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A predictive, multiple model control strategy is developed based on an ensemble

of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The

local linear models are estimated directly from the weights of a self organizing feature

map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is

extended to a control framework where the modeled system is nonautonomous, driven by

an exogenous input. This extension to a control framework is based on the consideration

of a finite number of subregions in the control space.

Multiple self organizing feature maps collectively model the global response of

the wind tunnel to a finite set of representative prototype controls. These prototype

controls partition the control space and incorporate experiential knowledge gained from



decadesof operation.EachSOFMmodelsthecombinationof thetunnelwith oneof the

representativecontrols,overtheentirerangeof operation.TheSOFMbasedlinear

modelsareusedto predictthetunnelresponseto alargerfamily of controlsequences

whichareclusteredon therepresentativeprototypes.Thecontrolsequencewhich

correspondsto thepredictionthatbestsatisfiestherequirementson thesystemoutputis

appliedastheexternaldriving signal.

EachSOFMprovidesacodebookrepresentationof thetunneldynamics

correspondingto aprototypecontrol. Differentdynamicregimesareorganizedinto

topologicalneighborhoodswheretheadjacententriesin thecodebookrepresentthe

minimizationof a similarity metricwhich is theessenceof theself organizingfeatureof

themap. Thus,theSOFMis additionallyemployedto identify the localdynamical

regime,andconsequentlyimplementsaswitchingschemethanselectsthebestavailable

modelfor theappliedcontrol.

Experimentalresultsof controllingthewind tunnel,with theproposedmethod,

duringoperationalrunswherestrict researchrequirementson thecontrolof theMach

numberweremet,arepresented.Comparisonto similar runsunderthesameconditions

with thetunnelcontrolledby eithertheexistingcontrolleror anexpertoperatorindicate

thesuperiorityof themethod.
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CHAPTER 1

INTRODUCTION

Motivation

The initial motivation for this research was to extend neural network based

methods that had proven successful in modeling autonomous nonlinear dynamical

systems [Principe and Kuo, 1994; Principe, Hsu, and Kuo, 1994; Principe, Kuo, and

Celebi, 1994] to the modeling of nonautonomous dynamical systems. The temporal state

evolution of an autonomous system is functionally dependent only on the system state,

but nonautonomous systems allow for an explicit dependence on an independent variable,

usually taken to be time [Jackson, 1989] or some function of time, in addition to the

system state. For this study, this independent variable is taken to be an external, or

exogenous driving signal, referred to as the control input. For an autonomous system, it

is reasonable to assume that the future behavior, or output, of the system can be predicted

over some finite interval from a finite number of observations of past outputs [Takens,

1980]. In contrast, predictions of the behavior of a nonautonomous system require

consideration of not only the past outputs in response to past inputs, but the future input

to the system as well.

It was also desired to develop a global representation of the underlying

nonautonomous dynamic system, that is, a model, or a collection of models that fit all of

the state space. This is in contrast to a local representation which is valid only in a
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restrictedregionof the state space. The desired global representation may be achieved by

a single model if the underlying system is simple, but most complex, nonlinear dynamical

systems can only be represented in a localized region of the state space by a single model.

This naturally leads to the use of multiple local models to represent the global

characteristics of a system with some method employed to smoothly patch together the

local models [Principe and Wang, 1995] in a system identification context, or to switch

between models [Narendra, Balakrishnan, and Ciliz, 1995] in a control context.

Another prime motivation in the research was to develop models that would be

amenable for control of th e underlying system, as opposed to models developed solely for

system identification. It was desired to have a system model that would provide a

computationally cost-effective means of determining the input signal to be applied to the

system in order to achieve a desired state. In this context, an approximate model that is

linear in the control input is more desirous than an exact model which has a nonlinear

dependence on the control [Narendra and Mukhopadhyay, 1997].

Finally, the combined modeling and control scheme was to be implemented in

software and experimental tests conducted using the actual dynamical system under

study.

Evolution of the Research

The dynamical system considered for this study is the 16-Foot Transonic Tunnel

at the NASA Langley Research Center in Hampton, Virginia. The NASA Langley

16-Foot Transonic Tunnel, simply referred to as the tunnel in the sequel, is driven by a

simple control input which provides the function of setting the desired output, which is



theMachnumber,while compensatingfor anyexternaldisturbances.Thetaskof

modelingandcontrollingtheMachnumberwith anartificial neuralnetworksystemwas

undertakenwith thevision to capturetheunderlyingdynamicsof annonautonomous

systemfrom observationsof time-dependent,input-outputdata. After suitablyextracting

theunderlyingdynamicalmodelfrom thetunnelinput-outputdata,predictionsof the

responseto futurecontrol inputsarebasedon thismodel. A control input sequence

which minimizestheerrorbetweenthedesiredresponseandthepredictedresponse,over

areasonabletimehorizon,is thenselectedfrom a setof candidateinput sequences.This

input sequenceis finally appliedasthecontrolinput to thewind tunnel.

Thefirst majortaskwasto find asuitableneuralarchitecturefor modelingthe

wind tunneldynamicsbasedsolelyon input-outputdata. Our initial studiesinvestigated

theuseof severaldynamicneuralnetworksto identify thedynamicsof thewind tunnel

responseto control inputs,at oneparticularoperatingpoint [PrincipeandMotter, 1994].

Themostpromisingarchitecturefrom this studywasinvestigatedfurther,usinga single

globaldynamicneuralnetworkfor systemidentificationoverawide rangeof operating

points[MotterandPrincipe,1994]. Thismodelwasreasonablysuccessfulin predicting

thesteady-statewind tunnelresponseatvariousoperatingpointswhendrivenby similar

controlinputs. A refinementof thismodelcamewhenthewind tunnelresponseswere

first clusteredusingacompetitiveneuralnetwork[Motter andPrincipe,1995]. A

competitiveneuralnetworkwasusedto clusterthetunnelresponsesat severaloperating

pointsto similarcontrolinputs,therebyextractingpertinentfeaturesof theresponse.The

clusteringof thewind tunneldynamicresponsesprovidedabasisfor developingasetof

predictorsthatcollectivelycapturedthedynamicsof thewind tunnelresponsefor asingle



classof similarcontrol inputs. At thispoint, it becameclearthatasignificant

improvementin thepredictionaccuracycouldbe realizedfrom anensembleof local

models,eachderivedfrom aclusteringof thetunneldynamicresponses.

Thecontrolinput spacewaspartitionedmanually,basedonexperienceandthe

bang-zero-bang(+1,0, and-1) permissiblevaluesof thecontrolsignal. If thecontrol

input sequenceis consideredto beap-component vector with each element having a

value of +1, -1, or zero, then there are 3 p possible control sequences to be considered.

The idea was to partition the control input space by manually constructing representative

prototype vectors for the control sequence. The goal of this partitioning was to provide a

set of control inputs capable of driving the tunnel from one operating point to another,

regulating about a given operating point, rejecting disturbances, while eliminating control

sequences known to be experimentally of no practical interest. Limiting the number of

candidate controls to be evaluated by the predictive controller was a major consideration

in partitioning the control input space. Initially this partitioning was done with five

control input prototypes, but later, in the implementation of the experiment, the

partitioning was extended to nine control input prototype vectors, to provide the desired

control accuracy.

For each these control input classes, the tunnel Mach number responses were

clustered using Kohonen's self-organizing feature map (SOFM) [Kohonen; 1990, 1995].

The SOFM is a competitive neural architecture that imposes a topographic ordering of the

output neural field corresponding to features of the input patterns, which are in this case,

the Mach number responses. For prediction purposes, the SOFM's advantage is that the

topographic ordering imposes a similarity measure over the input neural field. This



5

similarity canbeexploitedin theconstructionof local linearmodelsfrom theinputneural

field correspondingto thewinning output. Theconstructionof local linearmodels

facilitatedtheevaluationof thewind tunnelresponseto alargersetof candidatecontrols

thancouldhavebeenrealizedwith multipledynamicmodels.

Background

The 16-Foot Transonic Tunnel at the NASA Langley Research Center, Hampton,

Virginia, is a closed circuit, single-return, continuous-flow, atmospheric tunnel with a

Mach number capability from 0.20 to 1.30. When the tunnel began operation in

November 1941, it had a circular test section that was 16 feet in diameter and maximum

Mach number of 0.71 [Peddrew, 1981]. Numerous upgrades to both the test section and

drive system have expanded the test envelope of this facility. Currently, Mach numbers

up to 1.05 are achieved using the tunnel main drive fans only. Mach numbers from 1.05

to 1.3 require the combination of test section plenum suction with the tunnel fans. The

tunnel fans, 34 feet in diameter, are driven from 60 to 372 rpm by a 50 MW electric drive

system. An air removal system using a 30 MW compressor and 10-Foot diameter

butterfly valve provides test section plenum suction. At Mach numbers above 1.275, the

10-Foot valve is fully open and increases in Mach number are obtained from increased

power to the tunnel main drive fans. Figure 1 is an aerial view of the tunnel. Figure 2 is

a view of the tunnel test section with a model inserted. Figure 3 shows the arrangement

of the major components of the tunnel. Figure 4 shows a view from the inside of the

tunnel near the second set of tuming vanes.
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Figure 1. Aerial View of the 16-FootTransonicTunnel

Figure2. TestSectionwith modelin place
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Figure 4. Inside View of the 16-Foot Tunnel downstream of the second set of turning

vanes
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ThetestsectionMachnumber,generallyreferredto asthe Mach number, is

computed from a calibrated ratio of two measured quantities, the airstream stagnation

pressure, P,,._._,io., and the plenum static pressure, Ps,.,ic • These two measured quantities

are used to calculate the plenum Mach number. A tabulated wind-tunnel calibration

provides the correlation between the test section airstream Mach number and the plenum

Mach number. The relationship between the two measured pressures and the plenum

Mach number, M, is [John, 1984; Mercer et al., 1984]:

 s*antonJIl ,na*ol ]- l+-5--M ; M-- 5 _ -1; 7air = 1.4. (1)

A large volume of test data relating the tunnel fan drive system control input (+ 1,

0, -1), and the Mach number, is available for nominal operating conditions over most of

the operating range. Data from a typical subsonic run is shown in Figure 5.

Mach number during a typical subsonic test Control Input during a typical subsonic lest
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Figure 5. Mach Number and Tunnel Drive Control Inputs during a typical subsonic run
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Control Challenges

The problem of controlling the Mach number at the 16-Foot Transonic Tunnel

presents the following challenges to any control scheme, including a human operator-in-

the-loop:

1. Both the linear and nonlinear characteristics of the tunnel dynamics vary

significantly over the operational range of the tunnel. The rate-limited slewing

of the tunnel Mach number varies by 50% over the subsonic range, as shown

in Table 1. Linearized models identified at individual subsonic operating

points contain a set of complex poles with damping ratios ranging from

0.4 - 0.7, and natural frequencies between 1/3 to 1/8 Hz. On the positive side,

the open-loop plant is stable, so the control problem is concerned mainly with

regulation about the desired set point

2. The control input to the tunnel fan drive system is bang-zero-bang

(+ 1 raise, 0 to maintain speed, -1 lower)

3. The effectiveness of the control input varies by a factor of five over the

nominal dynamic range

4. The effectiveness of the control input varies due to degradation of the drive

system components, replacement of components, and routine maintenance

5. There is transport lag (pure delay) that varies from 0.3 to 3 seconds over the

operational range

6. The Mach number varies with the temperature of the air for a fixed fan RPM
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7. Thedynamicscanchangedramaticallyandabruptlyatanygivenoperating

point from aparticularcombinationof modelattitudeandMachnumber.This

abnormalconditionis referredto asa"blocked"tunnelcondition

8. Theeffectivenessof thecontrolinputcanabruptlychangeby anorderof

magnitudefor blockedconditions

9. ThetestsectionMachnumbercomputedfrom pressuremeasurementsis noisy

andnonstationary

10.TheMachnumberis to becontrolledto within +/- 0.003of setpoint

11.Researchdatais takenwith thetunnelin anequilibriumcondition,i.e. all

Machnumbertransientshavedecayedto a minimum,with zerocontrolinput

to thedrive system

12.Powerconsumptionis significant:20MW @Mach0.7, 80MW @Mach1.3,

sothepotentialfor reductionin operatingcostsis high.

Figure6 showsa typicaloperatingscenario,with thetunnelundercontrolof an

experthumanoperator.Thetunnelis beingrampedup from acold startupconditionto a

subsonicMachnumberof 0.95. A steadyraisecommandfrom theoperatordrivesthe

FanRPMup for approximatelyfive minutesuntil thedesiredMachnumberis attained.

Table1showsthevariationof therate-limitedincreasein Machnumber.OncetheMach

numberis within the0.003tolerance,theattitudeof theaircraftmodelundertestis

steppedthroughthedesiredrange.For thisparticulartest,theangleof attackwasvaried

directlywith thepitchactuator.Thetunneloperatoris requiredto makefrequent

correctiveinputsto regulatetheMachnumberto within the0.003tolerance,primarily
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dueto therisingtemperatureof the air in the tunnel. The tunnel Mach number is required

to be within 0.003 of the set point at each of the angle of attack test values.

This operating scenario highlights the effect of unsteady temperature of the air on

the stability of the tunnel Mach number. The tunnel is initially at 85 degrees Fahrenheit,

and the temperature at the end of this test sequence is just over 150 degrees and still

rising. The rate of temperature rise while ramping to M = 0.95 exceeds 10 degrees per

minute. The rate of temperature rise decreases rapidly after the initial ramp, but still

exceeds one degree per minute at the end of this interval.

t(seconds) M(Mach) AM (AM/At) "10 -3

0 0.1119 - -

30 0.2226 0.1107 3.69

60 0.3333 0.1107 3.69

90 0.4251 0.0918 3.06

120 0.5134 0.0883 2.94

150 0.5971 0.0837 2.79

180 0.6789 0.0818 2.73

210 0.7564 0.0775 2.58

240 0.8285 0.0721 2.40

270 0.9076 0.0791 2.63

282 0.9421 0.0345 2.87

Table 1. Variation of Mach number rate-limited increase while ramping up
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Therelationshipof Mach number to temperature is embedded in the definition of

Mach number [John, 1984]:

M

V V

(2)

which corresponds to a 0.003 decrease in Mach number for a 3.8 degree F increase in

temperature.

Figure 7 illustrates in greater detail the last 3.5 minutes of the test. The test point

taken at an angle of attack of one degree takes more than two minutes to acquire. Four

corrective inputs applied over a period of more than a minute are required to regulate the

Mach number to just barely within the tolerance required for this test point. The next

increase in the angle of attack drives the Mach number out of tolerance, which is

compensated for by the operator with a longer duration corrective input. During this

interval, the effect of the moving the model is relatively small compared to the effect of

the rising temperature, but the two can act in combination as illustrated in this example.

(3)ar-- 

with T in degrees Kelvin or Rankine.

At the conditions for this test

--' M =0.95 = _ "2"T = 145F o F

-0.000786

where V is velocity of the air, a is the speed of sound, y and R are constants for air. For a

constant air velocity, the variation of Mach number with temperature is:
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Figure 8, from a different test, illustrates the effect of large changes in angle of

attack disturbing the Mach number under relatively steady temperature conditions. The

large change in angle of attack from 5 to 15 degrees in the middle of the test produces a

Mach number disturbance of approximately 0.02, or seven times the required tolerance.

Here the variation in temperature accounts for only six percent of the total disturbance.

