that rule to new symbols. As we will prove, thé containment
M(P) C M(r) hoids if and énly if ¢, -y V... V ¢, where ¢, is the conjunction of
interpreted predicates from the antecedent of Rule (5.3).

Exaniple 5.21: Let P, be the program:

r o e(X ZYAP(Z.Y) = p(X,Y)
roie( XY )= q(X.Y).

Let P, be the program:-

si:p(X.Z)Ap(Z,Y) = p(X,Y)
Sre(N.YIA (Y <Y) = p(X.Y)
sare(NY)A(Y € X)= q(XN.Y)
s tp(NY) = (X, YY)

For a variable X of a rule #, wé denote the constant X6@ by ro. True denotes
the constraint satisfied by all tuples. To clieck thé uniform containment of ry in
P,. the input to P, would be (e(zp, 20). True) and (p(20.y0). True). Rule s will
derive (p(zg.26). To < zp) and rulé &, will then derive (p{zo,y0), To < 2g). Since
p(xo. yo) was only generatéd undeér.the constrainl g < zq, the rule ry is not uniformly
¢ontained in Py.

To ¢heck the uniform ¢ontainment of rule r; in Py, we begin with (e(xo, yo), True).
Rule s3 will then derive (g{xq.¥0). Yo < 24). Rule s will derive (p{zo.ys), zo < Yo).
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and rule §; will.use that to derive {g(xo,y3). To < yo). Since g{Fo. yo) was derived for
both possible orderings of zg and yo. rule r; is uniformly contained in P,. However,
since ry is not uniformly ¢ontained .in P, the program P, i$ not contained in Ps. I

To prove the correctness of the algorithm, the following lemma relates derivations
of pairs to those of ground atoms.

Lemma 5.22: Le¢t d be a derivation of the pair (pb.c) from P and thé database
containing the pairs (@18.¢,8).....(qn0,c-8), and let T be a substitution that maps
éach variablé of r to a constant such that the constraint ¢ is satisfied by Yr. Let '
be the derivation in which every node (nf.caf) in d is replaced by the ground formula
nt. The derivation.d’ is a valid derivation of pr from P and Y'r..

Proof: To prove the lemmma. we need to show that in every rule application in d’, the
constants.that are involved satisfy the interpréted constraints. The proof is based on
the following observation. The constraint ¢p in a node (né,ce8) in d is stronger than
the constraints of its subgoals and stronger than the conjunétion of interpreted literals
in the rule.used to dérive.(nf. ¢f). This follows from. the way we évaluated P with
pairs. where the constraint of the héad pair was the conjunction. of the constraints
of the rule being applied and the subgoals used. Therefore, since Yt satisfies .the
constraint in the root of d, then it satisfies the constraints of all the nodes-in 4. &

Based on this lemma. the correctness of thé algorithm is established by the fol-
lowing theoremn..

Theorem 5.23: M(P)C M{r)<=c. =, V...Ven.

Proof: For the first direction, assume ¢, k= ¢; V... V ¢n. We need to show that
M{P) G M(r). Toshow that, it is enough to show the following. If 7 i a substitution
that maps each variable in Y to a constant such that

1. Y7 satisfies ¢,, and
2. g1, gaT € M, where M € M(P),

then pr € M. Weshow that by showing that if P is applied to the inputs ¢;7.: .., g4T.
then pr will be deérived.

Since Y7 satisfies ¢, there exists at least one 7, 1 < { € m, such that Y7 satisfies
¢. Consider the derivation of (pf.¢,) from P. Lémma 5.22 guarantees that pr has a
derivation from q;7...., ¢ 7.

For the second direction. supposé ¢, FE e V.. Von. Weneed to show that there.
exists a model of P that is not a model of r. By the assumption, theére must be
somie instantiation of ¥, Y. such that Y7 satisfies ¢.7 but does not satisfy any of
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the ¢;7's.® Let .M be the sét of interpretations (for the predicates in r and P) which
includeé ¢, 7,...,q.7 and do not include pr. Clearly. none of the interpretations in M
are models of 7. Therefore. all we need to show is that there exists an interpretation
Mo € M such that My is a modél of P, and consequently M(P) € M(r).

It is énough to show that pr is not generated by P and q;7....,q.7. My will
then be theé least model of P that consists of ¢,7,...,¢.7. To derive a contradiction,
suppose that pr € P(qi7,...,ga7). and let d be a derivation of pr. We can assume
that d is minimal. i.e., it doés not contair two identical nodes n; and n, such that
ny Is an ancestor of ny. We create a dérivation d' of pairs corresponding to d by
supplemeénting each goal-node of d with a constraint. The constraint attached to each
leaf in d is ¢;7, and the constraint attached to éach non-leaf node is the ¢conjunction of
the constraints.of its subgoals and the interpreted literals of the rule applied. Denote
the resulting derivation by d’. Clearly, all the constraints in pairs of d’ .are satisfiable,
bécause Y'r satisfiés ¢, and is a valid derivation of pr. Furthermore, we show bottom-
up induction on d', that.the nodes derived in d' would be derived by our algorithm... .
Specifically. we show that if (g7, c7) is a node in ', then.the pair (g4, c§) would have
been dérived by our algorithm, where @ is the mapping we used for the variables of ...
r. The claim.holds for the leaves of d', since they all have atoms from q,7,..., g7,
and our algorithm began with the pairs (16, ¢,.8),...,(gn8,c-8).. The inductive case
follows from the observation that since all argument positions have distinct variables
in rules of 'P, any rule application that was done in d would have been done .by
our algorithm (because the unifications did not.rely on additional equality between
constants, that may have existed in Y7 and not in Y4. All equalities were made _
explicit as separate subgoals in the rules). However, the fa¢t that the root of d’ was
derived leads to a contradiction. Since Y'r satisfies the root of d’, there would be an .
i such that ¢; E Y. B

Our bottom-up evaluation of 'a program with a database containing facts that are
pairs of an atom and a constraint is reminiscent of the procedure used by Kanellakis
et al. [Kanellakis et al., 1990]. In their procedure, an EDB fact may be a generalized
tuple specifiéd in the form of a constraint on the arguments of its predicate. However,
there is a key difference between the.two methods. In [Kanellakis et al., 1990], the
cotistraint specifying a tuple considers only the arguments of the predicate involved.
In our procedure, the constraint appearing in a pair is a constraint on all the constants
of variablés of rule #. Thus, the constraint of a pair may have constants that do not
appeart in the atom of that pair. The followirig example illustrates why their method
cannot be applied for detécting uniform containment.

the variables in # appear in ¢;.
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Example 5.24: Consider rules r and s:

(XN Y) AU V) = p(X.Y)
stq(XY)A@U VAU S V)= p(X.Y)

To check whether M(s) € M(r). we evaluate & with the pairs (g (xo.y0), True) and
(g2{uo. vo), True). If.we use the procedure of {anellakis et al., 1990], the result is the
pair (p(zo.yo0), True). which has no recording of the fact that its derivation required
that ug € vo. Consequently. we will conclude erroneously that M(s) C M(r) holds.
Iii contrast, when our procédure applies rule s to the pairs (q(z0, %), True) and
(ga{uo, vo). True), the result is the pair (p(zo,yo), us < vg), making it clear that s
does not contain r, because True f& up < vo.

Complexity

The complexity of the uniform ¢ontainment algorithm is in the worst ¢ase éxponential
in the arity of the predicates in the programs. It depends on two fact.rs:

1. The number of pairs generated during the evaluation of P. _._.
2. The complexity of checking whethér ¢, = ¢; V...V ¢ holds.

The number of pairs generated during the evaluation of P may, in the worst case,
be exponential in the number of variables of r. This is becausé the number.of non-
equivalent constraints on n constants is exponential in n. The complexity of the
second part is also at most exponential in the sum of the number of variables in r
and the number of constants appearing in P.

5.3.2 Uniform Equivalence with Stratified Negation

In this section, we describe how to test uniform equivalence of datalog programs with
safe, stratified negation. We begin with the case of stratified programs with neither
constants nor interpreted predicates. By definition, two programs P, and P, are
uniformly equivalent, denoted P, =* Py, if for every database D (that may have both
EDB and IDB facts), (D) = P,(D). Note that applying a stratified program to a
database that may also have IDB facts is done stratum by s.ratum, as in the usnal
case; in other words, P(D) is the pérfe¢t model of the program P and the database
D (cf. [Ullman, 1989)).

Suppose that P, and P, are not uniformly equivalent. Hence, there is a database
Do such that Py(Dg) # Po(Do); Do is called a counterezample. We may assume that
Pi(Dg) € Py(Dg) (the case Py(Do) € Pi{Dy) is handled similarly).

We assumé that both P, and P, have the same sét of EDB predicates and the sameé.

set of IDB predicates. arid moreéover, théré is a partition of the predicates into strata
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that is a stratification for both P and P,. In particular,.we assume that the lowest
stratum consists of just the EDB predicatés, and we refer to it as the zeroth stratum.
We derate by P the program consisting of those rules of P; with head predicates
that belong to the first i strata; similarly for P}, Note that P? is an empty program
(i.e., it has no rules). By definition, P2(D) = D for évery database D; similarly for
.

We now assume that for some given i, P} 2% P}, and we will show how to test
whether P{*! =¥ Pi*!. The algorithm is based on the following two lemmas.

Lemma 5.25: Suppose that there is an i,. such that P} =% Pi. If there is a coun-
tererample database Do such that Pi*'(Do) € Pi*'(Dy), then there is some rule r of
BI*! with a head predicate from stratum i+! .and a database [0, such that

1. D is a model.of P3*" but not @ model of r: and

Q

2. The number of distinct constants in D is no more than the number of distinct
variables in r.
Proof: Let D= P}(Ds): note that sin¢e D' is a perfect.-mode!, D' = P}(D’'). By the
assumption in the lemma, P{(Dy) = P‘(Do) and, .hence, D' is also a counterexample,
W PIPY(D') & PjYY(D'). Now let D.= P3*!(D'). Observé that D and D' have the
same set of facts for predicates of the first 7 strata, since D' = Pj(D' ) In addition,
observe that D' C D. These observations imply that .Pi+'(D') C PitY{ (). Thus,
Py D) ¢ P‘“(D) because P{*HD") € P*Y(D') and Py*Y(D") = P‘“(D)
So, we have shown that £{*1(D) € Pj*! (D). and D is 2 model of Pj*!. Therefore,
there is a rule r in P/*! of the form.

G N AGR ASIA L AP = R
and.a substitution 4 such that
o the predicate of k is from stratum 7 + 1,
¢ 0 is a mapping from the variables of r to constants,
e gfeD(lLEigm),
s,0¢ D (1<j<t), and
e h6 ¢ D.

The above and the fact D = P (D) imply that the database D.is a model of
Pi*! but not of ri#, )

Liet D be the-database consisting of facts from D that. have only constants from
r8. Databage D is also a model of Pi*!. In proof, suppose that D is not a model of
P;*. Thus, there is a fule 7 of Pit! and a substitution , such that
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1. the head k of 7 satisfies hr €. D,
2. every positive subgoal § of 7 satisfies g7 € D, and
3. every negative subgoal § of 7 satisfies 37 ¢ D.

By theé definition of D, if g is a ground fact having only constants from D, theng € D
if and only if g € D; moreover, for every negative subgoal 3, the constants appéaring
in 57 are all from. D. since rules are safe (cf. [Ullman, 1989}). Therefore, items (1)-(3)
hold éven if we replace D with D, and so it follows that D is not a model of. F—a
contradiction, since D is a model of P3*!, and 7 is a rule of P;*'. Thus, we have
shown that D is a miodei of P,*'. Furthermore, itemns (1)-(3) above imply that D is

not a model of 7. So, the lemma is proved. 1

Lemma 5.26: Suppose that P{ =* Pj. Moreover, suppose that there is a database
D that is a model of Pi*' and is not a model of some rule r of P;*' having @ head
prédicate from stratum i + 1. Then Py(D) € Py(D), and, hence, Py 2" P;._

Proof: From the assumptions in the lemma, it follows that rule r car be applied to
D to generate a new fact g that is.not already in D. Note that g & Py(D), since
P;*Y (D) = D and strata higher than i + 1 .cannot derive néw facts with the same
predicate as that of g. If we.show that rule 7 can still generate g even when. P, is_
applied to D, it would follow that g € P\(D), and hence, P,(D) € Py(D). To show.
that, recall that P! =% P} and D is a model of Pj*!; therefore, D is also a.model of
P}. Thus, rule r ¢an still generate g during the application of P, to D, since nothing
is genérated by rules of lower strata.. 8

The algorithm of Figure 5.1 tests whether P, =" P,; its correctness follows from .

thé above two lemmas and the following proposition.

Proposition 5.27:. Pi(D) £ Po(D) if and only if there is some i and a database D
such that eithér P'(D) € Pi(D) or P)(D) T P(D).

Proof: Clearly, if P/(D) # P;(D) then there éxists sonie strata ¢ such that either .

P{{D) € Py(D) or (D) & P(D). Conversely, if P{(D) € Pi(D), then P| and P
differ in some of the facts thév generate from D for the first i strata.. Therefore, by

Lemma 5.26, B\ (D) £ Py(D). §

Note that in the algorithin, it does not matter what the are constants in S as long
as their number is equal to the number of distinct variables in thé given rule r. Also,
if two databases over constants {rom S are isomorphic; it is sufficient to consider just
onié of theni. In the algorithm we need to ¢heck whether a database D is a madel of
P and not of #.. This is done by verifying that Py(D) = D and #(D) # D.
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procedure chéck( Py, By):
begin
for every rule r of P; do
begin
Let S be a get of v distinct constants, where v is the number of variables in r;
for every database D that in¢ludes only constants from S do
if D is a model. of P; but not of r then return false:
end;
return trie;
end;
begin /* main procedure */-
for : := 1 to maz-stratum de
if not check(P}. P;) or not_chec¢k(P}. P}) then return P, £* P;
return P, =¥ Py,
end.... . .

Figure 5.1: An algorithm for testing P, =* P,.

Example 5.28: Let P; consist of the rules:

ryown(X,Y) = lown(X,Y)

ry:lives(X,Z) A inHouse(Z,Y) = lown(X,Y)

ra own(X, Z) Alives(Y. Z) A lown(Y,U) = lown(X, V)
re s likes(X,Y) A =loun(X,Y) = buys(X.Y)

Let P, ¢onsist of the rules 7, ry and the rule:
rs sown(X.Z) AinHouse(Z,Y) = [own(X,Y)

The EDB relation own describes an ownership relationship between persons and
objects. The IDB relation /own répresents a landlord's perspective of the ownership
relation. The programs Py and P, are not uniformly equivalent. Specifically, consider
the database Dy:

{likes(a. o), lives(b.h), own(b,0), own(a,h)}

The programs P and P, differ already in the first stratum (in which. the relation
lown is coinputed), since [own(a.0) € Py(Dy) whereas lown(a,6) € P(Dg). In the
second straturn, when we compute the relation buys, we get buys(a, o) € Py(Ds) and
buys(a.o) &€ P (Dg). &




5.3. TESTING EQUIVALENCE OF DATALOG PROGRAMS . 123

To extend the algorithm to programs with interpréted predicates (and constants
in the rules), we need to be careful about ¢hecking whéther a database D is a model
of P; and not of #. In order to check this wé néed to specify the interpretations of
the interpretéd prédicates on the constants in 8. For example. suppose 7 is the rule

e(X.Y)A (X <Y)=p(X.Y)
and P, consists of the single rule
(N Y)A (N 2Y) =X Y).

Consider the database D consisting of the fact e(zo.ys). If ro < yo holds, then
D is a model of P, and is not a model of r. However, if ¢ > ys, thén D is not a
counterexample. .

One conceptually simple (albeit not the most efficient) way to address this subtlety
is to try all possible interpretations to find one in which the. database is a counterex-
ample. The intérpretations can.be viewed as supplemeénts to the given.database. In .
the case of dense-ordeér constraints, we would do the following. .Let C be the set of
constants appearing in either P, or B,. Instead of considering every database over
constants from S. we should consider every database over constants from S U C.
Moreover, for each database, we should consideér every total order on the constants
of the database such that the order is consistent with any order that may implicitly -
be defined on C (é.g., if C. is a set of integers, then presumably the usual érder on.—.
integers should.apply to (). For each such pair consisting of a database and.total.
order defiried on.its constants, we check whether the pair is a model 6f P, and nét of
r. Consequently, we get the followiiig theorem: .

Theorem 5.29: Uniform equivalence for datalog programs with safe, stratified nega-
tion and interpreled predicates is decidable.

Proof: First, it should be noted that Lemmas 5.25 and 5.26 and Proposition 5.27
hold also when the rules have interpreted literals. The only differénce is that the
numbeér of objects in the counterexample may the size of SUC. All we néed to show -
1s that trying all the consistent possible interpretations of the interpreted predicates ..
for the constants in § U C will suffice to find a ¢ounterexample if there is one. In
proof, supposé we found an interpretation [ such that DU [ is a counterexample: In
that case, simply replace thé ¢onstants in S with constants from the domain of the
interpreted predicates such that the constants satisfy the same interpreted relations.
as the objeéts in S and are consistent with /. The fesult will be a counterexample
database, Conversely; supposc thére is some counterexample database D. Simply map

predicatés o S in the sanie way that the coffésponding €onstants ini D are interpreted.
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Clearly, our algorithm would have tried that interpretation for the constants in S,
and would have found the counterexample. 1

A rmore efficient method for checking whéther a database is a counteréxample is
to use an algorithm similar to the one used for uniform containment with interpreted
predicates. We evaluate r and P, with pairs consisting of an atom and a constraint.
The initial pairs are (g, True), where ¢ € D. Let (g1.¢1),....(gi, &) be the pairs
derived by r and for which g, & D. Similarly, let (hy,d;),....(hs.dx) be the pairs

derived by P, and for which A, ¢ D. Clearly, D is a model of P; if and only if .

interprétations of the interpreted predicates satisfy =(d, V...V di), since undér these
constraints, P, doés not derive any new facts when applied to D. Similarly, the
database D is not a model of r if the interpretations satisfy (¢, V...V ¢). Therefore,
D is a.counterexample database for the containment of r in P; if and only if the
constraint

"'(dlv..,\/dk)/\(clv.‘.\/(’()

is satisfiable. -

5.3.3 Beéyond Uniformm Containment

For testing uniform containment of P, in Py, it is enough to.check.the containment
separately for.each rule of P,. Consequently, uniform containment completely. ignores
possible interactiotis between the rules which may imply containment of P, in P,.
Consider the following example.

Example 5.30: Consider the following programs whose query predicate is p. Let P,
ber

res g(X)A(X <3) = p(X)
ra s e(X)A (Y > 0) = q(X)

And let P; bé the program: ..

31 g(X) A (X <B6)A (X >0) = pX)
re(X)A (X >0) = ¢(X).

The program P, is contained in Py, because whenever 0 < X < 8, the atom p(X)
will be derived from P, if. e(X) i5 in the database. However, r, is not uniformily
contained i P; (and, therefore, Py €% P,). For éxample, the model consisting of
{g(—1),e(~1).=~p(~1)} i a model of P; but not a model of Py, §

The weakness of t-he.u_niforr'xi containnient test stems {roni the fact that it ¢onsiders
containment of the sct of all models; whilé in orfder té prove (ordinary) containment,
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(1]

it i sufficient to consider containment of only thé minimal models.” Therefore, there
may be ¢ases in whi¢h containment of minimal meédels holds, but containment of
all models does not. To get a stronger test, we may try to transform P; into an

equivalent program P’ with a larger set of models (but, of ¢ourse, the same sét of

minimal models, sincé equivalence niust be preserved). We may then be able to show

that M(P,;) € M(P') holds. where M[(P,) C M(P,) failed. One way of doing this
transformation is by propagating constraints from one rule to anothér by using the
rules given by the query-tree. In our example, the result of constraint propagation is

the following program P':

M g(X)A (X <5)A (X > 0) = p(X)
1 e(X) A (X > 0) = g(X)

Now we can show that P’ C¥ P, and since P, = P, it follows that P; C* P,.

5.4 Conclusions N

In this chapter we studied thé problem of detecting independence of queéries from
updates. We provided insight into the.problem by relating it to the .problems of
detecting irrelevance and équivalence of datalog programs. As a consequence of this
connection, we made several contributions: .-

l. Provided algorithms that guarantee sufficient ¢onditions.for detecting indepen-
dence, based on strong irrelevance.

2. Showed additional cases in which detecting independence is decidable, and gave
eficient algorithms for doing so.

3. Showed cases where indepéndence of an insertion is equivalent to independence
of a deletion, thereby making the latter easiér to ¢ompute.

