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1. Introduction
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This document presents a critical review of the principal existing

optimization models that have been applied to Air Traffic Flow Management

(TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow

Management Problem (GTFMP) and the Ground Holding Problem (GHP), as

well as on some of their variations.

To perform this task, we have carried out an extensive literature review

that has covered more than 40 references, most of them very recent. Based on the

review of this emerging field our objectives were to:

(i) identify the best available models;

(ii) describe typical contexts for applications of the models;

(iii) provide illustrative model formulations; and

(iv) identify the methodologies that can be used to solve the models.

We shall begin our presentation below by providing a brief context for the

models that we are reviewing. In Section 3 we shall offer a taxonomv and

identify four classes of models for review. In Sections 4, 5, and 6 we shall then

review, respectively, models for the Single-Airport Ground Holding Problem, the

Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for

the definition of these problems see Section 3 below). In each section, we identify

the best available models and discuss briefly their computational performance

and applications, if any, to date. Section 7 summarizes our conclusions about the

state of the art.



2. Context and Terminology

It is important, at the outset to set a context for this review and to

introduce some terminology.

It is well known that traffic congestion is a critical problem in the most

developed air transportation systems in the world (North America, Western

Europe and East Asia). If one combines the various numbers reported,

worldwide direct airline costs due to congestion add up to well over $5 billion

per year --an estimate that does no___ttinclude the cost of lost time to the

passengers themselves. This is more than the total profits or losses of all the

IATA airlines in a typical year. With significant increases in demand expected to

continue, congestion is now cited by many experts and organizations as one of

the principal impediments to the future growth of the airline industry.

Congestion occurs whenever the capacity of airport runway systems

and/or of ATC sectors is exceeded over a period of time. Thus, it is mostly

associated with peak traffic hours of the day or peak travel times in the year, as

well as with periods of poor weather conditions when airport or en route sector

service rates can be significantly reduced. In the absence of the long-term

capacity improvements that can be obtained through the construction of

additional runways or through advances in ATC, traffic flow management (TFM)

is the best available way to reduce the cost of delays. On a day-to-day basis,

TFM attempts to "match", dynamically, air traffic demand with the capacity of

airports and airspace sectors of the ATC system. Ground-holding and re-

distribution offlows in the airspace are the two principal devices used by TFM for

this purpose.

Ground-holding (or "gate-holding" or "ground-stopping") is typically

imposed on aircraft flying to congested airports or scheduled to traverse

congested airspace. Ground-holding is the action of delaying take-off beyond a yqight's

scheduled departure time. The motivation for doing so is that, as long as a delay is

unavoidable, it is safer and less costly for the flight to absorb this delay on the

ground before take-off, rather than in the air. Ground holding, as part of TFM, is

a relatively recent phenomenon. It was initiated as an ad hoc practice in Europe

in the 1970's in response to growing air traffic congestion and its use gradually



increased during the 1980sand early 1990s. Similarly, in the UnitedStates,

ground-holding was used rather sparingly in ATC prior to 1981,i.e., until that

year flights were allowed to take-off assoon as ready to do so, except in very
unusual circumstances. If delays were encountered, they were absorbed while

the aircraft was airborne, typically by circling in the air ("stacking") near the

airport of destination. However, widespread useof ground-holding began

during the 1981air traffic controllers' strike in the United States,primarily
becausethis was seenasa way to reduce controller workload by limiting the

number of aircraft which were airborne at any given time. When it was realized

that ground-holding was also a fuel-saving practice, its usebecamepart of

establishedTFM practice, just as in Europe.
I

In addition to ground holding, TFM has several other options available to

it. As noted above, the most important of these is the re-distribution of air traffic

flows over the network of airways. This re-distribution can be effected through

changes in the routing of flights and can be accomplished in two ways:

strategically, i.e., by planning in advance the routes of scheduled flights in a

region in a way that ensures a desirable distribution of traffic flows; or tactically,

by re-routing aircraft in "real time", possibly changing an aircraft's flight plan

even after that aircraft is already airborne.

Other options beyond ground holding and re-distribution of air traffic

flows, include: speed control of airborne aircraft; metering of air traffic, i.e.,

controlling the rate at which aircraft go past a given point in airspace; andairborne

holding en route and, especially, near or inside terminal airspace.

3



3. Model Taxonomy

We shall classify TFM optimization models next into several distinct

classes, according to the type of problem they address. Specifically, we want to

review models that address the following TFM problems:

(a) Ground-Holdin_ Problem (GHP): Models in this class are of a tactical

nature and attempt to assign ground holding delays to flights, with the objective

of minimizing the cost of delays to AOs, while satisfying any existing constraints

on ATM capacities at airports or en route. We subdivide the GHP into two

subproblems, the Single-Airport Ground-Holding Problem (SAGHP) and the Multi-

Airport Ground-Holding Problem (MAGHP). As their respective names suggest,

the two problems consider, respectively, a single airport at a time (SAGHP) and

an entire network of airports simultaneously (MAGHP). In the SAGHP, ground

holding times are assigned to flights scheduled to travel to some particular

airport A, where scheduled demand is expected to exceed available capacity

during some period of time during the day of interest. In the MAGHP, delays

are assumed to propagate in the network of airports, as aircraft perform

consecutive flights, thus necessitating the examination of an entire set of airports

simultaneously.

The GHP can be further subdivided into a "deterministic" version

(deterministic GHP) and a probabilistic version (stochastic GHP). The stochastic

version arises because the GHP must often be solved in the presence of

considerable uncertainty. In other words, deciding how much ground-holding

delay to assign to a flight is complicated by the fact that, in practice, it is often

difficult to predict how much delay a flight will actually suffer. The reason is

that sector capacities and, especially, airport capacities are oftentimes highly

variable and may change dramatically during the course of a day, as weather

changes or other events occur. Moreover, small changes in visibilitv or in the

height of the cloud-cover may translate into large differences in airport capacity.

It is nearly impossible for meteorologists today to predict these changes to such a

high level of accuracy, even over a very short time-horizon of an hour or less.