The expert operator's response is quite effective in compensating for this disturbance,

whereas a non-adaptive automatic controller tuned to the nominal, unblocked dynamics

would be unacceptably slow in compensating for this type of disturbance. The

effectiveness of the control input decreases abruptly as the model is moved from an angle

of attack of five degrees to an angle of attack of fifteen, twenty and twenty-five degrees,

respectively. Table 2 lists the changes of control input effectiveness from the nominal

condition at five degrees as the model angle of attack is increased. For each large step

change in the angle of attack (AOA), the corresponding disturbance is AM. The control

effort applied to compensate for the disturbance lg u, which is the sample-by-sample sum

of the control inputs required to return the Mach number to within tolerance. The

effectiveness of the control input is evaluated for each of these cases as AM / Zu, simply

the ratio of the change in Mach number over the cumulative control effort required to

regulate the Mach number. This value is seen to vary by more than an order of magnitude

over the test conditions listed in the table. This is a prime example of the kind of

variation that motivates the need for multiple models to represent rapidly varying

conditions of the plant to be controlled.
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0-5

18

_UAM

0.005 1

0.020 27

0.017 39

0.010 29

AM/Zu

(lo )
50

5-15 7.41

15-20 4.36

20-25 3.45

Table 2. Changes in control input effectiveness for blocked conditions

Experimental Framework

The experimental framework that evolved was essentially a predictive control

scheme that used multiple models of the plant with switching. The controller switches

between multiple, SOFM-based models which, collectively, describe the global

input-output behavior of the tunnel. The tunnel response to a set of candidate controls is

predicted p steps ahead, using the currently selected model. The overall system, which

will be referred to in the sequel as the PMMSC, for Predictive Multiple Model Switching

Controller, is shown in Figure 9. It is composed of the following major functions:

1. The recent control input, u(k - 1),u(k -2) .... ,u(k -m), is clustered on a set of

prototype control inputs which will choose one of the Kohonen self-

organizing feature maps (SOFM)

2. The selected SOFM identifies the local dynamics of the tunnel based on the

past n + 1 Mach number measurements, M(k), M(k - 1),..., M(k - n), and

chooses a winning processing element (PE)
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3. A linearpredictorassociatedwith eachPEpredictstheMachnumberresponse

p steps into the future for each of the candidate controls

4. The predicted effectiveness of the candidate control inputs is evaluated over

the last (p - l) steps of the p steps-ahead predictions

5. The control input that provides the best response with respect to the Much

number set point is chosen as the next control, u(k).

The local model associated with the winning PE captures the dynamical regime of

the wind tunnel. The controller still must decide what is the most appropriate control

input to meet the set point specification. The controller sends candidate input sequences

for p-step ahead prediction to the predictor of the winning node. The controller evaluates

the relative effectiveness of the candidate control inputs in reducing the error between the

predicted Mach number sequence, M e , and desired Much number, Msv. This is

accomplished by a suitable metric, the Euclidean norm over the error, liMp-Msell

where Mp = M(k + l + 1), M(k + l + 2),..., M(k + p) and Msv is a (p - I) length

constant vector of Mse. Finally, the control input that provides the smallest error is sent

to the wind tunnel fan control.

Overview of the Dissertation

The dissertation is composed of six chapters. Chapter 2 will survey the literature.

Chapter 3 will focus on the modeling of the tunnel dynamics. Chapter 4 explains the

development of the predictive controller from the local linear models. Chapter 5

describes the experimental setup and results from controlling and modeling the tunnel
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responsesduringoperationalresearchruns. Chapter6 will summarizetheresultsand

indicatedirectionsfor futureresearch.

control Mach number, M ( k )

Figure 9. Experimental Framework with PMMSC



CHAPTER2
REVIEW OFLITERATURE

Introduction

Two major ideas from the existing literature embodied in our system are the Self

Organizing Feature Map (SOFM), credited to Kohonen [Kohonen, 1995], and control

using multiple models and switching, credited to Narendra [Narendra, Li, and Cabrera,

1994]. In Narendra's multiple model control scheme, an external switching scheme is

used to select the model to be used at any given instant of time. In the experiment

described in this dissertation, the SOFM is used as the modeling infrastructure, with

selection of the model done by the activity of the output neural field or winner. A

description of both of these topics, as well as a brief review of adaptive control, SOFM

applications to control, and more general review of applications of neural networks to

control follow.

Self-Organizing Feature Map

The self-organizing feature map (SOFM) was adopted as the neural architecture

for the experiment. The SOFM was chosen based on its ability to transform an incoming

signal of arbitrary dimension into a lower dimensional, discrete, topologically ordered

map, one dimensional in this case. The spatial location of the neurons, arranged in a one

dimensional lattice, or linear array, corresponds to intrinsic features of the input signal.

21
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TheSOFMbelongsto theclassof artificial neuralnetworksthatusecompetitive

or unsupervisedlearning. In contrastto supervisedlearning,theSOFMinput-output

behavioris not learned from a set of training examples which specify the desired output

y e R m, for a given input x _ R _ , where the parameters of the network are adjusted by

the backpropogation algorithm [Rumelhart, Hinton, and Williams, 1986; Werbos, 1990].

In feedback networks [Hopfield, 1982], the other major category of artificial neural

networks, the input defines an initial state of activity of a feedback system which settles

to a final asymptotic state that represents the response to the given input. In the SOFM,

however, neurons compete to respond to the input signal, with the result that only one

output neuron is fired or activated. The output neuron activated in response to a

particular input is called the winner, while all the other neurons are inhibited,

representing a winner-take-all (WTA) structure. During the training phase, the SOFM

becomes topologically ordered by adapting the weights not only of the winner, but those

of the neighboring neurons as well. This is inspired by lateral inhibitory feedback in

biological neurons [Willshaw and vonder Malsburg, 1976], but implemented in the

SOFM by a computational shortcut, referred to as the neighborhood function. Not only

do the individual neurons in the SOFM become specifically tuned to input patterns by

means of this emulation of lateral feedback among neighboring units, but the locations of

responses become ordered along the coordinates of the map, corresponding to intrinsic

features of the input.
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Let the inputbea vectorx eR n •

x = [x I ,x 2 ..... xn] r . (4)

With each neuron j there corresponds a vector of synaptic weights w e R" :

wj = [wj_ ,wj2 ..... wj_]T. (5)

The winner is identified by the index i(x) that corresponds to the neuron whose synaptic

weights are the best match to the input x:

i(x)=argminl[x-w ll, j=1,2..... N (6)
J

where I1" II denotes the Euclidean norm. Thus, the response of the network can be

considered to be the index of the winning neuron, representing its location, or,

equivalently, the synaptic weight vector that is closest to the input vector in a Euclidean

sense [Haykin, 1994]. In this experiment, the latter interpretation of the network response

is more appropriate.

x_R _

i(x)= arg min x-w t,j=l,2 ..... N
J

Figure 10. SOFM with a one-dimensional array of neurons
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For theformationof anordered map, it is crucial that the weights of the winner

are not updated independently from the weights of the other neurons, as is the case of

other competitive learning or vector quantization schemes. In the SOFM, the adaptation

or updating of the weight vectors is done over a topologically related subset, resulting in

weight vectors that are ordered along the output dimension of the network. At each

learning step, the network is presented a sample x, drawn from the input distribution. The

winner is determined as specified in (6), and a neighborhood set N;_x) identifies the

neurons around the winner that will be updated as well. The width or radius of Ni(x) is

usually varied over the training phase [Kohonen, 1990]. To achieve good global

ordering, Ni(x) is made very wide at the beginning of the training, on the order of the

one-half the map, and then shrinks monotonically as the training progresses. The

rationale for this [Kohonen, 1990] is that the wide initial Ni(,_, corresponding to a coarse

spatial resolution in the learning process, first induces a rough global ordering over the

weight vectors. Then, as the Ni(x) narrows, the spatial resolution of the map improves

without destroying the acquired global order. Thus the use of the neighborhood function

emulates the formation of a localized response in biological neurons by initially applying

a strong positive lateral feedback corresponding to an ordering phase, followed by

negative lateral feedback which corresponds to a convergence phase.

The updating of the weight vectors in discrete time proceeds as :

wj(k+l) = _wj(k)Iwj(k)+o_(k)[x(k)-wj(k)] ifif j_N_(_)J_N_(_)} (7)
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with ct(k) a scalar learning rate parameter, 0< a(k)< 1, similar to the gain used in

stochastic approximation processes [Robbins and Monroe, 1951 ], and should decrease

over the training interval.

Practical Aspects for the Application of the SOFM Algorithm

1. The initial weight vectors wj (0) are set to random values.

2. Samples x are drawn from the input distribution and presented to the network.

3. The best matching neuron is determined by (6).

4. The weight vectors of all the neurons are updated by (7).

5. Steps 2 through 4 are repeated until no noticeable changes are observed.

The "rules of thumb" are that for approximately the first 1000 steps, tx(n) should

be close to unity, then decrease monotonically. The actual rule for the decrease is not

critical. The ordering of the map takes place during this period. The neighborhood

function Ni_x_ should be fairly wide initially, perhaps on the order of half the map, and

decrease linearly to one unit during this ordering phase. After the first thousand steps, a

much longer convergence or fine-adjustment phase of the training proceeds with the

learning rate o_(n) slowly decreased to a value near 0.01. During this phase the

neighborhood function may contain the nearest neighbors of the winner, with the final

stages of the convergence phase updating only the winner. A rule of thumb for the

number of steps to achieve convergence is at least 500 times the number of network units.

The following figures illustrate an example of training an SOFM used in the

experiment. The inputs to the SOFM are a 50 sample window of the Mach number
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response.Therewere 155exemplarsin thetrainingset,showninFigure 11. TheSOFM

consistedof 20neurons,arrangedin a lineararray,similar to Figure 10,shownearlier.

TheSOFMweightswereadjustedduring10,000presentationsof thetrainingset,with

the learningrate, (x(n), and neighborhood function N;_x) varied as shown in Figure 12.

The SOFM is shown at 100, 500, and 1000 training cycles, with the converged SOFM,

after 10,000 training cycles, in Figure 13. The converged SOFM provides a smooth

organization of the weights in the neural field, in contrast with the input patterns for

training. The distribution of the training inputs among the converged SOFM clusters is

shown in Figure 14.

Inputs for lralng the SOFM

0.02.

0.015-

0.01.

__ 0.005.

0-

-0.005.

-0.01
2OO

100

20
10

Exemplar # 0 0 n

Figure 11. Input exemplars for training the example SOFM
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Magnification Factor

The input distribution of the vectors x, or the multidimensional probability density

function (pdf) of x, p(x), is represented by the total N neurons in the output layer of the

SOFM. The input vectors x are drawn from an n-dimensional input space X. The pdf of

x, integrated over all of X, must equal unity:

,,w

J p(x)dx= 1 (8)

The corresponding density of neurons in the output layer of the SOFM is referred to as

the magnification factor, m(x), defined as the number of neurons in a small volume dx of

the input space X. The integral of the magnification factor over the entire input space,

must equal the total number of neurons N:

m(x) dx = N (9)
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For theSOFMto matchtheinputdensityexactly,themagnificationfactormust

bedirectlyproportionalto theinput pdf:

m(x) o_ p(x) (10)

Si and Lin [ 1997], have recently shown, for multidimensional input, the

converged SOFM weights have a magnification factor proportional to p(x) n.2.

Kohonen [1995] makes the point that in most practical applications that the input data

vectors have high dimensionality, on the order of dozens to hundreds, and compares the

result to classical vector quantization (VQ), where the asymptotic point density is

proportional to p(x)n.2 as well. For this experiment, the input dimension n, is n = 50, so

it was expected that the input distribution would be well matched by the locations of the

output neurons of the SOFM. From a control viewpoint, this has the beneficial effect of

providing a higher density of neurons in regions of the input space where the statistical

frequency of input features is correspondingly higher, with fewer neurons assigned to

regions of the input space with features of lower statistical frequency.

Applications of the SOFM

Three major practical application areas suggested by Kohonen [Kohonen, 1995]

where the SOFM could be used effectively are:

1) Industrial and other instrumentation, for both monitoring and control

2) Medical applications, for diagnostic methods, prostheses, and modeling
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3) Telecommunications,for allocationof resourcesto networks,transmission

channelequalization,andadaptiveequalization.

A surveyof thediverseapplicationsof theSOFM[Kohonen,1995]highlightsthe

following areas:machinevisionandimageanalysis,opticalcharacterandscript reading,

speechanalysisandrecognition,acousticandmusicalstudies,signalprocessingandradar

measurements,telecommunications,industrialandotherreal-worldmeasurements,

processcontrol,robotics,chemistry,physics,electronic-circuitdesign,medical

applicationswithoutimageprocessing,dataprocessing,linguistic andAI problems,

mathematicalproblems,andneurophysiologicalresearch.Thereportedapplicationsin

processcontrol wereof interest,but,for themostpart,theresearchfocusedonmonitoring

theprocessstateratherthaneffectingsomecontrolaction. Somegeneralproblems

addressedin this areaare:identificationof processstate[Kasslin,Kangas,andTorkkola,

1992],processerrordetection[Alanderet al., 1991],anddiagnosisof machinevibrations

[Wu et al., 1991]. Somespecificexamplesof industrialapplicationsare:monitoring

papermachinequality [LampinenandTaipale,1994],flow regimeidentification[Cai,

Toral,andQiu, 1993],gradingof beerquality [Cai, 1994],andestimationof torquein

switchedreluctancemotors[Garsideet al., 1992]. In amorerecentapplicationto process

control, [MatthewsandWarwick, 1995]theSOFMwasusedfor separatingfault types

andmonitoringtheprocessstate. In [Warwick, 1996]theSOFMis proposedagainasa

classifierfor fault indicationsasopposedto asystemidentificationtool.

Oneof themostcontrol-specificapplicationsof theSOFMreportedin the

literatureis thevisuomotorcontrolof a robotarmby [Ritter,Martinetz,andSchulten,

1992]. In this application,theSOFMis usedasalook-uptable,wheretheinputpattern,
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identifiedby the"winner", specifiesanSOFMlocationassociatedwith specifiedvalues

of control parameters,whichwerelearnedadaptively.

Thetwodimensionalcoordinates,x_ and x 2 , of a target point in the image planes

of two cameras were combined into a four-dimensional, stereoscopic input vector x and

used as the input to the SOFM. A three-dimensional SOFM was used to form the spatial

representation of the target point. The three joint angles, one about the vertical axis for

motion in the horizontal plane, and two for motion in the vertical plane, comprise a

configuration vector 0 = [0 l , 02 , 03 ]. The basic goal of their approach was to find the

transformation O(x) that would bring the tip of the robot arm to the target point, where

the cameras can get the observation x. The configuration vector is determined by a

linearization about the origin determined by the "winner" location c:

0 =Ac(x-mc)+b c. (11)

Here bc is the configuration vector corresponding to the location me, Ac is the

3x4 Jacobian matrix, m c is from the weights of the SOFM winner, and (11) gives the

first two terms of the Taylor series expansion of O(x) around m_. Linearization is

carried out around m c and is valid in the whole Voronoi set of x values around m_.

