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A predictive, multiple model control strategy is developed based on an ensemble
of local linear models of the nonlinear system dynamics for a transonic wind tunnel. The
local linear models are estimated directly from the weights of a self organizing feature
map (SOFM). Local linear modeling of nonlinear autonomous systems with the SOFM is
extended to a control framework where the modeled system is nonautonomous, driven by
an exogenous input. This extension to a control framework is based on the consideration
of a finite number of subregions in the control space.

Multiple self organizing feature maps collectively model the global response of
the wind tunnel to a finite set of representative prototype controls. These prototype

controls partition the control space and incorporate experiential knowledge gained from



decades of operation. Each SOFM models the combination of the tunnel with one of the
representative controls, over the entire range of operation. The SOFM based linear
models are used to predict the tunnel response to a larger family of control sequences
which are clustered on the representative prototypes. The control sequence which
corresponds to the prediction that best satisfies the requirements on the system output is
applied as the external driving signal.

Each SOFM provides a codebook representation of the tunnel dynamics
corresponding to a prototype control. Different dynamic regimes are organized into
topological neighborhoods where the adjacent entries in the codebook represent the
minimization of a similarity metric which is the essence of the self organizing feature of
the map. Thus, the SOFM is additionally employed to identify the local dynamical
regime, and consequently implements a switching scheme than selects the best available
model] for the applied control.

Experimental results of controlling the wind tunnel, with the proposed method,
during operational runs where strict research requirements on the control of the Mach
number were met, are presented. Comparison to similar runs under the same conditions
with the tunnel controlled by either the existing controller or an expert operator indicate

the superiority of the method.
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CHAPTER 1
INTRODUCTION

Motivation

The initial motivation for this research was to extend neural network based
methods that had proven successful in modeling autonomous nonlinear dynamical
systems [Principe and Kuo, 1994; Principe, Hsu, and Kuo, 1994; Principe, Kuo, and
Celebi, 1994] to the modeling of nonautonomous dynamical systems. The temporal state
evolution of an autonomous system is functionally dependent only on the system state,
but nonautonomous systems allow for an explicit dependence on an independent variable,
usually taken to be time [Jackson, 1989] or some function of time, in addition to the
system state. For this study, this independent variable is taken to be an external, or
exogenous driving signal, referred to as the control input. For an autonomous system, it
is reasonable to assume that the future behavior, or output, of the system can be predicted
over some finite interval from a finite number of observations of past outputs [Takens,
1980]. In contrast, predictions of the behavior of a nonautonomous system require
consideration of not only the past outputs in response to past inputs, but the future input
to the system as well.

It was also desired to develop a global representation of the underlying
nonautonomous dynamic system, that is, a model, or a collection of models that fit all of

the state space. This is in contrast to a local representation which is valid only in a



restricted region of the state space. The desired global representation may be achieved by
a single model if the underlying system is simple, but most complex, nonlinear dynamical
systems can only be represented in a localized region of the state space by a single model.
This naturally leads to the use of multiple local models to represent the global
characteristics of a system with some method employed to smoothly patch together the
local models [Principe and Wang, 1995] in a system identification context, or to switch
between models [Narendra, Balakrishnan, and Ciliz, 1995] in a control context.

Another prime motivation in the research was to develop models that would be
amenable for control of the underlying system, as opposed to models developed solely for
system identification. It was desired to have a system model that would provide a
computationally cost-effective means of determining the input signal to be applied to the
system in order to achieve a desired state. In this context, an approximate model that is
linear in the control input is more desirous than an exact model which has a nonlinear
dependence on the control [Narendra and Mukhopadhyay, 1997].

Finally, the combined modeling and control scheme was to be implemented in
software and experimental tests conducted using the actual dynamical system under
study.

Evolution of the Research

The dynamical system considered for this study is the 16-Foot Transonic Tunnel
at the NASA Langley Research Center in Hampton, Virginia. The NASA Langley
16-Foot Transonic Tunnel, simply referred to as the funnel in the sequel, is driven by a

simple control input which provides the function of setting the desired output, which is



the Mach number, while compensating for any external disturbances. The task of
modeling and controlling the Mach number with an artificial neural network system was
undertaken with the vision to capture the underlying dynamics of an nonautonomous
system from observations of time-dependent, input-output data. After suitably extracting
the underlying dynamical model from the tunnel input-output data, predictions of the
response to future control inputs are based on this model. A control input sequence
which minimizes the error between the desired response and the predicted response, over
a reasonable time horizon, is then selected from a set of candidate input sequences. This
input sequence is finally applied as the control input to the wind tunnel.

The first major task was to find a suitable neural architecture for modeling the
wind tunnel dynamics based solely on input-output data. Our initial studies investigated
the use of several dynamic neural networks to identify the dynamics of the wind tunnel
response to control inputs, at one particular operating point [Principe and Motter, 1994].
The most promising architecture from this study was investigated further, using a single
global dynamic neural network for system identification over a wide range of operating
points [Motter and Principe, 1994]. This model was reasonably successful in predicting
the steady-state wind tunnel response at various operating points when driven by similar
control inputs. A refinement of this model came when the wind tunnel responses were
first clustered using a competitive neural network [Motter and Principe, 1995]. A
competitive neural network was used to cluster the tunnel responses at several operating
points to similar control inputs, thereby extracting pertinent features of the response. The
clustering of the wind tunnel dynamic responses provided a basis for developing a set of

predictors that collectively captured the dynamics of the wind tunnel response for a single



class of similar control inputs. At this point, it became clear that a significant
improvement in the prediction accuracy could be realized from an ensemble of local
models, each derived from a clustering of the tunnel dynamic responses.

The control input space was partitioned manually, based on experience and the
bang-zero-bang (+1, 0, and -1 ) permissible values of the control signal. If the control
input sequence is considered to be a p-component vector with each element having a
value of +1, -1, or zero, then there are 3” possible control sequences to be considered.
The idea was to partition the control input space by manually constructing representative
prototype vectors for the control sequence. The goal of this partitioning was to provide a
set of control inputs capable of driving the tunnel from one operating point to another,
regulating about a given operating point, rejecting disturbances, while eliminating control
sequences known to be experimentally of no practical interest. Limiting the number of
candidate controls to be evaluated by the predictive controller was a major consideration
in partitioning the control input space. Initially this partitioning was done with five
control input prototypes, but later, in the implementation of the experiment, the
partitioning was extended to nine control input prototype vectors, to provide the desired
control accuracy.

For each these control input classes, the tunnel Mach number responses were
clustered using Kohonen’s self-organizing feature map (SOFM) [Kohonen; 1990, 1995].
The SOFM is a competitive neural architecture that imposes a topographic ordering of the
output neural field corresponding to features of the input patterns, which are in this case,
the Mach number responses. For prediction purposes, the SOFM’s advantage is that the

topographic ordering imposes a similarity measure over the input neural field. This



similarity can be exploited in the construction of local linear models from the input neural
field corresponding to the winning output. The construction of local linear models
facilitated the evaluation of the wind tunnel response to a larger set of candidate controls

than could have been realized with multiple dynamic models.

Background

The 16-Foot Transonic Tunnel at the NASA Langley Research Center, Hampton,
Virginia, is a closed circuit, single-return, continuous-flow, atmospheric tunnel with a
Mach number capability from 0.20 to 1.30. When the tunnel began operation in
November 1941, it had a circular test section that was 16 feet in diameter and maximum
Mach number of 0.71 [Peddrew, 1981]. Numerous upgrades to both the test section and
drive system have expanded the test envelope of this facility. Currently, Mach numbers
up to 1.05 are achieved using the tunnel main drive fans only. Mach numbers from 1.05
to 1.3 require the combination of test section plenum suction with the tunnel fans. The
tunnel fans, 34 feet in diameter, are driven from 60 to 372 rpm by a 50 MW electric drive
system. An air removal system using a 30 MW compressor and 10-Foot diameter
butterfly valve provides test section plenum suction. At Mach numbers above 1.275, the
10-Foot valve is fully open and increases in Mach number are obtained from increased
power to the tunnel main drive fans. Figure 1 is an aerial view of the tunnel. Figure 2 is
a view of the tunnel test section with a model inserted. Figure 3 shows the arrangement
of the major components of the tunnel. Figure 4 shows a view from the inside of the

tunnel near the second set of turning vanes.



Figure 1. Aerial View of the 16-Foot Transonic Tunnel

Figure 2. Test Section with model in place
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Figure 4. Inside View of the 16-Foot Tunnel downstream of the second set of turning
vanes



The test section Mach number, generally referred to as the Mach number, is
computed from a calibrated ratio of two measured quantities, the airstream stagnation

and the plenum static pressure, P, These two measured quantities

static *

pressure, P,

stagnation *
are used to calculate the plenum Mach number. A tabulated wind-tunnel calibration
provides the correlation between the test section airstream Mach number and the plenum
Mach number. The relationship between the two measured pressures and the plenum

Mach number, M, is [John, 1984; Mercer et al., 1984]:

Y

Pslagnation Y-—1 )7—1 P tapnati

— =1+ —M? s M= |5|| == 1, L =14 (1
P ( 2 P YHH' ( )

static static

A large volume of test data relating the tunnel fan drive system control input (+1,
0, -1), and the Mach number, is available for nominal operating conditions over most of

the operating range. Data from a typical subsonic run is shown in Figure 5.

Mach number during a typical subsonic tes! Control Input during a typical subsonic test

=}
o b

0 5 10 15 20 25 30 35 o 10 15 20 25 30 35
Time (min) Time {min)

Figure 5. Mach Number and Tunnel Drive Control Inputs during a typical subsonic run
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Control Challenges

The problem of controlling the Mach number at the 16-Foot Transonic Tunnel

presents the following challenges to any control scheme, including a human operator-in-

the-loop:

L.

Both the linear and nonlinear characteristics of the tunnel dynamics vary
significantly over the operational range of the tunnel. The rate-limited slewing
of the tunnel Mach number varies by 50% over the subsonic range, as shown
in Table 1. Linearized models identified at individual subsonic operating
points contain a set of complex poles with damping ratios ranging from

0.4 - 0.7, and natural frequencies between 1/3 to 1/8 Hz. On the positive side,
the open-loop plant is stable, so the control problem is concerned mainly with
regulation about the desired set point

The control input to the tunnel fan drive system is bang-zero-bang

(+1 raise, 0 to maintain speed, -1 lower)

The effectiveness of the control input varies by a factor of five over the
nominal dynamic range

The effectiveness of the control input varies due to degradation of the drive
system components, replacement of components, and routine maintenance
There is transport lag (pure delay) that varies from 0.3 to 3 seconds over the
operational range

The Mach number varies with the temperature of the air for a fixed fan RPM
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7. The dynamics can change dramatically and abruptly at any given operating
point from a particular combination of model attitude and Mach number. This
abnormal condition is referred to as a “blocked” tunnel condition

8. The effectiveness of the control input can abruptly change by an order of
magnitude for blocked conditions

9. The test section Mach number computed from pressure measurements is noisy
and nonstationary

10. The Mach number is to be controlled to within +/- 0.003 of set point

11. Research data is taken with the tunnel in an equilibrium condition, i.e. all
Mach number transients have decayed to a minimum, with zero control input
to the drive system

12. Power consumption is significant: 20 MW @ Mach 0.7, 80 MW @ Mach 1.3,
so the potential for reduction in operating costs is high.

Figure 6 shows a typical operating scenario, with the tunnel under control of an

expert human operator. The tunnel is being ramped up from a cold startup condition to a
subsonic Mach number of 0.95. A steady raise command from the operator drives the
Fan RPM up for approximately five minutes until the desired Mach number is attained.
Table 1 shows the variation of the rate-limited increase in Mach number. Once the Mach
number is within the 0.003 tolerance, the attitude of the aircraft model under test is
stepped through the desired range. For this particular test, the angle of attack was varied
directly with the pitch actuator. The tunnel operator is required to make frequent

corrective inputs to regulate the Mach number to within the 0.003 tolerance, primarily
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due to the rising temperature of the air in the tunnel. The tunnel Mach number is required
to be within 0.003 of the set point at each of the angle of attack test values.

This operating scenario highlights the effect of unsteady temperature of the air on
the stability of the tunnel Mach number. The tunnel is initially at 85 degrees Fahrenheit,
and the temperature at the end of this test sequence is just over 150 degrees and still
rising. The rate of temperature rise while ramping to M = 0.95 exceeds 10 degrees per
minute. The rate of temperature rise decreases rapidly after the initial ramp, but still

exceeds one degree per minute at the end of this interval.

t (seconds) M (Mach) AM (AM / At) *107
0 0.1119 - -
30 0.2226 0.1107 3.69
60 0.3333 0.1107 3.69
90 0.4251 0.0918 3.06
120 0.5134 0.0883 2.94
150 0.5971 0.0837 2.79
180 0.6789 0.0818 2.73
210 0.7564 0.0775 2.58
240 0.8285 0.0721 2.40
270 0.9076 0.0791 2.63
282 0.9421 0.0345 2.87

Table 1. Variation of Mach number rate-limited increase while ramping up
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Ramping to and regulating @ Mach = 0.95 Angla of Attack
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Figure 6. Tunnel conditions during a typical run with steady ramping to the desired test
Mach number, M=0.95. The Mach number is to be held to within 0.003 of the desired
value while varying the angle of attack.
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The relationship of Mach number to temperature is embedded in the definition of

Mach number [John, 1984]:

M=

Q<

V
VIRT @)

where V is velocity of the air, a is the speed of sound, Y and R are constants for air. For a

constant air velocity, the variation of Mach number with temperature is:

oM 1 (M
E) (‘T—) ®

with T in degrees Kelvin or Rankine.
At the conditions for this test

o
or

M=095— — ~ °
T=145F 2\ T F

1 (Mj _ —0.000786

which corresponds to a 0.003 decrease in Mach number for a 3.8 degree F increase in
temperature.