Under such circumstances, ground-holding decisions must be made under

uncertainty and must consider the trade-off between "conservative" strategies

that may at times assign excessive ground-holds and more "liberal" ones that
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may result in more expensive airborne delays. AOs often complain that today's

TFM systemsmay beerring too much on the conservative side, i.e., that there

may be too many instancesin which aircraft areunnecessarily delayed on the

ground by TFM.

(b) The Generalized Tactical TFM Problem (GTFMP_: This is the generalized

version of the GHP, where in addition to determining release times for aircraft

(ground-holds), we also wish to take into consideration the possibility of

assigning some airborne delays to flights at specific points on their route. These

delays could be absorbed though airborne holding at these points or possibly by

exercising speed control or metering of the traffic flow.

Additional problems and types of models could be defined. For example,

if we add the possibility of re-routing flights while airborne, we obtain the Traffic

Flow Management Rerouting Problem (TFMRP). In this problem, a flight may be

re-routed in real time through a different flight path in order to reach its

destination, if the current route passes through a region that unexpectedly

becomes congested or should be avoided for other reasons, usually related to

poor weather conditions.

In this review, we shall be concerned with models addressing only the

STFMP, the SAGHP, the GTFMP and the MAGHP. We shall review existing

models in each one of these areas in the order just indicated. The MAGHP will

be discussed after the GTFMP, because some of the existing models treat the

MAGHP as a special case of the TFMP. It is therefore more convenient to

familiarize the reader with GTFMP models before proceeding to the MAGHP.



4. The Single-Airport, Ground-Holding Problem (SHGHP)

The most general version of the SAGHP (dynamic and stochastic) may not

be appropriate for many practical situations. Depending on how much

information is available and on how this information is updated, alternative

versions of the SAGHP may have to be solved. Therefore, several versions of the

problem have been addressed by the existing optimization models. For example,

deterministic (rather than stochastic) versions will be preferable for locations

where either the weather or the airport capacities are stable enough to be

approximated as perfectly predictable quantities. Moreover, it should be noted

that existing ATC systems never deal explicitly with "probabilities" and thus

deterministic models may approximate today's practice better than stochastic

ones. Similarly, static (rather than dynamic) versions may be more appropriate

for environments where (i) there are significant lags in updating information

concerning weather or capacities at a set of geographically dispersed locations or

(ii) an initial ground-holding plan is prepared at a single point in time (typically

at the beginning of the day) and that plan is revised only in a marginal way from

that point on.

In this section, we shall present three models for the single-airport GHP

that follow exactly the progression outlined above. The first of them, Model 1, is

a deterministic model which assumes that the capacity at the destination airport

can be forecast with perfect accuracy for the entire period of interest. Model 1

determines how long each aircraft should be kept on the ground before take-off

to minimize the total cost of delays. While this model is simple, it will help

introduce some fundamental notions and issues, such as the issue of whether

delays are distributed equitably among the various aircraft operators (airlines

and other airspace users). The question of equitability is often referred to as the

"fairness" issue in Traffic Flow Management.

Model 2 will then introduce the problem of uncertainty in the SAGHP by

recognizing that future airport capacities (often even over the next hour) cannot

be forecast with perfect accuracy. Model 2 therefore treats the GHP as a

stochastic decision problem. Model 2, however, does include a simplification by

assuming a static environment, i.e., makes ground-holding decisions "once and



for all" for the entire time period under consideration. By contrast, Model 3 is

the most general version of the SAGHP,as it is both stochasticand dynamic.

Models 2 and 3 represent,to our knowledge, the most advanced existing

models for the single-airport GHP. They were both developed in the early 1990's
and arediscussed in far more detail in Andreatta, Odoni and Richetta (1993)--on

which this Sectionlargely draws-- and, especially, in Richetta and Odoni (1993,

1994).

4.1 The Simplified Network for the SAGHP Models

The air traffic network model considered for the single-airport GHP can be

described with reference to the single-destination network shown in Figure 1.

The model is macroscopic in nature, yet it captures the essential elements

needed to solve the single-airport GHP:

(i) N aircraft (flights F1..., FN) are scheduled to arrive at the congested

"arrivals" airport Z from the "departure" airports.

(ii) Airport Z is the only capacitated element of the network and thus the

only source of delays. All other elements in the network (departure

runways, airways, etc.) have unlimited capacity.

(iii) The departure and travel times of each aircraft are deterministic and

known in advance.

(iv) The time interval of interest is [0, B], with the earliest departure for Z

scheduled at 0 and the latest arrival scheduled at B. The time interval

[0, B] is discretized into T equal time periods numbered 1, 2,...T. (For

example B=12 hours could be subdivided into T=72 perods of 10

minutes each.)

(v) Ground and air delay cost functions for each flight are known. This

means that, for each aircraft, we can estimate the cost of its being

delayed for x minutes in the air and y minutes on the ground (before

takeoff) for any non-negative values of x and y.
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Items (ii) and (iii) amount to an assumption of perfectly predictable travel

times between the airport of departure of each flight and airport Z (for additional

details see Odoni [6]). Thus, this ignores the effect of such tactical actions as

speed control, "metering" and path-stretching that may sometimes take place

during the "en route" portion of a flight in response to local ATC conditions. It is

assumed that the impact of such actions on operating costs is entirely secondary

to that of the delays due to congestion at the airport of destination Z - and, thus,

to the ground-hold versus air delay trade-off. This is fully justified for the

United States ATC system: although no specific statistics are collected on the

matter, an overwhelming proportion of delays (certainly more than 95%) are

undoubtedly due to airport, not en route, capacity limitations. This is often not

the case, however, in Western Europe, where the en route airspace imposes just

as severe capacity constraints as the airports - primarily as a result of

institutional and political factors. We shall return to this particular point in Part

II of this review, when we shall examine more general, capacitated flow models.
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4.2 Early Models

Andreatta and Romanin-Jacur (1986a, 1986b, 1987, 1988) seem to have

been the first to develop optimal approaches to the GHP. They, in fact,

addressed a probabilistic version of the SAGHP. They considered a greatly

simplified model which highlights some important conceptual aspects of all

probabilistic versions of the GHP. This model assumes that congestion may arise

only during a single given period of time at the specified "arrival" airport Z. The

model therefore is neither multi-period nor dynamic, but takes explicitly into

account the stochastic nature of airport capacity.