Viewing the problem of independénce from the perspective of irrelevance and
équivalence also suggests that furthér algorithins for indépendence can be found by
considering other sufficient conditions for weak irrélevance and equivalerice; One such
direction, based on extending uniform equivalence, was discussed in Section 5:3.3.
Other suffi¢ient conditions can be achieved by consideririg strong irfelevance based on
minimal derivations, as deséribed in Chapter 3. This chapter also made coritributiorns
to the problem of detecting equivalence of datalog programs, which is a fecurring
problem in query optimization.

"I our formalisin, a set of felations for the-EDB and IDB predicates is a minimal model if the
IDB part is a minimal modél once the EDB facts aré added to the program as rules with empty
bodigs.
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5.4.1 Related Work

As discéussed throughout the chapter, Blakeley et al. [Blakeley ef al, 1989] and

Elkan [Eikan, 1990] have studied the problem of indépendence. In summary, they

have considered the problem for réstricted languages in which strong irrelevance is
the sarne as weak irrelevance. Blakeley ét al. consider non-recursive knowledge bases
without interpreted predic¢ateés. Elkan generalizes these résults and provides a deci-
sion procedure for strong irrelévance in the case of non-récursive knowledge bases.
Our resvlts extend Elkan's by providing a decision procedure for strong irrelevance
(and thercfore, independence) for arbitrary datalog programs. Furthérmore, we show
additional cases in which independence is decidable, specifically for arbitrary non-
recursive knowledge bases. It should be noted that Elkan also suggested a proof
method for detecting independence in the recursive case; howéver, he provides no
characterization of the power of that.proof method, but it should be roted that it
cannot capture all cases detected by the query-tree.

Our work also generalizes previous wotk on containment of conjunctive queries
with interpreted predicates by Klug [INlug, 1988]. Klug showed that if all. the con-
straints are left-semiinferval or all constraints.are right-semiinterval,® then contain-
ment of conjunctive queries can be deécided by finding a homomorphism from one
query to the other. For general conjunctive queries, he pointed out that it could

be done by finding 4 homomorphism for every possible ordering of the variables and.

constants in the queries. The number of such orderings is exponential in the number
of variables appearing in the constraints. Recently. van der Meyden [van der Meyden,
1992] has shown that the ¢ontainment problem of conjunctive queries with order con-
straints is [15-complete. In our algorithm, the complexity depends only on the number
of orderings that are actually generated during the évaluation of P. More precisely.
our algorithm generates partial rather than complete orderings of the variables and
constants in the queries; Essentially, it lumps togethér complete orderings that need
not be distinguished from each other in order to test containment. Therefore, our
algorithm is likely to be better in practice, albeit not in the worst case. Of course, our
algorithm also applies to riore than just conjunctive queries by considering recursive
programs as wéll,

8Saé [Klug, 1988) for piccisé definitions of these restrictions.




Chapter 6

Irrelevance and Abstractions

6.1 Introduction

In the prévious chapters we discussed irrelevance claims whose subject was formulas.
When we detected that a formula was irrelevant.to a query, that served as a justifica-
tion for ignoririg the formula whén we searched for for an answer to the query. Ignoring
an irrelevant formula can be viewed as a simple way of abstracting a knowledge base.
This view suggests that more interesting abstractions can be obtained by considering
ather kinds of irrelevance claims, based on different subjects of irrelevance.
Research on reasoning with abstractions focuses on finding abstractions that will

vield more efficient inference. The intuition underlying much of that research is that.

a good abstraction is one that rémoves irrelevant detail. If the details removed in the
abstraction are indeeéd irrelevant, then the solutions obtained from the abstract knowl-
edge base will hold in the origiral knowledge base, or can be refined in a structured
fashion to solutions from the original knowledge base.

This chapter proposes an approach to reséarch on abstractions that exploits the
connéction bétween tli¢ notion of irrélevance and the creation of abstractions. It
makoes the first steps in formalizing this connection and describes the possible pavoffs
froni the approach. We begin by illustrating two new irrclevance subjects and the
abstractions that they justify. The potential payoff of the proposed approach is
déemonstratéd by considering these examples in detail in Sactions 6.3 and 6.4. The
first exatiple illustrates the irrelévance of predicate arguments: .

Example 6.1: Corsider the following rules describing flight routés between cities.
The third argument of -flight and route denoté costs of th - flights, and their fourth
argunients detiote the airling of the flight /feute.

"y :fl'ig/‘zl(.\'.}'.('l. A) = foule( X, Y, C, A) .

ro s flight(N.Z.Cy A Adodé(Z,Y,Co0 A) = route(XN: Y. C) + (. A)

127
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ra s raulé(X, Y, C 4) = airline Flight( X, Y, A)

The knowledge base also contains a set of ground atoms for the predicate flight.
The atom airline Flight(X,Y, A) deriotes that theré is a route (i.e., somé sequence
of flights) from X to Y that uses only airline 4. Suppose we want to query the
knowledge base for the existerice of a flight from SF to LA on A airlites. i.e..
arrline Flight(SF, LA, ;). Theé costs of flights are irrelevant to this query, i.e., the
third argument of flight and route can bé projected out to vield a smaller knowledge
base and search space. Specifically, we can rewrité the rulés as follows:

ry o flight' (XY A4) = routd (XN, Y, A)
ry: flight'(X, Z, A) Aroute'(Z,Y, 4) = routc'( X, Y. 4)
ry : route' (X Y, A) = airline Flight(X. Y. A)

We also project out the third argument in the ground atoms of the predicate
flight. Consequently, multiple flight facts describing different fares for. the same flight
are collapsed to one fact in the knowledge base.. As a result. the knowledge base will
contain féwer facts and simpler rulés and thereforeé the space searched may be signifi-
cantly smallér than.in the original one. For example, ¢onsider tle difference between
the rules r; and 75, In.rule 75, if we fail to join a ground atom flight(z.z,cy. a) with
a ground atom route(z,y, ¢z, a), the backward chainer might still try to join the.atom
Jlight(z,z,¢},a) with an appropriate atom of route for every value. ¢y for which it
finds an atom in the flight database, and will fail.on.all of them. In contrast, rule 5
will riot try other costs for the same flight route.

Although in some simple cases thesé repetitions ¢an be eliminated by employing
some method of dépendericy directed backtracking, such methods will not be as gen-
eral as projecting out arguments and will also have additional costs associated with
maintaining thé dépéndencies. I

The followirig examplé illustrates the irrélevance of a predicate réfinement: —

Example 6.2: Consider a kiiowledge base with the following formulas:

rssportsCar(N) = car(X)

ro 1 familyCar(X) = ear(X)

¥y i car(XXN) = véhicle(X)

ry bicyel (X)) = vehiele(X)

rs ¢ sportsCar(X) = highRiskInsurance(X)

o car(X) = hasMotor( X)

Py vehicle(NYA hasMotor(X) = motorizedVehicle( X)
gi ¢ familyCar(Cainry)
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Consider the query motorizedVehicle(Camry). With respect to that query. the
refinement bétween sports cars and family cars is irrelevant. Intuitively. all that
matters about the Camry is that it is a car. Consequently, the query can be solved
if we abstract the representation of the demain by removing the refinement between
the predicates sportsCar and familyCar, To do so. we rémove rulés 7, and r; and
replacé g; by the formula:

gy ¢ car(Camry)

The rule r; is also removed because it distinguishes bétween the different types
of cars, and is therefore irrelévant. Abstracting the representation will yield more
efficient inferénce for several.reasons. First. it is no longer necessary to derive that a
Camry is.a car. In the example. there.are only two rules that may be used.to derive

that, but in general, there may be many different subclasses of cars and the cost of .

deriving car(C'amry) may be arbitrarily large. Second, by removing the formulas
that distinguish between the typés of cars, we reduce the size of the space that needs
to be searched. §

Recently. research on abstractions and approximations has received renewed at-
tention [Ellman, 1990; Ellman, 1992;. Lowry, .1992]. However, two key problems in
this ficld.rémain largely open. The first is how a systém ¢an automatically create
an abstraction that is well suiteéd to & particular query...Thé second challenge -is
understanding the utility of reasoning with muliiple levels of abstraction. Our ap-
proach addresses these issues as follows. When an abstraction is being considered,
our approach is to articulate which knowledge is being réemoved in the process of the

abstraction and to justify the abstraction by thé fact that this knowledge is irrele- .

vant to thé query at hand. Reasoning about abstractions then béecomes a problem
of réasoning about irrelevance. The formal analysis of irrelevance will give us several
insights into the corresponding abstractions: '

1. The problem of automatically generating abstractions becomeés well defined as
a problem of automatically deriving irrelevance claims. Often this can b¢ done
by usiiig cxisting algorithms for automatically deriving irfelévance claims, as
we scée in Séetions 6.3 and 6.4,

2. Understanding the utility of éxploiting irrélévance claims gives us insighit into
the utility. of the abstraction based on it. For #xample, if an abstraction is based
on a.weak irrelevatice elaim, then it 18 not nécessarily computationally advan-
tagéous, whereas if it i5 based on a strong irfelevance élaim, it is guaranteed to
lead to computatiotial savings. Furthermoré; the undetlying irrélévance.claims
can indicaté whether abstractions can bé.composed, based on composing the
underlying irvelevanee claims.

r
!
f
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3. The ability to explicitly state the irrelévance ¢laims underlving abstractions
provides us with a formalism in which we can reason about abstractions. This
is useful in several scenarios:

e In general. we cannot expect a single abstraction hierarchy to be well

suited for all possible queries. Therefore we need to tailor our abstractions
for specific queries. and in doing so.wé can often be aided by additional
knowledge about the domaii. Expressing such knowledge in the form of
irrelevance claims and combining it with other knowledge about the domain
provides a powerful mechanism for incorporating_ domain knowledge into
the creation of abstractions.

Several problem solving scenarios give.rise to situations in which we are .. ..

given multiple descriptions of aspects of a domain at varving levels of ab-
straction. In such a situation our task is twofold. .First, we need to.select
the level of abstraction that is best suited for a given query, and second.
weé need to combine deseriptions of different aspects of the domain to ere-
ate one coherent and consistent. description. By stating explicitly the as-
sumptions underlying the multiple descriptions, we can reason.about theéir
consistency and adequacy. The following are examples of such scenarios:

(a) Reasoning about physical systems: In this domain (discussed in.

detail in Chapter 7) we are given descriptions of. physical phenomena
in the world at different.levels of abstraction. Our task is to compose
descriptions of relevant aspects of the system such that we can answer
a query about a given system. For éxample, suppose we are composing

a répresentation for a given device that includés a battery connected to .

a‘wire, each of which can be described at different levels of abstraction.
In particular, we can describe each of them under the assumption that
their electrical properties are irrelevant or without that assumption.
Reasoning about the assumptions underlying these descriptions will
énsure that we do not compose a description of the battery that ignores
its electrical properties (e.g., its voltage) with a description of the wire
that considers the voltag. of the battery relevant. ,

(b) Reasoning with ¢ontexts: Contéxts [Guha, 1991} areé small the-
ories that describe limitéd aspects of the world. A knowledge base
describing a complex domain ¢an benefit from being divided into con-
texts both in simplicity of represéntation and efficiency of reasoning.
Here too, .answering a query. reguizes that we decidé which contexts
aré relevant to the quéry and are consistent with each other. This can
be done by reasoning with.éxplicit statements about the assumptions
underlying each context,
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(c) Distributed heterogeneous databases: A distributed database
(whether centrally managed or employing a federated architecture)
may contain Several databases with overlapping data. The databases
may describe the data with different levels of abstraction and assump-
tions. As in the previous two cases, given a query, the system must
find the (parts of the} databases that are nec Jed to answer the query
and must combine knowledge from the diflérent databases to provide
a coherent answer. An additional challenge here is to minimize the
costs that may be associated with accessing remote databases.

It should be noted that in the latter two examples, hefore we can reason
about the abstractions underlying the differént contexts or databases, we.
must resolve the semanti¢ mismatches hetween the descriptions.used in
each context/database.!

6.2 New Irrelevance Subjects

As explained, abstractions ¢an he obtained by ¢onsidering new kinds of .irrelevance .o
subjects. This section deéscribes informally several such subjects and shows how they

account for abstractions with which we are familiar. The. irrelevance subjects .that .

we discuss are broadly divided into.two ¢lasses, one. that concérns relatious in thew
domain (and théir corresponding predicate symibols) and one involving objects in the

domain. The irrelevance subjects concerning relations include the following:

¢ Predicate irrelevance: We may state that a certain predicate (representing a.
relation in the domain) is irrelevant to a query. For example, if we are modeling
the behavior of a battery for a short périod of time, the propérty of being a
rechargeable battéry is irrelevant. Such an irrelevance claim can justify simpli-
fving formulas by removing literals containing the irrelevant predicate (or by
removing formulas completely). —_

¢ Predicate Refinement: Irrelevance of predicate refinements can appear iu.
two forms. In the first, illustrated in Example 6.2 (and further investigated
in Section 6.4), we have a sét of predicates qy,..., ¢, and an irrelévance claim
stating that tlie given q, is irrélévant. That means we only néed to Kiiow that
a certain object (or tuple of objects) belongs to oné of the ¢'s, but not which
one. Consequently, the abstraction will réplace ¢1,....¢s by a new predicate ¢
inténdéd. to denote the union of the interpretations of Gree s Gne

'n résearch en model.ng pliysical systénis, most works make the assumption that all the deserip-
tions of the domaif afe bass on oneé to.asistent ontology.
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In the second form, we want to remove gi... .. g, because we are only interésted
in objects that belong to all the ¢;'s. Consequently, we will replace Giee i Gn bY
a predicate that denotes the intersection of the relations denoted by q1.....qn.
For example, we may have two predicates adult and citizen. However. in a

theory that represents the domain of elections, we wish to represent only objects
that satisfy the intersection of theése two relations. Such an abstraction will
enable us to remove marny formulas as well as save computation of intérsections
(or more generally, joins of relations).

¢ Predicate argument: As we saw in Example 6.1, we can often simplify a
représentation by reducing the arity of some predicates (i.e., projecting them
on a subset of their arguments). Section 6.3 will discuss this subject in detail. .

Irrelevance subjects .concerning obje¢ts in the domain include.the following:

¢ Object irrelevance: We may state that a certain object in the domain is
irrelévant to a query. For example, we may-state that. the battery of the car
is irrélevant to.a query regarding its transmiission systém. Consequently, we
can ignore formulas in the knowledge base, that include constants (or terms)
denoting the irrelevant object.

¢ Object refinement: As with. predicate refinements, we can state that a refirie-
ment betwéen objects is irrelévant to a query. Given a set of objects ay,....an,
we.can replace them with a single object a. As in the case of predicate refine-
mients, there aré two ways we can interpret a. The first is to assume that ¢ has
only thosé properties that are common to each of the a;’s, and the second is to
assume that a has any property that any of the a;' has.? For example, sup-
pose we are reasoning about a chemical réaction. We do not need to represent
each molecule in a given solution. Tnstead, we reason with one représentative
molécule of each different type. We ascribe to a repréesentative molecule all the
properties that are shared by all molecules of its.type.®

¢ Object aggregation: A common abstraction that arises in many contexts .
is aggregation. Instead of representing a set of objects, we réepresent only a . .. —
singlé object denoting their aggregate. For example, instead of représénting
the. parts of a chair. we can represent the ¢hair as a single object. We can use
this representation when tlié properties that are rélévant to the query aré only
those that apply to the aggregate and. not to its subparts. Noté that object

20f course, special care must be given to formulas of the form a; # a».

Qe carn also dévise methods for abstracting object refiiements that lie i the middle of these
two éxtremes. For éxaraple, we can associate with the répresentative objeet only the properties that
arc typical of the set it is repredenting.
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aggregation is different from object refinement. Here, the new object represents
the aggregation of a set of objects. while in the case of object refinement the
new object denotes a representative of objects in a set.

e Object homogenéity: In object refinement. we replaced a set of objects by
a single one. However, in some cases we may need to retain all the objects
(c.g.. their number is important). but we want to represent them as a set of
homogeneous objects. This means that we abstract all the differences between
them except. for object identity. For example, consider the 15 puzzle. A powerful
heuristic for solving the puzzlé is to place the first tile in place, and then proceed
to place the second, (while keeping the first in a fixed position). ete. For the
subgoal of placing the first tile in place, there is no need to distinguish between
the tiles 2-15. Two states that differ only in the location of one of these tiles
should be indistinguishable. . Making this abstraction reduces the number of
possible states from 16! (= 10'3) to 15.x 16 = 240 states.

In addition to. irrelévance subjects concerning relations and objects, we can also
considér subjects that abstract function symbols. In some domains, we ¢an also
consider more specific subjects. For example, in planning we can consider irrelévance
of states, actions or action preconditions

6.2.1 Defining Irrelevance of New Subjects

As a basis for the approach we are proposing, we need to make a formal connection
between abstractions and irrelevance. This section shows how irrelevance of new
subjects can be formalized in the framework we discussed in Chapter 2.

The definitions of irrelevance that we have considered were based on the intuition
that a subjéct. ¢ is.irtelevant to a query if ¢ can be removed without changing the
answer to the query. In the case of ¢ being a formuls, removiiig ¢ meant litérally
remeving it from the knowledge base (or revising the knowledge base so it does not
entail ¢). For the new irrélévance subjects, although we have an intended abstraction
in mind for removing &, the actual removal involves subtle details. For example, in
the case of irrelevanceé of a predicaté refinement {¢y,....qn}. wé would rémove it by
replacing all occurrences of ¢, by a new predicate ¢. The intended interprctation of
q is the union of the interpretations of {gi.....q:}. However, in doing so we must
be careful. For example, if wé are rémoving the distinction between the predicates
{sportsCar, familyCar}. and we have the formula

familyCar(X) = —sportsCar( )

thien performing the substitution would result in the contradiction

SR - b "
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car(XX) = =car(.Y).

Assuming that we have some function Abs, for abstracting a given knowledge
base A which does not introduce unwanted formulas, our intuition of irrelevance
would imply that o is irrelevant to a queryv ¢ w.r.t. a knowledge base A if

AF g = Abso(A) b Absaiq). (6.1)

In words. & is irrelevanit to the query q if abstracting the represeritation by remov-
ing o (resulting in the knowledge base 4bs,(A)) does not change the derivability of
the query. As we saw in Chapter 2. a moreé refined account of irrelevance. based on
a proof theoretic analysis, énables us to address thé key issues regarding irrelevance,
In_this case. we want our analysis to help in developing algorithms for automatically
justifying.and creating_abstractions and in analyzing the utility of reasoning with
abstractions.

We now exténd the framework described in Section 2.3 to new irrelevance subjécts,
Recall that a definition of irrelevance in our space was obtained by considéring some

condition DI (which dépended on thie subject &) over a chosen seét of dérivations of

the query Dy. .We said that & is strongly irrelevant to a query q if DI{e. D) holds for.
all derivations D € Dy, and that it is weakly irrelevant to g if DI{&. D) holds.for some
derivation D € Dy. To extend the framework, we. consider appropriate definitions of
the prédicate DI.

The definitions we ¢onsider for DI* are based on identifying formulas that are.

independent of the irrelévance subject o. Intuitively, a formula is independent of ¢ if
it does not, rely on @, i.e., it holds even if ¢ is removed. The definition of independence

will also be used to define the abstract knowledge base Absy(A) such that.it does not.

introduce unwanted formulas. Specifically, Abss(A) will contain the abstractions of
the formulas in A that are independent of ¢. Formal definitions of indépendence will
be given in subsequent sections. The following examples motivate the concept.

Consider Example 6.2 and the predicate refinement {sportsCar, familyCar} and
the rule

rsportsCar(X) = vehicle(X).

The rule r is indepéndent of the predicate refinement, because if we réplaced occur-
rences of sportsCar by familyCar, the fesulting rule

' familyCar( X ).= vehicle(X) _
also follows from the knowledge base. Therefore. replacing + by the fule

car{X) = vehicle(X)

*And we do not elain that these are theonly viable definitions.
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would not contradict our previous knowledge or add to it. In coitrast, the rule
s sportsCar(X) = highRiskTolnsure(X)

is not iidependent of the predicate refinement betause the rule:

st familyCar(N) = highRiskTolnsurée(X)

does not follow {rom the KB. Based on a definition of indépendence, we cai consider
several definitions of D/ in the same f{ashion we did in Section 2.3:

Definition 6.3:

e DI{o. D) if Base(D)® does not contain any formula that is not independent of
o.

e Dly(o. D) if D does not contain any formula that is not independent of ¢.

o DI3(é, D) if Base(D) does not entail any formula that is not independent of o.

