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Scott W. Case and Kenneth L. Reifsnider
(ABSTRACT)
Modern durability and damage tolerance predictions for composite material systems rely on accurate
estimates of the local stress and material states for each of the constituents, as well as the manner in which
the constituents interact. In this work, an number of approaches to estimating the stress states and
interactions are developed. First, an elasticity solution is presented for the problem of a penny-shaped
crack in an N-phase composite material system opened by a prescribed normal pressure. The stress state
around such a crack is then used to estimate the stress concentrations due to adjacent fiber fractures in a
composite materials. The resulting stress concentrations are then used to estimate the tensile strength of

the composite. The predicted results are compared with experimental values.

In addition, a cumulative damage model for fatigue is presented. Modifications to the model are made to
include the effects of variable amplitude loading. These modifications are based upon the use of
remaining strength as a damage metric and the definition of an equivalent generalized time. The model is
initially validated using results from the literature. Also, experimental data from APC-2 laminates and
IM7/K3B laminates are used in the model. The use of such data for notched laminates requires the use of
an effective hole size, which is calculated based upon strain distribution measurements. Measured
remaining strengths after fatigue loading are compared with the predicted values for specimens fatigued at

room temperature and 350°F (177°C).
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1. Introduction and Literature Review

Modern durability and damage tolerance predictions for composite material systems rely on accurate
estimates of the local stress and material states for each of the constituents, as well as the manner in which
the constituents interact. It is possible to make estimates of the local stress state, even in the presence of
complex damage modes, using either closed-form analyses or detailed numerical methods. However, the
manner in which the evolution of the material states during component life contributes to the final failure
is less well understood. In particular, there are many different damage modes that may develop and
interact before a final failure occurs. These damage modes make it possible to design components from
composite materials that are extremely damage tolerant. To use this damage tolerance to its fullest, we
must have some method to predict the stiffness, strength, and life of these materials in variable
environmental conditions. For engineering applications, the ability to evaluate the evolution of fiber-
controlled properties under various long-term thermo-mechanical loading conditions is of particular
importance. Under these loading conditions, it is necessary to have accurate depictions of changes in
stress state due to damage development. Damage development may include matrix cracking, fiber
fracture, fiber-matrix separation, delamination, and environmental degradation. A coherent rationale for

combining these effects to evaluate the material state at any point during the service life is required.

In order to approach the problem of fiber-controlled failure of composite materials, there are a number of
methods that can be employed. These include empirical methods, laminate-level models, and
micromechanical models. Each of these methods has its own particular advantages and disadvantages.
The empirical methods typically require a great deal of experimental work and are reliable only within
ranges for which data are available. Also, when parameters such as the laminate stacking sequence are
changed, additional experimental characterization is required. Laminate-level models have the advantage

of being sensitive to stacking sequence variations, although they lack sensitivity to fiber-matrix interphase
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variations which have been shown [1-4] to have a great influence on composite strength and durability.
Micromechanical models have the advantage of being sensitive to variations at the fiber/matrix/interphase
level. However, many of the quantities necessary for these models may be difficult (or nearly impossible)
to measure. It is the author’s opinion that the best approach to modeling the fiber-controlled behavior is a
“building-block” approach in which laminate-level models are able to make use of information from
micromechanical models of the composite behavior, but not to the exclusion of known data. For example,
it would be of questionable benefit to use a micromechanical model for tensile strength when that strength
has already been characterized experimentally. In cases in which some data are missing, however, the
micromechanical models are invaluable. In order to understand how such a building-block approach may
be achieved, it is useful to review previous work that has been done in the area of fiber-controlled behavior
of composite materials. This review will begin with micromechanical modeling and will then consider
the estimation of residual strength during fatigue and fatigue life for the case of laminates dominated by
the fiber behavior. As the area of compression-controlled micromechanical modeling has recently been
considered by Lesko [5], the present review of micromechanical modeling will consider only tensile

strength.

1.1 Micromechanical Modeling of Tensile Strength

For continuous fiber reinforced polyme;ic composite materials, the tensile strength is controlled by lhe‘
stress distributions surrounding fiber fractures (Gao, et al. [6]). In particular, the stress concentrations in
fibers adjacent to the fractured ones and the distance over which the perturbed stress field acts (the
ineffective length) are required for tensile strength predictions such as that presented by Batdorf {7]. The
understanding of these stress concentrations and the resulting ineffective lengths may be better achieved
by reviewing some of the previous work which has been done in the area of “penny-shaped” cracks

(circular disk cracks), as a simple fiber fracture falls into this class of problems.
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Sneddon [8] was among the first to consider the penny-shaped crack problem. His analysis concerned a
crack created in the interior of an infinite elastic medium occupying the circle 2 = x% + y2 = ¢2 in the
plane z = 0. Sneddon was able to obtain exact expressions for the stresses at any point in the body. In

addition, he applied a Griffith-type criterion for the condition of crack growth.

Collins [9] also considered the case of a penny-shaped crack subjected to shear as well as normal loading.
His approach was based on the use of two harmonic potential functions to represent the stresses and
displacements. To illustrate the solution procedure, Collins determined the solution for four different
penny-shaped crack problems:

(i) the opening of the crack by a point force acting at an interior point of the

infinite solid

(ii) two parallel cracks in an infinite solid

(iii) an infinite row of parallel cracks in an infinite solid

(iv) and a crack in a thick plate with stress-free faces.
In all cases except for (i), approximate solutions to the resulting integral equations were presented.
Collins presented expressions for the work of the crack and the maximum displacement of the crack faces.
Keer [10] was the first to consider non—s.ymmetrical loading of the penny-shaped crack. He used
cylindrical polar coordinates (r, 6, z) where the crack, with radius a, is given by z = 0, 0 £ r a. The
crack was assumed to be opened by an arbitrary distribution of normal pressure. The problems were
solved using a stress function technique similar to that employed by Green and Zerna [11]. Having
obtained the solution for the problem of a crack in an infinite medium being opened by a non-symmetrical
normal pressure, Keer next considered two other problems: a crack symmetrically loaded within a stress-

free, thick elastic plate and a crack embedded in a beam exposed to pure bending. In the case of the crack
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in a thick plate, Keer derived a Fredholm integral equation of the second kind for the solution. The

resulting equation must be solved by iteration or numerically.

Smith et al. [12] developed an expression for the stress intensity factor of a penny-shaped crack in a
infinite elastic solid subjected to non-axisymmetric normal loading. Their analysis began as Keer [10] did
by assuming that, in the absence of body forces, the complete solution for a restricted class of problems in
which the shear stresses on the plane z = 0 can be represented by a single harmonic function, ¢(r, 9, z).
They also expressed the loading on the crack surface as a Fourier series. By considering the general
solution in the vicinity of the crack tip, the authors developed an expression for the stress intensity factor
for the opening mode of fracture. Additionally, they showed that the state of stress becomes that of plane
strain at the tip of a penny-shaped crack for any non-axisymmetric continuous distribution of loading on
the crack surface. To illustrate the applicability of their results, Smith et al. considered two particular
cases: that of two concentrated forces at equal radial distances on the crack surface and that of a penny-

shaped crack in a large beam subjected to pure bending.

Guidera and Lardner [13] used the Somigliana formula from dislocation theory to solve the problem of a
crack whose deformation is caused by the action of prescribed tractions on the crack surface. They
obtained expressions for the stress intensity factors for two cases of loading of the crack plane, normal and

shear.

Lardner and Tupholme {14] considered much the same problem as that considered by Guidera and
Lardner—only for a hexagonal crystal. By appropriately replacing certain isotropic constants by the
appropriate clastic constants for the hexagonal material, they were able to obtain the stress intensity
factors for a penny-shaped crack in a hexagonal medium. The resulting forms of the integral equations

for the hexagonal medium are the same as those solved by Guidera and Lardner for the isotropic case.
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Lardner and Tupholme arrived at the stress intensity factors by direct substitution into the previous
results. Using the results from the previous study by Guidera and Lardner for a constant unidirectional
shear traction, Lardner and Tupholme studied the effect of the anisotropy on the distribution of stress in

the vicinity of the crack.