Figure 7 illustrates in greater detail the last 3.5 minutes of the test. The test point
taken at an angle of attack of one degree takes more than two minutes to acquire. Four
corrective inputs applied over a period of more than a minute are required to regulate the
Mach number to just barely within the tolerance required for this test point. The next
increase in the angle of attack drives the Mach number out of tolerance, which is
compensated for by the operator with a longer duration corrective input. During this
interval, the effect of the moving the model is relatively small compared to the effect of

the rising temperature, but the two can act in combination as illustrated in this example.
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Figure 7. Out of tolerance Mach number extends the test duration during the last 3.5
minutes of the test @ M=0.95.
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Figure 8, from a different test, illustrates the effect of large changes in angle of
attack disturbing the Mach number under relatively steady temperature conditions. The
large change in angle of attack from 5 to 15 degrees in the middle of the test produces a
Mach number disturbance of approximately 0.02, or seven times the required tolerance.
Here the variation in temperature accounts for only six percent of the total disturbance.
The expert operator’s response is quite effective in compensating for this disturbance,
whereas a non-adaptive automatic controller tuned to the nominal, unblocked dynamics
would be unacceptably slow in compensating for this type of disturbance. The
effectiveness of the control input decreases abruptly as the model is moved from an angle
of attack of five degrees to an angle of attack of fifteen, twenty and twenty-five degrees,
respectively. Table 2 lists the changes of control input effectiveness from the nominal
condition at five degrees as the model angle of attack is increased. For each large step
change in the angle of attack (AOA), the corresponding disturbance is AM. The control
effort applied to compensate for the disturbance X u, which is the sample-by-sample sum
of the control inputs required to return the Mach number to within tolerance. The
effectiveness of the control input is evaluated for each of these cases as AM / Zu, simply
the ratio of the change in Mach number over the cumulative control effort required to
regulate the Mach number. This value is seen to vary by more than an order of magnitude
over the test conditions listed in the table. This is a prime example of the kind of
variation that motivates the need for multiple models to represent rapidly varying

conditions of the plant to be controlled.
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AOA AM u AM /X u
(10%)
0-5 0.005 1 50
5-15 0.020 27 7.41
15-20 0.017 39 4.36
20-25 0.010 29 3.45

Table 2. Changes in control input effectiveness for blocked conditions

Experimental Framework

The experimental framework that evolved was essentially a predictive control
scheme that used multiple models of the plant with switching. The controller switches
between multiple, SOFM-based models which, collectively, describe the global
input-output behavior of the tunnel. The tunnel response to a set of candidate controls is
predicted p steps ahead, using the currently selected model. The overall system, which
will be referred to in the sequel as the PMMSC, for Predictive Multiple Model Switching
Controller, is shown in Figure 9. It is composed of the following major functions:

1. The recent control input, u(k — 1), u(k —2),...,u(k —m), is clustered on a set of
prototype control inputs which will choose one of the Kohonen self-
organizing feature maps (SOFM)

2. The selected SOFM identifies the local dynamics of the tunnel based on the

past n+1 Mach number measurements, M (k), M(k -1),..., M(k —n), and

chooses a winning processing element (PE)
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3. A linear predictor associated with each PE predicts the Mach number response
p steps into the future for each of the candidate controls

4. The predicted effectiveness of the candidate control inputs is evaluated over

the last (p—1) steps of the p steps-ahead predictions

5. The control input that provides the best response with respect to the Mach

number set point is chosen as the next control, u(k).

The local model associated with the winning PE captures the dynamical regime of
the wind tunnel. The controller still must decide what is the most appropriate control
input to meet the set point specification. The controller sends candidate input sequences
for p-step ahead prediction to the predictor of the winning node. The controller evaluates
the relative effectiveness of the candidate control inputs in reducing the error between the

predicted Mach number sequence, M, and desired Mach number, Mg, . This is
accomplished by a suitable metric, the Euclidean norm over the error, ”M,, -Mg, ||

where M, = M(k+1+1),M(k+1+2),..,M(k+p) and Mg, isa (p—1) length

constant vector of M, . Finally, the control input that provides the smallest error is sent

to the wind tunnel fan control.

Overview of the Dissertation

The dissertation is composed of six chapters. Chapter 2 will survey the literature.
Chapter 3 will focus on the modeling of the tunnel dynamics. Chapter 4 explains the
development of the predictive controller from the local linear models. Chapter 5

describes the experimental setup and results from controlling and modeling the tunnel
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responses during operational research runs. Chapter 6 will summarize the results and

indicate directions for future research.

control, u(k Mach number, M (k)

Prodictor8 0 ; {
Mk+1). . MG+py

Mk+1).... MK+ p)

u(k +1),...,u(k + p)

Figure 9. Experimental Framework with PMMSC



CHAPTER 2
REVIEW OF LITERATURE

Introduction

Two major ideas from the existing literature embodied in our system are the Self
Organizing Feature Map (SOFM), credited to Kohonen [Kohonen, 1995], and control
using multiple models and switching, credited to Narendra [Narendra, Li, and Cabrera,
1994]. In Narendra’s multiple model control scheme, an external switching scheme is
used to select the model to be used at any given instant of time. In the experiment
described in this dissertation, the SOFM is used as the modeling infrastructure, with
selection of the model done by the activity of the output neural field or winner. A
description of both of these topics, as well as a brief review of adaptive control, SOFM
applications to control, and more general review of applications of neural networks to

control follow.

Self-Organizing Feature Map

The self-organizing feature map (SOFM) was adopted as the neural architecture
for the experiment. The SOFM was chosen based on its ability to transform an incoming
signal of arbitrary dimension into a lower dimensional, discrete, topologically ordered
map, one dimensional in this case. The spatial location of the neurons, arranged in a one

dimensional lattice, or linear array, corresponds to intrinsic features of the input signal.

21
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The SOFM belongs to the class of artificial neural networks that use competitive
or unsupervised learning. In contrast to supervised learning, the SOFM input-output
behavior is not learned from a set of training examples which specify the desired output

y € R™, for a given input x € R", where the parameters of the network are adjusted by

the backpropogation algorithm [Rumelhart, Hinton, and Williams, 1986; Werbos, 1990].
In feedback networks [Hopfield, 1982], the other major category of artificial neural
networks, the input defines an initial state of activity of a feedback system which settles
to a final asymptotic state that represents the response to the given input. In the SOFM,
however, neurons compete to respond to the input signal, with the result that only one
output neuron is fired or activated. The output neuron activated in response to a
particular input is called the winner, while all the other neurons are inhibited,
representing a winner-take-all (WTA) structure. During the training phase, the SOFM
becomes topologically ordered by adapting the weights not only of the winner, but those
of the neighboring neurons as well. This is inspired by lateral inhibitory feedback in
biological neurons [Willshaw and von der Malsburg, 1976], but implemented in the
SOFM by a computational shortcut, referred to as the neighborhood function. Not only
do the individual neurons in the SOFM become specifically tuned to input patterns by
means of this emulation of lateral feedback among neighboring units, but the locations of
responses become ordered along the coordinates of the map, corresponding to intrinsic

features of the input.
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Let the input be a vector XxeR" :
X=[x,%,..,x] . 4)
With each neuron j there corresponds a vector of synaptic weights w e R":
W= [wy Wy w10 3)
The winner is identified by the index i(x) that corresponds to the neuron whose synaptic

weights are the best match to the input x:

i(0= arg min|x-w |, j=12,...N (6)
j

where " . " denotes the Euclidean norm. Thus, the response of the network can be

considered to be the index of the winning neuron, representing its location, or,
equivalently, the synaptic weight vector that is closest to the input vector in a Euclidean
sense [Haykin, 1994]. In this experiment, the latter interpretation of the network response
is more appropriate.

XeR"

i(x)= arg min|x-w |, j=12...N
J

)

Figure 10. SOFM with a one-dimensional array of neurons
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For the formation of an ordered map, it is crucial that the weights of the winner
are not updated independently from the weights of the other neurons, as is the case of
other competitive learning or vector quantization schemes. In the SOFM, the adaptation
or updating of the weight vectors is done over a topologically related subset, resulting in
weight vectors that are ordered along the output dimension of the network. At each
learning step, the network is presented a sample x, drawn from the input distribution. The

winner is determined as specified in (6), and a neighborhood set N, ,, identifies the
neurons around the winner that will be updated as well. The width or radius of N, is

usually varied over the training phase [Kohonen, 1990]. To achieve good global

ordering, N,,, is made very wide at the beginning of the training, on the order of the

one-half the map, and then shrinks monotonically as the training progresses. The

rationale for this [Kohonen, 1990] is that the wide initial N, ,,, corresponding to a coarse

spatial resolution in the learning process, first induces a rough global ordering over the

weight vectors. Then, as the N,,, narrows, the spatial resolution of the map improves

without destroying the acquired global order. Thus the use of the neighborhood function
emulates the formation of a localized response in biological neurons by initially applying
a strong positive lateral feedback corresponding to an ordering phase, followed by
negative lateral feedback which corresponds to a convergence phase.

The updating of the weight vectors in discrete time proceeds as :

w, (k) +atb)xk)-w, k)] if jeN,,m} -

w,(k+1) =
w, (k) if jeN,,
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with (k) a scalar learning rate parameter, O<a(k)<1, similar to the gain used in
stochastic approximation processes [Robbins and Monroe, 1951], and should decrease

over the training interval.

Practical Aspects for the Application of the SOFM Algorithm

1. The initial weight vectors w, (0) are set to random values.

2. Samples x are drawn from the input distribution and presented to the network.
3. The best matching neuron is determined by (6).

4. The weight vectors of all the neurons are updated by (7).

5. Steps 2 through 4 are repeated until no noticeable changes are observed.

The “rules of thumb” are that for approximately the first 1000 steps, o(n) should

be close to unity, then decrease monotonically. The actual rule for the decrease is not
critical. The ordering of the map takes place during this period. The neighborhood

function N,,, should be fairly wide initially, perhaps on the order of half the map, and

decrease linearly to one unit during this ordering phase. After the first thousand steps, a

much longer convergence or fine-adjustment phase of the training proceeds with the

learning rate or(n) slowly decreased to a value near 0.01. During this phase the

neighborhood function may contain the nearest neighbors of the winner, with the final

stages of the convergence phase updating only the winner. A rule of thumb for the

number of steps to achieve convergence is at least 500 times the number of network units.
The following figures illustrate an example of training an SOFM used in the

experiment. The inputs to the SOFM are a 50 sample window of the Mach number
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response. There were 155 exemplars in the training set, shown in Figure 11. The SOFM
consisted of 20 neurons, arranged in a linear array, similar to Figure 10, shown earlier.
The SOFM weights were adjusted during 10,000 presentations of the training set, with

the learning rate, o(n), and neighborhood function N, varied as shown in Figure 12.

The SOFM is shown at 100, 500, and 1000 training cycles, with the converged SOFM,
after 10,000 training cycles, in Figure 13. The converged SOFM provides a smooth
organization of the weights in the neural field, in contrast with the input patterns for
training. The distribution of the training inputs among the converged SOFM clusters is

shown in Figure 14.

inputs for traing the SOFM

Exemplar # ¢ o

Figure 11. Input exemplars for training the example SOFM
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Distribution of training ensemble inputs to SOFM outputs
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Figure 14. Distribution of training inputs among 20 converged SOFM clusters

Magnification Factor

The input distribution of the vectors x, or the multidimensional probability density
function (pdf) of x, p(x), is represented by the total N neurons in the output layer of the
SOFM. The input vectors x are drawn from an n-dimensional input space X. The pdf of

X, integrated over all of X, must equal unity:
[pxyax =1 (8)

The corresponding density of neurons in the output layer of the SOFM is referred to as
the magnification factor, m(x), defined as the number of neurons in a small volume dx of
the input space X. The integral of the magnification factor over the entire input space,

must equal the total number of neurons N:

fmxyax = N )
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For the SOFM to match the input density exactly, the magnification factor must
be directly proportional to the input pdf:
m(x) o p(X) (10)

Si and Lin [1997], have recently shown, for multidimensional input, the

n

converged SOFM weights have a magnification factor proportional to p(x)"*—z.

Kohonen [1995] makes the point that in most practical applications that the input data
vectors have high dimensionality, on the order of dozens to hundreds, and compares the

result to classical vector quantization (VQ), where the asymptotic point density is

n

proportional to p(x)™*? as well. For this experiment, the input dimension #, is n = 50, so
it was expected that the input distribution would be well matched by the locations of the
output neurons of the SOFM. From a control viewpoint, this has the beneficial effect of
providing a higher density of neurons in regions of the input space where the statistical
frequency of input features is correspondingly higher, with fewer neurons assigned to

regions of the input space with features of lower statistical frequency.

Applications of the SOFM

Three major practical application areas suggested by Kohonen [Kohonen, 1995]
where the SOFM could be used effectively are:
1) Industrial and other instrumentation, for both monitoring and control

2) Medical applications, for diagnostic methods, prostheses, and modeling
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3) Telecommunications, for allocation of resources to networks, transmission

channel equalization, and adaptive equalization.

