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EXECUTIVE SUMMARY

Market projections indicate that a substantial potential demand exists for a high-speed civil

transport (HSCT) to operate in the long-range international market. Preliminary design and

technology development efforts are underway to better understand all requirements including the

technical and economic feasibility of the HSCT. Ongoing studies show airplanes designed to fly

between Mach 2.0 and 2.4, with a capacity of 250 to 300 passengers and a range of at least 5000

nautical miles, have the best opportunity of meeting the economic objectives. The key critical

development issue for an economically viable HSCT airframe will be the development of materials

and processes which allow a complex, highly-stressed, extremely weight-efficient airframe to be

fabricated and assembled for a dollar-per-pound not greatly different than today's mature

airframes.

This document is the final report of the study "Aluminum-Based Materials for High Speed

Aircraft" which had the objectives: (1) to identify the most promising aluminum-based materials

with respect to major structural use on the HSCT and to further develop those materials, and (2) to

assess the materials through detailed trade and evaluation studies with respect to their structural

efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing,

McDonnell Douglas, Reynolds Metals, and the University of Virginia. Four classes of aluminum

alloys were investigated; (1) I/M 2XXX containing Li (Reynolds) and I/M 2XXX without Li

(ALCOA), (2) I/M 6XXX (ALCOA), (3) two P/M 2XXX alloys (ALCOA and Allied-Signal) and

(4) two different Aluminum-base metal matrix composites (MMC) (ALCOA and UVa). The I/M

alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach

2.4 aircraft.

Boeing and McDonald Douglas conducted design studies using several different concepts

including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened (including extruded

stringers, orthogrid and isogrid concepts) and hybrid adaptations (conventionally stiffened

thin-sandwich skins). The design concepts were exercised with respect to the wing box (upper),

wing box (lower), wing strake, and the crown, window belt and keel areas of the fuselage. The

results of these studies indicated that the preferred concept depended greatly upon the part of the

aircraft being considered, but that many had advantages over the baseline skin-stringer design.

All team members were involved in the materials studies. Early in the program it was

determined that the strengths of the I/M 6XXX alloys were too low for the target application and

research on that class of alloys was discontinued. Although the microstrnctures of the P/M alloys

were very stable at the temperatures of interest for a Mach 2.4 aircraft, both ductility and fracture



toughnessdecreased as the temperature increased from ambient temperature and research on the

P/M materials was also discontinued. A fundamental analysis of this fracture problem is included

in this report. Research on the ALCOA MMC was also discontinued due to poor high temperature

properties, although some basic research on MMC's was continued at the University of Virginia to

the end of this Grant.

Two lithium-free 2XXX alloys (ALCOA) based on 2519, and two 2XXX alloys

containing lithium (Reynolds) based on the Weldalite family, were identified as having attractive

mechanical properties and thermal stability. The lithium-free alloys, designated C415 and C416,

are considered prime candidates for the high toughness goals. Their chemical compositions in

weight percent are:

Alloy Cu Mg Mn Ag Zr Fe Si

C415 5.0 0.8 0.6 0.5 0.13 0.06 0.04

C416 5.4 0.5 0.3 0.5 0.13 0.06 0.04

Alloy C415 exhibited higher room temperature and elevated temperature strengths than alloy C416,

while alloy C416 appeared to be more thermally stable and more creep resistant than alloy C415.

C415 contained undissolved constituents and three lower solute variants will be evaluated on a

follow-on program.

The two lithium-containing alloys, designated RX818 and ML377, are considered prime

candidates for the high strength goals for a Mach 2.0 aircraft.

weight percent are:

Their chemical compositions in

Alloy ta Cu Mg Mn ag Zr

RX818 0.96 3.7 0.37 0 0.34 0.14

ML377 0.97 3.6 0.35 0.37 0.39 0.14

RX818-T8 had the higher strength, but both RX818 and ML377 exhibited good strength and

elongation combinations. RXS18 sheet was highly anisotropic, (20% lower strength) at 45 ° to the

rolling direction. Both alloys show promising thermal stability based on relatively short-time data.

Fundamental studies of coarsening behavior, the effect of stress on nucleation and growth

of precipitates, and fracture toughness as a function of temperature were an integral part of this

program. The details of all phases of the research on the aluminum-based alloys are described in

this final report.
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ALCOA

Aluminum-Based Materials for High

Final Report

L. M. Karabin
Alcoa Technical Center

Speed Aircraft -

Abstract

In the first phase of the program, four classes of aluminum alloys were investigated as

candidates for the lower wing and fuselage of a high speed aircraft. Three of these classes,

e.g., I/M 2XXX, I/M 6XXX and P/M 2XXX alloys, were targeted at a Mach 2.0 aircraft

while the fourth type, e.g., P/M Al-Fe-Ce-Mg, was targeted at a Mach 2.4 aircraft. All were

produced as 0.125" thick sheet. Of the Mach 2.0 candidates, the best strength/plane stress

toughness combination was achieved in a P/M alloy having the composition Al-5.72 Cu-0.54

Mg-0.31 Mn-0.51 Ag-0.57 Zr-0. IV. That alloy achieved a tensile yield strength of 74 ksi at a

K c of 126 ksi ,,/_. The best I/M 2XXX alloy, Al-5.75 Cu-0.52 Mg-0.30 Mn-0.49 Ag-0.16

Zr-0.09V achieved a tensile yield strength of 70 ksi at a K c of 110 ksi ,fro. Since the alloys

are similar in composition except for the higher Zr content of the P/M alloy, the difference in

strength/plane stress fracture toughness combination may be due to grain structure differences,

i.e., the P/M sheet was predominantly unrecrystallized while the I/M sheet was recrystallized.

The hardnesses and strengths of all the I/M 6XXX alloys were too low to warrant further

study. The best I/M 2XXX alloys were chosen for further investigation in subsequent phases.

Although Mg additions to the P/M A1-8 Fe-4 Ce alloy resulted in greater work

hardenability, the plane stress fracture toughness was reduced. For the AI-8 Fe-4 Ce-0.5 Mg

alloy, the best strength/plane stress fracture toughness combination was achieved in product

forms receiving the highest degree of thermomechanical processing. Furthermore, the greatest

crack growth resistance and the most stable crack growth was measured in specimens that were

tested at low crosshead speeds.

Some characterization of 0.125" thick sheet of discontinuously reinforced metal matrix

composites was also carded out in Phase I of the current program since those materials were

considered as candidates for the upper wing of a high speed aircraft. Variations in rolling

practice did not produce significant differences in strength/plane stress fracture toughness

combinations. In the composites having a 2XXX-T6 matrix and 20% SiC, tensile yield

strengths varied from 70 to 76 ksi, while all K¢ values were less than 30 ksi Higher



toughnessesand lower strengths were obtained for composites having a 6113-T6 matrix.

Preliminary studies of the effects of stressed and unstressed elevated temperature

exposure on residual strengths were also conducted during Phase I for three materials:

2519-T87, 2080/SiC/20p and 6013-T6. All materials were degraded as a result of exposures at

300°F, however, stresses of 18 ksi did not enhance degradation in any of the materials.

The focus of Phases II and HI was on the development of the I/M 2XXX alloys for the

lower wing and fuselage. Work on the IfM 6XXX alloys, P/M alloys, P/M A1-Fe-Ce alloy and

the discontinuously reinforced composites was discontinued. Studies of the effects of stressed

and unstressed elevated temperature exposures were also discontinued.

During Phase II, four I/M 2XXX alloys were studied; e.g., the two best candidates from

Phase I and two additional alloys studied in a companion program at Alcoa. The objective of that

phase was to determine the effect of aging practice on strength, toughness and thermal stability.

The highest longitudinal tensile yield strengths of 77 to 78 ksi were obtained in an alloy whose

composition was close to the composition which eventually became alloy C415. It obtained

invalid L-T fracture toughness values of 107 to 120 ksi ,_.

Peak aged tensile yield strengths and fracture toughness values were relatively independent

of aging practice. Tensile properties of all four alloys were unaffected or slightly enhanced as a

result of exposures of 1000 h at 225"F, but were degraded considerably after exposures of 1000

h at 275*F. For all four alloys, fracture toughness was degraded as a result of either elevated

temperature exposure, although the effect was smallest in an alloy whose composition was close

to the composition which eventually became alloy C416. That alloy achieved lower longitudinal

tensile yield strengths; e.g,, 71 to 72 ksi, than the alloy with the composition close to 12415.

The compositions of the two most promising alloys from Phase II were modified slightly to
minimize undissolved constituent and were named C415 and C416.

Alloy

C415

12416

Composition, wt%

Cu Mg

5.0 0.8

5.4 0.5

Mn

0.6

0.3

Ag

0.5

0.5

7.r

0.13

0.13

Fe Si

0.06 0.04

0.06 0.04

During Phase HI, the focus was on studying the effects of stretch level and grain structure

on strength/toughness combinations, retention of strength/toughness combinations after exposure

and creep in both 12415 and C416.
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Alloy C415exhibitedhigherroomtemperatureandelevatedtemperaturestrengthsthan

alloy C416,whilealloyC416appearedto bemorethermallystableandmorecreepresistantthan

alloyC415. It wasrecommendedthatpropertytargetsfor highspeedcivil transportapplications
be reviewedin orderto chooseasinglealloy. Furthermore,it wasrecognizedthat C415 still

contained undissolved constituent and three lower solute variants were recommended for further

study. Also, the needs for valid wide panel fracture toughness data and more reliable creep data

were emphasized.

During the final Phase IV, three lower solute variants of C415 were cast and fabricated to

sheet. The sheet was provided to a follow-on NASA program, NAS 1-20220 HSRII/BOEI, for

characterization.

1.0 I/M 2XXX Alloy Development

Objective

The primary objective of this task was to develop a damage tolerant aluminum-based

material for the lower wing and fuselage of a Mach 2.0 aircraft. This material must first meet

preliminary strength and toughness targets at room temperature and then several criteria

associated with elevated temperature service, (e.g. retention of room temperature properties after

exposure, performance at the operating temperature and resistance to creep deformation).

Corrosion resistance will also be important.

The ingot metallurgy (I/M) 2XXX alloys were under consideration here because existing

AI-Cu-Mg alloys combined relatively high strengths with good thermal stability.

Introduction

Phase I. Period 1992 January 01 through 1992 December 31

The most up-to-date Alcoa data on 2XXX exploratory alloys, archival Alcoa data on

2XXX alloys and external literature were reviewed in order to arrive at a set of 2XXX alloys and

a detailed experimental plan for the current program. These alloy compositions were discussed

with Professor E. A. Starke of UVA and Barry Lisagor and Tom Bales of NASA-Langley.



Fouralloyswereselected. Their nominal compositions in weight percent were:

S.No_ Alloy Composition

689245

689246

689247

689248

A1-5.85 Cu-0.20 Mg-0.30 Mn-0.15 Zr-0.10 V

Al-5.85 Cu-0.20 Mg-0.30 Mn-0.15 Zr-0.10 V-0.25 Si

A1-5.85 Cu-0.50 Mg-0.30 Mn-0.15 Zr-0.10 V

Al-5.85 Cu-0.50 Mg-0.30 Mn-0.15 Zr-0.10 V-0.50 Ag

The alloys designed to study the effects of Mg, Si and Ag on precipitation in 2519-type

alloys. Note that S. No. 689245 is the 2519 control, S. No. 689246 contains excess Si, S. No.

689247 contains excess Mg and S. No. 689248 contains combined additions of Mg and Ag.

Alloy 2519 was chosen as the baseline since recent data suggested that it had a promising

strength/plane stress toughness combination when compared to 2024-T3 and 6013-T6.

The interest in these additions relied heavily on prior Alcoa investigations. Firstly, there

are many studies which would support the use of higher Mg levels than those in 2519. During

the late 1940's and early 1950's, Alcoa carried out extensive alloy development work

surrounding the compositions which eventually became 2219 and 2618. One alloy, called

M237, contained 0.5% Mg and exhibited significantly higher strengths than 2219: This higher

strength alloy was not pursued at the time, and later, when 2519 was developed, Mg levels were

kept low in order to maintain weldability.

The effects of Si level were also explored in the early days, however, those results were

very difficult to interpret without the benefit of original raw data. An investigation carried out

much later in conjunction with Alcoa's forging plant in Cleveland, however, was more

conclusive. Si additions served as nucleation aids for the 0' precipitates, thereby increasing the

peak agedyield strengths which could be achieved in T6-type tempers. This discovery, which

was particularly useful for product forms like forgings which cannot be stretched prior to

artificial aging, led to the development of the forging alloy C197. It may also have potential for

HSCT materials. If high strengths can be achieved without the use of cold work, the thermal

stability may be improved.

Recent Alcoa research on small ingots had shown that combined additions of Ag and Mg to

2519 can lead to a 10% increase in the peak aged tensile yield strength of the T8-type temper.
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This strengthadvantage,whichhadbeenattributed to the replacement of 0' by the more potent

plate-like f2 phase, was maintained after short exposures at temperatures up to 400*F. S. No.

689248 was selected so that this promising alloy could be explored further.

Phase II. Period 1993 January 01 through 1994 January 31

In addition to the four I/M 2XXX alloys studied in Phase I, six alloys were carried through

a companion program at Alcoa. Of the ten alloys, for which microstructures and room

temperature tensile and fracture toughness were characterized, four were considered most

promising. Their nominal compositions in weight percent were:

S. No.

689247

689248

689250

689251

Alloy Composition

A1-5.85 Cu-0.5 Mg-0.3 Mn-0.1V-0.15 Zr

A1-5.85 Cu-0.5 Mg-0.3 Mn-0.5 Ag-0.1V-0.15 Zr

A1-5.2 Cu-0.8 Mg-0.5 Ag-0.15 Zr

A1-5.2 Cu-0.8 Mg-0.6 Mn-0.5 Ag-0.1V-0.15 Zr

The nominal compositions of all four of the promising alloys contained more solute than

could be put into an aluminum solid solution. That excess solute could not be used for

strengthening. Instead, it was present in coarse deleterious constituent. Therefore, all

compositions would need to be adjusted eventually if they were to be commercialized. However,

available ingot sections, having somewhat suboptimal compositions, were selected for use in the

second phase of this program.

In Phase 1I, various T8-type aging practices were to be studied for the four alloys. Room

temperature strength/toughness combinations were to be measured before and after elevated

temperature exposures. Once two alloys were judged to be superior to the rest, the composition(s)

were to be adjusted and new ingot(s) were to be cast.

Phase III. Period 1994 February 01 through 1995 October 31

Two A1-Cu-Mg-Mn-Ag alloys, S. Nos. 689248 and 689251 from Phase II, were

identified as having promising strength-plane stress fracture toughness relationships (based on

room temperature properties of T8-type tempers) and were selected for evaluation in Phase rll.

The Cu and Mg levels were reduced slightly from their original values so that undissolved
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constituentwould be minimized. The nominal compositions of the alloys are given below:

Composition (wt.%)

Cu M_.g Mn Ag Zr si

C415 5.0 0.8 0.6 0.5 0.13 0.06 0.04

C416 5.4 0.5 0.3 0.5 0.13 0.06 0.04

These alloys were studied along with other A1-Cu-Mg-Mn-(Ag) alloys during the last several

reporting periods (References 1-5) and several general observations had been made:

Both of the alloys of interest contain Ag and sufficient levels of Mg to promote the formation

of f_ phase, a precipitate which forms on the { 111 } planes in A1-Cu-Mg-Ag alloys. This

phase is a more potent strengthener than O', the precipitate which forms on { 100} planes in

A1-Cu alloys and in A1-Cu-Mg alloys if Mg levels are low.

Both alloys contain Mn in the form of submicron A120Cu2Mn 3 particles and Zr in an

unidentified form for grain structure control. Despite microstructural characterization by

optical metallography, Lane x-ray diffraction and orientation distribution function

measurements, definitive conclusions concerning the extent of recrystallization could not be

made.

Variations in aging practice did not have a significant effect on strength or thermal stability.

Isothermal practices at 275"F and 325"F and a two-step practice involving time at 275"F

followed by time at 325"F were investigated. The tensile yield strengths for the peak aged

conditions and thermally exposed conditions varied by less than 2 ksi for the different aging

practices. There may have been a small toughness advantage associated with isothermal

aging of these alloys at 325"F.

Tensile yield strengths and ultimate tensile strengths were unaffected or slightly enhanced as

a result of exposures of 1000 h at 225"F. Both were degraded considerably after exposures

of 1000 h at 275"F. Fracture toughness values were degraded as a result of elevated

temperature exposure. Exposure tended to promote intergranular fracture.



Undissolvedconstituentwere present in both alloys. Differential scanning calorimetry data

were used to estimate the amounts to which solubility had been exceeded, so that the

modified compositions could be recommended for further phases of the study.

The K c fracture toughness values measured in this program were almost always invalid

because of the narrow width; i.e. 6", of the center cracked panels tested. This continues to

be a concern for proper ranking of the alloys.

There were two main objectives for Phase Ill of the current investigation:

• To study the effect of level of stretch on strength/toughness combinations, retention of

strength/toughness combinations after exposure, and creep.

• To study grain structure effects on strength/toughness combinations, retention of

strength/toughness combinations after exposure, and creep.

In addition, studies were conducted to examine the following:

- elevated temperature tensile properties of C415 and C416 sheet

- room temperature strength and toughness of C415 and C416 plate

- the effect of overaging on toughness in C415 and C416 sheet

Phase IV. Period 1995 May through 1995 October 31

During Phase HI, it was recognized that C415 had higher strength, yet lower toughness than

C416. The low toughness of C415 was attributed to its high Mn level (e.g. 0.6 wt% as

compared to the 0.3 wt% in C416) and to the presence of undissolved Cu-bearing constituent. It

was felt that the toughness could be improved without a significant loss in strength if alloys

lower in Cu, Mg and Mn were explored. Three new compositions were proposed:

729126

729125

729127

AI-4.5 Cu-0.75 Mg-0.3 Mn-0.5 Ag-0.13 Zr

A1-4.1 Cu-0.70 Mg-0.3 Mn-0.5 Ag-0.13 Zr

A1-4.3 Cu-0.70 Mg-0.6 Mn-0.5 Ag-0.13 Zr

These compositions maintain the same effective Cu/Mg ratio as in C415, taking into account the

loss of Cu to the A12o Cu, Mn 3 dispersoids.

9



Procedure

Phase I. Period 1992 January 01 through 1992 December 31

Four alloys were cast as 6" thick x 16" wide x 60" long ingots and stress relieved in an

850"F furnace. Nominal and actual compositions are presented in Table I. Rolling sections were

machined and preheated at 985"F.

The four I/M 2XXX variants were rolled to sheet, using a combination of cross rolling and

straight rolling. Preheated rolling sections were initially heated to 825"F and reheated whenever

surface temperatures reached about 750"F. Twelve passes and two reheats were used to produce

sheet having a width of 17" and a thickness of 0.125".

A set of sheet samples were heat treated, stretched 8% and artificially aged at 350"F to

produce T8-type tempers. Aging times of 1, 3, 8 and 24 hr were selected for all alloys. In

addition, a set of sheet samples were heat treated, stretched less than 1% in order to straighten the

sheet, and artificially aged at 350"F to produce T6-type tempers. Aging times of 2, 8, 16 and 48

hr were selected for all alloys.

The solution heat treatment temperatures varied for the four alloys. These temperatures

were chosen based on differential scanning calorimetry on preheated ingot samples.

Solution Heat

S. No. Alloy Description Temperature (*F)

689245 2519 control ' 995

689246 High Si 2519 990

689247 High Mg 2519 985

689248 High Mg 2519 + Ag 985

Rockwell B hardness and electrical conductivity measurements were taken for each of the

four aging times. Optical metallography and Guinier X-ray diffraction were done on samples aged

to peak hardness. Additional preheating studies using optical metallography and thermal analysis

were carried out on S. Nos. 689247 and 689248, in order to determine whether maximum solid

solubilities for Cu and Mg had been exceeded in these alloys.

Two longitudinal tensile samples were prepared for each alloy and aging condition. One

tensile sample was used to generate complete stress-strain curves, the other to obtain precise values

for tensile yield strength and ultimate tensile strength. A single L-T 6.3" x 20" center crack panel

and two I.,-T Kahn tear samples were prepared for each alloy and condition.

10



Oncethe agingtime required to reach peak strength was determined, peak aged T8-type

samples were subjected to a Mach 2.0 simulation of 600 hr at 300*F. Two longitudinal tensile

samples and a single L-T 6.3" x 20" center crack fracture toughness panel were tested from these

samples.