Each of the above solutions considered the radial dimension of the body (the direction perpendicular to the
crack) to be infinite. Sneddon and Tait [15] considered the case of a very long (taken to be infinite)
cylinder containing a crack with the center of the crack lying on the axis of the cylinder with the plane of
the crack perpendicular to that axis. They assumed that the cylindrical surface is free from shear and is
supported in such a way that the radial component of the displacement vector vanishes on the surface.
Such a situation would arise physically if the elastic cylinder were resting in a hollow cylinder in a rigid
body of exactly the same radius, and if the cylinder were then deformed by the application of a known
pressure to the surfaces of the crack. Sneddon and Tait presented the derivation of two solutions to the
problem: one based on an integral-type solution and the other based on a series-type solution. The second
is simpler, although it cannot be generalized to cover the case in which the cylinder surface is free from
stress. Sneddon and Tait obtained an approximate solution for the case in which the crack is opened by a
constant pressure.

The problems considered previously have dealt wi‘th a penny shaped crack in a homogenous material.
Dhaliwal et al. [16] considered the state of stress in a long elastic cylinder with a concentric penny-shaped
crack, bonded to an infinite elastic medium. They assumed the crack to be opened by an internal pressure
and that the plane of the crack was perpendicular to the axis of the cylinder, and allowed the elastic
constants of the cylinder and the semi-infinite medium to be different. They then reduced the problem to
the solution of a Fredholm integral equation of the second kind and obtained closed-form expressions for

the stress intensity factor and the crack energy.
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Cox [17] was one of the first to study the stress redistribution which occurs in the vicinity of a fiber
fracture in a unidirectional composite material. Rosen [18] later presented an nearly identical model.
Rosen’s analysis (a shear lag model) assumed that the fibers support only tensile loading, the matrix
supports (and transmits) only shear loading, and that the shear transfer between the broken fiber and
adjacent fibers is limited to the matrix between those fibers. This analysis suggests that the stress terms
increase exponentially as axial distance increases along the fractured fiber. In addition, by making use of
an efficiency parameter which relates the stresses in the vicinity of the fiber fracture to those far removed,

it was possible to predict an ineffective length—the axial distance over which the stress field is perturbed.

Whitney and Drzal [19] considered the case of a single fractured fiber embedded in an infinite matrix.
Their analysis extended the shear lag concepts to include axial loading in the matrix and shearing stresses
in the fractured fiber. By using the equilibrium equations in conjunction with constitutive relations, and
an assumed functional dependence of the stresses on the radial and axial coordinates, they were able to
formulate an approximate solution to the ineffective length problem. This solution does not satisfy all of
the compatibility conditions. The ineffective lengths calculated using this analysis were compared with
experimentally determined values using a single fiber fracture test for on composite systems to validate the

micromechanical model.

Hedgepeth and Van Dyke [20] considered the stress concentrations on neighboring fibers due to single
and multiple adjacent fiber fractures. Their analysis used an influence function approach along with shear
lag concepts. Results were presented for both three-dimensional square and hexagonal arrays where
specified fibers were broken, and for the stress concentration factor in a fiber adjacent to a broken fiber in
a two-dimensional array where the shear stress in the matrix is restricted by a limiting stress value. Due

to the inherent shear lag assumptions, however, the model does not include the effects of the fiber and
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matrix stiffness values or fiber volume fraction. Therefore, it is applicable to high fiber modulus, low

matrix modulus, high fiber volume fraction systems.

Carman et al. [21] attempted to include the effect of fiber volume fraction, material properties, crack size,
and fiber eccentricity on the resulting stress concentrations in the vicinity of a fiber fracture. Their
analysis represented the fibers adjacent to a fractured fiber by a ring of material. Using an assumed
functional dependence of strains in the vicinity of the fractured fiber in conjunction with a mechanics of
materials approach and elasticity concepts, an approximate stress field was developed in each of the
constituent materials. They presented numerical results for stress concentrations with variables such as
fiber volume fraction, stiffness values, crack size, and fiber eccentricity. In addition, the analytical
predictions were compared with direct experimental measurements obtained from a macro-model

composite system. The results were shown to be in good agreement with the analytical predictions.

Fajardo [22] performed an experimental study of fiber fracture in a glass/epoxy composite using a macro-
model composite. In particular, the effects of fiber volume fraction and crack size on stress concentration
and ineffective length due to a single fiber fracture were studied. The experimental results were compared
with theoretical predictions made using the annular ring model proposed by Carman et al. [21] and the
shear lag model [18]. It was shown that the annular ring model provided closer agreement with the

)

experimental results, although both models still over predicted the ineffective length.

Case et al. [23] expanded on the axisymmetric model of Carman et al. [21] and included the effects of
multiple fiber fractures by using a lincar superposition technique. In addition, a series solution model was
used in conjunction with the assumed radial decay from Carman et al. {21] to obtain predictions of stress
concentration as a function of axial distance from a broken fiber. These analytical results were compared

to experimental measurements from a model composite system and were found to be in good agreement
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for the case in which only a fiber fracture was present. However, poor agreement was achieved for the

case in which a matrix crack, as well as a broken fiber, was present.

Recently, Kaw and Jadhav [24] considered the axisymmetric response of a cracked fiber in a matrix. The
problem considered was almost identical to that considered by Dhaliwal et al. [10] with two exceptions:
the matrix was taken to be of finite radial dimension, and the bonding between the fiber and the matrix
was not taken to be perfect. Rather, the interface shear stress was assumed to be proportional to the
difference between the axial displacement in the fiber and the axial displacement in the matrix. The
problem was reduced to the solution of a Cauchy singular integral equation which was solved numerically.
This analysis has the advantage of allowing researchers to consider the effects of imperfect bonding on the
stress state surrounding a broken fiber. However, it is somewhat limited in that the effect of this imperfect

bonding on the adjacent fibers cannot be analyzed.

McCartney [25] presented an approximate analysis of a more general class of fracture problems than those
previously considered. This solution was based upon the assumption that the shear stress, Gy, in each of
the constituents can be expressed as a product of an unknown function of z, and a linear variation in the
radial direction. By making algebraic simplifications, he reduced the problem to the solution of a system
of fourth order simultaneous ordinary differential equations which were solved numerically. The resulting

stress state was compared with finite element models with good agreement.

Another approximate approach has been presented by Pagano [26], who used Reissner’s variational
theorem in conjunction with an equilibrium stress field in which the radial dependence was assumed to
study the axisymmetric response of a concentric cylindrical body. The interfaces between adjacent

cylinders were permitted to be either continuous or subjected to mixed boundary conditions. The external

Introduction and Literature Review 8



surfaces were also permitted to be exposed to mixed boundary conditions. An example thermal stress

problem was compared with an elasticity solution to examine details of the model accuracy.

The ultimate goal in modeling the stress concentrations and ineffective length surrounding a fiber fracture
in the present context is to obtain accurate lamina level tensile strength predictions. Harlow and Phoenix
[27] used a statistical analysis in conjunction with an assumed load sharing rule for a single ply tape to
predict composite strength for this idealized problem. They considered both the case of the usual Weibull
distribution and what they considered to be a more realistic double version which has the effect of putting
an upper bound on fiber strength. They found that for typical cases the use of the double Weibull
distribution for fiber strength does not affect the behavior of the probability distribution for the strength of
composite materials and therefore its use may not be justified. The difficulty in calculating the probability
distribution for the two-dimensional case suggests that it would be extremely difficult to extend the

analysis to include three-dimensional effects.

Batdorf [7] has presented a somewhat simpler approach to the tensile strength of composite materials.
The analysis is based on that proposed by Harlow and Phoenix [27], but through many simplifications the
analysis may be used to predict the tensile strength of three-dimensional composite materials. The
analysis uses theoretically determined stress concentrations and ineffective lengths due to multiple fiber
fractures to estimate the fiber load level at which an instability occurs. This load level corresponds to the
load at which the composite itself experiences catastrophic failure. To study the effects of the
simplifications on the predicted strength, a comparison was made to the results published by Harlow and
Phoenix [27]. It was shown that the failure stresses predicted by both methods differ by only a few
percent, suggesting that the simplifying assumptions did not significantly affect the predictions made by

the model.
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A similar approach to modeling and predicting the tensile strength of polymer composites has been given
by Reifsnider [28]. Rather than using the instability condition suggested by Batdorf, this analysis is based
upon assuming that global composite failure (characterized by unstable fiber fracture) is characterized by
the condition in which all fibers immediately adjacent to a single broken fiber fail due to the stress
concentration. By making an assumption of the functional relationship between the ineffective length and
the siress concentrations, they were able to suggest that an optimum stress concentration (an hence

ineffective length) exists.

