To: Mary Schiflett
Program Administrator
TMC/NASA Cooperative Research Program
406 Jesse H. Jones Library Building
T: 791-8844; F: 791-8855

Date: August 19, 1997

Round 1 Progress Report: Anabolic Vitamin D Analogs as Countermeasures to Bone Loss
Norman J. Karin¹, Mary C. Farach-Carson², Co-PIs
¹Univ. Texas Grad Sch. Biomed. Sci., GSBS S.102, T: 500-9870; F: 500-9877
²Dept. Basic Sciences, Univ. Texas Dental Branch, DBB 3.108, T: 500-4492; F: 500-4500

During the month of June, 1997, the final month of this contract, Dr. Wei Li continued his investigation of the “priming” effect of vitamin D₃ on parathyroid hormone (PTH)-induced elevations in cytosolic free Ca²⁺ in cultured osteoblasts. Unlike the vitamin D steroid, neither estrogen nor progesterone were either to prime the cells’ response to PTH. Wei also confirmed previous experimental results suggesting that vitamin D₃ alone does not change cytoplasmic Ca²⁺ levels.

To summarize the progress we made during the period supported by the Round 1 contract, we demonstrated for the first time that vitamin D₃ influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D₃ and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Our findings have been accepted for publication (copy attached):

Another result from the Round 1 study was our observation that chronic exposure of cultured osteoblasts to vitamin D₃ altered the number of voltage-sensitive Ca²⁺ channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.
Li, Wei, Randall L. Duncan, Norman J. Karin, and Mary C. Farach-Carson. 1,25(OH)₂D₃ enhances PTH-induced Ca²⁺ transients in preosteoblasts by activating L-type Ca²⁺ channels. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E599–E605, 1997.—We previously demonstrated electrophysiologically that 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] shifts the activation threshold of L-type Ca²⁺ channels in osteoblasts toward the resting potential and prolongs mean open time. Presently, we used single-cell Ca²⁺ imaging to study the combined effects of 1,25(OH)₂D₃ and parathyroid hormone (PTH) during generation of Ca²⁺ transients in fura 2-loaded MC3T3-E1 cells. Pretreatment with 1,25(OH)₂D₃ concentrations, which alone did not produce Ca²⁺ transients, consistently enhanced Ca²⁺ responses to PTH. Enhancement was dose dependent over the range of 1 to 10 nM and was blocked by pretreatment with 5 μM nitrendipine during pretreatment. A 1,25(OH)₂D₃ analog that activates L-type channels and shifts its activation threshold also enhanced PTH responses. In contrast, an analog devoid of membrane Ca²⁺ effects did not enhance PTH-induced Ca²⁺ transients. The PTH-induced Ca²⁺ transient involved activation of a dihydropyridine-insensitive cation channel that was inhibited by Gd⁺⁺. Together, these data suggest that 1,25(OH)₂D₃ increases osteoblast responsiveness to PTH through rapid modification of L-type Ca²⁺ channel gating properties, whose activation enhances Ca²⁺ entry through other channels such as the PTH-responsive, Gd⁺⁺-sensitive cation channel.

Calcitropic hormones; vitamin D; bone cells; calcium homeostasis; parathyroid hormone; 1,25-dihydroxyvitamin D₃

