NASA/CP-97-206241

Government-Sponsored Programs on Structures Technology

Compiled by
Ahmed K. Noor and John B. Malone

November 1997
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part or peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that help round out the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Email your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Phone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 800 Elkridge Landing Road
 Linthicum Heights, MD 21090-2934
Government-Sponsored Programs on Structures Technology

Compiled by
Ahmed K. Noor
University of Virginia
Center for Advanced Computational Technology, Hampton, Virginia

John B. Malone
Langley Research Center, Hampton, Virginia

Proceedings of workshops sponsored by the National Aeronautics
and Space Administration, Washington, D.C., the American Institute of
Aeronautics and Astronautics Structures Technical Committee, Reston, Virginia, and
the University of Virginia Center for Advanced Computational Technology, Hampton, Virginia,
and held in Kissimmee, Florida
April 6, 1997
and in Hampton, Virginia
September 4, 1997

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 1997
CONTENTS

PREFACE .. iii

INTRODUCTION AND HIGHLIGHTS OF THE WORKSHOP 1
 Ahmed K. Noor, ACT Center, University of Virginia, Hampton, VA

AIRFRAME SYSTEMS - RESEARCH AND TECHNOLOGY
BASE PROGRAM .. 19
 Woodrow Whitlow, Jr., NASA Langley Research Center, Hampton, VA

AN OVERVIEW - NASA LERC STRUCTURES PROGRAM 41
 Erwin V. Zaretsky, NASA Lewis Research Center, Cleveland, OH

HABITATS AND SURFACE CONSTRUCTION: TECHNOLOGY AND
DEVELOPMENT ROADMAP .. 75
 Marc Cohen, Ames Research Center, Moffett Field, CA and
 Kriss J. Kennedy, Johnson Space Flight Center, Houston, TX

STRUCTURES TECHNOLOGY DEVELOPMENT .. 97
 Donald B. Paul, Flight Dynamics Directorate, Wright Patterson Air
 Force Base, OH

STRUCTURES TC GOALS/RESPONSIBILITY/OPPORTUNITY AND AFOSR 141

STRUCTURAL MECHANICS ... 159
 Brian P. Sanders, Air Force Office of Scientific Research, Washington, D.C.

THE DARPA SMART MATERIALS AND STRUCTURES PROGRAM 173
 C. R. Crowe, Advanced Research Projects Agency, Arlington, VA

STRUCTURAL DYNAMICS PROGRAM .. 185
 Gary L. Anderson, U.S. Army Research Office, Research Triangle Park, NC

SOLID MECHANICS PROGRAM .. 201
 Roshdy George S. Barsoum, Office of Naval Research, Arlington, VA

OVERVIEW OF FAA STRUCTURAL INTEGRITY PROGRAM FOR LARGE
TRANSPORT AIRPORT ... 209
 Paul W. Tan, Federal Aviation Administration, Atlantic City, NJ

OVERVIEW OF RESEARCH, DEVELOPMENT AND APPLICATION
ACTIVITIES AT SANDIA NATIONAL LABORATORY ... 237
 Paul J. Hommert, Sandia National Laboratory, Albuquerque, NM

STRUCTURAL MECHANICS CODE DEVELOPMENT AT LAWRENCE
LIVERMORE NATIONAL LABORATORY ... 279
 Peter J. Raboin, Lawrence Livermore National Laboratory, Livermore, CA

AIRCRAFT ENGINE MATERIALS: RECENT TRENDS AND FUTURE
DIRECTIONS ... 293
 James C. Williams, General Electric Aircraft Engines, Cincinnati, OH
Introduction and Highlights of the Workshop

Ahmed K. Noor
Center for Advanced Computational Technology
University of Virginia
Hampton, VA
INTRODUCTION AND HIGHLIGHTS
OF THE WORKSHOP

Ahmed K. Noor
Center for Advanced Computational Technology
University of Virginia
NASA Langley Research Center
Hampton, VA
OUTLINE

Structures technology encompasses a wide range of component technologies from materials development to analysis, design, testing, production, and maintenance. Materials and structures have been largely responsible for major performance improvements in many aerospace systems. The maturation of computational structures technology and the development of advanced composite materials, witnessed during the past thirty years, have improved structural performance, reduced operational risk, and shortened development time. The design of future aerospace systems must meet additional demanding challenges. For aircraft, these include affordability, safety and environmental compatibility. For military aircraft, there will be a change in emphasis from best performance to low cost at acceptable performance. For space systems, new challenges are a result of a shift in strategy from long-term, complex and expensive missions to those that are small, inexpensive and fast.

Materials and structures, in addition to being enabling technologies for future aeronautical and space systems, continue to be key elements in determining the reliability, performance, testability and cost effectiveness of these systems. This will be discussed further in subsequent presentations. The focus of the workshop is on current government sponsored programs in the structures area. The outline for the introductory remarks is given in Fig. 1.

First, some of the characteristics and design drivers of future aerospace systems are described; second, the component technologies that can improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs are identified; third, the changes in the activities and operations of the AIAA Structures Technical Committee are discussed; and fourth, the objectives and format of the workshop are outlined.

Figure 1
PARADIGM CHANGE IN STRUCTURES TECHNOLOGY

In the past, the structures and other technology programs were derived from missions and vehicles selected to meet the enterprise objectives. In the future the enterprise objectives will drive the structures technology which in turn will expand the mission horizons. The missions and vehicles will evolve from the convergence of objectives and technology.

- Enterprise objectives drive structures technology
- Structures technology expands mission horizons
- Missions and vehicles evolve

Figure 2
CHARACTERISTICS OF FUTURE AEROSPACE SYSTEMS

Some of the major characteristics of future aerospace systems that will affect their design are:

- a high degree of autonomy - thinking, self-healing vehicles will feature embedded sensors, actuators, and elaborate information processing systems
- miniaturization of subcomponents and/or the entire vehicle
- engineered multifunctional materials
- modularity - using modules to tailor vehicle capabilities to specific mission needs.

Figure 3
The design drivers for future aerospace systems include:

* affordability, with emphasis on reducing life-cycle cost;
* improved performance via insertion of new technologies; and
* rapid prototyping which reduces both the design and development times.

The design objectives can be achieved through the use of intelligent simulation-based design environment which is described subsequently (Fig. 11).

Affordability
- reduce life-cycle cost

Rapid prototyping
- reduce design and development times

Improved performance
- rapid insertion of new technologies

Achieved through...
- intelligent synthesis environment

Figure 4
IMPACT OF STRUCTURES TECHNOLOGY ON FUTURE AIRCRAFT

For some of the future air vehicles, the development and deployment of new structures technologies can have more impact on reducing the operating cost and the gross weight than any other technology area. This is depicted in Fig. 4.

Projected percentage reduction in subsonic transport operating cost in 2020 resulting from deploying new technologies.

1. Long_haul/high capacity (I. conventional, 2. Blended wing body); 3. Long_haul capacity conventional; 4. Medium range intracontinental; 5. Regional jet (courtesy of NASA Langley Research Center).

Projected vehicle total gross weight reduction percent. Supersonic (1. Long_Haul, 2. premium service, 3. business jet); Long_haul, high capacity subsonic (4. conventional, 5. blended wing body); global air cargo (6. long haul, 7. short haul); STOL (8. medium range intercontinental, 9. short haul high capacity); short haul/vertical lift, 10. tiltrotor.

(courtesy of NASA Langley Research Center).

Figure 5
STRUCTURES TECHNOLOGY AREAS

The component technologies that can improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs can be grouped in six categories, namely:

* smart materials and structures
* multifunctional materials and structures
* affordable composite structures
* extreme environment structures
* flexible load-bearing structures
* computational methods and simulation-based design.

The development of each of the component technologies is a multidisciplinary activity which involves tasks in other disciplines.

![Inflatable solar concentrator](image1)

* Advanced grid stiffened structure

![Technology flight demonstration of MFS DS-1](image2)

* Temperature distribution in X-33 reusable launch vehicle

Figure 6
Smart structures sense external stimuli, process the sensed information, and respond with active control to the stimuli in real or near-real time. The response to external stimuli can be through deforming or deflecting the structure, or through communicating the sensed information to another control center. Smart materials enact a deformation or deflection of the structure by changing their physical properties when subject to either an electric, magnetic or thermal load.

Multifunctional structures (MFS), in addition to supporting loads, incorporate sensors to detect and evaluate loads or failure, and to interact with the surrounding electromagnetic environment. MFS represent a new manufacturing and integration technology by which communications and electronics equipment are integrated into conformal load-bearing structures. The technology is enabled by advances in large-scale integrated electronics packaging, lightweight composite structures and high-conductivity materials. In multifunctional structures, electronic assemblies (multichip modules), miniature sensors and actuators are embedded into load-carrying structures, along with associated cabling for power and data transmission. This level of integration effectively eliminates traditional boards, boxes, large connectors, bulky cables, and thermal base plates, thereby yielding major weight, volume and cost savings, over traditional structural and electronic packaging techniques.
AFFORDABLE COMPOSITE STRUCTURES

For many of the future air vehicles, the use of composite primary structures, along with other structures technology improvements, can have more impact on affordability than any other technology area. While composite design opportunities continue to be explored, the cost to manufacture composite structures has proved to be the biggest obstacle to their widespread use. This is due to design and manufacturing approaches that utilize composite materials in the conventional “metals fashion” of assembling large numbers of mechanically-fastened parts. Affordable composite aerospace structures can be achieved by proper material selection, changing load paths, using robust low-cost manufacturing processes and joining/assembly techniques, and developing approaches for subsystem integration. A fully-coordinated design approach involving larger, integrated components to maximize producibility, quality, and design efficiency is needed in order to fully exploit the weight and cost benefits of composites. This will require composites to be considered as early in the conceptual design process as possible so that load paths are defined that offer manufacturability and do not penalize the efficiency of the composite structure. Among the low-cost composite manufacturing processes are tow placement, resin transfer molding, resin film infusion, pultrusion and nonautoclave processing. An example of promising structural concepts for low-cost automated manufacturing is the Advanced Grid Stiffened (AGS) structure which evolved from early isogrid stiffening concepts, and are characterized by a lattice of rigid, interconnected ribs.

Several government and industry programs have focused on affordable composite structures. Noteworthy among these are the Advanced Composites Technology (ACT) Program; Composites Affordability Initiative (CAI) in the U.S.; and the Affordable Manufacture of Composite Aircraft Primary Structures (AMCAPS) Program in the U.K.

A look inside the first composite grid stiffened flight structure. The structure, a payload shroud, is composed primarily of high-tech carbon fiber and is filament wound as one continuous piece (courtesy of Air Force Research Lab., Kirkland Air Force Base).

Figure 8
Hot structures is an enabling technology for airframes and engines operating in the high-speed flight regime required for future transpacific and transatmospheric vehicles (TPV and TAV), as well as for space transportation systems. For airframes, new and lightweight structural concepts will be needed that can accept high temperatures (400°F through 1500°F) and high acoustic content (noise levels up to 170 dB). This creates an entirely new environment within which large areas of the vehicle will now be exposed, simultaneously, to extreme thermal and acoustic load levels.

For future space transportation systems, advanced materials and structural concepts are needed for the primary structure, leading edges/nose caps, cryotanks and thermal protection systems (TPS). For the primary structure, candidate materials are high-temperature polymeric matrix and advanced metal matrix composites. Reliable bonded and bolted joint concepts are needed for these materials. For the leading edges/nose caps, refractory composites, active cooling and reusable ablators are considered. Composite and metallic sandwich construction are candidates for the cryotanks. The tanks need to be integrated with the vehicle and with a global health monitoring system during design. For TPS, candidate materials include ultra high-temperature ceramic composites and long-life, low-cost carbon-carbon and ceramic matrix composites. The use of refractory composite hot structures concepts in the primary structure can eliminate the requirement for TPS.

![Figure 9](image-url)

Affordable, Operable, Reliable High Performance Systems

Figure 9

13
FLEXIBLE LOAD-BEARING STRUCTURES

Future flexible load-bearing aerospace structures include inflatable deployable aperture structures for antennas, radars, solar sails and reflectors; flexible wall multilayer structures for lunar and Mars habitats; and novel flexible load-bearing concepts for aircraft structures. Inflatable deployable structures combine the advantages of low-launch volume and mass.

Among the novel flexible load-bearing concepts considered for aircraft structures are the expandable fuel cell (EFC) and the compliant trailing edge. The EFCs are located on the external surface of the vehicle, are conformal to the outer moldline of the vehicle when they are empty, and are inflated when filled with fuel. The EFCs can significantly increase the range capability of the aircraft over that achieved by conventional methods.

Inflatable laboratory being attached to Mars lander to increase the internal pressurized volume for the crew (courtesy of NASA Johnson Space Center and John Frassanito & Associates).

Future tailless military aircraft using smart materials, twisting wing, expandable fuel cell, and compliant trailing edge (courtesy of Air Force Research Labs., Wright Patterson Air Force Base).

Inflatable solar sail

Figure 10
High-fidelity finite element models are routinely used to predict the loads and the response of aerospace vehicles. However, the realization of future aerospace systems and missions require advances in a number of areas of computational technology including:

- computational development of new materials and processes;
- accurate prediction of damage initiation and propagation as well as the safe life of the vehicle;
- intelligent simulation-based design which refers to the seamless process of simulating the entire life cycle of the aerospace system before physical prototyping.
GOALS OF AIAA STRUCTURES TECHNICAL COMMITTEE

The three major goals of the AIAA Structures Technical Committee are:

- serve as a focal point for new developments in aerospace structures;
- develop and deploy innovative approaches for the rapid dissemination of technical information to professionals; and
- help in identifying future directions of research in support of aerospace systems.

A number of changes have been implemented in the operations and activities of the Technical Committee. The changes aim at insuring responsiveness to changes in the aerospace community via innovative approaches and relevance of the activities.

Figure 12
NEW DIRECTIONS AND CHANGES IN THE OPERATION OF AIAA STRUCTURES TECHNICAL COMMITTEE

Among the changes in the operation of the AIAA Structures Technical Committee are:

• Development and maintenance of an elaborate web page. The URL address is:

 http://www.swri.org/aiaa_struct/

The web page will serve as a source of information for recent developments in the aerospace structures area, and as a communication infrastructure for Structures TC members (frequent meetings on the web) and other professionals in related areas.

• Coordination of activities with AIAA Technical Committee and other professional societies active in the aerospace structures area (ASME, ASCE, SAE, AHS).

• Insuring timeliness and relevance of technical subcommittees.

• Writing a report on “Structures Technology for Future Aerospace Systems” (similar to National Research Council/National Academy of Engineering reports).
OBJECTIVES AND FORMAT OF THE WORKSHOP

The objectives of the workshop are: a) provide a forum for discussion of current government-sponsored programs in the structures area; b) identify high-potential research areas for future aerospace systems; and c) initiate suitable interaction mechanisms with the managers of structures programs. Four sessions were held on April 6, 1997 and two sessions were held on Sept. 4, 1997. Thirteen presentations are included in the proceedings. Some recent reports pertaining to future aerospace systems are shown below.

Figure 14

2025 Final Report (Nov. 1996)
New Materials for Next-Generation Commercial Transports (1996)

Scenario-Based Strategic Planning for NASA's Aeronautics Enterprise (1997)
U.S. Supersonic Commercial Aircraft (1997)
Airframe Systems Research and Technology Base Program

Woodrow Whitlow, Jr.
NASA Langley Research Center
Hampton, VA
AIRFRAME SYSTEMS
RESEARCH AND TECHNOLOGY BASE PROGRAM

Dr. Woodrow Whitlow, Jr.
Deputy Director
Airframe Systems Program Office
NASA Langley Research Center
Hampton, Virginia 23681

Airframe Systems
Research and Technology Base Program

Dr. Woodrow Whitlow, Jr.
Deputy Director, Airframe Systems Program Office
April 6, 1997
THREE PILLARS FOR SUCCESS

The goals of the Aeronautics Enterprise are framed by three technology pillars:

• Global Civil Aviation;
• Revolutionary Technology Leaps; and
• Access to Space.

Global Civil Aviation focuses on our goals for safety, affordability, and the environmental compatibility of subsonic aircraft.

Revolutionary Technology Leaps addresses high-risk, innovative concepts and technology applications that break old operating paradigms, creating new tools and capabilities that open the door to new products and markets for U.S. industry.

In Access to Space, we will merge aeronautics technologies and operating principles with revolutionary new launch vehicle technologies. Again, this is about how new transportation systems will open the doors for economic growth in new sectors such as space.

The goals are framed in terms of a final outcome, which is something that NASA does not control. We have stated the goals as the anticipated benefits of our technology once it has been incorporated by industry. We cannot achieve these goals alone. To accomplish this will require partnership and coordination with manufacturers, airlines, industry, DoD, and the FAA.
The Aeronautics Enterprise works closely with its customers and partners to ensure that its technology, products and services are developed to levels where customers can confidently make decisions regarding the application of those technologies. This strategy allows the enterprise to support the national aeronautics goals:

- Maintain the superiority of U.S. aircraft and engines;
- Improve safety, efficiency and affordability of the global air transportation system;
- Ensure the long-term environmental compatibility of the aviation system; and
- Achieve aircraft-like operations and costs for launch systems.

Research programs are in place to develop technology that provides benefits in the following areas:

- Performance
- Efficiency and affordability
- Survivability
- Safety and security
- Capacity and efficiency
- Environment, and
- Cost per pound to place payload into low-earth orbit.
The NASA Strategic Plan establishes a framework for making management decisions by separating the agency’s programs into four externally focused Strategic Enterprises. These enterprises, shown at the upper right of the figure are as follows:

- Mission to Planet Earth;
- Human Exploration and Development of Space;
- Space Science; and
- Aeronautics and Space Transportation Technology.

Research conducted under the Airframe Systems Program supports the mission of the Aeronautics Enterprise.

The Aeronautics Research and Technology (R&T) Base supports the national goals by providing a foundation to do the following:

- Develop advanced technology concepts and methodologies for application by industry;
- Build focused programs to address selected national needs;
- Respond quickly to critical safety and other issues; and
- Provide facilities and expert consultation for industry during their product development.

The Airframe Systems Program develops breakthrough, innovative technologies related to those systems that either determine or characterize the performance of aircraft.
NASA R&T BASE LEAD ROLES

To take advantage of the unique capabilities that exist at each of the research centers, the Aeronautics Research and Technology Base consists of six programs:

- Airframe Systems
- Aviation Operations Systems
- Flight Research
- Information Technology
- Propulsion Systems, and
- Rotorcraft.

Each element is led where the center of gravity of relevant expertise exists. The Airframe Systems Program is led at Langley Research Center.

Airframe systems are those systems that determine or characterize the performance of an aircraft, including airframe-propulsion system integration.

Key elements of airframe systems include the following:

- Conceptual design
- Aerodynamic design, development, and testing
- Structural design, development, and testing (including airframe materials)
- Flight crew station design, integration, and testing, and
- Airborne systems (including flight mechanics, controls, electromagnetics, and flight-crucial systems) design, integration, and testing.

The Agency Center of Excellence for Structures and Materials, one of the key elements of airframe systems, is located at Langley Research Center.
Airframe systems technology development for some specific vehicle classes are addressed in other Aeronautics Enterprise programs. The Advanced Subsonic Technology (AST) Program has focused technology efforts for general aviation, civil tiltrotor, and subsonic transport aircraft. In addition, Ames Research Center leads the Research and Technology Base portion of the Rotorcraft Research Program. The High-Speed Research (HSR) Program is developing technologies that will allow the decision on the feasibility of building an economically viable supersonic civil transport aircraft. Reusable launch vehicle (RLV) technology is being developed in the X-33 Program.

While technology developments in the focused programs are aimed at relatively near-term applications, the Airframe Systems Program has the following characteristics:
- Breakthrough technologies
- High-risk/High-payoff
- Revolutionary
- Expanding Frontiers
- Pioneering research for the twenty-first century
- Requires paradigm shifts
- A sound investment in America’s aeronautics future, and
- Complemented by focused programs.

The Airframe Systems Program Office (ASPO) has planned a set of innovative Level-II research programs that are focused along advanced conceptual (systems) studies, transport aircraft, high-performance aircraft, and fundamental aeronautical concepts and methods. These programs are shown in the figure.
In order to assure that the research planning and implementation is responsive to customers' needs, the management of the Airframe Systems Program centers around vehicle classes and long-term aeronautics research needs. A Systems Studies and Analysis element provides independent assessments, high-payoff research and concepts, and data for deciding investment strategies.

The Level-II programs are managed within the Aeronautics Systems Analysis Division, the Civil Transportation Office, the High-Performance Aircraft Office, and the Fundamental Concepts and Methods Office. The Rotorcraft, Airspace Operations, and Information Systems managers serve as the Langley points of contact for those programs.
The figure shows how the Airframe Systems Level-II programs align with the national goals.

R&T Base: Airframe Systems

<table>
<thead>
<tr>
<th>System Benefits</th>
<th>Maintain the Superiority of U.S. Aircraft and Engines</th>
<th>Achieve and Efficient, Safe, and Affordable Global Air Transportation System</th>
<th>Ensure the Long-Term Environmental Compatibility of the Aviation System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance</td>
<td>Efficiency & Affordability</td>
<td>Safety & Security</td>
</tr>
<tr>
<td>Veh./Cust. Classes</td>
<td>Subsonic Transports</td>
<td>IAB, ACCESS, ASTAR</td>
<td>ALEX, Error-Proof Flight Deck</td>
</tr>
<tr>
<td></td>
<td>High Performance Aircraft</td>
<td>ATTAC, ACE</td>
<td>MAD, UCA</td>
</tr>
<tr>
<td></td>
<td>Hypersonic Vehicles</td>
<td>Hyper-X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tools & Test Techniques</td>
<td>Aircraft Morphing</td>
<td>Airframe Sys. Concept to Test</td>
</tr>
<tr>
<td></td>
<td>Basic X-Cutting Research</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | | | | | Breakthrough Innovative Technologies (BIT) Systems Studies
AIRFRAME SYSTEMS PROGRAMS

This slide presents a brief description of the following Level-II programs:

- Megaliner
- Error-Proof Flight and Aircraft Electronic Systems
- Advanced Life Extension (ALEX)
- Integral Airframe Structures (IAS)
- Alternate Civil Capacity, Environment, Efficiency, and Safety Solutions (ACCESS), and
- Advanced Subsonic Transport Aircraft Research (ASTAR).

This presentation contains details about the following programs:

- Megaliner
- ALEX
- IAS.

These programs involve a significant amount of structures research.

<table>
<thead>
<tr>
<th>Program</th>
<th>Research Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megaliner</td>
<td>Revolutionary subsonic long-haul transports</td>
</tr>
<tr>
<td>Error-Proof Flight Deck & Aircraft Electronic Systems (Error-Proof)</td>
<td>Error-Proof flight deck and mission critical systems</td>
</tr>
<tr>
<td>Advanced Life Extension (ALEX)</td>
<td>Airworthiness of thick, metallic structural components typical of wing structure, in the aging commercial transport fleet</td>
</tr>
<tr>
<td>Integral Airframe Structures (IAS)</td>
<td>Low cost large, integral, metallic structures</td>
</tr>
<tr>
<td>Alternate Civil Capacity, Environment, Efficiency, & Safety Solutions (ACCESS)</td>
<td>Cooperative activities with industry or other government agencies</td>
</tr>
<tr>
<td>Advanced Subsonic Transport Aircraft Research (ASTAR)</td>
<td>Intelligent Adaptive Control System and Adaptive Performance Optimization</td>
</tr>
</tbody>
</table>
This slide presents a brief description of the following Level-II programs:

- Aircraft Tactical Technology from Advanced Controls (ATTAC)
- Methods for Affordable Design (MAD)
- Cloaking for Survivability (CLOSUR)
- Uninhabited Combat Aircraft (UCA)
- Advances through Cooperative Efforts (ACE), and
- Hyper-X.

This presentation contains details about the ATTAC program since it involves a significant amount of structures research.