Ritter et al., developed a learning scheme where the control parameters Ac, bc were

updated simultaneously with the formulation of the SOFM. The importance of the SOFM

in their problem was the discretization of the input space, in particular, the allocation of

the configuration vectors, b_, to regions of the input vectors, x, having a higher density of

lattice points where the control must be more accurate.
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For ourapplication,theSOFMdiscretizesann-dimensionalspacecomposedof

outputsequencesof thesystem,y(k), y(k-1) .... y(k-(n-1)), which are considered to be the

responses of the system to a prototype control input u(k-1), u(k-2) .... u(k-m). Thus, the

prototype input is the control parameter associated with all the nodes in the lattice, which

is here, one-dimensional corresponding to the single control input to the system, u. In our

application, the linearization is done around the "winner" to predict responses to

candidate controls:

Mp = Ac(U i -u C) + M c . (12)

where Mc is the winner, Ac, is the Jacobian, derived directly from the SOFM, u c is the

control prototype associated with the SOFM and u i is one of the candidate control

sequences. In our application we replace the slow adjustment of control parameters by an

external scheme, as in Ritter's application, with the ability to switch, at discrete intervals,

among the discrete local linear models associated with each node in the SOFM. This

highlights the difference between a slowly adaptive control scheme, and our application,

which is designed to switch rapidly to accommodate abrupt changes in the system

characteristics.

A Brief Review of Adaptive Control

The adaptive identification and control of dynamical systems has been

extensively developed for linear time-invariant systems with unknown parameters over

the past three decades. The development of adaptive control for linear systems is a

logical consequence of the diversity of mathematical tools available for the analysis of the
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propertiesof linear systems. The choice of parameterization of the plant model and the

controller in such problems were naturally based on results from linear systems theory. In

the 1980's, the theory of adaptive control focused on the design of stable adaptive control

laws which are robust in the presence of unmodeled disturbances, time-varying

parameters and unmodeled dynamics [Narendra and Annaswamy, 1989]. A good

understanding exists for the design of stable adaptive controllers for linear systems with

unknown parameters.

Two major approaches to the adaptive control of linear systems, direct and

indirect, have developed over the past twenty years. The direct approach seeks to

minimize some performance criteria, usually based on the error between the output of the

system and some desired output, by direct adjustment of the controller parameters. The

indirect approach attempts to explicitly identify the dynamics of the system to be

controlled, and then modifies the parameters of the controller based on this identification.

Both of these methods traditionally used a single, linear, parameterized model of the

system being controlled, or plant. One of the major drawbacks of both these approaches,

is the time required for adaptation of the controller parameters in the direct case, or the

identification of the parameters of the plant in the indirect case, to achieve the desired

control. This is particularly troublesome when the method is to be applied on-line to

control processes whose dynamic behavior is known to change abruptly.

As a result of the shortcomings mentioned above, a more recent approach to the

adaptive control of an uncertain linear time-invariant system (LTI), is the use of multiple

models with switching [Narendra and Balakrishnan, 1997]. Although this was not the

first time that the individual concepts of multiple models, with switching and on-line
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tuningof somemodels,hadbeenproposed,this frameworkproposedto improvethe

transientresponseof adaptivesystemsin a stablefashion[NarendraandBalakrishnan,

1994]. Therecentresultspresenttheproblemin thecontextof modelreferenceadaptive

control(MRAC) [NarendraandAnnaswamy,1989]of aLTI system,andtheprinciple

resultsaretheproofsof stability for variousassumptionson thecoverageof thespace

S c 9_ 2n of the plant parameters by either the initial parameter values of a set of adaptive

models or the parameters of a set of fixed models, and various combinations of both fixed

and adaptive models. The multiple model and switching framework is quite general and

applies to both linear and nonlinear systems, but stability results are only currently

available for the linear time-invariant plants.

The development of nonlinear adaptive control has for the most part, paralleled

the linear case, usually with even more restrictive assumptions about plant than the linear

case. The usual approach is to perform a linearization of the plant model around some

point in the state space, determine the localized characteristics of the linearized system,

and the region in the state space where the linearization is valid.

Linear Adaptive Control

A single input-single output (SISO) linear time-invariant system with unknown

parameters, described by the state equations:

x(k + 1) =Ax(k) +bu(k)

y(k) = cx(k) (13)
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correspondsto thecasewheresomeor all of the parameters of the matrix A and

vectors b and c are unknown. Alternately, if the system is described by the n 'h order

difference equation:

n-I n-I

y(k + 1) = ___aiy(k-i ) + __,16ju(k- j) (14)
i=0 j=0

where u(k) and y(k) represent the input and output respectively at time k, the

parameters _i and/3j are assumed to be unknown. The objective then is to determine the

control input u(k) so the output y(k) behaves in some desired fashion.

The transfer function, Wp (z), of the plant described by equation (14) is •

n-1 n-2

_z +/_z + "'" +/3n-I (15)
We(z)= zn_aoZ_-1_..._a__,

The order of the system is n and if/30 :;e0, then the relative degree is one. If,

however, _ =/_ = _ =... =/3a_ 2 = 0 and/3a_1 _e 0, then the relative degree is d and the

input u(k) affects the output at time instants greater than or equal to k+d. It is best to first

consider the case when the relative degree is one, then extend the results to the case when

the relative degree is greater than one.

A bounded signal y* (k) is specified as the desired output of the plant and the

input u(e) is to be determined. Alternately, u(k) at instant k has to be chosen so that

lim [y(k)-y* (k) I = 0. (16)
k--***
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In model reference adaptive control (MRAC), y* (k) is generally chosen as the

output of a reference model. The simplest reference model that can be satisfied by (16)

above is z-d where d is the relative degree of the plant. For the case where the relative

degree is one, the reference input r(k) to the reference model is y* (k + 1) and is assumed

to be known at time k.

For the non-adaptive problem, if the plant is described by equation (14) and the

parameters a and fl are known, the control law can be chosen as :

1 F n_, ]
u(k)=--_[-_=oaiY(k-i)-2[3ju(k-j)+y'(k+l)j=l J (17)

and then the output y(k)= y" (k). The control input is merely a linear combination of n

past values of the input and output as well as the desired signal at instant k+ 1, and that the

output of the plant converges to the desired output in one instant.

For the adaptive case where the parameters _ and fl are assumed constant but

unknown, the indirect approach can be employed and requires the estimation of the

parameters a and ft. If o2_(k) and/_j (k) represent the estimates of o: and fl respectively,

these can be used to compute the control input. However, it is no longer obvious that the

overall system will be stable and that the condition (16) will be satisfied. This problem

was resolved for both continuous-time and discrete-time systems in 1980 [Narendra, Lin,

and Valavani, 1980; Morse, 1980]. However the stability of the overall system in the

discrete case requires the following assumptions about the plant transfer function:



37

1) An upperboundon theordern is known

2) The relative degree of the plant is known

3) The sign of fl0 as well as an upper bound on the absolute value of fl0 are

known

4) The zeroes of the plant transfer function are within the unit circle (minimum

phase condition).

Given these assumptions, stable adaptive laws for the adjustment of the estimates

d i (k) and/_j (k) result in a similar control law:

1 F n-l n-I ^ ]

u(k) =---;- |- _.,dtiy(k -i)-_ flju(k- j)+ y* (k + 1)j (18)/Sol ,=o .°

where the output y(k) follows y* (k) asymptotically.

Control Using Multiple Models and Switching

The multiple model structure with switching has been proposed by [Narendra et

al.; 1994, 1995] when the overall system is required to operate in multiple environments.

Sudden changes in parameter values, failures of sensors or subsystems, and external

disturbances taken to be the output of an unforced stable dynamical system, can be

considered as different environments a control system may be required to cope with. In

these cases, the need to use multiple models arises naturally, since a different

mathematical model may be needed to represent the behavior of the plant in each of the

environments.
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Theneedfor multiplemodelsin thecontrolof dynamicsystemsis further

elaboratedby [Narendra,1996]as:

1) Manyphysicalsystemscanberepresentedby interpolatingbetweenlocal

models.Gainschedulingis thecontrolparadigmbasedon thisconcept

2) Multiple modelsmaybeneededto detectdifferent changesin theplant and

initiate theappropriatecontrol action

3) In somecases,all the informationconcerningtheplant,suchastheorderor

therelativedegree,maynotbeavailableto computetheinput. Multiple

modelsmaybeneededto obtaintheappropriateinformation

4) Theadvantagesof individualmodelsmaybecombinedin a multiplemodel

controller. Onemodelmayassurestability,whileanotherheuristically

designedmayprovidebetterperformance.A propercombinationof thetwo

mayresultin astablesystemwith betterperformance.

Thearchitectureof theNarendra'smultiplemodelswitchingcontrolleris shownin Figure

15. 11 , I z ..... I, are N predictive models of the plant which have been obtained by

observing the system over a long period of time. C1,6"2 .... , C, are the corresponding

controllers, designed off-line and stored in memory. If the plant output is y(k) and the

output of model Ij is _j(k), the output error is defined as ej = _j (k) - y(k). Based on

some performance index J(ej), evaluated for j = 1, 2 ..... N, the model to be used at any

instant is chosen. If Ji (k)= mini J(ej (k)), the model I i and the corresponding

controller Ci are chosen at instant k. This corresponds to the switching part of the

scheme. The implementation of the switching scheme employs some hysteresis to
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preventarbitrarily fastswitchingbetweenmodels.In amorerecentpaper[Narendraand

Balakrishnan,1997],stability resultsfor anall-fixed modelscontrollerwasestablished

for linearsystemsundersomemild assumptions.In particular,it is shownthatif thereis

at leastonemodelthatis sufficientlycloseto theactualplantandthereis anon-zero

waiting timebetweenswitchesfrom onemodelto another,thentheoverall systemis

stable,giventhateachfixed modelis stabilizedby its correspondingcontroller.
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Figure 15. Structure of the multiple model control with switching

An even more recent paper [Narendra and Mukhopadhyay, 1997] introduces two

classes of approximate non-linear input-output models which reduce the computational

complexity of designing a controller based on the fact that the approximate models are
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linearin thecontrolinput. Thiswasessentiallytheapproachtakenin this experiment,

wheretheconvergedSOFMprovidesmultiple,approximatemodelsof the input-output

behaviorof theplant for agivenclassof input. Theseapproximatemodelswerethen

usedasthebasisfor linearpredictionsof theresponseto asetof controlcandidatesto

determinethecontrolinputthatminimizedtheerrorbetweenthepredictedoutputandthe

desiredoutput.

Thedevelopmentof thesemodelsbeginsby consideringtherepresentationof an

arbitrary,discretenon-lineardynamicalsystemusingstateequations:

Z: x(k+l)=f[x(k),u(k)]

y(k)=h[x(k)] (19)

where {u(k)}, {x(k)}, and {y(k)} are discrete-time sequences with

x(k)_9_", u(k)e_R,y(k)e_R, f:_R" x_R --+ _Rn ,h:SR" --+ _,andf,heC" . The origin

is assumed to be an equilibrium state of (4), hence f (0,0)= 0. The linearization of E L of

Z is described by the linear state equations:

g L : x(k+l)=Ax(k) + bu(k)

y(k) = cx(k) (20)

where the (n × n) matrix A and the (n × 1) and (1 × n) vectors b and c are defined by

O f (x,u) = A

X 0,0
oo Oh(x)l

,g f (x,u) = b = c

8u . ,gx o

Given this parameterization, the general state of knowledge about the system

Z can fall into one of the following categories:

1) fand h are known, and the state x(k) is accessible

2) f and h are unknown, and the state x(k) is accessible

(21)
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3) fand h are unknown, and only the input u(k) and the output y(k) are accessible.

The third case is the one of interest here, where system identification and control have to

be carried out using only input-output data.

Other Applications of Neural Networks for Control

Three recently reported neural network applications for control appeared in the

July 1997 edition of the IEEE Transactions on Neural Networks. The first paper,

"Reliable Roll Force Prediction in Cold Mill Using Multiple Neural Networks" [Cho,

Cho, and Yoon, 1997] reported the use of multilayer perceptrons to predict the roll force

and a corrective coefficient used to improve prediction accuracy by 30-50 % compared to

an existing mathematical model used in the cold rolling mill process for steel. The

second paper, "Dynamic Neural Control for a Plasma Etch Process" [Card, Snidermann,

and Klimasauskas, 1997] described the use of a cascade (feedforward) neural network

and a policy-iteration optimization scheme to provide suggested process setpoints for

recovery from long-term drift in equipment used in the plasma etch process. The

combined optimization scheme suggested "reasonable low cost solutions" for what were

considered out-of-control situations. The third paper, "Neural Intelligent Control for a

Steel Plant" [Bloch et al., 1997] suggests incorporating the skill of the human operators in

neural models, at various levels of control. A feedforward multilayer perceptron is

developed as a model of the annealing furnace, from which a static inverse model is

derived. None of the three papers had any experimental results from actually employing

the neural-based control to the targeted process.
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Themostspecificreferenceciting theuseof neuralnetworksfor wind tunnel

controlwas[BuggeleandDecker,1994]whereneuralnetworkswhereusedto interpret

shadowgraphimages,atypeof flow visualization,in orderto tuneparametersinexisting

controllers.Theyconcludedthattheir exercisewastoocomplicatedto demonstrate

neural-netautomationof wind-tunneloperations.Anotherreferenceciting theuseof

predictivecontrolof MachnumberattheNationalAerospaceLaboratoryin Amsterdam,

TheNetherlands,[Soeterboeket al., 1991] demonstrateda 30-60%overallperformance

improvementovertheconventionalcontrollernormallyused.Their resultswerebasedon

ap-step ahead prediction scheme, using a single operating point model (Mach 0.8), scaled

to accommodate small variations in operating point (Mach 0.7 to 0.9).

In [Cooper et al., 1992], a vector quantizing neural classifier is used to identify

process error due to both step and oscillating disturbances and adapt a single gain

parameter in a simulated continuous stirred tank reactor (CSTR). Their approach

demonstrated the ability of such a classifier to distinguish between the resulting error

transients associated with these disturbances and adapt the gain of the closed-loop system

to reduce the effect of the disturbances.

An overview of manufacturing applications of neural networks [May, 1994],

reports positive results of researchers at DuPont Electronics and AT&T Bell Laboratories

in plasma etch modeling for semiconductor manufacturing. Arc welding, machining

operations, color printing, and linear accelerator beam positioning are given as examples

of successful process control applications of neural network based control. "Neural nets

are well-suited to process control since they can be used to build predictive models from

multivariate sensor data generated by process monitors."



CHAPTER3
MODELLING THE TUNNEL DYNAMICS

Introduction

In the opening chapter, it was stated that the task of controlling the Mach number

in the tunnel was undertaken with a vision to capture the underlying dynamics of a

nonautonomous system from observations of time-dependent, input-output data. The

motivation for this approach came from previous work by Principe and Wang [ 1995],

using the self-organizing feature map as the infrastructure for local dynamic modeling of

chaotic time series. Their work focused on modeling autonomous systems, that is

systems where the state trajectory evolves without an external, or exogenous input signal

driving the trajectory from one region to another in the state space. That work is adapted

here to provide localized predictions of the system response, p steps ahead, to a

predetermined set of input or control sequences which will drive the system toward the

desired region of operation.

The assumption is that the state of the underlying nonautonomous system can be

described as a differential equation of the form:

dx(t)
- f (x(t),u(t)) (22)

dt

where x(t) are the system states, u(t), the control signal, is an exogenous input to the

system, and f is the vector field that maps a Cartesian product of the state space, S, and

43
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thecontrolspace,C, S ×C c9_" x 5R, to a tangent space Tcg_". Ifa closed-form

solution for (22) exists, that is : O: S × C---_S, then for a given initial condition x(0) and

u(t) specified for all t, _(x(0),u(t)), represents a state-space trajectory of the system, or

system flow.