Both 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃] and parathyroid hormone (PTH) play fundamental roles in controlling bone density and systemic Ca²⁺ homeostasis. Bone is a major target tissue for PTH and 1,25(OH)₂D₃, and cells of the osteoblastic lineage possess receptors for and respond to both hormones (6, 26). The secosteroid 1,25(OH)₂D₃ activates both genomic and nongenomic (membrane-initiated) pathways in osteoblastic cells, presumably through separate receptor systems (23). The nuclear vitamin D receptor for 1,25(OH)₂D₃ (nVDR) is well characterized and has been the subject of numerous comprehensive reviews (21). In contrast, the identity of the membrane receptor and its action in controlling intracellular events remain elusive (22). Our laboratory previously demonstrated, using electrophysiological recording techniques, that 1,25(OH)₂D₃ increases osteoblastic plasma membrane permeability to Ca²⁺ by shifting the threshold of L-type Ca²⁺ channel activation toward the resting potential and prolonging the channel mean open time (4). This phenomenon occurs within milliseconds after addition of 1,25(OH)₂D₃. These observations led us to hypothesize that 1,25(OH)₂D₃ exerts a “priming” effect on membrane-initiated Ca²⁺ responses to other calcitropic hormones acting through plasma membrane receptors, such as PTH (13). These responses generally are coupled to Ca²⁺ release from intracellular stores and to nonspecific cation channels in the plasma membrane and together produce transient elevations in cytosolic free Ca²⁺ (12). An enhancing effect of 1,25(OH)₂D₃ would be predicted to augment Ca²⁺ signaling in response to other calcitropic hormones and could be manifested as an increase in either the magnitude or duration of the Ca²⁺ transient.

Synthetic analogs of 1,25(OH)₂D₃ containing various structural modifications can stimulate subsets of biological activities in target cells. These analogs have been characterized extensively in several laboratories, including our own (reviewed in Ref. 1). Analogs such as 1,24-dihydroxy-22-ene-24-cyclopropyl D₃ (code name BT, also known as calcipotriol) bind well to the nVDR and selectively activate genomic pathways such as those that lead to increased transcription of bone matrix proteins such as osteopontin and osteocalcin (14). Unlike the parent hormone, 1,25(OH)₂D₃, these analogs produce little or no acute stimulation of Ca²⁺ influx at low nanomolar concentrations (14). Other analogs, in particular those lacking the 1-a-hydroxyl group, such as analogs 25-hydroxy-16-ene-23-yne-D₃ (code name AT) and 25-hydroxy-23-yn-D₃ (code name Y), lack the ability to bind to the nVDR or initiate transcription of matrix proteins but readily increase Ca²⁺ influx into osteoblastic cells (16). These latter analogs also shift the activation threshold for L-type Ca²⁺ channels toward the resting membrane potential (30). We postulated that these readily distinguishable activities reflect a pharmacological distinction between the two receptors for 1,25(OH)₂D₃, one nuclear and one in or near the plasma membrane (14).

In this study, we used a single-cell Ca²⁺ imaging system to examine the interaction of 1,25(OH)₂D₃ or two of the previously characterized 1,25(OH)₂D₃ analogs, AT and BT, with PTH. Specifically, we examined the potential Ca²⁺-enhancing effect of the secosteroids with regard to increases in the concentration of free intracellular Ca²⁺ ([Ca²⁺]ₗ) induced by PTH in preosteoblastic MC3T3-E1 cells loaded with fura 2. A nonfusing, premyocytic cell line, BC₃H₁, which expresses 1,25(OH)₂D₃-responsive L-type plasma membrane Ca²⁺ channels at high levels characteristic of excitable tissues (3, 10), was studied for comparative purposes. The role of Ca²⁺ influx through voltage-sensitive Ca²⁺ channels present in the plasma membrane in the
1,25(OH)₂D₃-enhancement phenomenon was demonstrated using inhibitors of channel function. Interaction with the Gd³⁺-inhibitable, mechanosensitive cation channel found in osteoblasts (12) was also revealed for the first time.

MATERIALS AND METHODS

Materials. Coverslip tissue culture dishes were obtained from MatTek (Ashland, MA). Fura 2-AM, the acetoxyethyl ester of the Ca²⁺-sensitive fluorescent dye, fura 2, was purchased from Molecular Probes (Eugene, OR). Thapsigargin was obtained from Calbiochem (La Jolla, CA). Bovine PTH-(1–34), nitrendipine, Gd³⁺, and other chemicals were purchased from Sigma Chemical (St. Louis, MO). 1,25(OH)₂D₃ was from Biopol Research Laboratories (Plymouth Meeting, PA), and structural analogs were kindly provided by Dr. Anthony Norman (University of California at Riverside, Riverside, CA).