Gao et al. [6] conducted a study of strength prediction and optimization of composites. Their analysis
used a modified shear lag approach in conjunction with the statistical analysis of Batdorf [7] to achieve
tensile strength predictions. As part of their shear lag analysis, they showed that there was a direct
relationship between stress concentrations due to fractured fibers and ineffective length. In addition, they
considered the effects of irregular fiber spacing and the ratio of fiber to matrix stiffness values on the
predictions for composite tensile strength. Their analysis also suggests that there may be an optimum

ineffective length which maximizes the tensile strength.

1.2 Estimation of Residual Strength During Fatigue and Fatigue Life

The prediction of fatigue damage and fatigue life for composite materials has been the subject of many
investigations during recent years. Hwong and Han [29] suggested four requirements for a universal
fatigue damage model:
1. It should explain fatigue phenomena at an applied stress level.
2. It should explain fatigue phenomena for an overall applied stress range
a) During a cycle at a high applied stress level the material should be more

damaged than that at a low applied stress level.
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b) If it is true that failure occurs at each maximum applied stress level, then the
final damage (damage just before failure) at a low applied stress level should be larger
than that of a high applied stress level.

3. It should explain multi-stress level fatigue phenomena.

4. It is desirable to establish the fatigue damage model without an S-N curve.

An excellent review of work in this area of fatigue life predictions has been given by Liu and Lessard [30].
In this paper, they divided the models used to predict fatigue life into three classes: residual strength
degradation, modulus degradation, and damage tolerance approaches. According to Huston [31], most of
the life prediction methods for polymeric composite materials are based on the residual strength
degradation. However, he suggested that theories for fatigue failure based on the reduction of stiffness
have one significant advantage over the remaining strength theories: remaining life can be assessed by
non-destructive techniques. Also, Huston suggested that less testing needs to be conducted for stiffness-

degradation-based models.

One such analysis based upon stiffness degradation has been proposed by Poursartip et al. [32]. In their
analysis, it was assumed that the stiffness reduction could be related in a linear manner to the “damage”
that was present due to fatigue. By making arguments based upon the global stiffness reduction due to
cracks in composite materials, they were able to relate the measured sliffne.ss reduction in a linear fashion
to the damage (for a low concentration of cracks). The damage parameter could then be integrated from
its initial value to some final (critical) value using the experimentally measured stiffness reduction.

Failure was predicted to occur at the point where the damage parameter reached the critical value.

In the residual strength degradation approach, fatigue failure is typically assumed to occur when the
residual strength becomes equal to the applied maximum stress amplitude. Such an approach was used by

Broutman and Sahu [33], who proposed a cumulative damage theory based on a linear strength
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degradation approach to explain the fatigue damage of fiberglass reinforced composites. Using this
approach, they were able to make predictions for the residual strengths of laminates which were subjected
to high-low stress tests and of laminates which were subjected to low-high stress tests. These predictions

were compared with the experimentally measured residual strengths.

Hashin and Rotem {34] proposed a cumulative fatigue damage theory in which the damage during cyclic
loading may be represented by the residual lifetime under subsequent constant amplitude cycling. The
theory was based on the concept of damage curve families which are defined in terms of residual lifetimes
for two-stage loading. The damage in two components due to two different loading histories was
considered to be equivalent if it gave the same remaining life under subsequent loading at the same stress
level. The authors considered procedures of lifetime prediction for piecewise constant cycle amplitude
variation (multi-stage loading) as well as for the case of continuous variation of cycle amplitude with
number of cycles. For the second case, the solution of initial value problems for first order nonlinear
differential equations was required. The authors compared their analytical results to that of Miner’s rule
for multi-stage loading programs and found there to be considerable difference. In addition, they
compared their analytical results to the experimental data obtained on both soft and hard steels with good

agreement.

The modelin‘g approaches presented previously dealt with phenomenological re.presentations of fatigue life
and residual strength predictions. Reifsnider and his coworkers [35-38] proposed a mechanistic non-
linear residual strength prediction based on the critical element model. In this approach, a representative
volume was selected which was typical of the material in question. This representative volume may
contain damage, such as matrix cracks, delaminations, microbuckles, or fiber fractures, but some part of it
still retains the ability to carry load. It is the failure of this part of the representative volume, the so-called
“critical element”, which determines the fracture of the entire representative volume. The remaining

strength of the critical element was calculated by using a non-linear damage evolution equation which
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accounts for the changing stress amplitude in the critical element. The predictions of the model were

compared with laboratory data for polymeric as well as ceramic composite systems.

The general approach given a by Reifsnider et al. was extended by Subramanian et al. [39] to include the
effects of an interphase region on the tensile fatigue behavior of composite laminates. The effect of this
interphase region was modeled by the inclusion of an “efficiency” parameter which was taken to be a
measure of displacement transfer between the fiber and the matrix. The effect of this efficiency parameter
on the tensile strength was assessed using a micromechanical tensile strength model. Changes in the
interphase property were used in conjunction with a maximum strain criterion to determine the fatigue life

of the laminate. The results were compared with the experimentally measured lives.

The goal of the present study is to develop and validate a method to predict the residual strength and life
of a polymeric composite component subjected to cyclic and sustained thermomechanical conditions.
Conditions to be considered include elevated temperature (in air) and cyclic (fatigue) loading at various
stress levels. As this area, in itself, is so broad, particular emphasis will be given to fiber-controlled-
tensile failure in the context of the critical element model. The approach employed will be one which
incorporates micromechanical, ply-level, and laminate-level modeling. To accomplish the goals of the
proposal, the work will undertake a natural progression:
e Micromechanical tensile strength modeling which includes the r;)Ie of the mechanical
properties of the constituents, the interphase region, as well as the fiber volume fraction.
s Fatigue damage modeling in the context of the critical element model, including initial
validation of the critical element model for laminates with “simple” damage development
patterns using available data from the literature. This will concentrate on residual strength

as well as lifetime prediction.

Introduction and Literature Review 13



e Identification of damage processes and development of modeling techniques for unnotched
and notched laminates at room temperature
o Identification of damage processes and development of modeling techniques for unnotched

and notched laminates at elevated temperature
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2. Strength Prediction in Unidirectional
Composite Materials

In this section, an analytical model is developed which provides an approximate stress state in the region
surrounding a fiber fracture in a unidirectional composite material. The stress state is approximate in that
the adjacent fibers have been smeared together to form a ring, making the resulting problem
axisymmetric. Using an additional smearing technique in conjunction with this approach, it is possible to
determine the stress state in the neighborhood of multiple fiber fractures. This stress state is then be used
in strength prediction models such as that described by Batdorf [7] to arrive at the desired macro-level

strength predictions.

2.1 Basic Equations and Their Solution

The present analysis is an extension of that employed by Dhaliwal et al. [16] with modifications made to
the potential functions to allow the body to include any number of concentric cylinder elements. We begin

by considering the problem of a penny-shaped crack of radius r, in an infinitely long elastic cylinder of
radius r; . This cylinder is surround by N-I concentric elastic cylinders of radius r; (i=2, N-1), as shown
in Figure 2.1. The crack surface (0 < r < r,) is subjected to a prescribed normal loading. The assumption
of perfect bonding requires continuity of displacements and tractions at each interface (r = r;, ry, ... ry.).

Since the geometry of the problem is symmetric about the plane z = 0, the problem reduces to a mixed
boundary value problem for the region z = 0, r 2 0. By assuming appropriate solutions for the regions of
interest, the problem is reduced to the solution of a Fredholm integral equation of the second kind. This
equation may be solved numerically. Once this solution has been obtained, it may be used to calculate the

stress and displacement components in each of the constituent materials. By using a geometry
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Figure 2.1. Penny-shaped crack surrounded by multiple concentric cylinders having different
elastic constants.
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approximation, it is then possible to use these stresses to determine the stress concentrations in

unidirectional composite materials due to a single fiber fracture.

