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1. Summary

In April 1995, the University of Illinois received a NASA Grant NAG3-1474 entitled
“Electromagnetic Scattering from Realistic Targets” for a one-year period and the grant was
extended for another year with no cost. The co-principal investigators are Professors
Shung-Wu Lee and Jianming Jin, and the NASA technical monitor is Dr. Afroz Zaman.
This project has been completed. Results are reported in the following technical reports:

1. J. M. Jin, J. A. Berrie, R. Kipp, and S. W. Lee, "Calculation of radiation patterns
of microstrip antennas on cylindrical bodies of arbitrary cross section,” May 1996.

2. A. D. Greenwood, S. S. Ni, J. M. Jin, and S. W. Lee, "Hybrid FEM/SBR method
to compute the radiation pattern from a microstrip patch antenna in a complex
geometry,” October 1996.

3. G. Fan and J. M. Jin, "Scattering from a cylindrically conformal slotted-waveguide
array antenna," December 1996.

4. G. Fan and J. M. Jin, "Scattering from a large planar slotted waveguide array
antenna,” August 1997.

5. E. Branch, "A numerical comparison of measured SAR images with XPATCH
computed SAR images," UIUC EM Lab. Scientific Report No. 95-2, September 1995.

6. S. Ni, J. M. Jin, and S. W. Lee, "Hybridization of the finite-element method and the
shooting-and-bouncing-ray method for scattering and radiation from large and complex
targets," UTUC EM Lab. Scientific Report No. 95-3, October 1995.

The first four reports are included here as appendices. The last two reports have been
submitted to NASA before and, hence, are not included here.

The general goal of the project is to develop computational tools for calculating radar
signature of realistic targets. During the period of this grant, we developed a hybrid
technique that combines the shooting-and-bouncing-ray (SBR) method and the finite-
element method (FEM) for the radiation characterization of microstrip patch antennas in a



complex geometry. The technical details are given in Appendices 1 and 2. In addition, we
developed a hybridization procedure to combine the moment method (MoM) solution and
the SBR method to treat the scattering of waveguide slot arrays on an aircraft. The technical
details are described in Appendices 3 and 4.

2. Publications Resulting from This Research
Journal articles (published or accepted):

1. J. M. Jin, J. A. Berrie, R. Kipp, and S. W. Lee, "Calculation of radiation patterns of
microstrip antennas on cylindrical bodies of arbitrary cross section,” IEEE Trans. Antennas
Propagat., vol. AP-45, no. 1, pp. 126-132, Jan. 1997.

2. A. D. Greenwood, S. S. Ni, J. M. Jin, and S. W. Lee, "Hybrid FEM/SBR method to
compute the radiation pattern from a microstrip patch antenna in a complex geometry,"
Microwave Opt. Tech. Lett., vol. 13, no. 2, pp. 84-87, Oct. 1996.

3. G. Fan and J. M. Jin, "Scattering from a cylindrically conformal slotted-waveguide
array antenna," IEEE Trans. Antennas Propagat., vol. AP-45, no. 7, pp. 1150-1159, July
1997.

4. A. D. Greenwood and J. M. Jin, "Hybrid MoM/SBR method to compute scattering
from a slot array in a complex geometry," Applied Computational Electromagnetics Society
Journal, accepted for publication, 1997.

5. G. Fan and J. M. Jin, "Scattering from a large planar slotted waveguide array antenna,"
Electromagnetics, accepted for publication, 1997.

Conference papers:
1. G. Fan and J. M. Jin, "Scattering from a cylindrically conformal slotted-waveguide

array antenna,” The 1996 IEEE Antennas and Propagation Society International
Symposium, Baltimore, MD, 1996, pp. 1394-1397.



2. A. D. Greenwood, S. Ni, and J. M. Jin, "Computation of the radiation pattern of a
microstrip patch antenna in a complex geometry," The 1996 IEEE Antennas and
Propagation Society International Symposium, Baltimore, MD, 1996, pp. 256-259.

3. A. D. Greenwood and J. M. Jin, "Hybrid MoM/SBR method to compute scattering
from a slot array antenna in a complex geometry,” The 13th Annual Review of Progress in
Applied Computational Electromag-netics, Monterey, CA, 1997.



APPENDIX 1

Calculation of Radiation Patterns of Microstrip Antennas on
Cylindrical Bodies of Arbitrary Cross Section

Jian-Ming Jin, Jeffery A. Berrie, Robert Kipp and Shung-Wu Lee

ABSTRACT

A simplified approach based on reciprocity is presented to calculate the radiation patterns of
microstrip patch antennas or arrays on a cylindrical body having an arbitrary cross section.
In this approach, the microstrip patch antennas are characterized using the finite element
method, and their radiation patterns are then calculated using a two-dimensional method of
moments in conjunction with the reciprocity theorem. The validity of the calculation is
demonstrated by comparison with measured data for a microstrip patch antenna on a
circular cylinder attached to a plate. Other numerical examples are also presented to show
the capability of the method, as well as various effects of the host cylinder on radiation

patterns.
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I. Introduction

Microstrip patch antennas [1]-[3] are attractive for aircraft and spacecraft applications
because they are conformal to the surface of the host object. However, their analysis is
often performed by assuming that the antennas are placed on an infinite ground plane with
an infinite dielectric substrate [4]-[6] or on a finite substrate housed in a cavity recessed in
the ground plane [7]. Although such an analysis can be extended to the antennas on a
coated circular cylinder [8]-[10] or in a cavity recessed in a conducting circular cylinder
[11], it cannot be applied to those on a cylinder with an arbitrary cross section because the
Green's function for such a structure is not available. While the shape of a host cylinder
has little effect on the input impedance and current distribution of a microstrip antenna since
the latter is a highly resonant structure, it can alter the radiation patterns substantially. The
objective of this paper is to develop a simple method to calculate the radiation patterns of
microstrip patch antennas on substrates residing in cavities recessed in cylindrical bodies of
arbitrary cross section possibly with dielectric coatings.

In the proposed method, the equivalence principle is first employed to divide the problem
into two equivalent problems. The first problem is to characterize microstrip patch antennas
housed in a cavity whose aperture is closed with a perfect conductor, which is
accomplished using the finite element method [7]. The second problem is to compute the
field radiated by the equivalent magnetic current over the cavity's aperture in the presence
of the host cylinder, and to accomplish this task, an approach based on the reciprocity
theorem is developed in conjunction with a two-dimensional method of moments for
scattering computation. The validity of the proposed method is demonstrated by
comparison with measured data for a microstrip patch antenna on a circular cylinder
attached to a plate and for a waveguide-fed trihedral. Other numerical examples are also
presented to show the capability of the method and the effects of patch rotation, material
coating, and finiteness of a ground plane on the radiation patterns.

II. Formulation

Consider the problem illustrated in Fig. 1 where several microstrip patch antennas are
placed on a conducting cylincer of arbitrary cross section. These microstrip patch antennas
are housed in one or several shallow cavities and the conducting cylinder may be coated

with dielectrics. Since a microstrip patch antenna is a highly resonant structure, its current



distribution and input impedance at resonance are mainly determined by internal structures
such as the shape of the patch, the thickness and dielectric constant of the substrate and
superstrate. Provided that a patch antenna is placed on a locally flat surface or surface with
a small curvature, the shape of the host cylinder (external structure) has little effect on its
current distribution and input impedance, as demonstrated in [11]. Therefore, the patch
antenna can be characterized approximately by assuming that it is placed on an infinitely
large ground plane. Applying the equivalence principle, we can close the aperture of the
cavity housing the patch antennas with a sheet of perfect conductor and introduce a
magnetic current density over the aperture defined as

M=Exh (D)

where n denotes the outward unit vector normal to the aperture. As shown in [7], this
magnetic current can be determined using the finite element method with vector elements by

seeking the stationary point of the functional
F(E)= %j{j[i—(v x E)-(Vx B)— k2e,E- E]dV
; m[ Wz B-Lipe -(VxE)}dV @
v r
—k; [[ M(F) [H G, (F.7")- M(F')dS’]dS
s S

where V denotes the volume of the cavity and S denotes the aperture of the cavity. Also,
éO(F,F’) denotes the free-space dyadic Green's function, and J™ and M™ represent the
internal sources or antenna excitation. The procedure of the finite element solution and
modeling of a current probe and impedance load are described in [7] and [12], and the
modeling of waveguide feeds is described in [13].

Once the equivalent magnetic current M over the aperture of the cavity is calculated, the
radiation patterns can be obtained by computing the field radiated by M in the presence of
the conducting cylinder with the cavity filled with perfect conductor. Since the cross section
of the cylinder is arbitrary and the cylinder may be coated with dielectrics, no pertinent

Green's function can be derived and the radiated field cannot be expressed by an integral



formulation. To alleviate this difficulty, we propose to employ the reciprocity theorem to
calculate the radiated field. According to the reciprocity theorem [14], we have

” E“-i"dV:-ﬂjFI”-M“dV (3)

where E“ is the field produced by M“ and, likewise, H” is the field produced by J°.
Letting M* be the equivalent magnetic current M over the aperture of the cavity and J® be
the electric dipole of moment 1l located at (r,6,¢) and oriented in the &-direction, the
radiated field is then given by

- . 1 ¢t =, =
E(r,e,¢)-u=_ﬁjst"-Mds 4)

Often, the radiation patterns in the plane perpendicular to the cylinder (that is, the plane of
6 = m/2) are of particular interest. In this case, we obtain

; - ihar
E,(r,¢) = 2o~ [[HtM, ds (5)
nr 3
_ J.koe_j&‘r b
E¢(r,¢)-——4—m—-—J‘sJHZMZ ds (6)

where H’ (or Hz" ) is the magnetic field induced on the surface of the cylinder (again, with

the cavity filled with a perfect conductor) by an incident plane wave whose electric (or
magnetic) field is in the Z-direction and has a unit amplitude, and M, (or M,) is the

component of M in the direction perpendicular (or parallel) to the cylinder.

It is then clear that to calculate the radiated field, we have to find H? and/or H! first. This
can be accomplished simply by solving the problem of plane wave scattering by the
cylinder using the method of moments. There are several different formulations available
for this problem. The most efficient one is to employ the volume-surface integral equation
[15] given by
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for H, -polarization, where € denotes the cross section of the dielectric coating, I',
denotes the interface between two different dielectric materials, and T, denotes the
conducting surface. Also, 7, denotes the unit vector normal to ', and pointing from the

~" side to the "+" side, and G, represents the well-known two-dimensional free-space
Green's function. For cylinders without coatings, (7) and (8) reduce to the well-known
equations

E““( Y= jk.Z J'G . FOH! (F)dl 0 for 7 in conductor )
r =
g 0 E,(F) for 7 everywhere else

for E,-polarization, and

) FF 0 for ¥ in conductor
H™(7)+ | Hf(?')—-aag’;’ Lar ={ (10)
n
T, c

H (r) forr everywhere else



for H,-polarization. The detailed procedure to solve (7) and (8) using the method of

moments is described in [16].

To summarize the proposed method, we first compute the equivalent magnetic current over
the cavity's aperture by applying the finite element method to (2). Then, we compute the
surface magnetic field induced on the region of the cavity's aperture by applying the
method of moments to (7) and (8), or (9) and (10) when there is no coating. Finally, we
calculate the radiated field using (5) and (6).

III. Numerical Results

In this section we present some numerical results to demonstrate the validity and capability
of the formulation described above. Without loss of generality, the same microstrip patch
antenna, depicted in Fig. 2, is used in all examples to follow. This antenna consists of a
rectangular conducting patch fed with a probe and housed in a larger dielectric filled
rectangular cavity. The first resonance mode at f = 3.3 GHz radiates a field whose E-plane
is perpendicular to the shorter side of the patch and whose H-plane is perpendicular to the
longer side of the patch.

The first set of results is computed for the microstrip patch antenna on a finite circular
cylinder sitting on a conducting plate, illustrated in Fig. 3. The radiation patterns are
calculated for two different positions of the antenna whose longer side is parallel to the axis
of the cylinder. These patterns are shown in Fig. 4 and compared with measured data
provided by Mission Research Corporation, Dayton, OH. As can be seen, the agreement is
surprisingly good within the first 30-dB range, demonstrating the validity of the method.
The disagreement in the deep shadow region is due to the field diffracted by the sides of the
plate perpendicular to the cylinder and also by the ends of the cylinder, which are ignored
in our simplified approximate calculation. The corresponding results when the antenna is
rotated 90 degrees are shown in Fig. 5. Note that in this case, the predicted sidelobes are
significantly higher that those in Fig. 4 because of stronger surface waves propagating
around the cylinder.