Airframe Systems Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Research Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Tactical Technology from Advanced Controls (ATTAC)</td>
<td>Advanced control technologies for performance and survivability</td>
</tr>
<tr>
<td>Methods for Affordable Design (MAD)</td>
<td>Accelerated aircraft design process and reduced aircraft life-cycle costs</td>
</tr>
<tr>
<td>Cloaking for Survivability (CLOSUR)</td>
<td>System survivability</td>
</tr>
<tr>
<td>Uninhabited Combat Aircraft (UCA)</td>
<td>Technologies for revolutionary mission capabilities and affordability</td>
</tr>
<tr>
<td>Advances through Cooperative Efforts (ACE)</td>
<td>Military focused cooperative activities with DoD, and industry</td>
</tr>
<tr>
<td>Hyper-X</td>
<td>Design and performance predictions of hypersonic aircraft</td>
</tr>
</tbody>
</table>
AIRFRAME SYSTEMS PROGRAMS

This slide presents a brief description of the following Level-II programs:
- Airframe Systems Concept to Test (ASCOT)
- Aircraft Morphing
- Breakthrough Innovative Technologies (BIT)
- Total Aircraft Management Environment (TAME), and
- Systems Studies and Analysis.

This presentation contains details about the Aircraft Morphing program since it involves a significant amount of structures research.

Airframe Systems Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Research Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airframe Systems Concept to Test (ASCOT)</td>
<td>High fidelity modeling and analysis tools for airframe and propulsion systems</td>
</tr>
<tr>
<td>Aircraft Morphing</td>
<td>Self-adaptive flight via smart systems technologies</td>
</tr>
<tr>
<td>Breakthrough Innovative Technologies (BIT)</td>
<td>Fundamental research into revolutionary technology concepts</td>
</tr>
<tr>
<td>Total Aircraft Management Environment (TAME)</td>
<td>Integrated control of aircraft</td>
</tr>
<tr>
<td>Systems Studies & Analysis</td>
<td>Maintain systems analysis capability</td>
</tr>
</tbody>
</table>
Program Statement, Objective:
NASA’s ALEX program will focus on technology issues associated with assuring the continued airworthiness of thick, metallic structural components subjected to spectrum fatigue loading, typical of wing structure, in the aging commercial transport fleet. The program will focus on structural integrity analysis methodology and NDE of these components. This research also will provide advanced technology to support the design of new subsonic aircraft.

Technical Approach:
The ALEX Program will build upon and leverage results from the Advanced Subsonic Technology Program, where appropriate, and develop new structural integrity analysis and NDE technologies that are unique to thick metallic structural components, such as the wing. The main areas of technology development will be prediction methodology for fatigue crack growth and residual strength in thick metallic structural components, and NDE methods for thick components and damage in hidden structures. The structural integrity analysis methodology development will focus on the effects of three-dimensional plasticity and variable spectrum fatigue loading in thick structures. The NDE activity will focus on methodologies for detecting and sizing fatigue cracks in multilayer complex structures and imaging methodologies for mapping corrosion in hidden structures, such as ribs, spars, forgings, and fittings.
Alex focuses on technology challenges for damage in thick and hidden structure

Research within the ALEX Program focuses on technology challenges for heavily loaded, thick metallic structural components:

- Reliable, inexpensive nondestructive evaluation methods for detecting corrosion and cracking; and
- Rigorous fracture mechanics based on fatigue crack growth and residual strength analysis methodology.

Technology challenges for heavily loaded, thick metallic structural components:
- Reliable, inexpensive NDE methods for corrosion and cracking
- Thick section aluminum
- Hidden components
- Multilayer, complex geometry components
- Rigorous, fracture mechanics based fatigue crack growth and residual strength analysis methodology
- Spectrum loading effects on fatigue behavior
- Various aluminum alloys in plate, extrusion and forging forms
- Multilayer, complex geometry components (3-D plasticity effects)
- Corrosion fatigue effects
INTEGRAL AIRFRAME STRUCTURES (IAS)

Program Statement, Objective:

The airframe industry has identified reductions in the ownership cost of airplanes as a critical factor in maintaining and increasing the market share of U.S. aircraft companies. There are significant technical challenges that must be overcome before these cost savings can be realized. The challenges that must be overcome to realize cost reductions include scale-up of advanced metallic materials processing technologies, and the durability and damage tolerance of large integral structural components. The IAS program will develop and demonstrate the technologies required to meet these challenges.

Technical Approach:

The IAS program will develop technologies required to demonstrate the feasibility of manufacturing large, integral, metallic structures for reducing the cost of manufacturing airframes. The key issues that will be addressed in the initial three-year activity (FY96-FY98) are application and scale-up of advanced materials processes, analysis methodology development and demonstration of the durability and damage tolerance of integrally stiffened structures, and verification of cost assessment tools. The results will be validated through the fabrication and evaluation of an integrally stiffened panel component.
MEGALINER

Program Statement, Objective:
The goal of the Megaliner Program is to address barrier technology issues that inhibit the development of a new generation of aircraft. The potential application is to a range of aircraft configurations from super affordable derivatives of current transport configurations to the next generation of subsonic transport configurations. These transports include very large (800 passenger), long-range (8000-12000 nmi) commercial/cargo configurations. The Megaliner Program seeks to provide technology advancements in the areas of capacity, environment, safety, and affordability.

Technical Approach:
The Megaliner Program will address barrier technologies in structures and materials, aerodynamics, airframe/propulsion integration, and acoustics to significantly expand design options for future subsonic transports. The technical approach will involve developing and validating improved analysis methods and advanced concepts integrated with ground, and potentially flight, experiments.

Megaliner Program Responds to National Capacity Issues

Goal: Develop breakthrough technologies that dramatically expand design options to enable more efficient very large transport aircraft

Objective: Address barrier technology issues for future subsonic, very large, long range commercial/cargo transports

- Advanced composite materials and resins
- Sub-scale component test of non-circular pressure structures
- Test technique improvements for high Reynold's number testing of VLT's
- Improved design tools for rapidly assessing complex flows
- Thick, high-subsonic cruise Mach airfoil performance
- Noise reduction for VLT's

35
Potential Application of Megaliner Technology

Benefits:
- Double capacity within existing infrastructure
- 30% reduction in fuel burn
- 70% reduction in CO₂
- Luxury passenger car interior noise
- No operational noise constraints
- 50% reduction in total airplane operating costs
- 200% increase in revenue pass. miles /gal

Megaliner R&T Base

Barrier Technology Development:
- Structures & Materials
 - CFD improvements for rapid assessment of complex flows
 - Sub-scale testing & analysis of non-circular structures & advanced composite materials
- Aerodynamics
 - New Tech of advanced aerodynamic concepts
- Acoustics
 - Noise reduction concepts

Leapfrog Technology:
- Advanced Materials
- Ultra High By-Pass Ratio Eng.
- Stage 4 - 777x
- Advanced Configurations
- Advanced ATM

21st Century Technology Transport Family

Decision Point

Scaled Demonstration:
- Non-circular presented structure

Ground Tests:
- Large scale, complex combined loads testing
- X-Plane (7):
 - Thick Airfoils
 - Noise Reduction Concepts
 - Propulsion/Airframe Integration

Propulsion R&T Base
VLA TECHNICAL CHALLENGES

VLA Technical Challenges

Advanced Composite Materials & Resins
Non-Circular Pressure Structures
Low-speed Aerodynamics
Transonic Performance
Buffet
Design Tool Improvements
Test Technique Improvements
Airframe Noise
Stability & Control
Aeroelasticity
Ultra-High By-Pass Ratio Engine
Boundary-Layer Ingestion
Propulsion/Airframe Integration
Ride Quality
Infrastructure Compatibility
MDO
Passenger Egress
Wake Vortex
Airport Compatibility

Airframe Systems
Other Programs
Program Statement, Objective:

Future high-performance aircraft requirements are driven by the war fighter's needs and mission requirements as derived from studies of future conflict scenarios. These studies indicate that mission requirements will continue to push the performance envelope of high-performance aircraft. The goal of the ATTAC program is to develop advanced control technologies that contribute to a 20 percent decrease in aircraft takeoff gross weight and a 30 percent increase in agility while being compatible with survivability requirements. In order to accomplish this goal, unconventional control concepts will be explored along with advanced control law design methodology and optimization techniques.

Technical Approach:

There are two elements within the ATTAC program:

Innovative Control Concepts. This element will explore unconventional control concepts such as passive porosity, synthetic jets, fluidic thrust vectoring, and active structures.

Multi-Element Control Law Design Methodology. A variety of control law methodologies and optimization algorithms will be evaluated for robustness and flexibility when dealing with a large number of control effectors with widely varying characteristics in a highly constrained design space.
AIRCRAFT MORPHING

Program Statement, Objective:
The Aircraft Morphing program will pursue achievement of self-adaptive flight for
the purposes of achieving better performance, agility, and/or safety. The approach is to
use smart, self-initiated, real-time modification and reconfiguration of aircraft structural,
material, electronic, surface and aerodynamic properties to achieve optimal performance.

Technical Approach:
Within Aircraft Morphing, three elements are planned: Smart Materials, Devices and
Systems; Aeroelasticity and Flight Dynamics; and Active Airframe Systems Control.

Aircraft Morphing Vision

- Self-adaptive flight through all phases
- New operational scenarios (e.g. point-to-point, curfew-free)

Weather Avoidance:
- Optimum Flight for changing speed, altitude, and direction

Weather Encounter:
- Flutter Suppression
- Gust Load Alleviation
- Buffer Load Alleviation

Climb:
- Minimum Fuel to Distance Climb
- Thin Inlet
- Changing Camber
- Control separation & buffer onset
- Suppress Interior Noise

Descent:
- Optimum Lift-to-Drag Ratio

Landing:
- Wind Shear Protection
- Auto-Land in all conditions

Range
Conclusions

- Aeronautics Research and Technology Base has shifted from a discipline focus to a program focus
- Program planning is progressing
 - Level-I plans are complete
 - Detailed Level-II plans are under development
 - Significant inter-center planning and coordination
- Programs are addressing problems that are important to the nation
 - Access to Space
 - Global Civil Aviation
 - Revolutionary Technology Leaps
An Overview - NASA LeRC Structures Program

Erwin V. Zaretsky
NASA Lewis Research Center
Cleveland, OH
AN OVERVIEW - NASA LERC STRUCTURES PROGRAM

Erwin V. Zaretsky, P.E.
Chief Engineer
Structures and Acoustics Division
NASA Lewis Research Center
Cleveland, OH

AN OVERVIEW -
NASA LERC STRUCTURES PROGRAMS

by

Erwin V. Zaretsky, P.E.
Chief Engineer for
Structures and Acoustics
NASA Lewis Research Center
Cleveland, Ohio 44135
The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP).

LeRC Structures & Acoustics Division
Two Primary Capabilities

- Analysis capability
- Experimental capability
There are eight core competencies of the Structures and Acoustics Division. These are listed below. A primary focus of the Division has been the design application of new composite materials into advanced aerospace structures. In addition, research is being performed on drive systems for helicopters and turboprop aircraft. Work is performed on aeroelasticity and aircraft engine noise suppression. Current goals emphasize lighterweight, more reliable aeropropulsion structures operating at higher temperatures.

LeRC Structures & Acoustics Division Core Competencies

- Computational tools
- Experimental methods and test techniques
- Structural concepts
- Advanced materials applications
- Mechanical drive systems
- Vibration control
- Aeroelastic codes
- Noise Suppression
The Structures and Acoustics Division comprises five branches consisting of 134 engineers, scientists and support personnel. The staff consists of NASA Lewis civil servants and personnel from universities and private support organizations which are listed. The breakdown of the Division programs are shown under their respective branches.

![LeRC Structures & Acoustics Division Core Competencies](image-url)
The Structures and Acoustics Division welcomes inquiries from industry, universities and other government organizations as well as private individuals. There exists many collaborative research and technology projects between outside organizations and the various branches. Contacts for each of the organizational entities are shown.
Unique mechanical testing and nondestructive evaluation techniques are being developed to make global civil aviation and access to space more competitive and affordable. A state-of-the-art computed tomography facility was developed to characterize critical manufacturing problems in advanced composite materials and engine subscale components. This facility provides rapid re-engineering and reduction in product development cycle time. A world-class benchmark testing facility for high temperature structures was established. This facility is used to verify and validate structural analyses methods for aeropropulsion systems operating at 1500°C and to produce reliable test data for advanced materials in scale-up form subjected to prototypical operating conditions. The ballistic impact facility was built for testing light weight fan containment systems and other jet engine systems where impact strength is of concern. High temperature compliant engine seals are being developed to survive temperatures up to 1100°C, to have low leakage, to exhibit resilience with cycling, and to resist scrubbing damage.
The National Aerospace Plane Project identified a critical need for seals that could operate at or above 2000°F. This temperature was in excess of conventional graphite and metal seal temperatures. A need existed for a seal that exhibits low leakage to limit parasitic losses; remains flexible at temperature; resists hydrogen embrittlement and oxidation; and be fabricable using available materials. In order to accommodate these requirements, research and development of braided seals made from high-temperature ceramics and super alloy fibers into leak resistant, abrasion resistant structures are being performed. This seal follows and seals significant engine sidewall distortions. This NASA potential seal concept was awarded the NASA 1997 Invention of the Year Award.
A state-of-the-art computed microtomography facility was established. This facility is used to characterize critical manufacturing problems in advanced composite materials and engine subscale components as well as to provide rapid re-engineering and reduction in product development cycle time. This facility is a modularized digital x-ray system that produces digital radiographic, tomographic and laminographic images. It is unique for quality assurance of composites because it resolves volumetric flaws as small as $25 \times 25 \times 25$ mm (1 mil) in a cross section of up to 5×5 cm (2 in).
A difficulty with most advanced materials is that the behavior of those materials at the test coupon level can be significantly different from that at the full-scale component level. A benchmark structural test facility has been developed to address scale-up issues by testing materials at the sub-element level. This facility can be used to verify and validate structural analysis methods. Experimental conditions are generated under prototypical loading conditions including complex stress states. The experimental results are compared to those analytically predicted.
Impact research is being conducted to reduce the weight of jet engine fan containment systems for future aircraft, assess the impact resistance of new turbine blade materials, and improve the ability of the material models in DYNA-3D to predict damage and failure. The work is both experimental and computational in nature. The ballistic impact laboratory currently has several gas guns ranging in size from 1/16" to eight inches in diameter. Projectiles weighing up to five pounds at velocities up to 1200 ft/sec. can be shot from these guns. Gun barrels range in size from 0.15 cm to 20 cm in diameter and can shoot projectiles weighing up to 2.5 Kg at speeds of 350 m/sec. A computational capability exists complementing the experimental effort. The LS-DYNA-3D explicit finite element analysis code is used to predict deformation and damage of the impact events.
Our machinery dynamics research can be broadly classified into four major activities: turbomachinery aeroelasticity, vibration control, dynamic systems response and analysis, and computational structural methods. This work is applicable to turboprop, turbofan, turbopumps, compressors, and advanced engine core technology. We are developing improved analytical and experimental methods for avoiding flutter and minimizing forced vibration response of aerospace systems. In dynamic systems response and analysis, we are analyzing and verifying the dynamics of interacting systems as well as developing concepts and methods for controlling motion in space and microgravity environments. We are developing advanced computer programs for analyzing, predicting and controlling the stability and dynamic response of aerospace propulsion and power system components such as rotating bladed structural assemblies, engine rotors, high-speed shafting, and the coupled interactions of blade-disk-shaft-casting structural systems.
MAGNETIC SUSPENSION SYSTEMS

Research is being conducted to study the feasibility of magnetic suspension system or magnetic bearings for both high temperature and cryogenic applications. The application of magnetic bearings to aircraft and rocket engines could improve the efficiency of these systems by increasing the rotor speed and controlling the rotor vibrations. It can also improve the reliability by using magnetic bearings as a health monitoring device. A magnetic bearing is similar to an electric motor. The magnetic bearing has a laminated rotor and stator made out of cobalt steel. The stator has a series of coils of wire wound around it. These coils form a series of electric magnets around the circumference. These magnets exert a force on the rotor and coupled with displacement probes keeps the rotor in the center of the cavity.
ENGINE DYNAMIC ANALYSIS

Analysis and model testing are being conducted as part of a program to develop low noise advanced wide chord and engines in cooperation with the major U.S. engine manufacturers. A demonstrator advanced wide chord fan engine from Pratt & Whitney is shown in the larger frame. The engine is in the Ames 40-by-80 wind tunnel. An analysis was performed by the Structures and Acoustics Division to assess the dynamic stability of a wind tunnel model fan that will be tested at Lewis this year.
Our research in vibration control includes developing real-time, actively controlled bearing support systems for advanced aircraft turbine engines. Such support systems will reduce advanced aircraft turbine engine weight and rotor vibrations, improve efficiency, and possibly increase stall margins. Expert system controllers are being studied that use advanced computer architectures to adaptively change flight conditions and to monitor the health of the support systems. Gas turbine engine seal efficiency is affected by rotor vibrations which causes the seals to open. Our research is conducted in order to develop a system which senses the vibrations and applies a correction force at the support bearing to cancel them.
In computational structural methods, we are developing advanced programs for analyzing, predicting and controlling the stability and dynamic response of aerospace propulsion and power system components such as rotating bladed structural assemblies, engine rotors, high-speed shafting, and the coupled interactions of blade-disk-shaft-casing structural systems. In particular, we are developing and employing computational methods to analyze the complex interacting dynamic of advanced turbo-machinery and engine components such a fans, compressors, turbines and turbopumps. Analytical methods include both deterministic as well as probabilistic methods. Modeling includes new materials such as metal matrix composites and ceramic matrix composites.
PROBABILISTIC DESIGN FOR STRUCTURAL RELIABILITY AND RISK

Deterministic structural analysis methods are not always sufficient to evaluate critical structural components properly for life-rated structural systems. Analysis of aerospace structures are formulated based on: (1) loading conditions; (2) material behavior; (3) geometric configuration; and (4) supports. These four fundamental aspects are uncertain in nature. One formal way to account for these uncertainties is to develop probabilistic structural analysis methods where the uncertainties in all participating variables are described by appropriate probabilistic functions. The objective of this research is to develop a methodology for computational simulation of uncertainties applied to specific aerospace components. We also exercise the methodology whereby it can be credibly applied to actual product design practice to quantify risk and reliability in life-rated structures.
CONTAINMENT STRUCTURES

In addition to the ballistic impact research program previously described, analytical work is proceeding which uses the results of the experimental program to evaluate fan containment concepts. The LS-DYNA-3D explicit finite element analysis code is used to predict deformation and damage of full-scale containment concepts.
We are analyzing and verifying the dynamics of interacting systems. This is illustrated in the figure where compressor and turbine blade responses are predicted in a computer simulation of a full-scale turbine engine. Analyses of this type can be used to optimize engine designs and operation thereby eliminating trial and error experimental methods.
Various computer codes developed by us, or for NASA, are used for design optimization. An example of such aerospace component optimization is illustrated for a mixed flow turbofan engine exhaust nozzle system for the High-Speed Civil Transport. The nozzle is fabricated out of several components such as rear and forward divergent flaps, rear and forward sidewalls, bulkheads, duct extensions, about six disk supports, etc. Design complexity of the nozzle increases with flight mach number, pressure ratios, temperature gradients, dynamic response, and degradation of material properties at elevated temperatures. Design optimization of a rear divergent flap of the downstream mixing nozzle was attempted through the design code CometBoards (an acronym for comparative evaluation test bed of optimization and analysis routines for the design of structures). The static as well as dynamic analyses for the flap were carried out utilizing two analysis codes (LEHOST and MSC/NASTRAN). A qualitative behavior of the flap was explored through its dynamic animation. Scrutiny of the animation revealed that skin panel, stiffeners, tapered sidewall and edge beams can be potential candidates for the purpose of design optimization of the flap. The flap was optimized for minimum weight condition for static and dynamic constraints for the potential design variables.
The development of verified and validated life prediction models for components experiencing extreme thermomechanical loading conditions such as rocket engine nozzles presents a major challenge. Research is coordinated in a number of technical areas. One such activity is the development of unified viscoplastic constitutive models which are capable of treating plasticity, creep and their interactions. Another area of research is the development of fatigue, fracture and reliability models which are tailored specifically for a particular class of materials.
SPACE SHUTTLE MAIN ENGINE (SSME)

The viscoplastic constitutive models we developed and applied to the nozzle coolant channel of the SSME was successful in predicting the failure of the channel under launch conditions and provide a correction to eliminate the failure mode. These models have been successful in predicting the "large" strains which can accumulate at critical locations in actually cooled structures as a result of creep ratchetting.
A Structures and Acoustics Division developed code, CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures Life prediction) is an integrated package that predicts the probability of a monolithic ceramic component’s failure as a function of time in service. It couples commercial finite element programs, which resolve a component’s temperature and stress distribution, to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material’s strength. CARES/Life is used world-wide. Success stories can be cited in several industrial sectors including aerospace, automotive, biomedical, electronic, glass, nuclear and conventional power generation industries.
BENCHMARK STRUCTURES FACILITY

For many advanced materials considered for aerospace application, the results from coupon testing can be significantly different from that at the component level. A benchmark structures test facility has been developed to address scale-up issues by testing material at the sub-element level. This facility can be used to verify and validate structural analysis methods by generating experimental data under prototypical loading conditions including complex stress states. The results are compared to those predicted by structural analysis.
The AST Noise Reduction Program started in 1994 to provide technology for reducing subsonic aircraft noise 10 dB relative to 1992 technology. Even though Stage 2 aircraft will be phased out by the end of the decade, increases in the number of flights will cause the noise impact to increase if there is no new technology available. The goal of the AST Noise Reduction Program is to keep the impact of aircraft noise constant after all Stage 2 aircraft are phased out. This will be done through the combination of source reduction for the airplanes (engine and airframe), identifying alternate operations for aircraft, and land-use planning for airports. Lewis is leading the effort to reduce the engine noise by 6 dB as a part of the total 10 dB goal.

Only the image shows the text "Reduce aircraft engine noise and provide for engine growth...." and "Ensure no increase in aircraft engine noise into 21st Century".
HIGH-BYPASS ADVANCED ENGINE FANS

The major U.S. engine manufacturers, General Electric, Pratt & Whitney, Allison and Allied Signal, bring their advanced design fans to NASA Lewis for testing. As part of joint programs between NASA and the engine companies, fan models are tested in the 9-by-15 wind tunnel to determine their performance, acoustic and structural characteristics. The picture shows a NASA/GE model being tested. The microphones used to collect acoustic data are seen against the tunnel wall. Results from experiments have indicated that significant noise reductions can be achieved across the normal fan operating range with modification of the stator vane geometry. Further experimentation will be conducted later in the program to verify the effects of stator vane geometry on fan tone noise at different fan pressure ratios. These encouraging results have stimulated industry into addressing how these new types of stator vane technologies could be incorporated into the next generation of high bypass turbofan engines.
Life and failure prediction of drive train components such as rolling-element bearings, gears, clutches and seals is an integral part of the research performed by the Structures and Acoustics Division. Most of this research is directed towards helicopter transmission systems. The work is both experimental and analytical. Unique test facilities include spiral level gear endurance testers and spur gear endurance testers.

Health and Usage Monitoring and Fatigue and Crack Propagation

Health and usage monitoring and fatigue and crack propagation research to improve safety and reduce maintenance of rotating machinery.

- Spiral bevel gear fatigue testing
- Gear tooth damage detection
- Gear crack propagation and life
ENGINE SEALS

As engine designers are faced with continued challenges to increase aircraft engine performance, reduce engine specific fuel consumption (SFC), and increase engine "time on the wing," they must exploit improvements in many components, including engine seals. With the advent of new concepts such as brush seals, large improvements in engine performance (greater than three-quarters of one percent reduction in SFC) are now being realized. The relatively small investment required to mature these new seal technologies, coupled with appreciable gains in engine performance, makes seal technology development a high technical return on investment.
If the criteria used to design terrestrial gear boxes were applied to helicopter and turboprop power transmission systems, these aircraft would be too heavy to carry any significant payload. In addition, as the applied load is increased for a given size box, the life and reliability of the transmission decreases by cubic power of load. In order to improve the power to weight ratio of these gear boxes as well as to increase their life and reliability, new design concepts, materials and lubrication concepts are studied and tested by the Structures and Acoustics Division. These concepts include high-contact ratio gearing and split-torque designs.
In addition to full-scale transmission research, component work is also performed on an individual scale to develop and verify analytical prediction codes. The essence of this code development and benchmarking is to apply these analytical tools to optimize mechanical transmission systems to obtain minimum power loss with maximum life and reliability. Trade-off studies are performed and are verified experimentally. This work has resulted in bevel gears with lower noise and improved performance prediction methods for gear boxes.