For the case of axisymmetric loading and boundary conditions, the displacement vector U assumes the

form (u,, 0, u,) in a cylindrical coordinate system (r, 8, z). The equations of equilibrium in terms of

displacement are given by

uVU+(A+u)V(V-U)=0 (2.1)

The corresponding stresses are given by

ou, u, oy,
o.,(r.2)=(A+2pu) >, +A( . + &)
o, (rz)=(A+2u) (;“ZZ +/l(f‘rL+ %ur) (2.2)
o (r,z)zu((;u’ +2ui)
rz & &r

where A and U are Lamé's constants.

Following Dhaliwal et al. [16], we may take the solution of the system of partial differential equations

given by Equation (2.1) in the form of

2
u,(r,z):(l~2v)%)r(—+zgr—5z+%+(3—4v)w—r%‘rﬂ o

2
u:(r,z):—2(1—v)%+z%+gz_¢_r%
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where v is Poisson’s ratio and the functions ¥, ¢, and  satisfy the following relations

13 d*
( ror 312]){ 0

18 92
rar ]¢

2.4)
_?_2_ + _l__é + 8_2 — i — O
o ror & V=
Solution of Equations (2.4) for the regions R;, / i< N, are taken in the form of
~ 1 .
x"(r,2)= jo 6—2F(§)J0(§r)e % dE
e |
¢(1)(r,z) = '[) EA(f)[Io(ér) Cos(éz) - l]dé, (r.z)e R,
v (r,2) = | BE)(&r)cos(&2)dE
2.5)

x"(r2)=0
¢ (r,2) = j [C(’ é)Ko( r)+ EQE(&r)|cos(&2)dE, (o R, 2<i<N

oo

W)= JO [DO(E)K (&) + G (&) eos(&e)de

2.6)
xM(r.2)=0
= [ LR @ wven,
)= [ DR (Er)eor b
2.7

Strength Prediction In Unidirectional Composite Materials 18



where the superscript ¢ (i = 1, 2...N) denote quantities for the regions R; and J,(Er), I,(Er), and K.(Er)
denote Bessel functions of the first kind and modified Bessel functions of the first and second kind,
respectively, of orders j (j = 0, ). From Equations (2.2), (2.3), (2.5), (2.6), and (2.7), we obtain the

following expressions for the stress and displacement components in the regions R;, i = 1, 2, ... N

I) r[ 2v -1+ 52 5) l(fr)e_gz'l' {A(f)l,(fr) + B(f)[‘l(l - Vl)’l(‘fr) - ‘frlo(fr)]} cos(fz)]df

(2.8)

AR J‘:{—;— (2-2v, + &)F(E) T, (Er)e - {A Mo(ér) - §rB(§)Il(§r)} sin(l_‘,z):ldé

(2.9)

o W= j;zyl [{(gz ~1)J,(&r)+{1-2v, - 52:)? A (fr)}p(g) e %
—%{A(f)[ L(&) - &1,(&)]+ B (4 —av, + E7°)1,(&r) - (3 -2, )érl, (&r)]}oos(&)1dé
(2.10)
o O(ng)=-2m [(1 + &)F(E)Jo(&r)e o+ EA(E)1 (&) - B(E) 2vily(&r) + §r1,(§r)]}cos(§z)]d§
210
o, N(rz)=-2u, j:[gzp(g)J,(fr)e-m E[A(O)1(&r)+ B(E2(1- v )1, (&r)- 5r10(5r)]}sm(§z)]d§ :
(2.12)
uO(r,2)= | [ C(E)K (&r) + EV(E)1,(&r) + DV(EN4(1 - v, )K(8r) + &rK, (&)]
+GY (&) 4(1 - v,)1,(Er) - &rly(&r)]p cos(Ez)dE
(2.13)
u(r,2)= I: {-C()K,(&r) - EV(E)(&r)+ DV (E)erK,(&r) + G (E)erT (&r) ] sin(&2)dg

(2.14)
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o O(r,z)= 2 j{c E)&rko(&r) + K,(&r)] - DO(E) (4 - 4v, + Er)K (&) + (3-2v, )ErK, (&r)]
+E( (&) &rty(Er) - 1,(&r)] - G"')(g)[(4 —4v, + ) (&) - (3~ 2v,)§r10(§r)]} cos(&z)dE

(2.15)
. O(r,2)= Z#ij'g{c(i)(g)Kl(ér) _ D(i)(é)[z(l -v,)K,(&r)+ érKo(ér)]
~EV(E)1,(Er) - GO(E)2(1 - v, )L, (&r) + Erl,(&r) i sin(&z)dE
(2.16)
0.(r,2)= 241, [ECV(E)K, (&r) + D(E)[2v,Ko(&r) - &K (&7)]
+EV(E)1 (&) - G(E)2v. 4o (8r) + &rt, (&r) [ cos(&2)dé
(2.17)
1M (r.2) = [{- CV(E)K (&) + DV -V, )K, (&) + &rKo(&r)] cos(E)dg
(2.18)
(r,z) = J' D“V)(g)érKl (ér)} sin(&z)d&
(2.19)

o, M(r,z)= -2% j(;’{’c‘ () &rK,(&r)+ K (&)]- D' ”)(5)[(4 —4vy+ErK (&) +(3-2v, )§r1<0(§r)] }cos(&)dé
(2.20)

0,0,2) =20, [ E{CO(E)K, (&) - D (E201 - v, K, () &K, sin(Ee)ee

(2.21)

O'ZZ(N)(r,z)=—2uNJ’:§{C(N) E)K,(&r)+ D™M(E [QVN (ér) - érKl(ér)]}cos(éz)dé
2.22)

where |, and v; denote the shear modulus and Poisson’s ratio for the region R (i = /, 2, ... N).
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2.2 Formulation of the Problem

The problem of a penny shaped-crack of radius r,. in a long elastic cylinder of radius r; (r; > r.) is

considered. We assume that there is perfect bonding between each of the constituents. All of the
materials are assumed to be homogenous and isotropic. Since the geometry of the problem is symmetric

about the crack plane, we consider a semi-infinite elastic cylinder subjected to the following boundary

conditions:
o (r0)=p(r), o<r<r, (2.23)
uM(r,z)=0, r.<r<r, (2.24)
o "(r,0)=0, 0<r<r (2.25)
uz(i)(r,z) =0, r<r<r (2.26)
o, (r0)=0, ra<r<r, (2.27)

The continuity conditions for displacements and tractions are given by

(2.28)

2.3 Reduction of the Problem to the Solution of a Fredholm
Integral Equation of the Second Kind

Due to the functional forms chosen for %, ¢, and y in each of the constituents, it is apparent that the
boundary conditions given by Equations (2.24)-(2.27) are identically satisfied by the stresses and
displacements given in Equations (2.12), (2.14), (2.16), (2.19), and (2.21). Substituting Equations (2.11)
and (2.9) into the boundary conditions given by Equations (2.23) and (2.24), we arrive at the following

dual integral equations:
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7 F(e)u(Enae + [ @& - B v+ n@)ae =22 o)

24,
O<r<r,
= ]
_[0 B F(&)J,(&r)=0 (2.30)
rc <r< I’]
Equation (2.30) is identically satisfied if the solution for F(&) is taken as
éj )sin(&r)dt (2.31)

regardless of the form of A(t).