The proposed method can, of course, handle multiple patch antennas or arrays, such as the

one sketched in Fig. 6. The patches and dielectric substrate have the same parameters as the
one in Fig. 2. The edge-to-edge distance between two adjacent patches is 1.5 cm and the
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array is centered at ¢ =225°. Figure 7 shows its radiation patterns with and without the
plate. The cavity size for the case of Fig. 7(a) is 12 cm in the ¢-direction and 6 cm in the
z-direction, and for the case of Fig. 7(b) is 15 cm in the ¢-direction and 5 cm in the z-
direction. The asymmetric pattern in Fig. 7(b) for the case without the plate is due to the
asymmetric placement of the feed.

To demonstrate the capability of the method as well as to show the effect of dielectric
coating, we consider a single patch antenna on a circular cylinder having a diameter of
30.48 cm. The antenna is the same as depicted in Fig. 2 and the cylinder is coated with a
layer of material having a thickness of 0.546 cm, relative permittivity £, = 2.2 and relative
permeability g, = 1.2 for the lossless case, and €, =2.2~ j1.0 and g, =1.2— j0.5 for the
lossy case. The results are presented in Fig. 8 for the cylinder without coating, with a
lossless coating, and with a lossy coating. As can be seen, when the longer side of the
patch is parallel to the axis of the cylinder, it does not excite a surface wave propagating
around the cylinder. Therefore, the coating does not have a significant effect on the
radiation pattern because it is not thick enough to support a surface wave. However, when
the shorter side of the patch is parallel to the axis of the cylinder, it excites a surface wave
around the cylinder, which is further enhanced by the presence of a lossless coating,
raising the level of radiation in the shadow region. When the coating is lossy, the surface

wave is attenuated, resulting in a lower level of radiation in the shadow region.

To show the effect of a finite ground plane, we consider the microstrip patch antenna of
Fig. 2 placed at the center of a flat conducting plate whose width is w and thickness is 0.5
cm. The radiation pattern in the plane perpendicular to the plate is shown in Fig. 9(a) when
the longer side of the patch is parallel to the axis of the plate and in Fig. 9(b) when the
shorter side of the patch is parallel to the axis of the plate. The proposed technique provides
a simple way to study the finite ground plane effect on microstrip antenna radiation patterns
[17].

Finally, we consider a waveguide-fed trihedral, depicted in Fig. 10, to show the
applicability of the proposed method to any cavity-backed conformal antennas. The
waveguide is 0.9 inch wide and 0.4 inch thick and is at the center of one of the planes. The
radiation patterns at f = 9.0 GHz in both the E- and H-planes are given in Fig. 11 along
with the measured data. Good agreement is observed over a wide range of angles. The
disagreement in the shadow region and in the region close to 90° in Fig. 11(a) is mainly

due to the third plane, which is ignored in our simplified approximate calculation. Since the
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waveguide radiator is not a highly resonant structure, we note that the external structures
close to the waveguide can have nonnegligible effect on the field distribution at the
waveguide opening. As a result, the proposed method can be less accurate than in the case
of highly resonant microstrip patch antennas.

IV. Conclusion

In this paper, we described a method to calculate the radiation patterns of cavity-backed
microstrip patch antennas on a cylindrical body of arbitrary cross section that may be coated
with dielectrics. In this method, we first employed the finite element method to characterize
the microstrip patch antennas and then applied the reciprocity theorem, in conjunction with
a two-dimensional method of moments, to calculate the radiated fields. Several numerical
examples were presented and compared with measured data to demonstrate the validity of
the method. Numerical results were also given to show the effects of patch orientation,
dielectric coating, and finiteness of a ground plane on the radiation patterns. The presented
method can be used to investigate the effects of external structures (such as the shape and
coating) on the radiation patterns of microstrip antennas and to provide reference data for
validating more general methods for calculating the radiation patterns of microstrip antennas
on general three-dimensional bodies.
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Figure 1. Cavity-backed microstrip patch antennas on the surface of a cylindrical
body with an arbitrary cross section.
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Figure 3. A microstrip patch antenna on a circular cylinder attached to a plate. (a)
Three-dimensional view. (b) Cross-sectional view.
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Figure 4. Radiation patterns of a microstrip patch antenna on a circular cylinder
attached to a plate, with the longer side of the patch parallel to the axis of the
cylinder. (a) For antenna 1. (b) For antenna 2.
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APPENDIX 2

Hybrid FEM/SBR Method to Compute the Radiation Pattern from a

Microstrip Patch Antenna in a Complex Geometry

A. D. Greenwood, S. S. Ni, J. M. Jin, and S. W. Lee
Center for Computational Electromagnetics
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801-2991
Key terms: Finite element method, shooting and bouncing ray method,

microstrip patch antenna, radiation.

Abstract

A previously introduced technique to compute the radiation of a microstrip patch
antenna on a cylindrical body of arbitrary cross-section is extended to include patch
antennas mounted on complex, three-dimensional bodies. The technique involves using
the finite element method (FEM) to characterize the patch antenna, and then comput-
ing the radiation pattern using the reciprocity theorem and the shooting and bouncing
ray (SBR) method with edge diffraction. The validity of the calculation and the need
for an extension to three dimensions is shown by comparison with measured data for a
waveguide-fed trihedral. Other calculations show the effects of the external geometry

on the radiation pattern of a microstrip patch antenna.

1 Introduction

Recently, a technique for calculating the radiation pattern of a microstrip patch antenna
on a cylindrical body was developed [1]. The technique is a hybrid method using
the finite element method (FEM) and the two-dimensional (2-D) method of moments
(MoM). The FEM is used to analyze the patch antenna with its aperture closed by a

perfect conductor, resulting in an equivalent magnetic current density, M. The 2-D
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MoM is then used to find the radiation due to M in the presence of the cylindrical
body. While this technique is simple and works well, its application is limited to patch
antennas on 2-D bodies such as cylinders. Although the technique can be extended to
3-D bodies by employing a 3-D MoM, the computational cost is prohibitive. Thus, an
alternate method of extension is needed.

In this paper, a technique is presented which replaces the 2-D MoM with the high
frequency shooting and bouncing ray (SBR) method combined with edge diffraction.
A microstrip patch antenna is now considered on a 3-D complex body. As in the
original technique, the FEM is first used to analyze the antenna with its aperture
closed by perfect conductor, yielding an equivalent magnetic current density, M, over
the aperture. The SBR method combined with edge diffraction is then used to find the
radiation due to M in the presence of the 3-D complex body. The proposed method
can also be regarded as the extension of the hybrid FEM/SBR scattering method [2]
to radiation problems.

This paper first discusses the theoretical development of the method. It then
presents some numerical results, showing the utility of the method. Finally, it compares
results generated by the extended technique to measured results for a waveguide-fed

trihedral, showing the validity of the method and the need for a 3-D extension.

2 Theoretical Development

Consider a microstrip patch antenna mounted on a 3-D complex structure. Since a
microstrip patch antenna is a highly resonant structure, its current distribution and
input impedance at resonance are determined mainly by its internal structures such
as the shape of the patch and the thicknesses and the dielectric constants of the sub-
strate and the superstrate. Provided that the patch antenna is placed on a locally flat
surface, the shape of the host 3-D body has little effect on its current distribution and
input impedance. Therefore, the patch antenna can be characterized approximately by

assuming that it is placed on an infinitely large ground plane and using the FEM as
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described in [3]. The FEM analysis provides the solution to the equivalent magnetic
current density, M, over the aperture of the patch antenna.

Once the equivalent magnetic current density has been calculated, the radiation
pattern is obtained by computing the field radiated by M in the presence of the host
3-D body. An accurate method to compute the radiated field is to use the 3-D MoM.
However, the computational cost is prohibitive, especially for a large 3-D body. A more
efficient approach is to use a high-frequency approximation such as the SBR method
[4, 5]

There are two approaches to using the SBR method to compute the radiated field.
One approach is to first compute the radiated field over a small hemisphere covering
the patch antenna. This field is then converted into many rays, which shoot along
the radial directions. Each ray is traced as it bounces around the 3-D body, and and
the bounces are governed by geometrical optics (GO). At the last hit point, or at
each and every hit point, a physical optics type integration is performed to determine
the ray contribution to the radiated field. The final result is the summation of the
contributions from all the rays. This approach, called the forward calculation, has the
advantage of simultaneously computing the radiated field in all directions. However,
to obtain accurate results, the field on the hemisphere surrounding the patch antenna
must be divided into many rays, and in tracing each ray, its divergence factor must be
calculated and tracked.

The second approach is to employ the reciprocity theorem. In this approach, called
the backward calculation, an infinitesimal dipole is placed at the observation point,
and the SBR method is applied to the dipole radiation. Because the dipole is located
far from the structure containing the patch antenna, it produces a plane wave incident
upon that structure. The SBR method computes the fields radiated by the dipole using
GO and accounting for the phase shifts and the polarization properties of the fields.
Because the incident field is due to a plane wave, the ray divergence factor is set to
unity. Denoting the field radiated by the patch antenna as Epmgspa, the field radiated

by the dipole as Hp, and the current density on the dipole as J, the fields Epmspa and
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Hp are then related by the reciprocity theorem,

// Eyspa - JdV = -// Hp - MdS
\% S

where V denotes the volume of the dipole and S denotes the aperture of the patch
antenna. The integral on the left hand side of the equation evaluates to the component
of Emspa in the direction of J times the strength of the dipole, Il. The quantity
Hp on the right hand side of the equation is also proportional to I, which is then
canceled from the expression. Two orthogonal components of Emspa are found by
considering both horizontal and vertical polarizations for the incident plane wave in
the SBR calculations, corresponding to different physical orientations of the dipole
antenna.

When using the SBR method to find Hp on the surface of the patch antenna, there
may be some directions for which the incident wave is blocked. The SBR calculation
will then give Hp=0, an erroneous result. To find an accurate value for Hp, edge
diffraction must be included with the SBR calculation.

The geometry for the diffraction computation is shown in Figure 1. An arbitrary
edge is subdivided into short segments, and the diffracted electric field from a short edge
segment is computed using the “incremental length diffraction coefficients” (ILDC)
introduced by Mitzner [6, 7]. The diffracted field from the entire edge is then computed
from the sum of the contributions of the segments, and the diffracted magnetic field
is found from the electric field using Maxwell’s equations. Given a short edge segment
of length ¢, the diffracted field at a distance s from the segment is given in terms of
ILDC by [6, 7]

Ed(P) % ldes doo| |ELQ)
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in which d,, is given by

. ~ agy 2 R R . & a'y. ;
dyy = ﬁe]‘““s-s M (@ B)(E-0) Dy+ - (i x 8)( x &)+ © Dy| sinc [_—k(s ) t]

where sinc(z) = sinz/z, and D, and D}, are diffraction coefficients. The coefficients

D, and D), are defined in terms of the Keller-Ufimtsev diffraction coefficients as

27(']17 dif
sin 8ysin By °

2nk .
.—,——.—Dﬂ'f.
sin B; sin Go

D, = 2¢im/4 (3a)

Dy, = 2¢™/4 (3b)

Denoting the interior wedge angle as o = (2 — n)x, D3 and D$if are given by [8, 9]

pdit e "t (Dy - Dy) (42)
s = = 1= 2
Qn\/27rk: sin 3 sin fo
. —in/4
pdif — _ < (D1 + D) (4b)

271\/27#: sin 3 sin Gg

where

D, = cot [ZL;;_K)] FlkLg* (¥ — ¢")] + cot ["—_(gn_—w] FlkLg~ (v - ¢')] (5a)

D, = cot [mg;f—‘”] FlkLg* (¢ + ¢')] + cot [”—‘-—(—;";—’“] FlkLg~ (¥ + v')]. (5b)

In the above, the function F[] involves a Fresnel integral and is defined by

Flz] = 2j/ze’ /w =it dt, 6)
[«] ’

and the other parameters are given by

L = ssinfBysin g and g*(X) =1+ cos (X — 2n7N¥) (7)
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where N* are the integers which most closely satisfy

2naiNt — X =47 and 2n7N~ = X = —m. (8)

It should be noted that the expressions above compute only the first order edge
diffracted field. Thus, the incident field used in the calculations is that resulting from
direct illumination of the edge. Multiply bounced rays are not included in the edge
diffraction computation, nor are fields diffracted by one edge and then subsequently
diffracted by a second edge. In most cases, a first order edge diffraction computation is
adequate for determining the dominant effects on the radiation pattern of a microstrip

patch antenna.

3 Numerical Results

To illustrate the usefulness of the proposed method, numerical results are generated for
a patch antenna in two different geometries. The patch antenna under consideration
for these tests is shown in Figure 2. The antenna resonates at 3.3 GHz, and, according
to the proposed method, it is characterized by an equivalent magnetic current density
found using the FEM.

The first example involves placing the patch antenna on a finite, circular ground
plane. In Figure 3, the resulting computations of the H-plane and E-plane radiation
patterns are compared to the patterns generated by the same antenna on an infinite
ground plane. As can be seen, significant features of the antenna pattern are missed by
assuming an infinite ground plane to make calculations. Edge diffraction is primarily
responsible for the differences between the finite ground plane examples and the infinite
ground plane results.