For an autonomous system, there is no exogenous u(t), and the evolution of the

system is assumed to be described by :

dx(t)
- f(x(t) ) (23)

dt

Often, at this point the exogenous input u(t) is expressed as a function of the states:

u(t)=g(x(t)) (24)

whereby the nonautonomous system becomes autonomous. This is particularly useful for

considering the stability characteristics of the system under the influence of a

state-dependent, or state-feedback, signal u(t) as in (24) above. This will be elaborated

upon in the appendix to gain some insight into the stability of the overall system. The

approach in this chapter, however, will be to model the system response to a set of

candidate control sequences applied as a function of time over a specified interval.

The representation of an arbitrary, discrete non-linear dynamical system using

state equations was stated in Chapter 2, repeated here for convenience:

Z: x(k+l)=f[x(k),u(k)]

y(k) =h[x(k)] (25)

where {u(k)}, {x(k)}, and {y(k)} are discrete-time sequences with

x(k)_gV' , u(k)_.9_, y(k)_9_, f :_" xg_ --.-)9_" ,h:_" --.-) '_,and f ,h_C °* . Herefis a
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mapfrom thespaceof systemstatesandinput to thespaceof systemstates

91nx91 _ 91n,andh is a map from the space of system states to the output 91_ _ 91 .

Our goal here is to determine the system output y(k), over p steps into the future,

in response to the application of a set of candidate control sequences Uc, where :

Uc, =[uc, (k) uc, (k + 1) ... uc, (k + p- 1) ] (26)

is the ith candidate control sequence, and:

Mp, =[yp, (k + 1) yp, (k + 2) ... yp, (k + p) ] (27)

is the predicted response from the ith candidate control sequence.

Review of Local Dynamic Modeling with SOFM

As stated earlier, the previous work by Principe and Wang [ 1995] provided the

starting point for the modeling architecture. Their objective was to construct a neural

architecture capable of capturing the underlying dynamics of a chaotic time series. They

employed the SOFM as the modeling infrastructure based on the following observations:

1) The SOFM is a localized representation of a signal constructed through

competitive learning

2) The converged neural field bears a stronger global resemblance to the input

space than other competitive learning, due to the neighborhood function

3) The positioning of each neuron is more strictly constrained by the overall

statistical distribution of the signal, which helps to smooth out the irregular

spacing of local data samples in the state space.
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Their basicideawasto embedthegiveninput spaceinto acompactneuralfield

throughtheKohonenSOFMalgorithm. Thena simplemodelestimationprocesswas

performedto constructthe linearizedlocal modelsfor eachresponseregion. Theglobal

descriptionof thedynamicswascomposedof all theselocal modelspiecedtogether.The

wholeprocesswascomposedof two separateprocedures:theembeddingprocessof the

input spaceinto theneuralfield followed by thelocalmodelestimation.

Their architecturewascomposedof threelayers:input layerx, neuralfield layer

A, and the layer of local linear models F(x) as shown in Figure 16. The time series was

embedded in a state space to create a state vector x. The function i" (x) was realized by

the SOFM. That is to say that the input was fully connected to the nodes of the second

layer through a set of weight vectors w e, where the winner-takes-all neuron was

identified by the competition. Each neuron in the neural field layer corresponded to a

specific processor _ :[a i ,b_ ], which represented the linear approximation of the local

dynamics.

In this architecture, the SOFM performed two major functions: the positioning of

the local models in the state space, and the identification of the matched local model for

the current input state x. The first function is accomplished during the training phase of

the SOFM, while the second is accomplished during the modeling phase. The

construction of the overall architecture was composed of three consecutive steps:

reconstruction of the state space, mapping the state space in the neural field, and

estimation of local linear predictors.
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The SOFM-based Modeling Architecture for Time Series

Reconstruction of the state space from the training signaL Following the

approach by [Takens, 1980], a sequence of d + 1 dimensional state vectors

[x(n) x(n +'r) ] was created from the given training time series, where

x(n) =[ x(n-(d- 1)'t'), x(n-(d -2)'t') ..... x(n)] and "r is the appropriate time delay

where d >d a and d A is the dimension of the underlying dynamical process.

Mapping the state space in the neuraI fieId. This step was accomplished via the

Kohonen learning process. With each vector-scalar pair [x(n) x(n +'r) ] presented as the

input to the network, the Kohonen algorithm adaptively discretizes the continuous input

space X c R d+l into a set of disjoint cells A to construct the mapping O: X _ A. This

process continues until the learning rate decreases close to zero and the neighborhood

function covers one unit. After learning, the neural field representation A of the input
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spaceX via the constructed mapping relationship • is formed in terms of disjoint units

topologically organized in the output space.

Estimation of the locally linear predictors. For each neuron u i cA, its local

linear predictor in terms of [air,b_ ] is estimated based on a i cA, which is a set of L;

neurons in the neighborhood of u; including u_ itself. Each of them has a corresponding

weight vector [w r j, w_, (d + 1)] r _ R d+_where w;, r = [w;, (1), w_, (2) ..... wij (d) ]. The

local prediction model [a; r ,b; ] is fitted in the least-square sense to the set of weights in

a;:

w;j (d + l) = b + arw,j (28)

After the above construction procedure, a modeling network is obtained with a

global functional map composed of a set of local linear equations

x(n + 1) = _ (x(n))= airx(n) + b i (29)

where i is the winner-take-all neuron identified by competition in (6).

Modifications for SOFM-based Predictive Control

From (25), consider the output of the nonlinear system Z :

y(k) = h[x(k)] = W_ [x(k)]

y(k + 1) = h[f (x(k),u(k))]-_2[x(k),u(k)]

y(k + 2) = h[f ( f (x(k),u(k)), u(k + 1)]=W3[x(k),u(k),u(k + 1)]

y(k + n) = h o fn[.,.]=Wn+_[x(k),u(k),u(k + 1)..... u(k + n - 1)]

(30)
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where f" is an n-times iterated composition of f. Denoting the sequence

y(k+ 1), ..., y(k + n) by Y, (k) and the sequence u(k), u(k+ 1) ..... u(k + n - 1) as U, (k),

(30) can be expressed as :

W[x(k), U° (k)] = I1, (k). (31)

For SOFM-based predictive control, the thesis is that a set of feature maps can,

collectively, be a global representation of these n-times iterated compositions off where

an SOFM winner represents the localized response of the system to a prototype control

sequence, belonging to a larger set of control sequences, the candidate controls.

Thus, the embedded state space is mapped into a neural field corresponding to a prototype

control.

The second major point in the thesis is that predictors that are locally linear in the

control can be constructed from the SOFM winners. The construction of the locally

linear predictors associated with the SOFM winners is essentially a linearization around

the weights of the winner:

Mp, = _p[x(k),U,]+ V_p[x(k), Up -Ucl ' ] (32)

where Up -U c i is the L1 norm of the difference between the prototype control,

Up and the candidate control, Uc, and V_p is the Jacobian with respect to the control,

extracted from the converged SOFM weights.

Ideally, perhaps, there would be an individual SOFM, _, for each candidate

control, Uc, =[u_, (k) u_, (k + 1) ... u_, (k + p- 1) ], and predictions of the tunnel
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response,Mp, =[yp, (k + 1)

winners:

yp, (k + 2) ... yp, (k + p) ] would be made using the SOFM

Mp, =_,[x(k),Uc, ]. (33)

This would not have explored the concept of being able to extract a model that

was locally linear in the control from the SOFM and would have required excessive

amounts of training data that was not available, i.e. an ensemble of responses for each

candidate control over the entire operational range.

Thus the approach to modeling the tunnel dynamics evolved into a procedure

consisting of two major components. First, the control input space was manually

partitioned by the construction of significant prototype control vectors assumed to be

capable of producing the general features of the desired wind tunnel response. Second,

for each such partition of the control input space, a SOFM was constructed from an

ensemble of tunnel dynamic responses, i.e. the resulting Mach number response, covering

the operating range. Each ensemble of Mach number responses was extracted from over

20 hours of actual wind tunnel data, covering the entire operational range. Collectively,

the SOFM(s) form an atlas of the global wind tunnel response due to the prototype

control inputs.

The assumption here is that having an atlas for the system response to a set of

control input prototypes provides a sufficiently complete modeling infrastructure, given

the desired objective of predictively controlling the tunnel. There is no need to provide

an infrastructure capable of modeling the response to all possible 3Pcontrol sequences of

length p, because it is assumed that the control inputs applied to the tunnel, at least in the

PMMSC mode of operation, will come from the known set of candidate controls, which
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areeitherthecontrolprototypesthemselves,or closeenoughto theprototypes,by design,

soasto predictthetunnelresponseby localmodelsconstructedfrom theresponse

embeddedin theinput neuralfield of thecorrespondingSOFM.

Partitioning the Control Input Space

The control input space was partitioned by the construction of prototype vectors.

Experimentally, it was found that nine prototype vectors were required to achieve the

desired control to the specified tolerance. Seven of the control prototypes were 50 sample

periods in length, with two shorter prototypes which were 10 samples long. Figure 17

shows the seven 50-point control prototypes. The 10-point prototypes were composed of

either all + l's or all - l's.

50 sample protoype control vectors

0.5

"7 o
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EE
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8 0
10

20

n

30
40
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Figure 17. 50-point prototype control inputs
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Forconvenience,theprototypeswereassignedlabelssuchasinput_class_0,

input_class_l,input_class_2,etc. Input_class_0,input_class_l,andinput_class_2are

50-pointcontrol sequencesconsistingof all zeroes,all +l's andall -l's, respectively.

Table3 lists thefeaturesof theprototypecontrolvectors.

input_class n

input_class_0 50

input_class_l 50

input_class_2 50

input_class_3 50

input_class_4 50

input_class_5 50

input_class_6 50

input_class_7 10

input_class_8 10

Composition Control function

Fifty zeroes Steady-state

Fifty +l's (Raise) Rampup

Fifty -l's (Lower) Rampdown

Ten+l's, forty zeroes Endof Rampup

Ten-l's, forty zeroes Endof Rampdown

6-9zeroes,1-4+1's, forty zeroes Positivecorrection

6-9zeroes,1-4-1's, forty zeroes Negativecorrection

Ten+1's Positivetransition

Ten-1's Negativetransition

Table3. PrototypeControlvectors

The idea here, as discussed in the introduction, was to partition the control input

space by manually constructing prototype vectors for the control sequence. The goal of

this partitioning was to provide a set of control inputs capable of ramping the tunnel from

one operating point to another, regulating about a given operating point, rejecting

disturbances, while eliminating control sequences known experimentally to be of no
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practicalinterest,particularlywhenconsideringthedesireto minimizecontrolactivity

while regulatingaboutanoperatingpoint. An alternatingsequenceof +l's and-l's

mightprovidethedesiredregulationof theoutput,but wouldbehighly undesirablein

termsof controleffort. Thiswill beelaborateduponin thefollowing chapters.

Rampingthetunnelfrom oneoperatingpoint to anotherwouldbeaccomplished

with input_classes_l,2, 3, and4. Input_classes_5and6 wouldbeusedfor regulating

aboutagivenoperatingpoint aswell asrejectingdisturbances.Input_class_0provides

thecontrolinput for the idealsteady-stateconditionwith nodisturbance,requiringno

controlactionovera 50-pointsampleinterval. Input_classes_7and8provideatransition

from thezero-inputclassto therampinginputsof input_classes_land2, andprovide

identificationof thetunnelresponseovera shorter,morerecentintervalof time.

Clustering the Mach Number Responses

For each of the control input classes, ensembles of Mach number responses

resulting from the application of each control prototype were extracted from the wind

tunnel test data. Next, each ensemble of responses was clustered using a SOFM. The

SOFM imposes a topographic ordering of the output neural field corresponding to

features of the input patterns, which are in this case, the Mach number responses, taken

over the past n sample intervals. Collectively, the SOFM(s) were trained using data

extracted from more than 20 hours of actual wind tunnel response data. Table 4 lists the

number of exemplars for each class.
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Input_classes_3and_4havethefewestnumberof exemplarsbecausetheyonly

occur at the end of the transition from one set point to another. Input_classes_l, _2, _7,

and _8 have the greatest numbers of exemplars due to the relatively long transition times

from one operating point to another, requiring steady ramping up or down. Next in

frequency of application is input_class_0, representing the most desirable, minimum

control effort over the 50 sample interval (15 seconds) when the Mach number is within

the desired tolerance. The remaining two input_classes, _5 & _6, represent prototype

positive and negative corrections which provide disturbance rejection and regulation

about a set point, with the desired features of the control sequence, i.e. minimum control

effort and minimum number of switchings or transitions from one state to another.

Input class # exemplars

0 10,158

1 15,332

2 13,464

3 41

4 31

5 155

6 198

7 17,393

8 16,694

Table 4. Training exemplars for each input class
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Thefollowing figures(19 through27)showensemblesof Machnumberresponses

from theapplicationeachcontrolprototype,andtheir correspondingSOFM. TheMach

numberresponse,M, is takenoverthesamen sample intervals as the application of the

control prototype,

M = M - M(t - n) ; (34)

M = M(t), M(t - 1)..... M(t - n); (35)

and n is either 50 or 10. Thus, M represents the output of an n-tap delay line, where the

value at the nth tap is subtracted from all the values in the delay line. The output at a

single tap is shown in Figure 18. This is essentially a bank of comb filters which

preprocesses the Mach number responses, particularly for removing the dc component,

yielding the change in Mach number over the past n samples. Both the training samples

and the on-line Mach number responses were preprocessed in this fashion.