Phase II. Period 1993 February 01 through 1994 January 31

Two ingot sections, about 5.5" x 14" x 14", from each of four compositions were

preheated and rolled to 0.125" thick sheet, at least 22" wide. Nominal and actual compositions

are presented in Table II. Sheets from each composition was solution heat treated, cold water

quenched and stretched. Sheets from S. Nos. 689247, 689250 and 689251 were stretched 8%.

The original batch of sheet from S. No. 689248 was stretched only 2%, as greater amounts of

stretching caused failure of the sheet. An additional batch of sheet from S. No. 689248 was

solution heat treated at 990"F to avoid eutectic melting, i.e. 5*F lower than the original batch,

cold water quenched and stretched 8%. Processing parameters for the alloys are summarized in

Table IN.

Sheet from each of the four alloys was aged using three practices:

• isothermal aging at 275°F

• isothermal aging at 325°F

• two step aging, using 24 hr at 275°F or 120 hr at 275"F + various times at 325°F

Longitudinal and transverse tensile tests were done to determine the peak aging times for each

aging practice and alloy. Plane stress fracture toughness was measured for the peak aged

conditions in the L-T and T-L orientations using duplicate 6.3" x 20" center cracked panels.

Additional sheet was aged to peak strength and exposed for either 1000 hr at 225"F or

1000 hr at 275"F. Single tensile tests were conducted in L and T directions; single plane stress

fracture toughness measurements were made in the L-T and T-L orientations using the 6.3" x 20"

center cracked panels.

Phase III. Period 1994 February 01 through 1995 October 31

(a) Fabrication of Sheet and Plate

Nominal and actual compositions of the two alloys under investigation in Phase III,

measured at the mid-width and mid-depth, are compared in Table IV.
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Six rolling sections of C415 and four rolling sections of C416 were available. Each

section was 5.5" thick by 14" wide by 14" long. Tables V and VI provide summaries of the

thermomechanical processing routes used to produce various grain structures in C415 and C416,

respectively. The tables describe the preheat practices, the pre-aging practices (where

applicable), and the rolling practices.

The preheat practices were varied to affect both the Al20Cu2Mn 3 dispersoid size and the

soluble constituent volume fraction. By eliminating the preheat practice, one ensures that the

dispersoids form either during ingot stress relieval operations or during time spent at the rolling

temperature. Since these processes are done at temperatures below typical preheating

temperatures, the dispersoids are expected to be finer than those in material preheated at more

typical temperatures, and as a result, they are expected to be more potent in inhibiting

recrystallization. Unfortunately, material which is not preheated will contain significant

quantities of constituent which tend to promote recrystallization through the formation of

intensely deformed regions near constituent/matrix interfaces.

An extended preheat will ensure that the constituent is minimized, however, considerable

coarsening of the A120Cu2Mn 3 dispersoids will have occurred. A minimal preheat is a

compromise; i.e., trying to dissolve as much constituent as possible without coarsening the

dispersoids too much.

Three different preheat practices were used for each alloy: no preheat, a minimal preheat,

and an extended preheat. The preheat practices involve minimum (4 hr) or extended (24 hr)

holds at 970"F or 990"F for alloys C415 or C416, respectively. For alloy C415, the sections

were heated in t6 hr to 905"F and ramped to 970"F in 2 hr. For alloy C416, the sections were

heated in 16 hr to 950°F and ramped to 990"F in 2 hr. Differential scanning calorimetry data

were used to determine that the 4 hr holds were sufficient to eliminate most of the soluble

constituent but that some additional dissolution continued through 24 hr.

Pre-aging practices were used in two instances. For alloy C415, a pre-aging practice of 24

hr at 500*F was used in one section to grow f_ or O precipitates which would work in

combination with the dispersoids to inhibit recrystallization. For alloy C416, a pre-aging practice

of 24 h at 800°F was used in one section to produce large particles which would increase the

number of heavily deformed sites and stimulate the nucleation of recrystallized grains, thereby

providing the conditions needed for a fine, recrystallized grain structure.

Sections were heated to either 825"F or 550"F prior to rolling, depending on the section.

The first four passes were cross rolled. Reheats to the original rolling temperature were done
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every other pass to a gage of 3.6" and then every pass. A total of 17 hot rolling passes were

taken to produce 0.160" thick sheet. Three additional cold rolling passes were taken to produce

0.090" sheet.

A 4" length of 0.75" thick plate was taken from three of the C415 and three of the C416

sections for characterization of room temperature tensile properties and fracture toughness.

These were sections 1, 2 and 4 from C415 and sections 2, 7 and 8 from C416 (see Tables V and

VI); i.e., thereby including one section from each alloy which had been given no preheat, one

which had been given a minimal preheat and one which had been given an extended preheat. All

were rolled from 825°F.

(b) Heat Treating and Aging

The thermomechanical processing variations were designed to produce as many varied

grain structures as possible, so that several could be selected for subsequent characterization. In

all instances, further variations in grain structure were achieved by using fast, moderate and slow

heat up rates to the solution heat treatment temperature. A fast heat up rate was achieved by

putting the sheet (or plate) into a furnace set at the solution heat treatment temperature, a moderate

rate was achieved by ramping from 500*F to the heat treatment temperature in 4 hr and a slow

rate was achieved by ramping from 500*F to the heat treatment temperature in 16 hr. Solution

heat treatment temperatures were 970"F and 985"F for alloys C415 and C416, respectively. All

sheet (and plate) were heat treated for 20 minutes and cold water quenched.

Polarized light viewing of Barker's etched specimens was conducted on sections

containing the longitudinal and short transverse directions to determine how much variation in

grain structure had been produced. Once the variation in grain structure which could be

produced was determined, a single grain structure was selected from each of C415 and C416 for

use in the stretch level studies. These grain structures were identified as Grain Structure A.

Three additional grain structures from C415; i.e., Grain Structures B, C and D, and two

additional grain structures from C416; i.e., Grain Structures B and C, were selected for use in

the grain structure studies.

For the stretch level studies, pieces of sheet were solution heat treated, cold water

quenched, stretched 0.5%, 2% or 8% and then aged to the near peak strength condition at 325"F.

Hardness measurements on samples aged for times of either 8, 16, 24, 36, 48 or 72 hours were

used to establish: (a) that the time to develop peak hardness was relatively independent of stretch

level, and (b) that it took approximately 24 hr and 36 hr to achieve peak hardnesses in C415 and
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C416, respectively. Therefore, all C415 samples were aged for 24 hr and all C416 samples were

aged for 36 hr.

For the grain structure studies, all sheet was solution heat treated, cold water quenched,

stretched 2% and then aged to near peak strength at 325"F. As before, C415 and C416 were

aged for 24 hr and 36 hr, respectively.

Pieces of C415 and C416 sheet from the stretch level and grain structure studies were

given elevated temperature exposures of either 1000 hr or 3000 hr at 225"F.

All C415 and C416 plate samples were heat treated using a fast heat up rate, cold water

quenched and aged at 325"F for 24 hr or 36 hr, respectively.

A single variant of each of C415 and C416 sheet was selected to examine the effect of

overaging on toughness recovery in sheet. For C415, sheet having Grain Structure D was

available; for C416, sheet having Grain Structure B was available. Pieces of sheet were solution

heat treated for 20 min. at either 970"F (C415) or 985°F (C416), cold water quenched, stretched

2% and aged at 325°F. Times of 8, 16, 24, 48, 72 and 108 hr were studied.

(c) Characterization

Optical metallography was performed on all sheet and plate samples. Polarized light

viewing of Barker's etched specimens was conducted on sections containing the longitudinal and

short transverse directions to examine grain structures. Laue x-ray diffraction and orientation

distribution function (ODF) data were also collected for the t/2 locations of the sheet samples

designed to contain varied grain structures.

Transmission electron microscopy was performed on selected samples of C415 and C416,

i.e. those which had been stretched 0.5%, 2% or 8% and peak aged and those which had been

stretched 0.5%, 2% or 8%, peak aged and then exposed for 3000 hr at 225"F. These samples

were chosen so that the effects of stretch level and exposure on precipitate size could be

qualitatively studied.

Duplicate longitudinal and transverse tensile specimens were tested for all sheet materials

from the stretch level and grain structure studies. Duplicate tensile specimens in the longitudinal

direction only were tested from the plates and from the sheet materials for the overaging study.

Two different sizes of center cracked fracture toughness panels were tested: 6.3" wide by

20" long and 16" wide by 44" long. In most eases, duplicate 6.3" wide L-T and T-L panels

were tested. Where additional material was available, a single 16" wide I.,-T panel was also

tested. All panels were fatigue precracked. Compact tension fracture toughness specimens from

the C415 and C416 plate were also tested.
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Single, longitudinalcreeptestswererun under two conditions for most sheet materials:

275"F, 30 ksi and 225"F, 40 ksi. Specimens were 4" long, flat specimens with holes. The

extensometer was not mounted directly onto the specimen, but rather onto the grips.

Phase IV. Period 1995 May 01 through 1995 October 31

Three alloys were cast as 6" thick x 16" wide x 60" long ingots and stress relieved.

Nominal and actual compositions are presented in Table VII. Rolling sections were machined,

preheated at 970"F, and rolled from 825°F. Initially, two rolling passes were taken before

reheating, but as the plate became thinner, reheats were taken every pass. Sheet was hot rolled to

0.160" and then cold rolled in three additional passes to 0.090".

Pieces of sheet were solution heat treated for 20 minutes at 970°F, cold water quenched

and stretched 2%. Isothermal aging at 325°F was done to establish that approximately 28 hr was

needed to achieve peak strength in all three variants. All sheet was aged to peak strength and

portions were given elevated temperature exposures of either 1000 hr or 3000 hr at 225"F. This

material was set aside for characterization within the follow-on NASA program NAS 1-20220.

Results

Phase I. Period 1992 January 01 through 1992 December 31

Differential scanning calorimetry (DSC) data, e.g., onset temperatures, maximum

temperatures and areas of reactions, from preheated ingot and T8-type sheet were presented in

Reference 2. A single eutectic melting reaction occurred in all of the preheated ingot and T8 sheet

samples. The reaction of interest, A1 (ss) + A12Cu _ L, begins at temperatures of 989°F or higher

in the preheated samples. Since the maximum temperature seen during preheating by all four

variants was 985°F, there should have been no eutectic melting in any of the samples and this was

confirmed by optical metallography. However, there was undissolved 0 phase in all, suggesting

that the actual compositions are beyond maximum solubility or that the preheating temperatures

used were not high enough. Similarly, the eutectic melting reaction persists in DSC data from the

solution heat treated and aged samples and undissolved 0 phase was seen in optical metallography.

Additional DSC data from further investigation of solution heat treatment practices for S.

Nos. 689247 and 689248 were also presented in Reference 2. By increasing solution heat

treatment temperature in increments of 5*F, eutectic melting reactions and solvi were approximated.

For S. No. 689247, the eutectic melting reaction could not be eliminated entirely, indicating that

maximum solid solubility for Cu and Mg had been exceeded. Solution heat treatments for this
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alloy must be limited to 990"F in order to avoid the melting reaction. For S. No. 689248, the

reaction Al (ss) + Al2Cu --, L was eliminated if a solution heat treatment temperature of 995"F or

higher was used, suggesting that the solvus is between 990"F and 995"F and that solid solubilities

had not been exceeded for this composition.

The grain structures of sheet from the 2519 variants were recrystallized. Guinier X-ray

diffraction and transmission electron microscopy results provided information on the dispersoids

and precipitates in the 2519 variants. All of the 2519 variants contained Al20Cu2Mn 3 dispersoids

and AlTCu2Fe constituent. The only sample for which any Zr-bearing phase was detected by this

method was the high Si variant. In that sample, reflections consistent with a tetragonal Al-Si-Zr

phase (Reference 6) were observed. That phase is probably related to A13Zr. The L12 or DO23

forms of AlsZr were not detected in any of the other samples, however, this does not necessarily

mean neither are present. Both forms are difficult to detect by this method unless present in

relatively large quantifies.

Transmission electron microscopy revealed Al-Cu-Mn and Al-Cu-Zr dispersoids in all of the

variants. The composition of the Al-Cu-Mn phase is described by A120Cu2Mn 3 as suggested by

X-ray diffraction but the composition of the AI-Cu-Zr phase is unknown. No structural

characterization by TEM was done, although it could be hypothesized that it is a Cu modified form

of A13Zr, e.g., (A1, Cu)3Zr, since there is a precedence for the substitution of Cu onto the A1

sublattice to stabilize the L12 phase. This is probably the same phase that has been called A15CuZr 2

by Pearson. It has the L12 structure and a lattice parameter of 0.404 nm (Reference 7).

Guinier X-ray diffraction data revealed the 0' and 0 phases in the T8 tempers of all four

variants, but the technique does not distinguish between 0 phase and f_ phase. In the Ag-bearing

alloy, S. No. 689248, diffuse background intensity was present at the 0 phase reflections,

suggesting that these reflections were due to fine f_ precipitates. Transmission electron microscopy

confm'ned the presence of t2 in the T8 temper of the Ag-bearing alloy, S. No. 689248.

The results of tensile and toughness testing of sheet of 2519 variants in the T8 and T6 type

tempers arc presented in Tables VIII and IX, respectively. None of the plane stress toughness tests

produced valid K c numbers. All failed the criterion requiring that the net section stress/tensile yield

strength is < 0.8.
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In T8 type tempers, additionsof Mg and combined additionsof Mg and Ag were equally

effectivein increasingthe strengthof alloy2519. The high Si variantdeveloped a tensileyield

strengthequivalenttothe 2519 control,while theothertwo variantsdeveloped 10% highertensile

yieldstrengths.The rateof overaginginallof thevariantswas similar.

InT6 type tempers,combined additionsofMg and Ag wcrc most effectivein increasingthe

strengthof alloy2519, but additionsofMg or Si alonealsohad a strengtheningeffect.

The most promising strength/toughnesscombinationswere obtainedintheT8 tcrnpersof the

high Mg variantand the high Mg variantwith Ag. Both alloysexhibiteda significantperformance

improvement overthe 2519 control.When combined with theopticalmctallography resultswhich

suggestedthatconstituentvolume fractioncould bc furtherreduced to improve toughness, these

strength/toughnesscombinations were particularlypromising. The T8 and T6 strength/toughness

combinations wcrc very similar for the Ag-bcaring alloy,while the T8 strength/toughness

combinationswere superiortothe T6 combinationsforallof theothervariants.

Losses in strengthand toughness occurredin the 2519 variantsaftera Mach 2.0 simulation

of 600 hr at300*F. Tensileand toughness datafrom T8 sheettestedbeforeand aftersimulationof

Mach 2.0 service arc presented in Table X. The greatestlossesin strength (about 8%) and

toughness (about 15%) occurred in the higheststrengthalloys,e.g.,the high Mg variantand the

high Mg variantwith Ag, however, both stillhad a strength/toughnessadvantage over the 2519

controland thehigh Si variant.

Values for unit propagation energies (UPE) from the Kahn tear testwcrc not a good

indicationof the plane stressfracturetoughness (seeTable VIII).For a given variant,the highest

valuesfor UPE wcrc measured in samples given a differentaging time than the samples which

produced the highest values for K c. In some instances,very differentvalues for UPE wcrc

measured intwo samples inwhich similarvaluesforK cwere measured. Finally,thealloythathad

the highestvaluesforK_ (S.No. 689248), had some of the lowestvaluesforUPE.

Phase II. Period 1993 February 01 through 1994 January 31

As expected from the results of Phase I, optical microscopy revealed undissolved

constituent in sheet from S. Nos. 689247-T8, 689250-T8 and 68925 l-T8. Rosettes, which are

characteristic of eutectic melting, were observed in the sheet from S. No. 689248, which had

been solution heat treated at 995"F. The presence of undissolved constituent was consistent with

the fact that the compositions contained more solute than the maximum solubility in aluminum.
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The inability to obtain 8% stretch in sheet from S. No. 689248, which had been solution heat

treated at 995"F without failure, is consistent with the evidence of melting.

Optical metallography observations, Laue X-ray diffraction results and orientation

distribution function data were presented in Reference 4, however, no conclusive statements

could be made concerning grain structures. Transmission electron microscopy showed the Mn to

be present in rod-like AlzoCuzMn 3 dispersoids, with a length of 0.5 microns or less. The

Ag-bearing alloys, S. Nos. 689248-T8, 689250-T8 and 689251-T8 were shown to be

strengthened predominantly by _2 phase while S. No. 689247-T8 was shown to be strengthened

predominantly by 0'.

All room temperature tensile data were presented in Reference 4. All four alloys reached

peak tensile yield strength after 16 to 24 hr at 325°F. The two step practices involving time at

275°F followed by time at 325°F produced the same peak tensile yield strengths that were

produced by isothermal aging at 325"F. Isothermal aging at 275"F provided 0 to 2 ksi of

additional tensile yield strength when compared to isothermal aging at 325°F. This advantage

may not be large enough to justify the long aging times which are required to reach peak strength

at this temperature.

The highest tensile yield strengths were obtained in the two alloys with 5.2 Cu and 0.8

Mg, S. Nos. 689250 and 689251. Tensile yield strengths of 75 and 77 ksi were achieved in S.

Nos. 689250 and 689251, while tensile yield strengths less than 71 ksi were obtained in the

other two alloys. The highest strength alloys had the lowest amounts of work hardening. The

highest ultimate tensile strength, 80 ksi, was obtained in S. No. 689251.

Tensile and fracture toughness data for the I/M 2XXX sheet in peak aged conditions and

after elevated temperature exposure are presented in Table XI, Tensile data are provided for

longitudinal and transverse orientations. Where available, three measures of toughness are

provided for the L-T and T-L panels, K c, Kn, p and K R at Aaef f = 0.3". In most instances, the

criterion requiting that the ratio of the net section stress divided by the yield strength be less than

or equal to 0.8 was not met and, as a result, K c values were invalid. In fact, most L-T values

would still be invalid if a less conservative ratio of 1.0 is used.

Since so many K¢ values are invalid, a useful comparison of materials required included

examination of the entire R-curve or alternatively, a comparison of the crack extension resistance,

K R, at an equivalent crack extension. A crack extension of 0.3" was chosen since most R-curves

of the present investigation extend beyond this value and normally, at this crack extension, the
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KR value is valid if the requirement for the ratio of net section stress to yield strength is relaxed to

a value of 1.0. In some instances, the specimen either failed or experienced unstable crack

growth at an extension less than 0.3". In these cases, the K Rvalue should be taken to be equal to

the K c value.

Use of a lower solution heat treatment temperature for S. No. 689248 and a higher level of

stretch improved strength/toughness combinations for all aging practices examined. The

specimens which were solution heat treated at 990°F, quenched and stretched 8% prior to

artificial aging developed a better strength/toughness combination than those which were heat

treated at 995"F, quenched and stretched 2% prior to artificial aging. Values for K R at Aaef f =

0.3" showed the same behavior. Since earlier studies (Reference 2) showed no effect of stretch

on the strength/toughness combination in S. No. 689248, the difference here is attributed to the

difference in solution heat treatment temperature. Rosettes, which are characteristic of eutectic

melting and which were observed in the sheet which was heat treated at 995"F, had negative

impact on the fracture toughness.

Measures of L-T and T-L fracture toughness in the peak aged conditions did not vary in a

systematic way with aging practice. Large variations in toughness were observed for the sheet

from S. No. 689248 which had been stretched 2%; however, data from that lot of sheet is

suspect because of the eutectic melting problem. Most other data suggest that fracture toughness

is optimized if sheet is isothermally aged at 325°F to peak strength. Examination of all data in

Table XI, however, does not reveal several K c and/or K R values which do not show that

tendency.

Longitudinal and transverse tensile yield strengths were either unaffected or slightly

enhanced by exposures of 1000 hr at 225*F and noticeably degraded by exposures of 1000 hr at

275°F. L-T and T-L fracture toughness, as given by K c values, were degraded as a result of

exposure for either 1000 hr at 225"F or 1000 hr at 275*F (Table XI). The effect was most severe

for sheet exposed at 275°F. (Data from the sheet of S. No. 689248 which had been stretched

2% should be disregarded because of the eutectic melting problem. All other data sets show

degradation in toughness with elevated temperature exposure.)