For the second example, the patch antenna is placed on a stair-step geometry shown
in Figures 4a and b. In Figures 4c and d, the computed radiation patterns (H-plane

and E-plane) are compared to those found by assuming an infinite ground plane to
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make the calculations. Like the finite, circular ground plane case, significant features
are missed by assuming an infinite ground plane, and edge diffraction is primarily
responsible for these features.

To show the validity of the method, numerical computations are compared to mea-
sured data for a waveguide-fed trihedral. The geometry for this comparison is shown
in Figure 5a where the waveguide is 0.9 inch wide by 0.4 inch thick, and the operating
frequency is 9.0 GHz. Under these conditions, an incident TE;o wave propagates in
the waveguide, and the aperture is characterized by an equivalent magnetic current
density, similar to the characterization of a patch antenna by an equivalent current
density. The calculated radiation patterns (H-plane and E-plane) are compared to the
measured patterns in Figures 5b and ¢. The calculated results agree with the measured
results very well.

Although it is a 3-D problem, this waveguide-fed trihedral configuration was consid-
ered previously using the 2-D MoM [1]. The MoM result agrees well with the measured
result for the H-plane pattern when the azimuth angle is between —90° and 40°, and
it agrees well for the E-plane pattern when the elevation angle is between —40° and
90°. However, it misses the oscillations in the radiated power outside of these regions.
The oscillations that are missed in the 2-D MoM computation are correctly predicted
by the SBR/edge diffraction computation and are caused by edge diffraction in the
third dimension. Thus, this problem not only validates the method, but underscores

the need to extend the original 2-D technique to consider 3-D problems.

4 Conclusion

The technique for computing the radiation pattern from a microstrip patch antenna
on a cylindrical body [1] was extended to compute the radiation from a patch antenna
in a 3-D complex geometry. The method first involved using the FEM to analyze the
antenna. The result was an equivalent magnetic current density on the aperture of

the antenna. Then, the SBR method was used to calculate the radiated field, and for
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this a plane wave was launched toward the antenna by an infinitesimal dipole. The
SBR method was used to find the resulting magnetic field on the aperture of the patch
antenna, and the radiated field was calculated using the reciprocity theorem. To insure
accuracy, the field diffracted by edges was computed using ILDC and added to the SBR
result. Numerical results showed that the structures surrounding the patch antenna
have dominant effects on the radiation pattern, and assuming an infinite ground plane
to make calculations misses these effects. Comparison of numerical results generated
by the method to measured data showed good agreement. Finally, comparison of nu-
merical results from the method presented here to those from the original 2-D MoM
technique showed that pattern features missed by the 2-D technique are correctly pre-

dicted by this technique.
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Figure 1: Geometry of edge diffraction. Note that v’ and v are measured from an

illuminated face of the wedge, so 0 < %' < 7 and 0 < ¥ < nw where & = (2 — n)m.
Figure 2: Microstrip patch antenna considered in computational tests.

Figure 3: Radiation pattern of a microstrip patch antenna on a finite, circular ground

plane.
Figure 4: Radiation pattern of a microstrip patch antenna on a stair-step geometry.

Figure 5: Comparison of calculated data with measured data for the radiation pattern

of a waveguide-fed trihedral at 9.0 GHz.
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APPENDIX 3

SCATTERING FROM A CYLINDRICALLY CONFORMAL
SLOTTED-WAVEGUIDE ARRAY ANTENNA

Guo-Xin Fan and Jian-Ming Jin
Electromagnetics Laboratory
Department of Electrical and Computer Engineering
University of lllinois at Urbana-Champaign
Urbana, Illinois 61801-2991

ABSTRACT

A numerical method is developed to investigate electromagnetic scattering
by a cylindrically conformal waveguide-fed slot array. The problem is first for-
mulated in terms of integral equations using the equivalence principle. The
integral equations are then solved using the method of moments (MoM) in con-
Junction with global sinusoidal basis functions and Galerkin’s testing procedure.
The MoM solution requires the evaluation of the generalized admittance ma-
trices involving various dyadic Green's functions. The slow convergence of the
series assoclated with the summation of waveguide modes is accelerated using
the Kummer transformation and the slow convergence of the series associated
with the summation of the exterior modes is avoided by using the asymptotic
solutions with proper treatment for singular integrals. The evaluation of the
excitation vector and scattered field is also accelerated using \Watson’s transfor-
mation and asymptotic solutions. Numerical results are presented to illustrate
the scattering characteristics of the cylindrically conformal waveguide-fed slot
arrays, such as the effects of curvature, slot thickness, and waveguide termina-

tion on the radar cross section of the arrays.
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I. INTRODUCTION

Slotted-waveguide array antennas are widely used on modern airborne radars
because of their large power handling capability, high efficiency, light weight,
compact structure, and low side lobes. However, being highly efficient radiating
structures, by reciprocity theorem these antennas are also efficient scatterers,
which contribute significantly to the overall radar cross section (RCS) of the host
vehicle. Usual RCS reduction techniques cannot be applied to these antennas
without degrading their performance. Bandpass radomes, made of frequency
selective surfaces (FSS), can reflect nearly all the incident energy outside the
working frequency band and allow the incident energy within the working fre-
quency band pass through to reach the antennas. However, it is at the working
frequency band that the slot arrays have a significantly higher RCS. Therefore,
it is necessary to predict the RCS of the slot arrays for applications such as
target identification, electromagnetic compatibility, and stealth technology.

Because of a large number of slots and the mutual coupling between the
slots through the waveguides and exterior space, a full-wave analysis of slotted
waveguide arrays is very difficult. In the past, most work was focused on the
radiation analysis of a single slot {1]-[10], one-dimensional arrays and small two-
dimensional arrays [11]-[17], all in a planar surface. In particular, Stevenson
[1] developed what is now considered the classical theory for a single slot and
Oliner [2] presented a variational solution of the problem. Khac and Carson (3]
employed the method of moments (MoM) to seek a numerical solution to the
slot field using pulse basis functions and point match technique. The efficiency
of the MoM solution was improved by Lyon and Sangster [5] and Stern and
Elliott [6] by using global and piecewise sinusoidal basis functions and Galerkin’s
technique. The MoM was also applied to tilted slots [9], dielectric-covered slots
[8], [10], edge slots [18], and slots in a sectoral waveguide [19]. Recently, Fan [20]
analyzed cylindrically conformal slotted-waveguide array antennas with a curved
waveguide as the feeding guide and sectoral guides as the radiating guides.
Whereas the literature for the radiation analysis of the slot arrays is abundant,
little work was done on the scattering from the planar slot antennas {21]-[23], let
alone the curved ones. Josefsson [21] analyzed scattering by a single slot in an
infinitely long waveguide and Chen and Jin [23) developed the MoM and finite
element method (FEM) solutions for the slots in the waveguides terminated
with arbitrary loads. No work was found on the analysis of the scattering
characteristics of slotted waveguide arrays on a curved surface. In this paper,
we present such an analysis.
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The key problem in the analysis of slotted waveguide arrays is to solve for
the slot aperture fields. Among various numerical methods, the MoM is most
efficient and accurate for this purpose because only a small number of basis
functions are needed to represent the aperture fields. However, the major diffi-
culties in the MoM are (i) its formulation requires the dyadic Green’s functions
for the waveguide, the exterior space, and the slot if it has a finite thickness,
and (ii) the evaluation of its matrix involves highly singular integrals and very
slowly converging series. In this paper, we address all these problems. To be
more specific, we first formulate the integral equations for the problem and
apply the MoM with global basis functions and Galerkin’s testing procedure.
We then describe in detail the evaluation of the MoM matrix involving various
dvadic Green’s functions. The slow convergence of the series associated with
the summation of waveguide modes is accelerated using the l{ummer transfor-
mation and the slow convergence of the series associated with the summation
of the exterior modes is avoided by using the asymptotic solutions developed by
Boersma and Lee {24] and Bird [25]. The evaluation of the excitation vector and
scattered field is also accelerated using Watson's transformation and asymptotic
solutions. Finally, we present some numerical results to illustrate the scattering
characteristics of the cylindrically conformal slotted waveguide arrays, such as
the effects of curvature, slot thickness, waveguide termination, and frequency
on the RCS of the arrays.

I. THEORY

In this section, we describe in detail the formulation of the problem and its
solution by the MoM. Particular attention is given to the computation of the
elements of the generalized admittance matrices.

A. Integral Equations and MolM Solution

Consider the problem of electromagnetic wave scattering by a waveguide-fed
slot array on a cylindrical surface whose radius is ps, as depicted in Fig. 1. The
cross section of each waveguide is an annular sector with inner radius p;, outer
radius pa, and subtended angle Ad, and the thickness of the curved walls of the
waveguides is t = p3 — p2. Each waveguide is terminated at z = z; and 25 with
an arbitrary load. All radiating slots are longitudinal slots cut in the outer wall
of the waveguides, having the same width 2w and different length and offset
with respect to the center-line of the waveguides.

For the ith slot, its inner and outer apertures, S/ and S7, divide the space

into three regions: the waveguide region (region a}, the region outside the cylin-

42



der (region b), and the slot region (region c), as illustrated in Fig. 2. In ac-
cordance with the equivalence principle, the fields in the three regions can be
decoupled by covering the apertures S/ and S,” with a perfectly conducting
surface and introducing equivalent magnetic currents above and below the per-
fectly conducting surface. Denoting the equivalent magnetic current below S/
as M{ and that below 57 as MY, because of the continuity of the tangential
electric fields across the apertures, the equivalent magnetic current above S} is
~M/! and that above ST is ~MZ. Therefore, the field in region a is due to M/,
the field in region b is due to ~M7 and the incident field, and the field in region
¢ is due to —M/! and MF.

By enforcing the continuity of the tangential magnetic fields across S! and
ST we obtain the integral equations satisfied by the equivalent magnetic cur-
rents, M{ and Mf’, as

0 res! (1)

ZH“ (M1) + HE; (M]) — HE, (MT)
Z H (M]) + HE (M) - HE (M]) = HY resf (2)

where the subscript 7 denotes the tangential component, the summation in (1)
is carried out for all inner apertures in the same waveguide, and the summation

in (2) is carried out for all cuter apertures. The magnetic field is related to the

surface magnetic current by
=// Go(r,v')  M(r')dS’ (3)

where o = a for region a, b for region &, and ¢ for region c, respectively, and
6"(1', r') denotes the magnetic-source magnetic-field dyadic Green's function in
the corresponding region. Finally, HP™ is the field due to the incident field in
the presence of the conducting cylinder without slots.

To seek a numerical solution of (1) and (2), we first expand each equivalent

magnetic current using the global sinusoidal basis functions

N

M] = iMj =:) Vlsinagé res; “)
q—l

Mf = ':M” Z ; sin ag;§ re SJH )

where a4, = gn/L; with L; being the length of the jth slot, and choose the
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testing or weighting functions as
W;,- = EI'VPI,» = Isinapé res! (6)
Wf,» = ;"Wp”,» = Isinopié re st (7)

Applying Galerkin's procedure, the integral equations can be converted into the
matrix equation given by

[[Yp‘é(ﬂﬂ;’é(cﬁ.’;sﬂ] REACEHEH) ]{[Vqﬁl } _ { [0]}

=gtestishl g gie st 081~ il |

where [')'p’g(a)] and [Y,fg(b)] are the generalized admittance matrix for regions
a and b, respectively. [Ypfg (c, S;’;S;)] is the generalized admittance matrix for

region ¢, in which Sif is the aperture on which the field point is located and
Si is the aperture on which the source point is located. Finally, (1] is the
generalized excitation vector.

We note that for slots of zero thickness, the edge condition is often employed
to represent the transverse distribution of the equivalent magnetic current 6],
[10], [14], which makes the evaluation of the matrix elements difficult. For slots
of finite thickness as is the case for practical applications, the singularity is much
weaker than that for the zero thickness case. As a result, the equivalent magnetic
current can be expanded in terms of the global sinusoidal basis functions with a
uniform transverse distribution. Such an expansion has been successfully used
in the past for the analysis of rectangular waveguide slot radiation problems (5],
(8], (9],

In the remainder of this section, we describe the evaluation of the elements
of each generalized admittance matrix and excitation vector, necessary for a
numerical solution of (8).