Substituting Equation (2.31) into Equation (2.29), we see that the function h(z) must satisfy

+_72_£"'0w§ [A( v, B Ur rl,(Er)dr 5) rI (ér)dr v rp(r

N s B e R

(2.32)

Making use of the fact that

J rl,(&r) df smh(z,"t)

N s

J- r*1,(&r) d&j §tcosh(§ )—sinh(&r)
(- 3

and substituting into Equation (2.32) we find that

(2.33)
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J rp( r)dr

(e -

h(t)+ EJ: {[A(Zj) - 2v,B(§)] sinh(&r) - (& cosh(&r) - sinh(&t))B }a’Zj =

/9

(2.34)
Using the Fourier inversion theorem along with the boundary conditions given by Equations (2.28) and
the stress and displacements given by Equations (2.8)-(2.10) and (2.12)-(2.16), we obtain the following

relations at r = r;:

—I,(, ) (s) + sl (rs)B(s)+K( )C(z)(s)—rsK (rs)D( (s)

+10( ) 2)(s)—r,sl =——j f+uf2) (I;Lt)F(u)ahA:X1
(2.35)

Il(rls)A(s)+[4(l—vl)I,(r,s) rsly(n ]B )+ K, (5)CP(s) - I{rs)EP(s)
—[4(1—vZ)K,(rls)+rlsK0(r]s)]D (s)—[ (1 _Vz)ll(rls)"rldo(rls)] G(s)
=2 ml((2vl 1) f, + uf, ) (ru) F(u)du = X

T u

(2.36)
yZ{C(Z)(s)[rlsKo(rls) +K,(rs ]— D(z)(s)[(4 —4v, + 1’5" )K (rs)+(3-2v, )rlsKo(rls)]
+ E(Z](s)[rlslo(r,s) I,(r,s)] G s)[ 4 —4v, + rlzsz)ll(rls) - (3 - 2v2)r;s10(r|s)]}
)]

+ (=AY rslo(rs) = 1 (ns)] + B(s)(4 = 4v, + 525", (s) = (3= 2v, sy (s)}

=;2r-r]u [ (u)[(—fs +ufMo(ru) +{(1-2v)f - f}i—)]f’ = Xty

1

(2.37)
5 CP (5)K, (rs) = DV (sY2(1 = v, )K, (rs) + risK (1is)] = E¥(s)1, (1is)
=GO 2(1- v, ) (ns) - r15]0("15)]} + 1,s{AG) (1s)
+B(s)2(1=v,)I,(rs) — nsly(rs)]} = —% i, | uF () £, () = X,
(2.38)
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where, using the notation of Dhaliwal et al.,

- g s
fl = .[0 sm(sz)e dZ = m
= J:zsin(sz)e_"zdz = (szisuuzf (2.39)
u

fi= J:) cos(sz)e “dz = (;2—+—uz—)

22
~ —uz u -—s
ﬂ = J ZCOS(SZ)E dZ = ﬁ

0 (s +u )
Imposing the boundary conditions given by Equations (2.28) along with Equations (2.13)-(2.16) and

(2.18)-(2.21) and using the Fourier inversion theorem, we arrive at the following relations for 3<i<N-/:

_C"“'(S)Kl(;:_ls)+E“"“(s)ll(r,_ls)+D (S)[4 K(r 5)"” sK,(r. s)]
+G" (a1 - v )1 (r,5) - ’xslo( s)]
= _C““(S)KI(’A‘—IS) + EW(S)II(I;_IS)'*' D”“(S)[“(l - VH)Kl(I;_lS)"' 'A.AISKU(,‘:—IS)]
s)

+G " O[4(1 =V )1 (r5) ~r st (1 5)]
(2.40)
C(s)K,y(r_,5)+ DV (s)r_ SK (r_s)— EFN ()1, (r. S)+G(' (s SI(rs)
= —C"()Ky(ry5) + D™ (s)r_ysK (1. ,5) = E" ()L (r_y5) + GV (s)rysh(ry9)
(2.41)
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%{di_l)(s)[ﬁ—lsKo(n-xs) + Kl(’?—ls)] - D(H)(s)[(‘1 —4v,, + ry'st )Kl (ri—ls) + (3 -2v, )'}—151(0(’.’-15)]

i-l

+E(i—])(s)[';-l'SI0(';-ls) - 11(’;-15)] - G(i_l)(s)[(‘l -4v, + 5-1252 )11(’}-15) - (3 - 2Vi—1)’i—|SIo(’}-1s)]}
= %{C‘”(s)[r.--lsKo(n-ls) + K, (7,9)] = DV () (4 =4V, + 1257 K, (11s) + (3= 2V, ) ysKy (1y9)]
+E(i)(s)[’;‘-ISIO(’;—lS) - 11(’;—15)] -GY (s)[(4 —-4v, + ’}—1252 )]l(’;-ls) - (3 - 2vi)';—ISI0(';—ls)]}
(2.42)

20, {CO(5)K, (45) = DY) 2(1= v, K (1) 111K (1708))
—E () (115) = G 2(1 = v (i) + rasho(ras))
= 24 {CY (5)K, (1) = D () 2(1= v, ) K, (1y5) +r15Ko (1))
—E($)1,(r15) = G () 2(1 =V ) () + 1T (705) )
(2.43)

and at the last interface (r = ry.;)

~CY (K, (ry,8) + EVY V() (ry_s)+ D(N‘”(s)[4(l — Vo )K (nos)+ rN_,sKO(rN_,s)]

+G(N_])(S){4(l Vo )11 (r,v—xs) - rN—ISIO(rN—ls)]
= C(N)(S)Kl(rN—]S) + D(N)(S)[4(] — VK (rs)+ rN—xSKO(rN—ls)]

(2.44)
—C(N‘l)(S)KO(qus) + DY (s)r,_ 5K, (ry.,s)— E(N_])(s)'lo(rN_]S) + G(N_])(S)rN—ISIl(rN-lS)

= —C(N)(S)KO(rN_Is) + D(N)(s)rN_,sK](rN_]s)

(2.45)
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___2”"’“ {C(N'l)(s)[rN_lsKg(rN_ls) + KI(rN—IS)]

o

—D(N'l)(s)[(4 —4v,  +ry ts )K] (rvas)+(3=2v,, )VN_]SKO("N_,S)]
+E(N-l)(s)[rN—1SIO(rN—IS) - [l(rN—ls)]
—G(N")(s)[(4 —4v,_ +n_ 0 )I, (rvos)~(3-2v,, )rN_lsIO(rN_,s)]}

= z'u_N{C(N)(S)[rN—ISKO(rN-ls) +K, (rN—ls)]

rN—l

=DV(sf(4=4vy + 1y " )K,(19) + (B=2v ) isKo (v_is)])
(2.46)
24y ACP (K, (ry-15) = D) 2(1 = Vot JK (rves) 418K (1))
~EY () (ra8) = GV (201 = Vi M (ras) + sl (ris)))
= 21 {CM ($)K, (ry-18) = DM (Y 2(1= v K (e s5) e Ko (1 s5))

(2.47)

Equations (2.35)-(2.38) and (2.40)-(2.47) represent a system of 4(N-1) equations for the unknown

functions A(s), B(s), Cli)s), Di)(s), E)(s), FliXs), Cli)(s), and D(s) at each point in s-space. These

equations may be solved by inverting the resulting matrix equation. It is then possible to write the

functions A(s) and B(s) in the form

A(s)= AX, +AX, +AX, + AX,

. (2.48)
B(s)= BX, +B,X, + BX,+B,X,

where the coefficients A; and B; are determined by the matrix inverse.

Making use of Equation (2.48), we may then write the following expression in the form
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[A(s)- 2v,B(s)]sinh(st) - st cosh(st) - sinh(st)]B(st)
=C (s, )X, + C,(s,1)X, + C,(5,0)X; + C,(5,1) X,
(2.49)

where

C,(s,t) = A sinh(st)+ B [(1 2v, )sinh(st) - st cosh(st)]
C,(s,t) = A, sinh(st) + B,|(1—2v, )sinh(st) — st cosh(st)]
( (2.50)

)= A
,t)= A, sinh st)+B[ (1—2v,)sinh(st) - stcosh st)]
L (5,0) = [

A, sinh(st)+ B,|(1-2v, )sinh(sr) — st cosh( st)]

Following the analysis of Dhaliwal et al. [16], and making use of Equations (2.31) and (2.35), we find

that the expression for X, can be written as

X, = —4(1—v,)J‘rr h(t)dtr Jo(ru)sin(ur)du _4s ( )dj u?Jo(ru)sin(ut)du

T 0 0 st +ut /1 (32 +“2)2
(2.52)
From Erdelyi [40] we find that
[ r Jo(qquin(gt)du _ sinh(st)Ko(ﬁS)’ < b, (2.53)
0 s tu s
and
J‘: u®Jy(ru)sin(ut)du o SZJ.: Jo(ru)sin(ut)du (2.54)

(s2 +uz)2

Differentiating both sides of Equation (2.53) with respect to s, we find that
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J; Jolru)sin(ur)du 21s[smh(st)K (rs)+ rssinh(st)K, (1) — st cosh(st)K, (rs)]

(57 +?)