Gears, Bearings, and Clutches
Advanced mechanical components realized through use of new materials, concepts, and analytical tools

Test Gear

Mechanical diode clutch

Load History

Experimentally validated analysis methods

Low-noise, high-strength spiral bevel gear
The Structures and Acoustics Division has been instrumental in organizing industry-government consortiums to undertake cooperative pre-competitive technology programs. These programs are organized to consolidate talent and facilities between industry and other government laboratories to accomplish a specific and well defined goal. The advantage of this effort is gathering a critical mass of talent which does not exist at a single organization to accomplish a single well defined goal. A prime example of this effort is shown in the figure with a combined effort of the named organizations to develop a common life prediction code for metal matrix composite materials.

Engine Companies Build an Industry Common Analytical Tool

- **Metal Matrix Composites (MMC) Team Members:**
 - Allison
 - Pratt & Whitney
 - GE Aircraft Engines
 - Williams International
 - Wright Laboratory
 - NASA Lewis

Approach will lead to production capable life system

Leveraging Resources Through Collaboration
In order to manage the cooperative programs a virtual company is organized between industry and government participants. The management team is made up of members of participating industry and government organizations. A technical team leader is selected by the management team. The technical team leader together with the technical team manages the day-to-day operation of the program. A program administrator is selected by the management team to act as an administrator facilitator and primary contractor for the work being performed. The program administrator is usually a nonprofit organization. Funding can be from both government and non-government fund sources.
Habitats and Surface Construction Technology and Development Roadmap

Marc Cohen
NASA Ames Research Center
Moffett Field, CA

and

Kriss J. Kennedy
Johnson Space Flight Center
Houston, TX
Habitats & Surface Construction
Technology & Development Roadmap

Presented to the
AIAA Structures Technical Committee
Hampton, VA
September 4, 1997

Marc Cohen / NASA ARC
mcohen@mail.arc.nasa.gov

Kriss J. Kennedy / NASA JSC
kris.j.kennedy1@jsc.nasa.gov

Top Level Strategy for Habitats & Surface Construction

• **GOAL:** Sustain human presence on Mars.

• **TARGET:** Provide habitation and surface infrastructure to support humans on Mars on a long term basis.

• **PLAN:** Provide the capability to produce and construct habitats and surface facilities using indigenous resources.

• **RATIONALE:** Open Mars to long-term planetary exploration by humans with the eventual settlement of humans on Mars.

• **INITIAL PRODUCTS:** Initial human mission using relevant habitation technologies. ISRU resource demonstrations, i.e. material extraction and benefaction for processing.
Executive Summary

- **Vision**
 Provide the capability for automated delivery and emplacement of habitats and surface facilities.

- **Benefits**
 - Composites and Inflatables: 30 - 50% (goal) lighter than Al Hard Structures
 - Capability for Increased Habitable Volume, Launch Efficiency
 - Long Term Growth Potential
 - Supports initiation of commercial and industrial expansion.

- **Key H&SC Technology Issues**
 - Habitat Shell Structural Materials
 - Seals and Mechanisms
 - Construction and Assembly: Automated Pre-Deploy Construction Systems
 - ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs
 - Radiation Protection (Health and Human Performance Tech.)
 - Life Support System (Regenerative Life Support System Tech.)
 - Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.)
 - Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.)

- **What is Being Done?**
 - Use of composite materials for X-38 CRV, RLV, etc.
 - TransHAB inflatable habitat design/development
 - Japanese corporations working on ISRU-derived construction processes.

- **What Needs to be Done for 2004 Go Decision**
 - Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.
 - Determine Credibility of inflatable Structures for Human Habitation
 - Determine Seal Technology for Mechanisms and Hatches, Life Cycle, Durability
Develop Habitat Technologies
- Materials
- Processes
- Structures
- Mechanisms
- Radiation Protection
- Passive Thermal Control
- Dust Control
- Habitat Internal Subsystem In-Situ Integration

This Technology Development Area Addresses Items Such As:
- Inflatable and Composite/Carbon Structures
- Constructible Habitats
- Water Jacket Radiation Shielding
- Natural and Artificial Lighting
- Joining Processes and Interfaces
- Interior Utility Interfaces
WBS 2.0 Integrated Habitation Technology Development

Typical Products

- Pressure Shell
 - Rigid Pressure Shell Components
 - Flexible/Inflatable Pressure Shell Components
 - ISRU/ISL/ISG Pressure Shell Components
- Habitat Structures
 - Deployable Trusses
 - Deployable Columns
 - Quick Connect Bracing
 - Quick Release Structural Connectors
 - Mechanical Fastening Materials and Devices
- Interior Structures and Mechanisms
 - Bulkheads
 - Desk Support Structure and Components
 - Subsystem Equipment Support Structure and Components
 - Floor Support Structure
 - Foldable Ceiling
 - Deployable Stairs, Ramps, and Elevators
- Radiation Protection
 - Loose Regolith/Soil Shielding
 - Pressure Shell Integrated Shielding
 - Sintered/Cast Basalt Shielding
 - Prefabricated Shielding
- Micrometeoroid Protection
 - Loose Regolith/Soil Shielding
 - Pressure Shell Integrated Shielding
 - Sintered/Cast Basalt Shielding
 - Prefabricated Shielding
- Ejecta Protection
 - Loose Regolith/Soil Shielding
 - Constructed Blast Shields
 - Sintered/Cast Basalt Shielding
 - Prefabricated Shielding
- Thermal Control
 - Internal Thermal Insulation
 - Reflective Coverings and Coatings
 - Integral Shielding
- Lighting
 - Natural Lighting Techniques and Equipment
 - Artificial Lighting
- Vibration Control
 - Vibration Isolation Techniques and Components
 - Vibration Damping/Reduction Techniques and Components
 - Noise Prevention Techniques and Components
 - Noise Reduction Techniques and Components

Robotic Construction Technology (WBS 2.5)

- Survey existing approaches to robots and their capabilities - automobile assembly, housing, etc.
- Evaluate potential for adapting construction components for robotic assembly.
- Use CAD/VR to experiment with simulated robotic construction.
- Determine appropriate levels of modularity, assembly and component packaging.
- Develop virtual user interface for directing robotic/teleoperated construction.
- Build experimental construction system with components.
- Conduct integrated robotic construction ops tests.
Robotic Construction Technology Products (WBS 2.5)

- System studies of approaches to robotic/teleop construction techniques.
- Evaluation of potential for robotic methods to assemble a Lunar/Mars base.
- Develop requirements for capabilities, software, expert systems, user interface, training, hardware, end effectors, and construction components such as grapple fixtures, hard points, joints, connectors, etc.
- Design experimental prototype robotic construction system.
- Adapt hardware and software for robotic construction field testing.

Purpose and Benefits of H&SC

Habitats and Surface Construction Technology is Crucial for Long-Term Human Exploration of Space.

- **Reduce Cost**
 - Lower Launch Mass
 - Lower Logistics

- **Expand Human Presence**
 - Commonality
 - Transit Habitats/Vehicles
 - Surface Infrastructure & Habitats

- **Reduce Risk**
 - Ensure Crew Safety
 - Increase Autonomy
 - Increase Self-Sufficiency
 - Increase Reliability

- **Technology Spin-Offs**
 - Smart Structures/Habitats
 - Automated Construction
 - Entertainment & Tourism
2004 Go Decision Criteria

<table>
<thead>
<tr>
<th>Technology</th>
<th>2004 Go/ No Go Criteria</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflatable Structures</td>
<td>• Meet Human-Rating Standards</td>
<td>• Habitats: In Space and Surface</td>
</tr>
<tr>
<td></td>
<td>• Long-Duration Environmental Tests / Survivability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maintain Pressure Integrity</td>
<td></td>
</tr>
<tr>
<td>Advanced Composite Structures</td>
<td>• Meet Human-Rating Standards</td>
<td>• Habitats: In Space and Surface</td>
</tr>
<tr>
<td></td>
<td>• Long-Duration Environmental Tests / Survivability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maintain Pressure Integrity</td>
<td></td>
</tr>
<tr>
<td>Seals/Mechanisms</td>
<td>• Capability to Maintain Seal in Dust Environment</td>
<td>• Must Maintain Integrity and Long-Life in Luna/Mars Environmental Conditions</td>
</tr>
<tr>
<td></td>
<td>• No Leaks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Long Duration Service</td>
<td></td>
</tr>
<tr>
<td>ISRU-Derived Structures</td>
<td>• Prove ISRU Structural Technology</td>
<td>• Support Mars Mission with ISRU Capability</td>
</tr>
<tr>
<td></td>
<td>• Prove Manufacturing Process</td>
<td>• Support Humans as Habitats: In Space and Surface</td>
</tr>
<tr>
<td></td>
<td>• Prove Soil Moving & Mining Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prove Construction Technique Under Simulated Conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prove Autonomous/Telerobotic Equipment Capability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prove Power Efficient Techniques/Equipment</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligent</td>
<td>• Proven Ability to Integrate AI. Nano Technology into Pressure Shell</td>
<td>• Habitats: In Space and Surface</td>
</tr>
<tr>
<td>Structures (Smart Structures)</td>
<td>• Skin/Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Proven Capability for Self Diagnostics and Repair</td>
<td>• Alleviate Direct Human Activities</td>
</tr>
</tbody>
</table>

Assumes Human Factors and Radiation Shielding by Health & Human Performance Technology.
Criticality of Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Criticality</th>
<th>Justification/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflatable Structures</td>
<td>• Unproven Technology for Habitat Space Structures</td>
<td>Save $ • Can reduce the number of ETO Launch Vehicles by 2/3 Launches: - $150 - $300 M • Health: • Provides the Habitability Volume Required for Long Duration Spaceflight: Crew Psychological Health</td>
</tr>
<tr>
<td></td>
<td>• Requires longer lead time and funding to meet 2003 Go Time to answer critical technology issues about materials and shell integration</td>
<td>Save $ • Does Not Require New HLLV/Shuttle C to meet Volume Capability • Save $ • Lower IMLO (mass) thus Mission Cost • Impact to Mission Architecture Design and Operations • Health: • Protect Humans from Dust</td>
</tr>
<tr>
<td>Seals</td>
<td>• Critical Link of Providing Contamination Control</td>
<td>System 1 • Pressure Integrity of Connections • System 1 • Ensures Life Cycle of Pressure Connections, Hatchs & Mechanisms • System 3 • Protection of Lubricants and Mechanisms • Health: • Protect Humans from Dust</td>
</tr>
<tr>
<td>Advanced Composites</td>
<td>• Unproven Technology for Habitat Space Structures</td>
<td>Save $ • Can reduce the mass of a HAB by > 30%, thus IMLO • Save $ • Lower IMLO (mass) thus Mission and Transportation Cost</td>
</tr>
<tr>
<td></td>
<td>• Requires time and funding to meet 2003 Go Time to answer critical technology issues about materials and shell integration</td>
<td></td>
</tr>
<tr>
<td>Soil Moving Machinery</td>
<td>• Requires High Power and Energy Efficient Equipment</td>
<td>Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility • Mission Failure Due to Inability to Land or Link Surface Facilities due to surface conditions • Support Long-Term Objectives of Sustained Human Presence</td>
</tr>
<tr>
<td></td>
<td>• Required for Site Preparation and Clearing, Habitat Emplacement, and Radiation/ Blast Ejecta Berthing</td>
<td></td>
</tr>
<tr>
<td>Mass Handling Equipment</td>
<td>• Requires High Power and Energy Efficient Equipment</td>
<td>Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility • Mission Failure Due to Inability to Land or Link Surface Facilities due to surface conditions • Support Long-Term Objectives of Sustained Human Presence</td>
</tr>
<tr>
<td></td>
<td>• Required for Loading and Unloading of Payloads, and Moving/Connecting Elements</td>
<td></td>
</tr>
</tbody>
</table>

Enabling H&SC Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Enables</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflatable Structures</td>
<td>• Larger HAB Volume • Inflatable AeroBrake • Inflatable Airlock</td>
<td>• Smaller ETO Launch Vehicles • No LEO Assembly Ops • Save HAB Vol and Packaging Vol</td>
</tr>
<tr>
<td>Seals</td>
<td>• Integrity of Connections • Long Life Connections, Hatchs, and Mechanisms • Contamination Control</td>
<td>Pressure Integrity of Connections • Ensures Life Cycle of Pressure Connections, Hatchs and Mechanisms • Protection of Lubricants and Mechanisms • Protect Humans from Dust</td>
</tr>
<tr>
<td>Shell Materials</td>
<td>• Tolerant of Environment</td>
<td>Tolerant of Long Durations Exposure to Space and Mars Environment</td>
</tr>
<tr>
<td>Advanced Composites</td>
<td>• Lightweight Strong Structures</td>
<td>Lower Initial Mass in LEO</td>
</tr>
<tr>
<td>Soil Moving Machinery</td>
<td>• Site Preparation and Clearing • Habitat Emplacement • Radiation/Blast Ejecta Berthing</td>
<td>Ensures Cleared Site for Landing, Habitat Emplacement, and Surface Mobility</td>
</tr>
<tr>
<td>Mass Handling Equipment</td>
<td>• Loading and Unloading of Payloads • Moving/Connecting Elements</td>
<td>Required for Base Assembly</td>
</tr>
<tr>
<td>Self-Deploying and Automated</td>
<td>• External Shelters/Facilities • Internal System Assembly • Unmanned Cargo Pre-deployment</td>
<td>Limit EVA Crew Time for Construction/Assembly Operations</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Breakthrough H&SC Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Enables</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.I. Smart Structure</td>
<td>* Integrated and Self Diagnostics * Self Repair</td>
<td>* Alleviate Crew Maintenance and Repair Time</td>
</tr>
<tr>
<td>ISRU-ISS Living Shell</td>
<td>* Process CO2 Through Shell to Produce O2 for Interior Use * Integration of Nano Life Support System into Skin</td>
<td>* Self Sufficiency, Lower Weight * Applicable to Hostile Terrestrial Environments</td>
</tr>
<tr>
<td>Bio-Structure</td>
<td>* Bio-Technology Integration with Shell Skin Enables Self-Healing Capability</td>
<td>* Alleviate Crew Servicing and Maintenance</td>
</tr>
<tr>
<td>Tunneling/ Mining Mole</td>
<td>* Enables Underground Habitation Facilities Analogous to Oil Industry Siberia (Hostile Environment) Facilities</td>
<td>* Create Underground Facilities for Mars Evolution, Civilization * Constant Thermal Environment * Radiation Protection</td>
</tr>
<tr>
<td>ISRU-Derived Structure</td>
<td>* Use of In-Situ Materials to Process, Manufacture and Assemble Structures</td>
<td>* Supports Long-Term Plan for Human Expansion into Solar System * Breaks Dependency of Earth Supplies</td>
</tr>
</tbody>
</table>

Habitats and Surface Construction Roadmap

- **Timeline**
 - 1997
 - 1999
 - 2001
 - 2003
 - 2005
 - 2007

Activities
- Mars TransHAB Skunkworks Activity
- Mars TransHAB Project GO/ NO GO
- Prototype Habitat (Ground Based)
- Place TransHAB on ISS
- Ground Test Surface Equip. and Seals
- Integration, Assembly and Checkout Flight Hardware
- Launch and Deploy to Lunar Orbit/Surface
- Manufacture & Integrate Flight Hardware
- DDT&E Protolflight Hardware
- Seals and Mechanisms Prototypes
- Surface Equipment Prototypes
- Surface Base/ Habitat Design
- H&S Workshop Sessions at SPACE '98
- Inflatable Structures Workshops

84
Habitat Technology Strategy (Options)

- **CLASS I:**
 - Preintegrated, Hard Shell Module

- **CLASS II:**
 - Prefabricated, Surface Assembled

- **CLASS III:**
 - ISRU Derived Structure w/ Integrated Earth components
H&SC Technology Requirements

- **STRUCTURES**
 - 8.3 psi Lightweight Pressure Shell
 - BLSS
 - Operate for 1500 days
 - ADVANCED EVA
 - Dext Control and Minimal facilities for servicing

- **HABITATS & SURFACE CONSTRUCTION**

- **SURFACE MOBILITY**
 - Unload and Transport
 - Large Heavy Elements, Pressurized Rovers

- **HUMAN FACTORS & HABITABILITY**
 - Radiation Protection Level Standards,
 - Reduce Vol/Crew for Long Duration
 - Space Flight,
 - Autonomy, Decision Making, Human-Machine Interaction

- **SURFACE POWER**
 - Provide 50 - 100 kWe to LAB & HABS

- **AUTOMATION & ROBOTICS A.I.**
 - Assemble & Construct Habitats,
 - Mine and Manufacture ISRU Materials for Radiation and Building Materials

- **SPACE TRANSPORTATION**
 - Deliver large diameter payloads to LEO for $500/kg

- **ISRU**
 - Resupply HAB with O2 for LSS and EVA, Manufacture building components for shelters and radiation protection.

Key Structural Issues

- Metal Alloy Structures
 - Environmental Degradation, Manufacturability, $ to Manuf., Achieve tbd% weight savings, robustness, maintainability and repair.
- Composite Structures
 - Environmental Degradation, Manufacturability, $ to Manuf., Achieve 30% weight savings, robustness, maintainability and repair.
- Inflatable Structures
 - Environmental Degradation, Manufacturability, $ to Manuf., Achieve weight savings, robustness, reliability, deployability: automated/robotic assisted surface deployment, maintainability and repair.
- ISRU-Derived Structures
 - Environmental Degradation, Manufacturability, $ to Manufacture HAB units, Complexity of mining, beneficiation and processing ISRU material to make structures, robustness, reliability, automated/robotic assisted manufacturing, maintainability and repair.
Habitats and Surface Construction

Man-Rated Pressure Structure

- **Technology:** Advanced Structures
- **Application:** In-Space and Planetary Pressurized Structures for Human Exploration
- **Benefits:**
 - 30-50% (goal) lighter than Al Hard Structures
 - Capability for Increased Habitable Volume, Launch Efficiency
 - Long Term Growth Potential
 - Compatible with Technology Developments for Current Space Craft.
- **Current Technology Status:**

<table>
<thead>
<tr>
<th>Composites: TRL 6-7</th>
<th>Inflatable: TRL 4-5</th>
<th>ISRU Derived: TRL 1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for pressure tanks: DC-X</td>
<td>Concepts Developed</td>
<td>Resources Identified</td>
</tr>
<tr>
<td>Incorporated into X-33 Demonstration</td>
<td>Impediment Defined</td>
<td>Extraction Techniques Defined</td>
</tr>
<tr>
<td>Incorporated into X-36 CRV</td>
<td>EMU Suit Materials</td>
<td>Material Processing and Manufacturing Defined</td>
</tr>
<tr>
<td>Planned for Space Craft Upgrades</td>
<td>Materials Selection for HAB</td>
<td>Structural Concepts</td>
</tr>
<tr>
<td></td>
<td>Full-Scaled Prototype</td>
<td>Planned FY98-99</td>
</tr>
<tr>
<td></td>
<td>’96 Space Demo of IAE</td>
<td></td>
</tr>
</tbody>
</table>

Material Requirements for Habitats

- **Large Volumes,** i.e. 300-500 m³
- **High Strength Materials**
 - Internal Operating Pressure 8.3 psia
- **Durability**
 - 10-15 Years
- **Reliability**
 - Fail Op/Fail Safe
- **Low Cost**
 - Orders of Magnitude Less ($M NOT $B)
- **Low Mass**
 - Orders of Magnitude Less (100s kg NOT 10s Mt)
- **Autonomous Deployment**
- **Low Vibration**
- **Withstand Radiation:** GCR and SPE
- **No Off-gassing to Internal HAB**
- **Withstand Debris/Micrometeoroid Hits**
 - 1/4" d @ 7 km/s, Self-repair?
- **Low Risk**
 - Deployment
 - Pressure Integrity
 - Puncture/Tear Resistant
 - No Off-gassing
- **Pre-integrated Support Systems**
 - Life Support, Communications
 - Deployable Floors and Walls
 - Smart Structures: self diagnostic
- **Human Support**
 - Radiation Shelters
 - Medical Treatment
 - EVA Support
 - Living and Working Facilities
 - Autonomous Operations
Habitat Technology Decision Process and Gates

Arch. Trades

Iterative Design Process

Design Options

Preintegrated

Prefabricated

ISRU Derived

Habitat Technologies

Test Protolight

Select Technology to Protolight

Design Habitat

Build Habitat

Habitat Requirements:
- Environment
- No. of Crew
- Mission Duration
- Launch Vehicle Constraints
- Risk Philosophy

Selection Criteria

Timeline

1998

1999

2000

2001

2002

2003

2004

2005

2006

Habitat Selection Criteria

Habitat System

CLASS 1 Preintegrated

CLASS 2 Prefabricated

CLASS 3 ISRU-Derived

Unique Requirements

Composite Structures

Hybrid and inflatable Structures

ISRU Manufactured Structures

Mission Type

Exploration

Settlement

Colonization

Habitat Requirements

RLSS

Human Factors

EVA / Suits

Bio-RLSS

Human Factors

EVA / Suits

Construction Equip

Surface Mobility

Mining Equip

A/I Habs

Driving Requirements

HLLV

MTV

Lander

Science

Surface Mobility & Construction

Power
Summary

- Need Advanced Structures Research
- SBIR/STTR Innovative Technology Opportunities
- Technology Development Strategy
- Return-on-Investment Potential is Enormous
- Paradigm Shift from "Traditional" Habitat Concepts
- Need to Move Technology from Earth Applications to Space Applications
- Need Continued Material Testing for Human Spaceflight Use
Habitation Technology Strategy (Options)

- **CLASS I:**
 - Preintegrated, Hard Shell Module

- **CLASS II:**
 - Prefabricated, Surface Assembled

- **CLASS III:**
 - ISRU Derived Structure w/ Integrated Earth components

Evolution by Time

Class 1: Preintegrated Habs

Vision

- A *composite structure* that can be autonomously predeployed and operated on the Moon and Mars surface. Fully integrated. The capability for A.I. smart hab for failure detection, analysis and self repair.

Benefits

- Low mass.
- High reliability and easy to repair.
- Near-current technology.
- Add larger modules to ISSA and Lunar Orbit.

Current Status

- Technology demonstrated to TRL 6-7.
- Manufacturing techniques being perfected by aircraft and launch vehicle industry.
- Incorporated into CRV skin.
Class 2: Prefabricated Habs

Vision
- An inflatable structure that can be autonomously predeployed and operated on the Moon and Mars surfaces. Partially integrated and flexible. The capability for A.I. smart hab for failure detection, analysis and self repair.

Benefits
- Larger usable habitable volume
- Lower mass
- Higher crew productivity
- Higher crew moral and quality of life (lower stress)
- High reliability and easy to repair
- Taking the steps toward building new civilizations

Current Status
- Technology demonstrated to TRL 4-5 by NASA-LaRC and DoD/U.S. Army.
- Industry established "smart" houses and integrated systems.
- Workshops on Space Inflatable Structures are planned (2 in '96).
- Shannon Lucid's experience of 6 months in space (Zero G).
- Long term habitability studies completed by ARC & JSC.
- Early Human Testbed preparing for 90 day test.

Impediments of Inflatable Structures

Technical
- High Strength Material
- Seaming/Stress Points
- Connection Points
 - Hard Points for Internal/External Connections
- Reliable and Autonomous Deployment
- Material Degradation
 - Radiation, Dust, Thermal, Atomic O2, Micrometeoroid
- Hatches and Interconnects
- Off-gassing
- Durability/Life Span
- Flexibility/Packaging
- Human Rating

Social
- In-Space/Surface Flight Experience
- "Unknown" Factor
- Lack of Skilled Work Force at NASA with Inflatable Structures
- Understanding not Building
- Balloon (Pop) Theory
- Cost is so low compared to hard space structures, no one believes it.
- Credibility
- Confidence
 - Comes from in-space demonstrated experience
- Complexity Factor
Class 3: ISRU-Derived Habs

Vision
- An ISRU-derived structure that is manufactured using indigenous resources and constructed autonomously. It is autonomously operated and maintained utilizing A.I. and V.R. The capability for A.I. for failure detection, analysis and self-repair.

Benefits
- Larger usable habitable volumes.
- Can build colony infrastructure to support sustained human presence and evolution.
- Self sufficiency from Earth.
- Higher level of society.
- Ability to manufacture, service and repair.