B. Generalized Admittance Matriz Elements for Region a
The admittance matrix elements due to the internal coupling in the sectoral
waveguide (region a) are given by

3;‘3(0)= /// G2.(r,r') sin api€ sinag;€' dSdS’ (9)
st si

where G2, is the Zi-component of the magnetic-source magnetic-field dyadic
Green’s function for the sectoral waveguide, which is derived in Appendix A
and given by

G, = jwey B(m.n)C, cw{a(: -

m=0



/\2

mn —ihmalz=2| < j2%mnzy a=jhmnl(c+:])
I3 n - Rmne m le n

" 2jhmnAmn

_R,,\nnc—j'.!hm,.:.gejhm,.(:+:') + R;(nnRz]ne—-jhm"(:;—:l)ejhm,,|:—-:'|] }10)
where
2 B, (Amnp) By (Amnp')
B = . 11
(77‘!, Tl) 1+ dgm kgfvz\m,.A¢ 1 ( )
p=p'=pa
in which
Bu(Annp) = J(Amnp )Y (Amnp) = Yo (Amnp 1) o (Amnp) (12)
8] 2
Napn = / P[BV(’\mnP)] dp
Py
1 2 2 _ 2 ke
- §E{(Am,,p - )[B,,(/\mnp)] }p,' (13)
Also, in the above, v = mr/A¢, C, = cosvp, Cpr = cos ', hynn = Vk* = A5,

Amn are the roots of Bl (Amnp2) = 0, Amn = 1 = RS, R e/ imn(22=210) and
RS, and R}, are the reflection coefficients for mode (m, n) at : = z; and
z = zq, respectively. For shorted terminals R,,, = —1, and for matched termi-
nals R, = 0.

The integrals in (9) can be evaluated analyticallv through the transformation

of variables, resulting in

L, ju L, ruw
/ / / / G2 (r.x')sinapi€ sin a,; ' dy' d€ dndé€
0 -wJ0 -

— jwe i i B{m, n)];j(m) []:JO (m.n) + Igm (m, n)] (14}

m=0n=0

where I} (m) = 1:,(771)1{,(771) with

Y (a)

P9

n

I,(0) = 2w (15)
i _ P2 Nean | Y [ P2R0 o
Ii(m) = —;[,{V_;usgn(c)sm [;;< 5 +<5,+U>] m#0 (16)
and é; denotes the offset of the ith slot from the center of the waveguide. Also,
g . k2 —al)L;
oim.n) = C(m.n) [l + (—l)p+q] [1 - (—l)pe_Jh""‘L‘] + O},q(——,,if,)—
Qpi — h;nn
(17)
1;%(771‘n) = C(m,n)eFihmnlzoi=20,)=(L=L,)/2]
1= (—1)PeF il [1 - (—1)7e2IAmnLs] f0i 2 205 (18)
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with )
Alin Op; Qgj
thmnAmn a —hZ,, a- - hZ,.

and zg; and zg; denote the center of the zth and jth slots, respectively. Finally,

C(m,n) = (19)

1" n(m,n) can be written in three parts as

I3 (m,n) = I (m,n) + I (m,n) + I (m, n) (20)
with )
I (m,n) = =C(m,n)RS e Ihmnllzorto)=(LitL,)/2=221]
U= (=1)pPemdfmnla] [1 = (=1)%e73hmnLs] (21)
[9(m,n) = =C(m, n)R2, e~ iMmn(233=(c00t20))+(Li+L,)/2]

[1-
I53(m,n) = C(m

- (=1)P e""""L‘] (1~ (=1)9elhmnts] (22)
,n)
[ + (- 1)P+q][ - (- 1)pejhan-] (23)
n)
= (=

R —2jhmn(z;-—zl)

]ié(m.n) = C(m,n)R, g™ M hmn(z3m 1) gihmal(zo = 20,)= (L= L) /2]

[

While the summation in {14) can be evaluated without any difficulty when

mn

P :FJhm" l] [1 - (—-l)qeijh"‘"L]] 20§ < <0j (24)

i # j, its evaluation when i = j involves a slowly converging series given by

= ZB(m,n)IiB = 51(m) + S2(m) (25)
n=0
where
Si1(m) = B(m,n)C(m,n) [1 + (_1)p+q] [1 _ (_1)pe—jhan.] (26)
n=0
(o e] L', _ ‘_‘ L
Sa(m) = ;B(m,n)ém(—% (27)

To show this, let us examine the asymptotic behavior of the series when n — oc.
Using the asymptotic expression of the Bessel functions for large arguments, we
obtain the approximate solution to the eigenvalue equation B (Amnp2) = 0 as

nm

Amn ~ 28
p2— P (28)
and hence
hmn ~ —— (29)
P2 — pPi
1 2
B(m, o0) (30)

14 dom k3(p2 — p1)pago
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Clearly, the asymptotic form of the terms in S (m) is proportional to n=3 and
that in S(m) is proportional to n=2. To accelerate the convergence of S)(m),
we apply the Kummer transform [26] to (27), resulting in

S2(m) = dpq(k? —af,.-)Ls{i [ ?(m,n) _ <P2—Px>“ B(m.oo)]

3 24 52
=l opi — hhn T n?+z
po — 2 oo 1
+(222) Bmeo) Y } (31)
. e + -

where

2 ; 2
2 _ (P2 p > a2 2mn i :
v ( ™ > {a,,, ¢ [(P'z—m)@o] } (52)

The first summation in (31) converges rapidly and the second summation in
(31) can be written in a closed form as

- 3 [L + mcoth 7z] z>0

1
Z’I")-I-l‘r" = [ ! +rcot7'|l"] z<0 o
n=0 m m ' !

In passing, we note that when p; and ps — o0, the expressions for sectoral

waveguides reduce to those for the corresponding rectangular waveguides with

the following substitutions

P2 _ &
v mm (34)
0 _ /mmy? nmy? -
’\mn - (T) + (T) (33)
2 1

where @ = pyAd or ppAd and b = p; — p; are the dimension of the rectangular
waveguide.

C. Generalized Admittance Matriz Elements for Region b
The admittance matrix elements due to the external coupling in region b are
given by
Yp'g(b) = /// G2, (r,r') sin api€ sinag; €' dS dS’ (37)
st st
where G%, is the i:-component of the magnetic-source magnetic-field dyadic
Green's function for the conducting cylinder. The rigorous expressions of the
dyadic Green’s function involve infinite series and infinite integrations of Han-
kel’s functions [27], [28]. Although these expressions can be converted into the

47



forms suitable to numerical calculation [28], it is still very time consuming to
compute the matrix elements, especially when the cylinder is large. Therefore,
it is necessary to seek the fast converging asymptotic solutions. Five different
approximate asymptotic solutions have been developed in the past and these
are denoted as PINY [29], UI [30}, OSU [31), B-L [24], and TSB [25] solutions,
and each has its accuracy and range of validity. A comparative study [28) shows
that the B-L and TSB solutions offer the best overall accuracy, and these two
solutions are complementary to each other. More specifically, the B-L solution
is more accurate when the field point is near the source or in the paraxial region
while the TSB solution is better when the field point is far from the source and
off axis.
The B-L solution [24] is given by

Gh, ~ Go(t){vm [cos? +G(1-§)(2- 3cos?o')]
- §3v(B) [%cosgé—ﬂ}(l—ﬁl——f gtangt‘j— icos"’ é)]} (38)

and the TSB solution {25] is given by

GY. ~ Golt) {l-([s) [cos? 6+ ¢(1 — §)(2 = 3cos’ 9')] - [zv(ﬁ) i—lsm'-'é— %)
s 11 17 . 4 S U |
+v(5) (66 - %sm' 0) + v2(3) <_2—4-sm‘ g+ Z(S) + %vé”(ﬁ)} } (39)

where t = /(z = 2')? = (¢ — ¢)*, 6 = arctan[(z — ="}/ (v — )], § = j/kt,
3 = (kcos*8/2R*)Y/3t, and v, vy, va, and vél) are the surface Fock functions,
all defined in [24], [25], and Appendix C.

When i = j, G%, has a t72 singularity as t — 0, and a regularization is
needed to evaluate the integrals in (37). To do this, we first rewrite (38) as [25].
(30]

G, =G% +G.. (40)

where
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It can be shown that G2, is the Z-component of the dyadic Green's function
for an infinite conducting ground plane, given by

k? 1 8%\ ek
0 = =] = 43
G Jwp (1 + k? 6:3) 2t (43)

whereas G, can be considered as the perturbation due to the curvature of the
cylinder, with a singularity of 1=3/2 as ¢ — 0. As a result, the self-admittance
matrix element can be written as

Yoi(b) = Y20 (b) + Vi (b). (44)
Using integration of part and transformation of variables, Y, 0“(b) can be written
as (8]
k2 1 + p+q 2w —Jk!

7011 -

Yoo '(b) = on ke 27rk2 / / (u,v) dvdu (45)
where 1 = Vu? + v? and

"::%u::ai—? [op,—(k? —al)sinagiu — agi(k* —a3;)sin ap,-u]
F(u,v) = P#Y

(2w — v) [(L,' — u)(k? - pl)COS Qpitt + —— (k + O ;) sin Osz‘u]

 (46)
The integral in (45) becomes regular when evaluated in the polar coordinates.

To evaluate the perturbation term in (44), we first let 5 = Ry, ' = R¢',
where R = p3, and write it as

Y” / / / / "'n—=1n') sinap€ sinag€’ dn' d§’ dnd§.

(47)
Introducing the transformations u = - &, v=n—-n', v = £+ ~ L;, and

v' = n+ 1, and observing that én(u,v) is an even function of u and v, we

obtain
f’;;(b) = [ p+q / / (Qw—v G“(u v)F ( ydvdu (48)
where
~ g‘.f‘z—ar [(—l)p+qap,' sin Qgil — Qgi sin ap,'u] P#EQq
F{u) = oo (49)
(Li — u)cosapiu + g-sinapu p=q.
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With another transformation u = tcos 8, and v = tsin 8, (48) becomes

o) = [14(- { //"’ / /’}

(2w~ tsin8) G, (t,6) F(t,8)t df dt (50)

where 6 = tan~!(2w/L;) and G..(t, 8) has the same form as (42). The integrals
in (50) become regular by letting t = »*, which can be evaluated by expanding
the integrand in terms of the power of » and using Gaussian quadrature. The
Fock function can evaluated using its small-argument expansions.

When 7 # j, the expression for the admittance matrix elements can be
written as

L, rw Ly pw
Yog(b) =/0 /_w/O /_w Gi:(z— ' R(p = ¢')) sin api€ sin ag€ dy' ¢’ dnde
(51)

using the coordinate transformation

t=2 = (£ =&+ (200 — 205) + (Li — Lj)/2

, {52)
Rlg—¢") = (n=1")+ Rigoi — vo;)

where g, and g; are the coordinates of the center of the ith and jth slot,
respectively.

In practical slot arrays, the length difference between the slots is small. In
this case, we can use the average slot length of the two slots to approximate
their length. that is,

L,"'~"LJ%(L,'+LJ')/'ZEL. (53)

Using the transformations u = £ = &’ and ' = £ + €' — L, and the midpoint
integration, we obtain

L —~
Y2I(b) = 2“’2/0 [Ga:(u) + (=1)PHG, . (—u)] F(u)du (54)
where f(u) 1s given by (49) by replacing L; with L, and G (u) is given by (38)
and (39) with the transformations : — z = u + (20; — z¢;) and R(p — ¢') =
R{wpoi — woj)-

In passing, we note that in this work, the TSB asymptotic solution is used
for two distant slots whose centers have the same z-coordinate, whereas the
B-L asymptotic solution is employed for all other cases. We also note that the
asymptotic solution of the surface fields on a cylinder can be interpreted as the
creeping waves propagating from the source to the field point along the surface
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of cylinder. In general, there are at least two creeping waves. lowever, for an
open cylindrical surface, only the shortest one has to be considered.

D. Generalized Admittance Matrir Elements for Region c

It can be shown (Appendix B) that the magnetic field in the cavity (region ¢
with a sectoral cross-section), formed by the slot with its two apertures covered
by a perfectly conducting surface, due to the surface magnetic current 2d(p —
p’)sinap;€ is given by

~

9

Ho(p,p') = — R(p,p') sinap€ (55)
jwp
where 4% = [k* — a’| and
, C B(p2,p) Bips,p') p<p
R(p,p') =9 (56)
C B(ps, p) B(p3, r') p>p

with

C = (1/8)[B(ps.¢')B'(p3.#') = Blpa.p') B (ps. 9] (57)

, Jo(3p")Yo(8p) = Y5(3p")Jo(Bp) k> ap
B(p' p) = ) (58)
1530 KolBp) — K486 o(Bp) K < oyl
It 15 easy to see that
B'(p2,p2) = B'(p3, p3) =0 (59)
1 1
Bpa, p2) = e Blps, p3) = 30 (60)

Using (55), we obtain the expressions for the generalized admittance matrix
elements for region ¢ as

LiwB Blps, p2)

Yii(e, S8 = = 6ij6 61
pa ) jwp B'(ps, pa) ¢ (61)
Liwg3 -1

Yil(e Sl 8T = = 456 2
pa (€ 5¢:57) jwp BpaB'(pz,pa) 7 (62)
it el e Liws 1 .