Substituting Equations (2.53)-(2.55) into Equation (2.52), we find that

-2

Xl—— h(£)Y (3~ 2v,)sinh(st)K,(rs) - rssinh(sr)K, (rs) + st cosh(st) K, (r;s) dt

b 4

Following a similar procedure, we find that we may write

2 ulJ (ru)sm(ut)
Xz_—;(zvlq)j h(t)dr [ e
2 jl; j J,(ru)sinh(ut)du
o s +u )2
The second term in Equation (2.57) may be rewritten as
r u(uz, - SZ)J, (ru)sinh(ut)du Jm uJ,(ru)sin(ut)du Zr uJ,(ru)sin(ut)du
= -2s
0 (52 + u2)2 0 st + i 0 (52 + uz)2
From Erdelyi [40], we find that
~ul (ru)sin(ut)du
J-o 1 ls2)+u2 Jdu _ sinh(s?)K, (s), 1<b.
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Differentiating both sides of Equation (2.59), we obtain:

o uJ,(ru)sin(ur)du _ L [sinh(st){rsK,(rs) + K (s)} - stcosh(st)K,(rs)]

(s + u2)2 2s
(2.60)
Making use of Equations (2.59) and (2.60), we find that Equation (2.57) can be written as
= ——j 2v, — )sinh(st)K, (rs) - [rls sinh(s?)K,(rs) - st cosh(st)K,(rls)]}dt
(2.61)
Using Equations (2.31), (2.37), (2.39), (2.54), and (2.59), we find that
= —[ J h(t) {rs[rssmh (s)K,(rs) - stcosh(st)KO(rls)]
(2.62)
+(1-2v,)sinh(st)K,(rs) — stcosh(st)K, (rs) }dr ]
Similarly, the expression for X, may be written as
o J t)d,
X, :—isj k(1) dtj d ru)sm(f )du (2.63)
T (s +u )
The second integral in Equation (2.63) can be written in the following form: |
J»o u’J,(ru)sin(ut)du Jw» uJ, (ru)sin(ur)du zr ud,(ru)sin(ut)du
u = -5 5
e
(2.64)
so that
= ——J mh (st)K,(rs)+ stcosh(st)K,(rs) - rs sinh(st)Ko(r,s)]a't
(2.65)
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By substituting Equations (2.50), (2.56), (2.61), (2.62), and (2.65) into Equation (2.34) we find the

following relation

a 1 ¢ rp(r)dr
h(z)+ JO h(u)K (u,t)du = _ﬂ_,u,'[)ﬁ(ﬁ)rz’ o<t<r, (2.66)

where

4
K(u,1) = ——J {[(3 - 2v,)sinh(us)K (rs) - rssinh(us) K (rs) + uscosh(r]s)KO(rls)]C] (s,1)
]r 0

+[(2vI - 1)sinh(us)K, (rs) = {rssinh(us)K (rs) - us cosh(u:)K,(rls)}]Cz(s, 1)
-—[rlzs2 sinh(us)K (rs) — (r5)(us) cosh(us)K (rs) + (1= 2v, ) sinh(us)K (rs) — us cosh(us)K,(rls)]Cg(s,t)

+[s sinh(us)K (rs) + s(us) cosh(us)K (15) — s(rs) sinh(us)KD(rls)]Ca (s,1)}ds
2.67)
Equation (2.66) is a Fredholm integral equation of the second kind having a kernel given by Equation 65.

This equation may be solved numerically for the unknown function h(1).

2.4 Representation of the Broken Fiber Problem

To analyze a single fiber fracture in a unidirectional composite, we separate the problem into a near-field
analysis and a far-field analysis. The total solution is then just the superposition of the far-field solution
and the near-field solution. The far-field solution for a uniform strain applied in the fiber direction may
be easily obtained in a manner such as that detailed by Pagano and Tandon [41]. In posing the near-field
problem, we assume a fiber fracture has occurred in a composite with a hexagonal array of fibers, as

shown in Figure 2.2. The size of the crack is denoted by r,, the size of the fiber by r;, and the distance to
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B Fractured Fiber

Figure 2.2. Composite material having hexagonal packing which contains a single broken fiber. The
shaded area is selected as a representative volume element for the analysis.
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the nearest adjacent fiber by r; Prior to the formation of the crack, load was carried by this region. The
crack is opened by a pressure p, which is equal to the negative of the fiber stress determined from the far-
field analysis such that the superposition of the near-field solution and the far-field solution produce a
traction-free crack face. Following the suggestion of Carman [42], we make the assumption that the fiber
immediately adjacent to the fracture fiber may be represented by an annular ring of material (see Figure
2.3). This assumption reduces the near-field problem to an axisymmetric one. While the point-wise
stresses determined in such a manner are not the exact solution to the near-field problem, the do
accurately depict the trends in the stress variations of interest. The inner radius of the fiber annular ring,
rz, is given by the distance to the adjacent fibers, The outer radius of the fiber annular ring, r;, is
determined from the global fiber volume fraction. For hexagonal packing, we have

_ 2 2
r,= ,}64 +r,

7’_12 (2.68)

In order to use the analysis developed previously in this paper, we allow the radius of the crack, r,, to
approach the radius of the fiber, r,. Equation (2.66) is then solved numerically using the Nystrom method

[43].

2.5 Numerical Results

To demonstrate the solution, an number of numerical studies were conducted. The first such study was to
determine the effect of fiber to matrix stiffness ratio on the resulting stress state. To calculate the effective

composite properties we use the following prescribed values

v1:v2:v3:v4:v5:02
1% |% (2.69)
NSZ _f+_’n.
K My

Strength Prediction In Unidirectional Composite Materials 32



Matrix
B Fiber

B Fractured Fiber

Figure 2.3. Representation of the hexagonal arrangement as an axisymmetric one having the same fiber
volume fraction.

Strength Prediction In Unidirectional Composite Materials

33



While the use of isotropic properties to represent the composite could be questioned, this approximation is

certainly not as severe as some of the others used in the model. First we look at the normal stress
c u“)(O,z) (at the center of the broken fiber) for a 65% fiber volume fraction composite. This is shown

graphically in Figure 2.4. A number of interesting features are immediately noticeable. First of all, we
see that for high values of the stiffness ratio, the normal stress becomes tensile before asymptotically
approaching zero. Even more striking, however, is the distance over which the near-field stress remains
compressive (the so-called ineffective length). This distance becomes smaller as the fiber to matrix
stiffness ratio is increased. This is exactly the opposite trend from that predicted using a shear-lag

analysis.

Of interest for making tensile strength predictions are the stress concentrations on the adjacent fibers and
the axial distance over which this increased stress acts. Because there is a strain gradient as a function of
r as well as z, it is not possible to speak of a single stress concentration value on the adjacent fiber. Rather
this value depends upon position. To illustrate this, we will consider two different radial locations on the
adjacent fiber ring: the inner edge of this ring (r = r;) and the center of this ring, denoted r;;, and given

by
1
s =5(r3 —n)+n (2.70)

Such a comparison is shown in Figure 2.5 for the case of a 65% fiber volume fraction composite in
which e, / 1, = 20. It will be noted that there is a great difference between the maximum stress values
at these two locations. The maximum value at the inner edge is 0.183 while the maximum value at the
center is 0.052. Another interesting feature is that the maximum stress concentration at the center of the
adjacent ring does not occur in the plane of the crack. Rather, it is located at approximately 0.4 r. above
the plane of the crack. This is not surprising in view of the results given in Figure 2.4, although it is a
feature not predicted by the shear lag analysis. The maximum value of the stress concentration at the

inner radius of the fiber ring does occur in the plane of the crack (for this particular selection of composite
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Figure 2.4. Variation of the o _(0,z)/ p, stress (at the center of the broken fiber) as a function of distance
above the crack plane for various fiber to matrix stiffness ratios.
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Figure 2.5. Variation of the o'x(r2 ,z)stress (at the inside edge of the fiber annular ring) as a function of
distance above the crack plane for various fiber to matrix stiffness ratios.
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properties). To determine whether this was true in general, the stiffness ratio of the constituents was
varied once again, and the resulting strain distributions plotted. The variation of the near-field stress as a
function of axial distance from the crack plane at the inner edge of the fiber annular ring is shown in
Figure 2.5. Once again a fiber volume fraction of 65% was used. In all of the cases except one
(i, / 4, =2), the maximum stress concentration occurs in the plane of the crack. In this one case it
occurs at 0.2 r, above the crack plane. Two stiffness ratios considered, i, / t, =2 and Y,/ p, =10
give almost an identical value for the maximum stress concentration. Otherwise, there is a distinct trend:
as the stiffness ratio is increased, the stress concentration at the inner radius of the fiber annular ring

decreases.