Returning to.Example 6.2. the predicate refinénient o = {sportsCar, familyCar},

is strongly irrelevant to the query g = motorizedV'é¢hiéle(Camry) bécause the (single)
derivation of ¢ uses only formulas that are indépendent of @..On thé other hand. o is
not strongly (or weakly) irrelevant to the query q = high RiskToEnsure(X') because
deérivations of q; will use the rule rs.

In.the following sections. weé. consider speécific deéfinitions of.indépendeénce (and.

irrelevance) and show how they aré uséd to develop algorithms for automatically
creating abstractions.

6.3 Irrelevance of Predicate Arguments

As.illustratéd in Example 6.1, it is sometimes possible to simplify a répresentation
by projécting out arguments.of some predicates, thereby reéducing-théir arity and
leading to more efficient reasoriing. Intuitively, we can project out the arguments if
they aré drrelevant to a quéry. An.argumert is ifrélévant to a quéry if the solution of
the query tequires some values for that argument. but the actual values used are not
inportant, and theéy do not have to satisfy any other.constraints. In this seetion, we
will fornialize the irrelévance of a predicate arguniént.

Weé denote a sot of predicate arguments by R, which is a set of pairs (q,.n,). wheére
¢, is & predicate aid n, is an intéger less or equial to the arity of ¢,. For example, the

SHecall that Base(D) is the sét of formiulas i the léaves of the proof tieé {seé Section 2.3)
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set {(flight,3),(route.4)} represents the third argument of the predicate flight and
the fourth argument of the predicate route. In projecting out the set R, we perform
the following syntactic transformation fr(d) to a formula ¢ in the knowledge base:

Let p(X1).... p(X,) be the literals of the predicate pinn é (both positive
and negative). Suppose the arity of p is { and that (p.i;),... (poik) ER.
We introduce a new predicate p' of arity [ — k. We replace éach atom p(.X,)
of p by an atom p'(};), where Y, is the result of projécting arguments
{1oov. i out of N,. Note that p' may be of arity 0. If p is an order
predicate we replace its atoms by T'rue.

The function fr is extended in a straightforward manner to sets of formulas. Note
that if a predicate p appears in R, then.we replace it with the. sami~ new predicate
in every formula. As explained earlier, simply applying the substitution fr to all
formulas in the knowledge base may introduce inconsisténcies. We therefore apply
the substitution only to formulas that are. independent of R. Qur definitions of
irrelevance are also baséd on the notion of indepéndence.

Our definition of.independence is based on the semantics of the abstraction we are -

performing. Specifically, if a predicate p denotes a relation P. and we project out somée
of the arguments.of p..then the resulting predicate should denote the corresponding
projection of P. Given an intérpretation [ for the symbols in a knowledge base A,
wé défine an interpretation Abs(/) for the symbols in fr(A) az follows:

e The interpretations of terms in [ and Abs(/) are identical.

o If the predicate p doés not appear in. R, then. p is mappéd to the same relation
as in /.

o I (pay)oo (i) € R, and p was mapped to the relation P, thien the predicate.
" is mappéd to the relation P/, where ' is the result of projecting the arguments

Lo g out of P
Independence is defined.as follows: .

Definition 6.4 A formula v is independent of ihe predicate arguments R if for any
inerpretation [:

[ A = Abs(]) E fal).




6.3. IRRELEVANCE OF PREDICATE ARGUMENTS 137

Intuitively, a ¢lause C is independent of @ if the formula fo(C) does not impose
any additional constraints on the possible states of the world, as described by A (and
theréfore does not add any néw kiowledge). We défine the abstract knowledge base
résulting from removing P. from A, denoteéd by Absr(A). It includes the abstractions
of formulas in A that are independent of R, i.c.,

Absr(A) = {f#(¢) | v € A and v i3 indépéndent of R},
In Example 6.1, the rule
re: flight(XN. Z.Cy. A) Aroute(Z.Y . Cac A) = route(XN, Y. Cy 4 Cq. A)

is independent of the arguments. {( flight.3).(route.3)}. but is not independént of
the arguments {( flight.4). (routc.4)}, To see the latter, consider the interpretation
I in which flight denotés the singlé tuple relation {(a.b,1.twa)} and route dénotes
the relation {(b.c. 1. united)}. The abstract interpretetion Abs(l) will map flight’ to-
{(a.b.1)} and zoutc’ to {(b.c.1)}. Therefore, [ is a model of rz. but Abs(/) is not a
model of 7.

Bascd on independence, we can define irrelevance using the definitions of D/ given
it Definition 6.3. For example, we.can define R to be weakly. irrelevant to.a query ¢
if there is some.derivation of ¢ that contains only formulas independent of R. The
following tlicorem shows that weak.irrelevance provides a logical justification for the
abstraction that fits our intuitions stated in Equation 6.1, i.e., provides a justification
for using Absz(A) instéad of \:

Theorem 6.5: Let Dy(N) be the sét of derivations of the queiy q from the knowledge
bisc A, IFWI(R.q. A DI1.D,) holds then

AbF g = Absr(A)F frig)
and, if ¢ coritanis no irvelevand_argumaonts (i.e., g = frlq)) then

Absr(A) = frlig) = A 4.

Note that 4f we have a.coipletéset of inferenee fules (6.g.. backward chaining for
atomic queries in Horn rule knowledge bases), then the above theorém iniplies®

At g = Abse(A)F frlg).

"Natethat we afé assuinunig thioighout that our ifefeiice rules ate sound
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Automatically Deériving Irrélevance of Predicate Arguments

The following observation follows from the définitions of irrelévance and will form the
basis for algorithms for deriving irrélevaice of predicate arguments:

Observation 6.6: Let @ be a set of clauses such that W/ (®.g. 2. D/, Dy) holds.
and such that all clauses in A — @ are independént of the arguments R. Then
WIHR g, A DI Dy) holds, and moreover, we can abstract A by Absg(\ = ).

Therefore, to derive irtelevance of a set of prédicate arguments R, our strategy
will be to find a set of clauses ® sucl that & is weakly irrelevant to ¢ w.r.t. A and
all the clauses in A — @ are independent of R. Note that ground atomic formulas .
are always independent. of any set of predicaté arguments. Theréfore, we need only
consider clauses that are not ground atomic. and our results will be independent of
any changés.made to ground atomic clauses in our knowledge base.

Finding a.set ¢ can be doné using. any of the methods déscribed so far. TFor
examp'¢, in the case of Horn rule knowledge bases, the query-tree can beé used to
find all the formulas ¢ that are strongly irrelevant to the quéry..and (since strong—
irrélevance éentails weak irrelevance), the formulas ¢ are weakly irrelevant to.the
query as well. The algorithms in Chapter 5 can be used to detéct additional weakly
irrelevant formulas that.are not detected by the query-tree, Finally, for general clause
form knowledge bases, we can usé connection graphs to derive sufficient conditions
for strong irrelevance.

To derive irrelevance of predicate argurments, we need to check that the formulas
in the set X — @ are indeépéndent of a sét of predicate arguments R: To facilitate this
check, the following theorem pr‘Ovid("s a Syntactic éondition for independence. We
assume that a formula C is given in clause form (cf. [Genesereth and Nilsson, 1 987]).
Aliteral in a clause is negative if it is a négation of an atomic formula (e.g.. =g(X)
is a riegative literal: while p(X.Y') i a positive literal). Neg(C') (Pos(C)) denotes
the set of negative (positive) literals in a clause C'. Weé assume tliat Neg(C) contains
ouly simple terms, i.c.. variablés or constants. Pos(C) cari contain arbitrary terms.
Given a clause o we denote by At Pos(p.i: C) the set of tetms that appear in the ith
pagition of securtences of pin ()

Theorer 6.7 Let (" be.a clause and R be a set of aiguments, The. elausi €' i mde-

puulm! of R if the following condition holds for ¢ cvery term 7 in the sel ALPos(p.,
for ceciy (pi)y € R

ALdf 7 s not a variabli, then itdocs nol appeir in Neg(e).

If 7 15 a varwble, thin it has al most @ single appearanéé in Neég(€'),
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A [f'r is @ variable appearing in Neg(C') and appears also in a term in position j
of a predicaic q in Pos(C), then (¢.]) € R.

.

The proof is given in Appendix A.7 It is easy to seée that if C is a clause for .

which the set of arguments R, and Ry satisfy conditions A1LA2 and A3, then the set
Ry UR,; will satisfv these ¢onditions tco.

Given a sét of formulas ¥ and a set of arguments R. we can simply check whether
cach of the formulas in W is independent of R using the conditions of Theorem 6.7.
However, & more interesting question is how we can automatically find the maximal
set R of arguments such that éach of the formulas in ¥ is independent of R, given a
specific query ¢.8 We now describé an algorithm for finding such a sét R.

Given a clause C and an argument 7 of a predicate p that appears in C, two things
may happen. The first is that there is no.set of arguments R such that (p.!) € R and
(" is independent of R. In this case we will say that (p.7) is néeded in C. Otherwise.
we denote by PC(C.p, i) the minimal such set of arguments. Note that. PC(C. p.{) is
unigue since it can be deterniined by repeatedly applying condition A3. Furthérmore.
note that PC(C. p.i) can be the singléton set containing (p.i).-

Our algorithm starts out assuming tliat every argument of every predicate, éxcept
for the query predicate, is irrelevant to the query. It makes one pass over the clauses
in ¥ and either removes arguments.from the list of irrelevant arguments. or adds
preconditions for the inclusion of.other arguments in. the list. Finally. it removes
from the irrelevant list any argunient whose preconditions are not satisfed. The
algorithm is shown in Figure 6.1,

Consider the application of the algorithm to the rules in Example 6.1, with the

query airlincf’liglzt("[“ LA K3). The set R initially includeés all the arguments of .

routé and flight. When considering the rule ry, the algorithm adds the argumerit
(route,i) to the preconditions of (flight.i), for i = 1.....4. Considering rule ry,
the algorithm rémoves the arguments (fli_]ht 2), ( flz'ghi 4).(route, 1) and (route.4)
froni R. As a consequence, the argument ( (flight.1) is removed from R because its
precondition was removed. Finally, in considering rule 7y, the argument (foute,2)

is removed from R because the argumient (airline Flight.2) is not a member of R..

Therefore, the algorithm returns that the arguments (flight.3) and (rodte.d) are
irrelevant to the given query.

"Nota that the conditions A1, A2 and A3 aré not uccessafy conditions for independeice. However,
a necessary conidition is considerably niore élaborate and is not presented heré. Foi éxample, the
rule

ALVNLY) = g(N XY

I md('pondom of the sét of arguinéits {{p. 1) Ap. 2). (4. 1).(¢. 2)}, bui condition A2 is hot satisfied
*Noté that the arguiieiits of ¢ are assiimpd to he relévant to the (iiery
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procedure find-irrelevant-arguments(¥, q)
begin /+ W are thé ¢lausés and ¢ is the query predicate »/
P = The predicates appearing in ¥, and.not in 4.
R ={(p.7) | p € P and { is an argument of p }.
for every & € R, Préconditions(s)= {}.
for every " € ¥ do: .
for every (p.i) e R
if p appears in C' and (p, i) is needed in C then
rémove (p, i) from R.
else
if PC'(C',p.i) ¢ R then remove (p.i) from R.
else Preconditions ((p, 1)) = Preconditions ((p.1)) UPC(C. p,i) - {(p.i)}.
repeat
if (p. i) €-R and (q.J) € Preconditions ((p, 1)) and (g.j) ¢ R then
remove (p,.d) from R.
until no ¢changes are made to R.
return R,
end.

Figure 6.1: Algorithm for finding irrelevant predicate atguments

The algorithni finds. the maximal set of predicate arguments that satisfies con-
ditions Al, A2 and A3, This follows from the observation that for every argument
in the réturned set. its precondition arguments are also in R. Furthermore. every
argument that was removed from R was either needed. in soine clausé or réquired
some other argument that is not a member of R.

To sunimarize this séction, we have presented formal definitions of irrelevanee of
predicate argumeénts. As a résult, we were able to dévelop an algorithm for automat-
ically deriviig such irrelevance claims, The formalization also gives us insight into
the utility of removing prodlcatv argumeénts. Finally, we can also devise algorithms

for deriving logical conclusions front external irrelévance ¢laims: If we are told that -

the arguments R are irrelevant to a query ¢. we remove from the knowledge base all
the formulas that aré not independent of R. We then apply our algorithms to the
femaining set of formulas to defive additional irrelévarice claims.

6.4 Irrelevance of Preédicate Refinements

A predicate fefinement is a sét of predicates of equal arity Q = {q;.....q,.} that
identifies some set of properties in the doniain, For someé queries, it is not necessary
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to distinguish hetween properties qy,....q.. Therefore, we would like to replace them
by one predicate ¢ which is intéerided to denote the union of the relations represented
by gio ... qn. The prédicate ¢ niay already exist in the knowledge base (this will
be.the common case). or may be a newly introduced predicate. Replacing a seét of
vredicates qi..... ¢ by a predicate ¢ has been considéreéd as the problem of predicate
abstraction [Plaisted, 1981: Tenenberg, 1990]. Our treatment. of predicate abstractior
is inspired by the work of Tenenberg. As before, we dénote the result of the svntactic
transformation we want to perform to a formula ¢ by fo(o). In this case. fo(d) is
the résult of replacing every occurrence of a predicate g, in ® by the predicate q.
Our stratégy is to identify formulas that are indepéndent of Q. Independeénce will
be used both for defining irrelevance and for deciding to which formulas to apply fo.
As in the case of predicate arguments, the definition of indépendence is based on the

imtended sémantics of the new predicate q., Specifically, suppose [ is an interpretation .
for the set of formulas in the KB in which a predicate symbol p is mapped to a relation .

P. We define an abstract interpretation Abs(7) for formulas in which occurrences of
Gis .- «Gn aré replaced.by the predicate g. The intérpretation Abs(/) will have the
same set of objécts as /. The relations in Abs(7) are (Rel(1) — {Qy.....Qa}) U Q.
where Rel(l) ar¢ the relations in I, and Q i a new relation.” The-interpretation
Abs(1) ig defined as follows:

e The intérpretations of termis in [ and Abs(]) are identical. ——

e« I p ¢ {qi.....q.}. the predicaté p is mapped 1o the same relation as in /.

o The predicate ¢ is mapped to the union of the interpretations of gy, ... gy, 1.6..
{ . I -

Q:Q!U«“UQY_"-

Based on the definition of abstract interpretations we defirie independence as follows:

Definition 6.8: A formula ¢ is independeiit of the predicate refinement Q, with
reéspect to the knowledge base AL if for any interprétation [

[ A= Abs(]) = fo(v).

We defing the abstract knowledge base resulting from removing Q from A by:

Absp(N) = {fo(i | v €A and ¢ is indeépendent of Q)

“If the predicaté ¢ already exists i the KB, then Q is the calation to which 4 is miapped
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Note that if.] is an interpretation. thér the following holds as well:

=A== 4bs(]) | Absp(A). (6.2)
Returning to Exaniple 6.2, we observe that the rule
srsportsCar(X) = highRiskTolnsure(X)

is not independent of the predicate refinement {sportsCar, familyCar}. To sec this,

cousider the intérpretation I in which familyCar and car are mapped to the relation.

containing {(Camry)}, and both sportsCar and highRiskTolnsure are mappeéd to
the empty relation. The rule fo(s)

car(X) = highRiskTolnsure(X)

is.not satisfied by Abs(/) (which in. this case contains the_same interpretations for
car and high RiskTolnsure as [). .

As in the case of irrelevance of predicate arguments, weak irrelevance provides a
logical justification for abstracting A by Absa(A):

Theorem 6.9: Let Dy(A) be the sét of derivations of the query ¥ from the knowledge

base X If WI(Q, . A.DI,, D) holds, then
LoIf AR then Absp(A) F foldh).

2. If the formula @ does not.contain predicates from Q. then Abso(A) E foltr) ==
Ak

The proof is given in Appendix A. .

Automatically deriving Irrelevance. of Predicate Refinements

As in the case of irrelevance of predicate arguments. our strategy in deriving irreles.

vance of predicate distinctions is to find a.set of formulas ¥ that are weakly irrelevant
to the quéry and suchi that the formulas in A — ¥ are indepéendent of the predicate
refinement. To devisé-such a method, wé need to be able to verify that a formula is
independent of the predicaté réfinement. Below we give a condition oni clausées that
etiables us to verify indepéndence.

Lemma 6.10: A élause ¢ is independent of the piedicate refinement Q w.rt. the
krowledge basc & if and énly if the following econdition holds.

Supposé Neg(C') is the result of substituting every océurrenée of « predicate of Q
in Neg(y+) by some other predicate in Q using a mapping fi (two. oécurrences of the

same predicale in Nég(C') need not be mapped to the same predicate under fi). Then .

there crists some Cy such that fo(Cy) = Pos(falC)) and A = CaU Neg(C) 10

Wy U Neg(CY denotés the elause cotitaitiing the union of itérals in (' and Nég(C').




6.5. DISCUSSION AND RELATED WORK 143

The proof of the lemma is given in Appendix A. Note, that a clause that con-
tains only positive literals fromt @ will be independent of the refinement whenéver
it is provable from A. In theé casé of Horn rules, the definition boils down. to the
following condition. If r is a rule (whose head is not a predicate in Q). thén it must
be the case that given any mapping of occurrences of a predicates i Q in the an-
tecédent of r to any otheér predicates in Q, the resulting rule is still entailed by A.!!
For instance. in Fxample 6.2, we can map the occurrerice of familyCar in the rule
SamilyCar(X) = vehicle(.X) to sportsCar and theé resulting formula will still be
entailed by the knowledge base. Ground atomic formulas aré independent of any
predicate refinement.

Finally, note that the condition given in Lemma 6.10 iuvolves checking whether
A E C U Neg(C). and is therefore in general undecidable. A sufficient condition
canl be guaranteed by checking whéther Co U Neg(C) € A.

6.5 Discussic.i and Related Work

This chapter proposés a new approach.to reséarch on reasoning with multiple levels
of abstraction. At its core. the approach advocates associating an abstraction of
a knowlédge base with tle rémoval of somie irrélevant detail. and then using the
framework for analyzing irrelevancet~ gain insights. into the specific abstraction at
hand. Specifically. the approach provides the following advantages:

l. The formal definition of irrelevance provides a logical account of the conditions
under which the abstraction is appropriate.

2. The problem of autormatically creating an abstraction for specific queries (based
on deriving irrelevance claims) is well defined. In many cases, we can adopt
existing algorithms for automatically deriving irrelevance claims in order to
create ahstractions.

3. The analysis of irrelevance provides insights into several properties of the ab-
straction, sucli a3 the utility and composibility of the abstraction.

4. Associating abstractions with ifrelevance claims makes it possible to compose
knowledge bases that ¢ach make certain abstractions (or Six'nplif\iu{; assuimp-
tionis) about the domain. This can be doneé by explicitly reasoning about the
consistency and adequacy of the irrélevance claims underlying the assumptions
beéing niade by the knowledge bases.

YT the head of ris a predicaté in Q then in addition to the mapping on the antecedent tlicre
st bé Sorie predicate go € Q such that réplacing the héad predicaté by ga still vields a rulé that
is entatléd by A

s e,
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We have demonstrated the approach for two kinds of abstractions. removal of
predicate arguments and predicate abstraction. In both cases, we have provided a
loglcal account for the appropriateness of the abstractions, and we.have devéloped
efficient algorithms for automatically: deciding which abstraction is appropriate for
z given query. In the next chapter, wé démonstrate how this approach can be used
for automatically composing a knowledge base for a specific query from a set of
knowledge base fragmeiits that are given at multiple levels of abstraction. To pursue
this approach, additional relevance subjects should be considered in detail, as well as
exploring altérnative définitions of irrelevance.

It should be noted that the idea of associating irrelevance with abstractions was
also mentioned by Subramanian {Subramanian, 1989], but was not formalized or
demonstrated cencretely., Subramanian also mentions some of the new irrelevance
subjects descr’ =d here.