Terrab (1990) presented the first versions of multi-period single-airport

models both for a deterministic (see Section 5.3 below) and a stochastic

environment. His stochastic formulation was so "fine grain" that it required

enormous computational effort to solve, especially as he was using a dynamic

programming solution approach. Terrab (1990) also presented a number of

interesting heuristic approaches to the stochastic problem. These, however, have

been superseded by Models 2 and 3 below.

4.3 A Deterministic Model

The simplest multi-period model [Terrab (1990), Odoni and Terrab (1993)]

assumes that the capacity of airport Z is a deterministic function of time, known

in advance for the entire period of interest. The time horizon consists of T

periods in which capacity may be limited (and takes on a different value Kj in

period j) and of an extra period, T+I, in which capacity is large enough so that all

the aircraft that are still in the air can land during T+I. This assumption about

period T+I is, of course, true in practice: late at night there is alwavs enough

capacity to accommodate all the remaining requests for landings. The model can

be formulated mathematically as follows:

Model 1

N T+I

MIN _ _ GijXij

i=l j=t(i)
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subject to:
T+I

Xij = 1

j=t(i)

N

xij-<Ki
i=1

Xij e {0,1}

for all i = 1,...,N

for all j = 1,...,T

where:

N is the number of flights scheduled to land;

T is the number of periods when capacity may be limited;

Kj is the capacity in period j;

Xij are the decision variables: Xij =1 means that aircraft i will be assigned to

land in period j and Xij =0 otherwise;

Gij is the cost incurred by aircraft i when assigned to land in period j;

t(i) is the period of time during which aircraft i was originally scheduled to

land.

The following two important observations can be made:

(i) If the capacity Kj is known with certainty for all j=I,...,T (as is the case in

this deterministic model), then, under any optimal ground holding policy,

aircraft may suffer ground holds but never airborne delays. As long as the

cost of ground delay is less than the cost of airborne delay per unit of time

for any given aircraft, it will always be better to hold an airplane on the

ground rather than in the air. For this reason the relevant costs Gij in Model

B are the ground-holding costs for flight i; for the deterministic GHP,

detailed information on airborne delay costs is not necessary.
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(ii) The above formulation proves that this version of the GHP is of polynomial

computational complexity: in fact, Model B is a particular caseof the so-
called "Transportation Problem" and canbe transformed into an

"Assignment Problem". Many numerical instancesof Model B have been

solved using standard Minimum Cost Flow algorithms [Terrab (1990)].

The experimental results reported in Terrab (1990)and in Terrab and

Odoni (1993)show that, even with a deterministic knowledge of airport capacity,

large savings in total delay costscanbeachieved through solutions that assign

available capacity optimally. However, the implementability of such optimal

strategies is made questionable by the systematic biasesthey exhibit: typically,

they assign most ground-holds to aircraft with low delay costsper unit of time

(e.g., general aviation aircraft and regional airlines) while giving priority to

aircraft with high delay costs(e.g.,wide-body aircraft). In our earlier

terminology, suchsolutions distribute delay "unfairly". It may therefore be

necessaryto impose additional constraints that force a more equitable

distribution of ground-holds. This canbe done quite effectively and still yield

strategieswith significant savings in the cost of delay [Terrab (1990)].

It is also important to anticipate at this point one of the major conclusions

of researchinto TFM problems, namely that it is also possible to achieve large

savings, without discriminating at all among various types of aircraft. This can be

done through good (determinisitc or stochastic, static or dynamic) models.

4.4 An Optimal Stochastic and Static Model

The model to be discussed in this section [Richetta (1991), Richetta and

Odoni (1993)] solves, optimally and with very reasonable computational effort,

realistic instances of the multi-period, stochastic GHP under onlv mildly

restrictive assumptions. The main feature of this model is that it simplifies the

structure of the control mechanism by making ground hold decisions on groups

of aircraft (i.e., on aircraft classified according to cost class, and schedule) rather

than individual flights. The model will be described here for a static

environment, but it can be extended to the dynamic case, as will be explained in

the next section.
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This model is motivated by the observation that, in practice, the number
of alternative capacity profiles (henceforth calledscenarios)for airport Z, that can

be forecastand dealt with on any given day is small. The model assumes

explicitly that there are Q such scenarios(where Q is a small number), each

having a given probability of materializing. For example, one scenariomay call
for poor visibility conditions to begin 3 hours from now and last for 4

consecutive hours, whereasanother scenariomight forecast4 hours to the

beginning of poor visibility conditions and 5 hours for their duration. Model 2

below allows us to make ground-holding decisions in the faceof this type of
uncertainty. Other important assumptionswhich permit further reductions in

the computational complexity of the model are:

(i) Aircraft canbeclassified into a small number of different classes(typically

3 or 4) with aircraft in eachclasshaving essentially identical ground-
holding delay costs. Let C_(i)be the function representing the cost of

ground holding an aircraft of classk for i consecutive time periods

(ii) The cost of delaying one aircraft in the air for one time period is a constant
ca , independent of the type of aircraft. Thus, ca may be considered asan

overall averagecost of waiting in the air. This assumption might seem

unnatural at first, but is actually basedon the following "operational"
characteristics of the ATC system:

(1) Aircraft which are already airborne are almost always sequenced

by ATC in an approximately first-come, first-served (FCFS) way;

therefore, there is no need to draw distinctions among different

classes of aircraft while airborne.

(2) Within reasonable airborne delay levels (i.e., for up to the largest

airborne delays observed in practice, which are in the order of one

hour) delay cost functions are approximately linear, since "non-

linearities", due to factors such as safety, do not yet set in.