Cell culture. MC3T3-E1 cells, a preosteoblastic line derived from neonatal mouse calvarial bone, were provided by Dr. Renfrey Franceschi and maintained as culture stocks in ascorbate-free medium containing 10% fetal bovine serum, as described previously (15). Growth phase BC₂H₃ premyocytes were cultured in Dulbecco's modified Eagle's medium (DMEM)-Ham's F12 (1:1) medium containing 10% fetal bovine serum as described (25). Cells were plated onto coverslip dishes in DMEM containing 10% fetal bovine serum 2 days before the day of the experiment. All cells were subconfluent at the time of the experiments.

Intracellular Ca²⁺ measurements. We used a single-cell Ca²⁺ imaging system (Intracellular Imaging, Cincinnati, OH) to perform intracellular Ca²⁺ measurements (28). After the medium was removed from the dishes, cells were washed with Hanks' balanced salt solution (HBSS) (140 mM NaCl, 4.2 mM KCl, 0.5 mM NaH₂PO₄, 0.4 mM Na₂HPO₄, 0.4 mM MgSO₄, 0.3 mM MgCl₂, 1 mM CaCl₂, 6 mM glucose, 0.1% bovine serum albumin, and 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, pH 7.4) and then loaded with 3 µM fura 2-AM in HBSS for 30 min at 37°C. The conditions were chosen to avoid probe compartmentalization and to maximize cytoplasmic dye localization. The loaded cells were incubated further for 15 min with HBSS alone to allow the complete deesterification of fluorescent probe. Fura 2 fluorescence was visualized with a Nikon inverted microscope using a Nikon ×40 fluor objective. The cells were illuminated with a xenon lamp equipped with quartz collector lenses. A shutter and filter changer containing the two different interference filters (340 and 380 nm) were computer controlled. Emitted light was passed through a 430-nm dichroic mirror, filtered at 510 nm, and imaged with an integrating charge-coupled device video camera. Four to eight cells were measured within each field. Consecutive frames obtained at 340- and 380-nm excitation were compared as a ratio (F₃₄₀/F₃₈₀) and [Ca²⁺⁺], in each cell was calculated from F₃₄₀/F₃₈₀ by comparison with fura 2 free acid standards. Individual Ca²⁺ traces shown in Figs. 1–4 are computer-generated population means derived from simultaneous recording of [Ca²⁺⁺], in the four to eight single cells in a microscopic field. Each experiment was repeated at least three times, and Figs. 1–4 were constructed from representative experiments.

1,25(OH)₂D₃ and structural analogs. 1,25(OH)₂D₃ and structural analogs AT and BT were stored as stock solutions in absolute ethanol in the dark at −20°C until use. The structural integrity and concentrations of the compounds were routinely monitored from the absorption spectra and by comparison of the absorbency ratio at 264/228 nm, as described previously (4). Solutions with a ratio <1.6 were discarded.

Other methods. Bovine PTH-(1–34) was dissolved in distilled water. Thapsigargin and nitrendipine were maintained and dispensed from stock solutions in dimethyl sulfoxide (DMSO) or absolute ethanol, respectively. All reagents were stored in the dark at −20°C. The delivery vehicle was used as the control in all experiments.

RESULTS

1,25(OH)₂D₃ enhances PTH-induced increases in cytosolic Ca²⁺ concentration in preosteoblastic MC3T3-E1 cells. In our initial experiments, we measured the ability of nanomolar concentrations of 1,25(OH)₂D₃ to induce transient rises in [Ca²⁺⁺] in single cells representing the preosteoblastic and premyocytic phenotypes, both previously shown to express L-type Ca²⁺ channels responsive to secosteroids (4, 10, 20). As shown in Fig. 1, exogenously added 1,25(OH)₂D₃ (10 nM) produced an immediate and rapid increase of [Ca²⁺⁺], in fura-loaded premyocytic BC₂H₁ cells (Fig. 1A) but no significant [Ca²⁺⁺] increase in preosteoblastic MC3T3-E1 cells (Fig. 1B).