Our results on projecting predicate arguments are related to the work by Ra-
makrishnan et al. [Ramakrishnan ef al., 1988] on. 1dent1fvmg existential queries. That .
work presents an algorithm for detectmg cases in which arguments of subgoals in
logic programs can bé removed without affecting the.answer. to thé query. Their
treatment of predicate arguments differs in that.they distinguish between different
occurrences of a prédicaté in a program..As a result, their algorithm may decide to
project an argumeént of a.predicate p in oné o¢currence of p and not to project it in.a
differént occurrence, thereby requiring two versions of the relation denoted by p. We .
can réfine our tréatment in the samé way by applying a syntactic transformation to
our knowledge base in which we rename évery occurrence of a predicate p such that
no two occurrénces in the original knowledge basé have the same predicate name.
The définition of independence that we present in Section 6.3 is.better motivated se-
mantically than the one they present and applies to more than just Horn rules. The.
syntactic condition for indepéndénce given in Theorem 6.7 geéneralizes the condition
given in [Ramakrishnan ef al., 1988) to arbitrary clauses. Finally, their algorithm for
identifying irrelevant predicaté arguments is based on building a rulesgoal graph of
the rules in the knowledge base. Qur algorithmis use the queéry-tree and can therefore
détect a larger class of irrelevance claims by considering interpreted literals in the
rules, minimal derivations and extended languages including negated EDB subgoals.

Our treatmént of predicate abstraction in Seéction 6.4 is inspired by the work
of Tenenberg [Tenenberg. 1990]. Tenénberg considers the problem of finding the
maximal sét of clausés that are independent of a predicate refinement. He presents a .
constructive proof for the existence of such a set and shows that unless the kiiowledge
basé A is emupty, the set will be infinite. Thé abstract knowledge base we considér
Abso(A) is a finite subsét of Tenenberg's maximal sét and is effectively computable
in many cases. Tenenbérg also considers a finite and computable subset that he
calls MembAbs, However, AMembAbs is a subsét of Absa(A). The contribution of
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our work on predicate refiiements is in provicing a logical justification for when a
predicate abstraction is appropriate for a given query and providing algorithms for
automatically verifving that the justification holds.

Giunchiglia and Walsh [Giunchiglia and Walsh, 1992] present a theory of abstrac-
tion in which they identify two classes of abstractions. The first. TD-abstractions,
requires that any formula that is derivable from thé abstract knowledge base must
also be derivable from the original knowledge base. The class of Tl-abstraétions re-
quires that any formula which is derivable from the original knowledge base also be
derivable from the abstract one. Oné of the key aspects underlying our treatment of
the connection bétween irrelevance and abstractions is the intuition that removing ir-
relevarnt knowledge should not result in the ability to derive conclusions that were not
derivable earlier. As a result, in the examples we presented, the abstractions justified

by irrelevance claims fall under the class of TD-abstractions. Moreover, weak irrele-.

vance also. guarantées that.if the query was derivable in the original knowledge base.
it will also be derivable in the abstract. knowledge base. Therefore, our abstractions
¢an be.viewed as being Tl-abstractions with respect to a specific query. .
Historically, Tl-abstractions have received more attention (e.g.. |Sacerdoti, 1974;
Plaisted, 1981]). In that work, the intuition was that in most cases the information
removed was irrélevant to the query, and thereforé the answer obtained from the

abstract knowledge base would hold (or could be refined to an answer) in the original .

knowledge base. For example, ABSTRIPS [Sacerdoti, 1974] iade- the assumption
that the action preconditions of lower criticality values are easier to achiévé.and can
therefore be ignored when formulating an abstract plan.. The utility of the abstraction
depended on how often the problem solver would have to backtrack across abstraction
levels. To articulaté the intuition behind these kinds of abstractions by irrelevance
claims, we need to extend our framework for reasoning about irrelevance to include
probabilistic (or default) irrelevance claims. We need to bé able to staté that some
subject is irrelévant to a query with some probability {or under some conditions). To

undérstand these abstractions we also need to refine the theory of Giunchiglia and .

Walsh. Their theory is based on two kinds of relationships between the statements:
Sl. AF ¢gand
S2. Abs{A) F Abs(q). .

where Abs(A) and Abs(q) are the abstractions of the knewledge base and the query
repectively. For TD-abstractions, they réquire 82 = S1, while for Tl-abstractions
they réquire 81 = S2. Instead of considering only these two strict relationships, we
can consider other possibilities. For example, we can require that if $2 holds, then
thete is some prespecified condition o ¢ and the possiblé derivations of ¢ such that
S1 holds. Such a condition should be useful in telling us whethér the answers given
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from the abstract knowledge base would follow from the original knowledge hase, or
how to refine a derivation in the abstract KB into a derivation in the original KB.

Our analysis of irrelevance of predicate arguments is oné instance of this more
general class. For example, if the first argurnent of a binary predicate p is irrelevant.
to a query. and p(a) is dérivable from A4bs(A). then this guarantees that ther exists
some X such that p(X.a) is derivable from A.

Knoblock's ALPINE system [i\noblock. 1990] is another example of this gener-
alization. The ALPINE planner creates an abstraction hierarchy whi¢h guarantees
that if there is a plan for a goal in the original problem space, then there will be
one in the abstract space such that the original plan is a monotonic refinment of the
abstract plan. This condition enables the planner to considérably prune its search
when it refines an abstract solution. since it need only consider monotonic refinements
of the abstract plan. Knoblock et al. [INnoblock et al., 1991] present other examples_—
of possible relationships. between abstract and.concrete plans which are then used to
prune the search of a planner.

Additional work on automatically generating abstractions is described in {Ellman.
1990; Ellman. 1992; Lowry, 1992]. Work on analysis of the utility of abstractions is
described in [Knoblock, 1990: Bacchus and Yang, 1992}




Chapter 7

Automated Modeling of Physical
Systems

The previous chapter described how relevance reasoning can play a key role.in facil-
itating réasoning in cornplex domains that require extensive use of abstractions. An
important domain with such characteristics is.that of modeling of physical systems.
In this domain, we are given.a theory of the physical world, a.description of a specific
system and a query about that system. Our goal is to.choose a représentation for the
system that will enable us to answer the query effectively. Physical systéms can be
represented in. multiple ways, using séveral levels of detail,. abstraction and differing
perspectives. Therefore, the main challenge in solving this problem is choosing among
alternative possible representations of the systéem. The chosen representation must
be adéquate for answering the query. but must also be as parsimonious as possible,
in order to allow efficient inférence.

This chapter considers the automated modeling problem from the perspective
of relevance réasoning. In doing so, we shed light on the problem, showing that
certain aspects of it can be automated by simple considerations of relevance reasoning.
Furthermare, we show how additional domain knowledge, which is needed for model
selection, can be expressed in the form of irrelevance claims. We combine these
observations into a novel model selection algorithm, based on rélévance reasoning.
Section 7.1 describes the model formulation problem and its relation to relevance
reasoning. Section 7.2 describes our algorithm and Section 7.3 presents an analysis
of its properties.

7.1 Problem Formulation

In order to reason about a physical system for tasks such as simulation, design or
diagnosis, we néed some répresentation of the system., We call such & representation
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a model for the system. In this chapter, a ntodel refers to a representation of a system.
We use the phrase logical-model 1o refer to the concept of a model in Matheratical
Logic (cf. [Enderton, 1972)).

For complex physical systems. there is typically no single model of the gystem that
will be adequate and enable efficient inference for all possible queries. Consequently.
the goal of the automated modeling problem is to find a model for a system that_is

best suited for a specific query.

7.1.1 Compositional Modeling

We construct a model for a given physical system based on the Compasitional Afod-
cling approach described.in {Falkenhaiuer and .Forbus, 1991]. "In this approach. a
physical sityation is modeled as-a collection of mode! fragments. Each model frag-
ment represents some atomicaspect of a pliysical object or a physical phenomeron.
For example. a model fragment may describe the.dependence of the voltage of a bat-
tery on its charge level (as shown in Figure 7.1), or it may. describe the process of
fluid flow. through a pipe connecting two containers.

A model fragment contains.a set of participanis. which are the set of objects in
the domain that are taking part in the phenomenon being deseribed. An instantiated
model fragment i a binding of each of the participants to an object in the domain.
The model fragment contains a sct of operating conditions which the participants need
to satisfy in order for the instantiation to be valid. The behavior—conditions of the
model-fragnient specify the behavior of the participant objects in the phenonienon
being modeled.

A model for a.system in a given state is a set of instantiated model fragments
whose opérating conditions are satisfied. The union.of the béhavior conditions of the
istantiated model fragments gives rise to a simulation mode! for that state. The
sintulation model is used to.determine the next state of the systém. in which a new
simulation model is chosen.

A model fragment cousists of the following conmponents:!

Participants:. These are the set of objects participating in a model fragment .in-
stance. A participait can be viewed as a unary function froni.4 model fraginent
instance to the objects of the domain, ln Figure 7.1, the participant is an
itstance of class battery,

Variables: These are time dependent vaiiables associated witlh the participants in
a model fragmient instance, We distinguish .two kinds.of variables. The figst,
which are also called quantitics, are variables that are continuous over time (e.g..

Par a complete formal discussion of model feagments se¢: [Farqubar ef af , 1993]. The descBiption
below wmeludes only Lhie asperis relévant to our discussion

D i

|
1
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Charge-sernsitive-voltage ( X : battery )

Variables:
voltage(X), chargelLevel(X), damaged(X)

Operating conditions:
~damaged (X)
6 < charge-level(X) < 30

Modeling conditions:.
Relevant (rechargeableBattery (X)) A
Relevant (¢hargeLuvel (X)) A
Relevant(voltage(X))

Beltavior conditions:.
voltage(X) = f(chargelLevel(X))

Figure 7.1: An example model {ragment

voltage. current). The second kind are binary variables that may change over
time (e.g.. damaged(battery). on(switch)). Binary variablés are represented.by
ground atomic literals.? In our example. the quantities are the voltage and
charge levél of the battery and dammaged(X) 18 a binary variable.

Operating conditions: These conditions specify when an istance of the model
fragment.exists. They are conditions on the participants of the modeél fragment
and on its.variables, Theéy include both structural constraints on the-partic-
ipant§ as well as constraints on the ranges of the variables. In our example.
we réquire. that the battéry not be damaged and that the charge level of the
hattery be between 6 and 30.

Modeling conditions: These are conditions on the model of the system that néed
to be satisfied in order for an instance of the'model fragment to exist. They are e
uséd in order to distinguish different ways of modeling the same phenomeno.
We distinguish two classes of modeling conditions. The first class consists of
reletance claims, As explained in Chapter 6. relévaice claims can be used to
express the assumiptions undeérlying an abstraction. For éxdample, a description
of the battery that ignorés its therimal aspects may be based on the irrelevance
claim stating that the predicate fempératuré is irrelévant to the query. We as-
suihe that all the iefelevanee elaiins used in the modeling couditions.aré based on
a single defiaition of itvelevancedn our space, I the modeliig conditions we use

*Note that the tiie afgument of all variables is left uiiphey i
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the predicate relevant., which should be thought of as denoting the complement
of irrélcvant. The second class of modeling constraints includes assumptions
about the problem selving task. Thesc include assumptions about the desired
accuracy of the answer and the temporal granularity of the model (e.g.. we
will model a battery differently depending on whether we are considering its
behavior over one second or over orie year).

In our discussion we assume the following convention about the interpreta-
tion of predicates used in the modeling conditions, A positive literal of a
prédicate is assumed to denote an assumption that vields a more complicated
model of a phenomenon. A negative literal dénotes a simplifying assumption.
For example, ~relevant(Temperature(battery)) states that the represéntation
is simplified to ignore the thermal aspeet of the battery. whereas the. literal
rélevant(Temperature(battery)) in the modeling conditions states thiat the
model {ragment censiders the temperature aspéct of the batterv. As another ex-.
ample, the literal =warge(time Scale) states that the represéntation is simplified
to ignore longer term-cflfects on the battery.®

I our examplé, the model fragment réquires that the charge level and the
voltage are considered relevant propertiés. and that the rechargeability aspect
of the battery be relevant as well. Modeling. conditions are distinguished {rom
operating conditious in that they are conditions about the model (1.¢.. meta-
level conditions).as opposed to conditions on the domain and state..

Behavior conditions: Tlie statements i the behavior conditions are true whenever

the instance.of the niodel fragment exists. Essentially. these sentences describe
the phenomenon being modeled. We distinguish three kinds of behavior condi-
tions. The fitst kind describe continuous phénormena (e.g.. a fluid flow) by a set
of équations involving the continuous quantities of the model fragment. The
¢quations 1y be quantitative (algebraic and ordinary differential equations)

and can also be qualitative (e.g., the rate of évaporation negatively aflects the .

amount of. watér in the cup). The second kind of behavior conditions describe
iistantaneous changes of the binary variables of the model fragment (¢.g.. Lurh-
ing off a switch), Finally. the third kind of hehavior conditions deseribe tiine
independenit properties of participants in.the model fragment. We assume that
a model fragment contains behavior conditions of only one kind. hi our dis-
cussionwe assume that the behavior conditions do not contain inegialitios o

YSome assuniipiions may heé multisalued. Fof examiple, the tifiie serale may: lié éithier small, medium

of large. The algofithiis we desefibe i this chapter can be extended in & straightlofward fashion
to deal with such dsswnptions However, for clarity 6 assume hefe that inodelitig assuinptions afe
bnvey
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quantities, The behavior conditions of the madel fragment in our example de-
scribe the functional relationship hetween the voltage and the chaige level of a
battery,

Thé semantics of modél fragments can be summarized as follows. Let fi..... [,
bé the participants of a model fragmeént M. Let o(X,.....X,) be its operating con-
ditions, a{.X......X;) be thie modeling canditions, and (.X,......X,) bé its behavior
conditions. First, whenever a set of objécts satisfies the operating and modeling
conditions. there existd an instance of the model fragment. Formally:

VXL X [N N Al NG @ (3 ) MOn) A N, i) = X, ]

The existence of the model.fragiment also implies that. the. variables mentioned in
it are defined. Furthermore, the éxisténce of the model fragment implies that the
behavior conditions hold:

VXX [ (3 M) A (AL, fm) = X)) = BN Y

Composing Simulation Models ...

Given a description of the physical configuration of a system..a-particular state it is
in, and a query. about the state, the task is to formulate.a model that represents tlie
physical phenomena occurring in the state. Such a representation.is composed of a sot
of instantiated model fragmerits whose operating conditions and modeling conditions
are satisfied in that state. These model fragment instances aré called thie sét of active
model fragniénts in that state. and togéther will comiprise the simulation model for
that state.. The behavior conditions of the model fragmeénts in the simulation niodel
give rise to & sct of equations and logical formulas that must hold anong participants
and the variables as a conséquence of the phenomena taking place. They are used to
determiné the next state of the system i whieh a new simulation model is selected.

The main advaiitagé of compositional modeéling that makes it appropriate for
our task is its modularity. Writing model fragments, éach describing a single phe-
nomenoti, is a imuch casiér task thian composing a coniplets model for every possible
systein and query, Adding model fragments to an existing library is also mucli easier.
Fiirthermaore, thodel fragments can he fétised in and appropriate ¢ontest,

7.1.2 The Model Fragmeént Library

To facilitate compositional modeling, wé impose additional sifucture on the meiel
fragiment libiary,  Specifically, model ffagments aié groupod into composie wadel
Siraginents vCMEFs) and CMFs are further grouped into assumption elassi s, Before we
discuss these construets, we briefly destribe the fiotion of causal ordering of quantities.
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Causal Ordering

Liquations i1i model fragments deseribe the relationships among the continuous vari-
ables involved in the modeled phenomeénon. These relations have no causal import,
For example, the equation for Ohm's law. V' = iR, only states the relationship be-
tween the current. the voltage and the resistance. I building a model for a system
and explainiig it, we bften want to know éxactly low.the variables aré détermined.
Le. what are the causal dependencies between thé quantities in the niodel. For ex-
amplé, in a model containing Ohm's law, we may say that the voltage is determined
by the current and thé résistance. A causal ordering [lwasaki and Simon, 1986:
de Kleer and Brown. 1986] specifies the dependency structure among the quantities
in the model fragment.t It ig specified by causally orienting évery equation in the
model fragnient, i.c.. assotiating one quantity f(¢) with evéry equation ¢ in the model,
The quantity f(e) must be part of ¢, and.aiiust not be associated with auy other equa-
tion in the model fragment (i.e..if ¢, # ¢y then f(e;) # f(e2)). The quantities in the
imodel fragment that are not associated with.any equation are calléd erogenous in the
causal ordering f. The éxogenous quantities are assurited to be detcrmined.by other
phenomena (described by otlier. niodeé! fragmeiits), and can theréfore be considered
as iiputto the current modél.fragment. Given a causal ordering f. we sav that a
quantity 1 causally affects a quantity v if:

e The quantity vy_appears in the equation ¢, and I{¢) = vy or

e There éxists.some quantity vs, such that v causally affects vy and vy cansally
affects vy,

If v is a continvous variable, we say that a model fragment m can detérmiine it
if there is some causal ordering of the quantities in m such that v is not éxogenous,
If v is a binary variable, we say that it can beé determined by ni if it appears in its
behavior conditions.

The set of variables that ¢an be detérmined by & model fragient are called its
output variables. We now describe thé structures in the model fragnicit library.

Coniposité Model Fragments

some model fragmeérits deseribe the same phéenonienor, but differ only in their oper-
atinfg fégions, L. the value ranges assumed for the continuous variables in the inodel

fragment. Foi example, the function describing the dependence of the voltage of a .

battery o its charge level changes depending on the value of the charge level:

chargélévél < 6 = voltage = fi(chargelevel)

"We do not coistder.causal depeidencies atmong biitary vadiables Liere
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6 < chargelevel < 30 = voltage = f2(¢hargelevel)
chargel.ével 2> 30 = voltage = f3(chargelevel)

In.selecting a model that will be adequate for multiple statés of a sirmulation, it is
casier to think.of such model fragments as being grouped irto a single coniposite
model fragment (CMF). A CMF is a set of model fragments describing the entire
operating range of the variables participating in the phenomeron. In every state of
the simulation, the operating conditions will guarantee that only one model fragment
from every CMI" will be ineluded in the simulation model. Clearly, a CMF can also
he a singleton set,

Assumption Classes

(C'omposite model fragments are further grouped into assumption.classes.? An as-
sumption class is a set of CMFs that describe the same phenomeérnon based on diffsr-
ent and contradictory nmiodeling conditions. As stated.. modeling conditions expreéss
the assuriptions that we are making in the.representation of the svstem. They ex-
press the dnderlying abstractions and approximations that are assumed by the model
fragment. Figure 7.2 shows an assumption class consisting of different ways of de-
scribing the voltage of .the battery. Oue way to model the voltage is to assume it is
constant. Another way is.to assunie it degrades over time, More complicated ways of
modeling the battery consider aspeééts such as the ¢harge level and. the témpérature.
Since:CMFs in an assumption.class aré contradictory. any consistent sét of modeling
assumptions will include at most onie .CMF from a single instantiated assumption
class.

CMFs 1 an assumption class are partially ordered by a simplicity vélation, de-
notéd by the predicate <. A CMF ¢, is said to be simpler than a CMF ¢, if ¢, niakes
a superset of the simplifying assumptions made by ¢,. The transitive closure of < will
be denoted by the predicate <*. In the figure, the simplicity relation is denoted by
the directed arcs. We assume that every assumption class has a single most compli-
cated CMF and a single simplest CMF, The former tepresents the most detailed way
of describing a phenomenon, while the latter répreseiits the simplest way of doing so
{e.g.. the voltage of the battery can beé niodéled as constant). Finally, we assume that
if e, < ¢; then:

L. Theontput vie'ables of ¢, aie a superset of the output variables of e,

2, 1F f, is a cansal ordering of the variables of ¢,. theén there exists a causal ordefing
[y of o) sueh that the caisal rélations ainong variablées in ¢, (given by f)) dre a
subset of the causal relations among variablés in ¢, {given by f)).

The tern asstinption-class 1s uséd 1 order to be consistent with {Falkenhainer and Forbus,
1991], noi-because 1t s esjiseidlly appropfiaté
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Battery-voltage-assumption-cl

; . a3 i)
(Constant-Voltage Normal-degrading Charge-level-sensitive
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4 N
Binary-voltage Temperature-sensitive

Figure 7.2: Battery voltage assumption class

All of these propertiés follow if we assume that whenever ¢, < c,, then ¢, is a eausal ;

|

approriniation of ¢, [Nayak, 1992b]. Nayak has shown.that causal apprommat‘ons :
cover most approximation relations encourtered in practice.