Furthermore, computational results have shown that the relative

magnitude of average ground and air delay costs affects the ground hold
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strategy selectedmuch more significantly than modeling air delay costs in
greater detail. This observation provides further support for the "constant Ca"

assumption.

We shall use the following notation next:

Nki is the number of aircraft of classk scheduled to arrive at the destination

airport during period i (k=l,...,K; i=1....,T);

Mqi denotes the airport capacity in period i under scenarioq (q=l,...,Q;

i=l,...,T)

Xqkij representsthe number of aircraft of classk originally scheduled to arrive

at the destination airport during period i, and rescheduled to arrive

during period j under capacity scenarioq, due to a ground delay of j-i

time periods (q=l,...,Q; k=l ....,K; i=l,...,T; i < j < T+I);

Wqi are auxiliary variables representing the number of aircraft unable to land

at the destination airport during period i under capacity scenario q, i.e.,

the number of aircraft incurring airborne delay during period i (q=l .... ,Q;

i=1 .... ,T);

It should be noted that the decision variables Xqkij defined above are

more "aggregate" than the decision variables of the previously discussed Model

1. In the latter model, we were concerned with ground-hold delays at the

individual flight level (i.e., Model I is a "fine-grain" model) whereas we have

now defined somewhat more "aggregate" decision variabies: how many flights

scheduled to arrive in period i will instead be rescheduled for period j.

Step 1: Deterministic Model.

A first step toward developing a stochastic model is to write a formulation

for the deterministic case. Assume that it is known with certainty that, on a

given day, a particular capacity scenario q will materialize, i.e., there is only one

scenario to be considered. We then have:
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Model 2a

Minimize
K T T+I k

Cost(q)=_ _ _ Cg(j-i)

k=l i=1 j=i+l

T

Xqkij + c a

i=1

Wqi

subject to:

T+I

Xqkij = Nki

j=i

K

Wqi >

k=l,...,K; i=l, ..., T

i

Xq khi + Wqi_ 1

k=lh=l

Xqkij, Wqi > 0 and integer.

- Mqi i=l, 2, ..., T+I

The objective function in Model 2a minimizes total (ground plus air) delay

costs. The first set of constraints states that all flights scheduled to land during

period i must be rescheduled to arrive at i or later. The second set represents the

flow balance at airport Z at the end of each time period i.

One can easily check that the coefficient matrix of Model D is totally

unimodular. So one can relax the integrality constraints, since they will be

satisfied by any basic feasible solution of the corresponding Linear Programming

problem. In fact, it is convenient to model this as a Minimum Cost Flow problem

on a network and to solve it through specialized algorithms.

Step 2: Stochastic Static model.

Suppose now that, in the situation described above, each capacity scenario

q has probability Prob(q) of materializing. Clearly, the objective function must

be "'weighted" over all possible capacity scenarios. Furthermore, since one still

has to make ground-hold decisions at t=0, before knowing which airport capacity

scenario will materialize, the decision variables corresponding to each capacity

profile must be "coupled" with those corresponding to all the other capacity

profiles (see coupling constraints in Model 2b below). The following stochastic
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model of the GHP is obtained (seeRichetta and Odoni (1993)for additional

details):

Model 2b:

Minimize

subject to:

Q

q=l

Cost(q) Prob(q)

set of constraints for q=l]

set of constraints for q=N]

Coupling constraints: Xlkij =...= XQkij " k;i;j ]

where, for each value of q from I to Q, there is a set of constraints identical to

those for the deterministic Model 2a.

Model 2b can be viewed as a Stochastic Programming problem with one

stage. It is suitable for application of decomposition techniques and lends itself

well to parallel computation. Richetta and Odoni (1993) make the conjecture that

the coefficient matrix is unimodular, since, in all their numerical experiments

where integrality constraints were relaxed, they obtained integer solutions. The

proof of this conjecture, however, is still an open question.

As an alternative to decomposition, one can substitute directly the

coupling constraints into the rest of model, hence reducing both the number of

variables and the number of constraints.
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4.5 An Optimal Stochastic and Dynamic Model

Before describing the extension of Model 2b to the dynamic, stochastic

SAGHP, an observation about a fundamental difference between dynamic and

static models must be made. In the dynamic problem, ground-holding strategies

are revised over time as capacity forecasts are updated. Strategy revisions take

into consideration the "current state" of the ATC system, including any earlier

decisions regarding ground-holds. Thus, the expected cost of ground plus air

delays is minimized by deciding, at the beginning of each time period, whether

eligible flights will be allowed to depart or will be held on the ground. By

contrast, the static solution imposes "once and for all" ground-holds at time zero

(i.e., at the beginning of the first time period of the day). In terms of modeling,

this means that, in addition to scheduled arrival times, scheduled departure times

must also be considered explicitly in developing dynamic strategies.

The dynamic version of Model 2b [Richetta and Odoni (1994)] can now be

described with reference to Figure 2. The dynamic evolution of the capacity

forecasts and the implicit updating of the associated probabilities is modeled

through a probability tree. Taking a forecast consisting of three capacity

scenarios for airport Z as an example, Figure 2 shows that the forecast is updated

three times during the interval [0, B]. These three instants (denoted t 1, t 2 and t 3

in Figure 2) define three _ comprising the time intervals [t 1, t2), [t2, t3), and

[t 3, B] (a capacity forecast consisting of Q capacity scenarios would consist of at

most Q stages). Within each stage, the probability of each of the scenarios for

future airport landing capacity does not change. Therefore, an optimal dynamic

solution to the GHPP assigns and/or revises ground-holds at the beginning of

each stage. The time at which stage s starts will be referred to as ts below.