V(e S5 Sh = 6i30pq (63)

Jwp 3p3B'{ps, p2)
Liwi —B(p2, p3)
jwp B'(pa2,p3)
When p; and p3 — o0, the expressions above reduce to those for a rectangular

Yii(e,SE ST = 8i;0pq- (64)

cavity as
Vii(e 161y = yii(e SE. g1y = Liwg L Bt8.:8 65
pq(C' £ ])"‘ pq(c’ 10 J) - ]uJ}l co vrq ( )
. Liwg -1 .
i ol . oy _ y-i I.oly _ Li .
Ypa(e,5i357) =Yg (e, 575.55) = Jwp sin Bt 6ij0pq (66)
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for k > ap;, and

Y2 (c,51;80) = ¥}i(c, ST, ST) = Mcothﬁtd;jd},q (67)
Jwp
iy Livg -1 | "
I ol oy _ i I, oly _ ' ..
)p;;((.‘, bl- 195 ) = )pg(C, S,- ,bj) = jwp m—téuépq (08)

for k < ap,.

E. Ezcitation Veclor

Consider an incident plane wave of arbitrary polarization and incident angle,
whose electric field is given by

tnc

E'™¢ = (8" cosv + o' sinp)e IR Y (69)

where v is the polarization angle, (6'"¢, »'"¢) denote the incident angles, and
(r'ne, ginc, 7€) are the unit vectors. In the computation of the excitation
\ector, the primary field, HP™ in (2), is the sum of the incident field and the
field scattered by the cylinder in the absence of all the slots. This field is given

by

HE™ = —Ypsin vsin 7 IR A 1 (hpasin 47, 5 — 2119 (70)
p=p3

where
2  j%cos ne.

2 (o]
Mz, ¢)=— 71
(2.%) jmzlmn PO (71)

From (70} we obtain the elements of the excitation vector as

-

sinapi€ dS
pP=p3

s
A"L.‘ . o . 1 19 tne ]
— 4)0 S’T sin ¢ sin §i7¢ eJLzo.COSG fp(g:nC)
ﬁ(kps sin 0™ p; — "7, Ag) (72)

where

-1 kL
— Eiy [2] -
( e L; 56> . ?OS E:Lz Ccos ) p odd (73)
pT J sin (—‘2 cos 0) p = even

—~ 2 = 2  jhcosny
M(z,y.A;)_jTIZ = ~— Sam(n Ay) (74)

o

oo L don g2
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in which A¢ = w/p3, and Sam(z) is a sampling function defined as

1 r=0

Sam(z) = {sin z/z z #0.

For narrow slots, we can use the midpoint integration to find

Ap L

pr

Iyi = 4Y, i sin ¥ sin gine gikzo cose'”fp(gx'nC)A,I(kps sin§'"¢, 20i — PinC).

N (76)
When z becomes large, M(z, ) for the lit region can be evaluated more effi-
ciently using the expression [27]

M(z,p) = 277 0%¥ (77)

which can be considered as the geometrical optics approximation. Note that
(77) has the same accuracy as Gorianiov’ more complicated expression [32]. For
the neighborhood of the shadow boundary and the shadow region, Af(z, ) can
be evaluated using the expression obtained using the Watson transformation
and Fock theory [27],

Mz, ) ~ e-ilv=3)4 [(p_ %) (%)1/3]

aw T /
rersrt=olg (3 0) (2)"] (78)

where g(r) is the far-zone Fock function. whose definition is given in {27}, [33].
[34] and Appendix C.

F. Scattered Field and RCS

Once the equivalent magnetic currents on the slot apertures are found, we
can compute the scattered field, which can be considered as the radiated field
due to the equivalent magnetic currents. Using the Fourier transform and far-
field approximation [35), it can be shown that the field radiated by M7 is

Ee =0 (79)
Twl ik NI 24
JRwL; eTINT . — N - & -

Eo = g ——sin0 M (kpsbmo,w,-—@,m)ETfp 8) (80)

where r; = r — zp;cos§. For a narrow slot on a large cylinder, we can again
use the approximation described in preceding subsection to simplify the far-field
calculation.
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The RCS of the slot array is defined as

E*°°(r) 2

Einc(r)

N 2
o= lim 4nr°
r =00

(81)

where E*? is the total scattered field from the slot array.

III. NUMERICAL RESULTS

'~

The formulation described above has been implemented in a computer pro-
gram and a variety of numerical results have been obtained to study the effects
of various factors on RCS. Because of limited space, we present only some typical
results.

For all the examples considered, the cross-section of sectoral waveguides is
given by %(Pl + p2)A¢ = 21 mm and ps — py = 10.16 mm. The distance
between the center-lines of the adjacent waveguides is 22 mm, measured on the
surface of the cylinder. The adjacent slots on the same waveguide are spaced
Aj0/2 apart in the z direction, where Ay is the waveguide wavelength at the
working frequency. The shorted planes are placed Ag0/4 away from the first
and last slots, respectively. In order to avoid the numerical overflow in the
computation of the generalized admittance elements for the shorted waveguides
at the working frequency, the position of the shorted planes is displaced by Az,
which can be considered as an acceptable manufacturing tolerance. All other
parameters, unless otherwise specified, are given by: 2w = 1.6 mm, L; = 1.6
mm, & = 1.5 mm, At = 0.8 mm, Az = 0.01 mm, ¥ = 90°, and the working
frequency fo = 9.1 GHz. The normal at the center of the array is g = 90° and
6 = 0° in the spherical coordinate system.

The computer program was first validated by comparing its solution to those
obtained by MoM and FEM [23] for a single slot on a planar surface. Good
agreement was observed between the three solutions.

To demonstrate the effect of the curvature of the host cylinder on the RCS
of a conformal slot array, Figs. 3 to 6 show the RCS for p; = o0, p; = 500 cm,
p1 = 200 cm, p; = 100 cm, and p; = 50 cm in both E- and H-planes. As can be
seen, the cylinder’s curvature has a significant effect on the patterns and values
of the RCS in the E-plane. When p; becomes large, the RCS approaches that
for a planar array. When p; decreases, the grating lobes begin to disappear
and the maximum RCS decreases. In contrast, the pattern of the RCS in the
H-plane remains the same and only the value of the RCS is decreased as p;
decreases.
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To further demonstrate the effect of the cylinder’s curvature on the RCS,
Fig. 7 presents the space distribution of the RCS for p; = oo, p1 = 200 cm,
p1 = 100 cm, and p; = 30 cm. As can be seen clearly, as p; decreases the
grating lobes in the E-plane is dilated where the pattern in the H-plane remains
the same.

To show the effect of the waveguide terminals on the RCS, Fig. 8 gives the
RCS of a 8 x 8 conformal slot array (p; = 100 cm) when the waveguide terminals
are matched and shorted. It can be seen that when the plane wave is incident
normally on the cylinder (§ = 90°), the RCS is very small for the array with
shorted terminals. This is because at the working frequency, the wave entered
the waveguide is reflected by the shorted terminals and the reflected wave cancels
the incident wave at the slot. Thus, the total electric field or the total equivalent
magnetic current is zero at the aperture of the slot. An alternative explanation
is that with the shorted terminals, the equivalent impedance looking at the
aperture of the slots is zero. Therefore, when the shorted planes are displaced,
the equivalent impedance will be changed and so is the RCS. This is clearly
demonstrated in Fig. 9.

Figure 10 shows the effect of the slot thickness on the RCS. As can be seen,
at the working frequency, the slot thickness has no effect on the RCS when
the waveguides are matched and when the waveguides are shorted, it has a
significant effect. This effect can also be explained using the concept of the
equivalent impedance.

Finally, Fig. 11 shows the frequency responses of a 8 x 8 array (p; = 100 cm)
with matched and shorted terminals, respectively. It is very interesting to note
that the RCS of the slot array is almost identical no matter the waveguides are
matched or shorted when the frequency is not close to the working frequency.
At the working frequency, the RCS is substantially different. This implies that
when the frequency of the incident wave is not close to the working frequency of
the slot array, the energy entering the waveguides is very trivial and the main
contribution to the RCS is the wave scattered by the slots directly. Therefore,
in this case the dominant factor is the geometry of the slots, instead of the
structures behind the slots. Figure 12 shows the space distribution of the RCS
of a 16 x 16 array (p; = 100 cm) at three different frequencies.

IV. CONCLUSION

In this paper, a method of moments (MoM) solution was developed for elec-
tromagnetic scattering by a cylindrically conformal waveguide-fed slot array.
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The equivalence principle was first emiployed to formulate the problem in terms
of integral equations. Various dyadic Green’s functions required in the formu-
lation were derived and the integral equations were solved using the MoM in
conjunction with global sinusoidal basis functions and Galerkin’s testing proce-
dure. The MoM solution requires the evaluation of the generalized admittance
matrices involving some slowly-converging series. The slow convergence of the
series associated with the summation of waveguide modes was accelerated using
the Kummer transformation and the slow convergence of the series associated
with the summation of the exterior modes was avoided by using the asymp-
totic solutions with proper treatment for singular integrals. The evaluation of
the excitation vector and scattered field was also accelerated using Watson’s
transformation and asymptotic solutions. Numerical results were presented to
illustrate the scattering characteristics of the cylindrically conformal waveguide-
fed slot arrays, such as the effects of curvature, slot thickness, and waveguide
termination on the radar cross section of the arrays. It was observed that (i)
as the curvature of the host cylinder increases, the grating lobes in the E-plane
dilate and eventually disappear and the maximum RCS is reduced; (i1) the inter-
nal structure of the waveguides such as the waveguide terminals has negligible
effect on the RCS when the frequency of the incident wave is not close to the
working frequency of the slot array; (i) at the working frequency the RCS of
the slot array with a shorted terminals at normal incidence changes significantly
with the position of the shorted terminals; and (iv) at the working frequency
the slot thickness has no effect on the RCS of the array with matched terminals
whereas for the array with shorted terminals its effect is noticeable. The numer-
ical method developed are useful in applications such as target identification,
electromagnetic compatibility, EMP penetration, and stealth technology.

APPENDIN A
GREEN'S FUNCTION FOR SECTORAL WAVEGUIDLS

For a sectoral waveguide, the magnetic-source magnetic-filed dyadic Green's

. =(m) . . . . ,
function G (r,r’) is related to the magnetic vector potential dyadic Green’s
function g,,{(r,r’) by

=(m) K (= 1 =
Gy = (T4+ 5599) 7 (€2)
Jwi k*
where g, satisfies the differential equation
(V24 kD)5, = —T6(r —1'), (83)
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and boundar_v conditions
].l . = 0_ 7‘[ c’ = ‘) 84
Im IS J x Xdm ( )

In this work, we require only the :z-component, gm.., which satisfies the
scalar wave equation

1 3 (9) 1 82 62 'n] J(P"Pl) ’ ’
- — | + —7———,)-+ —‘—?+L- m:z — _—4 - 6 =) 85
[pap <8p EE g (p—¢")d( ), (85)

and boundary conditions

Ogm:z Ogim.::
—— =0, —_ = 0. 86)
0p lp=pi.pz 0p le=0,40 (86)
Using the orthogonality relation [20]
P2
| 9B 0mn) B dp = b N (87)
P1
we can show that
8(p—p') — — 2 1
—L Pl —¢) = , B.(Amnp) B (A NC,Cyr.
;o= e) = 2 ) o, B e B 1CoC
(88)

Assuming that

o
_ 2 1 A
gmz: = Z Z 1 + 8om Ad)‘/\y*-n" Bu()\mnp) BV(’\mnp )CV.C,‘,.;Z,M(”- ) (89)

m=0n=»0

and substituting into (85), we obtain

d?
(E;Jrhzm,)zmn(z,:') = ~4(z - 2). (90)
Enforcing the boundary conditions at z = z; and z,, which are specified in
terms of the mode reflection coefficients, RS, and R7,,, respectively, we obtain

1
thmn AY'TH“I

> =2hmnz2 Jhma(z4z) < p> ,=2hmaf{zz=21) jhmnlz=2'|
—R7.e € + R, Ro..e gJfimn Q1)

- Y = —Jjhmnlz=2’ < 1 2hmnz) o~ hmnlzt2’
Zmn(z,2) = [e Jhmal I__RmneJ 1= Jhmnl )

. =(m) .
The required zz-component G can then be obtained from

(my _ K2 1 92
= —1 5 mz:z 2
Chi: Jwp ( +k28:2>‘q (92)
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with the aid of the differentiation formula for generalized functions

8° . s . . . '
—Jhmnlz=2"] ~jhmalz=2'l _ 9. _ 2 ~jhmnli=2 |
37 3297 ° 2jhmnd(z = ') + h, e (93)

APPENDIX B
FIELD IN THE SLOT-CAVITY

The magnetic field in the slot-cavity, produced by the surface magnetic cur-
rent 26(p — p') sinapi, is related to the magnetic vector potential by

k? 19
H,=— {14+ —==— | Amn: 94

Jw#( +k29£"’) (54)
where A, satisfles the wave equation

(V2 + k%) Am: = —8(p — p') sinapi, rel. (95)

and boundary conditions

mz: Aml
OAm: =0, c')‘ =0, Am: =0 (96)
2 P 09 lozzas £=0.L.
Assuming A, (p, 2, &) = R(p, p') sina€, we obtain
1d/{ dR 9 T , .
22 (65E) + = atdR = =80 - 1) (97)
dR
= =0. (98)
P P=p2.P3

Equation (97) is recognized as the inhomogeneous Bessel's equation of order
zero, whose solution is given by (55)-(58).