In contrast to previous treatinents of assumption classes. we assumic that the mod=
eling conditions of CMFs in an as'§u11115ti011 class precisely characterize the differences.
of assuriiptions made by CMFEs in the assumption class. Specifically, this is formalized
as follows. Suppose theé modeling conditions of a CMI® ¢ is the conjunction of the
literals in the.set As.. and suppose ¢, < ¢, Then we can annotaté the link from
o to o, with a sét of positive literals Prooooope which means that ¢, is making the. ‘
simplifving assumpiions {=yn. .. ~mpa}oinaddition to the simplifving assumptions |
made by ¢, or formally, .. ‘

|
|

Ao = (As, Voo u {apic =i

The articulation of these differences will play an important role in selecting the siin-
plest fodel,
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Other Assumptions About thé Library-

Compaosing non-contradictory rnodel fragments: A variable niay he affected
by more than one phenomenon and therefore by moré than one assumption class.
For example. the amount of wate* in a container can be aflectéd by an evaporation
process and by a condensation proc¢ess. These two plienomena are represented by

different assumption classes. One of the key assumptions on model fragments in the ’

compositional niodeling approach is that thev bée ¢omposable. Speécifically, this meéans
the following. Leét miy and my be two model fragments that have consistént operating
conditions and modeling conditions, such that both ¢an determine a variable v. Then,
m, and m;, ¢an bé composeéd to a singlé model fragment my deseribing the union of
the phenomena in my and my. The procedure for creating my is assumed.to be given.

Coherence of the Library

The library. coherence assumption essentially requires that if we have a set of model
fragments that have consistent modeling assumptions and whose operating conditions
are satisfied. then the resulting set of equations will not be over constrained (i.c.. will
not have more équations that quantities). Formally. this assumption is defined as
follows:

Defiziiton.7.1: A model fragment library satisfies the library.coherence assumption
if the following condition holds. Lét Af be any sét of model fragnments in the library
and & be any state such that:

1. The conjunction of modeéling conditions of model.fragments in M, a(Al), are
consistent.

2, If a(AM) k= Rélevant(vy), theén v, appéars in some model fragment in M.

3. The conjunction of the operating conditions of model {ragnients in A/ areé sat-
isfied in &

Then, the sét of équations given by the uiion of the behavior conditions of M are

ot over condtrained. 8

Note that a set of équations that aré ot over constrained can always be made
complete by assuming thiat some variablés aré exogenous.
7.1.3 Other Modéling Constraints

Fxcept for the modeling conditions attached to éach niodel fragiment. we assutne
a backgromid theory of modéling coustraints. €. We use € to egpress additional
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constraints on thie possible models. The constraints can either be domain independent
(c.g.. general constraints entailed by relevance claims) or domain specific constraints.
For example, the following constrahit states that if the refiiement of objects along
the property r is relevant for an object o that is relevant to the query, and (o, X')
holds, then X is rélévant to the query:®

relevantObject Re finement(O. R,G) A (0. X) A relevantObject(0.G) =
relevantObject( X, ().

The constraints in ¢ may also be heuristic in nature. For example. the following
constraints aré a variation on the object erpansion heuristic used in [Falkenhainer and
Forbus. 1991]. They are used to enforce the relevance of certait objects in a systeni.
givén the initial set of relevant objects.

structural Hieranchy Slot(p) A relevantQbject( X, G)A
relevantObject Re finement( X, P.G) A p( X, Y) = relevantObject(Y. () -

structural HierarchySlot(p) A p(X,Y) A relevantObject( XN, G)A-
relecantObject(Y. () = relevantObject Refinement( X, p)

The heuristic. states that if the objécts s; and s, aré both relevant to the query.,
and ¢ is theirleast comimon ancestor in the structural hierarchy. then any ohject in
the hierarchy that. is ¢ither in between t and s; (or between ¢ and s7). or a child of_
such a object. will be considered rélevant to the query. .

Essentially, constraints can be expressed using arbitrary first order formulas. For
efficiency reasons. we assume that the constraints in C are éxpressed using only Horn
rules. In practice, Horn fules have been eéxpressive enough for the modeling_con-
Straints we have encountered, .

7.1.4 The Model Formulation Problem

Informally, the model formulation problem is to choose a simulation model (i.6.. a
sét of instantiated model fragments) that can answer a given query about a systém
i & specific state, However, a siimulation of a systém may go through many states,
and we do not wanl to repeat the costly selection process at every state. Thetefore,
we posé the model formulation problem as selecting a small s6t of (' MFs, called thie
seenario moded. The scénario model has the property that its niodeling conditions are
consistént, and that at everiy state, we can choosé a simnilation model from it casily.

Formally, the model forniulation probleii is to chioose a seenatio model. given the
domain theory (ie., model fragment library and background modeling constraiuts)
a system description and a query, defined as follows:

“Note that we aisé specific predicate nainés in ordér to make the type of the subject in the

fdlevatict clai sxphicit
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[

e System description: A set of facts about a physical system and its initial
state. This description typically includes a set of individuals (i.e.. components
of the system). their physical structure and the initial values of variablesin the
syvstem.

¢ Query:

~ A variablé v (or list of variables) whose behavior we want to predict in the
simulation of the system.

- A list E of exogenous variables and terms (i.e., ground atomic formulas).
The elements in £ aré assumed to be given and are outside the scope of
the simulation for which we are constructing a scenario model. We can
use £ to circumscribe.the set of states for which we are ¢reating a scénario
model (e.g.. we may construct a scenario modelonly for states in which
the battery is not damaged).

~ A list Jnil of modeling constraints.that we want to enforce. Implicitly.
Init includes Reélevant ()"~

A scenario model is a set of instantiated CMFs whosé modeling conditions are
consistent. At eévery state the system. checks the operating conditions only of the
CMFs in the scenario modeél. The conditions of at most one model fragment. from
each CMF.will be satisfied.in the staté, and thése model fragments will comprise the
simulation model of the state. We derote the scénario model by § and the simulation
model created from it in state s by S,.

The resulting scenario model must satisfv sevéral properties. . First, it miust be
adequaté for answering the query, This means that it must be coherent and sufficient
as follows:

Definition 7.2: A scénario.niodél S is adequate if
(‘1. There is a logical-niodel M for the background constraints C such that

A. Al the modeling conditions of CMIs in S are satisfied in M.

B. If Relevant(vy) is satisfied in Al and v, i§ a variablé, theén some CMF i
S includes vy,

("2, For any state s of the simulation, the. equations arising inn 8, can be made

complete. (1.e., not. over.constrained or under ¢onstrained) by adding exogenous.

variablés., Furthérmore, the.equations in S, includé the variable v, and v is not
exogenous in the compléte set (and theréfore we can sayAhat S, deterinines v).

"Noté that these constraiiits can also bé specified as part of €. However, it is oftén inore natural
to spiccify theni as paft_of the query




158 CHAPTER 7. AUTOMATED MODELING OF PHYSICAL SYSTEMS

In order for a scenario model to be useful, it should be as simple as possible:

Definition 7.3: A scenario model S, is simpler than &, if there is a mapping o :
81 = &; on the CMF's of &,. such that

L. For every ¢ € Sy. d(c) is from the same instantiated assumption class as ¢.

2. Either ¢ = &(c) or ¢ <* o(c).

The model seléction problem is to find a scenario model that is adequateé and such
that there is no simpler adéquate scenario model.

7.1.5 Model Formulation as Relevance Reasoning

The approach to thé madel formulation problem advocated in this chapter is based on
the intuition that several aspécts of the problem can be viewed as relévance reasoning.
We explain our view in this section.

Intuitively, the model formulation probleni. can be viewed as.a combination of
.wo.subproblems. The first is to determine which phenomena (and therefore which
variables) are relevant to the query variable. The second problem is to détermine the
level of detail at which to modeél the relevant phenomena. These problems are closely
related, because the decision to modeél a certain phenomenon at a.greater lével of
detail may require modeling additional phenomena.

Selecting the Relevant Phenomena

The first part of the model formulation problem is to decidé which variables are
relevant to the query variable (and therefore, decide which phénomena should bé
modeled). Intuitively, a variable u is relevant to the query variablé v if « can causally
fluence v, i.c. eithér (1) there is somé state of the systém in which u causally affects
v or (2) & ¢an cause a change in the state of the system (and therefore indirectly affect
the value of ). Consequently, finding the relevant variables can be doie by following
the possible causal influences between variables. The algorithim that we describe in.
this chapter traces through all the possible causal influences ou the query variable,
Note that the intuition uiderlying this algoritlim is similar to the intuition underlying
the construction of the query-tre¢, where we represented all the possible derivations
of thie query,
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Selecting the Level of Detail

The second part of the model selection problem is determining the level of detail
at which to model each phenomenon. This entails deciding which abstractions and
approximations can be made in. modeling the system. As described in Chapter 6.
krnowledge underlying such decisions can be stated as relevance claims and better
understood wheri stated in that form. In our algorithm, we bring relevance knowledge
to bear in two ways:

o We articulate the difference between CMF's in an assumption class by the model-
ing constraints, expressed partially by relevance claims. Previous treatments of.
assumption classes require that every CMF have a sét of modeling constraints.
but. they. do not require that theé-constraints be related in any way (except
for being mutually exclusive). Articulating the precise differences between the
CMFs is a more principléd meéthod of building assumption ¢lasses and enables
us to determine when to switch from one model fragment _to another.

¢ Enginéers have good general heuristics for selecting relevant detail in model-
ing of physical systems. We use the modeling constraints C to express these
heuristics_de¢laratively and reason with them. .

Our modeling algorithm will use both kinds of this knowledge to select the simplest
scénario model.

Partial Knowledge about the Simulation. States

Our algorithm selécts a scenario model for a set of possible statés of the system.
Envisioning all the possible states that the system may réach beginning from the
initial staté is a very expensive opération {de Kleer and Brown, 1984}, which weé do not
want to perform as part of the model formulation process. Thereforé, our algorithm
selects the scenario miodel based only on partial knowledge of the possible states.
This knowledge is given implicitly by the set E of the variables that are assuned
to be exogenous and the time invariant facts in the description of the systém. The
problem weé face héré is analogous to theé relevarice reasoning problem considered in
Chapter 3. in wliich wé wanted to decide which ground formulas are irreléevant to the
query without actually knowing the conténts of the database. In analogy to what
we did there, this entalls that we assumie that the system can actually reach any
state that is consistent with our partial knowledge. As in Chapteér 3. any additional
knowledge about the réachable states may enable us to seélect a simpler scenario model.
Assuming partial knowledge about thé world is a key aspect_in making rélevance
reasoning practical.
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7.2 Model Formulation Algorithm

Based on these observations, we now describe our model formulation algorithm. In-
formally. the algorithni follows all possible influences on the query in order to find
all the variables that can affect the query. For each such variable. the algorithm
selects the simplest CMF that describes it such that the set of selected CMFs make
consistent modeling assumptions.

To find all the variables.that can affect the query. the algorithm begins by consid-
ering all the assumption classes in which the query variable may be an output variable,
From each such assumption class we select one CMF and récursively consider all the
variables that can affect the query through the chosen CMF. These in¢lude:

L—If 2-is a quantity. we include all the quantities that appear in_the same equation
with . '

2. All the variables that.appear in the operating conditions of the model fragment.

The recursion bottoms out when we reach the exogenous variables given in £.

To select a.CMF from an assumption class, we maintain a list. Rel, of modeling
assumptions made thus far about the model. The list initially includes the assump-
tions given in /nit (and in particular. the relevance of the query). At every step, we
choose the simplest CMF that does not contradict the assumptions in Rél.

Adding a new CMF to the.scenario model may imply that we add additional
assumptions to Rel, and that we need to revise previous choices of CMFs. We perform
adjustment steps (via the while-loop in select-scenario-model) until all the choices
of CMF's are consistent. The details of the algorithm are shown in Figure 7.3. Note
that Pos(4s.) denotes the positive literals in the assumptions made by a CMF ¢. The
functiori DeductiveClosuré(D) returns the set of ground atomic formulas derivable
from D and the rulesin C. In what follows, we illustrate the execution of the algorithm
with an exaniple.

Example

The example is a simple cireuit containing a solar array (S&1) and a rechargeable
battery (BA1), shown in Figure 7.4.. Figure 7.5 shows the scénario déscription and
Figure 7.6 sliows the model fragments in the library. For each CMF in the domain
theory, the CME's behavior conditions and the list of variables appeéaring in its operat-
ing conditions are shown. The annotated assumption classes are shown in Figure 7.7.
The query is Voltage (BA1), with a.list of exogénous variables which includes all the
variables mentioned in the scenario description except Damaged(BA1). The sel of
nodeling constraints is empty.
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procedure select-scenario-model{xv. E. Init, C)
begin
Q = {r).
Rel = Inil.
Modél = nil.
repcat
g = dequeue(Q).
s = assumption classes in which g cair be a1 output variable and
whose operating conditions do not contradict E.
for eéach a € A4s do:
select-froni-assumption-class (a.q).
while there is a pair (c.¢’) € Modé( such that -p € As. and p € Rel
rémove (c, ¢') from Model..
select-from-assumption-class (4;.¢').
/* Ac is the assumption class from which ¢ was chosen +/
until @ is empty._
return the set {c.| (c.q') € Model}.
end select-scenario-modél.

procedure select-from-assumption-class ( 4,q )
/» A is an instantiated assumption class determining ¢. =/
begin
¢ = The simplest. CMF in A4 such that A p{-p € As. Ap € Rel).
AModel = Model U {(c,q)}.
Rel =-DeductiveClosure(C U Rel U Pos(.As)).
inputs = the union of:
The quantities that appear in equations with ¢ and
The ternmis in the operating conditions of c.
for every X & inputs do
if.X has not been in Q and X ¢ E then
enquéue .\ onto . :
if rélevant(q)) € Reél and ¢, € E and ¢, has not beeii it Q then
énqueue g onto Q.
end select-from-assumption-class.

Figure 7.3: Model selection algosithm.

161

The query variable Voltage(BA1) is the only item on the queueé initially, and so
we idéntify Battery-voltage~-ac(BA1) as an assumption class that can affect.it.® To
sclect a CMF out of this assumption class, we start from the simplest. Constant-vol=
tage-CMF. Since there are no earlier modeling assumptions, this choice is consistent
and we select this CMF. This results in addition of the following to onr modeling

*We assuine that thefe is a data structure that enables us to éfficiently find the agsumption classes .

that affect a given variable without scarching the whole modsl fragment library,
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S SAT)

1L1tL11d

Figure 7.4; An example circuit. SA1 is a solar array and BAlis a rechargéable battery. |

~ Seenario Description Legend
Solar-array(SAl) CL: Charge-lexcl(X)
Battery(BA1) V': Voltage-produced(X)
Rechargeable(BA1) TEMP: Teniperature-of (X
Plus-terminal (B4 1)=t4 It Current{Plus-terninal{X})
Minus-terminal{BA=t3 - DOD: Average-depth-of-discharge(X)
Plus-terminal{SA } )=ty TSLC. Tiime-sihee last-conditioning(X)

Minus-terminal{8# )=t
Electtically-connected (12.14)
Eleetrically-connected(t 1.13)
SDamaged(BAL).

Figute 7.5: The initial state of the svstem

assumption list. ffel:
Relévant (Battéry(BA1)) and Belévant (Damaged(BA1)).

Since the variable Voltage (BA1) can be influenced by the variable Danaged (BA1)
(through the CMI Constant-voltage CMF (BA1)) which is not exogenous_the vari-
able Damaged (BA1) is placed on the quene and becomes the new current goal. Wo
finel the assumption class Battéry~damage-due-to-overcharge-ac that can allect

Damaged (BA1). out .of which Battery-damage-CMF is selected since it is the. -ouly
member. This selection causes the literals:

Relévant (Rechargeable(BAL)) and
Relevant (Charge-level(BA1))

to be added to Helo However, this makes the assumption list inconsistent since

both ~Relevant{Réchargeablée(BA1)) and ﬁRelevmt (Charge level(BAi)) were
assumed I)\ Cofistant=voltagé-CMF, ‘
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"‘\ﬂ { Behavior { Variables in Operating Cond.,
Battery- \oltage assumption class:
Constant-voltage-CMF V=Y Batterv(N), =Damaged(X)
Binary-voltage-CMF V= { :)‘l :g ij ; g;’ Battéry(X). =Damaged(X)
Normal-dégrading-CMF V' = f(Timé) Battery(X). »Damaged(X)
Charge-sénsitive-CMF v V= f(CL) Battéry(X). =Damaged(X)..
Rechargeable(N)
Temperature-setisitive-CME V= fITEMP.CL). Battery(X), ~Damaged(X). .
Rechargeable(X)
Battery-charge-level assumption class: .
Constant-charge-level.CMF CL=r¢ Battery(X), =Daraged(N) -
Normal-accumuiation-CMF CL = [dt Battery(X). ~Daniaged(X).
Réchargeable(X).
Accunulation-with-aging-CMF | ('L = Idt = f(DOD, TSLC) Battery(X), =Damaged{X).
Rechargeable(N)

Battery-damaged-dué-1o-overcharge assumption class: ]
Battery-damage-CMF Dumaged(.X) B'x!ter\(\) —Damaged(X)..-
' Rechargeable(X) CL(N).

Figure 7.6: Scenario description and model fragments
B II .;»l .x i l:l : . ‘ E‘ i “g] !-!’!lllig‘:vi’

Constant-Voltage:CMF
g Large (TPOG!
Bifary-voltage-CMF ) CNorm:l -degrading- CM)

Relevant{Rethargeable(X)f
Small (Gunuhnty)\ Relevant(CL)

(Constant:charge-lovel-CMF )

Relevany(l} Retevant{CL)
Relevant{Rechargeable-battery(X))

@énﬁal‘-a’c:umﬁlition—CMD

Releu‘ant(DODL .
Releva'nt(TSLC) CCharge-sensn!wc CMD
CAccunulahon wxlh agmg-CMF) #RQICVH\“TEMI’)

Ge“mper;tun'-unsiﬁie(@

Figure 7.7: Assumption (‘lasses

To resolve the inconsisteney, we adjust the choice of Constant-voltage-CMF, dnd

we now sclect Chargé-sensitave~CMF. which is—the simplest CMIE that does not
contradict the carrent modeling assumptions.

The current goal variable now becomes Charge-leével (BA1). The assumption

class that can affeet this variable is Battery-charge-levél-ac. and we seleci fram

it the CMI* Norfal~accumulation~CMF(BAL). which is the sinplest. CME that is con-

sistent with the curtent nodeling assuinptiofis, Current (Plus-termifial (BA1)) ran

influenee Charge 1evel (BAL) thloug.,h this CMF Howevei, sinee it is an exogenous
vartdhle it is not placed on the quene. The qvmw is now empty and the murvduu‘
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terminates. The resulting scenario model contains:

Charge-sensitive-CMF (BA1),
Battery-damage-due-to-overcharge-CMF(BA1),
Normal-accumulation-CMF(BA1).

and makes the following modeling assuniptions:

Relevant(Battery(BA1)), Relevant (Damaged (BA1) ),

Relevant (Rechargeable(BA1)), Relevant(Charge-level(BA1)),
Large(TPOG), Small(Granularity),

—~Relevant(Temperature (BA1) ,~Relévant (DOD), ~Relevant (TSLC)

Note that the procedure.terminates at this point in the example because the variable
Currént (Plus-terminal (BA1)) was specified as exogenous in the query. Had it not
been specified exogenous. the procedure would have added niore CMFs to the ntodel,
including those representing other_components and processes affecting the current.

7.3 Analysis

[n this séction we prove that.our algorithm produces the simplest adequate scenario
model for answering the queéry. We.discuss the assumptions under which this re-
sult holds .and discuss the consequences of relaxing.them. The following theorem
establishés the main properties of the algorithm:

TheOrex'ﬁ 7.4: Let M be a library of modél fragments déscribing the domain, and C -~
be a set of modehng constramts. Let S be a descripfion of d system and (v, E. Inif)

be a query dboul the system. Lel 8 be [t scendrio mode! résultnig from algorihm
select-scenario=model. Furthermoie, assume that: '

o Thi Library coherenee assumption holds.

o [fe o and e, are-two CMEs in an assunmption class, such that ¢, < ¢y o then o is
a causdl approrimation of ¢,.

o All modéling constramts u C aie cither ground atome formulas or Horn rule s,

o The most complicatéd seeiario model, defined fo be all the possible mstantiations
of CMEs that ari the most comipliciited m fher assuinption class, s adiguate
Jor answiring thi quéry?

“Note that the most camphedtéed scenatio model neéds to include only the vdlid instaitiations of
thoddl fragments, Lé., iistantinbione in which the abjects satisly the iype conditions in the defiition
of thé model ffagmeit and ihé time invaridnt facts in the description of flie systén.
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Then, 8 is an adequalc scénario model for (v, B, lnit) and theve is no seenario
model S; sueh thal 8y is simpler than S

Proof: Fitst we note that hecause of the last assumption in the statement of the
theéorem. the algorithni (i.e.. the while loop in séléct-scenario-model) must termi-
nate. This is because.we can always adjust a choice of a CMF to a more complicated
CMF that does 1ot contradict the assumptions in Rel. Ultimately. we will end up
with the most complicated scenario model which i guarantéed to be adequate.