As in the static Model 2b, an implicit assumption here is that the number of

alternative scenarios at the beginning of each day, Q, is quite small - probably 4

or less. This assumption is important for obtaining quick numerical solutions. A

small value of Q is, once again consistent with current weather forecasting

technology which has advanced to the point where the type of weather

conditions in a specific geographic area can be predicted with reasonable

accuracy, but the exact timing of weather fronts and their local severity are

uncertain. A typical example of the type of situation that can be addressed
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through this approach is one in which, at the beginning of a day, there is an

expectation of somedeterioration in weather conditions in early afternoon

which may result in severelossof landing capacity (scenario1) limited loss
(scenario2) or no loss at all (scenario3), eachwith a certain probability.

Stage 1

I I

I I

I

I I

I I

I I

Stage 2 I _ I

'I I

Sta

I I I

scenario1

scenario 2

scenario 3

(time)
tl t2 t3 B

Figure 2

Number of Stages Defined by the Times of Possible Changes in Airport

Capacities

In the static solution to the GHP, the time interval [0, B] comprises a single

stage, resulting in a "here-and-now" solution which assigns ground-holds at t t.

In the dynamic case there are up to Q stages at which we make ground hold

decisions.
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Model 3

Due to the role of scheduled departure times, the dynamic Model 3

requires a modification in some of the notation defined in the previous section.

Specifically:

Nks i is the number of aircraft of class k scheduled to depart during

stage s and arrive at airport Z during period i (k=l,...K; s = 1,...,Q; i =

ts+l, ts+2,..., T)

Xqksi j is the number of aircraft of class k scheduled to depart during

stage s and arrive at airport Z during time period i which are

rescheduled to arrive during period j, under capacity scenario q

(k=l,...,K;q,s=l, .... Q; i=ts+l, ts+2 .... ,T; i< j < T+I).

After substitution of the decision variables Xqksij and of the demands

Nksi into the objective function and corresponding network model (see Model 2a

above), Model 3 is entirely analogous to Model 2b, except that the coupling

constraints are as shown in Figure 3. Note that there is one set of coupling

constraints for each stage s of the problem. This reflects the fact that, at the

beginning of each stage, we must assign ground-holds without knowing which

of the possible capacity forecasts will actually materialize. This reasoning is

again similar to that for Model 2b. The reader is referred to Richetta (1991) and

to Richetta and Odoni (1994) for a detailed description of Model 3.
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Coupling Constraints:

Xsksi j =X s+lksij ..... X Qksij;

s = 1,...,Q-1; k=l,...,K; i = t +_ ..... T; i _<j<T+I

Network Component

forq= 1

Network Component

for q = Q

Figure 3

Constraint Matrix Structure for the Multistage Problem

The resulting optimization problem may be solved by using standard

techniques of multistage Stochastic Programming, with the stages corresponding

to the time instants, ts, when new or updated information may become available.

Finally, we note that additional constraints, such as placing limits on the

maximum acceptable ground-holds and/or airborne delays, can be introduced

into Models E and F easily.

A Simple Example

The difference between dynamic and static strategies is illustrated by the

following idealized example, which involves only two flights. Figure 4 shows a

diagram of the flight "schedule". Flight F 1 is scheduled to depart at time 1, F2 is

scheduled to depart at time 2, and both flights are scheduled to arrive at an

airport Z at period 3.
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1 2 3

Figure 4

Flight Schedule

Landing capacity, M, at Z during the arrival period, time 3, is limited to one

or two flights according to the probability tree shown in Figure 5. We assume

that capacity during the next time period, 4, is unrestricted. The probability tree

of Figure 5 shows the possible evolution of capacity at Z over time, as perceived

at time 1. As happens in practice, airport capacity during time period 3 is

partially correlated to capacity available during time 2. If time 2 capacity is 2,

then there is a greater chance of having a high capacity during time 3; while if

time 2 capacity is 1, there is a greater probability of having limited capacity

during time 3.

Next we specify the ground and air delay costs for F 1 and F2. Since F 1 and

F 2 are both scheduled to arrive during time 3, and time 4 capacity is unrestricted,

we only need to consider the cost of one period of delay:

Ground Delay Cost Air Delay Cost

F 1 cg 1 = $1000 ca 1 = $2000

F 2 cg 2 = $1100 ca 2 = $2200

In line with what we would expect in a real situation, the cost of air delay is

higher than that of ground delay reflecting the higher operational cost of

airborne aircraft. The two aircraft have different costs reflecting factors such as

aircraft type, passenger load, fuel efficiency, connection schedules, etc.
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Time Period: Probability

1 2 3

M=_466 M=2

M=I

M 1 .

.36

.24

.08

.32

Figure 5

PMF of Airport Landing Capacities

The static solution assigns ground-holds to both flights, F 1 and F2, at the

beginning of time I based only on the information available then. Since the

probability of having capacity limited to one landing during time 3 is .56, the

optimal static strategy is to let the more costly flight, F 2, depart according to

schedule and delay F 1 one time period for an optimal static cost of $1000 (if flight

F 1 were also allowed to depart on time, the expected cost would be (.56)(2000) +

(.44) (0) = $1,120).

In the dynamic problem we make ground-hold decisions on a period by

period basis, using the history of airport capacities to produce an updated

capacity forecast regarding future airport landing capacities. Consider the

following dynamic strategy:
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Let F1 depart at time I (i.e., according to schedule). At time 2, if time 2

capacity is 1, delay the departure of F 2 one time period; otherwise, let F2 depart

according to schedule. By conditioning on the value of airport capacity at time 2

we see that the expected delay cost of this strategy is (.4)(1,100) + (.6)(.4)(2,000) =

$920, representing a significant cost improvement vs. the optimal static strategy.

The reader can verify that this is indeed the optimal dynamic strategy. Note that

if both aircraft are allowed to depart on time under this strategy (the probability

of this event is .6), and the capacity at time 3 turns out to be equal to 1, then the

less expensive flight, F 1, is the one which is held in the air for one time period.

The example also points to what is indeed a systematic bias in dynamic

decision-making for the GHP: optimal strategies favor long-range flights over

short-range ones, in the sense that long-range flights are more likely to be

allowed to take-off on time (i.e., with no or little ground-holding). Intuitively,

good dynamic strategies would tend to be more "active" with short-range flights

(i.e., impose more ground-holds on them) in order to take advantage of the

improved state of knowledge at the time when short-range flights are scheduled

to depart. Current practice partly reflects this tendency: for example, flights to

the United States from Europe or non-stop coast-to-coast flights in the United

States are typically exempt from ground-holding.