Scanning electron microscopy of fracture surfaces showed a greater tendency for

intergranular fracture in exposed samples than in peak aged samples. For example, the near

plane strain regions, e.g. just ahead of the machined notches at the center of the sheet, were

examined for the peak aged and exposed L-T samples of sheet from S. No. 689250 which had
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been isothermally aged at 325*F. While the peak aged samples exhibited a predominantly

dimpled structure characteristic of transgranular failure, the samples exposed for 1000 hr at

225"F showed some flat, intergranular facets and the samples exposed for 1000 hr at 275"F

showed even more flat, intergranular facets. There also appeared to be an increased tendency for

cracking within the plane of the sheet in the exposed samples. The same behavior was observed

in plane stress regions of the same L-T sample, in plane stress regions of T-L samples from the

same material and in plane stress regions from L-T samples of another material, e.g., S. No.

689251, although the effect may be less pronounced.

Aging practice variations did not affect thermal stability of strength or fracture toughness.

All four experimental alloys were shown in Reference 4 to compare favorably with the

fuselage material 2024-T3 and two compositions were recommended for further study:

C415

C416

A1-5.0 Cu-0.8 Mg-0.6 Mn-0.5 Ago0.13 Zr

A1-5.4 Cu-0.5 Mg-0.3 Mn-0.5 Ag-0.13 Zr

C415 and C416 are modifications to the compositions of S. Nos. 689251 and 689248,

respectively. Cu levels were lowered somewhat to minimize constituent.

Phase lIl. Period 1994 February 01 through 1995 October 31

(a) Microstructures

A wide variation in recrystallized grain sizes was produced in the heat treated C415 and

C416 0.090" thick sheet. The grains in C415 sheet are elongated in the rolling direction and vary

significantly in size. The grains in C416 sheet were much more equiaxed than those in C415

sheet.

The four grain structures selected for characterization of C415 were produced using the

following practices. (More details can be found in the Procedures section of this report.)

• Grain Structure A (S. No. 727443-2, 727443-6 or 727443-7): extended preheat, rolled from

825"F, rapid heat-up rate to the solution heat treatment temperature

• Grain Structure B (S. No. 727443-1): no preheat, rolled from 825"F, moderate heat-up rate

to the solution heat treatment temperature
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• GrainStructureC (S.No. 727443-4):minimalpreheat,rolledfrom 825"F,moderateheat-up

rateto thesolutionheattreatmenttemperature

• GrainStructureD (S.No. 727443-5):minimalpreheat,pre-aged24hr at 500*F,rolled from

550"F,moderateheat-uprateto thesolutionheattreatmenttemperature

C415 having Grain StructureA wasusedfor the stretch level study. C415 having Grain
StructuresA, B, C andD wereusedfor thegrainstructurestudy. Polarizedlight micrographsof

thesestructuresarepresentedin Figure I. ThefineststructureswereGrainStructuresA andD;
thecoarseststructureswereGrainStructuresB andC.

Thethreegrainstructuresselectedfor characterizationof C415wereproducedusingthe

following practices.

Grain Structure A (S. No. 727442-7): extendedpreheat, rolled from 825°F, rapid

heat-uprateto thesolutionheattreatmenttemperature

• GrainStructureB (S.No. 727442-2):minimalpreheat,rolledfrom 825"F,moderateheat-up
rateto thesolutionheattreatment

• GrainStructureC (S.No. 727442-8):nopreheat,rolled from 825°F,moderateheat-uprate

tothesolutionheattreatmenttemperature

C416havingGrainStructureA wasusedfor thestretchlevelstudy. C416havingGrain

StructuresA, B andC wereusedfor thegrainstructurestudy. Polarizedlight micrographsof

thesestructuresarepresentedin Figure2. ThefineststructureswereGrainStructuresA andC;

the coarsest structures were Grain Structure B.

None of the structures produced using very slow heat-up rates to the solution heat

treatment were selected, since they were not significantly different than those produced with

moderate rates and since very slow rates would present processing difficulties later in

production.

Lane results and Orientation Distribution Function (ODF) results are summarized in Table

XII.

Laue x-ray diffraction patterns are presented in Figures 3 and 4 for C415 and C416 sheet,

respectively. By this technique, all grain structures were judged to be completely or nearly
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completely recrystallized. ASTM grain sizes varied from 5.5 to 7.5, and were in qualitative

agreement with the polarized light micrograph observations.

Constant q_2ODF sections containing the most important information have been presented

for the various grain structures in C415 and C416 sheet in Figures 5 and 6, respectively. These

figures are best interpreted using the key in Figure 6, where the locations of the ideal FCC

texture components are shown for the same _02sections.

With the exception of Grain Structure D, the C415 grain structures show small amounts

of the cube recrystallization texture and essentially no deformation texture, indicating that the

orientation distribution is mostly random. C415's Grain Structure D shows significant

intensities for both cube and goss recrystallization components and for both S and Copper

deformation components.

The orientation distributions in C416 are mostly random. Figure 6 shows only a hint of

the cube recrystallization component for Grain Structure A and no significant intensity for any of

the deformation components in any of Grain Structures A, B or C.

Grain structures which appeared at least partially unrecrystallized were obtained in several

variants of heat treated samples from 0.75" thick C415 plate (Figure 7). Recrystallized grain

structures, having varied grain sizes, were achieved in several variants of heat treated samples

from 0.75" thick C416 plate (Figure 8). For each alloy, the variable was preheat: one section

had seen no preheat, another saw a minimal preheat and another saw an extended preheat. All

were rolled from 825°F and given a rapid heat-up rate to the solution heat treatment. In the case

of C415 plate (Figure 7), the extent of recrystallization appeared to increase with increasing

preheat time. In the case of C416 plate (Figure 8), the recrystallized grain size appeared to

increase with increasing preheat time.

Dark field transmission electron mierographs for samples stretched 0.5%, 2% and 8%

before peak aging are presented in Figures 9 and 10 for C415 and C416 sheet, respectively. For

both alloys, the dominant precipitate is t2 phase, as expected. The size of the t2 plates appears to

be independent of the level of stretch prior to aging, although there does appear to be a difference

between the two alloys. The t2 plates in C415 appear somewhat finer than those in C416, an

observation which is consistent with the fact that the strengths of C415 are always higher than

those of C416 (see next section).

The t2 plates do not grow noticeably during exposures of 3000 h at 225"F. This can be seen

in Figure 11, where dark field transmission electron micrographs of two pieces of the C415 sheet
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havingGrainStructureA are presented, i.e. one which had been stretched 8% and peak aged and

another which had been stretched 8%, peak aged and exposed for 3000 h at 225°F. The same

observation was made for the C415 sheet stretched 0.5% and 2% and for all of the C416 sheet

samples.

(b) Room Temperature Tensile and Fracture Toughness Data

The room temperature tensile and fracture toughness data for C415 and C416 sheet from

the stretch level and grain structure studies are presented in Tables XIII and XIV, respectively.

The tensile data are averages from duplicate specimens while the toughness data are values from

individual tests. Included in these tables are notes for each toughness panel, indicating whether

the test was valid and whether the fracture surfaces exhibited single shear, double shear, or

partially double shear character.

Typically, the longitudinal tensile yield strengths were 2 to 5 ksi higher than transverse

tensile yield strengths and longitudinal ultimate tensile strengths were 0 to 3 ksi higher than the

transverse ultimate tensile strengths. Elongations were similar for both orientations.

The tensile yield strengths of C415 are higher and more sensitive to stretch level than those

of C416. Figure 12 presents longitudinal tensile yield strength as a function of % stretch prior to

artificial aging. The C415 tensile yield strength is increased by more than 4 ksi if stretch level is

increased from 0.5% to 8%, while the C416 tensile yield strength is increased by only 1 ksi for

the same increase in stretch level. Examination of the data in Table XIII reveals the same trend

for transverse tensile yield strengths. Also, ultimate tensile strengths show the same effect,

although the magnitude of the effect is somewhat smaller.

Grain structure did affect the strength levels obtained in the C415 and C416 sheet. For

example, the peak aged tensile yield strengths for C415 samples stretched 2% prior to artificial

aging varied from 71 to 75 ksi, depending on grain structure. Peak aged tensile yield strengths

of 70 to 72 ksi were obtained in the grain structure variants of C416.

Despite the fact that the 6.3" wide center cracked toughness panels produced mostly invalid

K¢ data, reproducibility between duplicate specimens was quite good. Figure 13 shows K R

crack growth resistance as a function of Aaem the R-curve, for two 6.3" wide and one 16" wide

center cracked fracture toughness panels from C415 sheet having Grain Structure A and having

been stretched 2% prior to artificial aging. Both R-curves for the 6.3" wide specimens lie almost

directly on top of one another. The R-curve for the 16" wide specimen lies directly on top of

those from the 6.3" wide specimens at low values of Aaef f but begins to deviate at the point
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wheredata become invalid. At high values of Aaaf, the R-curve for the 16" wide specimen is

lower than those from the 6.3" wide specimens. The value for I_, however, is higher for the

16" wide specimen than for the 6.3" wide specimens. It is also valid, at least in this case and in

many other cases where 16" wide specimens were tested.

No good correlation was found between the value for K e and the character of the fracture

surface, i.e. whether there were single or double shear lips on the fracture surfaces. Examination

of the data in Tables XIII and XIV show that there are a number of instances where two samples

were tested for a given condition and one exhibited single shear while the other exhibited double

shear. In some cases, the K c values associated with the double shear were higher than those

associated with single shear, however, there were also cases where the reverse was observed.

The variation in values for K c from duplicate specimens and the overall invalidity for most

of the data from 6.3" wide specimens and for some of the data from 16" wide specimens makes

it difficult to draw conclusions about the effect of stretch and grain structure on toughness and

about the relative performance of C415 and C416. Some very qualitative observations,

however, can be made. Usually, but not always, the K c values were slightly lower in the T-L

orientations than in the L-T orientations. Typically, values for C415 were higher than for C416,

although they were mostly invalid for both alloys.

The effect of % stretch on strength/toughness combination is presented in Figures 14 and

15 for C415 and in Figure 16 for C416. Although the values for K c are different for 6.3" wide

(Figure 14) and 16" wide (Figure 15) specimens, the trend is the same. The C415 materials

stretched 2% and 8% had better strength/toughness combinations than the C415 materials

stretched 0.5%, with the material stretched 8% having higher strength at the expense of

toughness.

The various grain structures had similar overall strength/toughness combinations.

Some caution is required when drawing conclusions from data for 6.3" wide specimens.

For 6.3" wide specimens from both C415 (Figure 14) and C416 (Figure 16), K c values did not

vary over a wide range despite variations in tensile yield strength of 4 or 5 ksi. One might argue

that the Ke values would be more discriminating if they were valid.

Sheet from C415 and C416 are compared directly in the plots of K c fracture toughness

versus tensile yield strength in Figure 17. Regardless of stretch level, C415 has an overall better

strength/toughness combination than C416.
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The strength/toughnessadvantageof C415 over C416 is further illustrated in the results of

the overaging study which are presented in Table XV and the K c fracture toughness versus

tensile yield strength plot of Figure 18. Here, data spanning conditions from underaged, through

peak aged to overaged are presented for both C415 and C416. Both alloys behaved as expected:

for a given strength level, the toughness of the underaged material is better than the toughness of

the overaged material. In the case of C415, the toughness did improve somewhat as the sheet

was overaged while in C416, no improvement in toughness was observed. Furthermore, the

overall strength/toughness combination for C415 is better than that of C416.

As 0.75" thick plate, C415 was stronger than C416 and C416 was tougher than C415

(Table XVI, Figure 19). The best strength/toughness combination obtained in C415 was

measured for the material which was given a minimal preheat while the best strength/toughness

combination obtained in C416 was measured for the material which was given an extended

preheat. This may be due to that fact that in the case of C416, all plate samples appeared

recrystallized so that the best strength/toughness combination was achieved when as much as

possible of the soluble phase was dissolved. In the case of C415, the plate produced after a

minimal preheat may have maintained a higher volume fraction of unrecrystallized grains than the

plate given the extended preheat. Perhaps the benefit of having more unrecrystallized grains with

a minimal preheat outweighed the benefit of dissolving more soluble constituent with the

extended preheat.

(c) Tensile and Fracture Toughness Data After Elevated Temperature Exposure

. Regardless of stretch level, exposures of 1000 hr or 3000 hr at 225°F did not have a

notable effect on the tensile yield strength of C415 (Figure 20) or C416 (Figure 21). Also, the

tensile yield strengths of C415 and C416 sheet having different grain structures did not respond

any differently to thermal exposure (Figures 22 and 23). The data in Tables XIII and XIV show

that ultimate tensile strengths and elongations are not affected by the thermal exposures either.

For all three levels of stretch examined for Grain Structure A, there did appear to be a

noticeable loss in fracture toughness in C415 as a result of exposures of 3000 hr at 225°F

(Figure 24). A similar loss was not consistently observed for C416 (Figure 25). Data were

unavailable for the sheet stretched 0.5% and exposed for 3000 hr, however, data for the sheet

stretched 2% suggest that fracture toughness actually improved as a result of 3000 hr at 225°F.

The C415 sheet having other grain structures behaved more promisingly. With the

exception of Grain Structure A, there was no significant loss in toughness as a result of either
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1000 hr or 3000 hr at 225°F (Figure 26). The C416 sheet with any of Grain Structures A, B or

C was also relatively stable with respect to toughness (Figure 27).

The effects of 3000 hr at 2250F on the strength/toughness combinations am presented for

C415 and C416 in Figures 28 and 29, respectively. Data from peak aged sheet are shown as

open symbols, while data from exposed sheet are shown as closed symbols. Regardless of

stretch, all C415 sheet samples lose toughness without much of a change in strength (Figure 28).

The net result is a decrease in the overall strength/toughness combination. For C415, the best

combination is obtained in the sheet which was stretched either 2% or 8%. In C416, the

strength/toughness combinations am not changed much as a result of the same exposure (Figure

29). The best combination of strength and toughness is maintained in the sheet stretched 2%.

The strength/toughness combinations of peak aged sheet and sheet exposed 3000 hr at

2250F from C415 and C416 are compared directly in Figure 30. Data from peak aged sheet are

shown as open symbols while data from exposed sheet are shown as closed symbols. While the

higher strengths are obtained in C415, the best after-exposure strength/toughness combinations

are obtained in C416.

(d) Elevated Temperature Tensile Data

Elevated temperature tensile data for C415 and (2416 sheet am presented in Table XVII and

tensile yield strength is plotted as a function of test temperature in Figure 31. The C415 and

C416 samples were held 300 hr prior to testing. Included in Figure 31 also are data for

2519-T87 plate, 2618-T61 plate and 6013-T6 sheet, all being held 100 hr prior to testing. The

best elevated temperature strengths am obtained in C415, with (2416 falling closely behind. Both

of the new alloys have significantly higher strengths than 2618-'1"61 and 6013-T6.

(e) Creep Data

Creep testing was initiated with the expectation that samples stretched the least prior to

artificial aging would be the most creep resistant. Furthermore, it was expected that differences

in grain size would lead to differences in creep resistance, with the coarsest grain structures being

the most resistant. Some of the data collected here support those expectations while some did

not.

Table XVIII presents a summary of creep test results for C415 and (2416. Included are

test identification numbers, test conditions, the length of each test and the total strain measured

during the test. Included also are data from loading and from measurements made after the test.

The loading data and measurements made after the tests were collected because of concerns about
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theaccuracyof the creep data. The concern is that the strain measuring device was not mounted

directly onto the specimen gage length, but rather onto the upper grip connecting the specimen to

the load frame. As a result, strain occurring anywhere along the specimen or along the loading

train of the machine is included in the measurement. While it may be reasonable to assume there

is no strain in the loading train of the machine, it may not be reasonable to assume that the only

strain occurring in the specimen is occurring in the gage length. Some tested specimens

exhibited noticeable deformation in the holes. Any of this deformation which happened during

loading would have been subtracted out, but if deformation occurred during loading, it is

expected that it would continue to occur during the test. Any hole deformation which occurred

during the test would be included in the strain versus time creep curves.

These concerns were first introduced when it was noted that plots of load versus extension

which were collected during loading were not consistent with the elastic modulus of aluminum.

Values for "modulus" calculated from the curves were typically much less than the expected > 9

Msi (see Table XVIII). A value for "excess strain" could also be calculated, it being the

difference between the observed strain at maximum load and the strain expected for a material

with a modulus of 9 Msi. The values for "excess strain" are often much greater than the total %

creep strain measured in the test.

Creep strain is plotted as a function of time for C415 and C416 having Grain Structure A in

Figures 32 and 33, respectively. Two sets of curves are presented in each figure: one for tests run

at 275°F, 30 ksi and one for tests run at 225"F, 40 ksi. For both sets of tests of C415 with Grain

Structure A, the data behave as expected. The most creep resistant sheet was that which had been

stretched 0.5% and the least resistant sheet was that which had been stretched higher amounts

(Figure 32). For both sets of tests of C416 with Grain Structure A, the reverse is observed: the

sheet which had been stretched 2% or 8% was the most creep resistant (Figure 33).

The effect of grain structure on creep resistance was not clear. Creep strain is plotted as a

function of time in Figure 34 for C415 having various grain structures and having been stretched

2% prior to artificial aging for the two test conditions: 275"F, 30 ksi and 225"F, 40 ksi. In the

tests at 275"F and 30 ksi, the coarser Grain Structures B and C were more creep resistant than

the finer Grain Structures A and D. In the tests at 225"F, 40 ksi, however, Grain Structure A is

the most creep resistant. For C416, similar results are presented in Figure 35. Grain Structure A

appears to be the most creep resistant in the higher temperature tests, while Grain Structures A

and B are indistinguishable in the lower temperature test.

Alloys C415 and C416 are compared directly in the plots of strain versus time in Figures

36 to 38 for stretch levels of 0.5%, 2% and 8%. Once again, some data are consistent with
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expectations,somearenot. For sheet stretched 0.5%, C415 appears most creep resistant. For

sheet stretched 2% or 8%, C416 appears most resistant.

Discussion

(a) Effect of Stretch Level

The tensile yield strengths and ultimate tensile strengths of C415 were more sensitive to

stretch level than the tensile yield strengths and ultimate tensile strengths of C416. Higher

strengths were achieved when higher levels of stretch are applied prior to artificial aging.

Although tensile elongations are not affected by stretch level in either alloy, other measures of

formability or fabricability are expected to decrease as the level of stretch is increased.

Therefore, unless high stretch levels are needed to develop properties like strength or toughness,

high levels are not recommended.

As with strength, the effect of stretch level on strength/toughness combination was larger

for C415 than for C416. This is mostly due to the fact that toughness measurements made in this

study were not very discriminating.

The thermal stability was not affected by stretch level, at least under the conditions of the

current study. Strengths were unaffected by exposure, regardless of stretch level. In cases

where exposures degraded toughness, i.e. alloy C415, the level of stretch did not affect the

degree of degradation. In the other case, i.e. alloy C416, toughness was not degraded.

Although there are some concerns about the accuracy of the creep data, the data obtained in

this study was roughly consistent with expectations regarding stretch level, i.e. the higher the

level of stretch, the lower the creep resistance. In the case of C415, tests at 275"F and 30 ksi

showed that material stretched 0.5% was more creep resistant than material stretched 2 or 8%.

The lower temperature tests (225"F, 40 ksi) did not behave the same way, however, those data

are considered somewhat less reliable than the data from the higher temperature tests, due to the

smaller strains being measured.

Both sets of creep tests on C416 did not follow the expected behavior either. In fact, data

for all three stretch levels examined were very similar. Since the stretch level did not have a large

effect on the strength of C416, it is not surprising that it did not have a large effect on creep

resistance either.

Use of 2% stretch prior to artificial aging is recommended. At this level, the best after

exposure strength/toughness combinations were obtained, while still maintaining adequate

overall strength and creep resistance. Fabricability is also expected to be good.
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(b) Grain Structure Effect

The various grain structures produced small changes in the strengths obtained in C415 and

even smaller changes in the strengths obtained in C416. The highest strengths were obtained in

Grain Structures A of both alloys, the only grain structure variants made from sections which

had seen extended preheats. The slightly lower strengths of all other variants can be attributed to

an incomplete preheat, which presumably does not allow for effective use of all of the solute.

Despite differences in grain structure, values for toughness were similar within each alloy.

This may be due to the fact that the invalid data from 6.3" wide specimens is not discriminating

enough.

No effect of grain structure on thermal stability was noted, either.

The effect of grain structure on creep resistance was reasonably consistent in this study. A

coarse grain structure is expected to be more creep resistant than a fine grain structure. The

275"F tests on C415 were consistent with this expectation: the coarser Grain Structures B and C

were more resistant than the finer Grain Structures A and D. The 275"F tests on C416,

however, showed little differences in creep resistance despite differences in grain size.

Based on the data in this study, Grain Structure A appears the most promising for both

alloys.