We first consider thie adequacy of S. Condition ('l of adequacy requires that
there exist a logical-model M of the modeling constraints C in which all the modeling
asstmptions of the CMFs in § are satisfied (condition A) and such that auy variable
for which Rele vant(r) is satisfied in M .is included in.one of the CMFs in 8 {condition
B). We define Al to be-the logical-model which satisfies the positive.litérals in.fel.
aidd the negation of positive literals not appearing in Rel. M is a logical-model of
C because Rl UC is closed under deduction. Condition A is satisfied hécause the
following holds in the algorithm:

(1) For everyOMF ¢ € S, Pos(As:) C Rel.

(2) Whenever sonie siniplifving assumption of a CMI e is not satisfied in Rl (...
1pilying i
=p € As. but p € Rel), we adjust-the choiceofc.

Because of (1), all the positive literals in ¢ are satisfied in M. Because-of(2). all the

negative literals of ¢ are satisfied in Al
Condition B is satisfied by M because w h(‘nmor ln’(lm arit(tq) € el where iy is
a variable, then either

o 1y € F.or

vy, was put on the quéene, and some assumption class t]mt can affect v was
\11\5&(‘(11101111\ ddd(‘d to §.

Therefore. in both cases. 8 will contain a CMF that ineludes o,.

To complete the proof of adequacy we nead to show that condition (2 is satisfied,

. that every resulting simulation model 8, for a staté « can be made cortiplete by
ml(hn;., exogenons variables and that every such model determines the query variable
In building the scenario model we considered all the assumption classes that can
affect . The operating conditiois of & UME from al least one of these.assinption
classes thust be in 8. sinee otherwise that would imply that there is ho niodel-for
the systenn, Therefore 8, ineludes the variable v. The library coherence assumption

guarantees that the set of equations in S,. which we dénote by Fg,. s not over

constrained.  We noed to show that there is a chotee of exogenobus variables which
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does not include » that will make the equations Eq; complete. If £q, includes m
equations and [ > m variables. we neéd to choose | — m exogenous variables. We can
assume that L'g, does not contain a coniplete subset of equations. If it does, th re
are two cases;

L. It coutains a complete subset fig, that includes e. In this case. we simply
consider any choice of variables that niakes kg, — Eq, completé. Since o is
determined by some variable in Fg,. tiie choice for Eq, = Eq will suffice !

| R

It contains a complete subset £gj that does not include o. In this case, wé solve
the equations in F¢; and consider tlie equations E¢; résulting from réplacing
the appearances of viliables from gy in Eq, — Eq, by their solution values,!!
The resulting set of equations will not bé over constrained (because we reduced
the number of equations.and the number of variables by the same number).

“Let s=be a variable in Eqs. We show that set kg = Egq, U Er{v,) is not. over
constrained.'? Suppose, to the contrary. that it is over constrained. There would
then be a subset of Eq that contains niore equations than variables. That subsot of
E'q nust contain the équation Er(t,). because otherwise £q¢q would have been over . mmeo—
constrained. Purthermore, that.subsét must contain. ¢, in sonte other equation as
well. .Now consider the set of equations Eq ~ Er(z,). That set contains the same
number of variables as in Eq, with one less equation. . Theérefore..it must ecither be
over constrained. contradicting the assumption that Eq; is.not over constrained, or be -
toniplete. contradicting the assumption that Eq, doeés not contain a compléte subset
of equations. Therefore, we can choose a variable in Eq; which is not ¢ and make |
it exogénous, and the set of equations will eithér be complete (i which cage we are 1:
done) or will still be under constrained (in.which case, we choose another variable).
After choosing { = m variables, .the ¢quationd will be completé. Consequently, (2
holds.

Finally. we need to show that the modeél is as.simple as possible. In this proof it is —
important to rémember that we have only partial knowledge about the possible states
that the system thay reach, Specifically, all we know is that -thé time independernt
facts given in the system deseription must hold and that the value of binary vafiables
given iu £ cannot change.

In the proof, we assume that § was constructed by adding the CMFs ¢, from .
assumplion class 4, at the ith iteration of select=from-assumption-class. Note that

HINote that if v belongs 16 a singletoi sot of cotiplete equations, Uren this meaisthat we have
a model fragnient that s modeling v as coristant. Sifice the ntodeling coiiditions ni the state are
cohsistent, this is an adequate sinmlation fiodel.

HNofe that when solving a sel of qualitative squations, the sohition may coritaiii same ambigmti
tre, sevifal possible solutions), we and ieed to consider each sofutioli i Lufn. ; ' !

The equation E2(r,) déiotes thiat the variable 1, 1§ exogeitous. ‘
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some of the ¢,"s may have been removed subsequently by elicosing a more complicated
CMF from the same assumption class. Weé prove the following by induction ou i:

Al There must be a CMI 11 S from the assumption class d,. : -

A2, The OMF ¢, is the simplest CMF that can he chosen from a,. w.r.t. C.

A3. For eacli variable vy on the.queue, we must include all the phenomena that can
affect vy and can occur in one of thie possible states of the svstem.

Conditions Al and A3 guarantee that all the phenomena modeled in S are necessary..
A2 guaranteéés that all these phenomena are modeled in the siniplest ‘way possible
with respeet to the modeling constraiuts. C. The simplicity of S follows from these
claims. '

The base case includes all the assumption classes that can affect the query variable
. Clearly, Al is satisfied because we need an assumption class that can détermine o,
and the ones that .were chosen were those that are consistent with the possible-states
of the system. Shite-select-from-assumption-élass selécts the simplest model frag-
mérits in thede assumption classes that do not contradict R¢l, condition A2 is satislied.
Condition A3 issatisfied becausé if.a variable vy appears with v in the.same equa-
tion., theu vy can causally influence v, Il vy is not exogenous. thén any phenomerion
that can influénce vy iust be included in the model. Similarly, if v, appears in the.
operating conditions of a CMF that can determine ¢ and is not exogerious. then any
plienomenon that can affect vy must be included in.the niodel.

We assunié the ¢laims for ¢ and we prove theni for 7 + 1. The CMIE ¢4, ¢ould
have been added.in two ways. In the fiest, we use the outer loop (i.e.. adding a
new assuniption class when popping a variable from the queue). By thié inductive
assuniption. we must include all the phénomena that can afféct the variable on the top
of the quene. Therefore, adding CMEF from a,4, is necessary, and so Al is satisfied.
As before, A2 and A3 are satisfied because select-from-assumption-¢class selects
the simplest CME ¢ that satisfies the assumptions made so far and adds only the
necessary variables (o the queue,

The second possibility for adding ¢4, is by the innér.loop (i.e.. by adjusting a
previous choice from an assumption class). lu this case, the inclusion of a CMI from
a4y was justificd by a previoits CMEF addéd 10 8. Sincé the modeling assumptions in
Helinelude only those that aré entailéd by C and previous modéling assumptions, they
are therefore the minimal set of assuimptions, and sinee ¢4, 1s the simplest CMF from.
ay4q that can be inchided in the sectiario njodel, . A2 is therefore satisficd. ™. Finally.
the variables that were piit on the quend when eqq is putin 8 are hecessaiy using

Aliccsame argument as hefore. Moreover, any variablé that i alveady o the queue

CUINGtE that if o4y was putai 8 wistéad of ¢, for j < o 4 1 hei e, was feinoved from 8.




1638 CHAPTER 7. AUTOMATED MODELING OF PHYSICAL SYSTEMS

does not have to be removed. because the CME o, is replacing a CMF ¢, that is
a causal approximation of ¢4y, and therefore, any causal influence that was possible
through ¢, will be possible through c,4;. 8

The following theorém shows that S is built in.time that is polvnomial in the size
of the problem:

Theorem 7.5: Lef d be the marimum number of CMFs in an assumption class and
let n be the number of instantiatéd assumption classes in S. Let | be the sum of the
size of C and the number of ground atoms that appear in the instantiated modeling
conditions of CMFs in S. The running time of finding S is polynomial in n.d and [.

Proof: Since the modeling constraints are Horn, computing the logical closure of the
sét of modeling assumiptions is done in time polynomial in {. This is done every time
we call the proceduré select-from-assumption-class. The number of times this
procedure is called is at most n1d. This can be seen by observing that every call to
select-from-assumption-class may. at worst, replace a CMF by another one that
is more complicated than it. Since there aré n instantiatéd assumption classes in S
and at niost d CMFs_per class, this can only be done nd times. Consequently, the
overall running time of the algorithm is polvnomial in n.d and !_K

7.3.1. Relaxing the Assumptions

In this section we discuss thé effect of relaxing some of.the assumptions made in
Theorém 7.4

The Library Coherence Assumption

The most significant assumption that we imade is the library colierenée assumption.
Although the assumption may seeém a bit strong, thére is a compelling argument for .
it. Specifically, if the assumption does not hold, this indicates a problem with the
modél fragment library. If wé have a set of model fragritents that satisfy the modeling
constraints but give ris¢ to an over constrairied sét of equations, this is an undesirable
feature of the libraty, that calls for additional kriowledge acquisition. It should be
noteéd thiat the library cohérence assimption is inode implicitly in [Falkenhainer and
Forbus. 1991]. In fact, if we assume {as in Qualitative Process Theory [Forbus,
1984]) that all equations are uniquely- causally oriented. thien the library coherence.
assuriiption follows when we maké the causal approximations assumption and the
assumption that thie most complicated scenario model is adequate.
We can relax the library ¢cohierciice assumption at the cost of doirig miore work at
wevery state of the simulation. Specifically, in the absence of the cohérence assump-
tions the sceénario model created by our algoritlim is guaranteed to produce a set of
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equations at évery staté from which a complete model can be extractéd (perhaps by
réemoving somé equatios). We can extract the complete model efficiently using the
methods described inn [Navak. 1992a).

Causal Approximations and Horn Restriction

The only role of the causal approximations assumption and the restriction that the
modeéling constraints must be Horn i§ to guarantee éfficient pérformance. of the model
formtulation algorithm. Theé causal approximations assumption guarantees that wher
we select a more complicated CMF in an assumption class, the set of simplifying
modeling assumption.décreases (i.e., more positive litérals are added to Rel). The.
Horn restriction guarantees that once a positive litéral has been put in.Rel, it will
not he rétractéd. Relaxing either of these two.assumptions will require the-algorithm
to perform arbitrary backtracking and constraint satisfaction.. As shown in [Navak.
1992a]. this will cause the model selection problém to be intractable.

7.4 Related Work

Several researchers have.considéred the problem of model formulation. Their work
addresses one or both of the two aspects of the model formulation problem, namely

modél construction and model simplification.

Nayak [Nayak, 1992a] addressed both aspects. Nayvak describes an algorithm for

“constructing a model for. the single state case.. His algorithm also follows possible

causal influences; however, these influences must be given explicitly using the compo-
nent intéraction heuristic. In contrast, our work exploits the structure of the model
fragmeiits to derive theseé links, thereby not burdening the user with the error prorie
task of putting them in. It should be noted. however, that usér intervention, as in

Nayak's schénié, can énable a further focusing of the search by inscrting only a subset

of the links.

~ In choosing a model fragment.froni évery assumption class, Nayak chooses the
most complicated one, and then uses a procedure to simplify the resulting model.
Our algorithim builds the model by selecting the simplest CMF possiblé in every class
and oiily adjusts the choice if riecessary. In cases where the CMFs in an assumption
class vary significantly in their complexity. our approach leads to substantial savings
it the searcli, sincé we only introduce the complicated models if necessary. It should
bé emphasizéd that the morc complicated CMFs will involve more variables that will
be put on the stack and will therefore result in & muchi larger scénario model. Finaliy,
it sheuld be notéd that Nayak's methods for model simiplification can be applied to
thé simulation model generated at évery state from our scenario model.

BT
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Falkenhainér and Forbus' work on ¢ompositional modeling [Falkenhainer and For=
bus, 1991] describes the représentation aspects of ¢ompositional modeling and ad
dresses the model construction problem. In théir framework. every model fragment
has a set of refevance conditions corresponding to our modéling conditions.. Qur use
of relevance claims enriches their language (specifically their Consider predicate) and
providés it with a formal basis. In their model formulation algorithm. they first select
the physical scope of the model (by identifving the lowest object down the partonomic
hierarchy that subsumes all the objécts mentioned in the query) and then select the
relevant propertiés of thesé objects. They relv on heuristics to select types of prop-
erties to be modeled. This approach can easily lead to inclusion of.model fragments -
that areé not causally_related to the query, and it cannot guarantee the sufficiency of
the model produced. Qur algorithm provides more flexibility in.that the.selection of
the physical scope of the scenario model and .the selection of the relevant properties
are done in-a uniform way. (by reasoning about the modeling ¢onstraints) and ¢an
therefore affect each other. Furthermoreé, we only select properties to niodel that can
casually influenice the query. Finally. to.select. the. simplést model, they generate. all
possible consistent sets of modeling assumptions and choose the simplest baséd on.a..
very .informal criteria of simplicity.. Our selection of the simplest.model is based on
explicit. répresentation of.the differences hetween model fragments and on réasoning
with formulas expreéssing these differences. -

Ri¢kel.and Porter’s work on modél formulation [Rickel and Porter, 1992] is similar
to ours sincé it makes use of graphs of interaction paths among variables to select -
relevant model fragments. Their graph of interactions is less general than the causal
influence graph créated by our algorithm, $ince it only includes variables, while we.
mclude all terms (including variables, predicates and relations) that could directly or
indirectly influence the goal terms. Their approach also does not provide guarantees
of sufficiency or simplicity.

The idea of explicitly representing the differerices between CMF$ in an assumption
class is similar to the graph.of models by Addanki et al. [Addanki ¢t al.. 1989). Their
work addresses the problem of selecting aniong complete models. Since the models in
théir graph aré complete models instéad of fragmerits, the space requirériient of their
approach incréases exponentially as the numbeér of possible modeling assurmptions

_inereases. Our approachi can.bé viewed as combining the idéa of a graph of models
- with compositional modeling, , S S

The madel simplification problem has been addressed by Williams [Williams,
1990a] and Weld [Weld, 1990]. Williams also makes use of causal influence graphs to
simplify & model, Both Weld and Williams assuriie a coniplete modél of the situation
as an input. Williaris also makes use of the idea of following causal influences in his
work ori infovative design [Williams, 1990b).
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7.5 Summary and Contributions

This chaptér described an application of reléevance reasoning to the domain of mod-
eling physical systems. Aside from showing that rélevance reasoning is a viable ap-
proach to solving the model formulation problem. we have also shown that the mod-
eling problem can sngmﬁcantlv benefit from being considered from the perspective
of relevance reascning. Specifically, we have shown that some aspécts of thé model-

ing problem can be approached using genéral considerations of relévance reasoning.

(i.e.. backward chaining on causal influences and articulating the differencés between

CMF's in.assumption classes). Moreover, we have shown how to incorporaté engineer- .

ing knowledge and heuristics. for modeling in a declarative fashion, using rélevance
reasoning. The ability to declaratively express.modeling heuristics has.several advan-
tages. Since it is easier to inspect and modify declarative knowledge, experimenting
with different. modeling heuristics becomés viable. In contrast, other methods wireé

in their modeling heuristics. and theréefore modifying them requires rewriting code. - ...
The result of our approach was a novel model formulation algorithm which efficiently .

selects the simplest model for a system.and a query. An important aspect of our
algorithrn is that it chooses.a model for a simulation of the system without knowing
precisely which states the system can reach.

The algorithm has.been implemented as part of a system called Device.Modeling
Environment (DME) [Iwasaki and Low, 1992, which is a device modeling program to
provide a computational environment for design of éléctromechanical devices. Given
4 topological description of a device, DME formulateés & behavior model of the device
using the comporitional modeling approach and simulates its behavior. Prior.to
implemeénting our algorithm, the system would prompt the -user to select a set of.
model fragments to be considéred in the scenario modél, thus creating & significant
knowledge acquisition bottleneck. DME .checks the operating conditions of every
model fragrment in the sceénario model to determine the simulation model for each
staté. The syster works on several éxamples. including theé electrical power system
of an earth orbiting satellite, of which the examplé used in this chapter is a-much
simplified version.

Recearch on compositionai modéling :§ in its infancy. The discussion in thig chap-
ter contributes by crystalizing some of the main questions regarding thé approach that

“requite additional research. The key issues.that came to bear in this chapter are (1)

how to write model fragments (i.e., how to decide what pliénomeéna can beé deséribed
it a single. model fragment. and what assumptions.to make regarding the contents of
a model fragment), (2) how to organize model fragments.in & library and (3) what

assumnptions can bé made about .the model fragment, library. We have contributed to -

solvirig problem (2) by suggesting the concept of compositional model fragments and

e e e mminery
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by requiring explicit representation of the differences between CMFs in an assump-
tion class. In our discussion we made several assumptions regarding questions (1) and
(3). In genéral, we see a tradeoff between (1) and (3). If more assumptions are made
about .individual model fragments, thén fewer constraints need to be placed on the
model library as a whole, and vice versa. Finding the optimal point in the spectrum
of possibilities requires additional research and practi¢al expériénce building systems.
We believe that imposing some structure on the model fragment library is necessary,
and béneficial in the long run to facilitate knowledge acquisition and reuse.

Finally, as mentioned in Chapter 6. the problem of model formulation can be
viewed as oné instance of a problem solving setting in which a system.needs to reason
about its own knowledge before answering a query. In doing so. it must choose
among alternative representations of the domain that make different assumptions and
abstractions. Other instances of this problem are also currently under investigation,
such as reasoning with contexts and ¢uery evaluation in hetérogenéous databases. We
believe that the techkniques developed in this chapter can form the basis for reasoning
méchanisms in these other problem solving tasks.




Chapter 8

Conclusions

The ability to automatically identify and ignore irrelevant information is a key to pro-

viding efficient.inferences from.large knowledge based systems and for a system to be

able to creaté appropriate abstractions in a complex domain. The main contribution —
of this dissertation is showing that it is possible to reason éffectively about relevance
of knowledge in a prin¢ipled manner and that such reasoning can significantly impact
the preformance of knowledge based systems. This chapter. begins by summarizing
the specific contributions of this dissertation. We .then present a tabular summary of
the main references to related work, Detailed discussion of related work is scattered
at.the relevant points throughout the dissertation. Finally, section 8.2 concludes with__ ..
a description of directions for future research,

8.1 Summary of Contributions

The two key issues that need to be addressed in relevance reasoning are (1) how
to automatically decide what knowledge is irrélevant to a query and (2) what is
the utility of relevance réasoning. As a basis for addressing these.two issués, we
presented a formal frameéwork for analyzing irrelevance. The framework inéluded a
space of possible definitions of irrelevance based on a proof theoretic analysis of the
notion. The framework enabled us to cornpareé the properties of different irrélevance
claims. Within the space of definitions, we idéntified the class of strong irrelevance |
claims that -has two desirable properties; namely, strong irrélevance claims can be !
efficiently derived automatically and are guaranteed to lead to savings in inference.
The frameivork also shed .new light on the problem of .deciding when a query is
independént of an update to.thé knowledge base and enabled us to significantly
éxtend previous results.in this area. '

- The frameéwork provided a sétting in which we could investigate the connection
betweer the notion of irrelévanceé and the creation of abstractions. This connection led
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Title and reference | Page(s)
Analysis of (u‘)relevance . . .
A theory of irrelevance [Subramaman and Genesereth, 1984 Subramaman 1989] 39, 101, 144
In theé philosophy literaturé {Keynes, 1921; Carnap, 1950; Gardenfors, 19{8] . 39
Relévance logics [Anderson and Belnap. 1975: Avron. 1992] 39
In probabilistic reasoning [Pearl, 1988) 39
Static Analysis of rules/clauses: ]

Connection graphs [Rowalski. 1975: Sickel, 1976: Chang, 1979] 76
Statit analysis in Explanation Based Learnmg [Etzioni, 1993: Etzioni, 1990] 75, 97

! Pyshing constraint selections [Srivastava and Ramakrishnan, 1992] 75
Martial evaluation of logic programs
. nith and Hickey. 1990; Lloyd and Shepherdson, 1991; Bruynooghé et - 1991] 75,100
Tree automata {Vardi, 1989] , 74
Automated reasoning and query evaluation: ' e
Knowledge compilation {Selman and Kautz, 1991] 100
Demmg optimal search strategiés [Smith, 1986; Greiner, 1991] 97
Message passing based query evaluation [Van-Gelder, 1986] 96
Magic set transformation [Ullman, 1989; Mumick ef al., 1990] 94
Independence of queries from updates;

Detecting independéncé [Blakeley et al., 1989; Elkan, 1990] 112, 126
Conjunctive quéry containment |Rlug. 1988; van der Meyden, 1992] 126
Abstractions: '
Predicate abstraction [Plaisted, 1981; Tenénberg, 1990] 144

_Projecting existential arguments {Ramakrishnan ¢t al., 1988] ] 144
A theory of abstraction [Giunchiglia and Walsh, 1992] j 145 -
Automatic creation of abstractions [lknoblock. 1990; Knoblock et ai.. 1991] 146
‘Modeling physical devices:

Compositional modeling lFaIkenhamer and Forbus 1991] 170
Causal approximations {Nayak. 1992a ] 169
Graphs of models {Addanki ét al., 1989] o 170
Model slmphﬁcatmnT\\leld 1990; Wlll]ams 1990a) 170

Table 8.1: References to related work.

to a new approach to reséarch on reasoning with abstractions in which we investigate
~-the propertiés of an abstraction by considering the irrelevance claims on which it.
is based: We demonstrated the approach on the cases of predicate abstraction and
argument projéction. In both cases, the analvsis of thé corresponding irrelevarice
claims led to efficient algorithms for automatically creating abstractions and tc better.
understanding of the utility of the resulting abstractions.