4.6 Computational Experience

A large number of computational experiments have been carried out with

Models 2 and 3 using data from Boston's Logan International Airport, which is

the 21st busiest airport in the world in terms of number of passengers served.

Detailed information regarding all aspects of these experiments can be found in

Richetta (1991) and in Richetta and Odoni (1993, 1994). The experiments suggest,

if properly adapted, Models 2 and 3 may be able to indicate ground-holding

strategies that could result in significant reductions of delay costs. These same

experiments were also encouraging with regard to the feasibility of employing

the models as real-time decision support tools for ATC flow managers.

However, no real-time experiments that may include professional air traffic

controllers in a simulated environment have been carried out to date. Such an

effort would undoubtedly spur further research on (i) the desirable type of

"interfacing" between controllers and the decision support tools and (ii)
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variations on the models described here that might provide additional flexibility

and options to controllers.

5. The Generalized Tactical Traffic Flow Management Problem (GTFMP)

Much work has been performed on model development for the

generalized tactical TFM problem (GTFMP). Several exact optimization

algorithms have been proposed. Moreover, the well-known Computer Assisted

Slot Allocation (CASA) algorithm that EUROCONTROL uses to support its

tactical level planning is essentially a heuristic algorithm for solving the GTFMP.

One can identify five distinct types of existing models for the GTFMP, the

first three of which attempt to solve the problem optimally, while the other two,

including CASA, aim at an approximate solution. A common characteristic of all

five types of models is that they view the ATM infrastructure (airports, terminal

areas, navigation fixes, en route sectors, airways) as a multiple origin-destination

network on which traffic flows have to be assigned. In all cases these traffic

flows can vary over time. Another common characteristic is that, in all five

approaches, the models are deterministic, i.e., it is assumed that available

capacity as well as flight demand is known in advance. In four of the five cases,

the models deal with uncertainty by essentially assuming that the GTFMP will be

solved anew every time conditions change, i.e., whenever capacity and/or

demand change sufficiently to warrant such re-solving of the GTFMP (e.g., every

few hours). However, the CASA heuristic recognizes uncertainty more explicitly

by setting aside a number of flight slots for last minute exigencies.

The first optimal approach -- and the most successful computationally to

date -- is the one due to Bertsimas and Stock (1994). They have formulated the

GTFMP as a 0-1 Integer Programming Problem with six sets of constraints. The

objective is to minimize the total cost of delaying aircraft on the ground (through

ground holding) and in the air (through airborne holding). The constraints

ensure that the traffic flows recommended by the model will not exceed available

capacities and will satisfy certain "connectivity" relationships, so that the

recommended solutions are meaningful physically. Specifically, the first three

sets of constraints ensure that the traffic flows, in any dicrete time interval during

the period of interest, will not exceed the departure capacity of anv airport in the
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network, the arrival capacity of any airport and the sectorcapacity of any sector,

respectively. The other three setsof constraints represent the three types of

connectivity in the problem: connectivity between sectors,between airports and
in time. All these relationships lead to a quite complex optimization model. As

noted above, it is believed that this model has the best performance among
existing models at this time.

The secondmajor existing GTFMP model is the so-called Time

Assignment Model or TAM [Lindsay, Boyd and Burlingame (1993),Boyd,
Berlingame and Lindsay (1994),Burlingame, Boud and Lindsay (1995)]. This is

also a0-1 IP optimization model that consistsof an objective function and five

setsof constraints. The objective function, as in the caseof the Bertsimas and

Stock model, is to minimize the totalcost of delaying flights. The first set of

constraints specifies that capacitiescannot be exceeded;the seconddefines a

lower bound for the flight time from one node ("fix") of the underlying network

to the next; the third specifiesthat eachflight canpassover any particular fix

only once; the fourth gives the earliest time interval during which a flight may

depart; and the last set of constraints specifiesa minimum "turn-around" time on

the ground for each aircraft between flight legs. (It should be noted that the

Bertsimas and Stock (1994)model alsodefines, implicitly, someof the same
restrictions, through its connectivity constraints.)

The third optimization model is known asSTN,Space-TimeNetwork

[Helme (1992,1994)]. This is a model formulated asa multicommodity

minimum-cost flow on anetwork. It dealswith aggregateflows, not individual

flights, attempts to minimize total delay costsand includes departure, en route

and arrival capacity constraints. While the formulation of this model is

straightforward and easy to understand, its computational performance has been

quite disappointing and efforts toward its further development have apparently

been abandoned.

The first of the two heuristic approaches, the Multiple Airport Scheduler

(MAS) is a hybrid of otimization routines and heuristics [Epstein, Futer and

Medvedovsky (1992)]. Information about this model, which was developed in

connection with the Advanced Traffic Management Systemof the FAA, is

limited, because little has been published about it. The goal of the MAS is
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apparently to maximize flow in the ATM network subject to the usual capacity

constraints (departure, en route, arrival), flight connectivity constraints and

"fairness-to-user" constraints. A decomposition approach (the model is

eventually decomposed into a number of single-airport problems) is used to

speedup the solution. While the model apparently runs quickly, little is known

about the quality of the solutions it produces or its actual computational

performance.

Finally, the CASA heuristic hasbeendescribed very clearly in Philipp and
Gainche (1994)[seealso EUROCONTROL (1993a,1993b)]and a detailed

description will not be repeatedhere. The heuristic gives priority to flights on a

"First Planned, First Served" (FPFS)basis,meaning that the flights with the

earliest departure times areconsidered first. CASA thus considers departing

flights sequentially and, when necessary,assignsto eacha ground-holding delay

consistentwith the most restrictive capacity constraint that the flight will

encounter between its origin and its destination. As already noted, and in the

interest of fairness, CASA also reserves a portion of the available capacity for

short-haul flights and/or for flights that may, for some reason, file a flight plan

shortly before their intended departure time. The rationale here is that, in the

absence of such practice, all aavailable slots might be consumed by long-haul

flights, that file flight plans early and have early departure times. CASA also

automatically updates its "solutions" every few minutes, in the hope that, as

conditions change, the algorithm can discover ever-improving slot allocations.