(c) C415 versus C416

The differences between C415 and C416 were quite clear after this study:

• C415 exhibits higher room temperature and elevated temperature strengths than C416.

• In T8-type tempers, C415 has a better room temperature strength/toughness combination

than C416.

C416 appears to be more thermally stable than C415. The effects of elevated temperature

exposures of 3000 hr at 225"F were more deleterious to the fracture toughness of C415

than to the fracture toughness of C416.

C416 appears to be more creep resistant than (2415, at least in materials stretched 2 or

8%. Also, the creep resistance of C416 seemed to vary less with stretch level or grain

structure than the creep resistance of C415.
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Summary and Recommendations

In order to choose between C415 and (2416, it is important to review the property targets

for high speed civil transport applications. If high strength is critical, C415 is clearly superior to

C416. Tensile yield strengths as high as 78 ksi have been obtained in (2415 while tensile yield

strengths of 74 ksi or less have been obtained in C416 (Reference 4). One can expect minimum

values for tensile yield strength to be at least 3 ksi lower once either material is made in

production.

If tensile yield strengths of 70 ksi are attractive, however, then C416 is recommended for

further evaluation. C416 exhibited greater thermal stability with respect to fracture toughness

and better creep resistance, at least in material stretched 2 or 8% prior to peak aging. In any case,

the C415 variants having low Cu, Mg and Mn which were fabricated in Phase IV, should also be

characterized and considered.

As a plant trial is initiated, compositional and processing limits need to be explored. The

effects of variations in the major alloying additions of Cu and Mg on properties need to be

explored. In additional, a process study must be conducted on the nominal composition to

examine the effects of normal variations in processing parameters on properties. The processing

variables of greatest importance are preheat temperature, rolling temperature, solution heat

treating practice and natural aging interval between quenching and stretching. These

temperatures and times should be varied to the extent that they may vary in normal production.

Certain variables can be held constant, like stretch level (2%) and isothermal aging temperature

(325°F), since these have already been studied in some detail in the current program.

As plant-produced material becomes available, valid wide panel fracture toughness data

must be collected.

2.0 I/M 6XXX Alloy Development

Phase I. Period 1992 January 01 through 1992 December 31

Objective

The primary objective of this task was to develop a damage tolerant aluminum based material

for the lower wing and fuselage of a Math 2.0 aircraft. This material must first meet preliminary

strength and toughness targets at room temperature and then several criteria associated with

elevated temperature service (e.g., retention of room temperature properties after exposure,

performance at the operating temperature and resistance to creep deformation).
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The I/M 6XXX alloys, or A1-Mg-Si-Cu alloys, were under consideration here because

alloy 6013-T6 exhibits a strength/toughness combination equivalent to 2024-T3, but with

significantly greater thermal stability.

Background

A set of alloys representing modifications to 6013 was selected. Thermodynamic modeling

by Joanne L. Murray (Reference 8) was used to select compositions which would utilize the

maximum amount of Mg, Si and Cu which can be put into solution during heat treatment. The

actual compositions are shown below. S. Nos. 715670 through 715674 represent total weight

percents of solute of 2.7, 3.5, 4.4, 5.1 and 5.8, respectively. With respect to Cu, Mg and Si

levels, S. Nos. 715670 and 715674 may be thought of as approximate 6013 and 2519 controls,

respectively while the other compositions explore the Cu, Mg and Si levels of compositions

intermediate to 2519 and 6013 (e.g., if these commercial compositions are corrected for their losses

of Cu, Mg and Si to form constituent and dispersoid). During aging, these compositions were

expected to produce Mg2Si, Q and 0' phases in various proportions. Zr was chosen as the

dispersoid forming element in all of the alloys.

715670:

715671:

715672:

715673:

715674:

A1-0.8 Cu-l.01 Mg-0.84 Si-0.14 Zr

Al-l.81 Cu-0.86 Mg-0.69 Si-0.15 Zr

A1-3.16 Cu-0.75 Mg-0.60 Si-0.15 Zr

AI-3.93 Cu-0.66 Mg-0.55 Si-0.15 Zr

AI-5.17 Cu-0.21 Mg-0.25 Si-0.16 Zr

Several compositions exploring the effects of certain elevated temperature dispersoid-forming

elements and Ag effects on the O' precipitates were also selected. Actual compositions of those

ingots are shown below.

715675:

715676:

715677:

Al-l.18 Cu-l.02 Mg-0.83 Si-0.18 Zr-0.50 Mn-0.09 V

A1-0.81 Cu-l.03 Mg-0.85 Si-0.14 Zr-0.51 Ag

A1-3.13 Ctt-0.78 Mg-0.60 Si-0.17 Zr-0.55 Ag

S. No. 715675 was designed to contain the same strengthening phases as S. No. 715670 but

with additional high temperature dispersoids. In this alloy, Cu levels were increased from 0.85

wt% in alloy 715670 to 1.2 wt% to account for the loss of Cu expected as a result of formation of

A12oCu2Mn 3 in S. No. 715675. S. Nos. 715676 and 715677 were selected to determine whether
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there is any advantage to having t_ phase, rather than 0', in these alloys. By analogy to the work

done on Ag additions to 2519, it was expected that any e' would be replaced by fl in these alloys.

During aging, these compositions were expected to produce Mg2Si, Q and ft.

Procedure

Book mold ingots approximately 6" x 2.75" x 1.25" in size were cast. Nominal and actual

compositions are presented in Table XIX. Differential scanning calorimetry was done on as-cast

samples and preheated samples in order to first establish the practices and then determine their

effectiveness.

Book mold ingots were then preheated, rolled to 0.125" thick sheet and heat treated. Severe

blistering occurred on the surfaces of all of the alloys. This was most likely due to hydrogen and,

therefore, is not expected to be a problem in larger lab scale ingots where hydrogen levels can be

controlled.

After heat treatment, samples of each alloy were cold water quenched. Half of the samples

were artificially aged immediately at 350"F, the other samples were naturally aged l0 days before

artificial aging. Rockwell B hardness measurements were taken as a function of artificial aging

time for both sets of samples.

Optical metallography and transmission electron microscopy were carried out on selected

samples. Tensile testing was carried out on peak aged conditions of the samples which developed

the highest hardnesses.

Results and Discussion

Results of the differential scanning calorimetry studies on as-cast and preheated samples are

summarized in Table XX. All of the as-cast samples exhibited a eutectic melting reaction with an

onset at a relatively low temperature, e.g. 9520F to 96 I*F. This reaction was the reason to give

each alloy an initial preheat at 950"F before attempting to preheat above the highest solvus. The

data in Table XX shows that the 950°F preheat was effective in eliminating this reaction completely

in all alloys.

Five of the alloys, S. Nos. 715670 through 715674, were also given a stepped preheat

involving a hold at 950"F, followed by a hold at a higher temperature (990"F to 1080°F, depending

on composition). In S. Nos. 715672, 715673 and 715674, samples given the stepped preheat

were free of eutectic melting reactions. Samples from S. Nos. 715670 and 715671, on the other

hand, experienced minor amounts of melting during the stepped preheat. This can be seen in the
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data of Table XX, where low temperature melting reactions re-appear in the analyses from samples

given the stepped preheats. The extents of melting, however, were small.

Rockwell B hardness and electrical conductivity data are summarized in Table XXI. A great

deal of scatter was present in all hardness data, some of which was likely due to the blistering

problem described earlier. Three of the exploratory compositions, S. No. 715672, 715673 and

715677, achieved Rockwell B hardnesses higher than achieved by the approximate 6013 control

composition but none achieved higher hardnesses than the approximate 2519 control. Ag had very

little effect on the hardnesses of the A1-Cu-Mg-Si alloys. Any small hardness advantage Ag may

have in the approximate 6013 control is far outweighed by the still higher hardnesses of the

approximate 2519. Similarly, there is no effect of Ag on the hardness which can be achieved in the

alloy with intermediate Cu, Mg, and Si levels, e.g., compare hardness of S. Nos. 715672 and

715677. Finally, Mn had little or no effect on the peak hardness of the approximate 6013 control.

This is not unexpected, though, since it was added for its effect on grain structure, ductility and

toughness, not strength.

The 10-day natural aging interval had no beneficial effect on peak hardness for any of the

compositions examined here. The peak hardnesses of the samples that had the natural aging

interval were equal or less than the peak hardnesses of the samples aged immediately after

quenching.

Preliminary transmission electron microscopy studies suggested that a rod-like phase along

<100> directions was the dominant strengthening phase in both 715672 and 715677. The Ag did

not appear to have a significant impact on precipitation. No A13Zr precipitation was observed.

Tensile data, like the hardness data, were not encouraging for the I/M 6XXX alloys (see

Table XXII). Here, the tensile yield strengths and ultimate tensile strengths for three of these

A1-Cu-Mg-Si alloys, e.g., S. Nos. 715672, 715674, and 715677 and two of the Phase I 2519

variants, S. Nos. 689246 and 689248 are compared. Several points are worth noting. Firstly,

both yield and ultimate strengths are similar for S. No. 715674 and S: No. 689246, the high Si

2519 variant. This is expected since both are similar in composition. Secondly, the alloys having

intermediate Cu, Mg and Si levels, e.g., S. Nos. 715672 and 715677, have lower strengths than

the other alloys.

Summary

• Minimal undissolved soluble constituents were present in sheet produced from these

AI-Cu-Mg-Si alloys, suggesting that the appropriate compositions were selected.
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The highest peak hardnesses were achieved in the approximate 2519 control and lowest

peak hardnesses were achieved in the approximate 6013 control. Alloys having

intermediate Cu, Mg and Si levels developed intermediate peak hardnesses.

Ag had little or no effect on hardnesses which developed during T6 aging, although there

was some indication that it may confer a stability advantage.

• A lO-day natural aging period preceding artificial aging provided no hardening benefit.

While thermodynamic modeling would have predicted that the alloys with intermediate Cu,

Mg and Si levels would be strengthened by Mg2Si, Q and 0', transmission electron

microscopy indicated that a single rod-like precipitate along <100> was dominant. Ag did

not appear to alter the structure or morphology of the precipitate.

3.0 P/M 2XXX Alloy Development.

Phase I. Period 1992 January 01 through 1992 December 31

Objective

The primary objective of this task was to develop a damage tolerant aluminum based material

for the lower wing and fuselage of a Mach 2.0 aircraft. This material must first meet preliminary

strength and toughness targets at room temperature and then several criteria associated with

elevated temperature service (e.g., retention of room temperature properties after exposure,

performance at the operating temperature and resistance to creep deformation).

The P/M 2XXX alloys were under consideration here for several reasons. Firstly, P/M

processing provides rapid solidification rates, enabling one to introduce greater amounts of

dispersoid forming elements into the aluminum solid solution than can be introduced using

conventional ingot metallurgy methods. As a result, the wrought P/M products may be more

resistant to recrystallization than I/M alloys with lower levels of these additions. Generally,

unrecrystallized structures possess better strength/toughness combinations than recrystallized

structures. Furthermore, if these additions are added in great enough amounts, modest dispersion

strengthening may result. Finally, the refinement of constituent which is expected to accompany

the rapid solidification will also have beneficial effects on toughness.
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Background

Because of the anticipated promising strength/toughness relationships, the P/M 2XXX alloys

were pursued in the present investigation. Three alloys having high levels of dispersoid forming

elements were selected and atomized.

S. No. 710820:

S. No. 710821:

S. No. 710822:

Al-4.34 Cu-1.46 Mg-0.57 Mn-0.55 Zr-0.1 V

Al-5.72 Cu-0.54 Mg-0.31 Mn-0.51 Ag-0.57 Zr-0.1 V

AI-6.68 Cu-0.52 Mg-1.70 Mn-0.52 Ag-0.20 Zr-0.1 V

S. No. 710820 is essentially a high Zr version of 2124. Its composition is nearly identical to

the alloy studied in the NASA program where excellent strength/toughness relationships were

achieved (References 9 through 12).

S. Nos. 710821 and 710822 represent high Zr and Mn versions of the f_ phase alloy being

considered in the ingot metallurgy portion of this program. Since the fl phase alloy was expected

to be the highest strength 2519 variant, it was chosen as a baseline into which excess Zr and Mn

could be added. The Cu level in S. No. 710822 was increased to account for the loss of Cu to

formation of the Al20Cu2Mn 3 phase.

The addition of 0.1% V to all three alloys was made since all contain some Mn and Alcoa

internal research has shown that V additions may refine the Al20Cu2Mn 3 phase which forms.

Procedure

The three lots of atomized powder were cold isostatically pressed, hot pressed and extruded

to produce extrusions having a 2" by 4" cross-section. Nominal and actual compositions are

presented in Table XXIII. Extrusions were heated to 800*F prior to rolling. They were then roiled

by a combination of cross rolling and straight rolling to produce sheet 8" wide by 0.125" thick. A

total of seven passes and two reheats were used.

Differential scanning calorimetry was used to select solution heat treat temperatures:

Solution Heat Treatment

S. No. Tem_rature(*F-3

710820 930

710821 980

710822 980
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Sheet was solution heat treated for 1 hr, cold water quenched, stretched 8% and aged at 350"F for

times between 1 and 16 hr.

Optical metallography, microprobe, Guinier X-ray diffraction and TEM were used to

characterize microstructures. Duplicate longitudinal tensile samples and single L-T center crack

fracture toughness samples 6.3" wide by 20" were tested.

Results and Discussion

Optical metallography revealed unrecrystallized structures in sheet from all three alloys.

Coarse clusters of particles, which were identified my microprobe analyses to be rich in Fe, Cu and

Ce and depleted in Mg and Zr, were present as defects in all. Such defects were probably related to

prior lot contamination at the atomization facility.

Information regarding dispersoids and strengthening precipitates was derived from Guinier

X-ray diffraction and TEM. The results of Guinier X-ray diffraction and transmission electron

microscopy were presented in Reference 2. All three P/M 2XXX alloys contained the Al20Cu2Mn3

and AITCu2Fe phases and the two with high Zr levels, e.g., S. Nos. 710820 and 710821, also

contain the DO23 tetragonal form of Al3Zr. No L12 A13Zr was detected in any of the alloys. Sheet

from S. No. 710820 contained S' precipitates while sheet from S. Nos. 710821 and 710822

contained f2 precipitates.

Tensile and toughness data for the three P/M 2XXX alloys are summarized in Table XXIV.

The highest tensile yield strength, 79 ksi, was obtained in the high Mn t2 phase alloy, S. No.

710822, although overaging of this alloy was rapid at 350°F. The high Zr 2024 type alloy and the

high Zr f_ phase alloy achieved peak tensile yield strengths of 75.9 and 74.5 ksi, respectively.

The best strength/toughness combination was achieved in the high Zr f_ phase alloy, S. No.

710821, e.g. a K c value of 125.5 ksi ,f_ was achieved at a tensile yield strength of 74.5 ksi. The

lowest strength/toughness combination was measured for the high Mn f_ phase alloy, S. No.

710822.
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Summary

Unrecrystallized grain structures were present in 0.125" thick sheet produced from the P/M

2XXX alloys. Defects, likely due to prior lot contamination, were present in the three

products.

• S' precipitates are the dominant strengthening phase in S. No. 710820; t2 phase is the

dominant strengthening phase in S. Nos. 710821 and 710822.

At least two types of dispersoids were present in these alloys. The Mn was present in large

rod-like or globular particles which probably have a composition close to Al20Cu2Mn 3. The Zr

was present in A1-Cu-Zr cuboids which are finer than the A120Cu2Mn 3 particles but coarser than

expected for the coherent L12 phase. These particles may have the DO23 crystal structure since

that structure was detected by Guinier X-ray diffraction.

• The highest yield strengths, 79 ksi, were achieved in the high Mn a phase alloy. The best

strength/toughness combinations were achieved in the high Zr t_ phase alloy.

4.0 Toughness & Ductility Minima in AI-Fe-Ce.

Phase I. Period 1992 January O1 through 1992 December 31

Objective

The objective of this task was to gain a greater understanding of the ductility and fracture

toughness reductions that occur in the dispersion strengthened alloys as temperature is increased

into the range of interest for HSCT. If the phenomena were understood, it might be possible to

propose methods for reducing or eliminating the effect.

Background

Rapidly solidified A1-Fe-X alloys and mechanically alloyed materials exhibit a "ductility

minima" at intermediate temperatures which have been attributed to dynamic strain aging by some

researchers (References 13-15). Dynamic strain aging models assume that solute diffuses to
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tanglesof immobile dislocations. When mobile dislocations encounter these obstacles, they are

impeded to a greater extent than if the solute had not been there. The effect only occurs during

deformation at intermediate temperatures. At lower temperatures, solute diffusion rates are too low

to allow solute to diffuse to the tangles. At the higher temperatures, diffusion rates are high

enough that the mobile dislocations can carry the solute along with them, i.e., the immobile

dislocation tangles are no greater obstacles to mobile dislocations when solute atmospheres are

present than when they are not. At these intermediate temperatures, the flow stress does not

decrease as rapidly as expected and the strain rate sensitivity in decreased.

Not all researchers agree that the ductility minima are due to dynamic strain aging. Even

though strain rate change tests performed on A1-Cr-Zr and A1-Fe-V-Si support the occurrence of

dynamic strain aging, i.e., combinations of strain rate and temperature which produce low

ductilities are consistent with diffusion rates for the alloying additions, other experimental

observations do not support it. No evidence of serrated yielding, which is generally accepted as a

characteristic of dynamic strain aging, has been observed in stress strain curves for these materials.

Furthermore, products of mechanically alloyed aluminum alloys, which should not contain excess

solute, exhibit ductility minima.

W. C. Porr, Jr. (Reference 15) had done work on 8009 and proposed a model that does not

involve dynamic strain aging. He suggested that dislocations climb around dispersoids during

intermediate temperature deformation. When dislocations climb to avoid particle looping the result

is intensified dislocation flow, plastic damage accumulation and void nucleation at oxides and

dispersoid clusters. According to his model, reducing the amount of oxide in 8009 and/or

improving the distributions of silicide dispersoids would eliminate void nucleation sites.

Much attention has been paid to the minima that occurs at elevated temperatures, however,

very little work has been done to explore what effect the elevated temperature exposures have on

microstructures and room temperature properties. There are some indications that there may also

be a reduction in room temperature ductility (and possibly fracture toughness) after exposures of

these materials to intermediate temperatures (Reference 1). Furthermore, there have been many

questions raised about toughness data that are available. Alcoa data on F-temper material shows

that the plane stress toughness of the A1-Fe-Ce alloy X8019 is excellent when compared to ingot

metallurgy alloys although plane strain fracture toughness data show X8019 to be inferior.

Unfortunately, little plane stress or plane strain toughness data are available for material exposed to

elevated temperatures. Furthermore, any plane stress toughness data that are available are from

Kahn tear tests, and therefore, are not considered to be as reliable as wide panel data.
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Therefore,theprimary goalof thisportionof the investigationwas to generate ductility and

toughness data at room temperature before and after elevated temperature exposures and determine

possible mechanisms for the observed behavior. A P/M A1-Fe-Ce alloy with Mg additions was

selected for this task. The Mg bearing alloys were selected for two reasons. Since Mg in solid

solution affects dislocation/particle interactions and increases the work hardening behavior of

aluminum, A1-Fe-Ce-Mg was considered a good system to examine the tensile and toughness

behavior. Furthermore, A1-Fe-Ce powder with Mg additions was already available for use by the

program. This allowed the timetable established for the program to be followed.

Procedure

An experimental test plan was developed. Three different microstructures were to be

produced in products using varying amounts of thermomechanical processing. Room temperature

tensile and fracture toughness testing was to be conducted on all three products using the same

sample geometries. In this way, the true effects of different amounts of thermomechanical

processing could be studied and some of the questions regarding plane stress and plane strain

behavior could be answered. One of the thicker product forms would also be tested using

additional tensile and toughness sample geometries. Also, the effects of elevated temperature

exposure would also be examined in one of the product forms.

All tensile and fracture toughness tests were to be performed at different strain rates. Since

all tests would be carried out at room temperature, the effect of strain rate can be studied without

the additional variable of solute diffusion being introduced, as is done when test temperatures are

elevated.

A1-8 Fe-4 Ce-0.4 Mg powders were cold isostatically pressed, hot pressed, and extruded to

2" x 4" bars. Some of the extruded material was rolled to 1" plate (8" wide) and some was rolled

to 0.125" sheet (8" wide).