Current Status
- Technology demonstrated to TRL 2-3 for Lunar-crete. Other technologies possible.
Concepts & Development

Inflatable Habitat Concept for Short Surface Mission Duration
- Small: 2 crew, 3 days, 14.5 m³

Human Lunar Return Concept
Hybrid Structure: Inflatable Mid-Section with Composite End Domes
Mars Transit Internal Configuration

- Section TransHAB into Four Quadrants
- Run Length of HAB
- Horizontal Orientation
- Deployable Core Fairing for Floor/Partition System

TransHAB Structural Configuration

- Configuration Topics:
 - Multi-Layer Meteoroid/Orbital Debris Protection
 - Main Structural Attachments
 - Central Core - Inflatable Shell Interface
 - Central Core Shelves
 - Structural Optimization
 - Central Core Longerons
 - Inflatable Shell Aspect Ratio
 - Configuration Summary
TransHAB

Main Structural Attachments

- **Meteoroid/Orbital Debris Protection**
 - JSC Hypervelocity Testing Results:
 - >98% No leak, while in Earth orbit for ~ 6Mths (threat is orbital debris driven)
 - >99.5% No leak, during to/from Mars transit (threat is meteoroid driven)
 - Impacts up to 0.25 in. (0.63cm) Dia. Aluminum projectile, $V=-7$ km/s, 0° impact angle

- Main components:
 - Multi-shock Nextel bumpers
 - High-strength Kevlar rear wall
 - Large, open cell foam

Central Core Shelf System

Equipment and subsystems are directly mounted(installed on to central core shelf system to optimize structural design to take launch loads. Station racks are not used.
Central Core

ECLSS, Avionics, PM&D and Hygiene Packaged in Core Section

Crew Quarters in Safe Haven Water Tanks

Fabric/Foam Partitions

Crew Personal Unit: Entertainment and work substation unit: Lightweight frame and fabric that packages into a box.

Typical Crew Quarter

Sleeping Bag/Restraint
Structures Technology Development

Donald B. Paul
Flight Dynamics Directorate
Wright Patterson Air Force Base, OH
The Flight Dynamics Directorate develops Air Force structures technology by integrating new or state-of-the-art technologies in design requirements, manufacturing techniques, materials, and processes with requirements for propulsion, flight controls, aeromechanics, low observables, subsystems, weapons and avionics. The results are advanced structural concepts and design methods for new and improved aerospace vehicles (FATE & TAFT).
The FWV-TDA process is a structured, disciplined, national S&T planning process sponsored by DDR&E for military FWV aviation. The result is a fifteen-year national plan for DoD FWV S&T investment, in which payoffs are clearly identified and challenging goals are established. Technology effort teams, consisting of members from the Air Force, the Navy, NASA, industry, and academia, were formed to define the technology effort objectives necessary to achieve the goals, and national programs to achieve these objectives.
Military aircraft have been divided into three families to serve a baseline for the FWV-TDA process: fighter/attack aircraft (F-22, F-18E/F); airlift, patrol, and bomber aircraft (C-17, P-3, B-2); and Special Operations Forces (SOF) aircraft (H/MC-130J). The process is to be completed in three phases, with estimated completion dates of 2001, 2006, and 2011 for Phases I, II, and III, respectively.
This chart shows the FWV-TDA structures objectives for fighter/attack aircraft technology. Similar objectives exist for transports, bombers and special forces aircraft.
This chart shows the FWV-TDA Phase I goals for fighter/attack aircraft and the objectives necessary to achieve these goals. In order to meet these objectives, many challenging technical obstacles must be overcome. The Structures Division will approach these challenges through its four core technology programs, as shown on the chart.

Structures Technology Linkages

Goals
- 20% Red. Production Cost at T+1
- 20% Red. End Cost
- 10% Incr. Cruise Lift/Drag
- 20% Red. Operations & Support Cost
- 20% Red. Airframe Weight
- 20% Incr. Agility Maneuverability

Objectives
- 30% Red. in Mfg. Cost
- 30% Red. in Assembly Cost
- 20% Red. in Supp. Cost
- 20% Red. in Dev. Time
- 20% Red. in Weight
- 25% Incr. in Fatigue Life

Technical Challenges
- Composite/Composite Concept & Manufacturing Approaches
- Fatigue/Structural Integrity
- Fatigue/Non-Linear Fatigue
- Stress/Non-Linear Fatigue
- Corrosion Impact on Structural Integrity
- Impact Design/Analysis Including Durability & Damage Tolerance
- Complex Dynamic Loads
- Fatigue and Stress Assessment
- Residual Strength Analysis
- Structural Integrity

Approaches
- Low-Cost Composite Structure
- Bonded Structures
- Virtual Prototyping
- Integration and Fatigue
- Computer-Aided Design
- Material Fatigue
- Failure Analysis
- Structural Integrity

Programs
- Static Structures
- Adaptive Structures
- Fatigue Suppression
- Fatigue/Non-Linear Fatigue
- Structural Integrity
- Fatigue

Note: Shaded technical challenges, approaches and programs applicable for AP.02.09.NF
Using the F-22 and F-18E/F as baseline aircraft, the FWV-TDA Phase I objectives are to reduce weight, development time and costs, and to increase fatigue life, by the quantitative amounts shown.
This chart shows the payoffs associated with achieving the FWV-TDA Phase I goals for fighter/attack aircraft. Structures, subsystems, flight control, and aerodynamics objectives must be integrated in order to deliver the payoffs to actual aircraft systems.
The Structures Division's research emphasis is derived from the Air Force structures vision of making old airframes last longer and building new airframes with significant technology improvements and enhanced warfighting capability. We must keep Today's Aircraft Flying Tomorrow (TAFT) and be sure that Future Aircraft Technology Enhancements (FATE) happen.
In light of the reality that we are buying fewer new aircraft systems, it is critical that we develop technologies to ensure that we can keep Today’s Aircraft Flying Tomorrow (TAFT). In order to do this we need: longer-life tires; buffet load alleviation systems; corrosion and widespread fatigue damage prevention, arrest, and repair techniques; more durable windshields and canopies; more durable exhaust impinged metallic structures; as well as other improvements not shown on this slide.
The FATE aircraft is truly revolutionary, as shown by the goals in this chart. A supersonic tailless aircraft at only a quarter of the current system cost—revolutionary! This aircraft will have an advanced compact inlet system, only half of the conventional weight fraction, an 800 NM radius, a 3-to-1 thrust-to-weight ratio, a low-observable nozzle with no moving parts, and will achieve supercruise without an afterburner.
STRUCTURES WEB OF ALLIANCES

This chart reveals the extensive cooperation between the Air Force, the Navy, NASA, industry, and academia in order to develop new Air Force structures technologies. Specifically, Structures Division's partners are broken down by sub-core competency area. For example, McDonnell Douglas, SWRI, and Rockwell are allied with the Structures Division to develop active aeroelastic wing technology.
Structures Division is advancing the state-of-the-art in aircraft technology by streamlining its research in four core competency areas: Structural Integrity of Aging Aircraft (AA); Structural Technology Integration (TI); Extreme Environment Structures (EE); and Smart Structures (SS). Each of the core competency areas is further divided into sub-core competency areas, as shown on the chart.
STRUCTURAL INTEGRITY OF AGING AIRCRAFT

Aging Aircraft core area research is focused into four competency areas: corrosion/fatigue, repairs, widespread fatigue damage, and dynamics. Research efforts range from basic research (6.1) to advanced research (6.3), and is conducted via collaboration with other DoD, industry, and academic partners.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Approach</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>• Focus Areas</td>
</tr>
<tr>
<td>– Corrosion/Fatigue</td>
</tr>
<tr>
<td>– Repairs</td>
</tr>
<tr>
<td>– Widespread Fatigue Damage</td>
</tr>
<tr>
<td>– Dynamics</td>
</tr>
<tr>
<td>– 6.1/6.2/6.3 programs</td>
</tr>
<tr>
<td>• Collaborative Teaming</td>
</tr>
</tbody>
</table>
AGING AIRCRAFT WEB OF ALLIANCES

This chart shows how the Aging Aircraft core is allied with its partners in the DoD, industry, and academia in order to accomplish its mission.
CORROSION/FATIGUE COMPETENCY AREA

The impact of corrosion damage on structural integrity is not yet a well-understood area. Aging Aircraft’s goal is to develop and provide the necessary tools to determine the effects of corrosion/fatigue on structural integrity, including the interaction with widespread fatigue damage (WFD).

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion/Fatigue</td>
</tr>
</tbody>
</table>

PROBLEM

The impact of corrosion damage on structural integrity is not well understood.

GOAL

Provide the necessary tools to determine the effects of corrosion/fatigue on structural integrity
- Interaction with WFD
Several structural integrity issues surface when we consider corrosion/fatigue. Identification and quantification is a problem, as well as measurement techniques, test methodology, and validation. Corrosion/fatigue contributes to WFD by causing pitting and pillowing.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
</tbody>
</table>

- Corrosion/Fatigue
 - Structural integrity issues
 - Identification/Quantification
 - Metrics/Transformations
 - Test Protocol/Validation
 - Contribution to widespread fatigue damage
 - Pitting
 - Pillowing
Over time the onset of WFD due to multisite damage degrades an aircraft’s structural integrity. Aging Aircraft’s goal is to develop, proof-test, and implement probabilistic tools which can be used to quickly perform accurate risk assessments on aging aerospace vehicles.

Structural Integrity of Aging Aircraft

Wright Laboratory

Widespread Fatigue Damage

PROBLEM

The onset of widespread fatigue damage due to multisite damage degrades aircraft structural integrity

GOAL

Provide probabilistic tools for risk assessment
Widespread Fatigue Damage

The Air Force is collaborating with the FAA and NASA on both deterministic analysis/validation and probabilistic analysis. Wright Laboratory is teamed with the Air Force Office of Scientific Research (AFOSR) and Purdue University on WFD research.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
</tbody>
</table>

- Widespread Fatigue Damage
 - AF is collaborating with FAA/NASA
 - Deterministic analysis/validation
 - Probabilistic analysis
 - WL/AFOSR/Purdue
AGING AIRCRAFT DYNAMICS RESEARCH

Aging aircraft experience damage due to the interaction of dynamic loads with aircraft structures. For example, buffet loads, limit cycle oscillations, and cavity acoustics are all problem loads. Aging Aircraft's goal is to develop and validate methods to characterize dynamics-induced damage, and to develop and demonstrate suppression techniques capable of negating potential damage.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
</tbody>
</table>

Dynamics

PROBLEM

Damage due dynamic loads interacting with structures
- Buffet, Limit cycle oscillation, cavity acoustics

GOAL

Develop/validate analysis methods
Demonstrate suppression techniques
DYNAMIC LOADS

Excessive or repeated dynamic loads lead to aircraft structure cracking, which in turn contributes to premature aging, and costly repair and replacement. Aging Aircraft personnel are aggressively pursuing methods to predict and suppress these effects by performing research in aeroelasticity, buffet, limit cycle oscillations, and acoustics.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
</tbody>
</table>

- Dynamics
 - Excessive/repeated dynamic loads - Cracking
 - Premature aging leads to costly repair/replacement
 - Prediction and Suppression
 - Aeroelasticity, buffet, LCO, Acoustics
DYNAMICS-ACOUSTICS

The Air Force has been compelled to solve dynamic and acoustic induced problems throughout its history. Structures Division is currently developing analytical prediction techniques for both subsonic and supersonic free stream flow conditions. The resulting code will predict frequency and amplitude, and will run on a personal computer. An analytical study is under way to evaluate active suppression methods. Wind tunnel tests are currently being performed to evaluate two of the most promising techniques, oscillating flap and blown air. The best concept will be flight-tested.

- Long History in Field:
 - 60's - prediction of frequencies/pressure amplification
 - 70's - reduction of pressure oscillations in cavities
 - 80's - supersonic flow
 - 90's - active control concepts

- Develop Analytical Prediction
 - Subsonic/supersonic free stream flow
 - PC based code to predict frequency, amplitude

- Evaluate Active Suppression Methods
 - Analytical study

- Wind Tunnel Tests - evaluate most promising
 - Oscillating Flap (in tunnel now!)
 - Blown Air

- Flight Test Best Concept
Bonded composite repair technology is not fully developed, especially in the areas of design criteria, durability and damage tolerance. Aging Aircraft’s goal is to develop and validate design and analysis tools for design criteria and structural integrity.

Structural Integrity of Aging Aircraft
Wright Laboratory

<table>
<thead>
<tr>
<th>Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEM</td>
</tr>
<tr>
<td>Bonded composite repair technology is not fully developed</td>
</tr>
<tr>
<td>- Design criteria, durability/damage tolerance</td>
</tr>
</tbody>
</table>

| **GOAL** |
| Develop and validate design/analysis tools |
| - Design criteria, structural integrity |
REPAIRS

The Aging Aircraft Repairs sub-core area develops on design criteria, designs, and analysis tools for bonded repairs, performs experimental verification, identifies manufacturing and producibility needs, and NDI/E requirements.

<table>
<thead>
<tr>
<th>Structural Integrity of Aging Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright Laboratory</td>
</tr>
</tbody>
</table>

• Repairs
 – Design criteria
 – Develop design and analysis tools for bonded repairs - User oriented
 • FEM-based to Engineering solutions
 • Damage Tolerance Analysis
 – Experimental verification
 – Identify M&P needs, NDI/E requirements
The Extreme Environments core area develops the combined thermal, mechanical, and acoustics structures technology for high speed vehicles, such as spaceplanes and reentry vehicles, and for combat air vehicles, such as stealth fighters and bombers with embedded engines.
Extreme Environment Structures has four sub-core areas: two aimed at current and next-generation stealth vehicles: Structural Temperature Control and Exhaust Washed Structures; as well as two aimed at next-generation high speed vehicles such as spaceplanes: Hot Structures/Thermal Protection Systems and Actively Cooled Structures. Many of the technologies under study have application across several of the sub-core areas. These efforts support increasing structural fatigue life while addressing both RCF and IR signature constraints.
The objective of Structural Temperature Control is to develop techniques to reduce the IR signature of advanced stealthy aircraft structures. Our approach to reach that objective is to develop advanced heat transfer modeling methods, design, fab, analyze and test advanced cooled structure concepts and to develop coolant flow minimization techniques. The impact of Structural Temperature Control is 35 percent IR signature reduction over F-22/B-2 baselines and enhanced vehicle survivability in high threat environments.
The showcase program in Structural Temperature Control is Structurally Integrated Thermal Energy Management (SITE-M). This program will develop and verify the design of cooling systems for exhaust washed structures. This program is the first attempt to enhance aircraft survivability with efficient use of cooling while still addressing life and maintenance concerns.
SITE-M APPROACH AND CHALLENGES

The SITE-M approach is to: develop new analytical modeling capabilities; develop new conceptual designs and prototypes; evaluate thermal management systems; perform aircraft level penalty analysis and sensitivity studies; verify design techniques; and fabricate and test new test components. The technical challenges include integrating thermal management systems with structural and propulsion systems, as well as dealing with weight, affordability and supportability constraints.

Structurally Integrated
Thermal Energy Management (SITE-M)

• APPROACH
 – Evaluate various structural and thermal management cooling concepts
 – Develop analytical model of selected concepts
 – Develop Conceptual Level Design of prototype structural cooling system
 – Perform aircraft level penalty analysis and technology sensitivity studies
 – Verify Design of Critical Technologies with representative subelements
 – Evaluate supportability & repair issues
 – Fabricate and test Subcomponent
 – Validate design and develop roadmap to 6.3 program

• TECHNICAL CHALLENGES
 – Integration of thermal management, structural, and propulsion subsystems
 – System weight and affordability
 – Structural integrity and thermal life
 – Availability of adequate heat sinks
 – Supportability of system
This sub-core is taking a building block approach to developing the use of ceramic matrix composites (CMC) for structurally integrated nozzles. It starts from characterizing vibration induced fatigue data for CMC's, develops joint design criteria for bonded and bolted joints between CMC's and high temperature polymers, continues through development of sub-component integrated nozzle panels, and concludes with the demonstration of a fully-integrated fixed nozzle.
Extreme Environment's exhaust washed structures research is aimed at developing and demonstrating durable exhaust washed structures for advanced stealth vehicles. The approach is to establish conceptual design criteria, and then design, fabricate, analyze and test advanced metallic and ceramic composite structures with representative stealth vehicle requirements. Impacts of this research include increasing fatigue life and making significant reduction in RF and IR emissions.

EXHAUST WASHED STRUCTURES

OBJECTIVE

- To develop durable exhaust washed structures for advanced stealth vehicles

APPROACH

- Establish structural design criteria
- Design, fab, analyze and test advanced metallic and ceramic composite structures with representative stealth vehicle requirements

IMPACT

- 100% Increase in fatigue life over F-22 baseline
- 125% Increase in fatigue life over MC-130 baseline
- 60% Increase in fatigue life over B-2 baseline
- 50% Reduction in support costs over B-2/F-22 baseline
- Significant RF and IR reductions
The objective of Hot Structures/TPS is to develop metallic and ceramic composite structures for high-speed applications and to develop ceramic composite TPS for advanced vehicles. Our approach to reach that objective is to leverage access-to-space launch vehicle technology advancements for high speed aircraft, leverage ARPA and French (DEA) CMC characterization efforts to produce design criteria and validate advanced structural concepts for high speed fighter and bomber operational environments. The impact of Hot Structures/TPS is the enabling of rapid crisis response and reconnaissance, global reach, and low cost access-to-space, 75% reduction in support cost and a 100% increase in fatigue life over SR-71 baseline, 100% increase in range over F-15E baseline and global unrefueled bomber operations.
Extreme Environments is working with Phillips Laboratory to support development of advanced RLV and spaceplane technologies. Our objectives are to make operability improvements over the current X-33 program and to provide alternative concepts for mass fraction improvements. Structures Division’s emphasis is on thermal protection systems (TPS) and the military utility of these vehicles. Current programs include the Mini-Spaceplane Technology (MiST) program, Carbon-Carbon TPS coating repairs, high temperature sandwich and blanket structures development, and demonstration of durable, flexible TPS.

RLV/SPACEPLANE SUPPORT

Objectives
- Focus on operability improvements over current X-33 program
- Provide alternative concepts to improve mass fraction
- Emphasis on thermal protection systems and tanks
- Look at military utility of these vehicles

Funding Source
- PL/VT-X Funded: $4.8M(FY96) $500K(FY97)
- Additional programs will follow at direction of AFMC/AFSMC Military Spaceplane Integrated Concept Team
- FL LDDF FY98 - $500k
 FY99 - $1.0M

Current Programs
- Mini-Spaceplane Technology(MiST)
- MiST Wingbox & Center Fuselage Demo
- Coating Repair of Carbon-Carbon TPS
- High Temp Comp Sandwich with Blanket TPS
- Titanium Sandwich with Blanket TPS
- Durable Flexible TPS Demo
Extreme Environments is working with Phillips Laboratory to support development of advanced RLV and spaceplane technologies. Our objectives are to make operability improvements over the current X-33 program and to provide alternative concepts for mass fraction improvements. Structures Division's emphasis is on thermal protection systems (TPS) and the military utility of these vehicles. Current programs include the Mini-Spaceplane Technology (MiST) program, Carbon-Carbon TPS coating repairs, high-temperature sandwich and blanket structures development, and demonstration of durable, flexible TPS.

No Figure Available.
STRUCTURAL TECHNOLOGY INTEGRATION (TI)

The TI core area focus and vision is to design, manufacture and operate aircraft with half the current required man-hour investment, a 25% reduction in structural weight fraction (maintaining constant TOGW), while simultaneously optimizing structures, controls, aerodynamics, and active aircraft deformation. The TI core research is divided into three sub-core competency areas: Active Aeroelastic Wing, Affordable Composite Structures, and Multidisciplinary Design and Analysis (MDDA) Methods.
High performance aircraft structures to meet future demands seem to be available only at very high cost. We must break the paradigm that high performance can only be achieved at high cost. Structures Division’s goal is to enable dramatic cost reductions and performance gains through the development of multidisciplinary airframe systems.

AFFORDABLE COMPOSITES-VISION

Break the paradigm that high performance can only be achieved at high cost. Structures Division’s goal is to enable dramatic cost reductions and performance gains through the development of multidisciplinary composite airframe systems.
Composite materials allow designers to expand the solution space for aircraft design. However, we must come “out of the box” of metal aircraft design. To do this, we must start thinking outside of the box. The keys to affordable composite solutions are: advanced design concepts and manufacturing quality processes; proper design tools and criteria; wider application of composites throughout airframe structures; and integration with configuration and subsystems designs.
Composite materials enable optimal design of structures to support complex load paths. Currently, 30-40% of airframe weight is from indirect loads. Through advanced load path management, structures are designed to optimize system performance which cannot be done merely by improved materials substitution. These designs can be robust even when there are modest flaws, enabling lower-cost construction.
UNITIZED STRUCTURES

Unitized structures offer the benefits of increased structural weight fraction, elimination of core moisture intrusion, higher pulloff loads, and radar absorbing structures.

UNITIZED STRUCTURE

BA8 STRUCTURAL WEIGHT FRACTION OF .24
- F16 (.328), F-14 (.422), F15 (.361), FA18 (.37), A19 (.437)

- PRIMARY SANDWICH & GRID STIFFENED STRUCTURE
- AIRFRAME WEIGHT IS TYPICALLY 63% STABILITY CRITICAL
- NOVEL CONCEPTS ELIMINATE CORE MOISTURE INTRUSION
- ROBUST JOINING CONCEPTS, OFFER HIGH PULLOFF LOADS
- ENABLES RADAR ABSORBING STRUCTURE
- ELIMINATES CORROSION, AND FACESHEET DEBOND
MULTIFUNCTIONAL STRUCTURAL SYSTEMS

It is intuitively obvious that multifunctional structural systems are desirable in order to reduce weight, complexity, etc. For example: hydrodynamic ram decoupled structural fuel cells integrate the fuel management system into the structural support system; conformal load-bearing antenna structures integrate antenna and airframe support functions; and, inlet aerostructural integration enables more efficient airframes through reduction of hammershock load and criteria.

- HYDRODYNAMIC RAM DECOUPLED STRUCTURAL FUEL CELLS
 - STRUCTURALLY INTEGRATED FUEL MGMT SYSTEM
- CONFORMAL LOAD-BEARING ANTENNA STRUCTURE
 - INTEGRATE ANTENNA AND AIRFRAME FUNCTION
- INLET AEROSTRUCTURAL INTEGRATION
 - ENABLE EFFICIENT AIRFRAME THROUGH REDUCTION OF HAMMERSHOCK LOAD AND CRITERIA
The CAI is a national development strategy for composite structures, which encompasses developing new design tools and criteria, making manufacture and production possible straight out of the autoclave, and automates processes. This technology will be used on the Joint Strike Fighter (JSF) Engineering Management and Development (EMD) as a fast-track demo and will be a major factor in fielding the FATE aircraft.
This chart illustrates the differences between current airframe technology, in which there are numerous antennae which do not bear any load, and a Conformal Load-Bearing Antenna Structure (CLAS) in which the antennae serve both to transmit/receive/transport signals and to carry flight loads. Not only does CLAS force the antennae to become dual-purpose, but it also greatly reduces the aircraft complexity.
STRUCTURES SUMMARY

- Structures Technology Focused to Support Broad DoD/USAF/FI Goals
 - FWV - TDA
 - New World Vistas
 - FATE & TAFT
 - 4 Technology Core Areas: Structural Technology Integration, Smart Structures, Extreme Environment Structures, and Structural Integrity of Aging Aircraft
Structures TC Goals/Responsibility/Opportunity and AFOSR

Jim C. I. Chang
Air Force Office of Scientific Research
Washington, D.C.
Briefed by: Dr Jim C. I. Chang, Director
Aerospace and Materials Sciences Directorate
AFOSR/NA
110 Duncan Avenue, Suite B-115
Bolling AFB DC 20332-0001
(202) 767-4987
AEROSPACE AND MATERIALS SCIENCES DIRECTORATE

MISSION OBJECTIVE

- Manage the Air Force's basic research in Aerospace, Engineering, and Materials Sciences

- Provide leadership and resources to Air Force laboratories, industrial research institutions and universities in conducting Air Force-relevant research, and carrying out multi-discipline cross-directorate science and engineering integration efforts in developing technologies for the design and operation of the current and future Air Force aircraft, tactical and ballistic missiles, space platforms and systems, and field facilities.

- Function as a technology broker to facilitate transitioning between the producers--universities, Air Force laboratories and industry--and the users--Air Force engineering, test and evaluation, logistics organizations and major commands.