A survey of the diverse applications of the SOFM [Kohonen, 1995] highlights the
following areas: machine vision and image analysis, optical character and script reading,
speech analysis and recognition, acoustic and musical studies, signal processing and radar
measurements, telecommunications, industrial and other real-world measurements,
process control, robotics, chemistry, physics, electronic-circuit design, medical
applications without image processing, data processing, linguistic and Al problems,
mathematical problems, and neurophysiological research. The reported applications in
process control were of interest, but, for the most part, the research focused on monitoring
the process state rather than effecting some control action. Some general problems
addressed in this area are: identification of process state [Kasslin, Kangas, and Torkkola,
1992], process error detection [Alander et al., 1991], and diagnosis of machine vibrations
[Wuet al, 1991]. Some specific examples of industrial applications are: monitoring
paper machine quality [Lampinen and Taipale, 1994], flow regime identification [Cai,
Toral, and Qiu, 1993], grading of beer quality [Cai, 1994], and estimation of torque in
switched reluctance motors [Garside et al., 1992]. In a more recent application to process
control, [Matthews and Warwick, 1995] the SOFM was used for separating fault types
and monitoring the process state. In [Warwick, 1996] the SOFM is proposed again as a
classifier for fault indications as opposed to a system identification tool.

One of the most control-specific applications of the SOFM reported in the
literature is the visuomotor control of a robot arm by [Ritter, Martinetz, and Schulten,

1992]. In this application, the SOFM is used as a look-up table, where the input pattern,
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identified by the “winner”, specifies an SOFM location associated with specified values
of control parameters, which were learned adaptively.

The two dimensional coordinates, x, and x, , of a target point in the image planes
of two cameras were combined into a four-dimensional, stereoscopic input vector x and
used as the input to the SOFM. A three-dimensional SOFM was used to form the spatial
representation of the target point. The three joint angles, one about the vertical axis for
motion in the horizontal plane, and two for motion in the vertical plane, comprise a
configuration vector 8=[6, ,0, ,8,]. The basic goal of their approach was to find the
transformation 6(x) that would bring the tip of the robot arm to the target point, where
the cameras can get the observation x. The configuration vector is determined by a
linearization about the origin determined by the “winner” location c:

0 =A(x—m,)+b,. (1)

Here b, is the configuration vector corresponding to the location m_, A_ is the
3x4 Jacobian matrix, m_ is from the weights of the SOFM winner, and (11) gives the
first two terms of the Taylor series expansion of 8(x)around m_. Linearization is
carried out around m_ and is valid in the whole Voronoi set of x values around m, .
Ritter et al., developed a learning scheme where the control parameters A_, b, were

updated simultaneously with the formulation of the SOFM. The importance of the SOFM
in their problem was the discretization of the input space, in particular, the allocation of

the configuration vectors, b_, to regions of the input vectors, x, having a higher density of

lattice points where the control must be more accurate.
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For our application, the SOFM discretizes an n-dimensional space composed of
output sequences of the system, y(k), y(k-1), ... y(k-(n-1)), which are considered to be the
responses of the system to a prototype control input u(k-1), u(k-2), ... u(k-m). Thus, the
prototype input is the control parameter associated with all the nodes in the lattice, which
is here, one-dimensional corresponding to the single control input to the system, u. In our
application, the linearization is done around the “winner” to predict responses to
candidate controls:

M,= A (u—u)+ M, . (12)
where M| is the winner, A_, is the Jacobian, derived directly from the SOFM, u, is the
control prototype associated with the SOFM and u;, is one of the candidate control

sequences. In our application we replace the slow adjustment of control parameters by an
external scheme, as in Ritter’s application, with the ability to switch, at discrete intervals,
among the discrete local linear models associated with each node in the SOFM. This
highlights the difference between a slowly adaptive control scheme, and our application,
which is designed to switch rapidly to accommodate abrupt changes in the system

characteristics.

A Brief Review of Adaptive Control

The adaptive identification and control of dynamical systems has been
extensively developed for linear time-invariant systems with unknown parameters over
the past three decades. The development of adaptive control for linear systems is a

logical consequence of the diversity of mathematical tools available for the analysis of the
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properties of linear systems. The choice of parameterization of the plant model and the
controller in such problems were naturally based on results from linear systems theory. In
the 1980’s, the theory of adaptive control focused on the design of stable adaptive control
laws which are robust in the presence of unmodeled disturbances, time-varying
parameters and unmodeled dynamics [Narendra and Annaswamy, 1989]. A good
understanding exists for the design of stable adaptive controllers for linear systems with
unknown parameters.

Two major approaches to the adaptive control of linear systems, direct and
indirect, have developed over the past twenty years. The direct approach seeks to
minimize some performance criteria, usually based on the error between the output of the
system and some desired output, by direct adjustment of the controller parameters. The
indirect approach attempts to explicitly identify the dynamics of the system to be
controlled, and then modifies the parameters of the controller based on this identification.
Both of these methods traditionally used a single, linear, parameterized model of the
system being controlled, or plant. One of the major drawbacks of both these approaches,
is the time required for adaptation of the controller parameters in the direct case, or the
identification of the parameters of the plant in the indirect case, to achieve the desired
control. This is particularly troublesome when the method is to be applied on-line to
control processes whose dynamic behavior is known to change abruptly.

As a result of the shortcomings mentioned above, a more recent approach to the
adaptive control of an uncertain linear time-invariant system (LTI), is the use of multiple
models with switching [Narendra and Balakrishnan, 1997]. Although this was not the

first time that the individual concepts of multiple models, with switching and on-line
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tuning of some models, had been proposed, this framework proposed to improve the
transient response of adaptive systems in a stable fashion [Narendra and Balakrishnan,
1994]. The recent results present the problem in the context of model reference adaptive
control (MRAC) [Narendra and Annaswamy, 1989] of a LTI system, and the principle
results are the proofs of stability for various assumptions on the coverage of the space

ScR*" of the plant parameters by either the initial parameter values of a set of adaptive

models or the parameters of a set of fixed models, and various combinations of both fixed
and adaptive models. The multiple model and switching framework is quite general and
applies to both linear and nonlinear systems, but stability results are only currently
available for the linear time-invariant plants.

The development of nonlinear adaptive control has for the most part, paralleled
the linear case, usually with even more restrictive assumptions about plant than the linear
case. The usual approach is to perform a linearization of the plant model around some
point in the state space, determine the localized characteristics of the linearized system,
and the region in the state space where the linearization is valid.

Linear Adaptive Control

A single input-single output (SISO) linear time-invariant system with unknown

parameters, described by the state equations:

x(k+1) =Ax(k) +bu(k)

Y& = ex(k) (13)
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corresponds to the case where some or all of the parameters of the matrix A and

vectors b and ¢ are unknown. Alternately, if the system is described by the n* order

difference equation:

yk+1) = Sayk—i) + 3 Butk - j) (14)
i=0 =0

where u(k) and y(k) represent the input and output respectively at time k, the

parameters ¢; and 3; are assumed to be unknown. The objective then is to determine the

control input u(k) so the output y(k) behaves in some desired fashion.

The transfer function, W,(z), of the plant described by equation (14) is :

B+ P+ ...+ B,

=07 - -,

W, (2) = (15)

The order of the system is n and if , # 0, then the relative degree is one. If,
however, B, =8 =, =...=f,, =0and B, , # 0, then the relative degree is d and the
input u(k) affects the output at time instants greater than or equal to k+d. It is best to first
consider the case when the relative degree is one, then extend the results to the case when
the relative degree is greater than one.

A bounded signal y” (k) is specified as the desired output of the plant and the

input u(e) is to be determined. Alternately, u(k) at instant & has to be chosen so that

lim | y(k)-y* (k)| = 0. (16)

k—poo
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In model reference adaptive control (MRAC), y’ (k) is generally chosen as the
output of a reference model. The simplest reference model that can be satisfied by (16)
above is 7™ where d is the relative degree of the plant. For the case where the relative
degree is one, the reference input (k) to the reference model is y" (k + 1) and is assumed
to be known at time k.

For the non-adaptive problem, if the plant is described by equation (14) and the

parameters ¢ and 8 are known, the control law can be chosen as :

1 n-1 n-1 .
u(t)=| = 2oy =)= 2 Bulk = j)+y (k+1)} (7

and then the output y(k)=7y" (k). The control input is merely a linear combination of n
past values of the input and output as well as the desired signal at instant k+1, and that the
output of the plant converges to the desired output in one instant.

For the adaptive case where the parameters o and 8 are assumed constant but

unknown, the indirect approach can be employed and requires the estimation of the
parameters aand . If &, (k) and ﬁj(k) represent the estimates of aand f respectively,

these can be used to compute the control input. However, it is no longer obvious that the
overall system will be stable and that the condition (16) will be satisfied. This problem
was resolved for both continuous-time and discrete-time systems in 1980 [Narendra, Lin,
and Valavani, 1980; Morse, 1980]. However the stability of the overall system in the

discrete case requires the following assumptions about the plant transfer function:
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1) An upper bound on the order n is known

2) The relative degree of the plant is known

3) The sign of B, as well as an upper bound on the absolute value of f3, are
known

4) The zeroes of the plant transfer function are within the unit circle (minimum
phase condition).

Given these assumptions, stable adaptive laws for the adjustment of the estimates

&, (k) and ﬁj (k) result in a similar control law:

1 n-1 . n=1l .
u(k)=ﬁ7[—205,-y(k—i)—Zﬁ,-u(k—j)H (k+1)] (18)
o i=0 j=1

where the output y(k) follows y (k) asymptotically.

Control Using Multiple Models and Switching

The multiple model structure with switching has been proposed by [Narendra et
al.; 1994, 1995] when the overall system is required to operate in multiple environments.
Sudden changes in parameter values, failures of sensors or subsystems, and external
disturbances taken to be the output of an unforced stable dynamical system, can be
considered as different environments a control system may be required to cope with. In
these cases, the need to use multiple models arises naturally, since a different
mathematical model may be needed to represent the behavior of the plant in each of the

environments.
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The need for multiple models in the control of dynamic systems is further
elaborated by [Narendra, 1996] as:
1) Many physical systems can be represented by interpolating between local
models. Gain scheduling is the control paradigm based on this concept
2) Multiple models may be needed to detect different changes in the plant and
initiate the appropriate control action
3) In some cases, all the information concerning the plant, such as the order or
the relative degree, may not be available to compute the input. Multiple
models may be needed to obtain the appropriate information
4) The advantages of individual models may be combined in a multiple model
controller. One model may assure stability, while another heuristically
designed may provide better performance. A proper combination of the two
may result in a stable system with better performance.
The architecture of the Narendra’s multiple model switching controller is shown in Figure

15. 1,,1,,...,1I, are N predictive models of the plant which have been obtained by
observing the system over a long period of time. C,,C,,...,C, are the corresponding
controllers, designed off-line and stored in memory. If the plant output is y(k) and the
output of model /,is y,(k), the output error is defined as e, = y;(k)—y(k). Based on
some performance index J(e j) , evaluated for j=1,2,..., N, the model to be used at any
instant is chosen. If J;(k)=min; J(e,(k)), the model I; and the corresponding
controller C, are chosen at instant k. This corresponds to the switching part of the

scheme. The implementation of the switching scheme employs some hysteresis to
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prevent arbitrarily fast switching between models. In a more recent paper [Narendra and
Balakrishnan, 1997], stability results for an all-fixed models controller was established
for linear systems under some mild assumptions. In particular, it is shown that if there is
at least one model that is sufficiently close to the actual plant and there is a non-zero
waiting time between switches from one model to another, then the overall system is

stable, given that each fixed model is stabilized by its corresponding controller.
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Figure 15. Structure of the multiple model control with switching

An even more recent paper [Narendra and Mukhopadhyay, 1997] introduces two
classes of approximate non-linear input-output models which reduce the computational

complexity of designing a controller based on the fact that the approximate models are
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linear in the control input. This was essentially the approach taken in this experiment,
where the converged SOFM provides multiple, approximate models of the input-output
behavior of the plant for a given class of input. These approximate models were then
used as the basis for linear predictions of the response to a set of control candidates to
determine the control input that minimized the error between the predicted output and the
desired output.

The development of these models begins by considering the representation of an

arbitrary, discrete non-linear dynamical system using state equations:

T x(k+1)=flx(k),u(k)]

y(k)=H{x(k)] (19)

where {u(k)},{x(k)}, and {y(k)} are discrete-time sequences with
x(K)eR", u(k)eR,y(k)eR, fR"XR > R" ,h:R" > R,and f,he C™ . The origin

is assumed to be an equilibrium state of (4),hence f(0,0)=0 . The linearization of Z, of

X is described by the linear state equations:

X, x(k+1)=Ax(k) + bu(k)

20
(k)= ex(k) 20)

where the (n X n) matrix A and the (n X 1) and (1 X n) vectors b and c are defined by

of (xu)| A d f(x,u)
dx B du

0,0

d h(x)
ax

0 . (21)

0,0

Given this parameterization, the general state of knowledge about the system
Z can fall into one of the following categories:
1) fand h are known, and the state x(k) is accessible

2) fand h are unknown, and the state x(k) is accessible
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3) fand h are unknown, and only the input u(k) and the output y(k) are accessible.
The third case is the one of interest here, where system identification and control have to

be carried out using only input-output data.