The variation of the near-field stress as a function of distance from the crack plane for different stiffness
ratios at the center of the fiber annular ring is illustrated in Figure 2.6. Here the results follow an
interesting pattern. As the stiffness is increased, the stress values increase initially and then decrease for
higher stiffness values. However, all of these values are much less than would be predicted from a local
load sharing rule. Hedgepeth and van Dyke’s analysis predicts a stress concentration of 1.104 on the
adjacent fiber, which is greater than the values obtained at the center by any of the cases studied. Such a
result is not surprising in view of the amount of axial load being carried in the present model.

As a final example of application of the model, we consider the effect of fiber volume fraction on the
stress state for composites in which U, / i1, = 20. Four different fiber volume fractions are considered:
20%, 50%, 55%, and 65%. First we consider the effect of those changes in fiber volume fraction have on
the normal stress in the broken fiber. The results which are shown in Figure 2.7 suggest that such
changes have very little effect on the stress state in the broken fiber. However, if we consider the stress

state at the center of the adjacent fiber ring as shown in Figure 2.8 we see that changes in fiber volume
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Figure 2.6. Variation of the o':(rm, 2)! pystress (at the center of the fiber annular ring) as a tunction of
distance above the crack plane for various fiber to matrix stiffness ratios.
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Figure 2.7. Variation of the stress 0':(0, z) / p, (at the center of the broken fiber) as a function of distance

from the crack plane for various fiber volume fractions.
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Figure 2.8. Variation of the ¢_(r,,.2)/ p,stress (at the center of the fiber annular ring) as a function of

distance above the crack plane for various fiber volume fractions.
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fraction have a significant effect on the stress concentration seen here. The reason for these changes (the
stress concentration goes up as the fiber volume fraction is increased) is easily understood physically if the
geometry of the model is considered. As the fiber volume fraction is increased, the distance from the

center of the unbroken fiber to the crack tip is decreased, leading to the larger stress concentration.

There is still one major point to be considered: the magnitude of the tensile stresses carried by the matrix,
particularly at the crack tip. The radial variation of the normal stress, G u(i)(r,O) in the plane of the
crack for the i = 2,3, 4 cylinders is shown in Figure 2.9 for a fiber volume fraction of 65%. The resulting
stresses in the matrix adjacent to the crack tip are singular (as expected) with the power of the singularity
increasing as the value of U, / M, is increased. We would therefore expect some plasticity in the matrix,
which would change the resulting stress state. This case has been recently studied using finite elements
by Nedele and Wisnom [44]. Their results suggest that while this plasticity does change the ineffective

length, it makes only small changes in the stress concentration.

2.6 Multiple Fiber Fractures

Accounting for the effect of multiple adjacent fiber fractures is somewhat more complex. As pointed out
by Batdorf [7], multiple adjacent fiber fractures may have a number of different shapes even for the case of
simple packing arrangements such as square and hexagonal. To simplify the analysis somewhat, we use
an approach similar to that used by Hedgepeth and van Dyke in which we will consider only arrangements
of multiple fiber fractures which are roughly axisymmetric (i.e. the number of breaks is equal to 1, 7,

19,...) as is illustrated in Figure 2.10.

To model such a situation, we use much the same approach as that which was used for the case of a single

fractured fiber with a few minor changes. First we calculate the inner radii of the adjacent fiber rings
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Figure 2.10. Hexagonally-packed composite material showing regions selected for geometry
approximation.
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based on the geometry for hexagonal packing. Then we calculate the outer radii so that the total area of
fibers remains constant. It would be most desirable to represent each of the broken fiber and matrix rings
individually, but this is not possible due to the nature of the solution scheme. Rather, it is necessary to
represent these broken inner fiber and matrix regions by a single cylinder having effective composite
properties. In such a manner, it is possible to calculate the stress concentrations for 1, 7, 19 ... adjacent
fiber fractures. The intermediate values may then be estimated by curve fitting between these known

values.

As an example, let us consider a composite material in which the fiber-to-matrix shear stiffness ratio is
20. This ratio is typical of glass/epoxy composite materials. The resulting maximum stress
concentrations (at the inner edge of the adjacent fiber annular ring), stress concentrations at the center of
the adjacent fiber annular ring, and the ineffective lengths (the axial distance over which the stress field is
perturbed) are given in Table 2.1 for fiber volume fractions of 30%, 40%, 50% and 60%. The results seen
here are not surprising in view of the nature of the model: as the fiber volume fraction is decreased, the
distance from the crack tip to the adjacent fiber increases. Since the model predicts singular stresses
which decay rapidly as a function of distance from the crack tip, we would expect the stress concentration
to vary directly with the fiber volume fraction. This is exactly the trend we see exhibited in Table 2.1. In
addition, as the value of the fiber volume fraction increases, the ineffective length decreases for a given

number of adjacent fiber fractures.

2.7 Application to Composite Tensile Strength

Once these stress concentrations and ineffective lengths are known, it is then possible to make predictions
of composite tensile strength. As discussed previously, one of the classical models of composite tensile

strength is that developed by Batdorf [7]. Batdorf considers a composite containing N fibers, each of
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Table 2.1. Stress concentrations due to multiple fiber fractures for a glass/epoxy composite material at
various fiber volume fractions.

Fiber Volume Number of Maximum Stress Center Stress Ineffective
Fraction (%) Broken Fibers Concentration Concentration Length (Fiber
Radii)
1 1.043 1.023 15.01
30 7 1.151 1.090 25.48
19 1.312 1.188 30.76
1 1.061 1.029 12.67
40 7 1.181 1.102 22.78
19 1.363 1.207 27.55
1 1.087 1.036 9.79
50 7 1.212 1.114 20.42
19 1.411 1.224 24 .85
1 1.130 1.042 4.84
60 7 1.251 1.126 18.04
19 1.453 1.234 21.56
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length L, which are held together by a matrix. Damage in the composite due to loading is assumed to
consist solely of breaks in the fibers. There will be single isolated breaks (singlets), pairs of breaks
(doublets), three adjacent breaks (triplets), and (in general) i adjacent breaks (i-plets). Each i-pler is
surrounded by n; nearest neighbors, each of which is subjected to a maximum stress concentration of ¢; in
the plane of the break. This stress concentration acts over an axial distance of §; (the ineffective length).
We first assume that the fiber failure conforms to a two-parameter Weibull representation. Therefore,

when a stress & is applied to a fiber of length /, the probability of failure, Py, is given by

P(c)=1-exp —L[ij (2.71)
I, \o

0 0

where Gy is the Weibull characteristic value, m is the Weibull modulus, and /, is the reference length. For

the case in which Py <<1, Batdorf approximates Equation (2.71) by

l m
P = —(ij (2.72)
lO O-O

The number of singlets, ;, may then be determined by multiplying the probability of failure given by

Equation (2.72) so that

: 0, =NP, = vi[ o ' @2.73)
0 0-0

Following Batdorf, we next assume that the stress concentration in the neighboring fibers varies linearly

from c, to unity over a distance 8;/2. We may represent such a variation functionally as:

e 4% (1
f@)=c + 5]/2(1 a) (2.74)
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After Reifsnider [28], we may express the reliability of a fiber having a stress variation of this type may be

given by
R=exp —(i] (2.75)
o

where

-1

m

Ouo = 0’0(} [f (Z)]de) 2.76)

Using this relation, an the variation of the axial stress given by Equation (2.74), we can show that the

probability of failure in the overstressed region may be approximated by

P = ﬁ(c, i) @7
b Oy
where
m+l _
A, =8, G L (2.78)

.