APPENDIX C
FOCK FUNCTIONS

In this appendix, we give the definition and related formulas of the Fock
functions used in this paper.
C.1 The Surface Fock Functions

i) Definition: For a complex z and a real z,

ej(n+1/2)7r/21.n+1/2
M(n+1/2) /

va(z) =

)e_j“ dt, n=0,1,2 (99)
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jm/4.,.1/2 . 2 ]
Fél)(z) - € T [w-(t)] e—-]Il dt, (100)

2vm Jr, Lwa(t)
v(z) = vo(x), (101)
v(z) = [v(z) - vi(x)] /2z, (102)

where

ws(t) = 71_; : exp (tz — 2%/3) d=. (103)

The integration contour Iy (or I'2) goes from oo to 0 along the line specified by

ang t = —2r/3 (or angz = 2x/3) and from 0 to oo along the real axis.
1) Small-Argument Asymptotic Expansion: Forz < 1,

10

vn(z) = 14+ (=1)" D bn(n)(—=jz)*"/?, (104)
e 10

v (z) = VAT 14 Y e (g (105)

m=1

where the coefficients b,,(0), b (1), b,,(2), and ¢, are given [25].
ill) Residue Series Asymptotic Expansion: For z > 1,

medin=1/2)x/2nt1/2 20 ,
VptZ) = t n-1 —”m‘ 106
(2] 2T (n + 1/2) :L;l(m) e (106)
(1) B -7t
v () = VRS2 (L jat) < (107)
m=l m
where t, = |op,|exp(—jx/3), and —ay, are the zeros of derivative of Airy’s

function, Ai'(z).

C.2 The Far-Zone Fock Functions
1) Definition:

1 1,
g(z) = ﬁ/; u:’(t)e Izt ¢, (108)
il) Formulas:
g(z) = 279703 (z < —3)
10
= Z Ame’m*® (-3< < -05)
m=1
°. d
= 139937+ Y (xz)™ (=05< z<0.5)
me1 m!
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20

:

eam;u:

:|§:0;Au—a;)

=1

1 8306—(0.8823-1'0.5094)1—1':3/3

(0.5 < z < 4.0)

(z > 4.0)

where k& = exp(—3j57/6), dm, Am and s, are given in Table I.

Y

Table 1

(109)

~
=

dm

Am

Sm

O w ~1 A = W -

—
(e}

0.7473831
—0.6862081
—2.9495325
-3.4827075

8.9378967

56.1946214

—0.3467540381D-13
—0.1469465991D—-08
—0.3540987938D+00
0.2544176553D-05
—-0.2312340815D-03
0.1332955205D-01
0.1180944801D+-01
0.7689249066D+00
~0.2105540865D+00
0.1622892013D-02

~j0.2020905526D— 12
—j0.2834631597D—08
j0.1274055399D+00
—j0.1407419787D—05
j0.4465889350D—03
—j0.2046671398D —01
j0.1164437839D+01
—j0.1285238403D+01
j0.1312640573D—01
—j0.1090163259D —02

—0.8253328597D+01
~0.6157249604D+01
—0.4741573876D+-00
—0.4474126917D+01
—0.3001183618D+01
—0.1673939722D+01

0.5728149621D+00

j0.1219314385D+02
10.9659289583D+01
j0.2711864904D+01
j0.7632294399D+01
j0.5858670248D+01
j0.4236757852D+01
70.1234148084D+01

0.1413116779D+01 —j0.3362910894D+00
0.2125953705D+401 —j0.2263304268D+01
0.3117637911D+01 —}30.5238642524D+01

60




References

(1]

2

(3]

[4]

(9]

(10]

A. F. Stevenson, “The theory of slots in rectangular waveguides,” J. Appl.
Phys., vol. 19, pp. 24-38, Jan. 1948.

A. A. Oliner, “The impedance properties of narrow radiating slots in the
broad face of rectangular waveguide,” IRE Trans. Antennas Propagat., vol.
3, pp- 4-20, Jan. 1957.

T. Vu Khac and C T. Carson, “Impedance properties of a longitudinal
slot antenna in the broad face of rectangular waveguide,” IEEE Trans.
Antennas Propagat., vol. 21, pp. 708-710, Sept. 1973.

H. Y. Yee, “Impedance of a narrow longitudinal shunt slot in a slotted
waveguide array,” IEEE Trans. Antennas Propagat., vol. 22, pp. 589-592,
July 1974.

R. W. Lyon and A. J. Sangster, “Efficient moment method analysis of
radiating slots in thick-walled rectangular waveguide,” /EE Proc., Pt. H,
vol. 128, pp. 197-205, Aug. 1981.

G. J. Stern and R. S. Elliott, “Resonant length of longitudinal slots and
validity of circuit representation: Theory and experiment,” JEEE Trans.
Antennas Propagat., vol. 33, pp. 1264-1271, Nov. 1985.

L. G. Josefsson, “Analysis of a longitudinal slot in rectangular waveguide,”
IEEE Trans. Antennas Propagat., vol. 35, pp. 1351-1357. Dec. 1987.

K. Xia and Q.-J. Yang, “Study on characteristics of dielectric-covered
waveguide slots,” Chinese J. Appl. Sci., vol. 7, no. 2, pp. 115-123, 1989.

S. R. Rengarajan, “Compound radiating slots in a broad wall of a rectan-
gular waveguide,” JEEE Trans. Antennas Propagat., vol. 37, pp. 1116-1123,
Sept. 1989.

P. B. Katehi, “Dielectric-covered waveguide longitudinal slots with finite
wall thickness,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1039-1045,
July 1990.

R.S. Elliott, “An improved design procedure for small array of shunt slots,”
IEEE Trans. Antennas Propagat., vol. 31, pp. 48-53, Jan. 1983.

A. J. Sangster and A. H. I. McCormick, “Theoretical design/synthesis of
slotted waveguide arrays,” IEE Proc., Pt. H, vol. 136, pp. 39-46, Feb. 1989.

61



{13] J. Zheng and Q.-J. Yang, “Dielectric-covered conformal slot array antenna

[14)

(15]

[16)

(17)

(18]

[19]

(22)

on a large conducting cylinder,” Acta Electronica Sinica, vol. 18, no. 1, pp.
57-63, 1990.

J. J. Gulick and R. S. Elliott, “The design of linear and planar array of
waveguide-fed longitudinal slots,” Electromagnetics, vol. 10, pp. 327-347,
Oct.-Dec. 1990.

H. Y. Yee, “The design of large waveguide arrays of shunt slots,” IEEE
Trans. Antennas Propagat., vol. 40, pp. 775-781, July 1992.

S. R. Rengarajan and A. G. Derneryd, “Application of compound coupling
slots in the design of shaped beam antenna patterns for array application,”
IEEE Trans. Antennas Propagat., vol. 41, pp. 59-65, Jan. 1993.

Q.-J. Yang and X. Tian, “Computer-aided-design of planar slot antennas,”
Chinese J. Radio Sci., vol. 9, no. 1, pp. 1-11, 1994.

K. Nia and Q.-J. Yang, “Study on the inclined slots in the narrow wall of a
rectangular waveguide,” Acta Electronice Sinica, vol. 20, no. 2, pp. 45-52,
1992.

S.-W. Lue, Y. Zhang and S. -M. Cao, “The equivalent parameters for the
radiating slot on a sectoral waveguide,” IEEE Trans. Antennas Propagat.,
vol. 42, pp. 1577-1581, Nov. 1994.

G -X. Fan, “Cylindrically conformal slotted-waveguide array antenna.”
Ph.D. dissertation, Tsinghua University, Beijing, China, Apr. 1995.

L. G. Josefsson, “Slot coupling and scattering,” 1990 IEEE Antennas Prop-
agat. Int. Symp., pp. 942-945, Dallas, TX, June 1990.

L. C. Trintinalia and H. Ling, “Electromagnetic scattering from 3-D arbi-
trary coated cavities via a connection scheme using triangular patches,” J.
Electromag. Waves Appl., vol. 8, pp. 1411-1423, Nov. 1994.

(23] J. Chen and J.-M. Jin, “Electromagnetic scattering from slot antennas on

(24]

waveguides with arbitrary terminations,” Microwave Opt. Tech. Lett., vol.
10, no. 5, pp. 286-291, Dec. 1995.

J. Boersma and S. W. Lee, “Surface field due to a magnetic dipole on
a cylinder: Asymptotic expansions of exact solution,” Univ. of Illinois at
Urbana-Champaign, Electromagnetics Lab. Rep. 78-17, 1978.

62



(25]

[26)

(27]

[28)

{29)

(31]

[32]

(33]

[34]

(35]

T. S. Bird, “Accurate asymptotic solution for the surface field due to aper-
ture in a conducting cylinder,” IEEE Trans. Antennas Propagat., vol. 33,
pp. 1108-1117, Oct. 1985.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York: Dover Publications, 1965, ch. 3.

J. R. Wait, Electromagnetic Radiation from Cylindrical Structure. New
York: Pergamon, 1959.

T. S. Bird, “Comparison of asymptotic solution for the surface field excited
by a magnetic dipole on a cylinder, " [EEE Trans. Antennas Propagat., vol.
32, pp. 1237-1244, Nov. 1984.

Z. W. Chang, L. B. Felsen and A. Hessel, “Surface ray methods for mutual
coupling in conformal arrays on cylinder and conical surface,” Polytech Inst.
New York, Final Rep., 1976 (prepared under Contract N00123-76-C-0236).

S. W. Lee and S. Safavi-Naini, “Approximate asymptotic solution of sur-
face field due to a magnetic dipole on a cylinder,” IEEE Trans. Antennas
Propagat., vol. 26, pp. 593-597, July 1978.

P. H. Pathak and N. Wang, “Ray analysis of mutual coupling between
antennas on a convex surface,” IEEE Trans. Antennas Propagat., vol. 29,
pp. 911-922, Nov. 1981.

A. S. Goriainov, “An asvmptotic solution of the problem of diffraction
of a plane electromagnetic wave by a conducting cylinder,” Radio Eng.
Electron., vol. 3, pp. 23-29, May 1958. (English translation. of Radiotekh. 1
Elektron., vol. 3, pp. 603-614, 1958.)

N. A. Logan, “General research in diffraction theory,” vols. 1 and 2, LMSD-
288087, LMSD-288088, Dec. 1959.

V. A. Fock, Electromagnetic Diffraction and Propagation Problems. New
York: Pergamon, 1965.

R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961, pp. 245-250.

63



FIGURE CAPTIONS
Figure 1. Conformal slotted-waveguide array.
Figure 2. Division of three regions and surface magnetic currents.

Figure 3. The effect of the cylinder’s curvature on the RCS in the E-plane for
a 16 x 16 slot array with matched terminals at f = 9.1 GHz. (a)—-— planar,
— p1 =500 cm, (b) py = 200 cm, (¢) py = 100 cm, (d) p1 = 50 cm.

Figure 4. The effect of the cylinder’s curvature on the RCS in the H-plane for
a 16 x 16 slot array with matched terminals at f = 9.1 GHz. (a)—-~ planar,
— p1 =500 cm, (b) p; =200 c¢m, (c) py = 100 cm, (d) py = 50 cm.

Figure 5. The effect of the cylinder’s curvature on the RCS in the E-plane for a
16 x 16 slot array with shorted terminals at f = 9.1 GHz. (a)—-— planar, —
p1 = 500 cm, (b) py = 200 cm, (c) p; = 100 cm, (d) py = 50 cm.

Figure 6. The effect of the cylinder’s curvature on the RCS in the H-plane for a
16 x 16 slot array with shorted terminals at f = 9.1 GHz. (a)—-— planar, —
p1 = 500 cm, (b) py = 200 cm, () py = 100 cm, (d) py = 50 cm.

Figure 7. RCS (dBsw) of a 16 x 16 slot array with shorted terminals at f=91
GHz. (a) planar; (b) p; = 200 cm; (c) p1 = 100 cm; (d) py =30 cm.

Figure 8. The effect of the terminals on the RCS of 2 8 x 8 conformal slot array
(py = 100 cm). - - matched terminals, — shorted terminals. (a) E-plane
pattern; (b) H-plane pattern.

Figure 9. The effect of the position of the shorted plane on the RCS ofa8x8
conformal slot array (p; = 100 cm). — Az = 0.00lcm, --- Az =0.1em, —-—
Az = lcm. (a) E-plane pattern; (b) H-plane pattern.