AFOSR ORGANIZATION AND BRIEFING COVERAGE
Table 4.7.2. Service Specific Interests and Commonality in Mechanics

<table>
<thead>
<tr>
<th>Subarea</th>
<th>Army</th>
<th>Navy</th>
<th>Air Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLID AND STRUCTURAL MECHANICS</td>
<td>Finite deformation, impact, and penetration</td>
<td>Structural acoustics</td>
<td>Hypersonic aeroelasticity</td>
</tr>
<tr>
<td>Structural dynamics</td>
<td></td>
<td>Thick composites</td>
<td>Mechanics of high temperature materials</td>
</tr>
<tr>
<td>Composites</td>
<td></td>
<td>Micromechanics of electronic devices and solids</td>
<td>Particulate mechanics</td>
</tr>
<tr>
<td>Aeronautical Acoustics</td>
<td>Structural dynamics and control (A, N, AF)</td>
<td>Free-surface phenomena</td>
<td>Turbomachinery aeroelasticity</td>
</tr>
<tr>
<td>FLUID DYNAMICS</td>
<td>Rotorcraft aerodynamics</td>
<td>Hydrodynamic wakes</td>
<td>Fixed wing aerodynamics</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>Rotorcraft aero-propulsion</td>
<td>Hydroelasticity and hydroacoustic</td>
<td>Supersonic aerodynamics</td>
</tr>
<tr>
<td>Turbulence</td>
<td>Projectiles aeroballistics</td>
<td></td>
<td>Hypersonic aerothermodynamics</td>
</tr>
<tr>
<td>Unsteady flow</td>
<td>Unsteady separated flow (A, N, AF)</td>
<td>Turbulence</td>
<td></td>
</tr>
<tr>
<td>PROPULSION AND ENERGY CONVERSION</td>
<td>Reciprocating engines</td>
<td>Underwater propulsion</td>
<td>Large gas turbines</td>
</tr>
<tr>
<td>Gas turbines</td>
<td>Gun propulsion</td>
<td>Missile propulsion</td>
<td>Supersonic combustion</td>
</tr>
<tr>
<td>Explosives, Soot formation</td>
<td>Small gas turbines</td>
<td>Explosives</td>
<td>Spacecraft and orbit propulsion</td>
</tr>
<tr>
<td>Manufacturing science</td>
<td>High-energy materials</td>
<td>Areas of Common Interest</td>
<td>Spray combustion</td>
</tr>
<tr>
<td>(land/rotorcraft systems, armorments)</td>
<td>combustion/hazards (A, N)</td>
<td>Soot formation (A, N, AF)</td>
<td>(A, AF)</td>
</tr>
<tr>
<td>Armoring/armor materials</td>
<td></td>
<td>Turbulent flows (A, N, AF)</td>
<td></td>
</tr>
<tr>
<td>Diesel engine materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun liner materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterization Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing science</td>
<td>Manufacturing science</td>
<td>Marine corrosion, oxidation, and fatigue</td>
<td>High-temperature fatigue and fracture</td>
</tr>
<tr>
<td>(land/rotorcraft systems, armorments)</td>
<td>(A, N, AF)</td>
<td>Advanced materials for ships and submarines</td>
<td>Aerospace skin materials</td>
</tr>
<tr>
<td>Advanced materials</td>
<td></td>
<td></td>
<td>Aging aircraft</td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td>Functionally graded materials</td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td>Supersonic skin</td>
</tr>
<tr>
<td>(A, N)</td>
<td></td>
<td></td>
<td>Balanced material properties</td>
</tr>
<tr>
<td>Areas of Common Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced composites</td>
<td></td>
<td></td>
<td>Intermetallics (N, AF)</td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas of Common Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERFUNCTIONAL MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td>Defect engineering</td>
<td>Femto lungs</td>
<td>(Topics addressed under chemistry, electronics,</td>
</tr>
<tr>
<td>Processing</td>
<td>Gradient index optics</td>
<td></td>
<td>physics, and mechanics SPOs)</td>
</tr>
<tr>
<td>Theory</td>
<td>IR detectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td>CVD materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterization Modeling</td>
<td>Smart materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing science</td>
<td>Opaque electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(land/rotorcraft systems, armorments)</td>
<td>(A, N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.6.2. Service Specific Interests and Commonality in Materials Science

<table>
<thead>
<tr>
<th>SUBAREA</th>
<th>Army</th>
<th>Navy</th>
<th>Air Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURAL MATERIALS</td>
<td>Manufacturing science</td>
<td>Marine corrosion, oxidation, and fatigue</td>
<td>High-temperature fatigue and fracture</td>
</tr>
<tr>
<td>Synthesis</td>
<td>(land/rotorcraft systems, armorments)</td>
<td>Advanced materials for ships and submarines</td>
<td>Aerospace skin materials</td>
</tr>
<tr>
<td>Processing</td>
<td>Armoring/armor materials</td>
<td>Acoustically damped structures</td>
<td>Aging aircraft</td>
</tr>
<tr>
<td>Theory</td>
<td>Diesel engine materials</td>
<td>Layered designed materials</td>
<td>Functionally graded materials</td>
</tr>
<tr>
<td>Properties</td>
<td>Gun liner materials</td>
<td></td>
<td>Supersonic skin</td>
</tr>
<tr>
<td>Characterization Modeling</td>
<td></td>
<td></td>
<td>Balanced material properties</td>
</tr>
<tr>
<td>Manufacturing science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(land/rotorcraft systems, armorments)</td>
<td>(A, N, AF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas of Common Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced composites</td>
<td></td>
<td></td>
<td>Intermetallics (N, AF)</td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERFUNCTIONAL MATERIALS</td>
<td>Defect engineering</td>
<td>Femto lungs</td>
<td>(Topics addressed under chemistry, electronics,</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Gradient index optics</td>
<td></td>
<td>physics, and mechanics SPOs)</td>
</tr>
<tr>
<td>Processing</td>
<td>IR detectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory</td>
<td>CVD materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td>Smart materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterization Modeling</td>
<td>Opaque electronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing science</td>
<td>(A, N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(land/rotorcraft systems, armorments)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas of Common Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced composites</td>
<td></td>
<td></td>
<td>Magnetic materials (A, N)</td>
</tr>
<tr>
<td>(A, N, AF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion/Joining</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

147
AFOSR MATERIALS/STRUCTURES PROGRAM

- Innovative and Responsive to Air Force Need
 - Science Based Frontier Research to Provide Options for Future Air Force
 - Well Integrated With 6.2/6.3 And Industrial Effort to Address Air Force Technology Issues i.e. Aging Aircraft, HCF, and etc...

- Well Managed Process
 - Select Thrusts/Topics
 - Choose and Motivate Performers
 - Program Initiation and Exit Dynamics

Air Force Basic Research
Aerospace and Materials Sciences

SELECTED CURRENT RESEARCH THRUSTS

Structures → Fluid Dynamics

- Aging Aircraft
 - Corrosion
 - Non Destructive Evaluation
 - Structural Integrity

- Gas Turbine
 - High Cycle Fatigue
 - Loading
 - Structural Response/Failure
 - Material Behavior

Materials → Propulsion
Integrated AF S&T Technology Objectives
(Selected Examples)

- AF High Cycle Fatigue (HCF) Steering Committee
 - AFOSR/NA, WL/CV, WL/PO, SA-ALC/LR, ASC/LP
 - Manage AF HCF IPT
 - Focus Area - $100M/5 years (6.1-6.3)
- AF Aging Aircraft Steering Group
 - AFOSR/NA, WL/CD, AFMC/EN, ALC
 - Manage AF Aging Aircraft IPT
 - Focus Area - $250M/5 years (6.1-6.3)
 - Working on 6.4 funds

TOTALLY INTEGRATED PROGRAM

TURBOMACHINERY COMPONENT DESIGN TOOLS ARE INADEQUATE

- Validity of Goodman Diagram (1899)
- Does not account for HCF/LCF interactions or damage (i.e., FOD)
- Safety Margin loss from higher performance engines
- Large variability in predicting vibratory stresses
- HCF Failure on high performance engines

![Diagram](image)
ISSUES IN AERODYNAMICS, STRUCTURAL DYNAMICS, AND CONTROL

Conclusions of Workshop, 10-11 Oct 95, MIT

Participation from:
- Industry: Allison, Allied Signal, General Electric, Pratt & Whitney
- Universities: CMU, Duke, GIT, NPS, MIT, OSU, Purdue, UC-Davis
- Government: ASC/LP, NASA, WL/ML, WL/PO

Basic Research Focus Areas:
- Unsteady aerodynamic forcing functions and multistage effects
- Low order and overall system models
- Characterization and prediction of damping
- Active and passive control of HCF
- Real time sensing instrumentation and experimental techniques

ISSUES IN MATERIALS AND MECHANICS

Conclusions of Workshop, 7 Jun 95, WPAFB

Participation from:
- Industry: Allied Signal, General Electric, Pratt & Whitney, SWRI
- Government: ASC/LP, NASA, WL/ML, WL/PO

Basic Research Focus Areas:
- Initiation and Propagation of Small Fatigue Cracks
- Cumulative Damage, Variable Amplitude Loading and HCF/LCF Interaction
- Mechanics of Fretting and Surface Wear Mechanisms on HCF
- Modeling Effects of Surface Treatment and Foreign Object Impact on HCF
- Distribution Effects and Stochastic/Probabilistic Aspects of HCF
- Novel Experimental and Small Crack Detection/Monitoring Techniques
HIGH CYCLE FATIGUE (HCF) S&T PROGRAM

Contributors to Program Funding

AFOSR/ TMI

AFOSR Core

Navy

NASA

AF-WL/ML

AF-WL/MT

AF-WL/PO

AF-WL/FI

AFOSR IS THE MAJOR CONTRIBUTOR

AEROSPACE AND MATERIALS SCIENCES DIRECTORATE

INTEGRATED-PROACTING MATERIALS RESEARCH

IS TO DESIGN MATERIALS FOR A PURPOSE

TO PREDICT MATERIALS PERFORMANCE

IS NOT TO MAKE THE BEST MATERIALS POSSIBLE

TO CHARACTERIZE AS IS MATERIALS

151
• Full Spectrum/Fully Integrated: Atomic to Micro to Macro to Structural Systems
• Fundamental Understanding/Technology Objectives - Near Term
 – Aero Propulsion & Power (WL)
 – Air Vehicle (WL)
 – Materials and Processing (WL)
 – Conventional Armament (WL)
 – Space and Missile (PL)
• Innovation - Future
RENEWAL CREEP THEORY

- The theory is based on approximations of dislocation (crystal imperfection) kinetics.

- The theory reveals that stress and temperature regulate the "effective" passage of time as the material deforms:

 \[\dot{\varepsilon} = N_1 (1-e^{-\sigma})^{\beta} N_2 \dot{\theta} \]

 \[\nu(\sigma) = \text{Time Scale Factor} \]

- The "effective" time is expressed mathematically as an "internal" or "intrinsic" time that describes how quickly load and temperature produce deformation on the master curve.

![Creep Strain (m/m) vs. Time, h graph](image)
Intrinsic Time

Creep Strain

- Partnership for Research Excellence and Transition (PRET)

Cooperative program between academia and industry
- Targets TiAl as an emerging material, nearing application
- Addresses industry-defined technological barriers to application
- Spans materials processing to mechanical design methodology
- Students/faculty spend 2-3 months at industry each year

Awarded to Carnegie Mellon University (1 May 1995)
- Materials Sci. and Eng. and Mechanical Eng. Departments
- University of Michigan
- Ohio State University
- Michigan State University

Industrial Partners:
- General Electric Aircraft Engines
- Allison Engine Company
- Howmet Corporation
- Rockwell International Corporation
- Precision Castparts Corporation
push/pull Vectoring

![Diagram of push/pull vectoring](image)

Air Force Office of Scientific Research
Aerospace and Materials Sciences Directorate
Dr Jim C. I. Chang (202/767-4987)

<table>
<thead>
<tr>
<th>Project</th>
<th>Subarea</th>
<th>Program Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>2302</td>
<td>B Mechanics of Materials</td>
<td>Dr W. Jones (70470)</td>
</tr>
<tr>
<td>2302</td>
<td>C Particulate Mechanics</td>
<td>Capt M. Chipley (70468)</td>
</tr>
<tr>
<td>2302</td>
<td>D Structural Mechanics</td>
<td>Capt B. Sanders (76963)</td>
</tr>
<tr>
<td>2302</td>
<td></td>
<td>Dr S. Wu (74989)</td>
</tr>
<tr>
<td>2306</td>
<td>A Metallic Structural Materials</td>
<td>Capt C. Ward (74960)</td>
</tr>
<tr>
<td>2306</td>
<td>B Ceramic and Nonmetallic Structural Materials</td>
<td>Dr A. Pechenik (74962)</td>
</tr>
<tr>
<td>2306</td>
<td>C Polymeric Composites</td>
<td>Dr C. Lee (75022)*</td>
</tr>
<tr>
<td>2307</td>
<td>A External Aerodynamics and Hypersonics</td>
<td>Dr L. Sakell (74935)</td>
</tr>
<tr>
<td>2307</td>
<td>B Turbulence and Internal Flows</td>
<td>Dr J. McMichael (74936)</td>
</tr>
<tr>
<td>2308</td>
<td>A Space Power and Propulsion</td>
<td>Dr M. Birkan (74938)</td>
</tr>
<tr>
<td>2308</td>
<td>B Air-Breathing Propulsion</td>
<td>Dr J. Tishkoff (70465)</td>
</tr>
<tr>
<td>2308</td>
<td>C Propulsion Diagnostics</td>
<td>Dr J. Tishkoff .ff (70465)</td>
</tr>
</tbody>
</table>

*NL
NWV Areas and Subareas

Global Awareness
- Network Data Fusion for GA
- Light Weight Antenna Structures
- Low Cost, LtWt Membrane Structures
- In situ Sensors
- Global Awareness Virtual Testbed
- Low Noise/Hi Unit Broadband Sensors

Power Projection
- Family of UAV
- Hypersonics
- Lethal/Sublethal DEW
- Energy Coupling Modeling & Simulation

People
- Human Machine Interface
- Team Decision Making
- Cognitive Engineering

Space
- Micro Satellites
- Distributed Functionality
- Precision Deployable Lrg Ant/Optics
- High Efficiency Electrical Laser Sources
- Space Object ID and Orbit Prediction
- High Energy Density Propellants
- Jam-Proof Area-Deniable Propagation

- Nanosecond Global Clock Accuracy
- Hypervelocity Dynamics
- Low Cost LtWt Structures & Materials
- Power Generation and Storage

Dynamic Planning
- Planning & Scheduling
- Communications
- Knowledge Bases
- Intel Agents for AF Bitfield & Ent Info Assets
- Information Warfare
- New Models of Computation
- Domain Spec Component-Based S/W

Mobility
- Precision Air Delivery
- Composite Materials and Structures
- Low SFC Propulsion
- Aerodynamics and Controls
- Subsystem Integ/Pwr
- Advanced Landing Gear
- MicroElectromechanical Sys (MEMS)
- Active Defense Systems
- Battlefield Awareness/Wx Predictions
- Human Sys Interface/Tng

Structures TC General Goals/Responsibility

- Conferences - AIAA
- Educational - Outreach
- Advocacy
 - Inside the Community - Preaching to the Choir
 - Outside the Community - Program Support, (congressional, government, industry, etc.)
- Jointness
 - Structure TC
 - other AIAA Committees
 - Other Professional Committees - ASME etc.
Structures TC General Goals/Responsibility

- Technology Advancement/Opportunities/Expectations
 - Near Term - Smartness
 - Far Term - Multifunctional
- Existing Committee Structures
- Jointness
- AFOSR Programs/Directions

Recommendations

- Establish special subcommittee/task group/blue-ribbon panel to:
 - Identify structures and structure related technology advancement/opportunities/expectations
 - Look at existing structures TC committees - technologies
 - Look at other AIAA committees & other society structures and structures related activities
 - Produce assessment and recommendations
 - Report back to structures TC for deliberation
- Structural TC follow-up actions (?)
Structural Mechanics

Brian P. Sanders
Air Force Office of Scientific Research
Washington, D.C.
Outline

- Programmatic Issues
- Subarea Review
- UAV Program
- Summary and Future Plans
Program Synergism

Industry
Boeing, MD, P&W, GE, Lockheed,...

Air Force
WL, PL, Eglin, Edwards

DoD Labs
NRL, ARL...

Fluid Mechanics
Jim McMichael
Len Sakell

Structural Mechanics
- Fluid-Structure Interaction
- Smart Structures
- Material Mechanics

Metals & Ceramics
Capt. Chuck Ward
Alex Pechenik

WL, PL (6.1)

DARPA, ONR, ARO, NASA, NSF

USAF Issues Driven by Fluid-Structure Interaction

Panel Limit Cycle Oscillations (LCO)

Store Induced LCO

Tail Buffet

UAV's
Vibroacoustic issues related to space bound payloads
Fluid-Structure Interaction

Technology Opportunity/Payoff
- Major improvements in airframe and turbomachinery performance
- Substantial risk and cost reduction in design

Research Barriers
- Insufficient understanding of the nonlinear
 - aero-structural interaction
 - structural-acoustic interaction

Research Objectives
- Improve understanding of physical mechanisms driving instabilities & oscillations
- Investigate aeroelastic behavior of passive & actively controlled flexible structures
 - Control or remove instabilities & oscillations
- Investigate sensitivity of aeroelastic instabilities

Nonlinear Dynamics and Control of Wings and Panels (Clark, Dowell & Virgin/Duke)

Objective
Investigate nonlinear effects on control of aeroelastic systems

Basis Research Issue
Are nonlinear effects on the aeroelastic response significant (yes)

Typical aeroelastic section with control surface

Control surface restoring moment with free play
Deformation Control for Enhancing Vehicle Performance (Eastep, UD & Khot, WL/FI)

Objective

- Use wing flexibility as an asset and deform the wing to enhance vehicle performance

Basic Research Issue

- Modeling an air vehicle with prescribed wing deformations

- Retwist the wing using fictitious control surfaces (FCS)
- Roll performance is improved by retwisting the wing
- Demonstrates that roll is feasible w/o control surfaces
Fluid Structure Interaction
Collabogram

Aeroelasticity &
Technology Transition
Hopkins et al (WL/FIB)

Vibroacoustics &
Technology Transition
Griffin/Sullivan (PL/VTs)

Nonlinear Dynamics in FSI's
- Nayfeh (VPI)
- Namachchivaya (Ill)
- Inman (VPI)
- Clark et. al. (Duke)

Theoretical & Experimental
Studies in Vibroacoustic
Systems
- Miller/Crawley (MIT SERC)
- Bicos (MDA)

Limit Cycle Oscillation
- Walker et. al. (Lehigh)
- Dowell (Duke)

Innovative Scaling Laws
- Friedmann (UCLA)
- Liu (Northwestern)

Fluid Structure
Interaction

Flight Testing &
Technology Transition
Shirley (Sglp)

Aerelastic Tailoring
- Eastep (Dayton)
- Loewy (Georgia Tech)

Smart Composite Structures

- Continue to invest in smart structures ...SAB 95, 96

Health & Load Monitoring
- Monitor & Access loads/ environmental conditions

Flow Control
- Modify the surface to reduce drag and vortex formation

Acoustic Control
- Detect & suppress acoustic wave to reduce pilot fatigue & minimize signature

Vibration Control
- Detect & reduce or cancel vibrations to eliminate dynamic instabilities

Shape Control
- Actively modify the shape of the structure

- Wealth of applications for air and space structures
Smart Composite Structures

Technology Opportunity/Payoff

- Smart structures enhance structural performance
- Composite materials are an enabling technology to design lighter & more flexible air & space structures

Research Barriers

- Current analysis tools & methodologies do not adequately address structures designed with smart materials
- Adequately address scaling issues

Research Objectives

- Improve understanding of mechanics of structures with smart materials
- Investigate scaling laws for design of structures with complex geometry and damage

Hierarchical Adaptive Modeling

(Objective is to develop a set of nested (or multiscale) mathematical models for different regions
- Two-dimensional continuum models
- Three-dimensional continuum models
- Micromechanical models

Automated (or semiautomated) methods for treating interfaces between different regions
- Criteria for adaptive refinement (or derefinement) of the mathematical and discrete models based on hierarchical sensitivity coefficients

Hierarchical adaptive modeling couples the physics of the problem with the computational strategy

LAMINATE PROPERTIES

[A], [B], [D], [N], [M]

LAMINATED THEORY

LAYER (PLY) PROPERTIES

E_L, E_T, G_LT, G_TT, G_LT, H, θ

MICROMECHANICAL MODEL

CONSTITUENT PROPERTIES

E_f, E_m, G_f, G_m, G_f_m, ν_f, ν_m
Objective
Develop general framework incorporating unique properties of active composites with embedded and/or bonded actuators/sensors.

Basic Research Issue
Development of a general & accurate theory for modeling smart composites with and without delaminations.

Smart Composite Structures Collabogram

Adaptive Structures Technology Transition
Hopkins et al (W.L./R.B.)

Vibroacoustic Control & Technology Transition
Griffin/Sullivan (P/L/VTS)

Compliant Mechanisms
- Koda (Michigan)

Scaling Models
- Noor (UVA)
- Fish (RPI)

Mechanics of Smart Structures
- Chattopadhyay (Arizona)
- Mall (AFIT)

Health Monitoring
- Chang (Stanford)
- Krishnaswamy (Northwestern)
- Masri (USC)

Higher Order Theory Laminates
(Chattopadhyay, ASU)
Damage & deformation are not coupled

Material Mechanics

Technology Opportunity/Payoff
- Improved mechanics techniques for understanding the behavior of
 - New structural materials (i.e., ceramics & metallics)
 - Functional materials (i.e., PZTs, SMAs)

Research Barriers
- Current mechanics principles are:
 - Homogeneous, isotropic theories
 - Inadequately deal with scaling issues related to microstructure
 - Fail to capture fundamental behavior of advanced materials in regions of interest

Research Objectives
- Improve understanding of fundamental mechanisms that affect material properties and material response
- Develop physics-based material mechanics principles to understand and predict the behavior of advanced materials
Objective

Investigate the fundamental fatigue and fracture behavior of piezoceramics under combined mechanical and electrical loading.

Basic Research Issue

Are conventional fracture mechanics criteria valid?

- Crack growth rate is dependent upon magnitude and polarity of the applied electric field.
- Mechanical strain energy release rate captures the fracture and fatigue behavior of piezoceramics in the presence of electric fields.