We. investigated in detail the problém of automatically deriving irrelevance claims

for Horn.rule knowledge basés.and several extensions. Our analysis wéas based on.

the observation that in order for relévance reasoning to be practical, we must derive

itrélevatice claims by considering otly a small and stable part of the knowledge base,

while not assuming anything about the unexamined parts. We considéred the problem
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of automaticallv deriving irrelevance claims that wére based only on the rules in the
kB and were independent of the ground formulas. As a réesult. our algorithms were
efficient and the irrelevance claims derived were independent of changes to the ground
formulas.

Our algorithms for deriving irrelevance were based on a novel tool. the query-
tree, which is one of the main contributions of this work. The query-tree is a finite
structure that gives us a view of the knowledge base. It encodes precisely the set of
possible derivations of the query. Consequently, it tells us exactly which rules arid
ground formulas can appear in derivations of the query, thus providing the basis for

a sound and complete inference procedure.for séveral classes of strong irrelevance,

claims. One of the key aspects.of.the. querv-tree is that .it considers._the semantics
of the interpreted literals that appear in .the rules, which often enables us to detect.
additional interactions between tlie rules. The query-iree ¢an also be built to éncode
only thé minimal derivations of the query, or only the satisfiable derivations in cases
where EDB literals may appear negated in-the antecedents of the rulés. We.also
showed how the query-tree can be used to derivé logical consequerices of irrelevance
claims that are given to the system by an external source, and to guide the search
of a backward chainer so that it follows only paths that can.yield derivations of the
query.

We presentéd experimental résults which showed that using the query-tree to filter
out irrelevant formulas often yields speedups of orders.of magnitude, while the cost of
building the query-tree is negligible. Additional speedups wére obtained. by using the
query-tree to guide the séarch of the backward chainer. Both the theoretical analysis
and the experimental results showed that our methods will scale up and bé even.more
effective in larger knowledge bases.

Finally, we applied the rélevance reasoning framework to the domain of modeling
physical devices. We considered the task of selecting a model for a device to answer a
givén query by composing model-fragments, each déscribing a siigle phénomerion in
the physical world at different levels of abstraction and using different.approximations.

We presented a noveél model selection algorithm hased on relevance reasoning. The-
algorithm uséd réelevante reasoning in order-to (1) determine wnich phenomeria. are .

relevant to the query (and therefore should be included.in the model), and (2) to
feason about the abstractions underlyving the modél-fragments which present multiple
descriptions of these plienoniena ih order to determine the abstraction level most
appropriate for the query.

8.2 Future Work.

The work described i this disscrtation can bé extended in séveral ways, In this

séction we describe several ditections for future reéséarch.

———ry e . et
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Analysis of Irrelevance

Our framework for analyzing irrelevance should be exténded in several wayvs in order

to make it applicablé in a wideér variety of settings. One important exténsion i§

to incorporate probabilistic irrelévance claims into the framework, i.e.. claims stating
that some formula in thé knowledge baseé is irrelevant to a query with some probability.
A clear undeérstanding of the meaning of such irreléevance ¢’ .ns is needed as well
as algorithms for automatically deriving thém and methods for exploiting them in
inferénice. Second, our analysis focused on the case in which answéring a query is
done by séarching for a derivation. using some given set of inference rules. Although
marny problem solving situations ¢an be-cast in that way. doing so will not always vield
useful results. Therefore, an important éxtension to the framework is to formalize

irrelévance for general problem solving. For example, whéréas now the framework.

revolvés around the pdssible derivations of & query, a more general framework will
revolve around paths in a state space. Finally, in our discussion we consideréd only the
cases in which reasoning is monotonic.” An interesting problem is to define.irrelevance
(and develop the corresponding algorithms) in the setting of non=monotonic reasoring.

As mentionéd in Chapter 2. the noticn of irrelevance is.very ¢losely related .to
the .notion of belief revision. A more thorough investigation of this connection could
vield interesting results. On.the one hand, considering definitions of irrelevance based
on belief revision will vield more sernantically based definitions of irtelevance. On

the other hand. associating a definition of belief revision with irrelevance -may shed.

light on the plethora of definitions of belief revision. Additionially, the problem of
developing éfficient algorithms for helief revision has réceived little attention to date.
Algorithms for dériving irrelevance claims might prove to be a key tool in developing
efficient belief revision algorithms.

The Query-tree

The query-trée has proven to be a powerful tool in relevanée reasoning and controlling
inference, and it is therefore interesting to éxtend it to a wider ¢lass of languages.
One important extension is to wideén the ¢lass of interpieted constraints that can be
handled by the query-tree. Curréritly, except for constraint literals in the rules, the
query-tree can also fully incorporate coristraints that are given on the argunients of a
relation in the knowledge base. Oné way to extend tlie tiée i§ to consider constraints
that include arguments {rom rhore thaii one felation (a.k.a. integrity constraints).
An example of such a constraint is stating that a join of two (6r more) relations

is efipty. Arother important extension to the query-tree is to consider rules with

funiction symbols: Although in general, the quety-tree ¢canriot provide a complete
inference piocedure for strong irrelevance when funétion symbals are present., it is
ifiportant to find limited ¢ases in whi¢h such a procedure ¢an be found. In cases

PSS MY
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whére completeness cannot be guarantééd. one could dévelop métliods that will detect
a wide class of irtelevanceé claims éncountered in practice.

The use of tlie quéry-treé to control inference should also be investigated further.
The uses we described and with whi¢h we experimenteéd were straightforward applica-
tions of the quéry-trée. As discussed in Chapter 4. the query-tiee also enables géner-
alization otheér query-optimization méthods such as Magic-sets and message passing
schemes. Given the query-tree, we are in a position te devise & more general frame-
\\br‘k for query- Optimization that \\ill ih'corpor'até \lagic sété meéssage passing. tail

Finally, a key contribution of the querv-tree is that it provldes descriptions of
specialized indices for accessing the ground formulas in the knowledge base. These
indices are tailored for a spécific sét of queries. An important quéstion that needs to
be addréssed in the context of any large system. is how to combine the indices given
by the query-treé with current database indexing techniques.

Irrelevance and Abstractions

One of thie major areas for future work ¢pawned by this dissertation is the connection
between the notion of irrelevance and the creation of abstractions, .as described in
Chapter 6. The approach .proposeéd there is to associate -an abstraction with an
irrelevance claim. stating which knowledge is rémoved in the abstract theory. An
understanding of the abstraction is obtained by an analysis of the corresponding
irrelevance claim. Chapter 6.listed several kinds of irrelévance claims that should
each be investigated further. Of particular interest are the questions of (1) finding
algorithms for automatically creating an appropriate abstraction, (2) understanding
the utility of reasoninig with the abstraction and (3) determining when and how
abstraétions ¢an be composed (hy composing the corresponding irrelevance claimis).

As we saw in Chapter 6. our treatments of irrelevance of predicate arguments and.

predicate refinements had many similarities. A longer term goal is to develop a general
framework for. treating a large class of irrelevance subjects.

Modeling of Physical Systems

Conipositional modelinig is a powetful pardadigri for building systems that feason
about physical systems. However, the basi¢ building blocks of the apprcach fequire
a much beétter.understanding. Specifically, we néed a cléarer definition of what is a
model-fragment, i.e., what phenomena sliould be consideréd a single nodel fragment.
and what "assumptions can weé niake about model fragments. Sécond, we rieed to
uriderstand liow to build libraries of model fragniesits. Such libraries are fiot random
cullections of model-fragrments, but father have a lot of implicit and explicit stfuc-
ture. Stgmﬁcant levcrage in devising composntnonal modelmg algonthma will ¢ome
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from discovering the undérlving stri.cture and exploiting it. The work described in
Chapter 7 makes a few contributions in this direction. but much work remaiis to b
done. Building large experimental systere will provide significanit insights into these
issues. :

Finally. we cannot expect a model-fragment library' to contain miodel-fragments
that describe a certain phénomenon at all possible levels of abstraction that may
be needed in solving queries. Theréfore, an interesting research problem is to auto-
matically create model-fragments with the desired level of abstraction by abstracting
model:{ragmerits from the library. ‘

8.3 Final Word
The work described in this dissertation is at thé border between artificial intelligence
and database systems. | beiieve that research combining techniques from these two
fields will be of prime importance in future vears. One of the major technological
innovations in upcoming yvears will be the availability of large amounts of information
in practically evéry-household. Developing systems that will provide intelligert access
to information presénts a unique opportunity in which.téchniques from both artificial
intelligence and databases will make a great impact on society. I believe that the
combination of techniques from thése two fields, a5 demonstrated in this dissertation,.
will provide the essential building blocks of successful systems of the information age.




Appendix A

Proofs

A.1. Proofs of Chapter 3

Proof of Theorem 3.4

Proof: In the proof it is more. convenient to refer to the relations denoted by the —

labels, rather than the labels themselves. The conjunction of two labels ¢; and ¢; is
represented by the join of théir corrésponding relations, denoted by R, X R.,. Recall
that since-the constraint language satisfies the Closure property, we can express a
join of two relations. and a projection of a relation on a subset of its variables as
a genténce in the given constraint language £..We denote the relations reprusented
by eo(1t).cs(n) and eyp(n). by Ro(n).l?b(_n) and Ry(n) respectively. We denote the
projeétion of a rélation R on a subsét of its variables X' by Rl%.

Let ry....,7¢ be the top-down ordering of the rfule-nodes in & that was used in
the second phase of the algorithm. Recall that by the définition of ¢z (the global
constraint on the variables in d), ég = co{r;) A ... A &(7). or in notation of relations,

Ri= Ry ™. M Ry We define a sequence of relations as follows:
* Ry = Ry(reot(d)]
® R‘ = Rg»-.,t' N»H’b(f{)

. 'Wc prové that the following prepertiés hold for the sequénce Ros... . Rpp

DIt Ry = Ry i.6. the final relation i3 the sameé as the global co'nstraint oh d.

D2 If X, is the set of variables that appear in R« then

D21 Ryily = R, aiid
D2.2: R, = Ri(#).
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This means that once a set of variablés appeéars in an intérmediate relation, the
subsequent relations do not chaige with respect to that subset.

The theorem follows from propertiés D1 and D2 as follows. Lét r, be the it
rule-node in d and let .\, be the variables that appear i1 the father or the children
of r,. It follows from D2 that Ry(r,) = Ri|g,. and by DI, that R; = Ry. Therefore.
Rr) = Rdl,\". holds which is-theé way fi;(r,) is defined.

o prove D1, we obgerve that R = Ry(r;) M ... X Ry(r (i.e. thé join of the
labels obtained in the bottom-up phase). Therefore. it is éncugh to show that Ry =
Ry(r1) ™ ... ™ Ry(r). To show this we prove that for every rule node r in the tree
and its father node g the following hoid:

(a) Rs(r) € Ro(r). Ry(g).C Rolg).and

(b) Ry(m) 2 Ral. Rulg) 2 Raly

Sinc Ry.= Ro(ry) M ... X Ro(r). (a) gives us that By € Ry. From the properties of

the join operation and from (b) we get. R © Ry. Hence, R} = Ry .

The proof of (a) and (b) proceeds by induction on the elements of ry,....r in
reverse order (i.é., the bottom-up order). Note that the second parts of (a) and (b)
follow from their first parts, since R(g) is the projection of.  R(r) on the variables in
g. The base case consists of all the rule nodes whose.children are all leaves. For each
such.node r. Ry(r) =-Ro(r) and therefore, (a) and. (b) hold trivially.

Assume (a) and (b) hold for all rule nodes r.yy,...,r. We need to show that it
holds for r,. Claim (a) liolds because Ry(r,) is the intersection of Ro(r,) with the
bottom-up labels of its children. To prove (b). let g,...., 4w be the children of r,.

By the induction assumption. Ry(g,) 2 Ral, for each subgoal g,. Clearly, by the .

definition of R4l.,. Ho(r.) 2 Ral.. Therefore, since Ry(r,) is actually the join of
telations that all contain Ryl.,.! Rs(7) 2 Rals,.

We prove D2 by induction 6n 1. For the base éase 1 = 0. we note that R, is simply
Ry(ry). Therefore, since the Ry(root(d)) is the piojection of Ry(r) on the variables
of roat{d), D2.1 holds. Moreover. siice B;(ri) = Ry(r;). D2.2 holds too.

We assumne the claim holds for all ) < «, and prove that it holds for i. We first
prové D2.2. Let g be the father of r, and r, be the father of §. By the inductive
assumption, .|, = Rj(r,). and therefore the sanie holds for the goal fiode g, ie.,
R, = Bg) Moréover,

Rj(Fia) = Ry(g) 2 By(r0) = R Bi(Fg). .

"Mote precisely, the telatiois Ro{gr). . Ru(ga). Holr) coiitain ihie tespective projections of Ry
ofi their variablés —
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However., since the variablés common to r,4, and to R, are only those in g, the join
and the projection commute, i.e..

Ry(tisr) = (R ™ Ry(rogr)jls

Fogt®

To show D2.1. it is enough to show that R,|; = R,41],, sinceé the variablés ap-

pearing in g aré the only ones conmimon to R, and Ry(r.4,). or equivaléntly, we can.

show

Ri(rie)ls = Rylg). (A.1)

Thé proof uses the followirg observation:
If A is the projection of a relation R on a subset of its variables, and B C A, then
Jomning B with R and prajecting on the same variables will result in the relation B.
In. our case,

Ro(rien)ly = Ralg). (A2

Clearly, R;(r) € Ro(r) and Ry(r)], € Ri(g). and therefore, .since. Ry(g) = R!(r)]g it
follows that .

R;(9) C Ri(g).. (A.3)

Finally, recall that

R/(f“.ﬂ) = R/(g) M Rb(rx+l)* (A4)

Therefore, the above observation togéthér with A.2, A.3 and A.4 entail A.1. I

Proof of Theorem 3.10.

We begin by defining an intermediate langrage, £,, which is less expressive than
LY but more expressive than £7, end will have the Closure property. We denote
by £¢ the language that allows only the predicate < and ¢onjunction, and by C
the language that allows both disjunction and conjunction but only the predicate ¢
Note that all the predicates can be expressed by conjuncétions of < and .

Definition A.1: The lariguage L; contains all the sentences of the form ¢ A ¢, where
d)éﬁ'\ and ¥ € CAV ]

Lemma A.2: The language L; has the Closure property.
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Proof: The join of two relations represénted by the two senténces ©; Ay and o3 A vy
i$ simply the sentence (o) Aoz) A{uy Avy). which i in £,. Selection can hé expressed
by simply adding conjuncts of the form X, = X, or X, = ¢. To show that £, is closed
under projection. let ¢ = © A ' we a sentence in £,. We can assumeé that i is in
disjunctive normal form. Let X be a subsét of the variables in c..

The language L2 is has the closuré propeérty (it simply represents a transitive
relation of its variables). Thérefore we have a senténce oy describing the exact
projection of @ on X

Given a tuple @ that satisfies oy, it will be in the projection of ¢ on X if it can
be éxtended to the variables in ¢ in such a way that v is satisfied. However, we note
that a coniradiction between an exténsion of @ and v' can only arisé from that fact
that the exterision satisfies too many equalities.

Therefore, in order to construct a sénténce that is equivalent to c| ;. all we need to
do is check all.the possibilities for equalitiés between the variables of ¢. and exclude
the ones that contradict.v. Specifically, lét k be a partition of the variables X and the
constants appearing in ¢, and léet c=(&) be the conjunction of all the atoms X =Y, .
where X and Y are in the sameé partition. Let ky...., k., be the partitions for which
c Ac=(k) is unsatisfiable. We défine ¢y by.

cx =@y A ca(k) AL A ez (k)

It is. easy to see. that any tiple not satisfying this formula will not be a member
of cx (since it either violates ¢3, or bélongs to one of the unsatisfiable partitions). —
Any tuplé that does satisfy this formula satisfies 4, and furthermore the equalities
that it satisfies are consistent with c. 8

Suppose d is a symbolic derivation tree and we are computing the labeling L.
Recall that in the rules we ¢an only have conjunctive constraints (i.e., the conjunction
of the literals of interpreted predicates). These constraints are therefore expréssible
in £,. Furthermore, labels L are computed by join and préjection operations on
these constraints, and thérefore, sincé £, has the Closure property, all the labels in
L,q can be exnressed in £,. This observation enables us to characterize the differerice
bétween the labels ¢reated by £* and £V:

Lemma A.3: Let d be a symbolic derivation treé and lel 1 € d. Lét cp(n) = @ A ¢,
be the bottom-up label af n, where o € L and v € LYY then cf(n) = & A ¥._where
¢k vy, The samé relationship holds befween ¢p(n) and ép(n).

Proof: The key.observation.underlying the proof is.the following. Suppose ¢ = ¢.A w
is a séntence in £,, and X is & subset of its variables. Lét cg = &, A . be the.
projection of ¢ on X', Suppose that # is the senterice in £* that i$ most ¢losé to (still
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weaker than) ey (rote that "most close™ is well defined and unique). If 7 is written
in £, as o2 A (g, then o = 03 and vy | L2

Therefore, by projecting a sentence into £ we only make the # part weaker.
Based on this observation. we can prove the lemmia by a bottom=up induction on the
nodes of d followed by a top-down induction.

For the leaf nodes. the claim is trivially true, since cs(n) = cf(n). Consider a
rule-riode r. and suppose the claim holds for all subgoals of r, g1.....gm. The label
cMr) is computed by conjoining ¢(r) and ¢*(g1).....¢"(gm). Sincé the conjunction
can be done separately for the two componénts of the labels and since the labels of
Gi.....gm satisfy the inductive assumption, the claim will also hold for cp(r). To

compute the label of the father g of r. we project ¢*(») on the variables of g. Based.

on theé observation above. and since the claim holds for 7, the resulting label of g ¢can
only be weaker than ¢(g) in the second (#) component. The proof is compléted by
a top-down induction on thé nodes of d in a similar fashion. §

Proof of Theorem 3.10: Part | of the theorem follows directly from Lemma A.3.
Part 2 can be shown as follows. Suppose that ¢f(n) = @ A ¥ and that ¢f(n) = &.A
such that ¥ k= v;. We can assume that ¥ i¢ in disjunctive normal form and at least
one of its disjuncts (assume it is the first) is satisfiable.in conjunction with ¢. Suppose
its first disjunét uy is.2p; A ... A -pp. where each of the p.’s is an équality. Since-dAu
is satisfiable, that means that o ¥ p, for any 1 < i < [. Therefore, ~p, will be a
conjunct in Mazy(c}(n)) (note that Mazy(c}(n)) can be computed using ¢ alone).
Consequently Mazy(c}(n)) = u, and therefore Mazy(cp(n)) E @A Y.

Finally. the third part of Theorem 3.10 is proved as follows. Starting from the
root of d.we show that if all the labels of ¢}(n) are satisfiable, then we can construct
a mapping ¥ of the variables of d to constants that satisfies all the constraints in the
rules.. Therefore, if .we have such a variable mapping, it miust be the case that ¢y 15
satisfiable and therefore ¢;(n) is satisfiable for every n € d.

We begin by assigning values to the variables that appear in the root of d, in a

way that is ronsistent with ¢/(root(d)). We assign distinct values to variables X, and ..