Figure 10. The effect of the slot thickness on the RCS of a 8 x 8 conformal slot
array (p; = 100 cm) in the E-plane. — At =1mm, . - At=04mm, —-—
At = 0.1 mm. (a) matched terminals; (b) shorted terminals.

Figure 11. RCS of a 8 x 8 conformal slot array (p; = 50 cm) as a function of
frequency. (a) 67 = 90°, ©¥"¢ = 0%; (b) 6" = 907, "¢ = 45°.

Figure 12. RCS (dBsw) of a 16 x 16 conformal slot array (py = 100 cm) at three
frequencies. (a) f = 8 GHz; (b) f = 9.1 GHz; (c) f = 12 GHz.
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for a 16 x 16 slot array with shorted terminals at f = 9.1 GHz. (a)--—
planar, — p; = 500 cm, (b) p; = 200 cm, (c) p1 = 100 cm, (d) p1 = 50
cm.

69



Theta{degress)

Thela(degrees)

0 ] 20
Phi{degrees)

(c) (d)

Figure 7: RCS (dBsw) of a 16 x 16 slot array with shorted terminals at
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APPENDIX 4

SCATTERING FROM A LARGE PLANAR SLOTTED
WAVEGUIDE ARRAY ANTENNA

Guo-Xin Fan and Jian-Ming Jin
Electromagnetics Laboratory
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801-2991

ABSTRACT

The problem of scattering from a large planar slotted waveguide array
antenna is investigated. The structural scattering and slot scattering are
solved independently through the application of the equivalence principle.
The former is calculated by a high-frequency method, such as the physical
optics (PO) and the shooting and bouncing ray (SBR) method combined
with edge diffraction. The latter is solved using the method of moments
(MoM) in conjunction with global sinusoidal basis functions and Galerkin’s
testing technique. Special attention is paid to the evaluation of the ad-
mittance matrix elements, which involve the internal and external mutual
coupling. Numerical results are presented to demonstrate the effects of a
variety of factors on the radar cross section (RCS) of a slot array, and these
include the number of basis functions in the MoM solution, the external mu-
tual coupling between the slots, the waveguide terminations, and the host
object. Also given are the RCS space distribution and the time responses of
slot arrays to illustrate their unique scattering characteristics. The RCS of
a complicated real slot array is given finally to demonstrate the capability
of the numerical method as well as the distinct features of its RCS pattern.

I. INTRODUCTION

Large planar slotted waveguide array antennas are the most common an-
tennas used on modern airborne radars. Because of their unique structures,
their radar signature has a number of very unique characteristics. The study
of these characteristics is important for applications such as target identi-
fication, electromagnetic compatibility, and stealth technology. Recently,
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we presented a method of moments (MoM) solution to scattering from a
cylindrically conformal slotted waveguide array antenna [1]. The formula-
tion is complicated because of the complex nature of the problem. Although
the method can also be applied to planar slotted waveguide array antennas
by treating these antennas as the limiting case of a cylindrically conformal
array antenna with its radius approaching infinity, the solution is unneces-
sarily complicated and time consuming. Because of the practical importance
of planar slot arrays, in this paper we present a specific MoM solution to
this problem based on much simplified formulas, with an emphasis on the
analysis of large arrays.

The scattering from a slotted waveguide array antenna consists of two
parts: the slot scattering and the structural scattering. The former is con-
tributed by the slots, and the latter is contributed by the surface of the
antenna and the host object. In practical applications, slot arrays are usu-
ally placed in the region where only the direct incident field reaches. Be-
cause of this, the slot scattered field and the structural scattered field can
be solved separately through the application of the equivalence principle. In
this paper, we employ a high-frequency method, such as the physical optics
(PO) and the shooting and bouncing ray (SBR) method combined with edge
diffraction, to take into account the structural scattering and the MoM to
characterize the slot scattering.

The paper is organized as follows. Section II presents the formulation for
the analysis of planar slot arrays, and the emphasis is given to the calculation
of all kinds of the generalized admittance matrix elements. Section III gives
several typical numerical examples to illustrate the scattering properties of
planar slot arrays, such as the effect of the aperture modes and external
mutual coupling, the RCS space and probability distribution, the effect of the
host object or platform, and the time response of a slot array. A complicated
real slot array is considered finally to demonstrate the capability of the
numerical method as well as the distinct features of its RCS pattern.

II. THEORY

Consider the planar slotted waveguide array antenna depicted in Fig. 1.
The waveguides have a width a and height b, and their upper walls have a
thickness t. Each waveguide may have a different length and may be divided
into several sections. FEach section is terminated with an arbitrary load. All
the radiating slots are longitudinal and have the same width 2w; however,
they may have a different length and a different offset with respect to the
center-line of the waveguides.

In accordance with the equivalence principle, the field outside the an-
tenna can be decoupled from those inside the antenna by covering the slots
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Figure 1: A planar slotted waveguide array antenna.

with a perfect conductor and introducing an equivalent magnetic current
over the apertures of the slots. Therefore, the total scattered field can be
decomposed into two parts. One is the field scattered by the surface of the
antenna with all the slots covered by a perfect conductor and this is of-
ten referred to the structural scattered field (or structural mode), denoted
as E**, The other part is the field radiated by the equivalent magnetic
currents and this is often referred to as the slot scattered field (or antenna
mode), denoted as E*/°*. The total scattered field can then be written as

Esca(r) _ Estru(r) + ESIOt(I‘). (1)

When the surface of the antenna is illuminated only by the incident
wave and when there is no multiple reflection between the antenna and its
host object, the structural scattered field and the slot scattered field can be
solved for separately. Since there are many efficient high-frequency methods
available to calculate the structural scattered field, we focus on the solution
of the slot scattered field.

A. Integral Equations and MoM Solution
Consider the ith slot. Its lower and upper apertures, denoted as S{’ and
ST respectively, divide the space into three regions: the waveguide region
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(denoted as region a), the external region (denoted as region b), and the
slot region (denoted as region ¢) since the slot has a finite thickness. By
imposing the continuity of the tangential magnetic fields on S} and S¥, we

obtain the integral equations satisfied by the equivalent magnetic currents,
M/ and MY, as

L HNM) +HL M) ~HLMB) =0 res! ()

ZH” (M]) + H;, (M) - Hy, (M) = B2 reST (3)

where M/ denotes the equivalent magnetic current on S/ and M7 denotes
the equivalent magnetic current on ST, H* denotes the magnetic field in
region «, HP™ denotes the primary field which is the sum of the incident
field and the field scattered by the antenna without the slots, and finally, the
subscript 7 denotes the tangential component of the associated field. Note
that the summation in (2) is carried out for all inner apertures in the same
waveguide, and the summation in (3) is carried out for all outer apertures.

For narrow slots, we can choose the global sinusoidal basis functions to
expand each equivalent magnetic current

NI,H
J
LE _ sprl 0 _ - Lr . LI
M;" =:2M;" =2 E V,;" sinag;€ res; (4)
g=1

where ag; = gn/L; with L; being the length of the jth slot, N]-“I denotes
the number of basis functions, and £ varies from 0 at the one end of the
slot to L; at the other end. By employing Galerkin’s technique, the integral
equations can be converted into the matrix equation given by

[Yii(a)+ (e, 8h8h)]  [-Y(c, 858D ] { V] } { [0] }
-Ysi(e,sEsh]  [va®) + e, sEsh] | | [v]] [1,,,-]( |
)
In the equation above, the generalized admittance matrix elements and ex-
citation vector elements have the same physical meaning as those of the
conformal slot array [1].

We note that for slots of zero thickness, the edge condition is often em-
ployed to represent the transverse variation of the equivalent magnetic cur-
rent [2]-[4], which makes the evaluation of the matrix elements difficult. For
slots of finite thickness as is the case for practical applications, the singularity
is much weaker than for the zero thickness case. As a result, the equivalent
magnetic current can be expanded in terms of the global sinusoidal basis
functions with a uniform transverse distribution. Such an expansion has
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been successfully used in the past for the analysis of rectangular waveguide
slot radiation problems [5]-[8].

B. Generalized Admittance Matriz Elements for Region a
The admittance matrix elements due to the internal coupling in the rect-
angular waveguide (region a) are given by

Y, (a) = // // G2, (r, ') sin ay€ sin ag;¢’ dSdS’ (6)
§1 s

where G, is the Z22-component of the magnetic-source magnetic-field dyadic
Green’s function for the rectangular waveguide, which is given by

ng = jwe Z ZB(ma n) Cx Cz’Cy Cy’{é(z — ZI)

m=0n=0
_ A727'L1‘L [e—jhmn!z—zll _ R< ej2hmnzl e—jhmn(z+2’)
2jhmnAmn mn
~ Bt ) o (1= AL ()
In this expression,
2 2 1
B(m,n) = (8)

1+ dom 1 4 g, k2ab

and C; = cosvz, Cp = cosva’, Cy = cospy, Cy =cospy', v=mn/a, p =
nm /b, AL, = v +p?, by = /kE = AL Ay = 1— RS, R, e~ ihmn(z22=21),
and Ry, and R;,, are the reflection coefficients for mode (m, n) at the two
ends of the waveguide, located at z = z; and z = 2, respectively.

The integrals in (6) can be evaluated analytically through the change of
variables, resulting in

. Li pw pL, prw
i@ = [ [ [7 [ Gae,r) sin apiésin o drdg'dnde

= —jwe 3 3 B(m,m)I¥(m) 1 (mym) + 12, (m,m)] (9)

m=0n=0
where
I¥(m) = [2wsinc(vw)]?® cos [1/ (g— + 6;)] cos [u (% + 61)] (10)
i + —3hmnL (k2 ~ alz’i)Li
(m,n) = C(m,n) [L+ (=177 [1 = (~1)PePhmnde] 46,2
pt mn

(11)

]é.(?)(m’ n) —_ C(m’ n)e:thm'n[(ZO'—ZOJ)—(Li_LJ)/Z]

: [1 - (—1)Pe¢fh'""L"] [1 - (—1)9e*ﬂ‘""'LJ] z20i 2 205 (12)

80



with )
)‘mn aPi an
: 2 2 2 2
2]hm"Amﬂ api - hmn aqj - hmn

C(m,n) = (13)
in which é; denotes the offset of the ith slot from the center of the waveguide,
and zo; and zp; denote the center of the ith and jth slots, respectively.
Finally, I ] . (m,n) are the same as those in [1].

For the mutual coupling between different slots (that is, when ¢ # j),
the summation of the double series in (9) can be evaluated directly without
any difficulty due to the fast evanescence of higher-order waveguide modes.
For the self coupling element (that is, when i = j), its evaluation involves a

slowly converging series, given by

(k% — o)L k2 —oZ rb\? & 2 1
(3) X

agi Y Op L k2ab 1+ dgn n2 + 22
(14)
where 22 = (b/m)%(a2; ~ k* + v?). However, this term can be evaluated
analytically in a closed form since

Z B(m,n)é,,
=0

n=0

ad 2 1 7
—=—— = Zcothna.
7§I+50n S — o hnz (15)

C. Generalized Admittance Matriz Elements for Region b
The admittance matrix elements due to the external coupling in region
b are given by

Y3 (b) = ////ng (r, 1) sin api€ sin a,;€'dS dS’ (16)

st st

where G9, is the z2-component of the magnetic-source magnetic-field dyadic

Green’s function for the outer space. As usual, when the surface of the

antenna is large enough and the interference from the surrounding objects

can be ignored, G%, can be approximated by the corresponding Green’s
function GY, for an infinite conducting ground plane,

k2 1 9%\ ekt
b0 — F 1 07 ye ™
ctnet = (14 i) T ()

where t = \/(z - 2')? + (z - 2')%.