Other Applications of Neural Networks for Control

Three recently reported neural network applications for control appeared in the
July 1997 edition of the IEEE Transactions on Neural Networks. The first paper,
“Reliable Roll Force Prediction in Cold Mill Using Multiple Neural Networks” [Cho,
Cho, and Yoon, 1997] reported the use of multilayer perceptrons to predict the roll force
and a corrective coefficient used to improve prediction accuracy by 30-50 % compared to
an existing mathematical model used in the cold rolling mill process for steel. The
second paper, “Dynamic Neural Control for a Plasma Etch Process” [Card, Snidermann,
and Klimasauskas, 1997] described the use of a cascade (feedforward) neural network
and a policy-iteration optimization scheme to provide suggested process setpoints for
recovery from long-term drift in equipment used in the plasma etch process. The
combined optimization scheme suggested “reasonable low cost solutions” for what were
considered out-of-control situations. The third paper, “Neural Intelligent Control for a
Steel Plant” [Bloch et al., 1997] suggests incorporating the skill of the human operators in
neural models, at various levels of control. A feedforward multilayer perceptron is
developed as a model of the annealing furnace, from which a static inverse model is
derived. None of the three papers had any experimental results from actually employing

the neural-based control to the targeted process.
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The most specific reference citing the use of neural networks for wind tunnel
control was [Buggele and Decker, 1994] where neural networks where used to interpret
shadowgraph images, a type of flow visualization, in order to tune parameters in existing
controllers. They concluded that their exercise was too complicated to demonstrate
neural-net automation of wind-tunnel operations. Another reference citing the use of
predictive control of Mach number at the National Aerospace Laboratory in Amsterdam,
The Netherlands, [Soeterboek et al., 1991] demonstrated a 30-60% overall performance
improvement over the conventional controller normally used. Their results were based on
a p-step ahead prediction scheme, using a single operating point model (Mach 0.8), scaled
to accommodate small variations in operating point (Mach 0.7 to 0.9).

In [Cooper et al., 1992], a vector quantizing neural classifier is used to identify
process error due to both step and oscillating disturbances and adapt a single gain
parameter in a simulated continuous stirred tank reactor (CSTR). Their approach
demonstrated the ability of such a classifier to distinguish between the resulting error
transients associated with these disturbances and adapt the gain of the closed-loop system
to reduce the effect of the disturbances.

An overview of manufacturing applications of neural networks [May, 1994],
reports positive results of researchers at DuPont Electronics and AT&T Bell Laboratories
in plasma etch modeling for semiconductor manufacturing. Arc welding, machining
operations, color printing, and linear accelerator beam positioning are given as examples
of successful process control applications of neural network based control. “Neural nets
are well-suited to process control since they can be used to build predictive models from

multivariate sensor data generated by process monitors.”



CHAPTER 3
MODELLING THE TUNNEL DYNAMICS

Introduction

In the opening chapter, it was stated that the task of controlling the Mach number
in the tunnel was undertaken with a vision to capture the underlying dynamics of a
nonautonomous system from observations of time-dependent, input-output data. The
motivation for this approach came from previous work by Principe and Wang [1995],
using the self-organizing feature map as the infrastructure for local dynamic modeling of
chaotic time series. Their work focused on modeling autonomous systems, that is
systems where the state trajectory evolves without an external, or exogenous input signal
driving the trajectory from one region to another in the state space. That work is adapted
here to provide localized predictions of the system response, p steps ahead, to a
predetermined set of input or control sequences which will drive the system toward the
desired region of operation.

The assumption is that the state of the underlying nonautonomous system can be
described as a differential equation of the form:

dx(t)
dt

= f(x(1),u(t)) (22)

where x(t) are the system states, u(t), the control signal, is an exogenous input to the

system, and f is the vector field that maps a Cartesian product of the state space, S, and

43
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the control space, C, § xC cR" x R, to a tangent space TcR". If a closed-form
solution for (22) exists, that is : @: § xC—§, then for a given initial condition x(0) and
u(t) specified for all 7, ®(x(0),u(t)) , represents a state-space trajectory of the system, or
system flow.

For an autonomous system, there is no exogenous u(?), and the evolution of the

system is assumed to be described by :

d x(1)
dt

= f(x(2)) (23)

Often, at this point the exogenous input u(?) is expressed as a function of the states:
u(t)=g(x(1)) (24)

whereby the nonautonomous system becomes autonomous. This is'particularly useful for
considering the stability characteristics of the system under the influence of a
state-dependent, or state-feedback, signal u(?) as in (24) above. This will be elaborated
upon in the appendix to gain some insight into the stability of the overall system. The
approach in this chapter, however, will be to model the system response to a set of
candidate control sequences applied as a function of time over a specified interval.

The representation of an arbitrary, discrete non-linear dynamical system using

state equations was stated in Chapter 2, repeated here for convenience:

2 x(k+1)=flx(k),u(k)]

(k) =H[x(K)] (2)

where {u(k)},{x(k)}, and {y(k)} are discrete-time sequences with

x(K)eR", u(k)eR,y(H)eR, fF R"XR > R",h:R" - R,and f,heC™ . Herefisa
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map from the space of system states and input to the space of system states
R* xR — R”, and h is a map from the space of system states to the output R" — R .

Our goal here is to determine the system output y(k), over p steps into the future,

in response to the application of a set of candidate control sequences U where :
U, =[u, k) u (k+D ... u (k+p-1] (26)

is the ith candidate control sequence, and:
M, =y, k+1) y, (k+2) ... y,(k+p)] (27)

is the predicted response from the ith candidate control sequence.

Review of Local Dynamic Modeling with SOFM

As stated earlier, the previous work by Principe and Wang [1995] provided the
starting point for the modeling architecture. Their objective was to construct a neural
architecture capable of capturing the underlying dynamics of a chaotic time series. They
employed the SOFM as the modeling infrastructure based on the following observations:

1) The SOFM is a localized representation of a signal constructed through

competitive learning

2) The converged neural field bears a stronger global resemblance to the input

space than other competitive learning, due to the neighborhood function

3) The positioning of each neuron is more strictly constrained by the overall

statistical distribution of the signal, which helps to smooth out the irregular

spacing of local data samples in the state space.



46

Their basic idea was to embed the given input space into a compact neural field
through the Kohonen SOFM algorithm. Then a simple model estimation process was
performed to construct the linearized local models for each response region. The global
description of the dynamics was composed of all these local models pieced together. The
whole process was composed of two separate procedures: the embedding process of the
input space into the neural field followed by the local model estimation.

Their architecture was composed of three layers: input layer x, neural field layer

A, and the layer of local linear models F(x) as shown in Figure 16. The time series was

embedded in a state space to create a state vector X. The function i’ (x) was realized by

the SOFM. That is to say that the input was fully connected to the nodes of the second
layer through a set of weight vectors w,, where the winner-takes-all neuron was
identified by the competition. Each neuron in the neural field layer corresponded to a
specific processor f*': :[a, ,b; ], which represented the linear approximation of the local
dynamics.

In this architecture, the SOFM performed two major functions: the positioning of
the local models in the state space, and the identification of the matched local model for
the current input state x. The first function is accomplished during the training phase of
the SOFM, while the second is accomplished during the modeling phase. The
construction of the overall architecture was composed of three consecutive steps:
reconstruction of the state space, mapping the state space in the neural field, and

estimation of local linear predictors.
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Figure 16. The SOFM-based Modeling Architecture for Time Series

Reconstruction of the state space from the training signal. Following the

approach by [Takens, 1980], a sequence of d+1 dimensional state vectors

[x(n) x(n+7)] was created from the given training time series, where
x(n)=[x(n—(d - D7), x(n—(d = 2)7),...,x(n)] and 7 is the appropriate time delay
where d 2d, and d , is the dimension of the underlying dynamical process.

Mapping the state space in the neural field. This step was accomplished via the

Kohonen learning process. With each vector-scalar pair [x(n) x(n+7)] presented as the
input to the network, the Kohonen algorithm adaptively discretizes the continuous input
space XcR“*' into a set of disjoint cells A to construct the mapping ®:X — A . This

process continues until the learning rate decreases close to zero and the neighborhood

function covers one unit. After learning, the neural field representation A of the input
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space X via the constructed mapping relationship @ is formed in terms of disjoint units
topologically organized in the output space.

Estimation of the locally linear predictors. For each neuron u; €A, its local
linear predictor in terms of [a,”,b, ] is estimated based on o, c A, which is a set of L,
neurons in the neighborhood of u, including u; itself. Each of them has a corresponding

weight vector [w;, W, (d+ D]" eR“*" where w,.jT =[w, (D, w, (2),...,w, (d)]. The

local prediction model [a,”,b, ] is fitted in the least-square sense to the set of weights in
Q;:

w,(d+1]) =b+a’w, (28)

After the above construction procedure, a modeling network is obtained with a

global functional map composed of a set of local linear equations
x(n+1) = F (x(n))= a,"x(n) + b, (29)

where i is the winner-take-all neuron identified by competition in (6 ).

Modifications for SOFM-based Predictive Control

From (25), consider the output of the nonlinear system X :

y(k) = h[x(k)]="¥,[x(k)]
y(k +1) = hLf (x(k),u(k))]="¥, [x(k),u(k)]
y(k +2) = ALf( f (x(k),u(k)), u(k +1)]="¥,[x(k),u(k),u(k + )] (30)

yk+n)y=ho f"[.,.1=Y¥,, ,[x(k),u(k),u(k +1),...,u(k + n—1)]
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where f"is an n-times iterated composition of f . Denoting the sequence
y(k+1), ..., y(k + n) by Y, (k) and the sequence u(k), u(k+1), ..., u(k +n-1)as U, (k),
(30) can be expressed as :

W[x(k),U,(k)]=Y, (k) . (31)

For SOFM-based predictive control, the thesis is that a set of feature maps can,
collectively, be a global representation of these n-times iterated compositions of f, where
an SOFM winner represents the localized response of the system to a prototype control
sequence, belonging to a larger set of control sequences, the candidate controls.
Thus, the embedded state space is mapped into a neural field corresponding to a prototype
control.

The second major point in the thesis is that predictors that are locally linear in the
control can be constructed from the SOFM winners. The construction of the locally
linear predictors associated with the SOFM winners is essentially a linearization around

the weights of the winner:

M, = ®,[x(k),U,]+ V&,[x(k).,|U, -U,

1 (32)

where "U , —Uc"1 is the L1 norm of the difference between the prototype control,

U , and the candidate control, U_, and V@ ’ is the Jacobian with respect to the control,

extracted from the converged SOFM weights.

Ideally, perhaps, there would be an individual SOFM, ®,, for each candidate

control, Uci =[uq (k) u, k+1) ... u, (k+ p—1) ], and predictions of the tunnel
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response, Mpi =[ypi (k+1) Y (k+2) ... Yo (k + p) 1 would be made using the SOFM

winners:
M, =@ [x(k),U.]. (33)

This would not have explored the concept of being able to extract a model that
was locally linear in the control from the SOFM and would have required excessive
amounts of training data that was not available, i.e. an ensemble of responses for each
candidate control over the entire operational range.

Thus the approach to modeling the tunnel dynamics evolved into a procedure
consisting of two major components. First, the control input space was manually
partitioned by the construction of significant prototype control vectors assumed to be
capable of producing the general features of the desired wind tunnel response. Second,
for each such partition of the control input space, a SOFM was constructed from an
ensemble of tunnel dynamic responses, i.e. the resulting Mach number response, covering
the operating range. Each ensemble of Mach number responses was extracted from over
20 hours of actual wind tunnel data, covering the entire operational range. Collectively,
the SOFM(s) form an atlas of the global wind tunnel response due to the prototype
control inputs.

The assumption here is that having an atlas for the system response to a set of
control input prototypes provides a sufficiently complete modeling infrastructure, given
the desired objective of predictively controlling the tunnel. There is no need to provide
an infrastructure capable of modeling the response to all possible 3” control sequences of
length p, because it is assumed that the control inputs applied to the tunnel, at least in the

PMMSC mode of operation, will come from the known set of candidate controls, which
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are either the control prototypes themselves, or close enough to the prototypes, by design,
so as to predict the tunnel response by local models constructed from the response

embedded in the input neural field of the corresponding SOFM.

Partitioning the Control Input Space

The control input space was partitioned by the construction of prototype vectors.
Experimentally, it was found that nine prototype vectors were required to achieve the
desired control to the specified tolerance. Seven of the control prototypes were 50 sample
periods in length, with two shorter prototypes which were 10 samples long. Figure 17
shows the seven 50-point control prototypes. The 10-point prototypes were composed of

either all +1’s or all -1’s.

50 sample protoype control vectors

+1 Raise/ -1 Lower

Prototype

Figure 17. 50-point prototype control inputs
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For convenience, the prototypes were assigned labels such as input_class_0,
input_class_1, input_class_2, etc. Input_class_0, input_class_1, and input_class_2 are
50-point control sequences consisting of all zeroes, all +1°s and all -1’s, respectively.

Table 3 lists the features of the prototype control vectors.

input_class n Composition Control function
input_class_0 | 50 | Fifty zeroes Steady-state
input_class_1 | 50 | Fifty +1’s (Raise) Ramp up
input_class_2 | 50 | Fifty -1’s (Lower) Ramp down
input_class_3 | 50 | Ten +1’s, forty zeroes End of Ramp up
input_class_4 50 | Ten -1’s, forty zeroes End of Ramp down

input_class_5 50 6-9 zeroes, 1-4 +1’s, forty zeroes Positive correction

input_class_6 | 50 | 6-9 zeroes, 1-4 -1’s, forty zeroes Negative correction
input_class_7 |10 | Ten+1's Positive transition
input_class_8 |10 | Ten-I’s Negative transition

Table 3. Prototype Control vectors

The idea here, as discussed in the introduction, was to partition the control input
space by manually constructing prototype vectors for the control sequence. The goal of
this partitioning was to provide a set of control inputs capable of ramping the tunnel from
one operating point to another, regulating about a given operating point, rejecting

disturbances, while eliminating control sequences known experimentally to be of no
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practical interest, particularly when considering the desire to minimize control activity
while regulating about an operating point. An alternating sequence of +1’s and -1’s
might provide the desired regulation of the output, but would be highly undesirable in
terms of control effort. This will be elaborated upon in the following chapters.