Material Mechanics

Collabogram

- **Larsen/Nicholls (W/L/ML)**
 - Mechanics of Smart Materials
 - Sun (Purdue)
 - Yu (NRL)

- **Pagano (W/L/ML)**

- **Chiang (SUNY)**
 - Innovative Methods of Measure Damage

- **Bagley (UTSA)**
 - Inelastic Material Response

- **Micro/Macro Behavior of Random Heterogeneous Materials**
 - Torquato (Princeton)

- **Damage Initiation & Propagation in Heterogeneous Materials**
 - Lin (UCLA)
 - Herrmann (Stanford)
6.1 Research in UAVs

High Altitude Long Endurance (HALE) Unmanned Combat Air Vehicles (UCAV)

- Weaponization
- Distributed Architecture & Control Algorithms
- Structures & Materials for Increased Survivability & Low Cost
- High Efficiency Propulsion Systems
- Aerodynamic & Stability Analysis

AFOSR UAV Team

- Dr Julian Tishkoff - Propulsion
- Dr Mark Jacobs - Dynamics & Controls
- Dr Charles Lee - Materials
- Capt Brian Sanders - Structural Mechanics
- Dr Len Sakell - Aerodynamics (CFD)
- Dr Mark Glauser - Aerodynamics (Unsteady)
- Capt Scott Schreck - Computational Mechanics
- Capt Mike Chipley - Particulate Mechanics

* May want to consider same blend of disciplines for UAV TC
Program Synergism

Summary

- AFOSR Structural mechanics program has three focus areas
 - Fluid-Structure Interaction
 - Smart Structures
 - Material Mechanics

Future Plans

- Increase emphasis in mechanics of smart structures
- Build extramural program for NWV technology goals
- Investigate potential for mechanics research in MEMs
- Investigate research topics in nanoscience
The DARPA Smart Materials and Structures Program

C. Robert Crowe
Advanced Research Projects Agency
Arlington, VA

173
The DARPA Smart Materials and Structures Program

presented at
NASA Langley Research Center
14 May 1996

C. R. Crowe
Defense Sciences Office
Advanced Research Projects Agency
Smart Materials & Structures

Objectives

Develop a new class of materials that use systems of embedded sensors and actuators to:

- Sense and constructively respond to their environment with active control
 - Noise and Vibration Suppression
 - Shape Adaptive Structures
 - Aerodynamic and Hydrodynamic Fluid/Structure Control
- Systems demonstrations
 - Military aircraft
 - Submarines

THE ARPA SMART MATERIALS AND STRUCTURES PROGRAM

Approach

Technology Integration and Optimization

Research focus:
- New materials
- New components
 - Sensors
 - Actuators
 - Devices
- Design tools
- Integration technology
- Manufacturing technology
 - Embedment technology
 - IPM technology
- Product definition
Funding

Dollars in Millions

<table>
<thead>
<tr>
<th></th>
<th>FY 95</th>
<th>FY 96</th>
<th>FY 97</th>
<th>FY 98</th>
<th>FY 99</th>
<th>FY 00</th>
<th>FY 01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>2.95</td>
<td>5.00</td>
<td>6.60</td>
<td>7.00</td>
<td>11.00</td>
<td>13.20</td>
<td>7.00</td>
</tr>
<tr>
<td>Partnerships</td>
<td>4.95</td>
<td>6.00</td>
<td>6.65</td>
<td>6.39</td>
<td>11.20</td>
<td>13.20</td>
<td>7.00</td>
</tr>
<tr>
<td>Industry</td>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SBIR's</td>
<td>2.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14.92</td>
<td>11.00</td>
<td>15.25</td>
<td>16.39</td>
<td>15.00</td>
<td>15.20</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Nine Year Program...$89.51M

Smart Materials & Structures

- Fiber Optic Sensors
- Piezoelectrics
- Electrostrictors
- FE-AFE Phase Change
- Shape Memory Alloys
- Magnetostrictors
- PVDF
- Electrorheological Elastomers
- Information Management
- Control Theory
- Design Tools
- Manufacturing Technology
- Miniature Power Supplies
- Integration Technology
- High Performance SMA
- Active Fiber Composites
- Terfenol Optimization
- Injection Molded Actuators
- Relaxor Ferroelectric Actuators
- Single Crystal Perovskites
- Polymeric Muscles
- Shape Adaptive Wing
- Smart Helicopter Rotor
- Shape Adaptive Inlet
- Multifunctional Satellite
- Low w/Active Acoustic Tiles
- Conformal Mid w/Active Acoustic Tiles
- Vortex Leveraging
- Submarine Stern
MATERIALS

- Electroactive Ceramics
 - Piezoelectric (PZT)
 - Electrostrictor (PMN)
 - FE-AFE Phase Transition (PLZT)
 - Single Crystal Piezoelectrics
- Alloys
 - Shape Memory (Nitinol)
 - Magnetostrictive (Terfenol)
 - Magneto Shape Memory (Heusler)
- Fiber Optic
 - Extrinsic Fabry-Perot
 - Bragg Gratings
 - Long Period Gratings
- Polymers
 - Electroactive
 - Electrorheological Elastomers

SMART MATERIALS AND STRUCTURES

Helicopter Blade Vibration Suppression and Twist Control

Requirements
- Vibration Suppression: Response: 1-100 Hz
- Displacement: μ
- Twist Control: (Blade Trimming)
 - Response: Static to 12 Hz
 - Displacement: mm

Payoffs
- Increased Speed (from 160 to 200 Knots)
- Increased Readiness of at least 15%
- Increased Range
- Increased Maneuverability
Vibration Suppression: Active Rotor Blades

Expected performance improvements for active rotor blade concepts include 10 dB reduction in BVI noise, 80-90% reduction in airframe vibrations, 10% gain in rotor performance (lift/drag), improved maneuverability from stall alleviation.

SMART MATERIALS FOR ROTOCAST STRUCTURES

- SHAPE MEMORY CERAMIC MATERIALS DEVELOPMENT
- STRUCTURAL DESIGN/ANALYSIS OF SMART BLADE
- DEVELOP INTEGRAL BLADE APPLICATION
SMART WING AND STRUCTURES DEVELOPMENT

- Develop Shape Memory, Piezoelectric and Magnetostrictive Actuators
- Develop Fiber Optic Sensor System
- Design Smart Wing
- Demonstrate Wing Subelements
- Perform Wind Tunnel Tests on Scaled Models

SMART MATERIALS AND STRUCTURES SMART WING

Rolling Moment Efficiency Improvement
Smart Aileron vs. Conventional Aileron

Pressure Distribution
Improved Pressure Profile

Smart Aileron

Smart Wing
Expected benefits include 20% improved range for tactical aircraft, improved maneuverability, flutter and buffet control, and reduced signature.
SMART MATERIALS & STRUCTURES
Major Issues

- SENSORS
 - Optimization of Figures of Merit re Processing and Microstructures
 - Environmental Robustness
 - New Sensor Materials
- ACTUATORS
 - Maximization of Deliverable Energy re Processing and Microstructures
 - New Actuator Materials
- COMPOSITE
 - Mechanical Behavior - Manufacturability
 - Microstructure Production - Economical
 - Interfaces - Durability
 - On-Board Data Processing
 - Calibration
- THEORIES
 - Micromechanics
 - Non-Linear Mechanics
 - Cross-Coupled Systems
 - Control
- DESIGN TOOLS
 - Materials Response Simulators
 - Multidimensional Data Visualization
 - Interfaces
- CHARACTERIZATION OF COLLECTIVE BEHAVIOR
 - Strength
 - Fatigue
 - Durability
- INTEGRATION
 - Concurrent Engineering
 - Local/Global Optimization
• Smart Materials and Component Synthesis
 - Materials Processing
 • Material/component architecture
 - Models for component placement
 - Fixing of component placement during synthesis
 • Manufacturing techniques and automation
 • Compatibility of sensor/actuator systems with matrices and reinforcements
 • Interconnects
 - Embedded sensor/actuators must be designed and fabricated for part edges
 - Linking sensor/actuators with signal processing system
Structural Dynamics Program
Army Research Office

Gary L. Anderson
U.S. Army Research Office
Research Triangle Park, NC
Army Research Office

STRUCTURAL DYNAMICS PROGRAM

Dr. Gary L. Anderson
US Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211
Tel. (919) 549-4317
Fax: (919) 549-4310
E-Mail: anderson@aro-emh1.army.mil

6 April 1997
TOPIC 1: Structural Dynamics

Thrusts:
- Land vehicle and multi-body dynamics
- Structural damping
- Smart structures and structural control
- Statics and dynamics of inflatable structures

TOPIC 2: Air Vehicle Dynamics

Thrusts:
- Integrated aeromechanics analysis
- Rotorcraft numerical analysis
- Projectile aeroelasticity
- Dynamic control systems for projectiles
- Parachute inflation aeromechanics
Overview of Issues in Multibody Dynamics

Recursive Formulation Characteristics:

- Multibody simulation is notoriously difficult (DAE)
- Specialized algorithms: roots in robotics
- Order N Complexity (rigid bodies only)
- Symbolic Processing Predominates
- Computer Generation Amenable
- Graph Theoretic Foundations
- Topology Induced Parallelism
- Real-time performance achieved 1988

Technical Obstacles

- Recursive: not Order N for flexible systems
- Flexible systems of growing interest to military
 Vibration isolation of sensor mounts, Barrel
 Pointing, active suspension systems (MRF)
Approach:

- Highly redundant Lagrange multiplier method
- Constraint enforcement through independent coordinate reduction
- Constraint Correction via Iterative Newton-Raphson Iteration

Accomplishments:

- Transient Simulation of contact forces
- Detailed stress analysis of individual tracks
- Accurate prediction of track trajectory
- 3D Visualization for CAD Possible
Virtual prototyping: Crucial for designing the next generation of military vehicles

- Multibody simulation: full DAE's ill-advised
- Specialized algorithms: roots in robotics
- Performance limited: treatment of rigid bodies
- Performance limited: "topology induce parallelism"
- Some military structures do not exhibit such topology

Objectives
- Novel, Multi-index, variable time step methods
- Novel variants of Augmented Lagrangian methods
- Real-time performance for a richer class of models

Index-3 Methodologies
- Provide a regularization (DAE)
- Constraint violation bounds derived [Kurdila,94]
- Order N performance for rigid bodies
- Order N performance for some flexible systems
- Parallelism independent of vehicle topology
- Based on methods from CSM, CFD
- Variable method/time step switching
Engineering and Environmental Sciences Division

ARO

Real Time Simulation of Multi-Body Dynamics

Goals: Conduct basic research to develop
- Methods for faster than real time simulation of multi-body systems
- Simulation tools fast enough to include
 - Hardware-in-the-loop and man-in-the-loop
 - Intelligent vehicle control systems

Accomplishments:
- Tested for simulation
 - Two augmented Lagrangian formulations
 - New state space formulation for stiff systems
 - New fully recursive formulation
- Simulated the Bombardier ILTIS at a speed 2-3 times the real time in an SGI Indy workstation

The 1/4 ton 4x4 ILTIS vehicle: dynamic simulations based on known inertial and suspension properties.

Eduardo Bayo
Escuela Politecnica Superior
Universidad de la Coruna

Engineering and Environmental Sciences Division

ARO

Innovative Structural Damping Control Techniques

Benefits:
- Extended structural fatigue life
- Reduced noise (communications, crew fatigue, detectability)
- Increased maneuverability
- More economical operation
New and Enhanced ACL (EACL) Idea

Create new configuration to increase transmissibility
- Both active and passive actions can be effectively utilized
- Outperform both active and passive structures in most cases - a more robust design

- Edge elements to increase transmissibility and enhance active action contribution
 => More effective than current ACL and outperform PCL
- Still maintain passive VEM damping
 => Outperform purely active systems

Structural Dynamics and Controls Lab

Active/Passive Magnetic Dampers

Concept: Include permanent magnets or electromagnets in a structure to obtain high control authority
- Integrate with viscoelastic damping layers
- Augment constraint with piezoelectric layers
- Determine optimal size and placement respecting weight and energy considerations

Viscoelastic layer with rare earth magnets
Two viscoelastic layers with magnets and exterior piezoelectric layers
Engineering and Environmental Sciences Division
ARO

PLANETARY GEAR DYNAMICS
IN ROTORCRAFT TRANSMISSIONS

GOAL: Develop analytical and computational tools for planetary gear dynamics to address
- Noise
- Weight
- Dynamic load carrying capacity
- Reliability

Dynamic Analysis Complications:
- Multiple interconnected bodies
- Time varying mesh stiffness and contact loss non-linearity
- Complex mesh interactions at multiple tooth contacts
- Detailed kinematics from motion of the planets and carrier

Approach:
- Analytical modeling of planetary gears
- Computational contact mechanics and finite element analysis
- Geometric imperfections
- Elastic ring gear vibration
- Vibration isolation of transmission mounting
- Experimental investigation of planetary gear dynamics

Robert Parker
Ohio State University
Motivation: Examine the feasibility of constructing large, tent-like maintenance shelters that can be used for helicopters, land vehicles, and airplanes.

Objective: Develop mathematical formulations and numerical solution techniques for toroidal tubes built from inflatable fabrics
- static and dynamic loads
- optimal designs with respect to material and geometry
- compute deflections, stresses, buckling loads, frequencies, and mode shapes

Goals:
- Develop a structural model of a parachute to couple to CFD codes to simulate inflation, terminal descent, and control of parachute and parafoil systems
- Devise a new finite element methodology to predict combined complex aerodynamic and structural dynamic phenomena that occur during parachute deployment.
Engineering and Environmental Sciences Division

A Structural Model for Parachute Inflation Simulations

Significance:
- Developing new and reliable airdrop systems
- Retrofitting extant systems for new applications
- Developing new control strategies for airdrop systems
- Testing feasibility of innovative airdrop designs
- Applications to dynamic deployment of
 - high altitude balloons
 - large span tents
 - temporary and extra-terrestrial structures

Simulation of the gliding of a Guided Precision Aerial Delivery System parafoil. The system starts in a flat configuration, pitches forward, then reaches a steady state glide.

Engineering and Environmental Sciences Division

Active Control of Rotorcraft Structural Response

Goals:
- Develop a mathematical simulation capability for the active control of helicopter fuselage response
- Use this capability to demonstrate vibration reduction and determine force and power requirements

Accomplishments:
- Vertical accelerations in the fuselage are reduced below 0.05 g
- Power requirements less than 1 HP
- Actuator strokes are small (0.001"")
- Actuator force requirements are in practical range at 4/rev

Mount the engine, gearbox, and rotor on a rigid platform. Locate actuators at four corners to produce vibration reduction.

Fuselage vertical accelerations versus advance ratio with the controller engaged or disengaged.
Engineering and Environmental Sciences Division

Parallel Computing Methods for Helicopter Trim and Stability Calculations

Trim Analysis: Compute the control inputs and helicopter orientation for the required flight conditions (prerequisite for flight mechanics and vibration analyses).

Stability Analysis: Compute the eigenvalues of the Floquet transition matrix to determine the damping levels or stability margins.

Accomplishments:
- Developed a reliable parallel fast Floquet analysis (Peters-McNulty method)
- Removed run time barrier using fast Floquet analysis (1000 states)

Gopal Gaonkar
Florida Atlantic University

Engineering and Environmental Sciences Division

Vibration and Stability of Rotorcraft with Elastically Tailored Composite Rotor Blades

Goals:
- Develop new structural design tools
- Incorporate non-uniform inflow and blade stall modeling
- Devise rotor blade design strategies for stable, low vibration rotor systems

Accomplishments:
- Developed and validated a new finite element for modeling open section composite flexbeams (improved accuracy)
- Included blade torsion effects dominated by warping restraint effects
- Exploited bending-torsion couplings to improve stability, simplify hub design, reduce vibrations, enhance handling qualities

Edward Smith
Pennsylvania State University

Comparison of natural frequencies for graphite/epoxy 1 beams
Goals:
- Develop accurate models for investigating pre- and post-buckling in delaminated composite structures
- Devise a non-linear sensitivity analysis to assess effects of material and geometry changes on energy absorption

Approach:
- Compare results from the refined theory for delamination buckling and the 3-D theory of elasticity (simply supported orthotropic plates)
- Conduct an experimental investigation to validate the theoretical results
- Study the effects of
 - ply stacking sequence
 - location of delamination
 - length of delamination

Accomplishments:
- Composite laminates can retain their load bearing capacity after buckling
- In some cases, the ultimate load is 3 times the corresponding critical load
- Excellent agreement between experimental and computed values of the critical loads
- Classical theory is inadequate to predict critical buckling loads in short rectangular orthotropic plates

Comparison of experimental and calculated values of the critical stress versus delamination length (high order transverse shear theory was used)
There is a need for a light weight, survivable, and rapidly deployable ground combat vehicle. Analytical tools and design methodologies are required for light weight laminated and 3-D reinforced textile composite structures to predict deformation, failure, and survivability. No such tools are currently available for thick walled laminates and textile composite structures exposed at near ballistic impact loads. Laminated, sandwich, textile reinforced, functionally graded, and other composites can be analyzed by the proposed methods.

Goal: Develop computational tools for stress and failure analysis of thick-walled laminated and textile composite structures under moderate velocity (50-100 m/s) impact.

Approach: Devise unified computer codes through:
- a general formulation allowing any distribution of external static and/or dynamic surface loads
- Avoiding any a priori assumed hypotheses when characterizing impact contact phenomena (e.g., Hertzian contact law, etc.)
- Accounting for stress wave propagation processes

Complex geometries (adhesively bonded plates, cylindrical elements, stiffened plates and shells) can be investigated by the proposed methods.
Solid Mechanics Program
Office of Naval Research

Roshdy George S. Barsoum
Office of Naval Research
Arlington, VA
Solid Mechanics Program

Office of Naval Research

Ship Structures and Systems Division

Workshop on
Government Sponsored Programs in Structures
April 6, 1997

Roshdy George S. Barsoum
Solid Mechanics Thrust Areas

Simulation-Based Methodology for Weapons Effects on Ship Structures

Objectives: Predictive Capability for Dynamic Failure in Undex

Issues:
• Scaling
• Competing and cascading failure mechanisms
• Prediction of dynamic fracture propagation, especially for welds.

The most advanced practices use damage rather than fracture.

Failure strain is reduced by a 4-8 ignorance factor, to account for failure at welds.

Approach:
• Integration of knowledge (failure) from macro to micro behavior.
• Computational methods and failure criteria for prediction of dynamic fracture of large structures.
• Hierarchical: constitutive models (material scale) for the welds (HAZ) and metal to the structural scale.
• Prediction of ductile and brittle fracture - high strain rate effects.
• Integration methods - structural sensitivity analysis and advanced computations.
• Address variability in properties as well as structural geometry.

Technical Payoffs:
• Evaluation of performance from the viewpoint of weapon protection and crew casualty.
• Battle-damage assessment and prediction of progression of damage under various operating conditions.

Structural Reliability of Ships

Objectives: Life Prediction for Ship Structures

Issues:
• Probabilistic loading, response of large structures and fatigue prediction.
• Effect of variability: structure, welds (and HAZ), material, details, etc.
• Archaic HCF/S-N (Goodman, etc.) - initiation criterion (threshold).
• Methodology for hull/ship redesign for improved dynamics and acoustics performance.
• Bridging the gap between experiments and predictions using model calibration.

Approach:
• Understand ship structural response to sea loading - its structural modes (experimental - fluid/structural interaction).
• Probabilistic methods in ship structure - understanding the important factors influencing ship reliability.
• Fatigue initiation criterion - threshold - time to “failure” - crack initiation, unstable crack growth.
• Deterministic methods and past experience of ship reliability, advanced computations and understanding fatigue.
• Initiation on the structural level - expert system and concurrent engineering.
• Computational techniques to bridge the scales from micro to macro behavior - constitutive behavior for cyclic loading, coupled micro/macro mechanical models of fatigue.
Reliability of Power Electronic Building Blocks

Objectives: Reliability of PEBB Modules and High-Temperature Semiconductors

Issues:
- Thermomechanical stresses - current/voltage characteristics in semiconductor
- Intrinsic stresses in semiconductor and defects in compliant substrate
- Thermal stresses in modules and fracture of multilayers.

Approach:
- Defects in advanced high-temperature semiconductors (SiC, SiN)
- Mechanics of growth of strained film compliant substrates - water splitting (hydrogen implantation)
- Quantitative methods for intrinsic stresses - effect on the critical thickness, and bifurcation of strained films
- Surface roughness of the film
- Fracture mechanics and test methodology - PEBB modules are also subject to high temperature and very large gradients
- Experiments to simulate thermal and mechanical loading effects on devices
- The reliability of packaging and solder.

Active Materials and Adaptive Structures

High-Performance Actuators for Naval Applications

Issues:
- Mechanics of coupled fields
- Design of high-performance actuators
- Reliability of high-strain active materials
- Nonlinear behavior of active materials

Approach:
- Mechanics of high-strain, high-frequency active materials
- Reliability and life prediction methodologies for fatigue life especially for ferroelectric ceramics
- Fracture mechanics methodology in coupled fields
- Coupled electrical - thermal - mechanical response
- Nonlinear behavior in coupled fields - control fidelity/nonlinear control - new high strain actuators
- Actuator design - approach: high-strain/high-frequency actuators, new actuator concepts, hybrid actuators and embedding of actuators in composite

Program is addressing the mechanics required for the feasibility of the following naval applications:

Near Term:
- Structural acoustic and machinery vibration control, and radiated noise reduction.
- Shape control/flow control in propulsor (reduced cavitation, vibration or signature), vortex wake control (sail control surfaces), large array active surface (target strength and SA control)
- MEMS accelerometers, magnetic anomaly devices (MAD), micropumps, gyroscopes, angular velocity meters, and various applications in weapons and UUVs, NiTi variable ballast system

Future: Health monitoring and CBM, battle damage assessment and realtime targeting.
<table>
<thead>
<tr>
<th>Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reliability of complex structural systems</td>
</tr>
<tr>
<td>• Computational methods and prototype simulation</td>
</tr>
<tr>
<td>• Mechanics of structural materials</td>
</tr>
<tr>
<td>• Mechanics of electronic materials</td>
</tr>
</tbody>
</table>

Common Broad Research Themes:

• Performance and life-cycle prediction for complex structures
• Hierarchical strategies for deformation, damage and failure control

<table>
<thead>
<tr>
<th>S&T of Significant Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Real-time monitoring of damage</td>
</tr>
<tr>
<td>• Design of efficient and maintainable structures</td>
</tr>
<tr>
<td>• Power electronics</td>
</tr>
<tr>
<td>• Problems of welding and joining</td>
</tr>
<tr>
<td>• Reliable design with composites</td>
</tr>
<tr>
<td>• Mechanics of megastructures</td>
</tr>
<tr>
<td>• Response of materials and structures to severe events</td>
</tr>
<tr>
<td>• Speculative technologies</td>
</tr>
</tbody>
</table>
Reliability of Complex Structural Systems

Rational consistent probabilistic models to estimate the reliability of novel structures.

Basis:
- Prediction of loads
- Prediction of structural response
- Development of strength criteria
- Development of reliability procedures for complex ship structures

Mechanics of Structural Materials

- Constitutive relations for deformation and damage
- Progressive damage and failure
- Mechanics of joining and bonding
- Composite materials

Mechanics of Electronic Materials
- Electro-thermomechanical effects
- Reliability: Effect of defects on performance (damage models, etc.)

Computational Methods and Prototype Simulation

- Modeling of dynamic and acoustic response
- Modeling the dynamic environment for a large range of scales
- Nonlinear simulation
- Design to optimization for function and cost

Two Major Impediments:
1) The inability to predict damage and fracture in a complex structure;
2) The inability to model the interaction between a fluid medium and the failing structure.
Overview of FAA Structural Integrity Program for Large Transport Airport

Paul W. Tan
Federal Aviation Administration
Atlantic City, NJ
OVERVIEW OF FAA STRUCTURAL INTEGRITY PROGRAM
FOR LARGE TRANSPORT AIRPORT
Paul W. Tan
Federal Aviation Administration
Atlantic City, New Jersey

On April 28, 1988, multiple fatigue cracks caused an Aloha Airlines Boeing 737-200 aircraft to lose part of its upper fuselage. Although the aircraft was able to land safely, the accident resulted in the death of one flight attendant and injury to many passengers. The aircraft, which entered service in April 1969, had accumulated 35,496 hours and 89,690 flight cycles. Less than five weeks after the Aloha Airlines accident, the FAA convened an international conference to discuss the issue of aging aircraft in the world-wide fleet. Of particular concern was the fact that many airplanes were approaching or had exceeded the manufacturers’ design operational life. The conference included operations, maintenance, manufacturing and regulatory representatives. A general consensus was reached that, with proper maintenance and structural modifications and with attention to service-related damage such as fatigue and corrosion, the design operational lives of airplanes could be safely exceeded. The resulting issues, initiatives and recommendations later became the basis for the FAA’s National Aging Aircraft Research Program (NAARP).

Structural Integrity Program
Overview

Paul W. Tan
Federal Aviation Administration
Atlantic City, NJ

AIAA Structures Technical Committee Meeting
April 6, 1997
Orlando, FL
The NAARP is a multidisciplinary program and this overview of one sub-program covers the research in the structural integrity of large transport aircraft (SITA). There are three major elements within this sub-program: a) methodologies to predict the onset of widespread fatigue damage, b) structural integrity of repairs, and c) probabilistic methodologies for widespread fatigue damage.