M(t-1)

Figure 18. A single tap of the Mach number preprocessor
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Figure 19. Mach number responses and corresponding SOFM for input_class_0
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Mach responses for input_class_l
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Figure 20. Mach number responses and corresponding SOFM for input_class_l
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Mach responses for inpuLclass_2
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Figure 2 l. Mach number responses and corresponding SOFM for input_class_2
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Mach responses for input_class_3
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Figure 22. Mach number responses and corresponding SOFM for input_class_3
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Mach responses for inpuLclass_4
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Figure 23. Mach number responses and corresponding SOFM for input_class_4
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Mach responses for input_class_5
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Figure 24. Mach number responses and corresponding SOFM for input_class_5
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Mach responses for input_class_6
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Figure 25. Mach number responses and corresponding SOFM for input_class_6
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Mach responses for input_class_7
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Figure 26. Mach number responses and corresponding SOFM for input_class_7
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Mach responses for input_class_8
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Figure 27. Mach number responses and corresponding SOFM for input_class_8
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Convergence of the Input Neural Fields

The number of nodes for the SOFMs, each representing a cluster of the Mach

number responses, was adjusted during the training phase to achieve an average

separation between the adjacent converged neural input fields, or more simply, the

weights of the SOFM. The topographic ordering imposed by the SOFM was key in this

phase of the development. The number of nodes were adjusted so that the separation

between the adjacent input neural fields corresponded to the desired goal of controlling

the Mach number, based on 50 samples-ahead predictions, to better than the required

0.003 tolerance. Thus, the major focus was to determine the number of classes for the

SOFMs for input_class_5 & _6, which provide the basis for regulation and disturbance

rejection. Each of these SOFMs were trained with 155 and 198 exemplars. It was found

experimentally that 20 nodes or clusters provided adequate separation based on

considering the separation between the adjacent means of each neural field over the last

30 point interval:

M_(i,j+l) - M;(i,j) . (36)
i=21 i=21

Nodes were added to the SOFM until the mean separation, taken over the entire

map, was well below 0.001 for input_classes_5 & _6, as listed in Table 5. The resulting

20 node SOFM structure was implemented for all the input_classes, and the resulting

separations between adjacent input neural fields were considered adequate. The mean

separation for input_class_0 was even less than the above classes, and the mean

separations for the ramping input_classes SOFMs were deemed sufficient for the

relatively coarser control required to move from one set point to another.
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4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

m

SD

5O

1 _.,M,k(i,j+l)
(10_) 3-0 i::,

k = 0 k = I k = 2

0.6342 5.284 -1.352

0.6194 3.111 -3.625

0.2973 1.686 -1.270

0.1652 1.377 -0.8680

0.2856 0.8588 -0.8589

0.2339 0.9396 -0.7762

0.0565 0.6088 -0.7927

0.0129 0.3392 -0.5479

0.0166 0.8414 -0.1769

0.1377 0.8744 -0.3810

0.3549 0.8427 -0.8745

0.3034 1.368 -0.6687

0.1219 1.009 -0.5736

0.0339 0.9442 -0.9577

0.1218 0.6524 -0.7976

0.4175 1.130 -0.7018

0.3741 2.039 -1.055

0.4796 1.665 -2.076

0.5925 -0.8114 -1.757

0.2768 1.303 -1.058

0.2039 1.234 0.7670

k = 3

1.648

2.639

1.032

2.655

1.438

0.5972

1.073

O.8365

0.3579

0.197i

0.4618

0.5598

0.6931

0.6108

0.4443

0.4792

0.3583

i=21

k = 4 k = 5

-1.407 0.5741

-2.557 0.6314

-1.249 0.2768

-1.547 0.3332

-2.220 0.3767

-1.116 0.2678

-0.4461 0.2143

-0.2759 0.3067

-0.5014 0.4656

-0.5801 0.2794

-0.4409 0.0169

-0.5765 0.0771

-0.9616 0.1947

-0.7398 0.4424

-0.4548 0.6975

-0.6299 0.7110

-0.8048 0.5912

k = 6

-0.2934

-0.4436

-0.4233

-0.3458

-0.4339

-0.2206

0.0058

-0.0531

-0.4198

-0.4187

-0.1808

-0.2167

-0.5848

-0.6323

-0.5178

-0.7711

-1.417

-2.468 0.4746 -0.6025

k = 7 k = 8

0.6155 -0.7840

0.7627 -1.007

0.2835 -0.4472

0.2418 -0.2451

0.2112 -0.1888

0.1906 -0.2295

0.3037 -0.2699

0.1421 -0.1933

-0.089 -0.0416

0.0292 -0.1017

0.2533 -0.2718

0.2644 -0.2841

0.2335 -0.1611

0.1458 -0.0474

0.1386 -0.2038

0.2827 -0.3107

0.3475 -0.2851

1.221 -0.6797

1.390 -0.4480

0.9839 -0.9282

0.7153 0.6259

1.554

2.735

0.5656

0.6221

-2.253 0.5246 -0.6308

-0.6363 0.2819 -0.3319

0.6809 0.2003 0.2550

Table 5. Difference between interval means of adjacent input neural fields
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4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(10 3 )

k=O k=l k=2

-2.556 15.98 -22.28

-1.922 21.26 -23.63

- 1.303 24.38 -27.25

- 1.006 26.06 -28.52

-0.8406 27.44 -29.39

-0.5549 28.30 -30.25

-0.3210 29.24 -31.03

-0.2645 29.85 -31.82

-0.2519 30.19 -32.37

-0.2349 31.03 -32.54

-0.0973 31.90 -32.93

0.2576 32.74 -33.78

0.5610 34. I 1 -34.47

0.6830 35.12 -35.04

0.7169 36.01 -35.60

0.8387 36.72 -36.78

1.256 37.85 -37.50

1.631 39.89 -38.55

2.110 41.55 -40.63

2.703 40.74 -42.39

- 50
_ ° °

_""J i=21

k=3 k=4

2.456 -3.719

4.105 -5.126

6.745 -7.683

7.777 -8.933

10.43 -10.48

11.87 - 12.67

12.47 -13.82

13.54 -14.26

14.37 -14.54

14.73 -15.04

14.93 -15.62

15.39 -16.06

15.95 -16.64

16.64 -17.59

17.25 -18.33

17.70 -18.79

18.18 -19.42

18.54 -20.23

19.76 -20.91

21.15 -21.35

. - M;IOi-i (i,j)

*1000

k=5 k=6 k=7 k=8

- 1.570 1.031 0.7942 -0.6336

-0.9963 0.7372 1.409 - 1.417

-0.3649 0.2936 2.172 -2.425

-0.0881 -0.1297 2.456 -2.872

0.2452 -0.4755 2.698 -3.117

0.6219 -0.9095 2.910 -3.331

0.8897 -1.130 3.010 -3.536

1.104 -1.124 3.403 -3.806

1.411 -1.177 3.545 -4.000

1.876 -1.597 3.456 -4.041

2.156 -2.016 3.485 -4.142

2.173 -2.197 3.738 -4.414

2.250 -2.414 4.002 -4.698

2.444 -2.998 4.236 -4.859

2.887 -3.631 4.382 -4.906

3.584 -4.149 4.520 -5.111

4.295 -4.919 4.803 -5.421

4.886 -6.337 5.151 -5.706

6.441 -8.806 5.625 -6.309

9.176 -11.06 6.150 -6.939

Table 6. Interval means of SOFM input fields
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(103) M'k(i,j)

j k=O k=I k=2 k=3 k=4 k=5 k=6 k=7 k=8

1 16.78 92.73 129.3 14.83 22.78 9.669 8.075 3.195 2.594

2 12.90 123.3 136.9 24.13 30.09 6.997 4.947 5.456 5.658

3 8.921 141.6 158.5 39.41 44.14 2.808 2.318 8.344 9.363

4 6.794 151.9 166.3 46.01 51.61 1.048 1.322 9.629 10.92

5 5.625 160.1 171.6 62.03 61.78 3.099 3.247 10.74 12.02

6 4.136 165.2 176.3 70.51 76.33 4.611 6.642 11.26 12.96

7 2.839 170.6 180.4 74.66 82.47 5.177 7.177 11.58 13.58

8 2.623 174.0 185.1 81.11 85.71 6.713 6.448 12.51 14.13

2.933 176.0 188.6 85.83 88.76 8.406 6.576 13.17 14.82

10 2.632 180.9 189.5 88.40 91.33 10.55 8.931 13.21 15.38

11 1.902 185.9 191.9 90.99 94.44 12.09 11.24 13.65 16.03

12 2.070 190.6 197.3 94.72 97.32 12.26 12.45 14.40 16.64

13 3.504 198.4 201.0 96.88 100.6 13.35 14.24 14.92 17.24

14 4.774 204.4 204.2 100.3 106.1 14.36 17.37 15.58 17.88

15 5.547 210.0 209.8 104.7 111.2 16.69 20.30 16.41 18.44

16 6.890 213.9 214.6 107.5 115.1 20.09 23.23 17.22 19.27

17 8.854 220.4 219.2 119.0 23.92 28.27 17.93 20.19

231.9 123.410.63 27.28225.3 36.1218 18.92

110.9

113.3 21.10

19 13.57 241.6 236.9 119.0 126.7 35.86 49.03 20.78 23.18

20 17.47 236.9 247.1 126.3 128.2 50.95 61.49 22.89 25.40

Table 7. Euclidean norm of SOFM input neural fields
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In order to quantify the topological ordering of the converged neural fields,

Table 6 lists the mean taken over each 30 or 10 sample interval of the SOFM weights.

Table 7 enumerates the Euclidean norm for all the converged neural fields as well. With

the exception of SOFM_0, the norms steadily increase (or decrease) along the output field

of the map. SOFM_0 displays increasing distance from the center of the map, outward,

corresponding to the symmetry of the interval means about the center of the map shown

in Table 6.

SOFM Selection for Local Model Identification

After the application of a candidate control, one of the nine SOFM is used to

cluster the Mach number response, M, over the past n sample intervals. The selection of

the SOFM is based on the minimum Euclidean norm between the control input history

U = u(t - 1), u(t - 2) ..... u(t - m) and the set of prototype control vectors Ui; i=l,n "

input_class_i = mjn U-Uil. (37)

If more than one prototype control vector matches identically, i.e. U -U i II = 0 for more

than one i, both SOFM(s) are excited with the appropriate length M. This can occur for

SOFM_I (or _2) and SOFM_7 (or_8), where the SOFM_7 (or 8) winner represents the

response over the 10 most recent samples, while the SOFM_I (or _2) winner represents

the response over the past 50 samples. Additionally, the regulating control classes were

clustered on a region of the control space, defined in Table 3, as opposed to a single point

in the control space.
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TheSOFMmetricfor thewinneris theminimumEuclideannormbetweenM

andtheSOFMprototypevectors,M i , for theSOFMselectedby input_class"

mach_ class_ i = min IM- M_ .
i=1:20

(38)

u(t-2)

m

u(t-m)

II u-uil I
input_class_i

M(t)

M(t-1)
M

M(t-n) 1
J

Figure 28. Selection of SOFM by input_class

Prediction of Tunnel Response Using Local Models

The Mach number responses are predicted by a linear model:

Mpc=a c +W ; (39)

where W* is the prototype response vector, or weights, of the winning node.
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A* is theleastsquareapproximationof thewinner'sprototyperesponseto ad-sample

delayed unit step sequence, U r =[0,0,...,0,1,1,...1], where d represents the maximum
,......._¢.._.._ _....,r..._

d p-d

relative degree or delay from input to output and p is the total number of samples ahead

for which the prediction is made:

A ° =bUr

where b is fit in the least square sense, or, alternately,

b=W*(U S

and 0 denotes the Moore-Penrose pseudoinverse of the vector U r.

By inspection of the SOFM for all input classes, d was chosen conservatively to

be greater than any observed delay, d = 20. A single constant, a c, scales A" based on

the ratio of the L1 norm of the candidate control vector Uc and the L1 norm of the

control sequence U, producing the response M:

1 , IIuII, 0

ac-- 0 , IIuII1=0

(40)

(41)

(42)

Thus, acA* provides the difference in the predicted Mach number response due

to the to the distance between the control sequence, U, and the i 'h candidate control

sequence, U c. For the simplest case, U c = U, the value of a is zero, and the Mach

number response is predicted directly from the input neural field. This linear model is

driven by the candidate control inputs, shown in Figure 29.



72

Candidate Control Inputs u(t+n)

20

Candidate #
30 0 10

Figure 29. Candidate Control Sequences

20

n

30 40 50

Comparisons of the predictions of the Mach number to the actual tunnel responses

as a result of the application of the candidate controls will be presented in Chapter 5,

Experimental Results.



CHAPTER 4

PREDICTIVE CONTROLLER

Introduction

Given the model of the tunnel response developed in the previous chapter, the

predictive controller evaluates the relative effectiveness of the candidate control inputs.

The advantage of partitioning the control input space using a set of prototype controls

becomes more apparent when compared to model-based predictive control (MPC)

[Clarke, Mohtadi, and Tufts, 1987]. In our method, predicted responses from a set of

candidate control inputs can be extracted either directly from the SOFM's output neural

field or from the derived local model. The controller then applies the control sequence

which minimizes the error between the desired output and the predicted output over some

finite number of steps into the future. The low computational cost of multi-step

prediction by this method allows prediction for relatively long (50 samples ahead) control

sequences, or control horizon, in the terminology of MPC, using relatively simple

computing hardware. This is in contrast to MPC, which requires the inversion of an

NU x NU matrix at each step for a control horizon NU steps into the future. A brief

background of MPC is provided as a basis for comparison to SOFM-based predictive

control using control prototypes.

73
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Model Predictive Control Background

Most input-output model based predictive control schemes [Clarke, Mothadi, and

Tufts, 1987], begin with the assumption of a linear model (ARMA, or Autoregressive-

Moving Average) •

/1 m

y(k) = 2a, y(k -i)+ 2bj_,u(k- j)
i=I j=l

with an additional disturbance term in moving average form •

(43)

yields

where _(k) is an uncorrelated random sequence.

backward shift operator q-l"

Combining (43) and (44) and introducing the polynomials A, B, and C in the

A(q -1) 1 -1 -ha= +a_q +...+a,,,q

B(q-i) = bo + blq-J +...+b,,b q-.b

C(q -1 ) = 1 + clq -_ +...+C,cq -'c

A(q-' ) y( k ) = B(q -1 )u( k - 1) + C(q -l )_( k ) (45)

which is referred to in the literature as the CARMA (Controlled Auto-Regressive and

Moving Average) model, a variation on the ARMAX (Auto-Regressive Moving Average

with exogenous input) model.

A further refinement to the disturbance model to accommodate non-stationary

disturbances such as random steps occurring at random times is :

nc

d(k) = _(k) + _ci_(k -i) (44)
t--I
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d(k) = C(q-I )_(k) / A (46)

where A = 1- q-_, the differencing operator. Combining (45) and (46) yields the

CARIMA (Controlled Auto-Regressive Integrated Moving Average) model used in

Generalized Predictive Control (GPC) •

A(q -_)y(k) = B(q-')u(k - 1) + C(q -I)_(k) / A. (47)

At this point it is useful to introduce a scalar cost function J:

N 2 Nu

J = _[y(k + i) - w(k + i)12 + _,_(j)[u(k + j - 1)12 (48)
i= N 1 j=l

where •

is the predicted response from the control input sequence u

N_ is the beginning of the costing horizon;

N 2 is the end of the costing horizon;

N_ is the control horizon;

$(j) is a control-weighting sequence.

N_, N 2 , N u , and A,(j) represent tuning knobs which can be adjusted by the control

designer to tailor the control action for the desired response characteristics. Rules of

thumb provide some guidelines for initial selection. N I is usually picked to be greater

than the largest anticipated time delay between the input u(k) and its response in the

output y(k). N 2 is determined by the longest settling time associated with the pulse or

step response of the model. N_ = 1 is quite often chosen for open-loop stable non-

minimum phase plants, but this often represents a compromise between the

computational burden associated with longer control horizons.
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Theminimizationof J, given a future set point sequence w, where •

w = [w(t + 1),w(t + 2) .... ,w(t + N)]'

leads to the control law •

u= [G T G+_I] _ G T (w-f) .

The matrix G is of dimension Nx NU:

go 0

gl go

G= :

gN-I gN-2

"'' 0

• "" 0

go

• "" gN-NU

(49)

(50)

(51)

This requires the inversion of an NU x NU matrix at each sample time, or at least

for each identified change in the g parameters, which are the coefficients of the

z-transform of the plant's step response, f is a linear combination of values of u(t) and

y(t) up to time t.

SOFM-based Predictive Controller

The function of the SOFM-based predictive controller is to evaluate the relative

effectiveness of the candidate control inputs in reducing the error between the desired

Mach number and Mach number predicted by the current SOFM winners. This is done

by evaluating the Euclidean norm of the difference between the last 30 points of the 50-

points-ahead predicted Mach number responses and the desired Mach number set point :
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i = Mp, [21:50] - Msp I (52)err_ norm_

for all i candidate control sequences, as specified in the prediction section. The

evaluation over the last thirty points of the prediction is to emphasize steady-state

matching. The control sequence associated with the minimum norm of all i sequences is

then applied as the control to the tunnel.