Because there are n, nearest neighbors to each singlet, the probability that a singlet becomes a doublet is

given by
A o)
B,=n-—"¢q— (2.79)

The number of singlets, Q,, is given by Equation (2.73). Therefore, we may estimate the number of

doublets by
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0, =0n, ﬁ(cgj (2.80)

In general, the number of i-plets may be given by

O, = ini%(ci'i] (281
0

or equivalently,

7
PN

Lo\ ;
Q = Nl_(_J [Iemn —l]— (2.82)
0 0

Oy

Examining the form of Equation (2.82), it is readily apparent that a log-log plot of Q; versus G is a
straight line having slope, im. A representative schematic diagram of Equation (2.82) is shown in Figure
2.11 for several i-plets as a function of the applied stress level. This envelope of intersection points has a
special significance in the Batdorf formulation. Over the stress range in which an i-plet lies on the
envelope, it is unstable (as soon as it is created it will immediately become an (i+/)-plet, which will
immediately become an (i+2)-plet until composite failure occurs). The failure stress is given by the lowest
stress at which any unstable i-plet is present. This is the stress at which the envelope intersects the

horizontal line Q; =1 (or In Q; =0).

At this point, we are now ready to estimate the tensile strengths of the glass/epoxy composites considered
in the previous section. The necessary inputs to the model are the stress concentrations and the ineffective

lengths from Table 1, as well as the Weibull paramters o), m, and l,, Unfortunately accurate

measurements of these Weibull parameters are difficult to obtain. Typical values for m are approximately
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Figure 2.11. Batdorf-type Q-plot. Composite failure occurs at the point of instability.
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5-8. The value for o, is more variable depending upon fiber type. For this reason, the predicted values
for composite strength will be expressed in terms of the ratio of 6/0; using a reference length, Iy, of 1 cm.
If the value of 0y is known at a different reference length, it may converted to this reference length using

the relation

A )F
=|— (2.83)
0-0(12) [12

In addition to these properties of the fibers, we also need to know the number of fibers in the composite,
N, and their length, L. For this example, we will consider a component 6” (15 cm) X %" (1.3 cm) X
6/100” (0.15 cm). If we assume the fibers to initially be continuous, then L may be taken equal to 6” (15

cm) and the number of fibers in the composite may be approximated by

_ Cross Sectional Area of the Composite v
Area of the Fiber d

(2.84)

where V; is the fiber volume fraction.

The question then becomes how to represent the siress concentrations and ineffective lengths for the
values of the stress concentrations and ineffective lengths intermediate to those given in Table 1. Based
on the variation of those values given in Table 1, the stress concentrations were fit to a quadratic form

over this range of number of broken fibers, while the ineffective lengths were fit to log-linear form. These

data, as well as the curve fitting parameters are shown in Figures 12, 13, and 14.

Combining all of this information, the fiber stress at which the instability occurs in the Q-plots may be
readily calculated for the two stress concentration fits. The composite strength may be determined using

this information and the relation
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c.=—0, (2.85)

where o is the fiber stress at which the instability occurs, E, is the composite modulus, E is the fiber
modulus, and O, is the composite strength. Figure 2.15 shows the results for predicted composite
strengths as a function of fiber volume fraction for values of the Weibull modulus ranging from 4 to 8
using the maximum stress concentration values (this should represent a conservative estimate of the
composite strength). These values have been normalized to the characteristic value, Gy, from the Weibull
distribution. In addition, the predicted strength using a rule of mixtures type calculation has been shown

for comparison. Such as calculation has been made by

o.=VX, +(1-V,

1)X

m

(2.86)

where X,, is the matrix strength, and X 1 is the average fiber strength calculated from the Weibull

distribution so that

- +
X, = 0'01"(—’"—1) (2.87)
’ m

In all cases that have been calculated, the predicted values using the statistical model in conjunction with
the local stress concentration analysis are greater than those predicted by the rule of mixtures type

analysis. This is an example of the “composite effect” in which the actual behavior cannot be estimated

simply by summing the contributions of the constituents.

There is some question as to what value for the stress concentrations should be used in the estimation of
the composite strength. Nedele and Wisnom [44] have based their calculations on the average stress
concentrations on the adjacent fibers. To investigate this effect, a similar approach has been used in

Figure 2.16, although the stress concentration at the center of the adjacent fibers has been used rather than
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the average. This was done in order to simplify the calculations, and in the cases investigated thus far
such values do not differ greatly from the average values. In the case of Figure 2.16, the composite effect
is even more pronounced—the predicted strengths using the present analysis are always more than 15%

greater than the corresponding values using the rule of mixtures calculation.

2.8 Model Refinements

Despite the features of the above stress analysis (it is an exact solution to the problem being solved and
solutions may be obtained more rapidly than equivalent finite element models), it is still lacking in many
ways. First of all, the solution is limited to a single crack within a single material. Secondly, the solution
is presently limited to isotropic constituents. Do to such limitations, it may not be accurately used to
represent the stress state in composites containing graphite fibers. A number of approximate solutions
have been presented to address these problems. One of the most general is that which has been developed
by Pagano [26] for axisymmetric damage in a concentric cylinder assemblage. The solution is quite
general, and may readily be applied to the analysis of the stress states surrounding fiber fractures. As an
example, we shall consider the strength prediction for a composite which has constituent properties
typical of a graphite/polymer composite at a fiber volume fraction of 60%. The procedure employed is
similar to that used in the above analysis with one exception: rather than effective properties to represent

the broken inner fiber and matrix regions, the fiber rings are broken as illustrated in Figure 2.17.

In this case, rather than varying the fiber volume fraction in the analysis, we will keep the fiber volume
fraction constant at 60% in the analysis, and vary the stiffness of the matrix. Such a situation would arise
physically if we increased the temperature from room temperature to some elevated temperature. The

fiber properties used are given in Table 2.2.

Strength Prediction In Unidirectional Composite Materials 56



09

014

00 } + } t + b 1 + }
020 025 0.30 035 040 045 050 055 0.60 0.65 0.70
Fiber Volume Fraction

[—+—Rde ot mixtues ——m=4— —m=5= = - m=6== = m=7— - m=8]
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Table 2.2. Fiber mechanical properties used in the stress concentration analysis.

Property Value
E 301 GPa
Ex 20.0 GPa
G, 20 GPa
V12 0.20
Va3 0.25
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Three different values for the matrix modulus were employed: 0.75 GPa, 1.50 GPa, and 3.38 GPa (an
constant value of the Poisson ratio equal to 0.35 was utilized). The highest stiffness value is typical of a
polymeric material at room temperature. The other values are values that could be obtained as the glass
transition temperature is approached. Results obtained for the stress concentrations and ineffective
lengths are presented in Table 2.3. There are a number of interesting phenomena that occur here. First of
all, the stress concentrations do not appear to be greatly influenced by the matrix stiffness values (the
greatest difference between corresponding stress concentration values is approximately 6%). However,
there is a large difference in the predicted ineffective lengths. As the matrix stiffness is decreased from
3.38 GPa to 0.75 GPa, the ineffective length increases by more than a factor of two for the numbers of
fiber fractures considered. An interesting finding may be seen in Figure 2.18 where the stress
concentration results from the axisymmetric model for a matrix modulus of 3.38 GPa have been compared
to the results of the influence function approach of Hedgepeth and Van Dyke [20]. In their results,
Hedgepeth and Van Dyke consider two stress concentrations for the hexagonally packed array: the stress
concentration at an adjacent element on a major diagonal and the maximum stress concentration on an
adjacent element. For this particular case, the center stress concentration appears to be nearly identical to
that of the elements on the major diagonal. This result is not surprising based upon the nature of the two
models. In the Hedgepeth and Van Dyke solution, the stress in each of the fibers is assumed to be
constant over its cross-section, thus we would expect this stress to represent the average value at a given

location.

The final step is to determine the effect of this change in matrix stiffness on the tensile strength of the
composite material. To do so, the same approach is employed that was used for the estimation of the
tensile strength of the glass/epoxy composite materials. First of all, the maximum and center stress

concentrations for the different values of the matrix stiffness are fit to polynomial expressions. The results
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Table 2.3. Stress concentrations and ineffective lengths obtained using Pagano’s [26] axisymmetric model
as a function of matrix stiffness and number of broken fibers for a graphite/polymeric composite material.

Matrix Modulus Number of Maximum Stress Center Stress Ineffective

(GPa) Broken Fibers Concentration Concentration Length (Fiber
Radii)
1 1.226 1.104 44.06
0.75 7 1.482 1.285 93.64
19 1.837 1.475 149.44
1 1.254 1.099 29.90
1.50 7 1.503 1.265 63.50
19 1.852 1.434 96.80
1 1.288 1.090 17.12
3.38 7 1.520 1.239 41.34
19 1.885 1.393 63.06
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