Structural Integrity Program Overview

Three major elements:

- Methodologies to Predict the Onset of Widespread Fatigue Damage
 - Crack Initiation
 - Crack Growth and Link-up
 - Residual Strength
- Structural Integrity of Repairs
- Probabilistic Methodologies for Widespread Fatigue Damage
Since the NAARP started in 1989, SITA has completed thirteen major milestones shown as described in the following viewgraphs. Reports are available on those projects and will not be discussed here.
Methodologies to Predict the Onset of Widespread Fatigue Damage

Major Tasks:

1) Fracture and Fatigue Strength Evaluation of Multiple Site Damaged Aircraft Fuselages - Curved Panel Testing and Analysis (Foster-Miller)
 - Built full-scale curved panel test rig
 - Flat and curved panels (7) MSD test
 - Completed March 1991
 - Report: DOT/FAA/CT-94/10
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

2) Full-Scale Testing and Analysis of Curved Aircraft Fuselage Panels (Foster-Miller)
 - 8 curved panels test: 7 residual str., 1 fatigue
 - Completed March 1992
 - Report: DOT/FAA/CT-93/78

3) Aircraft Fuselage Lap Joint Fatigue and Terminating Action Repair (Foster-Miller)
 - 2 full-scale curved panels fatigue test
 * to characterize initiation and growth
 - Foster-Miller report completed Aug. 1993
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

4) Load Tests of Flat and Curved Panels with Multiple Cracks (Foster-Miller)
 - 12 flat panels, 10 curved panels
 - Foster-Miller report completed Sept. 1993

5) Fracture Testing of Large-Scale Thin-Sheet Aluminum Alloy (NIST)
 - Completed Jan. 1995
 - Report: DOT/FAA/AR-95/11
METHODOLOGIES TO PREDICT THE ONSET OF WIDESPREAD FATIGUE DAMAGE

Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

6) Axial Crack Propagation and Arrest in Pressurized Fuselage (Univ of Washington)
 – Completed June 1995

7) Investigation of Fuselage Structure Subject to Widespread Fatigue Damage (Boeing)
 – Completed Aug. 1995
 – Report: DOT/FAA/AR-95/47
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

8) Computational Modeling of Aircraft Structures (COE)
 – Completed Phase I Oct. 1995
 – Over 100 technical reports

9) Residual Strength Tests on Stiffened Panels with MSD (conducted by NLR)
 – 11 stiffened panels (80x50)
 – Completed Feb. 1996
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont'd.)

10) Elastic Finite-Element Alternating Method (E-FEAM) (COE)
 – Ongoing Phase II activity
 – Completed March 1997

11) Elastic-Plastic Crack Growth Criteria
 Based on T* with Elastic-Plastic FEAM (COE)
 – Ongoing Phase II activity
 – Completed March 1997
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

12) Experimental Verification of the T* Theory (Univ. of Washington)
 - Completed work for single cracked specimen
 - One technical paper published
 - Ongoing investigation on MSD specimen

13) NASGRO (JSC)
 - PC-based NASGRO development ongoing
 - Expected completion date Jan. 1997
Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont’d.)

14) Engineering Residual Strength Model Development and Validation (Broek and Foster-Miller)
 – PC Windows based residual strength tool
METHODOLOGIES TO PREDICT THE ONSET OF
WIDESPREAD FATIGUE DAMAGE

Milestone 15 is a project that is funded by the FAA and conducted at NASA Langley Research Center. The project consists of testing five stiffened and five unstiffened panels with and without multiple site damage (MSD). The objective of this test program is to measure the crack tip opening angle (CTOA), plastic zone size at the crack tip, and the elastic-plastic crack tip energy T*. This data will be used to predict residual strength of a structure in the presence of MSD.

Milestone 16 is a project that conducts an evaluation and validation of the technologies and methodologies developed by the FAA and NASA within their aging aircraft programs. McDonnell Douglas will be evaluating these technologies to predict the onset of widespread fatigue damage.

Methodologies to Predict the Onset of Widespread Fatigue Damage (Cont'd.)

15) Stiffened and Unstiffened Flat Panel Test (NASA Langley)
 – Start date Oct. 1996

16) Widespread Fatigue Damage Evaluation
 (McDonnell Douglas)
 – Awarded August 1996
 – Expected completion date Dec. 1999
METHODOLOGIES TO PREDICT THE ONSET OF WIDESPREAD FATIGUE DAMAGE

Methodologies to Predict the Onset of Widespread Fatigue Damage

<table>
<thead>
<tr>
<th>FY92</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>FY96</th>
<th>FY97</th>
<th>FY98</th>
<th>FY99</th>
</tr>
</thead>
</table>

- Crack Initiation
- Crack Growth/Link-up
- Residual Strength/Crack Instability
- Full-scale Experimental Verification

△ Major Milestones
In the Structural Integrity of Repairs element, the FAA has developed a PC-based tool to perform a damage tolerance analysis of repairs. Four releases are planned:

- Release Version 1: for simple fuselage repairs
- Release Version 2: repairs over stringers, frames and splices
- Release Version 3: repairs at door corners
Structural Integrity of Repairs

Three Phases:
Phase I: Repair Assessment Procedure and Integrated Design (RAPID)
- Completed simple skin repair model and GUI
- Version I, released March 1996
Structural Integrity of Repairs (Cont'd.)

Phase II: Repair Assessment Procedure and Integrated Design (RAPID) - funded by USAF/NDAA
 – Complex structural repairs
 – Ongoing activity

Phase III: Repair Assessment Procedure and Integrated Design (RAPID)
 – Repairs of commuter aircraft
 – Planned activity for FY98 and FY99
STRUCTURAL INTEGRITY OF REPAIRS

Structural Integrity of Repairs

FY93 | FY94 | FY95 | FY96 | FY97 | FY98 | FY99

Structure Integrity of Repairs

Technology Transfer

△ Major Milestones
Probabilistic Methodologies for Widespread Fatigue Damage
The Probabilistic Methodologies for Widespread Fatigue Damage Project involves the development of a probabilistic framework to conduct risk analyses of structural components prone to WFD. Uncertainties in crack initiation, loads, material properties, manufacturing qualities, and corrosion are modeled probabilistically.

Probabilistic Methodologies for Widespread Fatigue Damage

Task:
- An Integrated Risk Assessment Methodology for Widespread Fatigue Damage in Aircraft
 - New activity
 - Awarded Sept. 1996
 - Expected completion date June 1998
Probabilistic Methodologies for Widespread Fatigue Damage (Cont’d.)

Task Objective:

- Develop a probabilistic analytical tool to aid in understanding WFD mechanisms under various sources of uncertainties.
- Use risk-based decision tool to quantify risk associated with both MSD and ME and ensure continued airworthiness of the aging fleet.
Probabilistic Methodologies for Widespread Fatigue Damage (Cont’d.)

Task Approach:
- Quantify uncertainties in WFD process
 - Crack initiation
 - Crack growth
 - Residual strength and instability.
- Propagate uncertainties using fatigue and fracture mechanics.
- Predict results using probabilistic methods.
Probabilistic Methodologies for Widespread Fatigue Damage (Cont’d.)

Failure Probability = Shaded Area
PROBABILISTIC METHODOLOGIES FOR WIDESPREAD FATIGUE DAMAGE

Probabilistic Methodologies for Widespread Fatigue Damage

<table>
<thead>
<tr>
<th>FY96</th>
<th>FY97</th>
<th>FY98</th>
</tr>
</thead>
</table>

- Probabilistic Model for WFD

- Technology Transfer

▲ Major Milestones
SUMMARY

Summary

- Evaluation and validation of WFD methods will be completed in FY99.
- Planned FAA funding for RAPID for commuters applications in FY98 and FY99.
- An integrated risk assessment methodology for WFD will be completed in FY98.
Structural Integrity Program

- Methodologies to Predict the Onset of Widespread Fatigue Damage
 → Structural Integrity of Repairs
 - Probabilistic Methodologies for Widespread Fatigue Damage
 → Technology Transfer
Overview of Research, Development and Application Activities at Sandia National Laboratory

Paul J. Hommert
Sandia National Laboratories
Albuquerque, NM
OVERVIEW OF RESEARCH, DEVELOPMENT
AND APPLICATION ACTIVITIES AT
SANDIA NATIONAL LABORATORY

Paul Hommert
Director, Engineering Sciences
Sandia National Laboratories
Albuquerque, New Mexico

Overview of Research, Development and Application Activities at Sandia National Laboratories

Presentation for Workshop on Government Sponsored Programs in Structures
April 6, 1997

Paul Hommert
Director, Engineering Sciences
pjhomme@sandia.gov
ENGINEERING SCIENCES CENTER WEB PAGES

This viewgraph shows two web pages. The left page provides an Internet address that can be used to gather additional background information. The right page shows Engineering Sciences Center technologies as illustrated by another web page.
NUCLEAR WEAPONS SAFETY IN ABNORMAL THERMAL ENVIRONMENTS IMPROVED CONFIDENCE THROUGH TOOL DEVELOPMENT

Indicates one of the prime responsibilities of the Laboratory in the weapons program; namely, weapon safety in an abnormal environment. This particular viewgraph highlights the importance of being able to simulate fire conditions.

"Describing the... severity of a... fire requires the use of considerable engineering approximation" (Severities of Transportation Accidents, SLA74-000-1, July 1976)
"Minor changes in the fire characteristics can severely change the thermal response of a system" (A Broad Range of Lessons Learned in Design of Weapon Systems, SAND93-1086, Feb. 1994).
Similar to the previous viewgraph, this provides an example of another weapon related environment for which simulation capability is being developed; namely, laydowns. This environment requires predictive capabilities for large deformation mechanics and structural dynamics.

Events & Mechanical Phenomenology of a B61 Laydown

Events
- Aircraft Release
- Parachute Retardation
- Nose Impact
- Tail Slapdown
- Centercase Impact

Phenomenology
- Large Deformations
- Material Contact & Penetration
- Material Crush-up & Fracture
- Material Damping
- Late-Time Component Response
MISSION DEMANDS FOR ENGINEERING SIMULATION

The following three viewgraphs are self-explanatory and provide a high level of summary of the mission responsibilities of the Laboratory and how those responsibilities generate the need for phenomenology and simulation capabilities across a range of disciplines.

<table>
<thead>
<tr>
<th>Mission Demands for Engineering Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Weapons: Our Primary Mission</td>
</tr>
<tr>
<td>Performance:</td>
</tr>
<tr>
<td>Gravity/Laydown Systems</td>
</tr>
<tr>
<td>Transient Dynamics</td>
</tr>
<tr>
<td>Parachutes</td>
</tr>
<tr>
<td>Non-Linear Large Deformation Mechanics</td>
</tr>
<tr>
<td>Reentry Vehicles</td>
</tr>
<tr>
<td>Structural Dynamics, Aerodynamics</td>
</tr>
<tr>
<td>Contact Fusing, NG Standoff</td>
</tr>
<tr>
<td>Neutron Generators</td>
</tr>
<tr>
<td>NLLDM</td>
</tr>
<tr>
<td>Neutron Generators</td>
</tr>
<tr>
<td>NLLDM</td>
</tr>
<tr>
<td>Arming, Firing & Fusing</td>
</tr>
<tr>
<td>Energetic Materials, Structural Dynamics</td>
</tr>
<tr>
<td>Detonators</td>
</tr>
<tr>
<td>Energetic Materials</td>
</tr>
<tr>
<td>Gas Transfer Systems</td>
</tr>
<tr>
<td>Quasistatics, Material Mechanics</td>
</tr>
<tr>
<td>Hostile Environments</td>
</tr>
<tr>
<td>Structural Dynamics, NLLDM Thermal</td>
</tr>
<tr>
<td>Safety:</td>
</tr>
<tr>
<td>Abnormal Environments</td>
</tr>
<tr>
<td>Thermal/ Mechanical</td>
</tr>
<tr>
<td>Thermal Sciences, Fire Physics, NLLDM,</td>
</tr>
<tr>
<td>Energetic Materials</td>
</tr>
</tbody>
</table>

40559-1 DraftMay7997 1

243
Mission Demands for Engineering Simulation

<table>
<thead>
<tr>
<th>Nuclear Weapons - Our Primary Mission</th>
<th>Quasistatic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability - Component Design & Aging</td>
<td>Material Mechanics</td>
</tr>
<tr>
<td></td>
<td>Reactive Processes</td>
</tr>
<tr>
<td></td>
<td>Micromechanics</td>
</tr>
<tr>
<td>Manufacturing - Product & Process Design</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td></td>
<td>Plasma Processes</td>
</tr>
<tr>
<td></td>
<td>Quasistatics</td>
</tr>
<tr>
<td></td>
<td>Thermal Science</td>
</tr>
<tr>
<td></td>
<td>Reactive Processes</td>
</tr>
</tbody>
</table>
Mission Demands for Engineering Simulation

<table>
<thead>
<tr>
<th>Energy and Critical Infrastructures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil Energy</td>
<td>Quasistatics</td>
</tr>
<tr>
<td></td>
<td>Geomechanics</td>
</tr>
<tr>
<td></td>
<td>Multiphase processes</td>
</tr>
<tr>
<td></td>
<td>Reactive Processes</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>Thermal Science</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td></td>
<td>Aerodynamics</td>
</tr>
<tr>
<td>Nuclear Energy</td>
<td>Thermal</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td></td>
<td>Quasistatics</td>
</tr>
<tr>
<td></td>
<td>Multiphase processes</td>
</tr>
<tr>
<td>Critical Infrastructure</td>
<td>NLLDM</td>
</tr>
<tr>
<td>- Energy</td>
<td>Energetic Materials</td>
</tr>
<tr>
<td>- Transportation</td>
<td>Fire</td>
</tr>
<tr>
<td>- Information</td>
<td>Aerosols</td>
</tr>
<tr>
<td>- As built</td>
<td></td>
</tr>
</tbody>
</table>
This viewgraph summarizes key drivers related to the nuclear weapons program in the post cold war era. These drivers all result in the expectation of a greater reliance on simulation-based methods for accomplishing the weapons program in the future.

Drivers

| Performance Normal & Hostile Environments | • No new system development
• Loss of UGT
• Changing STS requirements
• System modifications
• Reduced test infrastructure |
| Safety Abnormal Environments | Simulation provides a means for substantive improvement in nuclear safety design and assessment methodology |
| Reliability | • Unprecedented stockpile aging coupled with limited information on aged weapons
• Anticipate rather than react |
| Manufacturing | • Reduced design and manufacturing capacity
• Sunsetting of key manufacturing technologies
• Requirement for small lot, rapid response with low defect rate |
Overview of the shift to greater simulation-based approaches that we entitle, "modeling and simulation-based life cycle engineering." Key in the viewgraph is the vision of shifting from an engineering design cycle where simulation is supportive of a traditional test-based approach to one where experimentation for validating models is supportive of a simulation-based life cycle.
Enumerates the key elements of achieving the level of functionality and confidence necessary to achieve the vision discussed in the previous viewgraph. Achieving these elements reflect how numerous programs within the Laboratory are being coordinated to achieve the necessary simulation capability.

<table>
<thead>
<tr>
<th>The Evolving Role of Modeling and Simulation Demands Unprecedented Confidence and Functionality</th>
</tr>
</thead>
</table>
| • Fidelity
 - Full treatment of relevant physics
 - Full dimensionality
 - Software verification
 - Multiple length and time scales
| • High Performance Computing
| • Experimental Validation and Discovery
| • Explicit Treatment of Uncertainty
| • Problem-Solving Environment

248
PROGRAMMATIC IMPLEMENTATION STRATEGY FOR MSBLCE

Introduces the different program elements that are currently being worked to increase the simulation capabilities to meet the demands in confidence. This viewgraph introduces the DOE’s ASCI Program which is dramatically increasing the computational capabilities at the Laboratory. It also indicates the need for partnerships with other research and technology entities to achieve the necessary technology development.
ASCI SUPERCOMPUTER EXCEEDS ONE TRILLION OPERATIONS PER SECOND

This viewgraph summarizes the computing capabilities of the first teraflop machine that is currently operational at Sandia. This is the first in a series of machines that will be placed at the DOE Weapon Laboratories over the next seven years. These machines are on track to achieve 10-100 Tflops in that time period.

- 1.81 TeraFlops peak performance using 9072 Pentium Pro processors
 Equivalent to 6 billion people doing 300 calculations per second or 36,000 Cray 1’s
- 583,000 MBytes memory
 Equivalent to 140 million pages of text or about 400,000 books
- 2419 GigaBytes/second memory communication bandwidth
 Internal communication equivalent to 302 million simultaneous telephone conversations
- Capability at Sandia through 1999
 Enables important nuclear weapons simulations

Uses Intel’s Commodity COTS Building Blocks
SANDIA HAS HAD A LONG TERM COMMITMENT TO HIGH-PERFORMANCE COMPUTING RESEARCH

This viewgraph points out that the magnitude of simulation capability jump that is about to occur rests upon a foundation of computational science related to the use of massively parallel architectures. This research has been underway for about ten years and has now reached the point where production engineering calculations on these machines can be accomplished.

Sandia Has Had a Long Term Commitment to High-Performance Computing Research

- Ten years of research in MPP.
- Numerous achievements and awards.
- Success underpinned by advances in software - OS, domain decomposition, algorithm development.

ASCI provides the resources to realize the full potential of MPP for weapons mission simulation.
1.0 SCOPE AND PRIMARY CHALLENGES
IN MATERIAL MECHANICS

The next five viewgraphs briefly identify research areas and indicate some specific projects underway in the area of structural dynamics. Of particular note is the major software development effort, SALINAS, to develop a structural dynamics code capable of 100 million DOF simulations on a massively-parallel computer.
Salinas - Structural Dynamics FE Code Development

Approach
- Develop Salinas, a structural dynamics (modal and transient) FE code for ASCI machines. Salinas will be structured to leverage efforts in SIERRA and other ASCI software.
- Incorporate emerging capabilities in iterative linear equation solvers, and eigensolutions.
- Develop iterative eigensolver for MP machines.

Objectives
Provide capability for dynamic structural analysis on MP machines
DP Driver - Provide capability to simulate STS environments and propagate loads to DOE components for Normal, Hostile and Fratricide environments.
Provide FE capability on MP machines to perform optimization, estimation (modal validation) and non-deterministic analysis.

Schedule, Funding, and Milestones
Funding: FY96 0.3M; FY97 0.6M; FY98 2.0M;
Prototype Code available 7-97
Improved Eigensolution Available 8-98
Initial Software Completion 8-99
Partnerships: U of Colorado, Rice.
PI: Garth Reese (845-8640) gmreeee@sandia.gov
Dan Segalman, djaegal@sandia.gov

Graphical representation of Salinas application.
Technical Targets in Structural Dynamics

<table>
<thead>
<tr>
<th>Mission</th>
<th>Mission Need</th>
<th>Technical Capability Needed</th>
</tr>
</thead>
</table>
| Performance | Component Shock & Vibration Response of Weapon Systems for MSRLCE | • MP FE Code (high-level, 3-D dynamic structural models)
• Model Validation & Refinement,
• Optimization Methodology
• Rapid Prototyping & Virtual Test
• Predictive Damping Capability
• Modeling of Joints and Interfaces (Non-Linear)
• Non-Deterministic Methods
• Extended Experimental Ranges |
| Product Realization | • Precision Motion Control for Advanced Manufacturing | • Active / Passive Controls
• Smart Structures & Materials |
| Performance | Simulation for Advanced MEMS Design and Applications | Microsensor Dynamics |
| Performance | Simulation for Missile/Payload, Telescope, and Space Systems | Model Validation & Refinement,
Non-Contacting Sensing |
| Performance | Intelligent Structure Design for Weapon Systems/Components | Hybrid Controls, Optimization, and Health Monitoring Methods |
System Identification for Structural Dynamics

Technical Approach:
Combine statistical estimation theory, finite element numerical methods and modal analysis to develop reconciliation codes.

Accomplishments:
STARS Missile, JPL Interferometer, GM Cradle and Body-in-White
Estimation Codes: SSID, PEGA, PESTDY
Error Localization: ELAPSE (Modified Hemez Algorithm)
Partnerships: GM, Goodyear, JPL Phillips Lab, Aerospace Corp.
PI: Kenneth Alvin, 844-9329, kfalvin@sandia.gov
ESRF Project Overview: Structural Dynamics Microscience and Microelectronics Research

Technical Approach:
- Nonlinear FE modeling with comparisons to measured data.
- Develop experimental solder joint test bed.

Accomplishments:
- Baseline static simulation of silicon diaphragm correlated with experimental data.

Partnerships: MEMS research in Center 9100 investigating microsensors for defense systems applications.

PIs: Don Lobitz, 844-9398, dwo obt@sandia.gov
 Don Longcope, 844-2530, dblongc@sandia.gov

Problem:
- Design optimization of microscale silicon diaphragms used in pressure and acceleration sensors.
- Develop self-sensing solder joint using micro scale sensors and actuators.
The next six viewgraphs summarize current research efforts in solid mechanics. Included are brief summaries of current code capabilities for quasistatics, and transient dynamics (PRONTO). As an example of a key solid mechanics related algorithm that enables scalable finite element transient dynamic calculations on a massively parallel machine, the RCB contact algorithm is briefly described. The last viewgraphs in this group highlights a new research direction in transient dynamics simulation; namely, gridless approaches such as smooth hydrodynamics (SPH), in this case applied to the problem of penetration.
JAS: A 3D Finite Element Code for Nonlinear, Large Deformation Quasi-static Solid Mechanics

Iterative equation solvers using CG and dynamic relaxation
Objective material coordinate system
Eight-node hexahedral (3D), four-node shell (3D), four-node quadrilateral (2D)
Mean quadrature
FB and assumed strain hourglass control
Master/Slave contact algorithm with global detection
Common source with PRONTO
Vector and parallel implementation
PRONTO: A 3D FINITE ELEMENT CODE FOR NONLINEAR, LARGE DEFORMATION TRANSIENT DYNAMIC SOLID MECHANICS

PRONTO: A 3D Finite Element Code for Nonlinear, Large Deformation Transient Dynamic Solid Mechanics

- Explicit mid-point time integration
- Objective material coordinate system
- Eight-node Hexahedron (3D), four-node shell (3D), four-node quadrilateral (2D)
- Mean quadrature
- FB and assumed strain hourglass control
- Adaptive time step
- Symmetric contact algorithm with global detection
- Common source with JAS
- Vector and parallel implementation
The next four viewgraphs discuss research in optimization methods, the results of which are being incorporated into the overall simulation environment being developed for the weapons' programs greater reliance on simulation.
Contacts are an Example of a Critical Simulation Algorithm Successfully Implemented for Parallel Architectures

Recursive Coordinate Bisection (RCB) decomposition for the contact surface calculation

Algorithm achieves linear scale-up
MODELING AND SIMULATION OF PENETRATION USING PRONTO/SPH CODE

Modeling and Simulation of Penetration Using PRONTO/SPH Code
The following seven viewgraphs highlight research directions in material mechanics. Of particular emphasis are new efforts to link the micro- and macro-scale to achieve more fundamentally based constitutive treatments for material response. This field will be particularly enabled by Teraflop scale computing.

Scope and Primary Challenges in Material Mechanics

- **Technical Area Description, Scope**
 - Focuses on materials in the solid state
 - Develops constitutive models for solid mechanics finite element codes
 - Shares development of friction, wear and other interface models with solid mechanics technical area
 - Includes development of process models so as to:
 - Understand material microstructural evolution throughout life cycle.

- **Primary Challenge and Strategy**
 - Develop predictive constitutive models for solid mechanics finite element codes governing deformation, damage/failure/fracture, and degradation in service.
 - Long-term challenge is to:
 - Build linkages between different length scales according to the application and based on sound thermodynamic and statistical frameworks
 - Understand role of defects and microstructure on properties and performance
 - Develop and apply models for defects and microstructure at all appropriate length scales
 - Retain computational efficiency in constitutive models.
Background: Atomistic, Microstructure, and Continuum Material Modeling in Use at Sandia

Atomistic Methods:
- **A₁** First Principle Methods:
 - Plane-wave LDA-Pseudopotential
 - Mixed-basis-set LDA-Pseudopotential
 - KKR-CPA (Korringa-Kohn-Rostocker method & coherent potential approx.)
 - LMTO-CVM (Linear muffin-tin orbital & cluster variational method)
- **A₂** Approximate Methods:
 - Tight-binding methods
- **A₃** Semi-Empirical Methods:
 - EAM for noble metals
 - Cluster functional approach for transition metals
 - MEAM (Modified EAM) for covalent solids
Background: Atomistic, Microstructure, and Continuum Material Modeling in Use at Sandia

<table>
<thead>
<tr>
<th>Microstructure Models</th>
<th>Continuum Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁ Cellular automations and scaling theory</td>
<td></td>
</tr>
<tr>
<td>M₂ Monte Carlo simulations</td>
<td></td>
</tr>
<tr>
<td>M₃ Rate theories: master and Fokker-Planck equations</td>
<td></td>
</tr>
<tr>
<td>M₄ Mean field theories</td>
<td></td>
</tr>
<tr>
<td>C₁ Constitutive equations</td>
<td></td>
</tr>
<tr>
<td>C₂ Internal variable approaches for plasticity and "damage" accumulation</td>
<td></td>
</tr>
<tr>
<td>C₃ Effective medium theories for multi-phase materials</td>
<td></td>
</tr>
</tbody>
</table>
ESRF Project Overview: Tools for Bridging Length and Time Scales

Technical Approach:
- Apply the statistical physics concepts of thermodynamic limit and correlation length to develop length-scale bridging techniques. Use the thermodynamic limit to determine macroscopic property values directly from microstructural process simulation results, or use the correlation length to define the RVE size so that volume averaging is possible.