This is similar to the scalar cost function for GPC (48) :

[N_N I 1112
Jp = [)p (k + i) - w(k + i)l 2

i=

(53)

with N 1 = 21 , N2= 50 and yp is the predicted Mach response for the pth candidate

control sequence. Both the constraints on the permissible values of the control (+ l, 0,

and -1) as well as the minimization of the control cost is embedded in the set of all p

candidate control sequences with control horizon N,= 50. The control Up that

generates _p is selected for the minimum Jp.

In the set of candidates we included controls to ramp the set point up and down

for large changes in operating point, as well as the regulating control sequences for

disturbance rejection. The candidate control sequences, their associated SOFMs for

prediction, and their control update parameters are listed in Table 8. The control update

parameter for each candidate control determines whether the entire 50 sample control

sequence is applied as the control, or just the first point in the sequence. Implicitly, this

selection is done based on the error between the Mach number set point and the predicted

responses. If the selected candidate control corresponds to either the two largest control

efforts over the control horizon, or if the selected candidate control represents the
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minimum control effort (i.e. zero) over the control horizon, the control sequence is

updated by selection of the prediction-error minimizing control at the next sample period.

For all other cases, the entire 50 sample selected candidate is applied. The two cases of

regulating about an operating point and operating point changes illustrate the differences.

Candidate # [u(t+l), u(t+2) .... u(t+50)] SOFM

1 [ (50) +l's ] 1

2 [ (11) +l's (39) zeros] 3

3 [ (10) +l's (40) zeros ] 3

4 [ (9) +l's (41) zeros ] 5

5 [ (8) +l's (42) zeros ] 5

6 [ (7) +l's "(43) zeros ] 5

7 [ + 1 + 1 + 1 + 1 + 1 + 1 (44)zeros] 5

8 [ +1 +1 +1 +1 +1 (45) zeros ] 5

9 [+1+1+1+1 (46) zeros] 5

10 [ +1 +1 +1 (47) zeros ] 5

11 [ +1 +1 (48) zeros ] 5

12 [ +1 (49) zeros) ] 5

13 [ 0.66 (49) zeros ] 5

14 [ 0.33 (49) zeros ] 5

15 [ 50 zeros] 0

16 [ -0.33 (49) zeros ] 6

17 [ -0.66 (49) zeros ] 6

k

1

1

5O

5O

5O

5O

5O

5O

5O

5O

5O

5O

5O

5O

1

5O

5O
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19

20

21

22

23

24
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[ -1 (49) zeros ]

[ - 1 - 1 (48) zeros ]

[ - 1 - 1 - 1 (47) zeros ]

[ - 1 - 1 - 1 - 1 (46) zeros ]

[ - 1 - 1 - 1 - 1 - 1 (45) zeros]

[ - 1 - 1 - 1 - 1 - 1 - 1 (44) zeros]

[ (7) -l's (43) zeros ]

25 [ (8) -l's (42) zeros ]

26 [ (9) - l's (41) zeros ]

27 [ (10) -l's (40) zeros ]

28 [ (11) -l's (39) zeros ]

29 [ (50) - 1 's]

6 50

6 50

6 50

6 50

6 50

6 50

6 50

6 50

6 50

4 50

4 1

2 1

Table 8. Candidate Control sequences and associated parameters

Operating Point Changes

The typical set point change is greater in magnitude than 0.1, which is several

times greater than the largest Mach number change associated with any of the SOFM

input fields. Set point changes of this magnitude produce the selection of either candidate

control #1 (50 +1 's) or #29 (50 -l's). These control sequences are updated at each

sample interval, which means that the controller decides at each sampling instant whether

to extend the series of raise or lower commands to achieve the desired set point. If the

only selection was between the continued ramping associated with either SOFM_I (ramp
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up)or SOFM_2(rampdown),andthenextprototypecontrolassociatedwith SOFM_3

(endof rampup)andSOFM_4(endof rampdown),thetransitionbetweensetpoints

would indeedberathercoarse.Theinclusionof candidates# 2 and#28provideaone

control-tickresolutionbetweencontinuedrampingandthetransitionto regulatingabout

thedesiredsetpoint. Rampingcontinuesonuntil candidates#3 is selectedover#2or

#27is selectedover#28 astheprediction-errorminimizingcontrol. Thesecontrol

sequences(#3or #27)areappliedfor their entire50-pointduration,allowing for asmooth

transitionto regulationaboutthesetpoint.

Regulating About an Operating Point

When actively regulating about an operating point, the entire 50 sample control

sequence selected from the set of candidates, consisting of an active or non-zero segment

of 1/3 to 10 sample periods, followed by the corresponding number of zeroes during the

inactive segment, is applied as the control input for the next 50 sample periods. Thus, the

selected candidate control is applied open-loop over the entire 50 sample control horizon,

with the next control update occurring 50 sample periods later. The resulting 50-sample

Mach number response is then input to the corresponding SOFM, and future predictions

are made from the output neural field of the SOFM winner as described in Chapter 3.

If the sequence of all zeroes is selected, the control is updated at the next sample

period. The 50 sample Mach number response is input to SOFM_0 for identification of

the local dynamics by the SOFM_0 winner. Prediction and control sequence selection is

performed at each sample period until an active (non-zero) control sequence is selected to

regulate the Mach number.



CHAPTER5
EXPERIMENTAL RESULTS

In Chapter3 and4, theSOFM-basedmodelingof the tunnel dynamics and the

resulting predictive controller were developed. The control input space was manually

partitioned by the use of prototype control sequences and SOFM's were trained to cluster

the corresponding Mach number responses. Thus, the output neural field of each SOFM

represents a collection of local models of the tunnel dynamics for the corresponding

prototype control input. During the experiment, while actually controlling the tunnel with

the PMMSC, the control inputs were chosen from the set of candidate control sequences,

making the task of identifying the local dynamic model more straightforward than in the

more general case of all allowable 3 p control sequences of length p.

Thus, the experimental results are composed of two parts. The first part is to look

at the results of controlling the Mach number during actual experimental tests conducted

in January 1996. These results will be compared to control of the tunnel with an existing

gain-scheduled automatic controller as well as control by an expert human operator. The

second part is to explicitly examine the results of modeling the tunnel dynamics with the

control-input partitioned SOFM architecture. This will be accomplished by comparing

the Mach number response predicted by the SOFM-derived local model to the actual

response after application of the error-minimizing control sequence determined by the

predictive controller.
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Experimental Setup

The experimental setup consisted of a 486-33 MHz PC connected via a serial port

to the existing control computer at the wind tunnel, referred to as the "tunnel micro". The

tunnel micro is an early 1980's vintage 8086-based microcomputer. The existing

automatic control implemented in the tunnel micro is a highly tuned but fixed table

look-up of drive motor commands based on the error at a given Mach number [Capone et

al., 1995]. The tunnel micro also communicates with the wind tunnel data acquisition

system. The data acquisition system provides the Mach number measurements at a

nominal sample interval of 0.3 seconds. Figure 30 shows a block diagram of the

experimental setup.

C - coded

PMMSC

I

Mach number

I _unn el Micro
Control commands ......

Mach
number

Control

Existing controls

Figure 30. Experimental Setup

The PMMSC was implemented as a C program, compiled and run on the PC. The

output of the program, at each sample interval, is a control command which is
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communicatedto thetunnelmicroandthenappliedto thedrive systemfor thetunnel

fans. Thecontrolcommandcantakeon thevaluesof; +1to raisethetunnelfanRPM, -1

to lower thefanRPM,or zeroto maintainfanRPM. Further,thecommanddurationmay

bespecifiedto beeitherthefull sampleinterval,0.3 seconds,or lessthanthefull sample

interval in 0.1secondincrements,(i.e.either0.1or 0.2secondduration). This

subdivisionof thesampleintervalwasrequiredto providefiner controlof thetunnelFan

RPM. Control inputsof lessthan0.1seconddurationaregenerallyineffectivein

producingachangein thetunnelfan RPM. Additionally, thePCwasusedto recordthe

timehistoriesof thetunnelstate,controlinputs,andPMMSCinternalvariablessuchas

thepredictedresponseandSOFMwinningnodes.

Mach Number Measurements

The Mach number is computed from the a calibrated ratio of stagnation pressure

to static pressure measured in the plenum surrounding the test section, as described earlier

in Chapter 1, equation (1).

The most recent calibration of the wind tunnel was performed in 1990 [Capone,

et. al, 1995]. This calibration used 30 static pressure measurements taken along the

nominal 8-ft calibrated test section length (CSTL). Flow uniformity was parameterized

by both the standard and maximum deviation of spatially local Mach number from a

least-squares straight-line fit. The results of this calibration are listed in Table 9. In this

table, the test section Mach number M r , is the value of a least-squares straight-line fit to

the Mach number data, corresponding to the midpoint of the test section. The standard



84

deviationis ameasureof theaveragediscrepancyalongthetestsectionlength. The

maximumdeviationrepresentstheworstdeparturefrom theleast-squaresfit alongthe

selectedlengthof testsection.Thedocumentreportingtheresultsof thecalibrationlists

20"values,i.e.twice thepositivesquarerootof thevariance.

M
F

0.3015

0.4006

0.5014

0.6018

0.6544

0.7030

0.7537

0.7795

20" O'ma x

0.000560 0.001088

0.000754 0.001688

0.000943 0.002158

0.001152 0.002381

0.001291 0.002833

0.001388 0.003085

0.001415 0.003350

0.001478 0.003413

0.8000 0.001422 0.003015

0.8284

0.8555

0.8809

0.9038

0.001481

0.001514

0.003552

0.003632

0.001576 0.003756

0.001428 0.003700

0.9304 0.001584 0.003749

0.9579 0.001539 0.003684

0.9816 0.001422 0.003211

Table 9. Standard and maximum deviation of Mach number during calibration

From this table, it can be seen that both the standard and maximum deviation of

Mach number measured along the CTSL vary significantly over the subsonic range. This

spatial variation corresponds to the temporal variation of steady-state Mach number

measurements. This is illustrated by taking the standard deviation of a time series of

Mach number measurements calculated from the calibrated ratio of stagnation pressure to

plenum static pressure under steady conditions during operational tests. In Table 10, M is

the mean value of 200 consecutive Mach number measurements taken under steady
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conditionswith nocontrol inputapplied. Thestandarddeviationis thesamplestandard

deviation:

N 2

0" 2_ 1 _(M(i)-M) ;0- = X/-_-2 "
N-1 i=1

(54)

where 20" is used for direct comparison to the calibration results.

M 2o"

0.2979 0.000546

0.3968 0.000520

0.5999 0.000908

0.8014 0.001820

0.8518 0.001497

0.8850 0.001977

0.9003 0.001577

0.9504 0.001822

0.9819 0.002652

Table 10. Statistics of time histories of steady state Mach number measurements

Experimental Results of Controlling the Mach Number

Experimental results were obtained while controlling the wind tunnel with the

PMMSC at several subsonic Mach numbers. These tests were conducted during the

period of January 10th through January 23rd, 1996.

Figure 31 shows the wind tunnel Mach number being controlled by the PMMSC

for a period of three hours, during a normal operational tunnel run, where aerodynamic

research data was being taken. Mach number set points of 0.95, 0.9, 0.85, and 0.6 are
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shownasdashedlines. ThePMMSCregulatedthesteady-stateMachnumberto within

theresearchrequirementof 0.003of thesetpoint during theintervalshown. PMMSC

commandsareshownwith magnitudeslessthanonefor controlcommandswhose

durationwaslessthanthe0.3secondsamplingperiod. Controlpulsesof 0.1secondare

shownwith magnitude0.33and0.2 secondpulsesareshownwith magnitude0.66.

1

0.9
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Figure 31. Mach number controlled by PMMSC* during a three hour test

*The PMMSC was previously referred to as NNCPC, so this acronym appears in some of

the plots.
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During thesetests,theaircraftmodelattitudewasvariedto achievethedesired

aerodynamicresearchdata. Figure32showstypical variations of model attitude at each

Mach number.

Angle of Attack (alpha)
15 ......

10

-_ 5
"O

"ID

0

-5
0

I I I

20 40 60 80 100 120 140 160 180

10
Angle of Sideslip (beta)

i i i

-5

-10
0

I ! I I

20 40 60 80
I I I I

100 120 140 160 180
Time (rain)

Figure 32. Variations of angle-of-attack and angle-of-sideslip during test

The variations are of two general types, referred to as an "alpha sweep" or "beta

sweep". During an alpha sweep, the model angle-of-attack, or "alpha", is stepped

through some range, from -4 degrees to +12 degrees in this test, while maintaining a

constant angle-of-sideslip, or "beta". During a beta sweep, the model angle-of-sideslip is

stepped through some range, from -6 to +6 degrees for this test, while maintaining a

constant alpha. Mach number must be within 0.003 of the desired Mach number to

satisfy the research requirements. The variation in model attitude produced some modest
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(< 0.001/degree)disturbancein thetunnelMachnumber,particularlyat angles-of-attack

abovefive degrees,althoughtheonsetof this disturbancewasdependenton the

testMachnumber.Figure33showstheSOFMwinning nodesfor positiveandnegative

correctionsasdeterminedby thePMMSCduringtherun. Figure34showstheFanRPM

andtunneltemperatureduringtherun.

Raise correction class
20
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0 1 I I I
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! I

100 160 180

Lower correction class

I I

120 140

I I I / I I

20 40 60 80 100 120
Time (min)

I I

140 160 180

Figure 33. Winning nodes for SOFM_5 and SOFM_6 during test
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Figure 34. Fan RPM and Tunnel temperature during test
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In orderto illustratetheoperation of the PMMSC, a shorter interval of the run is

shown in Figure 35. Figure 35 shows the Mach number being controlled to a set point of

0.85 over a 15 minute interval. The angle of attack, alpha, is being steadily increased

during this interval, while beta is maintained at zero. Fan RPM and tunnel temperature

are steady as shown. At t = 98, the increases in alpha begin to cause the Mach number to

drop. At t=99, a short duration (0.1 sec) raise correction brings the Mach number back to

within tolerance. Further increases in alpha result in another decrease in Mach number.

Another small raise correction minimizes the error. At t= 104 a longer duration corrective

pulse is applied after the Mach number response from the previous short duration pulse is

classified as much less effective than the previous corrections. This is seen where the

raise correction SOFM winner changes from 11 to 3. The corresponding raise correction

SOFM winner change is shown in Figure 35. The raise correction SOFM winner

corresponding to the Mach number response to the longer pulse is node 18.

A rather large decrease in angle-of-attack, from 12 degrees to near zero, causes the

Mach number to jump up even further. Successive lower corrective pulses bring the

Mach number back, while changing the SOFM winner of the lower corrective response,

seen in Figure 35.
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Comparison of PMMSC to Existing Controller and Expert Operator

Figure 36 compares the performance of the existing scheduled control, an expert

operator, and the PMMSC under similar conditions over a nominal fifteen minute

interval. Mach number, control commands, and test model angle-of-attack (disturbance)

are shown for the existing control, an expert operator, and PMMSC control.

Derived metrics to quantify the comparisons between the three cases are the time

out of tolerance and the L1 norm of the control input, u. The time out of tolerance is

cumulative sum of time that the measured Mach number deviates beyond the required

tolerance of 0.003 •

k=N

time out of tolerance = ___ty.At(k) ;
k=l

where a=0 if ]M(k)-M,p(k) < 0.003;

and o_= 1 otherwise ;

t 9 (t(O),t(1) ..... t(N)) ;

At (k)=t(k)-t(k - 1).