Fig. 1. Effect of 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) on concentration of free intracellular Ca²⁺ ([Ca²⁺⁺]) in growth phase myocytic BC₂H₁ and preosteoblastic MC3T3-E1 cells. Measurements of [Ca²⁺⁺] were made using a single-cell Ca²⁺ imaging system, as described in MATERIALS AND METHODS. A: BC₂H₁ cells treated with 10 nM 1,25(OH)₂D₃ demonstrate a Ca²⁺ transient that peaks within 15 s and then rests at new baseline. B: MC3T3-E1 cells treated with same concentration of 1,25(OH)₂D₃ do not show a similar Ca²⁺ transient but will release Ca²⁺ from intracellular stores in response to 5 µM thapsigargin (TG). First arrow denotes time of addition of 1,25(OH)₂D₃.
1,25(OH)2D3 ENHANCES PTH RESPONSES IN PREOSTEOBLASTS

The lack of response in MC3T3-E1 cells is not attributable to an absence of releasable Ca2+ in intracellular stores, because addition of thapsigargin immediately produced a Ca2+ transient (Fig. 1B). Depolarization of the MC3T3-E1 cells with 60–120 mM extracellular K+ also failed to elicit a Ca2+ signal detected by fura 2, although 45Ca2+ influx studies showed that depolarization triggered an increase in Ca2+ uptake within 2 min (data not shown). We next examined the potential ability of 1,25(OH)2D3 to enhance PTH effects on [Ca2+]i in MC3T3-E1 preosteoblasts, a direct test of our hypothesis that the left shift in activation potential toward the resting potential would augment development of the Ca2+ transient induced by PTH. The traces presented in Fig. 2 show that in MC3T3-E1 cells, pretreatment with 10 nM 1,25(OH)2D3 for 10 min before PTH stimulation (Fig. 2A) enhanced the PTH-induced Ca2+ transient compared with control pretreatment with vehicle (ethanol) alone (Fig. 2B). To investigate if influx through L-type Ca2+ channels is required for the enhancement effect, we tested whether inclusion of 5 μM nitrendipine, a dihydropyridine blocker of L-type Ca2+ channels, would attenuate the enhancement effect of 1,25(OH)2D3. As seen in Fig. 2C, the Ca2+ transient induced by PTH after treatment with both 1,25(OH)2D3 and nitrendipine was comparable to that produced by PTH in cells treated with vehicle alone (Fig. 2B and C). Because nitrendipine did not block the PTH-induced Ca2+ transient (Fig. 2C), we tested whether this transient could be blocked by Gd3+, a lanthanide cation that inhibits stretch-activated Ca2+-conducting channels known to be present in osteoblasts (12). As shown in Fig. 2D, addition of 10 μM Gd3+ completely abolished the PTH-induced Ca2+ transient, even after addition of 1,25(OH)2D3. The same effect was seen if the Gd3+ was added during the pretreatment period (data not shown). Even when intracellular stores were full (Fig. 1B), the elimination of extracellular Ca2+ completely abolished development of the Ca2+ transient after addition of 1,25(OH)2D3 and PTH, indicating that influx of extracellular Ca2+ was required for development of the Ca2+ signal in response to PTH (data not shown). The increased slope after addition of PTH was a common, but not invariable, occurrence during repetition of these experiments. At present we have no explanation for this phenomenon. In further studies, we tested whether the enhancing effect on PTH-induced influx through Gd3+-sensitive channels produced by 1,25(OH)2D3 was dose dependent. An enhancement of the PTH-induced increase in [Ca2+]i by pretreatment with 5 nM 1,25(OH)2D3 was seen, although the magnitude of [Ca2+]i rise was less than that induced by pretreatment with the 10-nM dosage (compare Fig. 3, A and B). Treatment with 1 nM 1,25(OH)2D3 produced a barely detectable enhancement of PTH-induced Ca2+ signals (Fig. 3C). Simultaneous addition of 1,25(OH)2D3 and PTH did not increase the magnitude or duration of the Ca2+ transient (data not shown) relative to that induced by PTH alone.