When the source point and the field point are in the same aperture (that
is, when i = j), G%, has a t~3 singularity as t — 0, and a regularization is
needed to evaluate the integrals. However, this singularity can be reduced
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to the order of t~! using integration by parts. As a result, Y,j;(b) can be
written as

i k2 14 (-1 r+g 8o rLifcosb 72 p2w/siné
e = VAV AT A A
jwp 27k o Jo % Jo

x F(tsin 6,tcos §) e dt df (18)
where 6y = tan=!(2w/L;) and
22w —
E(Tiﬂ-a_;)-) [a,,;(k2 - 013,-) sin agiu — ogi (k% - afn-) sin ap,-u]
pi qt
F(u,v) = P#q
(2w — v) [(Li - u)(k? — aZ;) cos apiu + ?.Tt;(kz + ;) sin ap,-u]
pP=4q.
(19)

In arriving at (18), we have applied a series of variable transformations [7].
When ¢ # j, the expression for the mutual admittance matrix elements
can be written as

L, pw pL w
Yp‘g(b) = /0 /_w/O J/_w G (2 — ',z — 2') sin api€ sin €' dn'dg’' dndé
(20)
with
z—2' = (- &)+ (200 — 205) + (Li = Lj)/2
z—2' = (n—1') + (zo: — 20;)
where zp; and zg; are the coordinates of the center of the 7th and jth slots,
respectively. For large practical slot arrays, the length difference between the

slots is small. Using the average slot length of the two slots to approximate
their lengths [7], [8], that is,

L,’%Lj%(L,’*FLj)/?EL, (22)

(21)

and introducing the transformations v = £ — €' and v’ = £ + &' — L, with the
aid of the midpoint integration, we have

.. L ~
Y (b) = 2u? /0 [Go(u) + (=1)P**Go(~w)] F(u) du (23)
where
k2 e-jk\/(roi—1'0_;)2‘*'(11/4“‘701“"-0.))2
Go(u) = - (24)
Jwep 2Tr\/($01' — 20;)2 + (u + z0i — 20;)?
and
2 + . .
m[(—l)” Youpi sin 0rgi U — g sin apiu] PFq
Fuy=¢ " % . (25)
(L; — u) cos apiu + - sin ap;u p=q.
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D. Generalized Admittance Matriz Elements for Region ¢

The procedure similar to that in [1] can be employed to obtain the ex-
pressions for the generalized admittance matrix elements for region ¢. The
magnetic field in the cavity formed by the slot with its two apertures covered
by a perfectly conducting sheet, produced by the surface magnetic current
28(y — y') sin api€, is related to the magnetic vector potential by

k? 1 8

where A,,, satisfies the wave equation
(V2 + kz)Amz = —-6(y — ¥) sin i€, revV, (27)

and the boundary conditions

BAmz aAmz
=0, —_ =0, A, 0 28
3:1: r=tw 6y y=0,t £=0,L ( )
Assuming Am.(z,y,€) = Y(y,v') sin 0;€, we have
d¥y
—— + 8% = -é(y -y, (29)
dy?
dy
—_ =0. 30
dy y=0,t ( )

where 8 = |/k? — o2, for k > oy, and B = jy/aZ; - k? for k < ap;. The
solution of (29) and (30)

Y(y,y) = —cos By cosB(t — y>) / Bsin Bt (31)

where y¢ = min(y,y’), y» = max(y,y’). Evaluating the inner product be-
tween the aperture magnetic fields and the testing functions, we finally ob-
tain

Y (e, 58 =Y (e, SE ST) = _Liwb Lot Bt 66, (32)
qu
Y(e,S58H =Y (e, SE S)) = J‘ ﬁcscﬁtéuépq (33)

E. Ezcitation Vector
For an incident plane wave of arbitrary polarization and incident angle,
whose electric field is given by

Einc — (éinc cos ¥ + (Z)inc sin w)e—j Kkinc.p (34)
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where 1 is the polarization angle and (6'"¢, ¢'"°) denote the incident angles,
we obtain the elements of the excitation vector as

_ 4wY00zp,~

L= [(—l)pejk’L' - 1] sin v sin 6" sinc(kzw)

7 _ j.2
;i kz

w el [kz (zoi+8i)+kyyo+kz(20i—Li/2)] (35)

where yo denotes the y coordinate of the upper apertures of the slots. Note
that for scattering calculation, the spherical coordinate system is defined
such that the normal at the center of the array is § = 90° and ¢ = 0°,
which is obviously different from the rectangular coordinates used for the
waveguides.

F. Scattered Field and RCS

Once the equivalent magnetic currents on the slot apertures are found, we
can compute the scattered field by slots, which is the radiated field due to the
equivalent magnetic currents. Meanwhile, for a large array, we can employ
a high-frequency method, such as PO or SBR, to calculate the structural
scattered field. The total scattered field is the sum of these two fields.

The RCS of the slot array antenna is defined as

Esce (I')
Einc(r)

2

= lim 4nr
r—o0

2 2

slot stru 2
o= lim 4nr E (r).+E (r) .
r—oo Emc(r)

(36)

Another parameter of practical importance is the RCS probability of a slot
array antenna over a space solid angle Qp, which can be defined as

P(o > og) = Qi // U[0(8, 6) — o0) sin 8 df do (37)
04
where o is a given value of RCS, and U(z) is the unit step function.

III. NUMERICAL RESULTS

For all the examples considered except for those mentioned otherwise,
the cross-section of waveguides is given by @ = 21 mm and = 5.0 mm.
The distance between the center-lines of the adjacent waveguides is 22 mm.
The adjacent slots on the same waveguide are spaced );,0/2 apart in the z
direction, where Ay is the waveguide wavelength at the working frequency.
The shorted planes are placed Ago/4 away from the first and last slots, re-
spectively. All other parameters, unless otherwise specified, are given by:
2w = 1.6 mm, L; = 16 mm, § = 1.5 mm, ¢t = 0.8 mm, % = 90°, and the
working frequency fo = 9.1 GHz.
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To verify the theory above and the computer program, comparisons are
made between its solution and those obtained by MoM and FEM [9] for a
single slot and four slots on a single waveguide. Good agreement is obtained
between the three solutions. In addition, the validation is also confirmed
by comparisons between the results of a planar slot array and those of a
conformal slot array on a very large cylinder as shown in [1].

We first study the effect of the number of basis functions or aperture
modes in (4) on the calculation of RCS. The choice of this number depends
on several factors, such as the slot offset, the height of waveguide, and fre-
quency. In large practical slot arrays, the slot offset is usually small. Numer-
ical results show that within a finite bandwidth near the working frequency,
only three modes are needed for a good accuracy. In many cases, especially
at a frequency near or below the working frequency, a single-mode approxi-
mation can yield an acceptable accuracy. Figures 2 and 3 show the effect of
the number of modes on the RCS of a slot array (excluding the structural
scattered field) at three frequencies. The use of a minimum number of modes
makes it possible to analyze very large slot arrays.

Next, we study the effect of the mutual coupling through the exterior
space (region b). Unlike the internal mutual coupling that only exists be-
tween the slots in the same waveguide, the external mutual coupling exists
between all the slots. Although the fourfold integral in (16) has been re-
duced to a single integral in (23) for the computation of the external mutual
coupling, it is still very time consuming to calculate all these matrix ele-
ments when the slot array is very large. One possible solution is to ignore
the mutual coupling when the two slots are far apart. Figure 4 shows the
effect of the external mutual coupling on the RCS patterns (excluding the
structural scattered field). Three curves are plotted in the figure: one with
all the mutual coupling, another with no mutual coupling at all, and the
third one with the coupling with the surrounding 9 x 5 slots (9 waveguides
each containing 5 slots). It is apparent that by including the mutual coupling
between the adjacent slots, one can obtain a sufficient accuracy.

The effects of the structural and slot scattered fields are illustrated in
Fig. 5, which shows the RCS pattern of a circular slot array consisting of
32 waveguides with 32 slots in the central waveguide of the array (hereafter
referred to as 32 x 32 circular slot array). The radius of the antennas is
16 in. The pattern of the antenna without the slots (that is, the structural
scattered field) is also given for comparison. It can be seen that the structural
scattering forms a strong peak in the normal direction of the plate. The
major effect of the slot scattered field is the grating lobes.

Figure 6 gives the space distribution of the RCS of the 32 x 32 circular
slot array, including both the structural and slot scattered fields. The main
RCS peaks away from the normal direction are due to the slot scattering,.
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Figure 2: The effect of the number of aperture modes on the RCS in the
E-plane for an 8 x 8 slot array with shorted terminals. — 7 modes; — —
5 modes; —-— 3 modes; --- 1 mode. (a) f = 8 GHz; (b) f = 9.1 GHz; (c)
f =12 GHz.

86



20 T T T
£ of
ra
B
8
m—20'
40—l : : . Al
0 30 60 90 120 150 180
Theta (degrees)
(a)
20 r
£ of
fas]
ke
8
'I-20-
40 - : : : -
30 60 90 120 150 180
Theta (degrees)
(b)
0 T T
E o0}
[¢1]
2
8
I—40'
60 1 1 )
0 30 60 90 120 150 180
Theta (degrees)
(c)
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Figure 4: The effect of the external coupling on the RCS for a 32 x 32
rectangular slot array with shorted terminals at f = 9.1 GHz. — all slots;
— — 9 x 5 slots; —-— no external coupling. (a) E-plane; (b) H-plane.

From the data in Fig. 6, we can calculate the RCS probability using (37) and
the result is shown in Fig. 7. The space solid angle € in (37) is specified
by a cone half-angle, denoted as fy, where 6 = 0 in the direction normal to
the surface of the antenna.

To demonstrate the effect of a slot array antenna on the RCS of the host
object, we place the 32 x 32 circular slot array antenna in the nose of an
airplane. The radome covering the antenna is ignored because it is largely
transparent at the working frequency. The airplane is in the normally flying
position (horizontal) and the RCS of the entire object is given in Fig. 8.
The structural scattered field is calculated using the high-frequency code
XPATCH [10], which is based on the SBR method, and for the calculation,
the airplane is assumed to be a perfect conductor. We note that although
the size of the slot array is small compared with that of the airplane, its
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Figure 5: RCS of a 32 x 32 circular slot array with matched terminals at
f =9.1 GHz. (a) E-plane; (b) H-plane.

scattering dominates in some angles corresponding to those of the grating
lobes.

The time response of a slot array is studied using a slot array of 8 identical
waveguides with 2 slots on each waveguide as depicted in Fig. 9. The time
response, shown in Figs. 10 and 11, is obtained by using the inverse fast
Fourier transform (FFT) of the frequency response over a bandwidth from
8 to 12 GHz. In the example shown in Fig. 10, the waveguide terminals
are matched and the two different intervals between the slots are used, d =
100 and d = 200 cm, respectively. The first two peaks correspond to the
scattering directly from the two rows of the slots, respectively, and their
intervals in time are 2d cos#™°/c = 3.3 and 6.6 ns, as expected. The third
peak comes from the first interaction between the slots: the wave enters the
waveguide from the first (and second) slot and comes out from the second
(and first) slot. In the example of Fig. 11, the one end of the waveguides
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Figure 10: The time response of a 8 x 2 slot array with matched terminals
exited by an incident wave with 6" = 60°, ¢'"¢ = 0°. (a) d = 100 cm; (b)
d =200 cm.

is matched and the other end is shorted at three different positions. The
second response is due to the field entered the waveguide through the slots,
reflected by the shorted terminal, and re-radiated from the slots. It is clearly
seen that the time delay of the second response is proportional to the length
of the waveguides.

In the last example, we consider a real slot array antenna constructed in
our laboratory. The configuration of one quarter of this antenna is shown
in Fig. 12. Each waveguide is divided into several short sections, each con-
taining only four slots except for those next to the edge of the antenna. The
entire antenna consists of 40 waveguides with 42 slots in the central waveg-
uide of the array (hereafter referred to as 40 x 42 circular slot array). Other
parameters are: ¢ = 21.3 mm, b = 5 mm, 2w = 3.2 mm, L; = 16.2 mm,
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Figure 11: The time response of a 8 x 2 slot array with d = Ago/2 and a

shorted terminal at z; and a matched terminal at 2, exited by an incident

wave with 67 = 90°, ¢™ = 0°. (a) z; = 50 cm; (b) z; = 100 cm; (c)

z; = 150 cm.

6; = 2 mm, ¢t = 0.5 mm, and the working frequency fo = 9.9 GHz. The
calculated RCS patterns are given in Fig. 13, which include the structural
scattered field. As can be seen, the RCS pattern in the H-plane is substan-
tially different from that when the waveguides are not divided into several
sections [see Fig. 5(b)], whereas the pattern in the E-plane remains similar.
There are several additional grating lobes in the H-plane, which are caused
by an array whose elements are the short sections. Finally, Fig. 14 shows
the RCS when this antenna is placed in the nose of the airplane depicted in
Fig. 8(a).

IV. CONCLUSION

This paper investigates the problem of scattering from a large planar
slotted waveguide array antenna. The total scattering consists of two parts,
namely the structural scattering and slot scattering, and these two parts are
solved independently through the application of the equivalence principle.
The former is calculated by a high-frequency method, such as the PO and
SBR method. The latter is solved using the MoM in conjunction with global
sinusoidal basis functions and Galerkin’s testing technique. Special attention
is paid to the evaluation of the admittance matrix elements, which involve
the internal and external mutual coupling. Numerical results are presented
to demonstrate the effects of a variety of factors on the RCS of a slot array,
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Figure 12: An 40 x 42 circular slotted-waveguide array.

and these factors include the number of basis functions in the MoM solution,
the external mutual coupling between the slots, the waveguide terminations,
and the host object. Also given are the RCS space distribution and proba-
bility curves and the time responses of slot arrays to illustrate their unique
scattering characteristics. The RCS of a complicated real slot array is given
finally to demonstrate the capability of the numerical method as well as the
distinct features of its RCS pattern. The numerical method developed are
useful in applications such as target identification, electromagnetic compat-
ibility, EMP penetration, and stealth technology.
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Figure 13: RCS of a 40 x 42 circular slot array with shorted terminals at
f=9.9 GHz. (a) E-plane; (b) H-plane.
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