Ramping the tunnel from one operating point to another would be accomplished
with input_classes_1, 2, 3, and 4. Input_classes_5 and 6 would be used for regulating
about a given operating point as well as rejecting disturbances. Input_class_0 provides
the control input for the ideal steady-state condition with no disturbance, requiring no
control action over a 50-point sample interval. Input_classes_7 and 8 provide a transition
from the zero-input class to the ramping inputs of input_classes_1 and 2, and provide

identification of the tunnel response over a shorter, more recent interval of time.

Clustering the Mach Number Responses

For each of the control input classes, ensembles of Mach number responses
resulting from the application of each control prototype were extracted from the wind
tunnel test data. Next, each ensemble of responses was clustered using a SOFM. The
SOFM imposes a topographic ordering of the output neural field corresponding to
features of the input patterns, which are in this case, the Mach number responses, taken
over the past n sample intervals. Collectively, the SOFM(s) were trained using data
extracted from more than 20 hours of actual wind tunnel response data. Table 4 lists the

number of exemplars for each class.
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Input_classes_3 and _4 have the fewest number of exemplars because they only
occur at the end of the transition from one set point to another. Input_classes_1, _2, _7,
and _8 have the greatest numbers of exemplars due to the relatively long transition times
from one operating point to another, requiring steady ramping up or down. Next in
frequency of application is input_class_0, representing the most desirable, minimum
control effort over the 50 sample interval (15 seconds) when the Mach number is within
the desired tolerance. The remaining two input_classes, _5 & _6, represent prototype
positive and negative corrections which provide disturbance rejection and regulation
about a set point, with the desired features of the control sequence, i.e. minimum control

effort and minimum number of switchings or transitions from one state to another.

Input class # exemplars

0 10,158
1 15,332
2 13,464
3 41

4 31

5 155

6 198

7 17,393
8 16,694

Table 4. Training exemplars for each input class
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The following figures (19 through 27) show ensembles of Mach number responses
from the application each control prototype, and their corresponding SOFM. The Mach
number response, M, is taken over the same n sample intervals as the application of the
control prototype,

M=M-M(t—n); (34)
M=M(t),M(t-1),..., M(t—n), (35)
and n is either 50 or 10. Thus, M represents the output of an n-tap delay line, where the
value at the nth tap is subtracted from all the values in the delay line. The output at a
single tap is shown in Figure 18. This is essentially a bank of comb filters which
preprocesses the Mach number responses, particularly for removing the dc component,
yielding the change in Mach number over the past n samples. Both the training samples

and the on-line Mach number responses were preprocessed in this fashion.

M) M(t-n)

—_-1 1 . — ]

H}— M(t-1)

Figure 18. A single tap of the Mach number preprocessor
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Mach responses for input_class_0
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Mach responses for input_class_1
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Mach responses for input_class_2
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Mach responses for input_class_3
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Mach responses for input_class_4
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Mach responses for input_class_5
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Figure 24. Mach number responses and corresponding SOFM for input_class_5



62

Mach responses for input_class_6
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Figure 25. Mach number responses and corresponding SOFM for input_class_6
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Figure 26. Mach number responses and corresponding SOFM for inpu
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Figure 27. Mach number responses and corresponding SOFM for inpu
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Convergence of the Input Neural Fields

The number of nodes for the SOFMs, each representing a cluster of the Mach
number responses, was adjusted during the training phase to achieve an average
separation between the adjacent converged neural input fields, or more simply, the
weights of the SOFM. The topographic ordering imposed by the SOFM was key in this
phase of the development. The number of nodes were adjusted so that the separation
between the adjacent input neural fields corresponded to the desired goal of controlling
the Mach number, based on 50 samples-ahead predictions, to better than the required
0.003 tolerance. Thus, the major focus was to determine the number of classes for the
SOFMs for input_class_5 & _6, which provide the basis for regulation and disturbance
rejection. Each of these SOFMs were trained with 155 and 198 exemplars. It was found
experimentally that 20 nodes or clusters provided adequate separation based on
considering the separation between the adjacent means of each neural field over the last

30 point interval:

1 50 . 50
—35[ D MG j+D) - X MG, ) ] (36)
i=21 i=21

Nodes were added to the SOFM until the mean separation, taken over the entire
map, was well below 0.001 for input_classes_5 & _6, as listed in Table 5. The resulting
20 node SOFM structure was implemented for all the input_classes, and the resulting
separations between adjacent input neural fields were considered adequate. The mean
separation for input_class_0 was even less than the above classes, and the mean
separations for the ramping input_classes SOFMs were deemed sufficient for the

relatively coarser control required to move from one set point to another.
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(10%) —I:ZM(I_]-FI) -f‘,M;(i,j)] (10)—2( °)
30 i=21 =21

T | k=0 | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8

1 | 0.6342 | 5284 | -1352 | 1.648 | -1.407 | 0.5741 | -0.2934 | 0.6155 | -0.7840

2 | 06194 | 3.111 | -3.625 | 2.639 | -2.557 | 0.6314 | -0.4436 | 07627 | -1.007

3 | 02973 | 1.686 | -1.270 | 1.032 | -1249 | 0.2768 | -0.4233 | 02835 | -0.4472

4 | 0.1652 | 1377 | -0.8680 | 2.655 | -1.547 | 0.3332 | -0.3458 | 0.2418 | -0.2451

5 | 0.2856 | 0.8588 | -0.8589 | 1.438 | -2.220 | 0.3767 | -04339 | 02112 | -0.1888

6 | 0.2339 | 0.9396 | 0.7762 | 05972 | -1.116 | 0.2678 | -0.2206 | 0.1906 | -0.2295

7 | 0.0565 | 0.6088 | -0.7927 | 1.073 | -0.4461 | 0.2143 | 0.0058 | 0.3037 | -0.2699

8 | 00129 | 03392 | -0.5479 | 0.8365 | -0.2759 | 0.3067 | -0.0531 | 0.1421 | -0.1933

9 | 0.0166 | 0.8414 | -0.1769 | 0.3579 | -0.5014 | 0.4656 | -0.4198 | -0.089 | -0.0416

10 | 0.1377 | 0.8744 | -0.3810 | 0.1971 | -0.5801 | 0.2794 | -0.4187 | 0.0292 | -0.1017
11 | 0.3549 | 0.8427 | -0.8745 | 04618 | -0.4409 | 0.0169 | -0.1808 | 0.2533 | -0.2718
12 | 03034 | 1.368 | -0.6687 | 0.5598 | -0.5765 | 0.0771 | -0.2167 | 0.2644 | -0.2841
13 | 0.1219 | 1.009 | -0.5736 | 0.6931 | -0.9616 | 0.1947 | -0.5848 | 0.2335 | -0.1611
14 | 0.0339 | 0.9442 | 09577 | 0.6108 | -0.7398 | 0.4424 | -0.6323 | 0.1458 | -0.0474
15 | 0.1218 | 0.6524 | -0.7976 | 04443 | -0.4548 | 0.6975 | -0.5178 | 0.1386 | -0.2038
16 | 0.4175 | 1.130 | -0.7018 | 04792 | -0.6299 | 0.7110 | -0.7711 | 0.2827 | -0.3107
17 | 03741 | 2.036 | -1.055 | 0.3583 | -0.8048 | 0.5912 | -1.417 | 0.3475 | -0.2851
18 | 04796 | 1.665 | -2.076 | 1.221 | -0.6797 | 1.554 | 2.468 | 04746 | -0.6025
19 | 05925 | -0.8114 | -1.757 | 1.390 | -0.4480 | 2.735 | -2.253 | 0.5246 | -0.6308
m | 02768 | 1.303 | -1.058 | 0.9839 | -0.9282 | 0.5656 | -0.6363 | 0.2819 | -0.3319
SD | 02039 | 1.234 | 07670 | 0.7153 | 0.6259 | 0.6221 | 0.6809 | 0.2003 | 0.2550

Table 5. Difference between interval means of adjacent input neural fields




3 (13 . . 10
10°) | 35 2M; ) [iZM: (i,j)J
- 10 i=l1
* 1000
J k=0 k=1 k=2 k=3 k=4 k=35 k=6 k=7 k=8
1 -2.556 15.98 -22.28 2.456 -3.719 -1.570 1.031 0.7942 -0.6336
2 -1.922 21.26 -23.63 4.105 -5.126 -0.9963 0.7372 1.409 -1.417
3 -1.303 24.38 -27.25 6.745 -7.683 -0.3649 0.2936 2.172 -2.425
4 -1.006 26.06 -28.52 7.777 -8.933 -0.0881 -0.1297 2.456 -2.872
5 -0.8406 27.44 -29.39 10.43 -10.48 0.2452 -0.4755 2.698 -3.117
6 -0.5549 28.30 -30.25 11.87 -12.67 0.6219 -0.9095 2910 -3.331
7 -0.3210 29.24 -31.03 12.47 -13.82 0.8897 -1.130 3.010 -3.536
8 -0.2645 29.85 -31.82 13.54 -14.26 1.104 -1.124 3.403 -3.806
9 -0.2519 30.19 -32.37 14.37 -14.547 1.411 -1.177 3.545 -4.000
10 -0.2349 31.03 -32.54 14.73 -15.04 7 1.876 -1.597 3.456 -4.041
11 -0.0973 31.90 -32.93 14.93 -15.62 2.156 -2.016 3.485 -4.142
12 0.2576 32.74 -33.78 15.39 -16.06 2.173 -2.197 3.738 -4.414
13 0.5610 34.11 -34.47 15.95 -16.64 2.250 -2414 4.002 -4.698
14 0.6830 35.12 -35.04 16.64 -17.59 2444 -2.998 4.236 -4.859
15 0.7169 36.01 -35.60 17.25 -18.33 2.887 -3.631 4,382 -4.906
16 0.8387 36.72 -36.78 17.70 -18.79 3.584 -4.149 4.520 5111
17 1.256 37.85 -37.50 18.18 -19.42 4.295 -4.919 4,803 -5.421
18 1.631 39.89 -38.55 18.54 -20.23 4 886 -6.337 5.151 -5.706
19 2.110 41.55 -40.63 19.76 -20.91 6.441 -8.806 5.625 -6.309
20 2.703 40.74 -42.39 21.15 -21.35 9.176 -11.06 6.150 -6.939

Table 6. Interval means of SOFM input fields
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ao®y| m;a.p |

J k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=38
1 16.78 92.73 129.3 14.83 22.78 9.669 8.075 3.195 2.594
2 12.90 123.3 136.9 24.13 30.09 6.997 4.947 5.456 5.658
3 8.921 141.6 158.5 3941 44.14 2.808 2318 8.344 9.363
4 6.794 151.9 166.3 46.01 51.61 1.048 1.322 9.629 10.92
5 5.625 160.1 171.6 62.03 61.78 3.099 3.247 10.74 12.02
6 4.136 165.2 176.3 70.51 76.33 4.611 6.642 11.26 12.96
7 2.839 170.6 180.4 74.66 82.47 5177 7.177 11.58 13.58
8 2.623 174.0 185.1 81.11 85.71 6.713 6.448 12.51 14.13
9 2.933 176.0 188.6 85.83 88.76 | 8.406 6.576 13.17 14.82
10 2.632 180.9 189.5 88.40 91.33 10.55 8.931 13.21 15.38
11 1.902 185.9 191.9 90.99 94.44 12.09 11.24 13.65 16.03
12 2.070 190.6 197.3 94.72 97.32 12.26 12.45 14.40 16.64
13 3.504 198.4 201.0 96.88 100.6 13.35 14.24 14.92 17.24
14 4.774 204.4 204.2 100.3 106.1 14.36 17.37 15.58 17.88
15 5.547 210.0 209.8 104.7 111.2 16.69 20.30 16.41 18.44
16 6.890 213.9 214.6 107.5 115.1 20.09 23.23 17.22 19.27
17 8.854 2204 219.2 110.9 119.0 23.92 28.27 17.93 20.19
18 10.63 231.9 2253 113.3 1234 27.28 36.12 18.92 21.10
19 13.57 241.6 236.9 119.0 126.7 35.86 49.03 20.78 23.18
20 17.47 236.9 247.1 126.3 128.2 50.95 61.49 22.89 25.40

Table 7. Euclidean norm of SOFM input neural fields




69

In order to quantify the topological ordering of the converged neural fields,
Table 6 lists the mean taken over each 30 or 10 sample interval of the SOFM weights.
Table 7 enumerates the Euclidean norm for all the converged neural fields as well. With
the exception of SOFM_0, the norms steadily increase (or decrease) along the output field
of the map. SOFM_O0 displays increasing distance from the center of the map, outward,
corresponding to the symmetry of the interval means about the center of the map shown

in Table 6.