BC3H1 premyocytes did not exhibit Ca2+ transients in response to the addition of PTH (data not shown).

![Figure 2](image_url)

Fig. 2. Enhancement of parathyroid hormone (PTH)-stimulated increase in [Ca2+]i by 1,25(OH)2D3. MC3T3-E1 cells loaded with fura 2 were pretreated with 10 nM 1,25(OH)2D3 (A), ethanol vehicle (B), or 10 nM 1,25(OH)2D3 + 5 μM nitrendipine (C) for 10 min, at the end of which time PTH (0.5 μM) was added (arrows). Comparison of Ca2+ transient produced in A and B demonstrates enhancement effect, which is blocked by inclusion of nitrendipine (C). Even after 10 min of pretreatment with 1,25(OH)2D3, PTH-induced Ca2+ transient is completely blocked if Gd3+ (GD; 10 μM) is added (D). This PTH-induced transient is not blocked by nitrendipine (C).
presumably because they lack appropriate PTH-responsive receptor systems.

Enhancement of the Ca2+ transient stimulated by PTH by pretreatment with analog AT but not analog BT. We used two analogs of 1,25(OH)\textsubscript{2}D\textsubscript{3} that selectively activate either genomic nVDR-mediated (analog AT) or nongenomic membrane-initiated Ca2+-signaling pathways (analog AT) in osteoblastic cells (14). We tested the ability of analogs AT and BT to augment the PTH-induced rise in [Ca2+]\textsubscript{i} in MC3T3-E1 preosteoblasts, analogous to the previous experiments using 1,25(OH)\textsubscript{2}D\textsubscript{3} (5 nM) for 10 min enhanced the Ca2+ transient produced by PTH, which was not seen with the vehicle control. This enhancement by analog AT was similar in magnitude and duration to that obtained with the parent compound, 1,25(OH)\textsubscript{2}D\textsubscript{3}. Conversely, pretreatment with analog BT (10 nM) had no effect on the increase in [Ca2+]\textsubscript{i}, induced by PTH (Fig. 4B). Neither AT nor BT directly produced a rise in [Ca2+]\textsubscript{i} in MC3T3-E1 cells in the absence of PTH (data not shown). The inclusion of nitrendipine with analog AT completely negated the enhancement effect (Fig. 4C). Inclusion of Gd3+ (Fig. 4D) also completely abolished the response to PTH after pretreatment with analog AT.

DISCUSSION

1,25(OH)\textsubscript{2}D\textsubscript{3} and PTH are calcitropic hormones that potentiate long-term regulation of bone structure and physiology. This control is exerted, at least in part, by osteoblasts that contain specific receptors for these circulating hormones (6, 26). In the complex processes of bone remodeling and Ca2+ homeostasis, the effects of each hormone alone and in combination on the activity of osteoblasts must be considered. In addition to the well-characterized genomic actions attributed to activation of nVDRs, 1,25(OH)\textsubscript{2}D\textsubscript{3} also produces rapid changes in membrane Ca2+ permeability that are independent of hormonal regulation of gene expression (8, 16). In this regard, changes in osteoblastic [Ca2+] might serve as signals to regulate systemic Ca2+ homeostasis by modulating transfer of soluble bone Ca2+ to the general extracellular fluid.