The experimental details are summarized below: Three microstructures were produced: 2"

extrusion, 1" plate, and 0.125" sheet. From each microstructure 0.125" thick compact tension

fracture toughness samples (3.125" in width and 3" in height) were evaluated as well as sheet

tensile samples. From the 1" plate, 0.6" compact tension fracture toughness samples (1.25" in

width and 1.2" in height) and 1/4" round tensile samples were also taken. Tension tests and

toughness tests were run at different crosshead speeds as indicated.
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Microstructures

SampleGeometry

Tensile Toughness

Extrusion, 2" thick

Plate, 1" thick

Sheet, 0.125" thick

flat, 0.125" thick

flat, 0.125" thick

round, 0.250" diameter

flat, 0.125" thick

0.125" thick compact tension

0.125" thick compact tension

0.60" thick compact tension

0.125" thick compact tension

Cross Head Speeds (in./min)

Tension Toughness

0.375 0.59

0.0375 0.059

0.00375 0.0059

Room temperature tensile and fracture toughness tests were performed on the three product

forms in the as-fabricated conditions. In addition, the extrusion was exposed for 1000 hr at

300*F and tested at room temperature.

Results and Discussion

The results of tensile and fracture toughness testing are summarized in Table XXV.

Tensile data include tensile yield strength, tensile ultimate strength, and % elongation.

Toughness data include KR25 values and/or K at maximum load. KR25 is a value for K on the

R-curve based upon the 25% secant intercept of the load-displacement test record and the

effective crack length at that point. KR25 is determined in general compliance with ASTM method

E561 using a compact specimen. KR25 indicates a true property of the material.

The effects of thermomechanical processing, crosshead speed, specimen orientation,

specimen geometry and location within the thickness were examined.
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For a given crossheadspeed,the tensileyield strengthof the P/M AI-Fe-Ce-Mg alloy

increasedasthe amountof thermomechanicalprocessingincreased.As a result,sheethasthe

highestyield strength,followed by plateandextrusion. This is notunexpectedsincethe same

behaviorhasbeenobservedin theP/M A1-Fe-Ce alloy with no Mg.

Mg increased the work hardening of the AI-Fe-Ce alloy. The tensile yield strengths of the

A1-8 Fe-4 Ce-0.4 Mg alloy and A1-8Fe 4Ce (X8019) were similar for all product forms,

however, the ultimate tensile strengths of the alloy with Mg were much higher than those of the

alloy having no Mg.

For all product forms and conditions, ultimate tensile strengths increased as crosshead

speed increased. In general no significant changes in elongation were noted as a function of

crosshead speed for the different product forms, with one exception. In the case of the 1/8"

sheet samples taken from 1" plate (t/4 plane), elongation increased as crosshead speed decreased.

For most of the conditions examined, tensile yield strength was relatively insensitive to

crosshead speed. Here, the exception was the 0.125" thick sheet, where the longitudinal tensile

yield strength increased with decreasing strain rate and the transverse tensile yield strength was

constant for fast and intermediate crosshead speeds but decreased at the slowest speed.

The effects of specimen location within the thickness and specimen geometry were

examined in the 0.6" thick plate. For any given crosshead speed, tensile yield strength values

were 1 to 2 ksi higher at t/2 than at t/4. The effects of specimen geometry are illustrated by

comparing the data from 0.250" round specimens to data from 0.125" thick sheet specimens

from the t/2 location. Differences in tensile yield and ultimate tensile strengths were insignificant

at the slow and intermediate crosshead speeds. The difference in tensile yield strength of nearly

2 ksi which was observed between the two specimens tested at the fastest crosshead speed may

be significant.

The effects of elevated temperature exposure, e.g., 1000 hr at 300*F, were studied in the

2" thick extrusion. While the tensile properties of the as-fabricated material were insensitive to

crosshead speed, the tensile yield strengths of the exposed material exhibited a minima at the

intermediate crosshead speed. For the high and low crosshead speeds, the tensile yield strengths

of the exposed material were about 2 ksi higher than the tensile yield strengths of the

as-fabricated material. Elongations were not affected by the elevated temperature exposure.

The best strength/fracture toughness combinations are achieved in product forms that saw

the highest degree of thermomechanical processing. Data in Table XXV for 0.125" thick

specimens from as-fabricated sheet, plate and extrusions show that tensile yield strengths and

KR25 values for the as fabricated sheet are higher than those of plate and the tensile yield
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strengths and Kv.z_ values for plate are higher than those of extrusions for all crosshead speeds

studied.

Crack growth resistance curves were examined for 0.125" thick specimens from

as-fabricated sheet, plate and extrusions. For the as-fabricated sheet and plate, the slowest

crosshead speed produces the greatest crack growth resistance and the most stable crack

extension. In the extrusion, the greatest crack resistance and the most stable crack extension are

obtained in the specimens tested at the slowest and fastest crosshead speeds. Regardless of

crosshead speed, all of the 0.125" thick specimens from the sheet, plate and extrusion had

fracture surfaces with a combination of slanted and flat regions.

Crack growth resistance curves for the 0.6" thick compact tension specimens taken from

1" plate were also examined. Duplicate samples were tested at each crosshead speed. For all

crosshead speeds, values for toughness were low and very little stable crack growth was

obtained. Failed test samples had flat fracture surfaces, indicative of plane strain conditions.

The differences in the crack growth resistance curves of duplicate samples suggest that these data

are not reproducible.

In general, the effect of the elevated temperature exposure was to increase crack growth

resistance. For example, specimens from the exposed extrusion exhibited the greatest crack

growth resistance and the most stable crack extension when tested at the slowest crosshead

speed. Specimens tested at the fastest crosshead speed exhibited the least crack growth

resistance and the least stable crack growth. This behavior is somewhat different than the

behavior of the as-fabricated extrusion, where specimens tested at the slowest and fastest

crosshead speeds were similar in terms of crack growth resistance and the extent of stable crack

growth.

Many of the 0.125" thick fracture toughness specimens had fracture surfaces suggesting a

mixed mode of failure, e.g. some plane stress and some plane strain character. In theory, brittle

fracture is usually associated with a flat featureless surface without any shear lips whereas a

slanted fracture surface has shear lips and is typically associated with an increase in the energy

necessary for fracture and a more ductile type of fracture. A flat fracture is representative of

plane strain conditions while a slanted fracture is representative of plane stress conditions.

As-fabricated samples which were tested at intermediate crosshead speeds have a flat fracture

surface while those samples tested at the slowest and fastest speeds have a combination of

slanted and flat (mixed mode) fracture. Samples of the extrusion exposed to elevated

temperatures exhibited slanted and flat (mixed mode) fracture surfaces when tested at the

intermediate and slowest speeds and flat fracture when tested at the fastest speed. Values for K
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at maximum load correlate with the observed fracture morphology, i.e. mixed mode fractures

produce higher values for K than flat fractures. Regardless of crosshead speed, failed samples

from the as-fabricated extrusion and the exposed extrusion had markings on the fracture surfaces

that were correlated with rapid load drops on the load-displacement curves. The rapid load drops

are due to regions of unstable crack propagation. These regions on the load-displacement curves

were avoided when drawing secant intercepts.

Strength/toughness data generated for the P/M A1-Fe-Ce-Mg alloy were compared with

data on X8019 (Reference 16). The A1-Fe-Ce-Mg alloy has lower strengths and lower

toughness values than X8019.

Summary

• Mg increases the work hardenability of P/M A1-Fe-Ce. Tensile yield strengths for X8019

and Al-8 Fe-4 Ce-0.4 Mg are similar but ultimate tensile strengths are greater for Al-8 Fe-4

Ce-0.4 Mg.

The highest tensile yield strengths are achieved in product forms receiving the most hot

working during thermomechanical processing. Tensile yield strength increases in the

following order: extrusion, plate and sheet. Similarly, the best strength/plane stress fracture

toughness combinations are achieved in product forms receiving the most hot working.

Except in sheet, crosshead speed had no significant effect on tensile yield strength or

elongation to failure. In sheet, the tensile yield strength decreased slightly when crosshead

speed was increased.

The effects of specimen geometry and location were small. When tested at the highest

crosshead speed, the tensile yield strength measured in a round specimen was about 2 ksi

higher than the tensile yield strength measured in the fiat specimen. Also at the highest

crosshead speed, the tensile yield strength measured in a fiat specimen located at t/2 was 3 ksi

higher than the tensile yield strength measured in a flat specimen located at t/4.

After exposure of the extrusion for 1000 hr at 300*F, tensile yield strengths measured at the

slowest and fastest crosshead speeds were increased slightly while the tensile yield strength

measured at the intermediate crosshead speed was decreased. Elongations to failure were not
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affectedby the exposure. For all crosshead speeds, the exposure resulted in greater crack

growth resistance and more stable crack growth.

In general, the greatest crack growth resistance and most stable crack growth was measured

in specimens tested at the slowest crosshead speed. The effects at the fastest and intermediate

crosshead speed varied for the different products, specimen geometries and locations.

• For some toughness tests, transients of unstable crack growth resulted in discontinuities in

the load-displacements curves.

• When compared to X8019, A1-8 F-4 Ce-0.4 Mg alloy has a reduced strength/toughness

relationship.

5.0 Strength/Toughness Combination in DMMCs.

Phase I. Period 1992 January 01 through 1992 December 31

Objective

The objective of this task was to characterize sheet produced from discontinuously

reinforced metal matrix composites. Room temperature tensile and plane stress fracture

toughness tests were to be conducted on materials aged to peak strengths and on materials given

Mach 2.0 simulations.

Background

Three materials were identified for evaluation: 2080/SiC/20p, MB85/SiC/20p, and

6113/SiC/20p. The notation indicates that these materials contain 20 v01% SiC. 2080/SiC/20p

and MB85/SiC/20p are similar in composition, i.e. 3.8% Cu-l.8% Mg except 2080/SiC/20p has

0.25% Zr and MB85/SiC/20p has 0.35% Zr. By examining different rolling practices and two

levels of Zr, it was intended that significantly different grain structures would be produced. As a

result, different strength/toughness combinations might be expected.

The 2080/SiC/20p and MB85/SiC/20p were fabricated using two different rolling practices.

The different rolling practices were used in an attempt to produce material with two different
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grain structures: a large grain size material, i.e., ASTM grain size of 2, and a fine grain size

material, i.e., ASTM grain size of 8.

Procedure

Atomized powders of 2080, MB85, and 6113 and SiC reinforcement powders were

donated to the University of Virginia Subcontract No. 5.28406 so that fabrication, consolidation

and characterization could proceed without delay.

The aluminum powders were blended with SiC reinforcement, cold isostatically pressed,

hot pressed, extruded and rolled. Two 2" x 4" extruded bars at least 30" in length were

fabricated for 6113/SiC/20p and four 2" x 4" extruded bars at least 30" in length were fabricated

for 2080/SiC/20p and MB85/SiC/20p. For 2080/SiC/20p and MB85/SiC/20p, the rolling practice

intended to produce fine grain material (Process A) required a reheat every other pass whereas

the rolling practice intended to produce the coarse grain material (Process B) required a reheat

every pass. In theory, a fine grain size can be produced by increasing the amount of

deformation during processing. Ideally, cold rolling would be the most feasible way to produce

the fine grain size but since edge cracking becomes a problem when cold rolling, hot rolling is

required. 2080/SiC/20p and MB85/SiC/20p samples were heated to 850°F prior to rolling.

6113/SiC/20r, was heated to 900°F prior to rolling and reheated when the temperature

dropped between 8000F and 700°F.

Each composite was rolled to 1/8" thickness and to 6 1/2" to 7" in width.

MB85/SiC/20p and 2080/SiC/20r, were both solution heat treated at 930°F for 4 hr followed

by a cold water quench and then aged at 350°F for 24 hr to produce the T6 temper.

6113/SiC/20p was solution heat treated at 1047*F for 1 hr followed by a room temperature water

quench and 24 hr of artificial aging at 325°F to produce the T6 temper.

Tensile and toughness data were generated for each DMMC. Tensile tests in L and LT

directions were performed on 1/8" thick and 4" long sheet type tensile specimens with a 1/4"

reduced section width. Toughness tests were performed on 1/8" thick, 6.Y' x 20" center cracked

panels.

Results and Discussion

Micrographs taken of the material produced from the two rolling practices, Process A and

Process B, were presented in Reference 2, although it was difficult to determine the grain sizes

for both 2080/SiC/20p and MB85/SiC/20p due to the large volume of SiC (20%) present.
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Table XXVI presents the strength and toughness data generated for MB85/SiC/20p and

2080/SiC/20p as a function of grain size and amount of Zr. No significant strength differences

are observed between 2080/SiC/20p and MB85/SiC/20p coarse grain materials. The

MB85/SiC/20p fine grain material however has higher strengths than the 2080/SiC/20p for L and

T orientations. MB85/SiC/20p is believed to have more unrecrystallized grains due to the higher

Zr level.

Figure 39 is a plot of fracture toughness as a function of tensile yield strength for

MB85/SiC/20p (Process A and Process B), 2080/SiC/20p (Process A and Process B) and

6113/SiC/20p. The 6013/SiC/20p exhibits greater toughness but at a yield strength lower than

either MB85 or 2080 composites. The 2080/SiC/20p and MB85/SiC/20p materials show

comparable toughness levels. Data from a 2080/SiC/20p composite tested at a thinner gage, i.e.,

0.063", using a wider panel, i.e., 16" wide, is included for comparison in Figure 39. In

addition, data for the Phase I I/M 2XXX alloy, S. No. 689248-T8, is also included. The

toughness values for the composites are seen to be very low in comparison to the monolithic

alloy.

Summary

• MB85/SiC/20p and 2080/SiC/20p made by process A and process B show comparable

toughness values.

• MB85/SiC/20p made by process A had higher tensile yield and ultimate strengths in both L

and T directions than 2080/SiC/20p.

• 6113/SiC/20p exhibited higher toughness values than MB85/SiC.20p or 2080/SiC/20p but at

lower yield strengths.
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6.0 Accelerated Exposure Study.

Phase I. Period 1992 January 01 through 1992 December 31

Objective

There were two objectives to this task. The first objective required development of fixtures

for simultaneously exposing samples to constant stress and elevated temperature. Once the

fixtures were developed and shown to function properly, representative samples from three

classes of HSCT candidate materials were to be exposed and tested for residual tensile

properties.

Background

A spring fixture was developed for creep aging materials for the HSCT program and initial

tests to verify the suitability were performed. A spring, loaded in compression, imparts a tensile

load to the specimen located in the center of the spring. This fixture has been designed to load

1/8" diameter tensile specimens. After aging the specimen under load, the specimen can be

removed from the fixture and tested to determine the residual tensile strength of the material.

The current fixture can be used at temperatures up to 400°F and will load specimens to

stresses of up to 20 ksi. Stiffer springs can be obtained which will permit loading specimens to

60 ksi. The major difference between this fixture and the fixture used in alternate immersion

testing is that the former provides a constant stress while the latter provides a constant

displacement. This difference is important when exposure temperatures are high enough and

times are long enough that significant creep deformation occurs. The fixture is quite compact,

e.g. 2" in diameter and approximately 7" long, permitting a large number of specimens to be

aged in a single oven.

Three materials were identified for accelerated exposures in the constant-stress aging

fixtures: 2080/SiC/20p, 2519-T87 and 6013-T6. These materials were chosen since they

represent three different candidates for a Mach 2.0 aircraft: a discontinuously reinforced metal

matrix composite for use on the upper wing and two different precipitation strengthened

monolithic alloys for use in the fuselage and lower wing. Exposure temperatures of 300*F and

215"F were to be used. The temperature of 300*F was considered a reasonable temperature for

accelerated tests intended to simulate Math 2.0 service. To simulate 120,000 hr at 215"F,

exposures of 600 to 1000 hr at 300*F were to be considered. Tensile specimens were to be taken
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out at various time intervals and tested at room temperature for residual strength and elongation.

Both stressed (18 ksi) and unstressed samples were placed in aging ovens.

Results and Discussion

Table XXVII summarizes residual tensile data at room temperature for specimens exposed

at both 2150F and 300°F. After exposure at 215*F, no significant differences were observed

between the stressed and unstressed samples. After exposure at 3000F, no effect of stress is

observed for the 2519-T87 and 2080/SiC/20p. Degradation in tensile yield strength after 2000 hr

at 3000F is roughly 12% for 2519-T87, 22% for 2080/SiC/20p and 6% for 6013-T6. Stressed

samples exhibit greater stability and higher strengths for 6013-T6.

Summary

• The tensile yield strength for 2519-T87 decreased by 12%, by 22% for 2080/SiC/20p and by

6% for 6013-T6 after 2000 hr at 300*F.

• No significant effect of stress was observed for 2519-T87 and 2080/SiC/20p exposures.

• A significant effect of stress was observed for 6013-T6 after 1,000 hr and 2,000 hr at 300*F.

7.0 Characterization of Alloy 1143

Phase ll-III. Period 1993 February 01 through 1995 October 31

Objective

The objective of this task was to evaluate the Russian alloy 1143 as a damage tolerant

aluminum based material for the lower wing and fuselage of a Mach 2.0 aireraft. The material

must meet preliminary strength and toughness targets at room temperature and then several

criteria associated with elevated temperature service, (e.g. retention of room temperature

properties after exposure, performance at the operating temperature and resistance to creep

deformation).
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Background

A purchase order requesting sheet and plate of 1143 to the Aviation Industry in Moscow

was initiated. Ten pieces of alloy 1143 sheet (0.12 in x 15.75 in x 51.2 in) and two pieces of

alloy 1143 plate (2 in x 15.75 in x 35.4 in) were ordered. Five of the ten pieces of sheet and one

of the two pieces of plate were to be provided in the T651 temper. The remaining material was to

be provided in the F-temper.

Results and Discussion

Material was provided to NASA-Langley, but no material was allocated for Alcoa

Technical Center studies. This task was canceled.
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(a) (b)

(c) (d)

Figure 1 Polarized light micrographs from Barker's etched samples of heat treated C415

0.090" thick sheet. Sections shown are those containing the longitudinal and short

transverse directions. Samples were processed using thermomechanical processing

variations: (a) Grain Structure A: extended preheat, rolled from 825°F, rapid heat-up

rate to the solution heat treatment temperature, (b) Grain Structure B: no preheat,

rolled from 825°F, moderate heat-up rate to solution heat treatment temperature,

(c) Grain Structure C: minimal preheat, rolled from 825°F, moderate heat-up rate to

solution heat treatment temperature, and (d) Grain Structure D: minimal preheat,

preage, rolled from 500°F, moderate heat-up rate to solution heat treatment

temperature.
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(a) (b)

(c)

Figure 2 Polarized light micrographs from Barker's etched samples of heat treated C415

0.090" thick sheet. Sections shown axe those containing the longitudinal and short

transverse directions. Samples were processed using thermomechanical processing

variations: (a) Grain Structure A: extended preheat, rolled from 825°F, rapid heat-up

rate to the solution heat treatment temperature, (b) Grain Structure B: minimal

preheat, rolled from 825°F, moderate heat-up rate to solution heat treatment

temperature, and (c) Grain Structure C: no preheat, rolled from 825°F, moderate

heat-up rate to solution heat treatment temperature.
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(a) (b)

(c) (d)

Ng_e3 Laue x-ray diffraction patterns from the I/2 planes of C415 0.090" thick sheet.

Samples were processed using thermomechanical processing variations: (a) Grain

Structure A, (b) Grain Structure B, (c) Grain Structure C, and (d) Grain Structure D.
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(a) (b)

(c)

Figure 4 Laue x-ray diffraction patterns from the if2 planes of C416 0.090" thick sheet

Samples were processed using thermomechanical processing variations: (a) Grain

Structure A, (b) Grain Structure B, and (c) Grain Structure C.
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A, Co) Grain S_ B, (c) Grain Structure C, and (d) Grain Structm'e D.
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A, 0a Grain Structure B, and (c) Grain Structnre C.
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(b)

(c)

Figure 7 Polarized light micrographs from Barker's etched samples of heat treated C415

0.750" thick plate. Sections shown are those containing the longitudinal and short

transverse directions. Samples were fabricated using preheat variations: (a) no

preheat, (b) minimal preheat, and (e) extended preheat. All three variants were rolled

from 825°F and given a rapid heat-up rate to the solution heat treatment temperature.
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(a) (b)

1

(0

Figure 8 Polarized light micrographs from Barker's etched samples of heat treated C416

0.750" thick plate. Sections shown are those containing the longitudinal and short

transverse directions. Samples were fabricated using preheat variations: (a) no

preheat, (b) minimal preheat, and (c) extended preheat. All three variants were rolled

from 825°F and given a rapid heat-up rate to the solution heat treatment temperature.
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(a)

(b)

Figure 9 Dark field transmission electron micrographs of C415 sheet having Grain Structure A

and having been stretched (a) 0.5%, (b) 2% and (c) 8% prior to artificial aging.
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(c)

Figure 9 (continue.d)
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(a)

(b)

Figure 10 Dark field Iransmission electron micrographs of C416 sheet having Grain Structure A

and having been stretched (a) 0.5%, (b) 2% and (c) 8% prior to artificial aging.