CASA is undoubtedly a very efficient tool computationally, typically returning

solutions within about half a minute for problems that would be considered

large for an optimization model. What is not yet known about CASA is whether

or not the TFM slot allocations/ground-holding assignments it returns are of

good quality. Some very preliminary evidence (see Section 6.1) may suggest

that, in some cases, there may be considerable room for improvement in this

respect.

5.1 Computational Results for the GTFMP

We next discuss some computational results for the best of the existing

optimization models, the Bertsimas and Stock (1994) model, which has been

extensively tested using real data from both the US and the European networks.
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As an example, two data setsof realistic size,obtained directly from the Official

Airline Guide (OAG) flight schedules,were provided by the FAA. The first

consisted of 278flights, 10airports and 178sectors,tested over a 7hour time
frame with 5 minute intervals. The secondof thesedata setsconsisted of 1002

flights, 18airports, and 305sectors testedover an8 hour time frame with 5

minute intervals. The sectorcrossing times, sector and airport capacities,and

required turnaround times were all provided by the FAA. Thesedata sets are

comparable to those in the problems being solved daily by the FAA.

For the first problem, consisting of 43226constraints and 18733variables,

an optimal solution of the linear programming relaxation was found in

approximately 30 minutes on a SUN SPARC20workstation using CPLEX 3.0as

the optimization solver and GAMS 2.25asthe modeling language. Furthermore,
the solution obtained was completely integral. In other words, there is no need

to use any integer programming methods. The secondand larger data set

consisting of 151662constraints and 69497variables, was solved to optimality in

approximately 2 hours, again achieving completely integral solutions.

Similar results, with essentially the samemodel, were obtained by Vranas

(1995)for the European network. For a data set provided by EUROCONTROL, a

problem involving 2293flights and 25sectorsand with all costsequal to one (i.e.,

the objective is to minimize the total delay), an optimal, completely integral
solution was found in approximately one hour in a SUN 10workstation. The

total delay in the optimal solution was roughly 40%lower than the delay

assignedby CASA with its FPFSalgorithm. This illustrates the significant

impact that a linear optimization to the problem might have in practice, in

certain cases. On the other hand, this evidence is very preliminary. Out of a total
of five cases,tried by Vranas (1995)the optimization algorithm's solution had

about 40%lessdelay than the CASA solution in 3 cases,but only about 5%

savings, on average in the other two. It is alsonot clear how carefully, the

solutions of the optimization algorithm were checked, at the individual flight
level, for practical feasibility. Finally, it should benoted that CASA obtained in a

matter of about 30 secondsa solution whereas,asnoted, computation times were
of the order of 30minutes to 2hours for the variant of the Bertsimasand Stock

model used by Vranas.
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Another observation that is very important for achieving short

computational times is that in the absenceof capacity constraints, the remaining

inequalities define a network flow problem, for which we know that an optimal

integral solution existsand canbe found by the simplex method. As a result, the

model is first ran asanetwork flow problem by ignoring the capacity constraints

and abasis is found. Then, the capacity constraints are introduced and the

model is solved asa linear program using the dual simplex method.

While the formulation is not always integral, it was integral for theseand
other test cases.A partial explanation for this is that the three setsof constraints

that express the three types of connectivity in the problem are facetsof the
convex hull of the setof feasiblesolutions.

An alternative approach to the one we have presented is due to Lindsay

et. al. (1993). They propose integer programming formulations for a version of

TFMP that tracks a flight as it passesfrom fix to fix in the airspace. As the linear

programming relaxations of theseformulations arenot very strong, branch and

bound is needed to generateintegral solutions. However, by developing a wide
array of novel formulation-strengthening techniques, the dependence on "pure"

branch and bound, aswell asthe computation times, areactually reduced.

6. The Multi-Airport, Ground Holding Problem (MAGHP)

As noted earlier, models for the MAGHP differ from those for the SAGHP

in that they consider many, rather than a single, airports simultaneously.

However, the best available models in this area are not extensions or derivatives

of models for the SAGHP. For example, the important research on the stochastic

SAGHP, described in Section 4, has not been extended to the MAGHP. In fact,

the only research on optimization models for the MAGHP which has partly

addressed some stochastic issues is that of Vranas (1992), but has done so onlv in

an implicit way. Thus, all models for the MAGHP are deterministic ones.

In general, existing optimization models for the MAGHP are related in

approach and in certain cases are direct extensions of models for the generalized

tactical FMP described in Section 5. The common characteristic of these models

is that they assume that capacity constraints exist only at arrival airports and
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departure airports, not in en route sectors. This assumption is quite true in the

United Stateswhere more than 95%of seriousdelays canbe attributed to

capacity constraints at either the arrival airport or the departure airport, but is

certainly not true in Europe, where the en route sectorscurrently place asmuch

of a capacity constraint asthe terminal areas. It should benoted, however, that

the European situation is partly due to the fact that most major airports in

Europe are operating with strict limits on how many operations can be

scheduled there ("slots"). This meansthat demand at theseairports is restricted

in advance, i.e., when the airline schedules are made, to be approximately in

balance with airport capacity under all weather conditions. In contrast, the

absence of any limits on scheduling of operations at airports in the United States

(only four airports have any such limits and even those may be rescinded soon)

has resulted in a situation where demand far exceeds capacity at many airports

whenever weather conditions are less than good.

For the time being, therefore, models for the MAGHP may be more

directly applicable to the United States environment than to the European one.

On the other hand, it would seem that some of the heuristic approaches that have

been devised for the MAGHP could be extended to the case where the en route

sectors also pose capacity restrictions and thus could be made more applicable to

the European environment.