SOFM Selection for Local Model Identification

After the application of a candidate control, one of the nine SOFM is used to
cluster the Mach number response, M, over the past n sample intervals. The selection of
the SOFM is based on the minimum Euclidean norm between the control input history

U=u(t-1), u(t-2), ...,u(t - m) and the set of prototype control vectors Ui~ i=ln -
s 74y

input _class_i = mljn”U - Ui”. 37

If more than one prototype control vector matches identically, i.e. “U - Ui " = 0 for more

than one i, both SOFM(s) are excited with the appropriate length M. This can occur for
SOFM_1 (or _2) and SOFM_7 (or_8), where the SOFM_7 (or 8) winner represents the
response over the 10 most recent samples, while the SOFM_1 (or _2) winner represents
the response over the past 50 samples. Additionally, the regulating control classes were
clustered on a region of the control space, defined in Table 3, as opposed to a single point

in the control space.
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The SOFM metric for the winner is the minimum Euclidean norm between M

and the SOFM prototype vectors, M;, for the SOFM selected by input_class :

mach_class_i= min”M - Mi" . (38)
i=1:20

H |

u(t—l) 4 ™
u(t-2)
[[U-U ]| input_class_i
i
i (t-m) L )
M)
M(t-1) f

INI(t'n) q

Figure 28. Selection of SOFM by input_class

Prediction of Tunnel Response Using Local Models

The Mach number responses are predicted by a linear model:
M, =a A"+ W7, (39)

where W’ is the prototype response vector, or weights, of the winning node.
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A’ is the least square approximation of the winner’s prototype response to a d-sample

delayed unit step sequence, U, =[0,0,...,0,11,...1], where d represents the maximum
d p—d

relative degree or delay from input to output and p is the total number of samples ahead
for which the prediction is made:

A" =pU (40)

r

where b is fit in the least square sense, or, alternately,
b=W"(U,)° 41)
and ° denotes the Moore-Penrose pseudoinverse of the vector U, .
By inspection of the SOFM for all input classes, d was chosen conservatively to
be greater than any observed delay, d = 20. A §ingle constant, a,_, scales A" based on
the ratio of the L1 norm of the candidate control vector U_ and the LInorm of the

control sequence U, producing the response M:

Ju.
a,= {—— -1, [U], =0
o, . (42)

a, = 0 , o], =0

c

Thus, a,A" provides the difference in the predicted Mach number response due
to the to the distance between the control sequence, U, and the i" candidate control
sequence, U ,. For the simplest case, U, =U, the value of a is zero, and the Mach

number response is predicted directly from the input neural field. This linear model is

driven by the candidate control inputs, shown in Figure 29.
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Candidate Control Inputs u(t+n)
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Figure 29. Candidate Control Sequences

Comparisons of the predictions of the Mach number to the actual tunnel responses

as a result of the application of the candidate controls will be presented in Chapter 5,

Experimental Results.



CHAPTER 4
PREDICTIVE CONTROLLER

Introduction

Given the model of the tunnel response developed in the previous chapter, the
predictive controller evaluates the relative effectiveness of the candidate control inputs.
The advantage of partitioning the control input space using a set of prototype controls
becomes more apparent when compared to model-based predictive control (MPC)
[Clarke, Mohtadi, and Tuffs, 1987]. In our method, predicted responses from a set of
candidate control inputs can be extracted either directly from the SOFM’s output neural
field or from the derived local model. The controller then applies the control sequence
which minimizes the error between the desired output and the predicted output over some
finite number of steps into the future. The low computational cost of multi-step
prediction by this method allows prediction for relatively long (50 samples ahead) control
sequences, or control horizon, in the terminology of MPC, using relatively simple
computing hardware. This is in contrast to MPC, which requires the inversion of an
NU x NU matrix at each step for a control horizon NU steps into the future. A brief
background of MPC is provided as a basis for comparison to SOFM-based predictive

control using control prototypes.

73
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Model Predictive Control Background

Most input-output model based predictive control schemes [Clarke, Mothadi, and
Tufts, 1987], begin with the assumption of a linear model (ARMA, or Autoregressive-

Moving Average) :
3(0) = Yk =)+ b, ik = ) “3)
i =
with an additional disturbance term in moving average form :
A() = £+ Rk - 44)

where &(k)is an uncorrelated random sequence.
Combining (43) and (44) and introducing the polynomials A, B, and C in the

backward shift operator ¢':

—na

A(g ) =1+a,q'+.+a,q
B(g")=b,+bgq ' +.4b,q"
Clg")y=1+cqg'+.+4¢c,q™™
yields

A(g™)y(k) = B(g u(k —1)+ C(g™HEK) (45)
which is referred to in the literature as the CARMA (Controlled Auto-Regressive and
Moving Average) model, a variation on the ARMAX (Auto-Regressive Moving Average
with exogenous input) model.

A further refinement to the disturbance model to accommodate non-stationary

disturbances such as random steps occurring at random times is :
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d(k)=C(g (k) / A (46)
where A =1—¢™', the differencing operator. Combining (45) and (46) yields the

CARIMA (Controlled Auto-Regressive Integrated Moving Average) model used in

Generalized Predictive Control (GPC) :
A(g™)y(k) = B(g " u(k = 1)+ C(g)&(k) /A 47)

At this point it is useful to introduce a scalar cost function J:

N, Nu
J= 2[5k +i) = wlk+ DT + 2, ANuk + j - DI (48)
Jj=1

i=N,

where :

y is the predicted response from the control input sequence u
N, is the beginning of the costing horizon;
N, is the end of the costing horizon;
N, is the control horizon,;
A(j) is a control-weighting sequence.
N,, N,, N_, and A(j) represent tuning knobs which can be adjusted by the control

designer to tailor the control action for the desired response characteristics. Rules of

thumb provide some guidelines for initial selection. N, is usually picked to be greater

than the largest anticipated time delay between the input u(k) and its response in the

output y(k). N, is determined by the longest settling time associated with the pulse or
step response of the model. N, =1 is quite often chosen for open-loop stable non-

minimum phase plants, but this often represents a compromise between the

computational burden associated with longer control horizons.
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The minimization of J, given a future set point sequence w, where :
w = [w(t + Dw(t +2),...,w(t + N)] (49)
leads to the control law :
u=[G"G+AI]"GT (w-f) . (50)

The matrix G is of dimension N x NU:

g, O 0
& 8o 0

GH : . g . 51
Ena1 a2 t BN-wy

This requires the inversion of an NU x NU matrix at each sample time, or at least
for each identified change in the g parameters, which are the coefficients of the
z-transform of the plant’s step response. fis a linear combination of values of u(t) and

y(t) up to time .

SOFM-based Predictive Controller

The function of the SOFM-based predictive controller is to evaluate the relative
effectiveness of the candidate control inputs in reducing the error between the desired
Mach number and Mach number predicted by the current SOFM winners. This is done
by evaluating the Euclidean norm of the difference between the last 30 points of the 50-

points-ahead predicted Mach number responses and the desired Mach number set point :
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err_norm_i =My [21:50] - M| (52)

for all i candidate control sequences, as specified in the prediction section. The
evaluation over the last thirty points of the prediction is to emphasize steady-state
matching. The control sequence associated with the minimum norm of all i sequences is
then applied as the control to the tunnel.
This is similar to the scalar cost function for GPC (48) :
N, 12
J,= [EN‘,[ 5, (k+i) —w(k +i))’ (53)

with N, =21, N,=50 and y, is the predicted Mach response for the pth candidate

control sequence. Both the constraints on the permissible values of the control (+1, 0,
and -1) as well as the minimization of the control cost is embedded in the set of all p

candidate control sequences with control horizon N, = 50. The control U, that
generates y, is selected for the minimum J,.

In the set of candidates we included controls to ramp the set point up and down
for large changes in operating point, as well as the regulating control sequences for
disturbance rejection. The candidate control sequences, their associated SOFMs for
prediction, and their control update parameters are listed in Table 8. The control update
parameter for each candidate control determines whether the entire 50 sample control
sequence is applied as the control, or just the first point in the sequence. Implicitly, this
selection is done based on the error between the Mach number set point and the predicted
responses. If the selected candidate control corresponds to either the two largest control

efforts over the control horizon, or if the selected candidate control represents the
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minimum control effort (i.e. zero) over the control horizon, the control sequence is
updated by selection of the prediction-error minimizing control at the next sample period.
For all other cases, the entire 50 sample selected candidate is applied. The two cases of

regulating about an operating point and operating point changes illustrate the differences.

Candidate # | [u(t+1), u(t+2), ... u(t+50)] SOFM |k

1 [(50) +1's] 1 1

2 [(1D) +1’s (39) zeros] 3 1

3 [ (10) +1’s (40) zeros ] 3 50
4 [(9)+1’s (41) zeros ] 5 50
5 [(8) +1’s (42) zeros ] 5 50
6 [(7)+1’s (43) zeros ] 5 50
7 [+] +1 41 +1 +1 +1 (44)zeros] 5 50
8 [+1 +1 +1 +1 +1 (45) zeros ] 5 50
9 [+1+1+1+1 (46) zeros ] 5 50
10 [+1+1+1 (47) zeros] 5 50
11 [+1 +1 (48) zeros ] 5 50
12 [+1 (49) zeros) ] 5 50
13 [0.66 (49) zeros ] 5 50
14 [0.33 (49) zeros ] 5 50
15 [ 50 zeros] 0 1

16 [ -0.33 (49) zeros ] 6 50
17 [-0.66 (49) zeros ] 6 50
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18 [-1 (49) zeros ] 6 50
19 [-1-1 (48) zeros ] 6 50
20 [-1-1-1 (47) zeros ] 6 S50
21 [-1-1-1-1(46) zeros ] 6 50
22 [-1-1-1-1-1(45) zeros] 6 50
23 [-1-1-1-1-1-1(44) zeros] 6 50
24 [(D-1"s (43) zeros ] 6 50
25 [ (8)-1’s (42) zeros ] 6 50
26 [(9)-1's (41) zeros ] 6 50
27 [ (10) -1’s (40) zeros ] 4 50
28 [(11)-1"s (39) zeros ] 4 1

29 [ (50)-1’s] 2 1

Table 8. Candidate Control sequences and associated parameters

Operating Point Changes

The typical set point change is greater in magnitude than 0.1, which is several
times greater than the largest Mach number change associated with any of the SOFM
input fields. Set point changes of this magnitude produce the selection of either candidate
control #1 (50 +1’s) or #29 (50 -1’s). These control sequences are updated at each
sample interval, which means that the controller decides at each sampling instant whether
to extend the series of raise or lower commands to achieve the desired set point. If the

only selection was between the continued ramping associated with either SOFM_1 (ramp
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up) or SOFM_2 (ramp down), and the next prototype control associated with SOFM_3
(end of ramp up) and SOFM_4 (end of ramp down), the transition between set points
would indeed be rather coarse. The inclusion of candidates # 2 and #28 provide a one
control-tick resolution between continued ramping and the transition to regulating about
the desired set point. Ramping continues on until candidates #3 is selected over #2 or
#27 is selected over #28 as the prediction-error minimizing control. These control
sequences (#3 or #27) are applied for their entire 50-point duration, allowing for a smooth
transition to regulation about the set point.

Regulating About an Operating Point

When actively regulating about an operating point, the entire 50 sample control
sequence selected from the set of candidates, consisting of an active or non-zero segment
of 1/3 to 10 sample periods, followed by the corresponding number of zeroes during the
inactive segment, is applied as the control input for the next 50 sample periods. Thus, the
selected candidate control is applied open-loop over the entire 50 sample control horizon,
with the next control update occurring 50 sample periods later. The resulting 50-sample
Mach number response is then input to the corresponding SOFM, and future predictions
are made from the output neural field of the SOFM winner as described in Chapter 3.

If the sequence of all zeroes is selected, the control is updated at the next sample
period. The 50 sample Mach number response is input to SOFM_0 for identification of
the local dynamics by the SOFM_0 winner. Prediction and control sequence selection is
performed at each sample period until an active (non-zero) control sequence is selected to

regulate the Mach number.



CHAPTER 5
EXPERIMENTAL RESULTS

In Chapter 3 and 4, the SOFM-based modeling of the tunnel dynamics and the
resulting predictive controller were developed. The control input space was manually
partitioned by the use of prototype control sequences and SOFM’s were trained to cluster
the corresponding Mach number responses. Thus, the output neural field of each SOFM
represents a collection of local models of the tunnel dynamics for the corresponding
prototype control input. During the experiment, while actually controlling the tunnel with
the PMMSC, the control inputs were chosen from the set of candidate control sequences,
making the task of identifying the local dynamic model more straightforward than in the
more general case of all allowable 3” control sequences of length p.

Thus, the experimental results are composed of two parts. The first part is to look
at the results of controlling the Mach number during actual experimental tests conducted
in January 1996. These results will be compared to control of the tunnel with an existing
gain-scheduled automatic controller as well as control by an expert human operator. The
second part is to explicitly examine the results of modeling the tunnel dynamics with the
control-input partitioned SOFM architecture. This will be accomplished by comparing
the Mach number response predicted by the SOFM-derived local model to the actual
response after application of the error-minimizing control sequence determined by the

predictive controller.
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Experimental Setup

The experimental setup consisted of a 486-33 MHz PC connected via a serial port
to the existing control computer at the wind tunnel, referred to as the “tunnel micro”. The
tunnel micro is an early 1980°s vintage 8086-based microcomputer. The existing
automatic control implemented in the tunnel micro is a highly tuned but fixed table
look-up of drive motor commands based on the error at a given Mach number [Capone et
al., 1995]. The tunnel micro also communicates with the wind tunnel data acquisition
system. The data acquisition system provides the Mach number measurements at a
nominal sample interval of 0.3 seconds. Figure 30 shows a block diagram of the

experimental setup.