Addition of PTH to primary cultures of osteoblasts (17) or to clonal osteoblast-like osteosarcoma cell lines (11, 27, 29) elicits a rapid but transient elevation of [Ca2+], that is generated by influx of Ca2+ through plasma membrane channels coupled to release of Ca2+ from intracellular stores. Furthermore, proliferating cultures of MC3T3-E1 cells express mRNA encoding the PTH receptor, the levels of which increase during cell differentiation (18). In differentiated osteoblasts, 1,25(OH)\textsubscript{2}D\textsubscript{3} also induces rapid increases in [Ca2+], by stimulation of transmembrane influx combined with release of Ca2+ from intracellular stores (8, 17). Ca2+ influx in response to calcitropic agents can be blocked by polyvalent transition metal cations and by several organic Ca2+ channel antagonists (8, 17) and thus involves voltage-gated Ca2+ channels. Previous studies have also demonstrated that osteoblastic cells express Gd3+-sensitive, stretch-activated channels that can be
1,25(OH)2D3 ENHANCES PTH RESPONSES IN PREOSTEOBLASTS

In this study, neither 1,25(OH)2D3 treatment (10 nM) nor K+ depolarization significantly increased [Ca2+]i in preosteoblastic MC3T3-E1 cells loaded with fura 2, even though intracellular stores were filled. In contrast, an immediate and rapid increase in [Ca2+]i, was produced by addition of 1,25(OH)2D3 to BC3H1 premyocytic cells. In previous studies, single-channel measurements performed using a patch clamp revealed that osteosarcoma cells possess about 1–2 × 103 functional L-type Ca2+ channels per cell (4). In comparison, differentiated clonal BC3H1 myocytes express 1–2 × 104 Ca2+ channels per cell (2, 25). The very different density of functional Ca2+ channels in the plasma membranes of BC3H1 myocytes and MC3T3-E1 cells may account for the differences in the response of these two cell types to 1,25(OH)2D3 that we report in Fig. 1. These observations are consistent with the origin of these cell lines in tissues considered to be “excitable” and “nonexcitable,” respectively, in which only the former are believed to possess the machinery involved in Ca2+-induced Ca2+ release from intracellular stores (9). Supporting this, we previously reported that UMR-106 osteosarcoma cells have no detectable Ca2+-induced Ca2+ release from intracellular stores (19). In multiple experiments with fura 2-loaded cells, we were unable to detect transient increases in [Ca2+]i in proliferating MC3T3-E1 cells treated with 1,25(OH)2D3 alone or subjected to K+ depolarization. In contrast, Oshima et al. (24) reported transient elevations in [Ca2+]i in response to 1,25(OH)2D3 but not 24,25(OH)2D3. We believe that this difference reflects a greater state of differentiation in their MC3T3-E1 cultures, which were first grown to confluence, subcultured, then withdrawn from the cell cycle by transfer to low serum medium. We previously found that the steady-state levels of mRNA-encoding L-type Ca2+ channels in MC3T3-E1 cells increase substantially during differentiation (20), and it is possible that other systems involved in Ca2+-induced release of Ca2+ from stores or regulating Ca2+ influx are similarly upregulated.

Earlier studies showed that cells derived from neonatal rat calvaria possess two classes of voltage-gated Ca2+ channels of the “low threshold” (T-type) and “high threshold” (L-type) (7), the latter identified by their sensitivity to organic Ca2+ channel antagonists, in particular the dihydropyridines. In a previous study (4), our laboratory demonstrated, using single channel recording techniques, that osteoblastic osteosarcoma cells express L-type but not T-type Ca2+ channels that respond both to dihydropyridine agonists, such as BAY K 8644, and antagonists, such as nitrendipine. Additionally, we found that, within milliseconds of addition of 1,25(OH)2D3, there consistently occurred a shift in the threshold of activation of inward L-type Ca2+ currents to more negative and near-resting potentials, which single-channel analysis revealed was accompanied by a prolonged open time of individual channels (4). On the basis of these findings, we predicted that this shift in the activation threshold would result in an increased responsiveness to other calcitropic hormones, such as PTH, that also activate plasma membrane Ca2+ influx through voltage-insensitive channels (12, 13). In this report, we show that in MC3T3-E1 cells, PTH alone stimulates only a modest increase in [Ca2+]i. However,
pretreatment with 1,25(OH)2D3 for 10 min dramatically enhanced the PTH-induced Ca2+ transient, clearly indicating that 1,25(OH)2D3 served a priming function to enhance Ca2+ responsiveness at the level of the plasma membrane. The need for preincubation with 1,25(OH)2D3 suggests the existence of intracellular pathways involving second messengers, which take minutes to transmit the signal to the PTH-response system. The block of activation by removal of extracellular Ca2+ or addition of dihydropyridine channel blockers indicates that enhancement of the PTH response absolutely depends on the presence and influx of extracellular Ca2+ through L-type channels.