62



(c)

Figure 10 (continued)
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(a)

(b)

Figure II Dark field transmission electron micrographs of (2415 sheet having Grain Structure A

and having been stretched 8% prior to artificial aging: (a) aged to the near peak aged

condition, and (b) aged to the near peak aged condition and then exposed for 3000 hr

at 225°F. 64
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Figure 14 L-T K_ fracture toughness as a function of L tensile yield strength for C415 sheet,

having various grain structures (A, B, C and D) and having been stretched 0.5%, 2%
or 8% prior to artificial aging. All tensile yield strength values and K¢ values are

averages of duplicate specimens. All Ke data were from 6.3" wide center cracked

panels and were invalid.
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duplicate specimens and I_ values are from single specimens. All I_ data were from
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Figure 16 L-T Ke fracture toughness as a function of L tensile yield strength for C416 sheet,

having various grain structures (A, B, and C) and having been stretched 0.5%, 2% or
8% prior to artificial aging. All tensile yield strength values and K,: values are

averages of duplicate specimens. All K¢ data were from 6.3" wide center cracked

panels and were invalid.
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Figure 28 L-T K_ fracture toughness versus L tensile yield strength for C415 sheet, having Grain

Structure A and having been given various levels of stretch prior to peak aging, and

having been tested in the peak aged condition and after an exposure of 3000 hr at
225"F. All tensile yield strength and fracture toughness values are averages of duplicate

specimens.
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Figure 29 L-T Kc fracture toughness versus L tensile yield strength for C416 sheet, having Grain

Structure A and having been given various levels of stretch p/ior to peak aging, and

having been tested in the peak aged condition and after an exposure of 3000 hr at
225"F. All tensile yield strength and fracture toughness values are averages of duplicate

specimens.
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Figure 30 L-T K e fracture toughness versus L tensile yield strength for C415 and C416 sheet,

having Grain Structure A and having been given various levels of stretch prior to peak

aging, and having been tested in the peak aged condition and after an exposure of 3000

hr at 225"F. All tensile yield strength and fracture toughness values are averages of

duplicate specimens.
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C415 Sheet - Grain Structure A, Stretched
Various Levels Before Peak Aging
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Figure 32 Creep strain as a function of time for C415 sheet having Grain Structure A, and

having been stretched 0.5%, 2% or 8% prior to artificial aging. Creep conditions

were:(a) 275"F, 30 ksi and (b) 225"F, 40 ksi.
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Figure 33 Creep strain as a function of time for C416 sheet having Grain Structure A, and

having been stretched 0.5%, 2% or 8% prior to artificial aging. Creep conditions

were: (a) 275"F, 30 ksi and (b) 225°F, 40 ksi.
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C416 Sheet - Grain Structure A, Stretched
Various Levels Before Peak Aging
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Figure 34 Creep strain as a function of time for C415 sheet having various grain structures and

having been stretched 2% prior to artificial aging. Creep conditions were: (a) 275"F,

30 ksi and (b) 225°F, 40 ksi.

89



(b)

0.0015

C
am

C
m

0.0010

C415 Sheet - Various Grain Structures, All

Stretched 2% Before Peak Aging

iI ' ' ' I ' ' 'IGrl_n Slnl_ure J ...... a o a !'''4. _

x G;ainStructure/_ i [] 1

o Grain Structure !t [] i [][] 1
A Grain Structure El = o i -t

[] q o _o [] °io o

O0

O[O []

O_ 0 _ A AA d

[] [] [] [] 0 [] [] &&&A&&&_ && & O_A_, _Z=KA&&_.&

! [] OOOOOO0 pOOOOOO OOOOC

D. a _ AAAAA
• 0.0 0 0 5 ........................"_'_""""''_"_"'"'"'"_..................'='......_............................._':............................
_) O && A & _O. _ OOOO OOO:OO :
L O &&oobooo OO i e

OOOO &o o OO0 _ 0 OO

_0 00 AO o 0 _o(xxxxxx i
"&A&& _xxxxxx x_xxxx_

; ,××x×x××,= i Creep Cor_ditions: 225.:'°F,40 ksi
_<xxxx A_, , . s , , , i , , , I , , , I , , ,

0.0000 --

0.0 200.0 400T0me ' 61_O.0 800.0 1000.0

Figure 34 (Continued)

90



(a)

C416 Sheet - Grain Structures A & B,

Stretched 2% Before Peak Aging
0.0025 ' ' ' I ' ' ' I ...... i ......

,1= I × Grain Structure I i
m¢ 0.0020 .......................................... i ..............._"'_ ......................

o Grain Structure o iooooi o_ii
"-- ': _..._0..._.o9o :(= 0.0 015 ................................................T:........................._--oo.................._ ...............! ......................

L

*" i o °_.'°
_J_ OO CO00 x

>OOO<XXX ×: X >OOO< X X:

a. 0.0 010 ......... o9°=" _'_ .......... _ .......... _ .........__ ......................
oix x

w _oo , ==x_ _x _XxX
,-- o,_ ,c,_< : x

OOOXX : X X i

0 0.0 005 ....._oo-_-,o.........................................................................................................................
O X : :

• x_o<x i !

'× i i
i i Creep ConditiOns: 275°F, 30 ksi

0,000o ., , (,,, i, ,, ], ,, _ ,,, _ , , ,

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0
Time, hr

Figure 35 Creep strain as a function of time for C416 sheet having various grain structures and

having beenstretched 2% prior to artificial aging. Creep conditions were: (a) 275"F,
30 ksi and (b) 225°F, 40 ksi.
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Grain Structure A, Stretched 0.5%
Before Peak Aging - C415 vs C416
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Figure 36 Creep strain as a function of time for C415 and C416 sheet having Grain Structure A

and having been stretched 0.5% prior to artificial aging. Creep conditions were:

(a) 275°F, 30 ksi and (b) 225*F, 40 ksi.
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Figure 37 Creep strain as a function of time for C415 and C416 sheet having Grain Structure A

and having been stretched 2% prior to artificial aging. Creep conditions were:

(a) 275°F, 30 ksi and (b) 225"F, 40 ksi.
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(a)

Grain Structure A, Stretched 8%

Before Peak Aging - C415 vs C416
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Figure 38 Creep strain as a function of time for C415 and C416 sheet having Grain Structure A

and having been stretched 8% prior to artificial aging. Creep conditions were:

(a) 275"F, 30 ksi and (b) 225°F, 40 ksi.
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98



1O0

§- so
I-- ca.

m ¢J

U,..
0

50 60 70 80

Tensile Yield Strength, ksi

9O

0 Process A, 2080/SiC/20p-T6

• Process 8, 2080/SiC/20pT6

[] Process A, MB85/SiC/Z0p-T6

• Process B, MB85/SiCJ'20p.-T6

A 6113/SiC/ZOp-T6

+ 2080/._C/20p--T6 (0.063"])
x I/M 2X_ 689248-T8

Figure 39 Fracture toughness, K¢ and Kapp, as a function of tensile yield strength for the DMMC
sheet. Included for comparison is a datum for an I/M 2XXX alloy: 689248-T8.

C/2915P
99



ALLIEDSIGNAL, INC.

Processing Based Improvements in the Mechanical Isotropy

Temperature Damage Tolerance in AI-Fe-V-Si Alloy 8009

M.S. Zedalis, Ph.D.
Metals Laboratory, Research & Technology

and Intermediate

Abstract

Two potential areas of concern identified by aircraft and engine designers when

contemplating the use of rapidly solidified, high temperature aluminum (HTA) alloy 8009 were

examined in the present study, namely

(i) mechanical anisotropy as a function of product form; and,

(ii) reduced plasticity in the 450-550K temperature range.

To further examine these unique characteristics for HTA 8009, modification to practice and

processing parameters were performed to:

(i) improve the metallurgical bonding between prior powder particles by reducing the

oxide layer thickness at the particles interface, and,

(ii) improve intermediate temperature embdttlement in plate and sheet products by

employing thermomechanical processing (TMP) treatments to reduce the

concentration of solute Fe, V and Si in the Al-solid solution matrix.

The primary results of the research found that the oxide layer thickness on planar flow cast

HTA 8009 ribbon could be successfully reduced by casting under a dry inert gas shroud. However,

these reductions were noted to have little if any effect on the tensile properties of extrusions, plate or

sheet samples. Mechanical isotropy in rolled sheet or plate was increased by employing cross-

rolling (i.e., rolling normal to the extrusion direction). This behavior was attributed to improved

dispersion and fracture of the oxide layer present at the prior particle boundaries.

Irrespective of sheet gauge or roiling direction, increasing the strain rate by a factor of ten

typically adds approximately 15-25 MPa (2-3 ksi) to the ultimate tensile strength as well as typically

increases the % plastic elongation by as much as 50% in some cases. Strain rate sensitivity values

for the plate and sheet samples tested in the present program indicates an "m" value ranging from

about 0.015 to 0.030, irrespective of the rolling practice employed (e.g., temperature, direction

TMP).

Tensile data for 0. l0 cm (0.040") cold rolled sheet which received intermittent annealing

treatments (as part of the TMP) indicate little change in comparison to sheet samples which received
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cold-rollingonly. Tensile strengths for this material were generally lower than measured for the cold

rolled sheet over the test temperatures. Values of tensile ductility and its variation with test

temperature were very nearly equivalent to levels measured for sheet samples which received only

cold rolling.

Cold rolling, with and without intermittent annealing treatments, did result in an overall

improvement in the measured tensile ductility over the range of test temperatures in comparison to

values measured for hot rolled sheet.

While tensile ductility for all of the HTA 8009 plate and sheet rolled in the present program

displays the characteristic ductility "dip" over the temperature range of 422-505K (300-450"F),

measured values of % reduction in area drops from about 40-50% at 298K (77°F) to about 25-30%

at 422K (300°F) and higher.

Energy dispersive X-ray spectroscopy (EDX), performed to assess the effect of TMP on the

solute content present in the Al-solid solution matrix of hot and cold rolled plate and sheet samples,

indicate that V and Fe levels measured in the Al-solid solution of cold rolled/annealed 0.10 cm

(0.040") gauge sheet are comparable to levels measured in the matrix of extruded and hot rolled 0.64

cm (0.25") plate.

EDX data supports the hypothesis that the true "equilibrium" level of solute Si, V or Fe in

rapidly solidified HTA 8009 is in actuality, multiple orders of magnitude greater than the equilibrium

solute levels reported in the literature for these elements in AI.

Objective

The objectives of this research are to improve the mechanical isotropy and elevated

temperature damage tolerance of high temperature aluminum (HTA) alloy 8009 plate and sheet by

modifying the current processing parameters and practice. Specifically, these objectives will be

accomplished by:

(i) improving the metallurgical bonding between prior powder particles by reducing

the oxide layer thickness at the particle interfaces; and,

(ii) reducing the concentration of solute Fe, V and Si in the A1 matrix as well as

modifying the alloy's grain/sub-grain structure by thermo-mechanical processing. I n

practice, the oxide layer present at the prior powder particle boundaries will be reduced by casting

and comminuting the planar flow cast 8009 ribbon in a protective atmosphere. Moreover,

supersaturated solute atoms as well as grain/sub-grain structure in 8009 plate and sheet will be

affected by employing a thermo-mechanical process which involves modifications to current hot /

cold rolling practices. Each of these process modifications will be performed on commercial scale
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quantities of material, and hence, may be directly implemented into current manufacturing

specifications.

Introduction

Commercially available high temperature A1-Fe-V-Si (HTA) alloy 8009 has emerged as a

leading candidate Al-base material for aerospace applications with service temperatures approaching

600K. [1-4] HTA 8009 (formerly designated FVS0812) is processed utilizing rapid solidification /

powder metallurgy technologies and combines the room temperature strength, ductility and fracture

toughness of conventional 2000 and 7000 series aerospace aluminum alloys with greatly improved

elevated temperature strength and stability. HTA 8009 derives its excellent mechanical and physical

properties from a uniform dispersion of All3(Fe,V)3Si particles dispersed in an aluminum solid

solution matrix. The silicide dispersoids typically range from 50-80 nm in diameter after

consolidation (e.g., extrusion, forging, and rolling) and are extremely resistant to particle coarsening

at elevated temperatures. As a result, no measurable material degradation occurs even after exposure

for 1000 hours to temperatures approaching 725K. [5,6] HTA 8009 also exhibits approximately a

25% increase in Young's modulus over conventional Al-base alloy and on a specific stiffness basis,

is superior to Ti-6A1-4V and 17-4 PH steel to temperatures approaching 750K. [7] This

combination of properties make HTA 8009 extremely attractive for applications which have been

previously restricted to heavier titanium or steel alloys, and superior to polymer composites at

elevated temperatures. HTA 8009 is presently being evaluated for wing skins, aircraft landing

wheels, missile bodies and fins as well as a variety of gas turbine engine components which operate

at slight elevated temperatures.

While the benefits of using HTA 8009 over titanium and steel alloys for certain applications

are clearly recognized, extensive mechanical characterization of the alloy has identified two (2)

potential areas of concern to high speed aircraft and engine designers:

i) mechanical anisotropy as a function of product form; and,

ii) reduced plasticity in the 450-550K temperature range.

Anisotropy in the mechanical behavior of HTA 8009 is most apparent in variation in

toughness and ductility for samples tested in directions orthogonal to the rolling/extrusion directions.

Porr et al. [8] have recently shown for HTA 8009 flat bar extrusions that values of plane strain

fracture toughness, KIc, could vary from as high as about 36.6 MPa_lm for samples tested in the

L-T orientation to as low as about 16.1 MPa_/m for samples tested in the T-L orientation.

Fractography performed by Chart [9,10] and later confirmed by Porr et al. [8], indicates that the

variation in toughness is related to the extent of delamination occurring along oxide decorated prior
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particle boundaries. Based on these observations, Chart [9] concluded that KIC values measured

for samples tested in the L-T orientation are enhanced as a result of a loss in through-thickness

constraint associated with delamination. The mechanism of "thin sheet toughening" is viewed as

contributing substantially to L-T toughness, while leading to lower toughness in orthogonal

orientations.

Reduced plasticity in the 450-550K temperature range in HTA 8009, on the other hand, has

been attributed to the phenomenon of dynamic strain aging (DSA) occurring in the alloy. [11] DSA

is not uncommon to conventional aluminum alloys, but typically occurs below ambient temperatures

due to the higher diffusivity of the more traditional alloying constituents, (e.g., Cu, Mg, Si). For

HTA 8009, Skinner et al. [11] has observed that DSA occurs at intermediate temperatures due to the

more sluggish diffusivity of Fe and V present in the matrix. Solute levels of these two (2) elements

in the Al-base matrix have been measured to be greatly in excess of equilibrium levels, and at

present, do not appear to be affected by hot working or static thermal exposure. While DSA is

known to reduce ductility and toughness in HTA 8009 [6,11 ], the effect becomes significantly more

serious when it is combined with the mechanical anisotropy of the material, for example Port et al

[8] measured that KIc values for samples tested in the L-T orientation decreased to a minimum of

about 15 MPa_/m over this intermediate temperature range compared to a minimum of about 9.5

MPa_/m for samples tested at similar temperatures in the T-L orientation.

Results

Tensile Testing of HTA 8009 Extrusions

Tensile testing of HTA 8009 rolling preforms extruded at Spectrulite Consortium Inc. in

Madison, IL was performed to assess the effect of extrusion conditions (e.g., temperature,

lubrication, speed, etc.) on mechanical properties. Tensile testing was performed at 25"C (77"F) and

232"C (450"F) on specimens machined from both the nose and tail of HTA extrusions 92A022 and

92A024. Specimens were machined from various locations in the cross-section of the extrusion,

Fig. 1. and were oriented in both the longitudinal and transverse directions (i.e., with respect to the

extrusion direction).

Tensile testing was performed at AlliedSignal using an Instron 1125 testing machine.

Testing was performed using a modified ASTM E21 procedure. Here, tests were initially run at a

strain rate corresponding to 0.5%/min as per specification. At this strain rate, tensile yield and an

ultimate tensile strength were measured. After the ultimate tensile strength of the sampled was

achieved, the imposed strain rate was then increased ten-fold to a rate of 5%/min, Fig. 2. This

testing practice in effect provided tensile data for HTA 8009 at two (2) strain rates on a single
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sample. Measured total plastic elongation therefore represents the sum of plasticities exhibited for a

combination of strain rates.

Tensile data as a function of location and test temperature for specimens machined from the

nose and tail of extrusions 92A022 and 92A024 are summarized in Table 1. (Table numbers

followed by the leter "a" are in SI units, while Table numbers followed by the letter "b" are in

traditional British units.) Variation as a function of position and test temperature are graphically

presented in Figs. 3 & 4. In general, there is very little difference in tensile strengths between the

two (2) extrusions and variations as a function of sample position (with respect to the cross-section

of the extrusion) were comparable. Based on this data, a number of observations and hypotheses

may be made:

(i)

(ii)

(iii)

(iv)

increasing the strain rate ten-fold from 0.5%/rain to 5.0%/min on average increases

the tensile strength by approximately 14-21 MPa (2-3 ksi) for tests conducted at

298K (77"F) and 505K (450°F).

tensile strength, irrespective of strain rate, increases by approximately 14-21

MPA (2-3 ksi) for specimens machined from the mid-planes of the extrusion in

comparison to specimens machined from the outer perimeter. This behavior may be

attributed to the fact that the outer surface of the preform tends to be much hotter

than the bulk due to frictional heating during extrusion. Higher surface temperature

promotes a slightly coarser microstructure, and therefore, lower strength. This

tendency is present for specimens machined from the nose as well as the tail of the

extrusions.

tensile ductility decreases in the mid-plane of the extrusion and overall is less

for specimens oriented transverse to the extrusion direction irrespective of position

in the extrusion. Ductility in these extrusions is largely dependent on the

interparticle bonding of the HTA powder particles and variations in ductility reflect

the extent of shear the particles experience during extrusion (i.e., particles located

near the surface of the preform, extruded through a shear-faced die, exhibit

greater amounts of shear than particles located at mid-plane in the preform).

tensile ductility, on average, is comparable for specimens machined from extrusions

92A022 and 92A024. While shrouding of the melt puddle during planar flow

casting resulted in a reduction in total oxide content (i.e., related to hydrate layer

thickness present on the powder particle surfaces), improved bonding of powder

particles apparently was not substantially affected.
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Tensile Testing of HTA 8009 Plate and Sheet

Tensile testing of HTA 8009 plate and sheet rolled at Kaiser Aluminum's Center for

Technology (CFT) in Pleasanton, CA was conducted to assess the effect of rolling schedule and

parameters on mechanical properties. The rolling campaign was designed to evaluate the major

objectives of the program, namely:

(i) to evaluate the effects of roiling direction and total reduction in gauge on

mechanical isotropy in HTA 8009 plate and sheet; and,

ii) to evaluate the application of thermo-mechanical processing to improve elevated

temperature ductility and toughness by modifying the grain / sub-grain structure i n

HTA 8009 sheet as well as by reducing the solute content in the A1 matrix.

The specific rolling schedules designed to meet the aforementioned objectives are illustrated

in Fig. 5. To evaluate the effects of rolling direction and total reduction in gauge on mechanical

isotropy in HTA 8009 plate and sheet, one-half of the preforms from each casting modification

received only cross-rolling (i.e., rolled normal to the extrusion direction), while the balance

received only straight-rolling (i.e., rolled parallel to the extrusion direction). An identical pass

schedule (i.e., reduction per pass and the number of passes per rolling heat) was practiced for all

lots of material. Plate and sheet having respective gauges of 0.64 cm (0.25"), 0.22 cm (0.090")

and 0.10 cm (0.040") were produced during this phase of the program.

To evaluate the application of thermo-mechanical processing (TMP) to improve elevated

temperature ductility and toughness, HTA 8009 sheet was initially hot rolled to approximately 0.22

cm (0.090") gauge. Three (3) different rolling practices were then employed to fabricate 0.10 cm

(0.040") gauge sheet. The first rolling practice involved only hot rolling to the final gauge. Here

the sheet was soaked at approximately 673K (750"F) prior to being rolled to gauge. Sheet

temperature was monitored during rolling to verify that the sheet temperature never fell below

about 500K (450"F).