(55)

The L1 norm of the control commands is •

k=N

Ll[ul=_.,u(k)l.
k=O

(56)

For this particular model, the angle-of-attack begins to mildly disturb the Mach

number at approximately 5 degrees. Table 11 lists the reduction in the standard deviation

of the Mach number, time out of tolerance, control effort, and time required to complete

the sweep through the desired range of angle-of-attack while maintaining Mach number
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steadyfor thiscomparison.For thisparticulartestcondition,thePMMSC performs

slightly betterthantheexpertoperator,but with muchlesscontrol effort andlesstimeto

completethealphasweep.Comparedto theexistingautomaticcontrol,thePMMSC

maintainstheMachnumberwithin thedesiredtolerancemuchbetterwith lesscontrol

effort,completingthealphasweepin lesstime, which is themostimportantfigureof

merit for theutilizationof thefacility.

Existing ExpertOperator PMMSC % Reduction
controller Auto / manual

Mean 0.8497 0.8500 0.8497 --

SD 0.001527 0.001226 20 / 10

Time out of

tolerance

46.5 s

0.001358

34.52 s

L1 norm [u] 10.6 12.33

886 sAlph a sweep 930 s

33.2 s 29 14

6.3 40 / 49

806s 9/ 13

Table 11. Comparison of existing automatic control, expert operator, and PMMSC
control

An additional metric on the control, the control density, _, was calculated by

taking the sum of the absolute value of the control over a 50 sample sliding window:

i =49

(k)=_ [u(k)]=_ u(k-i)[. (57)
i=0

The control density is used to compare the sparseness of the control between the

PMMSC, the existing controller, and an expert operator, shown in Figure 37. This

quantity measures the accuracy of the present control input, so in the PMMSC case it is a

measure of the local linear models to predict the tunnel dynamics. The PMMSC is

clearly the most sparse, but allows for increased density of the control when demanded by

external disturbance, similar to the variation in control density employed by the expert
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operator. This is in contrast to the existing automatic control, with fixed gains for a

particular operating point resulting in a narrow range of control density.
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Figure 37. Comparison of Control Densities

Figure 38 compares the results of controlling the Mach number to several

different set points over a nominal 28 minute interval. Mach number set points of 0.95,

0.9, and 0.6 are common to all three controllers. The PMMSC controls the Mach number

to 0.85 versus 0.8 for the operator and existing controller. This difference is minimal and

still provides a reasonable basis for comparison of the controllers. The angle-of-attack

was varied extensively during all three runs. Again, the PMMSC maintains the Mach

number within tolerance for a higher percentage of the time, with less expenditure of

control effort. Table 12 lists the figures for time out of tolerance and control effort for the

three runs. The PMMSC reduces the time out of tolerance on the order of 15-20 percent

compared to the existing controller or an expert operator. The control effort is reduced by

12 percent compared to the existing controller, and 20 percent compared to an expert

operator.
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Existing ExpertOperator PMMSC % Reduction
controller Auto / manual

Out of 329 s 310 s 266 s 19.1 / 16.5

tolerance

L1 norm [u] 424.2 466.2 374.3 i 1.7 / 19.7

Table 12. Comparison for controlling to several different set points

The differences in the control density for the three cases are illustrated in Figure

39. The variation in the control density is greatest for the expert operator and least for the

existing controller. The PMMSC falls between the two cases in terms of variation of the

control density, while requiring less overall control effort to provide less time out of

tolerance.
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Figure 39. Comparison of Control Densities during set point changes
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Experimental Results of Modeling the Tunnel Dynamics

Although the results of controlling the tunnel using the PMMSC imply some

degree of success at modeling the tunnel dynamics, in this section we will explicitly

compare the predicted Mach number responses to actual responses recorded during the

experimental testing. This will provide some insight into the relation between the

prediction error and the actual error observed while controlling the tunnel with the control

sequence that was selected based on minimizing the predicted error.

The experimental results presented in this section are based on all the predicted

and actual responses for the three hour control test shown earlier in Figure 31. This test

consisted of rather lengthy segments where the Mach number was controlled to within the

0.003 tolerance at M=0.95, 0.90, 0.85, and 0.6. The control inputs during this test are

predominately from input_class_0 (all zeroes), input_class_2 (ramp down), input_class_4

(end of ramp down), input_class_5 (small positive correction), input_class_6 (small

negative correction), and input_class_8 (negative transition). A second control test,

shown in Figure 45, provides results from predicting responses to input_class_l (ramp

up), input_class_3 (end of ramp up), and input_class_7 (positive transition). Table 13

lists the distribution among input classes for the two tests. Then, for each input_class, the

relative frequency of the associated SOFM winners were determined and displayed in the

corresponding histogram plots, Figures 40 through 44.
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Ramping up under NNCPC control
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input_class Figure31. Figure45.

0 20859 64

1 0 668

2 200 0

3 2 4

4 3 0

5 155 27

6 150 10

7 2 828

8 319 0

Table13. Distributionamonginput_classesfor Figures31and45.

As ameasureof theerrorbetweenthepredictedandactualresponsesto the

controlinput sequenceselectedby thepredictivecontroller,anaverageof themulti-step

predictionerrorover thelast30stepsof thepredictionwascalculatedby:

1 n=50

¢ -- 3-0 n__2' M(k +n)-M*(k +n) I (58)

This measure is the average absolute value of the step-by-step prediction error

over the last 30 prediction steps. This is the same interval over which the predictive

controller evaluated the responses to candidate controls, thus providing a direct measure

of the difference between the predicted response and the actual response. The average
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absolutevalueof theerroris a moreintuitive choiceover the Euclidean norm here, given

the small absolute value of the control tolerance.

The SOFM's associated with input_classes_7 and _8 are only used to predict the

Mach number response over the next ten sample periods, so the average multi-step

prediction error is modified to cover only the first ten points of the predicted response:

1 n=20

=-- __, M(k +n)-M'(k +n)l (59)
lo I0 n=ll

Figures 46 through 54 show ensembles of predicted and actual Mach number

responses for all the input_classes. Additionally, the average multi-step prediction error

for each prediction is also shown. The mean value and standard deviation for taken over

all predictions for each input_class, are listed in Table 14.

input_class N Mean SD Control Function

0 10 000 0.000947 0.000401 Steady State

1 668 0.0065 0.0041 Ramp up

2 200 0.0039 0.0030 Ramp down

3 4 0.0046 0.0018 End of ramp up

4 3 0.0031 0.0019 End of ramp down

5 155 0.0018 0.0012 Positive correction

6 150 0.0017 0.0012 Negative correction

7 828 0.0014 0.0010 Positive transition

319 0.0016 0.0010 Negative transition

Table 14. Multi-step prediction errors for all input_classes



103

Predicted Mach number responses for input_class_O

0.005

o-

-0.005,

-0.01 60

400 _ 20

600 0 sample number k
Prediction #

Actual Mach number responses for input_class_O

0.01

0.005

§ o-

-0.005 -

-0.01

500 0 sample number k

Response #

x 10 -s
2.4

Multl-step prediction error for input class_O

2.2

2

1.a

1.6

1.4

1.2

1

0.8

0.6

0.4
0

Figure 46. Predictions, responses and prediction error for input_class_O
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Predicted Mach number responses for input_class_2
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Figure 48. Predictions, responses and prediction error for input_class_2
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Figure 49. Predictions, responses, and prediction error for input_class_3
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Predicted Mach number responses for input_class_4
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Predlctecl Mech number responses for Input_class_5
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Figure 51. Predictions, responses, and prediction error for input_class_5
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Predicted Mach number responses for Input_class_6
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Predicted Mach number responses for Input_class_7
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Figure 53. Predictions, responses, and prediction error for input_class_7



111

Predicted Mach number responses for input_class_8
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Figures55through57showtypicalpredictions,theactualMachnumberresponse,

andthecorrespondingcontrolinput. Theexamplesshowboth rampingandregulating

casesat severalMachnumbers.TheMachnumberis shownin solidandthepredicted

valueasa dottedline. Thegoalof the linearmodelis to predictthesteadystateresponse

of thetunnel,sotheplotscanbeeffectivelydividedinto aninitial transientphase

correspondingto thefirst twentysamplesandthefollowing steadystatephase,

correspondingto the last30samples,which is the interval which thepredictivecontroller

evaluatesthecandidatesequences.Theexamplesshownareillustrativeof the

performancefoundduringoperation,andweobservethatthe local linearmodelsare

predictingwell theresultingresponses.

Although examples of typical predictions are illustrative, consideration of the

multi-step prediction errors and their corresponding statistics provides more insight into

the overall accuracy of the predictions and consequently the accuracy of the control

provided by the PMMSC. The predictions for both the regulatory cases, input_class_5

and input_class_6, have multi-step prediction errors with a mean plus one standard

deviation less than the required control tolerance of 0.003. Figure 43, the histogram for

these SOFM, indicates a good distribution of winners across these maps. Taken together

with the steady state control tolerance achieved by the PMMSC, we can conclude that the

locally linear predictors and consequently, the underlying discretization of the tunnel

dynamics by the corresponding SOFM provides both sufficient resolution and coverage of

state and control spaces.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

Conclusions

Modeling and controlling systems with a wide range of dynamic characteristics is

a rich problem with many possible approaches. In this research, the method of local

linear modeling based on the self-organizing feature map has been extended to a control

framework as an approach to this problem.

The SOFM based modeling method was employed to develop a set of models

which, collectively, described the system dynamic characteristics over the entire range of

operation, but individually, represented the response of the system in some restricted

region of both the state and control spaces of the system. The extension of the method

allowed us to predict the system response to a small, but effective set of inputs, using the

model which best describes the local dynamics. The input corresponding to the

prediction that best satisfied the requirements at the output was then applied as the

control. The overall result was the development of a controller, the PMMSC, which

predicted the system response by switching to the best available model.

Two problems which naturally arise from this approach are: how to guarantee that

the collection of models adequately cover all the dynamic regimes of the system, and how

to select the model which best describes the local dynamical regime. Our SOFM based

local linear modeling approach addresses both the problems with a computationally
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efficient method.TheSOFMguaranteesthattherepertoireof dynamicsusedfor training

arerepresentedby thecollectionof localmodelsandservesto identify thelocaldynamic

regime. In asense,thediverseplantdynamicsarecapturedin acompacttablelook-upof

linearmodels.

Thecombinationof thelocally linearmodelsanda smallsetof candidatecontrol

sequencesprovidedacomputationallyefficientmethodfor multi-steppredictivecontrol.

Thiswascontrastedwith generalizedmodelpredictivecontrol,particularlyin an

environmentwhichrequiresswitchingbetweenmodels.

For thisapplication,thefundamentalcontrolproblemisoneof regulatingthe

tunnelMachnumberto within toleranceof thedesiredsetpoint undernonstationary

loads. Therewereseveralcharacteristicsof thisproblemthatmadeit anattractive

candidatefor applicationof ourmethod.Thefirst wasthattheopen-loopplant was

stable,sothefocuswason improvedregulation. Secondly,therewasawealthof datato

train a locally lineardynamicmodelof thetunnelunderdifferentdynamicconditions.

Third, thecontrol inputis quantizedto threevalues,whichallowedfor ameaningful

clusteringon asmallsetof representativecontrolprototypesthatwerederivedfrom the

experientialknowledgeof thetunnel.

ThePMMSCwasimplementedon inexpensivecomputinghardwareandusedto

controlthewind tunnelto within thestrict researchrequirementsfor threeseparateruns

of threehours.Theperformanceof thePMMSCwascomparedto boththeexisting

controllerandexperthumanoperatorsby severalmetrics. ThePMMSCprovided

improvedperformancewith decreasedcontroleffort overboth theexistingcontrollerand

experthuman-in-the-loopcontrol.
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Future Research

In this research, the method of SOFM based local linear modeling has been

extended to a control framework. However, the resulting predictive, multiple model

switching controller developed for this application does not represent a general control

architecture, which points to directions for further work.

1. The control space for this application was partitioned by the construction of

representative prototypes. This represented the incorporation of a priori

knowledge about the operation of the system. A clustering of the inputs using

the SOFM, would enhance the generality of the method

2. The plant being controlled in this application was stable. The method should

be investigated for stabilization of an unstable plant, at least in simulation

studies. This would open the possibility of identifying stabilizing and

destabilizing manifolds of the control space, under the first suggestion for

further work

3. Incorporation of an on-line adaptive model should be investigated. These

could use the best SOFM based model as a starting point to speed the up the

convergence

4. The SOFM algorithm could be implemented on-line and used to reformulate

the maps based on accumulated knowledge as the system explores operating

regions not covered in the training data.



APPENDIX
STABILITY CONSIDERATIONS

An approachfor consideringthestabilityof the overall system is to analyze the

stability characteristics of a simple system with bang-zero-bang (-F, 0, +F ) input,

controlled using feedback and a combination of simple nonlinear functions. The system,

considered in discrete time formalism, consists of an integrator, d pure delays, and a

nonlinear controller implemented by:

1) a symmetric dead zone with zero output for inputs in the closed interval [-e, +e ]

2) a signum function

f(x)= x if x > e

f(x)= x if x<-e

f(x)= 0 if Ixl < e

with e > 0

f(x)= F if x>0

f(x) =-F if x<0

f(x)= 0 if x=0

with F > 0

The system is shown in block diagram format in Figure 58.

(60)

(61)
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z-d
z y(k)

z+l

Signum Delay Integrator

Figure 58. A simple nonlinear system with feedback

Consider the system with no delays, d = 0. The nonlinear control law yields the

system equations:

y(k +1) = y(k) - F

y(k + l) = y(k) + F

y(k + 1) = y(k)

if y( k ) > e

if y(k) < - e

if y(k) < e

(62)

In order to prove the stability of the system, a simple candidate Lyapunov function of the

system is chosen:

1

V[y(k)] = -_- y2(k)

For stability about the origin, y = 0, we require that [LaSalle, 1986]:

where

1) V[y]> O for all y , y _ O

2) V[y] =0 for y=0

3) AV < 0 along the trajectory of (62) for all y

(63)

(64)

in three distinct cases corresponding to (62):

AV =- V[y(k + 1)] - V[ y(k)] (65)

Conditions 1) and 2) are true by inspection for (64). Condition 3) needs to be considered
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Case1: y(k)>e

1 1 2

- _[y(k)]

1 2 1F2 1 2
AV=_y (k)

= !r2-y( )r
2

1 1
Thus AV_<0if y(k) >-_ F, which implies that e _>_-F

2 Z

Case 2: y(k) < - e

1 1 2

AV=_[y(k) + F] 2 - "_[y(k)]

1 1F2 1 2
AV='_y2(k) +y(k)r+_ -_-y (k)

1 F2 +y(k)F
2

Thus AV<0if y(k) < - F , which implies that e >_-_F

I

Case 3: l y(k)< e

1 ]2 1 2AV='_[y(k)_ - _[y(k)]

AV =0

ThusAV<0if e >0

Thus this system, with d=O, will be stable and within the bound e of the origin if the

1

discretized control input at each instant is either + F,- F, or 0, and e is greater than _-F.
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Now weconsiderthecasesof asingledelayd = I. The nonlinear control law

yields the system equations:

y(k + 2) = y(k + l) + F

y(k+2) = y(k+ 1) - F

y(k + 2) = y(k + l)

if y(k) > e

if y(k) < - e

if y(k) < e

(66)

For this case the Lyapunov candidate function includes the additional state associated

with the delay:

1 1

V[y(k)]=-_ y2(k) + -_ y2(k +l) (67)

and

AV - V[y(k + 1)1 - V[y(k)]

1 2 1
='_'y (k+2)- -_yE(k)

(68)

Again we evaluate the three distinct cases corresponding to (65), with the additional

consideration for the added delay in the system:

Case 1: y(k)>e

If y(k-1) > e

y(k + 2) = y(k) - 2F

If [y(k-1) <e

y(k + 2) = y(k) -r

If y(k - 1) < - e

y(k + 2) = y(k)

For these three cases, the one that sets the minimum lower bound on e

1 1 2

AV=_[y(k)-2r] 2 - _'[y(k)]

1 2 12
AV=-_y (k)-2y(k)r+2F2--_y (k)

= 2F 2 -2y(k)F

=2F(F-y(k))

Thus AV<0if y(k) > F, which implies that e > F
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Case 2: y(k)< - e

/f y(k- 1) < e
y(k + 2) = y(k) + 2F

If ly(k-1) <e

y(k + 2) = y(k) +F

If y(k- 1) > e

y(k + 2) = y(k)

Again, the lower bound on e is deterrmined by:

AV=I[y(k)+2F]21 2- _[y(k)]

1 12
AV='_y2(k)+2y(k)F+2F2-_y (k)

= 2F 2 +2y(k)F

=2F(F+ y(k))

Thus z_V<0if y(k) < -F, which implies that e > F
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I

Case 3: ly(k) <_ e

If y(k-1)< -e

y(k + 2) = y(k) + F

zf ly(k-1)l-<e

y(k + 2) = y(k)

If y(k- 1) > e

y(k+2) = y(k)+F

1 1 2

AV=_[y(k)+r] 2 - _[y(k)]

AV=2Y2(k)+y(k)F+lF2-2Y2(k)

= 1F2+y(k)F
2

1

=r(-_r+ y(k))

Thus AV<0if y(k) <
1 1

-_-F, which implies that e > -_-F.