Accomplishments:

Resources:
- $110K ESRF

Partnerships:
- None

PI: John Aidun, (505) 844-1209
jbaidun@sandia.gov
ESRF PROJECT OVERVIEW: DAMAGE AND FAILURE OF METALS

ESRF Project Overview: Damage and Failure of Metals

Technical Approach:
- Determine appropriate damage evolution for high temperature and high stress triaxiality combining numerical micromechanical modeling and experimental data
- Develop void nucleation and coalescence models for materials with precipitates, inclusions and other phases

Accomplishments:
- Nucleation model has been developed based upon micromechanical simulations

Resources: $130K ESRF

Partnerships:
- Georgia Tech (McDowell)
- USAMP Cast Light Metals CRADA

PI: Mark F. Horstemeyer, (510) 294-1459
 mfhorst@ sandia.gov

Douglas J. Bammann, (510)-294-2585
 bammann@ sandia.gov

Problem:
Large scale simulations require an accurate, yet computationally-efficient prediction of ductile failure. Our approach is based on evolution equations for void nucleation, void growth and coalescence. An accurate knowledge of the current stress state and past loading history is essential.

Damage of a notched 304L tension specimen loaded at 800°C shows void growth and coalescence.

267
An important use of state variable models is to track material state through manufacturing processes.

- Material parameters are determined for annealed material
- In each step, state variables are tracked and final variables from one step used as initial variables in next step
- For example, a multistage manufacturing process such as rolling is modeled and final values of state variables used to track ensuing anisotropy in hydroforming
- Final state of material after manufacturing is used as initial state in component design
- Important that state variables evolution incorporate temperature history, strain rate history and load path (include evolving anisotropy) history
Application of the BCJ state variable model to a gas transfer system burst disk

Technical Approach:
- Model the entire multi-stage manufacturing process of the burst disk from initial forming to scoring to reforming to welding to proofing to burst
- Apply the BCJ constitutive model, utilizing the strain rate and temperature dependence and ductile failure capabilities

Impact:
- Modeling showed that the inconsistent results were primarily a result of the manufacturing process
- Modeling helped to redefine the forming dies, scoring tools and manufacturing processes to prevent previously observed problems
- The new manufacturing process resulted in a design with predictable, reliable and consistent burst pressures

Problem:
Inconsistent burst pressures and fractures were obtained for the burst disk component of the GTS ACORN system. This led to excessive uncertainty in the performance and reliability of this critical DP component.
The next four viewgraphs discuss research in optimization methods, the results of which are being incorporated into the overall simulation environment being developed for the weapons programs' greater reliance on simulation.
DAKOTA "TOOLKIT" FOR OPTIMIZATION
AND PERFORMANCE ANALYSIS

DAKOTA "ToolKit" for Optimization and Performance Analysis

Iterator

ParamStudy Nondeterministic
Optimizer Least Squares

Analysis System
5.0 ESRF PROJECT OVERVIEW: OPTIMIZATION RESEARCH AND DAKOTA DEVELOPMENT

5.0 ESRF Project Overview: Optimization Research and DAKOTA Development

Technical Approach:
Flexible, extensible, object-oriented architecture provides broad problem-solving environment
Research in novel algorithms, hybridization, seq. approx., parallel proc., opt. under uncertainty

Accomplishments:
Many successful application studies
Toolkit supports opt., uncertainty, parametric analysis, least squares, combination strategies
Single-level parallel approaches demonstrated
Successful GA/CPS/NLP hybrids demonstrated

Partnerships:
Dave Zimmerman, Univ. of Houston
Mike Eldred, 844-6479, mseldre@sandia.gov

Problem:
MSBLCE requires an accessible, useful, general-purpose "toolkit" for design optimization and performance analysis of complex engineering problems.
Answer fundamental engineering questions:
What is the best design?
How safe is it?
How much confidence do I have in my answer?

4/2001-DMP74-P1357-54
DAKOTA OBJECT-ORIENTED SOFTWARE DESIGN

Object-oriented design with C++: flexible, extensible, abstract.
Generic "Application Interface" design isolates application specifics.

Optimization is a part of a larger hierarchy of "iterators," which leverages the utility of the interfacing software.
These last viewgraphs introduce an important topic that will be increasingly important as greater reliance is placed on simulation. That area is uncertainty quantification. A few brief examples of the impact that uncertainty quantification can have in reaching engineering judgments are provided. This is an area of increasing research emphasis at the Laboratory.

Goal: To quantify our confidence that numerical simulation represents the physical world to answer an engineering question.

This deals directly with the issue of accuracy / predictability / uncertainty of our numerical simulations and is complementary to our other efforts in computational mechanics.
Uncertainty Quantification - Flowchart

Input Uncertainty
IC's, Loads, Material Properties, Geometry

Propagation Methods
Model Uncertainty
Physical Uncert, Modeling Uncert, Mesh Uncert
Software Uncertainty
Algorithmic Uncert, Numerical Uncert

Output Uncertainty
Response: Stress, Acceleration, Temperature, Pressure, Velocity
SCOPE AND PRIMARY CHALLENGES IN UNCERTAINTY QUANTIFICATION

Scope and Primary Challenges in Uncertainty Quantification

Primary Challenges
- Account for All Sources of Uncertainty
- Validation and Verification Methodology
- (Codes, Models, Physics)
- Computationally Efficient Propagation/Analysis Methods
- Impact Projects to Answer "Engineering Questions"

Strategy
- Develop General Methodology Plan
- Develop Code Verification and Model Validation Plan
- Develop Fast Probability Integration Methods
- Develop Sampling Methods
- Input Uncertainty Quantification
- Incorporate Software Tools into DAKOTA
- Approximation Concepts for Analysis Codes
Uncertainty is pervasive
- Material properties
- Failure criteria
- Geometry
- Models

Research Thrusts
- Monte Carlo methods
- Reliability-based methods
- Perturbation techniques

Realistic treatment of uncertainty is critical to confidence
Structural Mechanics Code Development at Lawrence Livermore National Laboratory

Peter J. Raboin
Lawrence Livermore National Laboratory
Livermore, CA
Structural Mechanics Code Development At Lawrence Livermore National Laboratory

Peter J. Raboin
Group Leader
Methods Development Group
Defense Technologies Engineering Division
Mechanical Engineering
Lawrence Livermore National Laboratory
Livermore, CA

This work was performed under the auspices of the U.S. Department of Energy
by the Lawrence Livermore National Laboratory under contract W-7405-Eng-48
LLNL DEVELOPED COMPUTATIONAL MECHANICS CODES ARE ESSENTIAL TO THE DELIVERY OF UNIQUE ANALYSIS CAPABILITIES TO LAB PROGRAMS

Lawrence Livermore National Laboratory has developed a unique set of finite element codes for solving structural mechanics problems for Laboratory programs, specifically the Weapons and Lasers programs. Going back twenty years, these codes have developed into a family of explicit and implicit finite element codes called DYNA and NIKE. The TOPAZ code is our implicit heat transfer code and it is integrated with the DYNA and NIKE codes. The Methods Development Group is responsible for the development of these codes and supports the sixty or so analysts who use these codes daily. New SMP and MPP computers are coming into use at our Lab and we have reason to be very optimistic about the increased modeling capabilities that improved compute speeds provide. New code capabilities however are driven by the need to solve problems presented by our program analysts.

LLNL Developed Computational Mechanics Codes Are Essential To The Delivery Of Unique Analysis Capabilities To Lab Programs

- The Methods Development Group is responsible for the continuous improvement and support of computational mechanics codes: DYNA – NIKE – TOPAZ

- MDG codes are used by 60 LLNL analysts, and hundreds of institutions around the world.

- Recent advances in SMP and MPP computer hardware are rejuvenating MDG codes with unprecedented possibilities.

Programmatic problems provide the strongest impetus to drive increased code capabilities.
As previously mentioned, the DYNA, NIKE and TOPAZ codes are used by sixty analysts at LLNL. Just over 40% of these experts work on Weapons projects, a third for the Lasers program, and the balance on an assorted mix of energy, materials, and new technologies projects. We have a code collaboration program which allows us to share our developments with others provided they agree to return code improvements to our effort. In the last year, several code improvements, most notably a solver from NASA, have provided strong benefits to solving our Lab’s problems. Fundamentally though, we direct our code developments at internal issues, the collaborators make improvements for their own benefit, and then we share the fruits. Frequently our efforts are synergistic.

ME Code Development Catalyzes 60 LLNL Analysts With New Capabilities And Increased Flexibility

The Customer Base:

- 50 - 60 Analysts depend on state-of-the art numerical analysis tools. 40+ in ME alone with the complement in Physics, C&MS, Earth Sciences and Energy.

- LLNL Weapons and Lasers programs are the primary beneficiaries.

- 152 code collaboration partners also develop our software and return new code developments to LLNL:
 - Solvers from NASA
 - Contact algorithms from Universities.
 - Material models from US industries.
 - Bug fixes from British Aerospace.

Code Development is Wholly Driven By Customer Needs
Three components are essential for a healthy, well-balanced code development effort. First and most important are the programmatic drivers that provide the Laboratory’s mission. We are a support group, so we must remain lean and efficient in order to maintain our high value to the programs. The second essential component is to provide the continuous forward momentum in the development of new code capabilities. DYNA, NIKE and TOPAZ are not "static" codes but are under sustained development. This perception is important to our analysts, the funding programs, and the code developers who desire work on relevant, cutting-edge codes. Lastly, staffing our code development with experts in computational mechanics is a significant challenge given the constraints of salary and job mobility in the software industry today. We must increasingly rely on university graduates.
The common thread in our code development activities is the trend toward large systems analysis. This trend is reflected in our projects for parallel methods, rigid body mechanics and code couplings. In the parallel methods projects called ParaDyn we will be parallelizing the DYNA, NIKE and TOPAZ codes. The work on DYNA3D is mostly complete with separate parallelization strategies for the element loop and contact algorithms. The rigid body mechanics projects aim to simplify the numerical models by allowing the analyst to represent those bodies which do not significantly deform with simpler six degree-of-freedom representations that retain their complex geometries and surfaces for contact. Likewise, the code coupling projects seek to integrate different physics into larger system responses. We have coupled the NIKE3D code to two different optic codes in the past year to support our Lasers program.

<table>
<thead>
<tr>
<th>LLNL Programs</th>
<th>Applications</th>
<th>Computational R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weapons</td>
<td>Structural integrity, damage, manufacturing simulations</td>
<td>Parallel methods</td>
</tr>
<tr>
<td>Lasers</td>
<td>Thermo-Mechanical-Optical</td>
<td>- Explicit and implicit</td>
</tr>
<tr>
<td>ASCI</td>
<td>Multi-physics, parallelisms</td>
<td>- Contact strategies</td>
</tr>
<tr>
<td>Misc.</td>
<td>Explosive/structure interactions</td>
<td>Rigid body mechanics</td>
</tr>
<tr>
<td>- DoD/DSWA</td>
<td>Civil eng. structural integrity</td>
<td>- Dynamic integration</td>
</tr>
<tr>
<td>- Caltrans</td>
<td>Fan blade-off, failure and out</td>
<td>- Material switching</td>
</tr>
<tr>
<td>- FAA</td>
<td>of balance loads</td>
<td>Code couplings</td>
</tr>
<tr>
<td>- FHWA</td>
<td>Vehicle/barrier/occupant simulations</td>
<td>- Multi-physics</td>
</tr>
<tr>
<td>- PNGV</td>
<td>Composites and metal springback</td>
<td>- Explicit and implicit</td>
</tr>
</tbody>
</table>

Large system analysis can reveal multi-component interactions that are essential to understanding complex system behaviors.
NEW MACHINES AND PARALLEL METHODS OFFER UNPRECEDENTED SPEED FOR VERY LARGE PROBLEMS

Our largest code development project is for the parallelization of DYNA, NIKE and TOPAZ codes. The ParaDyn project has parallelized DYNA3D and then performed benchmark calculations on a million-element underground shock problem. The code performance demonstrates good processor scaleability and indicates that our newest MPP supercomputer, IBM's SP2, has outstanding compute speed for DYNA3D problems.
DYNA3D simulations are critical to the process of design/analysis/experiment

This viewgraph provides an example of how dramatic speed-ups in DYNA3D can have a potent effect on the design process. In this shipping container which must withstand impact loadings, DYNA3D running on a CRAY-YMP, took 140 hours to complete execution. With 60K plus nodes and more than 25 slide surfaces, the compute time fell to less than 10 hours using parallel DYNA3D on IBM's SP2. Similar speed-ups were obtained on the Meiko MPP supercomputer. With these advantages our analyst was able to provide design changes backed up by simulations faster than the experiments could be performed.
DYNA3D is our explicit finite element code and is useful for solving high rate events and predicting structural dynamic responses. In these examples, larger system responses are obtained from the failure of key components. For the jet engine, a blade failure causes out-of-balance rotor loads, rubbing of blades at their outer tips, and blade-to-blade contact during the failure. In the second case, a failure in a suspension system joint affects the tire motion.

DYNA3D is a finite element program for engineering problems

- **Explicit – High Rate Dynamics**
 - Computes deformations, forces, and accelerations for each element
- **Wide variety of material models including metals, foams, rubbers, composites, explosives, rocks and concrete**
- **ParaDyn – parallel version of DYNA3D**

Boeing blade-off
- Rotational Invariance
- Shell Failure

Rigid body systems
- Rigid body contact
- Joint Failure
NIKE3D is our structural dynamics and statics code. This code offers a more accurate solution with its increased element integration scheme but it must solve the nonlinear set of equations derived from element stiffness matrices describing the degrees of freedom at each node. NIKE3D has become more important in recent years as the capabilities of SMP computers with their prodigious memory capacity has improved. These computers with special matrix solvers are able to factorize and solve hundreds of thousands of degree-of-freedoms in reasonable time periods. In these two examples large system analyses are performed to obtain local solutions to problems which are driven by more global boundary conditions. The overpass on I-580 and I-24 in California is subjected to earthquake loadings and the lower body skeleton is subjected to vehicle impact loadings.

NIKE3D
Finite Element Code for Engineering Applications

Implicit – Structural Dynamics & Statics

- Computes stiffnesses, deformations, accelerations and forces for each element
- Wide variety of material models including metals, concrete, composites, foams, rubbers and visco-elastic human tissues
- Coupled thermal and structural mechanics

CALTRANS Seismic Bridge Analysis

- Dynamic vibration modeling
- Advanced concrete behavior (NIF)

Bio-Mechanics

- Viscoelasticity models (HE models)

580-24 Interchange
TOPAZ3D is the implicit heat transfer code which is integrated with the DYNA and NIKE codes. This workhorse code continues to solve problems important to our Laboratory. In these examples, TOPAZ calculates a thermal gradient in an optic to be used by NIKE3D for a thermal stress calculation. The second case examines temperature profiles for the Advanced Production Tritium facility that is being designed.
Lawrence Livermore National Laboratory has a long history of developing computational mechanics codes for its Laboratory mission. These programs remain strong today and the needs and sophistication of the mechanics analysts who use DYNA, NIKE and TOPAZ software are increasing. SMP and MP supercomputers require software advances to harness their increased capabilities. Our ParaDyn project will parallelize the DYNA, NIKE and TOPAZ codes, and secure for them the benefits of the increased compute power of our new SMP and MPP computers. We have already benefited from these gains with better designs for shipping containers and a new ability to solve large system analyses.

Computational mechanics codes are a cornerstone capability for supporting LLNL programs

- Code development investments have paid-off for LLNL
 - DYNA, NIKE & TOPAZ codes are the mainstay of engineering analysis
 - The importance of these codes is international recognized
 - Early research in parallelization is paying off.

- Strong enabler for B-Division ALE3D development: past and present.

- The new SMP and ASCI capability investments enable us to again achieve world class results for Grand Challenge problems.

Structural mechanics code development has increased our opportunities and expectations for solving important problems
Aircraft Engine Materials: Recent Trends and Future Directions

Jim C. Williams
General Electric Aircraft Engines
Cincinnati, OH
Introduction
Engine performance discussion
Role of materials
 - Disks
 + Current status
 + Barriers/Issues
 • T_3 and T_{41}
 • Life methods
 • Cost
 - Airfoils
 + Turbine
 • Current status
 + Compressor
 • Current status
• Summary and Take-aways
Time Series of Engine Operating Parameters

<table>
<thead>
<tr>
<th>Year</th>
<th>OPR</th>
<th>T3 (°C)</th>
<th>T41 (°C)</th>
<th>BPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 (CF6)</td>
<td>15:1</td>
<td>590</td>
<td>1345</td>
<td>5-6</td>
</tr>
<tr>
<td>1994 (GE90)</td>
<td>38:1</td>
<td>695</td>
<td>1425</td>
<td>8-9</td>
</tr>
<tr>
<td>-2010 Adv. Demo.</td>
<td>75:1</td>
<td>815</td>
<td>1760</td>
<td>12-15</td>
</tr>
<tr>
<td>-2006 HSCT</td>
<td>25:1</td>
<td>620-705</td>
<td>1540-1650</td>
<td>1</td>
</tr>
</tbody>
</table>

Conceptual Cycles and Temperatures

Existing Sub-sonic
GE90 Cross Section

Improved Engine Performance

Improved Engine Performance is a 3-Legged Stool

Materials Performance
Design Method
Component Performance
Requirements for SFC Improvement

- Higher cycle temperatures
 - Higher T capability disks - compressor & turbine
 - Higher T capability compressor airfoils and casings
 - Higher T capability turbine airfoils
- Improved component designs
 - Improved cooling efficiency - turbine
 - Flatter combustor profiles
 - Improved aerodynamic efficiency - compressor & turbine
- Lighter weight, stiffer designs for better clearances
 - Selective use of higher specific stiffness materials, e.g. TMC's
 - Introduction of lower density materials, i.e. TiAl
 - Improved fan case and nacelle designs (using PMC's?)

These improvements must be achieved affordably!

Disk Materials
Trends / Issues in Ni Base Disks

- Higher operating temperatures
 - Transition from fatigue to creep limited domain in wrought alloys
 - Higher solute alloys fix creep but require powder metallurgy methods
 + Improved / different approaches for life methods
 - Hold time fatigue crack growth accelerates rapidly with temperature
 - Creep and Hold Time Crack Growth (HTCG) Rate resistant alloys
 + New alloy compositions / dual alloys / dual microstructures
 + Coarse grain processing methods
 + Increased producibility issues

- Use of process modeling for forging and heat treatment
 - Allows faster, better definition of process window

- Improved inspection capabilities
 - Very useful for process window verification

- Long hot times for High Speed Civil Transport
 - No experience in the industry with these requirements

Grain Size Impacts Are Powerful

Significant implications for processing choices
Disk Alloy Creep Strength

Increasing Grain Size improves Crack Growth until Carbide Film Formation Occurs

Effect of Grain Size and Hold Time on Crack Growth

Increasing Grain Size Improves Crack Growth until Carbide Film Formation Occurs
Life Methods for Disks

- Transition from cast & wrought to PM alloys changes approach
 - Deterministic methods being replaced by probabilistic methods
 - New models and methods are more comprehensive and inclusive
 + Required to meet longer life, higher service temperature
 + New life limiting considerations
 - Additional input data required
 + Ceramic inclusion content and distribution
 + Effects of surface treatment, i.e. shot peening
- Increasingly robust products required
 - Greater precision in determination of margin
 - Recognition of process variation and incorporation in design
 - Use of process modeling to control degree of variation
 + Moving from implicit to explicit process understanding

New methods require broader enterprise integration

LCF Issues in Designing with PM Disk Alloys

- **ISSUES:**
 - Failure mode crosses at important stress amplitude
 - How to construct "composite curve"?
 - Credit for peening?

Must balance real materials behavior with margin in life
Rotor Cost Issues

- Powder metallurgy billet and forgings very expensive
 - Extrude and iso-forging (E + I) process stable but expensive
 - Current powder yields of -270 mesh stable but not improving
 - Using coarser mesh size would create life issues
 - Coarse grain processing adds to cost
 - Machining distortion more severe with higher T capability alloys
- Alternatives to E + I not mature at present
 - HIP + forge
 + Possible for conventional sub-solvus processing
 + Less clear for coarse grain processing
 - Clean melt sprayforming
 + Cleanliness demonstrated with ESR + ClG technology
 + Processibility and yields (cost) being worked

 Alternatives to E + I at least 3 years from qualification

Turbine & Compressor Airfoils

302
Current Generation Turbine Airfoil Issues

- Producibility issues with current generation alloys
 - Castibility of advanced cooling designs
 + Non-reactive cores expensive and hard to remove
 + Multi-piece cores can create yield losses
- Trend to higher refractory element content alloys
 - Hurts oxidation
 + Tip retention issues in long life applications
 + Alloy stability more critical for high T, long life
 - SRZ and coating induced reactions increase stability concerns
 - Cost of alloying additions and increases in density
- Hotter service Temperatures will require internal coatings

Probably only one more generation of Ni-base alloy left
Higher T Capability Turbine Airfoils

- Material & coating requirements
 - Creep strength
 - Stability
 + Microstructural
 + Coating growth
 - Oxidation resistance
 + Tip oxidation / EGT retention
 - TBC's
 + Durability improvements now
 + Highly reliable TBC's for ΔT later

- Component requirements
 - Improved cooling designs
 + Producibility vs. cooling air use
 - Initial cost
 - Repair?

Must treat alloys and coatings as a system

Thermal Barrier Coatings

Hot Gas

Ceramic
Top Coat

Bond Coat

Turbine
Blade

TBC Features:
- Columnar structure in top coat for spall resistance
- Oxidation resistant and adherent bond coat
- Bond coat compatible with alloy substrate
Future Generation Turbine Airfoils

- More complex cooling and aero designs - Ni base
 - Fabricated blade production and inspection methods not ready
 + Cost and Producibility?
 + Coating / cooling hole interaction?
- New materials
 - Monocrystal NiAl
 + Successful vane demonstration
 + Significant manufacturing issues
 + No longer working due to FOD sensitivity
 - CMC's - many issues to be worked (to be discussed later)
 + MI SiC may hold promise
 - Cooling needs to be worked out
 - Environmental degradation in question
 - TiAl
 + Moving toward introduction for LP applications
 + TiAl maximum uncoated use T760° C

Future Generation Compressor Airfoils

- Higher T_3 requires improved creep strength
- Complex shapes (3D aero) harder to forge
- FOD and HCF an issue for compressor airfoils
- Alloy selection and shape may require casting
 - Existing conventionally cast HP turbine airfoil alloys adequate
 - Leading edge fill challenging for thin compressor cross sections
 - HCF resistance of cast airfoils lower than current wrought blades
 - Impact resistance (FOD) not as well characterized in cast blades
 - Blisk manufacturing more difficult with cast airfoils
 - Cost of cast airfoils may be attractive

Cast compressor airfoils at least several years from qualification
Summary and Take-aways

- Improved SFC demands will continue to require higher T capability materials
- Higher T disk alloys will use PM and coarse grain processing
 - Probabalistic lifing methods
 - Cost will be major issue in future implementation
 - Processes for dual heat treatment and dual alloys not mature
- Higher T HPT airfoils will require improved alloys, coatings and cooling designs
 - Probably one more full generation of one piece airfoils
- Cast higher T compressor airfoils most promising
 - HPTB Alloys adequate
 - Casting process not mature yet

Cost will pace the rate of technology introduction and investment!!
This document contains the presentations from the joint UVA/AIAA workshops on Government-Sponsored Programs on Structures Technology, held on April 6, 1997 in Kissimeee, Florida and on September 4, 1997 in Hampton, Virginia. Workshop attendees were the Members and Friends of the AIAA Structures Technical Committee. The objectives of the workshops were to a) provide a forum for discussion of current government-sponsored programs in the structures area; b) identify high-potential research areas for future aerospace systems; and c) initiate suitable interaction mechanisms with the managers of structures programs.