The second rolling practice involved only cold rolling from 0.22 cm (0.090") to a final

gauge of about 0.10 cm (0.040" gauge). Here the sheet was allowed to cool to approximately

298K (77"F) prior to being cold rolled to its final gauge. Some work induced adiabatic heating of

the sheet during cold rolling; however, the sheet temperature never exceeded about 340K (150*F).

The third rolling practice also involved only cold rolling [298K (77"F)] to the final gauge;

however, here the sheet was subjected to an annealing treatment of approximately 673K (750"F)

for 0.5 hrs., after every 30% reduction in gauge. The premise behind this TMP was to further
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reducethe concentration of Fe, V and Si in the HTA 8009 matrix via heterogeneous nucleation of

dispersoids as well as through the "sweeping" action of glissile dislocations.

In total, approximately 150 kg of sheet were rolled at Kaiser Aluminum - CFr for the

program, Tables 2 & 3. Prior to being shipped back to AlliedSignal, all of the sheet was trimmed

to remove minor edge cracks and sectioned into approximately 250 cm (100") lengths.

Approximately two-thirds of the HTA 8009 plate and sheet were supplied to the University of

Virginia for testing.

Tensile data for the plate and sheet samples identified in Tables 2 & 3 are summarized in the

following sections for HTA sheet rolled from extrusions 92A022 and 92A024. Tensile testing was

performed on an Instron 1125 testing machine at temperatures of 298,422, 505 & 589K (77, 300,

450 & 600°F). Testing was also performed on selected samples after exposure for I00 hrs. to

644K (700"F). Testing at all temperatures was performed using a modified ASTM E21 procedure.

Here, tests were initially performed at a strain rate corresponding to 0.5%/rain as per specification.

At this strain rate, a 0.2% tensile yield and an ultimate tensile strength were measured. After an

ultimate tensile strength was achieved, the imposed strain rate was then increased ten-fold to a rate

of 5%/rain, Fig. 2, and the test was run until failure. This testing practice, in effect, provided

tensile strength data for HTA 8009 at two (2) strain rates using a single sample. Measured total

plastic elongation, therefore represents the sum of ductilities for a combination of strain rates. To

further assess the strain rate sensitivity of HTA 8009 plate and sheet, samples were also tensile

tested at a single strain rate of 50%/min. Here, 0.2% yield strength, ultimate tensile strength and

total plastic elongation were measured for a single strain rate.

Tensile data for plate and sheet samples rolled from extrusions 92A022 and 92A024 are

summarized in Tables 4-6 a&b and Tables 7-12 a&b, respectively. (Tables numbers followed by

the letter "a" are in SI units, while Table numbers followed by the letter "b" are in traditional

British units.)

Effect of Rolling Direction & Reduction in Gauge on Mechanical Isotropy

To evaluate the effect of rolling direction and reduction in gauge on mechanical isotropy in

HTA 8009 plate and sheet, one-half of the preforms from each casting modification received only

cross-rolling (i.e., rolled normal to the extrusion direction), while the balance received only

straight-rolling (i.e., rolled parallel to the extrusion direction). An identical pass schedule (i.e.,

reduction per pass and number of passes per rolling heat) was practiced for all lots of material.

Tensile testing was performed on plate and sheet have respective gauges of approximately 0.64 crn

(0.25"), 0.22 cm (0.090") and 0.10 cm (0.040").
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Mechanicalanisotropyin HTA 8009plateandsheet is most clearly reflected in values for

total plastic elongation measured during tensile testing. Tensile strength is observed to be fairly

similar for samples oriented longitudinally or transverse to the preform rolling direction at all of the

strain rates evaluated. As may be seen in Figs. 6-20 and Figs. 21-35 for plate and sheet rolled

from extrusions 92A022 and 92A024, respectively, cross-rolled 0.64 cm (0.25") gauge plate

exhibits mechanical isotropy within the scatter band for the material tested. Total plastic elongation

measured over all temperatures is basically equivalent at this gauge and remains equivalent for

sheet cross-rolled to thinner gauges. Straight-rolled sheet, on the other hand, indicates similar

isotropy only for the sheet rolled to approximately 0.10 cm (0.040").

This response clearly indicates that rolling direction has a greater impact on improving

mechanical isotropy in HTA 8009 plate and sheet than does the total reduction in gauge achieved

during roiling. From a microstructural point of view, this response may be attributed to the fact

that cross-rolling more effectively breaks-up and disperses the oxide / hydrate layer present at the

prior particle boundaries than straight-rolling alone. While comparable levels of shear are achieved

in sheet that has been cross- and straight- rolled to a similar gauge, the oxide / hydrate layer in

straight-rolled sheet remains in contiguous bands oriented to the extrusion and rolling directions.

As a result, tensile specimens oriented transverse to the rolling direction fail at lower plastic strains

along the original prior particle boundaries.

The reduction in the oxide / hydrate layer thickness for plate and sheet rolled from extrusion

92A024, comprised of planar flow cast ribbon which was shrouded in a dry inert gas environment

during casting, in comparison to plate and sheet rolled from conventionally processed extrusion

92A022 did not result in any measurable improvement in transverse tensile ductility. While

shrouding the melt puddle and the down-stream planar flow cast ribbon with a dry inert gas did

reduce the hydrate layer thickness from approximately 3.25 nm to 2.9 nm and the total oxygen

content from 0.087% to 0.079%, a consistent improvement in transverse tensile ductility was not

observed for the plate and sheet samples examined in the study.

Effect(s) of Thermomechanical Processing

Hot rolled 0.22 cm (0.090") gauge HTA 8009 sheet from both lots of material (i.e.,

92A022 and 92A024) was rolled to a final gauge of approximately 0.10 cm (0.040") following

three (3) different roiling practices to evaluate the effect of thermomeehanieal processing (TMP) on

ambient and elevated temperature tensile properties. The first rolling practice involved only hot

(cross- and straight-) rolling to the final gauge. A second rolling practice involved only cold
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(_oss- and straight-) rolling to the final gauge. And the third rolling practice involved cold (cross-

and straight-) rolling to gauge; wherein, an intermittent annealing treatment of 673K (750"FO for

approximately 0.5 hrs. was performed after every 30% reduction in total gauge. Here, the hope

was to reduce the Fe, V & Si solute content in the (rapidly solidified) matrix by inducing

heterogenous nucleation of dispersoids and/or through the scavenging of solute atoms by glissile

dislocations.

Tensile data for sheet rolled following these three (3) schedules from extrusions 92A022

and 92A024 clearly indicate a sizable variation in properties. Hot cross- and straight- rolled sheet

exhibits the highest tensile strengths over the range of test temperatures for any of the plate and

sheet rolled in the present program. Room temperature tensile strength is typically in the 430-450

MPa (63-65 ksi) range for tests run at a strain rate of 0.5%/rain. Overall, this material also

exhibits the lowest levels of ductility for all TMP batches over the range of test temperatures.

Tensile ductility is observed to decrease from approximately 7-10% at room temperature to

approximately 2.1-2.7% at a test temperature of 422K (300°F). As the test temperature is

increased, tensile ductility is observed to increase to as high as 26%.

Cold rolled 0.10 cm (0.040") gauge HTA 8009 sheet exhibits a sizable increase in tensile

ductility in comparison to the hot rolled sheet, with only a small decrease in tensile strength.

Tensile strengths (at 0.5%/rain strain rate) for cold rolled sheet range from about 400-425 MPa

(58.5-61.6 ksi) at 298K (77°F) and a very attractive level of about 150-193 MPa (22.4-28.0 ksi) at

589K (600°b0. Tensile ductility for this material is also observed to exhibit a drop in ductility at

intermediate test temperatures. Here, ductility values of about 15-19% at room temperature

decrease to levels of only about 6-9% at 422K (300°F). As the test temperature is further

increased, tensile ductility in this sample is observed to increase to values often in excess of 25%.

Tensile data for 0.10 cm (0.040") sheet cold rolled which received intermediate annealing

treatments indicate a response fairly comparable to the sheet samples which received cold-rolling

only. Tensile strengths for this material were generally approximately 20-30 MPa (3-4 ksi) lower

than measured for the cold rolled sheet over the test temperatures. Values of tensile ductility and its

variation with test temperature was very nearly equivalent to levels measured for sheet samples

which received only cold roiling.

While these data clearly indicate that TMP had an effect on the tensile properties of 0.10 cm

(0.040") gauge HTA 8009 sheet, the TMP's practiced did not substantially improve the

intermediate temperature plasticity (e.g., ductility) as originally hoped and intended. Cold rolling,

with and without intermittent annealing treatments did, however, result in an overall improvement

in the measured tensile ductility over the range of test temperatures in comparison to values
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measured for hot rolled sheet. Further discussion on the effects of TMP on the microstructure of

HTA 8009 sheet is presented in the subsequent section on Transmission Electron Microscopy.

% Reduction in Area as _ Function of Test Temperature for HTA 8009 Plate and Sheet

Values of % reduction in cross-sectional area as a function of test temperature for plate and

sheet samples cross-rolled from extrusions 92A022 and 92A024 are summarized in Tables 4-6 &

7-9 and shown graphically in Figs. 36-37 and 38-39, respectively. While tensile ductility for all of

the HTA 8009 plate and sheet rolled in the present program displays the characteristic ductility

"dip" over the temperature range of 422-505K (300-450°F), measured values of % reduction in

cross-sectional area are found to primarily decrease with increasing test temperature. This

response is similar to toughness data measured by S.S. Kim and R.P. Gangloff at the UVa for

sheet having similar pedigree provided for testing in their phase of the present program.

Irrespective of rolling temperature or TMP practice, % reduction in area drops from about 40-50%

• at 298K (77°F) to about 25-30% at 422K (300*F) and higher.

Effect of Strain Rate on Ambient Temperature Tensile Strength & Ductility

The effect of strain rate on HTA 8009 has been examined by D.J. Skinner et al. [ 19], but

only for extrusions or hot rolled sheet. In the present program, the effect of strain rate on ambient

temperature tensile strength and ductility was evaluated over two (2) decades of imposed strain

rates for all variants of 92A024 cross- and straight- rolled plate and sheet, Figs. 40-44.

Irrespective of sheet gauge or rolling direction, increasing the strain rate by a factor of ten (10)

typically adds approximately 15-25 MPa (2-3 ksi) to the ultimate tensile strength as well as

typically increases the % plastic elongation by as much as 50% in some cases, Tables 10-12.

Strain rate sensitivity values for the plate and sheet samples tested in the present program indicates

an "m" value ranging from about 0.015 to 0.030, irrespective of the rolling practice employed,

(e.g., temperature, direction, TMP). Here, "m" may be calculated using the following equation:

m = [In (t_2/_l) ] / [In (e2/el)],

where t_ l is the original stress level and t_2 is the new stress value obtained after increasing the

strain rate from e I to e2. The values for "m" measured in the present study overlap the ambient

temperature "m" value of approximately 0.025 previously measured by Skinner et. al. [19].

It has been suggested that the high strain rate sensitivity measured for HTA 8009 reflects

the strong interplay between glissile dislocations and solute atoms in the Al-solid solution matrix.

At intermediate temperatures, 422-505K (300-450"F), the strain rate sensitivity for HTA 8009,
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likes its ductility, has been shown to exhibit a minimum (i.e., nearly equal to zero).[19] This drop

in both ductility and the strain rate sensitivity has been attributed to a dynamic strain aging

phenomenon in HTA 8009, wherein the movement of dislocations through the matrix is strongly

impeded by solute atoms (e.g., Fe, V, Si). Attempts to improve the intermediate temperature

ductility in HTA 8009 in the present program by employing various TMP practices to further

reduce the amount of solute present in the Al-solid solution, was unsuccessful. This response

indicates that more exotic TMP processes might be necessary to improve the intermediate

temperature ductility, or alternatively, that the level of solute present in the Al-solid solution matrix

represents a near "equilibrium" concentration for rapidly solidified A1-Fe-base alloys.

Effect of Exposure on Ambient Tem_verature Tensile Properties

The family of high temperature A1-Fe-V-Si alloys is recognized as the most thermally stable

of all A1-Fe -base alloys. HTA 8009 has been found to resist degradation of tensile properties even

after exposure for 1000 hrs. at 723K (842"F). [20] In the present program, a somewhat modest

exposure for 100 hrs. at 644K (700"F) was applied to assess any effects of TMP practice on the

thermal stability of HTA 8009. Tensile data for plate and sheet rolled in the present study after 100

hrs. / 644K exposure are summarized in Tables 4-9.

Irrespective of extrusion number or rolling direction, 100 hrs. exposure at 644K (700"F)

was found to have no effect on the tensile properties of hot rolled 0.64 cm (0.25") or 0.25 cm

(0.090") gauge plate and sheet, Tables 4 & 7. In fact, a slight increase in tensile strength is

observed after exposure for these samples. Hot rolled 0.10 cm (0.040") gauge sheet after 100 hrs.

/ 644K (700*F) exposure also indicates no apparent degradation in tensile strength; however, a

slight decrease (10-30%) in total plastic elongation was noted for many of the samples.

Cold rolled 0.10 cm (0.040") gauge sheet, which did not receive intermittent annealing

treatments, indicates the largest response to 100 hrs. / 644K (700"F) exposure, Tables 5 & 8.

Measured values of tensile yield and ultimate strength are observed to increase by as much as 70

MPa (approximately 10 ksi) after exposure. More significant, however, is the very sizable

decrease in total plastic elongation measured for this material after exposure. Ductility levels as

high as approximately 18% measured for as-rolled samples were observed to decrease to levels in

the 3.0 - 6.6% range.

The response of exposed, cold rolled 0.10 cm (0.040") gauge sheet, which did receive

intermittent annealing treatments, is fairly similar to the aforementioned cold rolled variant, Tables

6 & 9. Tensile strength after 100 hrs. / 644K (700*F) exposure was observed to increase by as

much as approximately 90 MPa (13 ksi); however, the decrease in ductility for sheet rolled from
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extrusion92A022 does not appear to be as severely affected after exposure. For this material, total

plastic elongation decreases from about 16-17.5% to about 4.8-8.8% after exposure. Sheet rolled

from extrusion 92A024, on the other hand, does exhibit a severe decrease in ductility after

exposure to values ranging from 2-3%. Possible reasons for the larger decrease in the total plastic

elongation for this particular extrusion is discussed in a subsequent section detailing the results of

microstructural analyses.

Microstructural Analyses of HTA 8009 Extrusion, Plate & Sheet Samples

Transmission electron microscopy (TEM) was performed on all variants of HTA 8009

extrusion, plate and sheet samples. TEM was performed using a Philips EM400T electron

microscope equipped with STEM and EDS capabilities. TEM foils were mechanically thinned and

electropolished in a 20% HNO 3 - 80% CH3OH solution at 223K. As anticipated, the

microstructure of the as-extruded rolling preform 92A022 is comprised of very fine, 50-80 nm

Alz3(Fe,V)3Si dispersoids present in an Al-solid solution matrix, Fig. 45. Grain (or sub-grain)

size for this material was measured to be about 0.5_tm.

Extrusion 92A024 indicates a fairly comparable microstructure to that of extrusion 92A022;

however, large regions of carbon (i.e., graphite) contamination were observed to be scattered

throughout the material, Fig. 46. The possibility of carbon contamination in this material had been

identified early in the program by X-ray photoelectron spectroscopy (XPS) performed on planar

flow cast ribbon manufactured specifically for this batch of material (i.e., Process Modification B

which involved shrouding the melt puddle and downstream ribbon surface with a dry inert gas).

Since this contamination was not observed on the planar flow cast ribbon or 92A022 extrusions,

etc., its source may be direcdy attributed to the graphite device added to the casting machine to

shroud the melt puddle and ribbon surface with a dry, protective atmosphere. Carbon flakes were

also observed to be present in plate and sheet samples rolled from extrusion 92A024 and it is

suggested that their presence may be a source for anomalously low tensile ductilities and %

reduction in cross-sectional area measured for this material. Because of the presence of

contamination in 92A024 plate and sheet samples, detailed TEM was only performed on material

rolled from extrusion 92A022. The results of these analyses are summarized below.

TEM performed on hot roiled 0.64 cm (0.25") gauge 92A022 plate indicates a

microstructure very comparable to that of the parent extrusion, Fig. 47. As reflected by

comparable tensile strengths for both product forms, the silicide particle size and the grain /

sub-grain size do not appear to have been affected by hot rolling. Similarly, little change in

microstructure is observed for hot rolled 0.22 cm (0.090") gauge 92A022 sheet, Fig 48. As

111



indicated, silicide particles that are associated with grain / sub-grain boundaries arc slightly coarser

than particles present within the grains. Obviously, pipe diffusion along grain / sub-grain

boundaries is assisting this coarsening and one can further assume that diffusion is fed by solute

atoms dumped at these boundaries by scavenging glissile dislocations during hot rolling.

The tendency to find coarser silicidc particles present at grain / sub-grain boundaries in the thinner

gauge, hot rolled 92A022 sheet is clearly evident in Fig. 49, which is a photomicrograph of the hot

rolled 0. l0 cm (0.040") gauge sheet. Very coarse silicide particles (> 300 nm in diameter) may be

observed associated with sub-grain boundaries in the material. Moreover, dislocation tangles

decorating these boundaries are clearly apparent in the micrograph. It is suggested that the lower

ductilities measured for the hot rolled 0.10 cm (0.040") gauge sheet are the result of these coarser

particles present along the grain / sub-grain boundaries.

The microstructure of 0.10 cm (0.040") gauge sheet cold rolled from 0.22 cm (0.090")

gauge hot rolled sheet does not exhibit the same extent of coarsen silicide particles present at the

boundaries as the hot rolled 0.10 cm (0.040") gauge sheet. In general, a fairly uniform

distribution of dispersoid were observed to be present in this material, Fig. 50. The major

differences noted for the cold rolled sheet in comparison to any of the hot rolled variants examined

in the-present study are the high-lighted grain / sub-grain and particle boundaries in the cold rolled

material. In many areas, the grain/sub-grain boundaries appear wider in size than typically

observed for hot rolled variants. Weak beam, dark field electron microscopy performed on these

high-lighted areas in cold rolled sheet, Figs. 51 (brighffield) & 52 (weak-beam darkfield), clearly

indicate dislocations associated with these boundaries. Moreover, dislocation tangles are notably

absent from within the grains which is fairly typical for this material. A possible reason for the

lack of tangles may simply be due to the fact that this material does not exhibit a large volume

fraction of silicide particles present within the grains; hence, their are fewer obstacles to impede

dislocation motion through the grains during cold deformation.

TEM performed on cold rolled 0.10 cm (0.040") gauge sheet which experienced

intermittent annealing treatments during the rolling campaign tends to indicate a microstructure

representative of both the hot and cold rolled 0.10 cm (0.040 °') gauge sheets presented above, Fig.

53. At lower magnifications, the presence of coarsened silicidc particles at the grain / sub-grain

boundaries may be observed, (i.e., typical of the hot rolled variant). Moreover, bands of silicide

panicles were also apparent in this material (indicated by the arrows in Fig. 53) which might reflect

the effect of the intermittent annealing treatments applied to this material during rolling. Decorated

grain / sub-grain and particle boundaries, typical of cold rolled sheet, are also apparent in this

sheet variant, Fig. 54.
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Energy_ Dispersive X-ray Spectroscopy of the A1-Solid Solution Matrix

Energy dispersive X-ray spectroscopy (EDX) was performed to assess the effect of TMP

on the solute content present in the Al-solid solution matrix of hot and cold rolled plate and sheet

samples. Data was acquired on a JEOL 2010 TEM equipped with a Noran 5500 analyzer and an

ultrathin window EDX detector. The spot size used was approximately 30 nm and data was

acquired at a count rate was around 1000 counts per second for a total of 150 seconds. Spectra

were measured for five different locations in the samples; in all cases being as near the edge of the

TEM foil as possible. Computed k-factors (supplied by the manufacturer) were used in the

analysis (i.e., internal standards were employed) and standard pure element spectra were used for

the curve fitting of the experimental spectra.