486-33MHz PC

|
o |
| Tunnel Micro |
C - coded Control comlmands\) |
PMMSC | 4 |
Control |
| Mach
| number commands ,
|
aaonon ) { Drive System) |
st |
|
I

I
l
l
| < o
|
|

Existing controls

- — M M M M — — — — —_— —

Figure 30. Experimental Setup

The PMMSC was implemented as a C program, compiled and run on the PC. The

output of the program, at each sample interval, is a control command which is
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communicated to the tunnel micro and then applied to the drive system for the tunnel
fans. The control command can take on the values of; +1 to raise the tunnel fan RPM, -1
to lower the fan RPM, or zero to maintain fan RPM. Further, the command duration may
be specified to be either the full sample interval, 0.3 seconds, or less than the full sample
interval in 0.1 second increments, (i.e. either 0.1 or 0.2 second duration). This
subdivision of the sample interval was required to provide finer control of the tunnel Fan
RPM. Control inputs of less than 0.1 second duration are generally ineffective in
producing a change in the tunnel fan RPM. Additionally, the PC was used to record the
time histories of the tunnel state, control inputs, and PMMSC internal variables such as

the predicted response and SOFM winning nodes.

Mach Number Measurements

The Mach number is computed from the a calibrated ratio of stagnation pressure
to static pressure measured in the plenum surrounding the test section, as described earlier
in Chapter 1, equation (1).

The most recent calibration of the wind tunnel was performed in 1990 [Capone,
et. al, 1995]. This calibration used 30 static pressure measurements taken along the
nominal 8-ft calibrated test section length (CSTL). Flow uniformity was parameterized
by both the standard and maximum deviation of spatially local Mach number from a
least-squares straight-line fit. The results of this calibration are listed in Table 9. In this

table, the test section Mach number M, is the value of a least-squares straight-line fit to

the Mach number data, corresponding to the midpoint of the test section. The standard
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deviation is a measure of the average discrepancy along the test section length. The
maximum deviation represents the worst departure from the least-squares fit along the
selected length of test section. The document reporting the results of the calibration lists

20 values, i.e. twice the positive square root of the variance.

M. 20 O
0.3015 0.000560 0.001088
0.4006 0.000754 0.001688
0.5014 0.000943 0.002158
0.6018 0.001152 0.002381
0.6544 0.001291 0.002833
0.7030 0.001388 0.003085
0.7537 0.001415 0.003350
0.7795 0.001478 0.003413
0.8000 0.001422 0.003015
0.8284 0.001481 0.003552
0.8555 0.001514 0.003632
0.8809 0.001576 0.003756
0.9038 0.001428 0.003700
0.9304 0.001584 0.003749
0.9579 0.001539 0.003684
0.9816 0.001422 0.003211

Table 9. Standard and maximum deviation of Mach number during calibration

From this table, it can be seen that both the standard and maximum deviation of
Mach number measured along the CTSL vary significantly over the subsonic range. This
spatial variation corresponds to the temporal variation of steady-state Mach number
measurements. This is illustrated by taking the standard deviation of a time series of
Mach number measurements calculated from the calibrated ratio of stagnation pressure to
plenum static pressure under steady conditions during operational tests. In Table 10, M is

the mean value of 200 consecutive Mach number measurements taken under steady
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conditions with no control input applied. The standard deviation is the sample standard

deviation:
2

o= ﬁi(M(i)—ﬁ) o= 4o, (54)

i=1

where 20 is used for direct comparison to the calibration results.

M 20

0.2979 0.000546
0.3968 0.000520
0.5999 0.000908
0.8014 0.001820
0.8518 0.001497
0.8850 0.001977
0.9003 0.001577
0.9504 0.001822
0.9819 0.002652

Table 10. Statistics of time histories of steady state Mach number measurements

Experimental Results of Controlling the Mach Number

Experimental results were obtained while controlling the wind tunnel with the
PMMSC at several subsonic Mach numbers. These tests were conducted during the
period of January 10th through January 23rd, 1996.

Figure 31 shows the wind tunnel Mach number being controlled by the PMMSC
for a period of three hours, during a normal operational tunnel run, where aerodynamic

research data was being taken. Mach number set points of 0.95, 0.9, 0.85, and 0.6 are
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shown as dashed lines. The PMMSC regulated the steady-state Mach number to within
the research requirement of 0.003 of the set point during the interval shown. PMMSC
commands are shown with magnitudes less than one for control commands whose
duration was less than the 0.3 second sampling period. Control pulses of 0.1 second are
shown with magnitude 0.33 and 0.2 second pulses are shown with magnitude 0.66.

Mach number

0.9 M e
= 08 I~ .
8 I
o7t | -
|
0.6
0.5 1 1 H 1 S | 1 I i
20 40 60 80 100 120 140 160 180
NNCPC command
1 T T [ T T T
. 05 i
(]
: il
3 I |
0
©
(i
_1 L i 1 1 1 -
0 20 40 60 80 100 120 140 160 180
Time (min)

Figure 31. Mach number controlled by PMMSC* during a three hour test

*The PMMSC was previously referred to as NNCPC, so this acronym appears in some of
the plots.
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During these tests, the aircraft model attitude was varied to achieve the desired
aerodynamic research data. Figure 32 shows typical variations of model attitude at each

Mach number.

Angle of Attack (alpha)
1 5 T ¥ 7 T T T T T
10
[7/]
o
5 5
i
T
0
-5 1 1 i 1 1
0 20 40 60 80 100 120 140 160 180
Angle of Sideslip (beta)
10 T T T ¥ L] T T T

degrees

_1 o 1 '8 I i I 1 — 1 I
0 20 40 60 80 100 120 140 160 180

Time (min)

Figure 32. Variations of angle-of-attack and angle-of-sideslip during test

The variations are of two general types, referred to as an “alpha sweep” or “beta
sweep”. During an alpha sweep, the model angle-of-attack, or “alpha”, is stepped
through some range, from -4 degrees to +12 degrees in this test, while maintaining a
constant angle-of-sideslip, or “beta”. During a beta sweep, the model angle-of-sideslip is
stepped through some range, from -6 to +6 degrees for this test, while maintaining a
constant alpha. Mach number must be within 0.003 of the desired Mach number to

satisfy the research requirements. The variation in model attitude produced some modest
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(< 0.001/degree) disturbance in the tunnel Mach number, particularly at angles-of-attack
above five degrees, although the onset of this disturbance was dependent on the

test Mach number. Figure 33 shows the SOFM winning nodes for positive and negative
corrections as determined by the PMMSC during the run. Figure 34 shows the Fan RPM

and tunnel temperature during the run.

Raise correction class
20 T ¥ T T T v v T

10 7

o 1 H 1 1 i 1 1 1
0 20 40 60 80 100 120 140 160 180

Lower carrection class
20 ¥ T T T T

151 ]

[+] 20 40 60 80 100 120 140 160 180
Time (min)

Figure 33. Winning nodes for SOFM_5 and SOFM_6 during test
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Figure 34. Fan RPM and Tunnel temperature during test
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In order to illustrate the operation of the PMMSC, a shorter interval of the run is
shown in Figure 35. Figure 35 shows the Mach number being controlled to a set point of
0.85 over a 15 minute interval. The angle of attack, alpha, is being steadily increased
during this interval, while beta is maintained at zero. Fan RPM and tunnel temperature
are steady as shown. Att =98, the increases in alpha begin to cause the Mach number to
drop. At =99, a short duration (0.1 sec) raise correction brings the Mach number back to
within tolerance. Further increases in alpha result in another decrease in Mach number.
Another small raise correction minimizes the error. At t=104 a longer duration corrective
pulse is applied after the Mach number response from the previous short duration pulse is
classified as much less effective than the previous corrections. This is seen where the
raise correction SOFM winner changes from 11 to 3. The corresponding raise correction
SOFM winner change is shown in Figure 35. The raise correction SOFM winner
corresponding to the Mach number response to the longer pulse is node 18.

A rather large decrease in angle-of-attack, from 12 degrees to near zero, causes the
Mach number to jump up even further. Successive lower corrective pulses bring the
Mach number back, while changing the SOFM winner of the lower corrective response,

seen in Figure 35.
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Figure 35. A 15 minute interval of the test
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Figure 36. Comparison of PMMSC to existing control and expert operator



92

Comparison of PMMSC to Existing Controller and Expert Operator

Figure 36 compares the performance of the existing scheduled control, an expert
operator, and the PMMSC under similar conditions over a nominal fifteen minute
interval. Mach number, control commands, and test model angle-of-attack (disturbance)
are shown for the existing control, an expert operator, and PMMSC control.

Derived metrics to quantify the comparisons between the three cases are the time
out of tolerance and the L1 norm of the control input, u. The time out of tolerance is
cumulative sum of time that the measured Mach number deviates beyond the required

tolerance of 0.003 :

k=N
time out of tolerance = ZaAt(k) ;
k=1

where a=0 if |[M(k)- M, (k)|< 0003;
and a=1 otherwise ; (55)

t 3 (£(0),1(1),....,1(N)) ;
At (k)=1(k)—t(k —1).

The L1 norm of the control commands is :

k=N
Li[u]= Y Ju(k)|. (56)
k=0

For this particular model, the angle-of-attack begins to mildly disturb the Mach
number at approximately 5 degrees. Table 11 lists the reduction in the standard deviation
of the Mach number, time out of tolerance, control effort, and time required to complete

the sweep through the desired range of angle-of-attack while maintaining Mach number
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steady for this comparison. For this particular test condition, the PMMSC performs

slightly better than the expert operator, but with much less control effort and less time to

complete the alpha sweep. Compared to the existing automatic control, the PMMSC

maintains the Mach number within the desired tolerance much better with less control

effort, completing the alpha sweep in less time, which is the most important figure of

merit for the utilization of the facility.

Existing Expert Operator PMMSC % Reduction
controller Auto / manual
Mean 0.8497 0.8500 0.8497 --
SD 0.001527 0.001358 0.001226 20/ 10
Time out of 46.5s 3452 s 332 s 29/4
tolerance
L1 norm [u] 10.6 12.33 6.3 40 / 49
Alpha sweep 886 s 930 s 806 s 9/ 13

Table 11. Comparison of existing automatic control, expert operator, and PMMSC

control

An additional metric on the control, the control density, £ , was calculated by

taking the sum of the absolute value of the control over a 50 sample sliding window:

E (k) = & [u(k)]= Y, lutk —i)|.
i=0

i=49

(57)

The control density is used to compare the sparseness of the control between the

PMMSC, the existing controller, and an expert operator, shown in Figure 37. This

quantity measures the accuracy of the present control input, so in the PMMSC case it is a

measure of the local linear models to predict the tunnel dynamics. The PMMSC is

clearly the most sparse, but allows for increased density of the control when demanded by

external disturbance, similar to the variation in control density employed by the expert
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operator. This is in contrast to the existing automatic control, with fixed gains for a

particular operating point resulting in a narrow range of control density.

Control densly ox exfing conirol Control densly for RNGPC . c’[""'"‘f’”"‘]““"’"‘:’

35 35

2§ 25 25

1 1
[ “ H ” oS
o 2 4 2 [ [

]
Time (min) Time {min} Time {min}

Figure 37. Comparison of Control Densities

Figure 38 compares the results of controlling the Mach number to several
different set points over a nominal 28 minute interval. Mach number set points of 0.95,
0.9, and 0.6 are common to all three controllers. The PMMSC controls the Mach number
to 0.85 versus 0.8 for the operator and existing controller. This difference is minimal and
still provides a reasonable basis for comparison of the controllers. The angle-of-attack
was varied extensively during all three runs. Again, the PMMSC maintains the Mach
number within tolerance for a higher percentage of the time, with less expenditure of
control effort. Table 12 lists the figures for time out of tolerance and control effort for the
three runs. The PMMSC reduces the time out of tolerance on the order of 15-20 percent
compared to the existing controller or an expert operator. The control effort is reduced by
12 percent compared to the existing controller, and 20 percent compared to an expert

operator.
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Existing Expert Operator PMMSC % Reduction
controller Auto / manual
QOut of 329 s 310s 266s 19.1/16.5
tolerance
L1 norm [u] 424.2 466.2 374.3 11.7/ 19.7

Table 12. Comparison for controlling to several different set points

The differences in the control density for the three cases are illustrated in Figure
39. The variation in the control density is greatest for the expert operator and least for the
existing controller. The PMMSC falls between the two cases in terms of variation of the

control density, while requiring less overall control effort to provide less time out of

tolerance.
Control densly for exsing control Conlrol denshy Jor sxpert operalor - Control densly lor NNCPC
50, - T - 5, T T 504 T T T
45 45 4
40] 40 &)
35 35| »f
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20} 20 ol
18] 15 15!
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Figure 39. Comparison of Control Densities during set point changes
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Experimental Results of Modeling the Tunnel Dynamics

Although the results of controlling the tunnel using the PMMSC imply some
degree of success at modeling the tunnel dynamics, in this section we will explicitly
compare the predicted Mach number responses to actual responses recorded during the
experimental testing. This will provide some insight into the relation between the
prediction error and the actual error observed while controlling the tunnel with the control
sequence that was selected based on minimizing the predicted error.

The experimental results presented in this section are based on all the predicted
and actual responses for the three hour control test shown earlier in Figure 31. This test
consisted of rather lengthy segments where the Mach number was controlled to within the
0.003 tolerance at M=0.95, 0.90, 0.85, and 0.6. The control inputs during this test are
predominately from input_class_0 (all zeroes), input_class_2 (ramp down), input_class_4
(end of ramp down), input_class_5 (small positive correction), input_class_6 (small
negative correction), and input_class_8 (negative transition). A second control test,
shown in Figure 45, provides results from predicting responses to input_class_1 (ramp
up), input_class_3 (end of ramp up), and input_class_7 (positive transition). Table 13
lists the distribution among input classes for the two tests. Then, for each input_class, the
relative frequency of the associated SOFM winners were determined and displayed in the

corresponding histogram plots, Figures 40 through 44.
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Figure 40. SOFM_0 winning nodes
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Figure 42. SOFM_3 and SOFM_4 winning nodes
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Ramping up under NNCPC control
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Figure 45. Ramping up with PMMSC control
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input_class Figure 31. Figure 45.
0 20859 64
1 0 668
2 200 0
3 2 4
4 3 0
5 155 27
6 150 10
7 2 828
8 319 0

Table 13. Distribution among input_classes for Figures 31 and 45.