We previously measured the ability of structural analogs of 1,25(OH)2D3 to stimulate various genomic and plasma membrane-initiated events (14). Although 1,25(OH)2D3 functions as the natural ligand for initiation of both long-term and rapid responses in target cells, we identified subsets of response pathways that were activated by discrete structural analogs. Analog AT activates Ca2+ channels in plasma membranes without binding to nVDRs, whereas analog BT binds the nVDR for 1,25(OH)2D3 without triggering a measurable influx of extracellular Ca2+. We examined the effects of analogs AT and BT alone and in combination with PTH on regulation of [Ca2+]i in MC3T3-E1 cells. Neither AT nor BT alone increased [Ca2+]i in MC3T3-E1 cells. However, pretreatment with analog AT enhanced the transient rise in [Ca2+]i stimulated by PTH, consistent with the shift in the threshold of L-type channel activation toward the resting potential (“left shift”) reported for this analog in previous studies (30). Unlike analog AT, analog BT did not enhance the PTH-induced elevation in [Ca2+]i. This also is consistent with the inability of this nVDR-selective analog to produce a left shift in the activation threshold at the low nanomolar concentrations used in these studies (30).

Taken together, these data strongly support our hypothesis that 1,25(OH)2D3 and Ca2+-activating analogs serve a priming function by activating plasma membrane voltage-sensitive Ca2+ channels. One interpretation of these findings is that voltage-sensitive Ca2+ channel activation is required for subsequent full activation of the Gd2+-sensitive channel by PTH, since nitr Abdelnour elimination enhanced the enhancement of PTH-sensitive Ca2+ influx. A second possibility is that the Gd2+-sensitive channel and the L-type channel must both be activated to generate sufficient depolarization of the plasma membrane to permit development of a large Ca2+ transient. In either case, these data indicate the existence of an additional level of interaction of these hormones separate from the previously characterized genomic regulatory loops (5). We believe that this previously unappreciated and novel action of 1,25(OH)2D3 may facilitate the action of other hormones and growth factors acting on osteoblasts and could explain some of the seemingly contradictory physiological effects of 1,25(OH)2D3. It will be of interest to elucidate the mechanism by which Ca2+ influx through L-type channels in the plasma membrane is linked to release of Ca2+ from intracellular Ca2+ stores in osteoblasts and to influx through voltage-insensitive Ca2+ channels.

We thank Dr. Eric Grunstein for many helpful suggestions concerning the use of the Ca2+ imager. We are grateful to Drs. Kamil Akanbi and Gary Messara for many helpful insights throughout the course of these studies and for critical review of this manuscript. We also acknowledge the assistance of Gwen Bryant with the preparation of this manuscript and Gerald Bellot for assistance in ordering.

These studies were supported by grants from the National Institute of Dental Research (DE-10316; to M. C. Farach-Carson) and a Texas Medical Center/National Aeronautics and Space Administration grant (1st round; to N. J. Karin and M. C. Farach-Carson).

Address for reprint requests: M. C. Farach-Carson, Dept. of Basic Science, Univ. of Texas-Houston, Dental Branch, Houston, TX 77030.

Received 27 January 1997; accepted in final form 21 May 1997.

REFERENCES