X; uriless ¢/(root(d)) implies that X, = X, (and unless X, = a is implied. we assign
to X, a value other than a).

We construct the variable mapping v in a top-down order on the rule-nodes in d.
Let 7 be a rule-node with father ¢ and interpreted subgoals c,. We assurne that the
variables of g have already been assigned values that are consistent with c}(g) and
conitain.only équalitiés that are implied by ¢}(g). We extend ¢ to the variables that
appear in subgoals of ¥ but.do not appear in g. In doing so, we choose values that
are consistent with ¢ = ¢j(g) A c., but.only contain equalities that are implied by ¢.
To compléte the proof, we need to show:

1. Theé constraint ¢ is satisfiable
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2. (gv) € ¢f,.

The first condition guarantees tliat ¢ can be satisfied. and the second guarantees
that it can be satisfied by éxtending the mapping created thus far (for the variables of
g). To prove 1, recall that ¢j(r) is satisfiable. However, ¢}(r) was computed by first
computing ¢; = ¢f{g) Acy(r). and then finding the.stroqgest constraint in £” that is
weaker than c;. Thereforé ¢, must have also been satisfiable. Moreover. cp(r) = e
and therefore. ¢ is satisfiable.

To prove 2. suppose c}(g) = o; A vy when written in £,. and suppose ¢ = @ A .
Recall that ¢;], = o; because the language £2 has the Closure property. Moreover,
gv satisfies ¢}(g) and has only equalities that are implied by c?(g). Therefore, gu
will satisfy v, and will therefore satisfy ¢|;. B

Proof of Theorem 3.26

We begin. by considering the case of 8/(r.q.Sp.DI[;.D,) when the rules have theé
predicate #. The theorem is proved by reducing the acceptance problem of a linear-
space alternating Turing machine (ATM) [Chandra ef al., 1981} to the problem .of
finding irrelevance of rulés._The execution of an ATM is described by a sequénce.of
instantaneous descriptions. id's. each destribing the state of the machine at consec:

utive stages of the execution. i.e., the contents of the input tape, the location of the. .

head and the state of the machine. An ATM is similar to a Turing machine, except
that its transition function.gives a pair of moves for each. combination of state and
symbol. Furthermore, every state is either an and-state or an or-state. If q is an and-
state, then an id having state g leads te accéptance of the input if both its successors
lead to acceptance. If g is an or-state, then an id having state ¢ '~ads to acceptance if
¢ither one of its successors leads to acceptance. .The states of the machine alternate
in the sense that the successors of an and:state are of-states, and the suécessors of
an or-state are and:states,

Instantaneous descriptions are represénted by a symbol for every cell on the tape.
The symbol can either be an input symbol, or a composite symbol in¢luding an
input symbol and a state of the machine. In a legal id, all cells but ore contain the
input synmibol that is on the tape in that staté, and the ¢ell on which the head is
placed contains a conipésite symbol containing the iriput symbol in that cell and the
initernal state of the machine. The union of the input symbols and composite symbols
is dencted by B,

The reduction i based on representing id's as tuples of a predicate id, whose arity
5 linear in the size of the input tape. n. Each cell in the.id is represented by a
block of variables of size |B|. The variable .X' appeéars in the block in the pésition
corresponding to the symbol appéaring in the cell {we assuriie some arbitrary ordering
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on the elements of B). All other columns contain the variable 1", Thus the arity
of the predicate id is |Bin. The tuples N, are used to denote blocks of variables
corresponding to one cell. The tuple [, denotes a block of variables représenting a
cell with the symbol i, (i.c.. X appears in the position of / in B and all other positions
are ).

Intuitively. we construct. the program such that id(X) is derivable if and only if
X describes a legal id and leads to acceptance. Given an ATM, M. and an input
N, We construct a program as follows. First wé need rules representing transitions.
between consecutive states. Suppose §(c.q) = {(d;.s1. R).(d2. 2. L)}? is a transition
of M. If g is an or-state, then for every i, (1 < i< n)® and évery input symbol b, the
program ¢ontains the following rules:*

I.d(.\'] ey .Y.L-] ,[’dl ‘['(sl.b)* '\":E.«’-.‘_'.',L.: N .\',,) = id(.\:x\ e ‘..\’1_1. ( '(,:‘q.). (_'b. '\,l+2\ ey .\'n)

7(1( .\’1 P \ —2 [ {32.6) [ da s ,+1 - -\'n) = id(,.\'l, ey .\'1-2. (-:b. ("(c.q);_~\’l'+1a e \’n)

If ¢ is an and-state then for every 1, (1 </ < n) and every pair of input symbols by, b2,
the program contains the following rule:

id( N0, X oy G Uiy Nipze oo Xa)A
id(X1.. . Nioa Ciapony Cdas Unpe Xz X)) =
id(Xr o Xica Oy Oregye Onge Bigae 0 X)

To complete the program, a few more rules aré nécessary. Denote by~ X finat the -

tuple representing AM's (unique) accepting state, and by X.n the tuple representing
the initial state. R1 places the initial state as.a subgoal of the query:

Id( {m:t) = P(:\'- u')

R2 and R3 will lead from the accepting s.ate to an EDB riode. Note that ¢ is the only
EDB predicate... .

R2: a( X, W) = id( X inat)
R3: (Y # W)Ae(X. 1) =.a(X. 1)

We denote the set of rulés by P. The following theorem establishes the correctness
of the reductxons

*The L and R are arbmarv

31f i = n. the head cannot move to the right, if { = 1, it canndt move to the left.

“The exact form of the fule depends on. the direction.of the head movement. These fulés are
shown. to refleét the transition shown,
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Theorem A.4: SI[(R1.p.Sp.D[;.T;) holds if and only if M does not accept its
input with the initial state XNyny.

Proof: We first note that any derivation of p(.X, H) will tontain only two constants.
This follews from the fact that in all rules. all variables appearing in the body of
the rule appear in the head too. Therefore, thé only constants in the derivation
will be those assigned to X and I1". Furthermore. since a derivation must include
the rule R3, these constants must be distinct. Therefore. we will refer to them as
X and W’ hereafter. Moreover, if X and W’ are distiné¢t, an id subgoal can only
be unified with itself in the head of a rule. This can be seen by considering each
block in the id. If thev differ in the position of the X variablé (or if one of them
does not contain exactly one occurrence of X), it will force X and W to unifyS.
Therefore, because of the way the transition rules are written, the subgoals of any i
node are the instantaneous descriptions of its successor.states. Consequently. if the
top, id .goal-node.in .a derivation.is the node describing the initial state, then every
partial derivation of p describes a possible execution tree of the ATM M. Therefore,
because the only way to gét to and EDB subgoal is through rules R2 and R3, every
derivation of p must describe an accepting execution trace of M. Therefore, if p has
some derivation, then thére then there is execution of M that will accept Xt

Conversely, suppose -M accepts its input. A simple trace of the machine's execu-
tion will produce a symbolic-derivation of p(X,4") which must ¢ontain R1. 11

To show the claim for SI(r.q.Zp. DI;. M1), we modify P as follows. We replace
the rulé R3.by

(X ) = o(X. W)
and we add the rule
R4: a(M.X)= a(X.W).
The reduction follows from the following theorem:

Theorem A.5: SI(R4,p.Sp, DI, M1) holds if and énly if M dées not accept its
input with the initial étate X,a,,

Proof: The proof is similar to that of Theorem A.4, with the following differences.
In any minimal derivation of the quéry that usés R4 the variables X and W must be
distirict. Moreover, every derivation of the quéry that does not use R4 can be modified
to use R4. We simply applv R4 to a subgoal of rulé R2 and R3 to the subgoal of R4.

*This assumes each block is at least of size 3. If this doésn't hold, we stmply add another dummy
colurin to each block, and leave it unchariged_in_all the rules




A.2. PROOFS OF CHAPTER 4 137

Therefore, if there is a minimal derivation of p that includes R4. then M will accept
its input.

Conversely. suppose M accepts its input. We can assume the machine does not
enter a state with an id identical to one of its ancestors. A simple trace of the
machine's éxéecution will produce a minimal symbolic-derivation of p(X.H"). and like
before, it can be made to contain R4. 1

Finally. it should be noted that the size of the program P is linear in n. the size
of the input tape of M. therefore the construction takes time linear in the size of the
input.

A.2 Proofs of Chapter 4

Proof of Theorem.4.6

In proving the theorem we will use the following lemma:

Lemma A.6: Let P and Q be two datalog programs such that P 2 Q, i.e., for any
given database D, the answers obtained for the query predicate of P.is a superset of
those. obtained for the query predicate of Q. The problem of determining whether P
and Q arc equivalent (i.¢.. produce the same answer for any database D) is undecid-
able. —

Proof: In [Shmueli, 1987] it is shown that détermining whether two arbitrary datalog
programs aré equivalent is undecidable. Suppose there is an algorithm A t¢.determine
equivalence of two programs P and Q when it is known that P 2 Q. Let S and R
be two arbitrary datalog programs, and assume (without loss of generality) that they
do not share any IDB predicates. Let G bé theé program consisting of the rules of S
and R and the following rules:

(X)=g(X) _

where g is the query predicate of G. The result of G is the union of the results of
S and R, and therefoic, G D S and G 2 R. Clearly. the programs S and R aré¢ -
equivalent if and only if

s(X) = g(X)
r(X)=yg

o G and S are equivalént and
e G and R are equivalent. ,

Each .of these can be deterniined by the algorithm A. Therefore, the existencé of -
A leads to a.contradiction. §
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—
[o/ %
(¥ 1)

Based on this lemma we can prove Theorent 4.6 as follows.

Pruof: We will show that if determining S7(oy.q. £'. DI,.D,) is decidable. this will
contradict Lemma A.6. Let P and Q) bé two datalog programs with query predicates
p and g respectively and such that P 2 Q. and assume without loss of generality that -
P and @ have no IDB predicates in common. Consider the following program G that
includes the rules of P and Q and the following rules for its query predicate g:

r o p(.‘g') Ae(X) = g(.‘;').
rarg(N)Ae(X L

where € is a new EDB predicate that appears nowhere in P or Q and has the same
arity as p-and gq.

To prove the theorem. we establish the following claim. Let I bé the irrelevance.
claim that states that ry is strongly irvelevant to g. Thén [ = Si(r.¢.%'. DI, D,)
if and only if P and @ are.equivalent.

If P and @ are equivalent. then the join of ¢ and € is empty exactly when the.
join of p and e is empty. Therefore. if D is a database in which r; is not used in any
derivation.of g. then ry will not be used in any derivation of g either.

Suppose P and.Q) aré not equivalent, i.e., P> Q, and P # Q. Then there is
some database D in which the difference between p and ¢ (denoted by p — q) is not-
empty. Consider the databasé.D’, that consists of D and the facts e(X') for. X such
that X .€ p=gq. The database D’ is such that r; will not bé used in any detivation of
g, however, r; will be used. Therefore, [ = S/(r).g.%', DI;. D,) cannot hold. §

A.3 Proofs of Chapter 6

In our proofs we use the following lemma that is proven by Plaisted [Plaisted. 1981):

Lemma A.7: Lst f be a mapping on literals, which is ertended in a straightforward
fashion to @ mapping on clauses. Suppose f satisfies the following properties:

1. f(~L) = =f(L) for any lteral L.

2. If C and D are clausés and D is an instanée of C, then f(D) is an instanée of

HC).

Let Cy and Cy be two clauses and '3 be one of their resolvents. Then the clause
[(C3) is subsumied by some resolverit of f(C)) and _f(Ca).
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This lemma implies the following proposition:
Proposition A.8:

1. Let Cy and Cy be clauseés that are mdepéndent of the predicate arguments R.
and suppose Cy is a resolvént of C'y and Cy. Then fr(Cy) s subsumed by some
resolvent of fr(Cy) and fz{C).

2 Lel Cy and Ca bé clauses thal are independent of the prédicate réfinemeént Q.
and suppose Cy is a risoleent of Cy and Cy. Then fa(Cy) 18 subsumed by some,
résolvent of fo(Cy) and fo(Cy).

Proof: The.proof follows from the observation that both mappings. f= and fg satisfy
the conditions of Lemma A.7. 8

Proof of Theorem 6.5

Proof: The first half of the theorem follows from .Proposition A.8. Let D be the ..
derivation for which DI{R. D) holds. By the proposition, if Base{D) F C then there

is some clanse ¢ that subsumes fr(C) such that fr(Base(D)) + C'. Therefore, . .
fr(Base(D)) F fr(C).

For the converse, supposé fr(A) = fr(q) and let [ be a model of A ie., [ k= A,
We need to show that [.}= q. By the definition of independence, Abs([) f= Absr(A) .
and therefore, 463(/) = fr(q). However, since g contains no irrelevant argunients, the -
rélatioris denoted by predicates occurring in q and idéntical to the relations denoted
by predicates occurting in fr(q). and therefore I = ¢. 8

Proéof of Theorem 6.7

Proof: Suppose that A1-A3 hold as required. Let { be a model of A (and therefore.
[ = C), and 16t ji' be an arbitrary variable assignment to thé variablés of fr(C). To
show that Abs(/) = fr(C') weé néed to show that Abs(I) & fr(Cly'.

Note that if g is an arbitrary extension of u' to the variables of C, then since
I += C liolds. then I & Cu holds. Therefore, [ satisfies at least one of the literals of
Cp. Thete are tlirce possible casés:
Case 1: Tliére is soirié exteénsion g, suclt thiat one of the satisfied literals L is of a
predicate p (either positive or negativeé) and p does not appear in R, .In this ¢ase,
fr(L) = L holds and therefore.Abs(1) k= fr(L) holds because the relation denoted
by pin [ is the same as denoted in Abs(/).
Case 2: There is some extensiori ji. such that orie of the satisfied literals is a positive

literal p(X). where p appears in R, and fr(p(N)) = p'(Y). If I | p(N)u then
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Abs(1) = p'(Y ) siice Y is a projection of Xy and the relation denotéd by bl s
the corresponiding projection of the relation denoted by p.

Case 3: If neither of the first.two cases happen then it must be the case that for
every extension g of p' the litéral in C that is satisfied is of thé form =p(.X') where
p appears in R. Again, we denote fr{~p(.X)) by =p'(Y). In order to prove that
(' Is independent, we 1eed to. show that there is a single literal ~p,(X,) € Neg(C)
such that for any extension u of yi/. [ k= =p,(X,)u. If there exists such a literal, then
Abs(1) E= ~pi(Y;) holds because the [)I‘()JP(’UOH of the relation denoted by p, on ¥y’
is empty. This follows from the fact that n6 constants appear in argument positions
of =p,(.X,) that are projected..

To prove that there ¢xists such a litéral, assumie the contrary. That means that
wé.assume that for every négative literal ~p,(\X,) € C such that » appears in R, _
there is-some extension yu of p' such that [ = p,(X;)u. To show the contradiction, we
will build an.extension gig of g such that I & Cup.

If (p.1) € 7(’, and X i8 a variable such that X' l€ AtPos(p.i). then X does not
appear in fr(C"). This is bécause it has only oné appearance in Neg(C) (by A2)
aud all its appearances in Pos((") have been projected out (by A3).. Therefore, in
extending g’ to po we aré free to assign a value to.X. 1f +p,(X,) € Neg(C), then in
fto we.assign to the variables in X, — Y% the values that make p.(X,) satisifable in
. Note that such an assignment exists bécause of our assumption. Furthermore, the
choice of assignments for the variables in X, — ¥, does not affect variables in the other
literals of N'eg(C) (because of A2). and theréfore can be done indeperndently for every
literal in .Veg(C). Variables in Var(C'y—Var(fr(C)) that appearonly in Pos(C) are
assigned arbitrary values. Because of our assumptxons none of the literals in.Neg(C)
are satisfied with the variable assignment po. Moreover, none of the positive literals

are satisfied because néither cases 1 or 2 occurred.. Therefore, [ ¥ C holds which is
a contradiction.

Proof .of Theorem 6.9

Proof: The first half of the theoreni follows from Proposition A.8. Let D be the
defivation for which DI(Q, D) holds. By the proposition, if Base(D)F & then there
is some clause &' that <ubsumes fo(o) such that fo(Basé(D)) k-¢'. Theréfore,
fQ(B(H((D F folo).

For thé converse, suppose fo(A) |= folq) and let [ be a model of A, 6., [ B A
We rieed to show that [/ = q. By the definition of independeénce Abs([) |= Abso(A)
liolds and therefore, Absil) k= fo(g). However, siice g does not ¢ontain predicatés
from Q. the relations derioted by prodncates occurfing in g are.identical to the relations

5N, = Y, denotés the variables that appéat in X, and not in Y,
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derioted by predicates oceurring in fold). and therefore [ = ¢. 8

Proof of Lemma 6.10

Proof: Suppose the clause (" is independent of the predicate refinemeént Q. Let
Neg(C) be theé result of replacing occurrences of predicates in @ by arbitrary other
prédicates in Q. We défine (', as follows. C; includes the literals in Pos(C’) as wéll
as the following literals. If p{.X) € Pos(C') and p € Q. then (; includés the literals
a(X)..... gn{.X). We déniote by ' the clause containing the union of literals in
Neg(C) and Cy. Note that fo(Cy) = fo(Pos(C)). We show that A k= (.

Lét [ be a niodel of A (and therefore of C) and let u be an arbitrary assignment
to thé variables in. C (which are the same as the variables in. ). We need to show
that. / | (M.

Cleatly. / k= Cp and so.somé literal in Cy is satisfied. by . If the satisfied literal
is either positivé or involves a preédicate. that does not appear in Q, then the same
literal will appéar in ¢ and thereflore, [ = C'pu.

Otherwise. the satisfied literal is of the form —g,(.X'). where g, € Q. In C' the literal
-q(X) is mapped to -¢,{X). Recall that by.our assumption,.Abs(/) f= fo(C), and
therefore, 463(1) k= fo(C)u. Let L = r(Y') be a literal (¢ither positive or negative)
satisfied in fo(C)u._There are three cases:

Case 1: There is a satisfied literal.such that » ¢ Q. In this case, the literal #(Y")
appears in C and ' and therefore [ | C'p,
Case 2: There is a satisfied positive literal L of the form ¢(X) where ¢ is the new.
predicate. This means that for.some ¢ € Q. ¢,(X)u € Q. where @, is the rélation
denoted by ¢, i [. The literal a(X) is.also in Cy. and therefore [ = C'p.
Case 3: The satisfied literal L is negative and of the form ~¢(.X). This means that
for all predicates ¢, € Q. q.(.X )i € Q.. In particular, it is true for g,, and therefore,
the literal ~q,(.X )y is satisfied. and / |= C'u.

For the other direction. let C be a ¢lause and assume the ¢oridition of the lemrma
holds. Let [ be a rmodel of A. We rieed to show that Abs([) k= fo(C).

Let 4 be an arbitrary assignmient to the variables of C. We need t6 show that
Abs(1) = falC)ir. Cléarly, I = Cy. There are three cases:

Case 1: If oné of thé satisfied literals involves a predicate that is not in Q, then that
litéral will alse appear identi¢ally in.fo(C) and the relation denoted by the predicate
of the literal will be the same in.I and Abs([). Thercfore. Abs(1) & fo(C)p. .

Case 2: If oite of the satisfied literals is a positive literal of the form ¢,(.X), where.
g € Q. theri cortesponding literal in fo(C) will be g(X). However, since the felation
denioted by ¢ in Abs(/) is in¢ludes the relation denoted by ¢, in /: then Abs(/) will
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satisfy ¢(.\ )u Moreover, if thereé is any literal of the form ¢,(X), where ¢, € Q such
that [ = q (V). then Abs(/) k= q(N)i

Case 3: If neither of the preévious cases occurred, then the set of satisfied literals
riiust be of the form =g (X1). ..., ~g(Xk), where ¢, € Q for 1 € i < k. To complete
the proof by showing that for at least one of these literals, Abs(/) = ~q(.X,). Suppose
the contrary, i.¢é., for éach of these literals Abs(/) ¥ ¢(X,). This means that fori, 1 <
i £ k there exists a prédicate gy(,). such that ¢, € Q and ‘(,p € Qg). Consider the
set of literals Nég(C)! obtained by replacing &,(.X,) by ¢,,)(.X,). By the assumption
of the lemma. thére exists some set of literals 'y such that fo(Cq) = fo(Pos((C"))
and A E Neg(C) U C, and therefore, I B (Neg(C) U Cy)p. C‘lémrlv each of the
satisfied literals in.(Neg(C) U Cy )it must be a positive literal involving a predicate in
Q. However, since fo(Cy) = fo(Pos(C)), this would contradict the fact that case 2
did. not occur. §
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