As a measure of the error between the predicted and actual responses to the
control input sequence selected by the predictive controller, an average of the multi-step

prediction error over the last 30 steps of the prediction was calculated by:

1 n=50

=%Z|M(k+n)—M'(k+n)| . (58)

This measure is the average absolute value of the step-by-step prediction error
over the last 30 prediction steps. This is the same interval over which the predictive

controller evaluated the responses to candidate controls, thus providing a direct measure

of the difference between the predicted response and the actual response. The average
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absolute value of the error is a more intuitive choice over the Euclidean norm here, given
the small absolute value of the control tolerance.

The SOFM’s associated with input_classes_7 and _8 are only used to predict the
Mach number response over the next ten sample periods, so the average multi-step

prediction error is modified to cover only the first ten points of the predicted response:

1 n=20

=1 S IMk+n)-M"(k+n)]| . (59)

S 10
Figures 46 through 54 show ensembles of predicted and actual Mach number
responses for all the input_classes. Additionally, the average multi-step prediction error

for each prediction is also shown. The mean value and standard deviation for taken over

all predictions for each input_class, are listed in Table 14.

input_class N Mean SD Control Function
0 10 000 | 0.000947 | 0.000401 Steady State
1 668 0.0065 0.0041 Ramp up
2 200 0.0039 0.0030 Ramp down
3 4 0.0046 0.0018 End of ramp up
4 3 0.0031 0.0019 End of ramp down
5 155 0.0018 0.0012 Positive correction
6 150 0.0017 0.0012 Negative correction
7 828 0.0014 0.0010 Positive transition
8 319 0.0016 0.0010 Negative transition

Table 14. Multi-step prediction errors for all input_classes
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Figure 46. Predictions, responses and prediction error for input_class_0
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Predicted Mach number responses for input_class_2
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Figure 48. Predictions, responses and prediction error for input_class_2



Figure 49. Predictions, responses, and prediction error for input_class_3
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Predicted Mach number responses for input_class_4
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Figure 50. Predictions, responses, and prediction error for input_class_4
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Predicted Mach number responses for Inpui_class_5
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Predicted Mach number responses for Input_class_6
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Figure 52. Predictions, responses and prediction error for input_class_6
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Predicted Mach number responses for input_class_7
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Figures 55 through 57 show typical predictions, the actual Mach number response,
and the corresponding control input. The examples show both ramping and regulating
cases at several Mach numbers. The Mach number is shown in solid and the predicted
value as a dotted line. The goal of the linear model is to predict the steady state response
of the tunnel, so the plots can be effectively divided into an initial transient phase
corresponding to the first twenty samples and the following steady state phase,
corresponding to the last 30 samples, which is the interval which the predictive controller
evaluates the candidate sequences. The examples shown are illustrative of the
performance found during operation, and we observe that the local linear models are
predicting well the resulting responses.

Although examples of typical predictions are illustrative, consideration of the
multi-step prediction errors and their corresponding statistics provides more insight into
the overall accuracy of the predictions and consequently the accuracy of the control
provided by the PMMSC. The predictions for both the regulatory cases, input_class_5
and input_class_6, have multi-step prediction errors with a mean plus one standard
deviation less than the required control tolerance of 0.003. Figure 43, the histogram for
these SOFM, indicates a good distribution of winners across these maps. Taken together
with the steady state control tolerance achieved by the PMMSC, we can conclude that the
locally linear predictors and consequently, the underlying discretization of the tunnel
dynamics by the corresponding SOFM provides both sufficient resolution and coverage of

state and control spaces.
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Figure 55. SOFM Predictions of Mach number in set point regulation
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CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH

Conclusions

Modeling and controlling systems with a wide range of dynamic characteristics is
a rich problem with many possible approaches. In this research, the method of local
linear modeling based on the self-organizing feature map has been extended to a control
framework as an approach to this problem.

The SOFM based modeling method was employed to develop a set of models
which, collectively, described the system dynamic characteristics over the entire range of
operation, but individually, represented the response of the system in some restricted
region of both the state and control spaces of the system. The extension of the method
allowed us to predict the system response to a small, but effective set of inputs, using the
model which best describes the local dynamics. The input corresponding to the
prediction that best satisfied the requirements at the output was then applied as the
control. The overall result was the development of a controller, the PMMSC, which
predicted the system response by switching to the best available model.

Two problems which naturally arise from this approach are: how to guarantee that
the collection of models adequately cover all the dynamic regimes of the system, and how
to select the model which best describes the local dynamical regime. Our SOFM based

local linear modeling approach addresses both the problems with a computationally
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efficient method. The SOFM guarantees that the repertoire of dynamics used for training
are represented by the collection of local models and serves to identify the local dynamic

regime. In a sense, the diverse plant dynamics are captured in a compact table look-up of
linear models.

The combination of the locally linear models and a small set of candidate control
sequences provided a computationally efficient method for multi-step predictive control.
This was contrasted with generalized model predictive control, particularly in an
environment which requires switching between models.

For this application, the fundamental control problem is one of regulating the
tunnel Mach number to within tolerance of the desired set point under nonstationary
loads. There were several characteristics of this problem that made it an attractive
candidate for application of our method. The first was that the open-loop plant was
stable, so the focus was on improved regulation. Secondly, there was a wealth of data to
train a locally linear dynamic model of the tunnel under different dynamic conditions.
Third, the control input is quantized to three values, which allowed for a meaningful
clustering on a small set of representative control prototypes that were derived from the
experiential knowledge of the tunnel.

The PMMSC was implemented on inexpensive computing hardware and used to
control the wind tunnel to within the strict research requirements for three separate runs
of three hours. The performance of the PMMSC was compared to both the existing
controller and expert human operators by several metrics. The PMMSC provided
improved performance with decreased control effort over both the existing controller and

expert human-in-the-loop control.
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Future Research

In this research, the method of SOFM based local linear modeling has been

extended to a control framework. However, the resulting predictive, multiple model

switching controller developed for this application does not represent a general control

architecture, which points to directions for further work.

L.

The control space for this application was partitioned by the construction of
representative prototypes. This represented the incorporation of a priori
knowledge about the operation of the system. A clustering of the inputs using
the SOFM, would enhance the generality of the method

The plant being controlled in this application was stable. The method should
be investigated for stabilization of an unstable plant, at least in simulation
studies. This would open the possibility of identifying stabilizing and
destabilizing manifolds of the control space, under the first suggestion for
further work

Incorporation of an on-line adaptive model should be investigated. These
could use the best SOFM based model as a starting point to speed the up the
convergence

The SOFM algorithm could be implemented on-line and used to reformulate
the maps based on accumulated knowledge as the system explores operating

regions not covered in the training data.



APPENDIX
STABILITY CONSIDERATIONS

An approach for considering the stability of the overall system is to analyze the
stability characteristics of a simple system with bang-zero-bang (T, 0, +I" ) input,
controlled using feedback and a combination of simple nonlinear functions. The system,
considered in discrete time formalism, consists of an integrator, d pure delays, and a
nonlinear controller implemented by:

1) a symmetric dead zone with zero output for inputs in the closed interval [-¢, +€]

fx)y= x if x> &€
f(x)= x if x<-¢

fx)y= 0if |x < ¢ (60)
with €>0
2) a szgnam function
fx)= T if x>0
f(x)=-T if x<0 o

f(x)= 0 if x=0
with T >0

The system is shown in block diagram format in Figure 58.
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r=0 Egg ] "Hlew| e |
£ —r Z z+1

Dead Zone Signum Delay Integrator

Figure 58. A simple nonlinear system with feedback

Consider the system with no delays, d = 0. The nonlinear control law yields the

system equations:

yk+1)=y(k)-T if y(k)> €
yk+1)=yk)y+T if yk) <-¢ (62)

yk+1)=y(k) if |yk)|< e
In order to prove the stability of the system, a simple candidate Lyapunov function of the

system is chosen:
1 2
Iyl =7y (k) (63)

For stability about the origin, y = 0, we require that [L.aSalle, 1986]:

1) V[y]>Oforally, y=0
2) V[y]=0 for y=0 (64)
3) AV <0 along the trajectory of (62) for all y

where
AV =V[y(k +1)] - V[ y(k)] (65)
Conditions 1) and 2) are true by inspection for (64). Condition 3) needs to be considered

in three distinct cases corresponding to (62):
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Case 1:  y(k)>e¢
1 : 1 2
av=_[yo)-T] - 2[yw]
_Loa 1. 1.
AV—Z)’ (k) }’(k)r+2F 7Y (k)

ll“2 (k)"
) y

1 1
Thus AV <0if y(k) 25 I', which implies that € 251“

Case 2: y(k)< —¢€
1 1 2
AV=5[y(k) +T —-2-[y(k)]
AV—l 2(k) + y(k)T 11"2 1 2(k
—2y() y(k) +3 —zy()
1
=-2—1“2 +y(k)T

1 1
Thus AV <0if y(k) < —(5 I"), which implies that € ZEF

Case 3: Iy(k)|< €

1 2 1 2
av=-[yo | -Zlw]

AV =0
Thus AV <0if € 20

Thus this system, with d=0, will be stable and within the bound e of the origin if the

discretized control input at each instant is either +I',—TI",or 0, and e is greater than 51" .
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Now we consider the cases of a single delay d = 1. The nonlinear control law

yields the system equations:

yk+2)=yk+D)+T if ylk)> €
yk+2)=yk+1)-T if y(k)<-¢ (66)

yk+2)=yk+D) i [yo|< €
For this case the Lyapunov candidate function includes the additional state associated

with the delay:
1 2 1 2
VIy)1=75y" k) + -y (k+1) (67)

AV =V[y(k+ 1] - V]y(k)]

and (68)

-2 *(k+2) 2 *(k)
—2” 2’
Again we evaluate the three distinct cases corresponding to (65), with the additional

consideration for the added delay in the system:

Case I:  y(k)>e¢

If yk-1)>¢
y(k+2)=y(k) -2
If |yt -1 <e
y(k+2) = y(k) -T
If yk-D<-¢

y(k+2) = y(k)
For these three cases , the one that sets the minimum lower bound on &

1 2 1 2
AV =—{ytk)-2r] - ~[30)]

_1. 2 1 2
AV =2y (k) =2y()T+2T* = 5* (k)

=22 =2y(k)l
=21 ("= y(k))
Thus AV <0if y(k) 2 T", which implies that € 2 T’
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Case2: y(k)< —¢€
If yk-1)<e
y(k+2) = y(k) + 2T
If | yk-1|<e
y(k+2) = y(k) +T
If ylk—1)>¢
y(k+2) = y(k)
Again, the lower bound on € is deterrmined by:

1 1 2
AV=E[y(k)+2F]2 - E[y(k)]

_i 2 2 l 2
AV—-2y (ky+2y(k)I'+2I" —2y (k)

=2 +2y(k)T
=2 (T + y(k))
Thus AV <0if y(k) £ -T, which implies that € 2 T
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Case3: |y(k)| < e
If yk-1)< -¢
y(k+2) = y(k) + T
If |yte-1)| <e
y(k +2) = y(k)
If y(k=1)>¢€
y(k+2) = y(k)+T

1 2 1 2
aV=_{y+T] - [y0)]

AV—l 2(k)+ (k)1"+11“2 1 2(k)
=37 y > Y

I’ +y(k)T

N | —

1
=L T+yk)

1 1
Thus AV <0if y(k) < --2—F, which implies that € 2 —2~F~

Thus this system, with d=1, will be stable and within the bound ¢ of the origin if the

discretized control input at each instant is either +I',—I",or 0, and € is greater than T .

By induction, for the case of d delays we get the result that:

1 2 1 2
AV =E[y(k) +(d+1)I] - )]

where — is for y(k) > € and + is for y(k) < —€ , then

AV:-%—yz(k)i(d+ Dy(k)T'+ %(d+ 1)21“2—%)’2(’0
- %(d+ D2 £ (d + 1)y(k)T

d+1
=d+1)I {Tr‘i y(k)}

, d+1 o d+1
Thus AV <0if |y(k)| 2 — T, which implies that £ 2 ——T
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The general result is that if ;

¢ z( "—z’f—‘]r (69)

then the system will be stable and I y(k)l <g ask — oo, i.e. the system will converge to a

region around the origin bounded by €.

For a system with long delays, this can impose a large loss of precision in the
control of the output in order to guarantee stability. A strategy to circumvent this loss of
precision while still providing stability is to apply sequences of control commands
composed of m sample intervals of T, followed by d sample intervals of zero input, for
a total sequence length of (m + d). Thus control sequences are determined every (m+d)
samples, and applied open-loop over the (m+d)T interval, where T is the sample interval

duration. Then if at time k, the controller selects a control sequence :

[£(,T,...T"), 0,0,...0] (70)
_—v-_—l \_w—-—J
msamples d samples
then the output y(k + m+d ) is:
yk+m+d) = y(k) x mI’ (71)

Similar to the earlier result ( 69), the system controlled in this fashion will be stable to

within € of the origin if :
m
£ 2( —) r (72)

wherem=1,2,3,....
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