Thus this system, with d=l, will be stable and within the bound e of the origin if the

discretized control input at each instant is either + F,- F,or 0, and e is greater than 1-'.

By induction, for the case of d delays we get the result that:

1 1 2

AV=-_[y(k)+(d + 1)r] - -_[y(k)]

where - is for y(k) > e and + is for y(k) < - e , then

1 2 1 1 2

AV=_y (k)+(d+l)y(k)F+_(d+l)ZFZ--_y (k)

1

= -_-(d + 1)F 2 + (d + 1)y(k)F

=(d+l)r {@r+y(k)}

d+l
Thus AV_<0if ly(k) _>--z-r, which implies that e _>

d+l

2
--F
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Thegeneralresultis thatif :

>(d+ 1")e ---_) F (69)

then the system will be stable and y(k)[ _<e as k _ _, i.e. the system will converge to a

region around the origin bounded by e.

For a system with long delays, this can impose a large loss of precision in the

control of the output in order to guarantee stability. A strategy to circumvent this loss of

precision while still providing stability is to apply sequences of control commands

composed of m sample intervals of + F, followed by d sample intervals of zero input, for

a total sequence length of (m + d). Thus control sequences are determined every (m+d)

samples, and applied open-loop over the (m+d)T interval, where T is the sample interval

duration. Then if at time k, the controller selects a control sequence •

[+(r,r .... F), 0,0 .... O]
m samples d samples

then the output y(k + m+d) is:

Similar to the

y(k +m+d) = y(k) + mF

(70)

(71)

earlier result (69), the system controlled in this fashion will be stable to

within e of the origin if"

e > F (72)

where m = 1, 2, 3, ....



LIST OFREFERENCES

Alander,J.T.,Frisk,M., Holmstr6m,L., H/im_il_iinen,A., and Tuominen,J., (1991).
"ProcessErrorDetectionusingSelf-OrganizingFeatureMaps,"Artificial Neural
Networks, Vol. II, pp. 1229-1232.

Bloch, G., Sirou, F., Eustache, V., Fatrez, P., (1997). "Neural Intelligent Control for a

Steel Plant," IEEE Transactions on Neural networks, Vol. 8, Number 4, pp. 910-

918.

Buggele, A. E., and Decker, A. J., (1994). Control of Wind Tunnel Operations Using
Neural Net Interpretation of Flow Visualization Records. NASA Technical

Memorandum 10668.

Cai, S., Toral, H., and Qiu, J., (1993). "Flow Regime Identification by a Self-Organizing

Neural Network," Proc. ICANN'93, Int. Conf. on Artificial Neural Networks, p.

868.

Cai, Y., (1994). "The Application of the Artificial Neural Network in the Grading of Beer

Quality," Proc. WCNN'94, World Congress on Neural Networks, Vol. I, pp. 516-

520, Lawrence Erlbaum.

Card, J.P., Snidermann, D.L., and Klimasauskas, C., (1997). "Dynamic Neural Control

for a Plasma Etch Process," IEEE Transactions on Neural networks, Vol. 8,

Number 4, pp. 883-901.

Cho, S., Cho, Y., Yoon, S., (1997).

Multiple Neural Networks,"

Number 4, pp. 874-882.

"Reliable Roll Force Prediction in Cold Mill Using

IEEE Transactions on Neural networks, Vol. 8,

Clarke, D.W., Mohtadi, C., and Tuffs, P.S. (1987). "Generalized Predictive Control -

Part I. The Basic Algorithm," Automatica, Vol 23, No. 2, pp. 137-148.

Cooper, D. J., Megan, L., Hinde, R.F., (1992). "Disturbance Pattern Classification and

Neuro-Adaptive Control," IEEE Control Systems Magazine, Vol. 12, Number 2,

pp. 42-48.

Garside, J.J., Brown, R.H., Ruchti, T.L., Feng, X., (1992). "Nonlinear Estimation of

Torque in Switched Reluctance Motor Using Grid Locking and Preferential

Training Techniques on Self-Organizing Neural Networks," Proc. IJCNN'92, Int.
Joint Conf. on Neural Networks, Vol. II, pp. 811-816.

126



127

Haykin, Simon,(1994).Neural Networks: A Comprehensive Foundation. New York:

Macmillan College.

Hopfield, J.J., (1982). "Neural Networks and Physical Systems with Emergent Collective

Computational Abilitites," Proceedings of the National Academy of Sciences of
the U.S.A., Volume 81, pp.3088-3092.

Jackson, E.A., (1989). Perspectives of nonlinear dynamics. Cambridge: Cambridge

University Press.

John, James E.A., (1984). Gas Dynamics. Newton, MA : Allyn and Bacon, Inc.

Kasslin, M., Kangas, J., Simula, O., (1992). "Process State Monitoring Using

Self-Organizing Maps," Artificial Neural Networks, 2, Vol. II, pp. 1531-1534.

Kohonen, T., (1990). "The Self-Organizing Map," Proceedings of the IEEE, Vol. 78,

No. 9.

Kohonen, T., (1995). Self-Organizing Maps, Berlin, Heidelberg, Germany: Springer-

Verlag.

Lampinen, J., and Taipale, O., (1994). "Optimization and Simulation of Quality

Properties in Paper Machine with Neural Networks," Proc. ICNN'94, Int. Conf.
on Neural Networks, pp. 3812-3815.

LaSalle, J.P., (1986). The Stability and Control of Discrete Processes. New York:

Springer-Verlag.

Matthews, C.P., and Warwick, K., (1995). "Practical Application of Self Organising

Feature Maps to Process Modelling," Proceedings of Engineering Applications of
Neural Networks.

May, Gary S., (1994). "Manufacturing IC's the Neural Way," IEEE Spectrum, Vol. 31,
No. 9.

Mercer, C.E., Berrier, B.L., Capone, F.J., Grayston, A. M., Sherman, C.D., (1984).

Computations for the 16-Foot Transonic Tunnel - NASA Langley Research
Center. NASA Technical Memorandum 86319.

Morse, A.S., (1980). "Global Stability of Parameter Adaptive Systems," IEEE
Transactions on Automatic Control, Vol.25, pp. 433-439.

Motter, M., and Principe, J. C., (1994). "A Gamma Memory Neural Network for System

Identification," Proceedings of lEEE International Conference on Neural
Networks, Vol. 5, pp. 3232-3237.



128

., (1995). "ClassificationandPredictionof WindTunnelMachNumber
ResponsesusingbothCompetitiveandGammaNeuralNetworks," Proceedings
of 1995 World Congress on Neural Networks, Vol. 2, pp. 25-29.

Narendra, K.S., and Annaswamy, A., (1989). Stable Adaptive Systems. Englewood Cliffs,

New Jersey: Prentice Hall.

Narendra, K.S. and Balakrishnan, J., (1994). "Intelligent Control using Switching and

Tuning," Proceedings of the Eighth Yale Workshop on Adaptive and Learning
Systems, June 13-15.

Narendra, K.S., Balakrishnan, J., (1997). "Adaptive Control Using Multiple Models,"

IEEE Transactions on Automatic Control, Vol.42, No. 2, pages 171-187.

Narendra, K.S., Balakrishnan, J., and Ciliz, M.K., (1995). "Adaptation and Learning

Usng Multiple Models, Switching, and Tuning," IEEE Control Systems Magazine,
Vol. 15, No. 3.

Narendra, K.S., Li, S., and Cabrera, J.B.D., (1994). "Intelligent Control using Neural

Networks,' Proceedings of the Eighth Yale Workshop on Adaptive and Learning
Systems, June 13-15.

Narendra, K.S., Lin, Y.H., and Valavani, L.S., (1980). "Stable Adaptive Controller

Design- Part II: Proof of Stability," IEEE Transactions on Automatic Control,

Vol. 25, pp. 440-448.

Narendra, K.S., Mukhopadhyay, S., (1997). "Adaptive Control Using Neural Networks

and Approximate Models," IEEE Transactions on Neural Networks, Vol.8, No.3,

pages 475-485.

Peddrew, Kathryn H., (1981). A User's Guide to the Langley 16-Foot Transonic Tunnel.
NASA Technical Memorandum 83186.

Principe, J., Hsu, H., and Kuo, J., (1994). "Analysis of Short Term Neural Memory

Structures for Nonlinear Prediction," NIPS, pp. 1011 - 1018.

Principe, J., and Kuo, J-M., (1994). "Dynamic Modeling of Chaotic Time Series with

Neural Networks," NIPS, pp. 311-318.

Principe, J.C., Kuo, J., Celebi, S., (1994). "An Analysis of the Gamma Memory in

Dynamic Neural Networks," IEEE Transactions on Neural Networks, Vol. 5, No.

2.



129

Principe,J.C., andMotter,M., (1994). "SystemIdentificationwith DynamicNeural
Networks," Proceedings of the 1994 World Congress on Neural Networks.

Principe, J., and Wang, L., (1995). "Nonlinear Time Series Modeling with

Self-Organizing Feature Maps." IEEE Workshop on Neural Networks for Signal

Processing, pp. 11-20.

Robbins, H., and Monroe, S., (1951). "A Stochastic Approximation Method," Annals of

Mathematical Statistics, Vol. 22, pp.400-407.

Ritter, H., Martinetz, M., Schulten, K., (1992). Neural Computation and Self-Organizing

Maps. Reading, MA: Addison-Wesley.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., (1986). "Learning Internal

Representations by Error Back-Propagation," Parallel Distributed Processing,
D.E. Rumelhart and J.L. McClelland, editors. Cambridge, MA: The MIT Press.

Soeterboek, Ronald A. M., Pels, A.F., Verbruggen, H.B., A. van Langen, G.C., (1991).

"A Predictive Controller for the Mach Number in a Transonic Wind Tunnel,"

IEEE Control Systems Magazine, Vol. 11, Number 11, pp. 63-72.

Si, J., and Lin, S., (1997). "Weight Convergence and Weight Density of the

Multi-Dimensional SOFM Algorithm," Proceedings of the 1997 American
Control Conference, CD edition.

Takens, F., (1980). "Detecting Strange Attractors in Turbulence," Dynamical Systems and
Turbulence, ed. by D.A. Rand and L.S. Young, Springer Lecture Notes in

Mathematics, pp.365-381, Springer-Verlag, New York.

Warwick, K., (1996). "System Identification using neural networks," Proceedings of the
Conference on Identification in Engineering Systems, M.I.Friswell and J.E.

Mottershead, editors. Swansea, UK:University Wales Swansea.

Werbos, P.J., (1990). "Back Propagation Through Time: What It Does and How To Do

It," Proceedings of the IEEE, 78(10), 1550-1560.

Willshaw, D.J., and C. von der Malsburg, (1976). "How Patterned Neural Connections

Can Be Set Up by Self-Organization," Proceedings of the Royal Society of
London, Series B, 194, 431-445.

Wu, J.-M., Lee, J.-Y., Tu, Y.-C., and Liou, C.-Y., (1991). "Diagnoses for Machine

Vibrations Based on Self-Organization Neural Network," Proc. IECON '91, Int.

Conf. on Industrial Electronics Control and Instrumentation, Vol. II, pp. 1506-
1510.



BIOGRAPIDCAL SKETCH 

Mark A. Motter was born in , on  He 

served in the United States Navy from 1973 until 1979, and was honorably discharged at 

the rank of Electronics Technician First Class. He then began his formal engineering 

education at Old Dominion University in Norfolk, Virginia, receiving his BSEE, magna 

cum laude, and MSEE in 1983 and 1985, respectively. Since 1985 he has been employed 

at NASA Langley Research Center, primarily involved in the modeling and control of 

wind tunnels and associated experimental equipment. He is a member of the IEEE and a 

registered Professional Engineer. 

130 



I certify thatI havereadthis studyandthatin my opinion it conformsto
acceptablestandardsof scholarlypresentationandis fully adequate,in scopeandquality,
asadissertationfor thedegreeof Doctorof Philosophy. 7)

// B

'J /

• - /

Jose C. Priuclpe, I_Nrrnan

Professor of Electrical and Computer

Engineering

I certify that I have read this study and that in my opinion it conforms to

acceptable standards of scholarly presentation and is fully adequate, in scope and quality,

as a dissertation for the degree of Doctor of Philosophy./_:x_'-'_

Gijs Bosfiaan

Professor of Electrical and Computer

Engineering

I certify that I have read this study and that in my opinion it conforms to

acceptable standards of scholarly presentation and is fully adequate, in scope and quality,

as a dissertation for the degree of Doctor of Philosophy.

Thomas E. Bullock

Professor of Electrical and Computer

Engineering

I certify that I have read this study and that in my opinion it conforms to

acceptable standards of scholarly presentation and is fully adequate, in scope and quality,

as a dissertation for the degree of Doctor of Philosophy.

Assistant Professor of Electrical and

Computer Engineerihg



I certify thatI havereadthis studyandthatin my opinion it conformsto
acceptablestandardsof scholarlypresentationandis fully adequate,in scopeandquality,
asadissertationfor thedegreeof Doctorof Philosophy.

LOCVu-Quoc
AssociateProfessorof Aerospace
Engineering,Mechanics,and
EngineeringScience

Thisdissertationwassubmittedto theGraduateFaculty of theCollegeof
Engineeringandto theGraduateSchoolandwasacceptedaspartial fulfillment of the
requirementsfor thedegreeof Doctorof Philosophy.

May, 1998 W_infre_

Dean,Collegeof Engineering

KarenA. Holbrook
Dean,GraduateSchool