The optimization models that have been proposed for the MAGHP are

essentially four, although a number of variations exist. They are described in:

(1) Vranas (1992) and Vranas, Bertsimas and Odoni (1994a, 1994b); (2) Andreatta

and Brunetta (1995); (3) Bertsimas and Stock (1994); and (4) Terrab and Paulose

(1993). All four models have similar fundamental rationale: they all attempt to

minimize the total cost of ground-holding delays and airborne delays, subject to

capacity constraints on arrival and on departure and to connectivity constraints

that ensure that solutions will be meaningful. The differences among these

models lie primarily in the way the decision variables to be optimized are

defined, and can thus be characterized as mostly technical, rather than

substantive.

Andreatta and Brunetta (1995) have performed a careful comparison of

the computational performance of the first three of the models mentioned above
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and have concluded that the Bertsimasand Stock (1994)model performs best in
most cases.The model is essentially aspecial caseof the Bertsimas and Stock

model for the TFMP which is described in the beginning of Section 6. The

MAGHP model does not include any constraints related to the en route sectors

and, primarily for this reason,canbe solved much more efficiently than the
model of the TFMP model.

The MAGHP canalsobe extended in an important way by including

constraints that capture the interdependencebetween arrival capacity and

departure capacity that exists at many airports (seeBertsimasand Stock (1994)

for details). With this extension the model canbeused not only to assign

ground-holding and airborne delays to aircraft, but also to determine the optimal

allocation of capacity between arrivals and departures at an airport during any

given time period.

Two heuristics basedon "priority rules" have alsobeen proposed recently

for the MAGHP by Andreatta, Brunetta and Guastalla (1994)and by Navazio

and Romanin-Jacur (1995). Thesepriority rules attempt to capture simple ways

to assign ground-holding delays to sequencesof aircraft and thus to develop

locally optimal ground-holding strategies. The heuristics have performed verv

well in a limited number of tests to date,giving very good quality solutions

(compared to the optimal) quickly. They are currently under active investigation

and may offer a good alternative to exactoptimization models in the future.

6.1 Computational Results for the MAGHP

To illustrate the computational performance of MAGHP models, we

review in this section computational results reported in Bertsimas and Stock

(1993) and Vranas et. al. (1994a). (The reader is also referred to Andreatta and

Brunetta (1995) for many additional test cases.) The datasets consist of 2 and 6

airports with 500 flights per airport, 1000 and 3000 flights respectively. Four

levels of flight connectivity were considered. These levels give the ratios of

continued flight to total flights, ICI / IF4, as 0.20, 0.40, 0.60, and 0.80 (see

Appendices A and B for further explanation.) A 16 hour day was divided into 15

minute time intervals. All experiments were performed on a Sun SPARCstation

10 model 41. GAMS was used as the modeling tool and CPLEXMIP 2.1 was used
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asthe solver. The results obtained using the above datasetsand the (MAGHP)
formulation are summarized in TablesI and 2.

IFJ ICI/IFI Dep Capacity

32

Arr Capacity

15

Time % Nonint

1000 0.20 262 0

1000 0.40 17 10 741 4

1000 0.60 20 14 359 0

1000 0.80 20 20 283 0

Table 1. Results at the infeasibility border for 3000 Flights

IFI iCI/IFi Dep Capacity

20

Arr Capacity

20

Time % Nonint

3000 0.20 5475 0

3000 0.40 20 20 4703 0

3000 0.60 20 20 5407 0

3000 0.80 20 20 9411 0

Table 2: Results at the infeasibility border for 3000 Flights

Tables 1 and 2 give results at the infeasibility border for each case. The

infeasibility border is the set of critical values for the departure and arrival

capacities, in units of flights per time interval, under which the problem becomes

infeasible. We expect that it is in this region that the problem is very relevant

practically and is hardest to solve. The critical capacity levels were found by a

series of trial and error tests. The times reported are in CPU seconds and the "%

Nonint" column is the percentage of total flights whose solution was noninteger.

7. Conclusions

In this section we list the principal conclusions we have reached as a result

of the review presented in this document.

1. The Single-Airport Ground-Holding Problem (SAGHP) has been

investigated in depth and provides a fine paradigm of optimization models that
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include consideration of uncertainty and of the dynamic nature of TFM decision-

making. However, the existing SAGHP models generally assumethat the en

route airspacedoes not impose any major constraints on the flow of air traffic

and that the real capacity constraints exist at airports and terminal areas. This

assumption, while quite valid in the United States,is not realistic for the

European ATM system today.

2. The most advanced existing applications of optimization modeling to

TFM deal with the Generalized Tactical Traffic Flow Management Problem

(TFMP). Optimization models in this areahold serious promise of providing a

viable alternative to heuristic algorithms, such asCASA, potentially leading to

significant improvements in the performance of the TFM system. The

computational requirements for obtaining optimal solutions and the difficulty of

gaining TFM manager acceptanceof suchapproacheswould appear to be the

main obstaclesto adopting such optimization models at this time. It is our

recommendation that further research in this area be strongly encouraged and

pursued.

3. Multi-Airport Ground-Holding Problems (MAGHP) can be solved

quite efficiently through existing optimization models. Most of these models can

be viewed as essentially modified (and simplified) versions of models for the

TFMP.

4. Regarding the issue of computational performance and feasibility the

principal conclusions regarding existing solution approaches to the large-scale

optimization problems, TFMP and MAGHP, are:

a. In all but one instance of the MAGHP test cases that have been

attempted with the Bertsimas and Stock (1994) models and in all instances of

TFMP the relaxations of MAGHP and TFMP yielded integral solutions.

b. The integrality of solutions was not affected by problem

parameters, nor the size of the problem.

c. The computational time required to obtain an optimal solution

increases with the degree of connectivity as well as with the size of the problem.

d. These models represent the strongest formulations proposed to date

for this class of problems. Combined with state-of-the-art optimization libraries,
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they allow the solution of truly large, realistic problems in reasonable

computational times.
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