The results of EDX performed on extrusion 92A022, hot rolled 0.64 cm (0.25") plate and

cold rolled 0.10 cm (0.040") gauge sheet, which experienced intermittent annealing treatments, are

presented in Table 13. In all cases, the count rates for Si, V and Fe in the Al-solid solution matrix

were very low. Error values noted in the table represent only one standard deviation. In

comparison to V and Fe levels measured in the Al-solid solution matrix of extruded and hot rolled

0.64 cm (0.25") plate, the cold rolled / annealed 0.10 cm (0.040") gauge sheet does not indicate

any reduction in solute content. Si levels of about 0.4 wt. % are also noted for this variant which

was found to be completely absent from the spectra for the extrusion and plate samples. These

data support the results of mechanical testing, and specifically, the fact that cold rolling with

intermittent annealing treatments does not result in any sizable increase in intermediate temperature

plasticity due to a lessened dynamic strain aging response resulting from lower, solute present in

the Al-solid solution matrix. These data also support the aforementioned hypothesis that the true

"equilibrium" level of solute Si, V or Fe in rapidly solidified HTA 8009 is in actuality, multiple

orders of magnitude greater than the equilibrium solute levels reported in the literature for these

elements in A1.

Summary

Two (2) potential areas of concern identified by aircraft and engine designers when

contemplating the use of rapidly solidified, high temperature aluminum (HTA) alloy 8009 were

examined in the present study, namely

i) mechanical anisotropy as a function of product form; and,

ii) reduced plasticity in the 450-550K temperature range.
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To further examine these unique characteristics for HTA 8009, modifications to practice

and processing parameters were performed to:

(i) improve the metallurgical bonding between prior powder particles by reducing t h e

oxide layer thickness at the particle interface; and,

(ii) improve intermediate temperature embrinlement in plate and sheet products b y

employing thermomechanical processing (TMP) treatments to reduce the concentration of solute

Fe, V and Si in the Al-solid solution matrix.

During the first half of this program (Jan. - July 1992), the oxide layer thickness on planar

flow cast HTA 8009 ribbon was successfully reduced by casting under a dry inert gas shroud.

Moreover, extrusions, plate and sheet samples were fabricated during this period following

modified rolling practices that were specifically designed to alter the solute concentration in the

Al-solid solution. The processes employed and detailed results of this effort are summarized in the

1992 mid-year report to the University of Virginia and NASA.

This report details the results of tensile and microstructural testing performed on the

extruded and rolled HTA 8009 plate and sheet samples. The major conclusions that may be drawn

from this effort are summarized below:

(i)

(ii)

(iii)

Employing casting modifications to reduce the oxide/hydrate layer thickness on

HTA 8009 planar flow cast ribbon, while successful, had little, if any, effect on the

tensile properties of extrusions, plate or sheet samples fabricated from these two (2)

casting variants.

Tensile strength, irrespective of strain rate, increases by approximately 14-21 MPa

(2-3 ksi) for specimens machined from the mid-planes of the extrusion in

comparison to specimens machined from the outer perimeter. This behavior may be

attributed to the fact that the outer surface of the preform tends to be much hotter

than the bulk due to frictional heating during extrusion. Higher surface temperature

promotes a slightly coarser microstructure, and therefore, lower strength. This

tendency is present for specimens machined from the nose as well as the tail of the

extrusions.

Tensile ductility decreases in the mid-plane of the extrusion and overall is less for

specimens oriented transverse to the extrusion direction irrespective of position in

the extrusion. Ductility in these extrusions is largely dependent on the interparticle

bonding of the HTA powder particles and variations in ductility reflect the extent of
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(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

shear the particles experience during extrusion (i.e., particles located near the

surface of the preform, extruded through a shear-faced die, exhibit greater amounts

of shear than particles located at mid-plane in the preform).

Increasing the strain rate ten-fold from 0.5%/min to 5.0%/min on average increases

the tensile strength by approximately 14-21 MPa (2-3 ksi) for tests conducted on

extrusions at 298K (77"F) and 505K (450"F).

Rolling direction has a greater impact on improving mechanical isotropy in HTA

8009 plate and sheet than does the total reduction in gauge achieved during rolling.

This response may be attributed to the fact that cross-rolling more effectively

breaks-up and disperses the oxide / hydrate layer present at the prior particle

boundaries than straight-rolling alone.

The reduction in the oxide / hydrate layer thickness for plate and sheet rolled from

extrusion 92A024, comprised of planar flow cast ribbon which was shrouded in a

dry inert gas environment during casting, in comparison to plate and sheet rolled

from conventionally processed extrusion 92A022 did not result in any measurable

improvement in transverse tensile ductility.

Tensile properties for hot rolled 0.64 cm (0.25") gauge plate and hot rolled 0.22 cm

(0.090") gauge sheet are fairly comparable over all of the temperatures tested.

Tensile ductility for these materials is observed to exhibit a drop in ductility at

intermediate test temperatures.

TMP clearly had an effect on the tensile properties of 0.10 cm (0.040") gauge HTA

8009 sheet; however, TMP did not substantially improve the intermediate

temperature plasticity (e.g., ductility) as originally hoped and intended.

Hot cross- and straight- rolled 0.10 cm (0.040") gauge sheet exhibits the highest

tensile strengths over the range of test temperatures for any of the plate and sheet

rolled in the program. Overall, this material also exhibits the lowest levels of

ductility for all TMP variants over the range of test temperatures. At in termediate

temperatures, ductility values ranging from 3-5% were not uncommon.

Cold rolled 0.10 cm (0.040") gauge HTA 8009 sheet exhibits a sizable increase in

tensile ductility in comparison to the hot rolled sheet, with only a small decrease in

tensile strength. Tensile ductility for this material is also observed to exhibit a drop

in ductility at intermediate test temperatures.

Tensile data for 0.10 cm (0.040") cold rolled sheet which received intermittent

annealing treatments indicate a response fairly comparable to the sheet samples
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(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

which received cold-rolling only. Tensile strengths for this material were generally

lower than measured for the cold rolled sheet over the test temperatures. Values of

tensile ductility and its variation with test temperature was very nearly equivalent to

levels measured for sheet samples which received only cold rolling.

Cold rolling, with and without intermittent annealing treatments did result in an

overall improvement in the measured tensile ductility over the range of test

temperatures in comparison to values measured for hot rolled sheet.

While tensile ductility for all of the HTA 8009 plate and sheet rolled in the present

program displays the characteristic ductility "dip" over the temperature range of

422-505K (300-450"F), measured values of % reduction in cross-sectional area are

found to primarily decrease with increasing test temperature. Irrespective of rolling

temperature or TMP practice, % reduction in area drops from about 40-50% at

298K (77"F) to about 25-30% at 422K (300*F) and higher.

Irrespective of sheet gauge or rolling direction, increasing the strain rate by a factor

of ten (10) typically adds approximately 15-25 MPa (2-3 ksi) to the ultimate tensile

strength as well as typically increases the % plastic elongation by as much as 50%

in some cases. Strain rate sensitivity values for the plate and sheet samples tested in

the present program indicates an "m" value ranging from about 0.015 to 0.030,

irrespective of the rolling practice employed, (e.g., temperature, direction, TMP).

Irrespective of extrusion number or rolling direction, 100 hrs. exposure at 644K

(700*F) was found to have no effect on the tensile properties of hot rolled 0.64 cm

(0.25") or 0.25 em (0.090") gauge plate and sheet. In fact, a slight increase in

tensile strength is observed after exposure for these samples.

Hot rolled 0.10 cm (0.040") gauge sheet after 100 hrs. / 644K (700*F) exposure

also indicates no apparent degradation in tensile strength; however, a slight decrease

(10-30%) in total plastic elongation was noted for many of the samples.

Cold rolled 0.10 cm (0.040") gauge sheet, which did not receive intermittent

annealing treatments, indicated the largest response to 100 hrs. / 644K (700*F)

exposure. Measured values of tensile yield and ultimate strength are observed to

increase by as much as 70 MPa (approximately 10 ksi) after exposure. More

significant, however, is the very sizable decrease in total plastic elongation

measured for this material after exposure.

The response of exposed, cold rolled 0.10 cm (0.040") gauge sheet, which did

receive intermittent annealing treatments, is fairly similar to the aforementioned cold
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(xix)

(xx)

(xxi)

(xxii)

(xxiii)

rolled variant. Tensile strengthafter I00 hrs. / 644K (700*F) exposure was

observed to increase by as much as approximately 90 MPa (13 ksi); however, the

decrease in ductility for sheet rolled from extrusion 92A022 does not appear to be

as severely affected after exposure.

the microstructure of the as-extruded rolling preform 92A022 is comprised of very

fine, 50-80 nm A113(Fe,V)3Si dispersoids present in an Al-solid solution matrix.

Grain (or sub-grain) size for this material is approximately 0.51am.

Extrusion 92A024 exhibits a fairly comparable microstructure to that of extrusion

92A022; however, large regions of carbon (i.e., graphite) contamination were

observed to be scattered throughout the material. The source of carbon

contamination may be directly attributed to the graphite device added to the casting

machine to shroud the melt puddle and ribbon surface with a dry, protective

atmosphere during casting. Carbon flakes were also observed to be present in plate

and sheet samples rolled from extrusion 92A024 and it is suggested that their

presence may be a source for anomalously low tensile ductilities and % reduction in

cross-sectional area measured for this material.

TEM performed on hot rolled 0.64 cm (0.25") gauge 92A022 plate and 0.22 cm

(0.090") gauge sheet indicates a microstructure very comparable to that of the

parent extrusion. Silicide particles in the hot rolled 0.22 cm (0.090") gauge sheet

that are associated with grain / sub-grain boundaries are slightly coarser than

particles present within the grains.

Lower tensile ductilities measured for 0.10 cm (0.040") gauge hot rolled sheet may

be attributed to a greater tendency to find coarser silicide particles present at grain /

sub-grain boundaries as well as dislocation tangles associated with these

boundaries. Coarsened silicide particles at boundaries were not observed for cold

rolled 0.10 cm (0.040") gauge sheet.

Weak beam, dark field electron microscopy performed on cold rolled 0.10 cm

(0.040") gauge sheet clearly indicates dislocations associated with grain / sub-grain

and particle boundaries. Moreover, dislocation tangles are notably absent from

within the grains which is fairly typical for this material. A possible reason for the

lack of tangles may simply be due to the fact that this material does not exhibit a

large volume fraction of silicide particles present within the grains; hence, their are

fewer obstaclestoimpededislocation motion through the grains during cold

deformation.
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(xxiv)

(XXV)

(xxvi)

TEM performed on cold rolled 0.10 cm (0.040") gauge sheet which experienced

intermittent annealing treatments during the rolling campaign tends to indicate the

presence of coarsen silicide particles at the grain / sub-grain boundaries.

Energy dispersive X-ray spectroscopy (EDX), performed to assess the effect of

TMP on the solute content present in the Al-solid solution matrix of hot and cold

rolled plate and sheet samples, indicate that V and Fe levels measured in the

Al-solid solution of cold rolled / annealed 0.10 cm (0.040") gauge sheet are

comparable to levels measured in the matrix of extruded and hot rolled 0.64 cm

(0.25") plate. And,

EDX data support the hypothesis that the true "equilibrium" level of solute Si, V or

Fe in rapidly solidified HTA 8009 is in actuality, multiple orders of magnitude

greater than the equilibrium solute levels reported in the literature for these elements

in A1.
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EXTRUSION: 91A022

Nos. Spec.ID Oriem.

1 T1 L

2 T2 L

3 T3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

l0 B1 T

11 B2 T

12 ]]3 T

13 134 T

EXTRUSION: 92A022

Nos. Spec. ID Orient.

1 T1 L

2 'I2 L

3 T3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 B2 T

12 133 T

13 B4 T

Table la

NOSE Temperature - 298K

.2% Y.S. U.T.S.
0.5% rain 0-5%/rain

(Ml'a) (Ml'a)

340.4 396.9

343.8 396.2

345.9 396.2

U.T.S.
5%train
(MPa)

% Elong.

415.5 16.2

413.5 17.8

414.8 18.9

345.9 392.7 409-3 15.0

343.8 402.4 421.0 ' 10.7

347.9 401.7 418.9 8.7

342.4 401.0 420.3 10.0

350.7 414.8 433.4 7.8

347.5 408.6 428.6 8.5

343.1 410.6 427.2 8.3

348.6 408.6 426.5 8.4

346.6 408.6 427.9 9.8

345.2 408.6 427.9 7.4

TAIL Temperature - 298K

.2% Y.S. U.T.S. U.T.S.
0-5% mi.n 0-5%/rain 5%/rain

(MPa) (MPa) (MPa)

% Elong.

306.6 354.1 372.5 15.1

323.8 3762 395.5 15.4

322.4 375.5 395.5 16.6

325.2 376.9 395-5 16.3

332.8 383.8 402.4 18.1

341.7 391.4 410.6 17.3

359.0 392.6 418.2 17.2

350.0 401.0 425.1 9.0

351.4 406-5 427.2 9.6

355.5 397.6 417-5 8.0

418.2 8.2359.0 397.6

336.9 396.9 418.2 8.4

338.3 3982 419.6 9.7
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EXTRUSION: 91A022

Nes. Spec. 113 Orient.

1 1"1 L

2 T2 L

3 T3 L

4 "1"4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 112 T

12 B3 T

13 i]4 T

EXTRUSION: 92A022

Nos. Spec. ID Orient.

1 T1 L

2 "1"2 L

3 T3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 132 T

12 133 T

13 B4 T

Table lb

NOSE Temueramre - 77_

.2% Y.S. U.T.S. U.T.S.

O.5%mm 0.5%/n_ 5%/rain
(ks/) (_) (ks0

% FJong.

49.4 57.6 60.3 16.2

49.9 57.5 60.0 17.8

50.2 57.5 60.2 18.9

50.2 57.0 59.4 15.0

49.9 58.4 61.1 1().7

50.5 58.3 60.8 8.7

49.7 58.2 61.0 10.0

50.9 60.2 62.9 7.8

50.4 59.3 622 8.5

49.8 59.6 62.0 8.3

50.6 59.3 61.9 8.4

50.3 59.3 62.4 9.8

59.3 62.1 7.4

Temperature - 77"F

50.1

TAIL

.2% Y.S. U.T.S. U.T.S.

o.5% nxin 0.5%/n_n 5%/rain
(_) (_) (_)

% _ong.

44.5 51.4 54.1 15.1

47.0 54.6 57.4 15.4

46.8 54.5 57.4 16.6

47.2 54.7 57.4 16.3
J

48.3 55.7 58.4 18.1

49.6 56.8 59.6 17.3

52.1 57.7 60.7 17.2

50.8 58.2 61.7 9.0

51.0 59.0 62.0 9.6

48.7 57.7 60.6 8.0

49.2 57.7 60.7 8.2

48.9 57.6 60.7 8.4

49.1 57.8 60.9 9.7
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EXTRUSION: 91A022

Nos. Spee. ID Orient.

1 T5 L

2 T6 L

3 T7 L

4 "1"8 L

5 M4 L

6 M5 L

7 M6 L

8 M3 T

9 M4 T

10 B5 T

11 B6 T

12 B7 T

13 138 T

EXTRUSION: 92A022

Nos. Spew. ID Oriem.

1 T5 L

2 T6 L

3 T7 L

4 T8 L

5 M4 L

6 M5 L

7 M6 L

8 M3 T

9 M4 T

10 135 T

11 116 T

12 1t7 T

13 B8 T

Table la (cont.)

NOSE Temueramre - 505K

.2% Y.S. U.T.S. U.T.S.
0.5 %lmin 0.5%/rain 5%/rain

(MVa) (MPa) (M]'a)

% Elong.

249.4 262.5 283.9 13.5

252.2 266.6 285.2 12.1

256.3 270.1 291.4 10.3

253.6 270.1 292.1 10.4

251.5 268.7 290.8 13.6

257.7 279.0 300.4 7.4

257.0 274.2 295.0 7.2

250.8 270.8 2_.1 33

251.5 270.8 2_.1 4.0

254.2 273.5 296.3 4.8

250.1 271.5 293.5 6.1

250.8 270.8 293.5 5.2

250.8 274.2 296.3 5.8

TAIL Temperature - 505K

.2% Y.S. U.T.S. U.T.S. % Elong.
0.5 %/rain 0.5%/rain 5%/rain

(MPa) (MPa) (MPa)

233.0 246.0 266.6 11.3

236.3 248.7 268.7 14.0

232.2 245.3 266.0 14.6

237.0 250.8 271.5 16.1

_1.8 2/2.2 _3.5 9.0

255.6 2653 283.9 10.8

268.7 _9.4 14.0256.13

26O.4 28O.4

NM NM

302..5 63

NM NM

234.9 259.1 _1.8 8.0

_2.5 262.5 284.6 6.9

237.7 259.1 279.7 7.1

_1_ _L1 283_ 93
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EXTRUSION: 91A022

Nos. Spec. ID Orient.

1 T5 L

2 T6 L

3 1"7 L

4 T8 L

5 M4 L

6 M5 L

7 M6 L

8 M3 T

9 M4 T

10 B5 T

11 B6 T

12 B7 T
.,

13 B8 T

EXTRUSION: 92A022

Nos. Spec,ID Orient.

1 T5 L

2 T6 L

3 T7 L

4 1"8 L

5 M4 L

6 M_5 L

7 M6 L

8 M3 T

9 M4 T

10 135 T

11 B6 T

12 137 T

13 B8 T

NM - Not Measmed

Table lb (cont.)

NOSE Temperature - 45ff'F

.2% ws. U.T.S. U.T.S.
o.5 %/rain o.5%/mm 5%/min

(ksi) (ksi) (ksi)

% Elong.

362 38.1 41.2 13.5

36.6 38.7 41.4 12.1

37.2 39.2 42.3 10.3

36.8 39.2 42.4 10.4

36.5 39.0 42.2 13.6

37.4 40.5 43.6 7.4

37.3 39.8 42.9 72

36.4 39.3 42.4 3.3

36.5 39.3 42.4 4.0

36.9 39.7 43.0 4.8

36.3 39.4 42.6 6.1

36.4 39.3 42.6 52

36.4 39.8 43.0

TAIL Temperature - 450_

5.8

.2% Y.S. U.T.S. U.T.S.

0.5 %/_n o_%/_ 5%/ram
(ksi) (ksi) (ksi)

% Elong.

33.9 35.7 38.7 11.3

34.3 36.1 39.0 14.0

33.7 35.6 38.6 14.6

34.4 36.4 39.4 16.1

38.0 39.5 42.6 9.0

37.1 38_5 41.2 10.8

37.2 39.0 42.0 14.0

37.8 40.7 43.9 6.3

NM NM NM NM

34.1 37.6 40.9 8.0

35.2 38.1 41.3 6.9

34.5 37.6 40.6 7.1

35.1 37.9 41.1 9.3
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Table la (cont.)

EXTRUSION: 92A024 NOSE Temperature - 298K

Nes. Spec. ID Oriem.

1 T1 L

2 T2 L

3 T3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 MI T

9 M2 T

10 B1 T

11 B2 T

12 133 T

13 84 T

EXTRUSION: 92A024 TAIL

.2% Y.S. U.T.S. U.T.S. % Elongr
0.5%/nfin 0.5%/rain 5%/rain

(Ml'a) (Ml'a) (MPa)

336.9 385.8 403.8 13.7

334.2 383.1 403.1 13.8

331.4 382.4 402.4 14.3

328.7 378.3 398.2 14.3

335.5 388.6 407.9 1/t.7

334.2 386.5 406.5 15.0

331.4 381.0 401.0 14.4

354.8 408.6 428.6 8.7

352.1 405.8 427.2 7.1

361.7 413.4 435.4 10.8

367.2 416.2 434.8 14.5

357.6 413.4 434.8 13.3

362.4 413.4 434.8

Temoerature - 298K

12.2

Nos. Spec. 11) Orient

1 T1 L

2 T2 L

3 I3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 132 T

12 ]33 T

13 B4 T

.2% Y.S. U.T.S. U.T.S.

5%/rain 5%/rain 5%/rain
(MPa) (MPa) (MPa)

% Elong.

334.9 383.8 403.1 1Z8

332.1 382.1 403.8 21.2

339.0 383.8 402.4 18.6

33ZI 380_3 399.6 20.7

334.9 381.7 401.0 19.5

339.7 392.7 411.3 16.8

355.5 394.8 414.8 14.8

350.0 4063 427.9 9.0

352.8 410.0 427.9 6.7

332.8 395.5 414.1 8.2

337.6 3962 418.2 7.6

332.8 392.7 414.1 8.0

356.9 395.5 413.4 7.0
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Table lb (cont.)

EXTRUSION: 92A0"24 NOSE Temperature- 77"F

Nos. Spec.ID Orient. .2% Y.S.

1 T1 L

2 T2 L

3 "r3 L

4 T4 L

5 M1 L

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 B2 T

12 133 T

13 I]4 T

EXTRUSION: 92A024 TAIL

U.T.S. U.T.5. % Elong.
0.5%/mia 0.5%/rain 5%/ram

(hi) (hi) (hi)

48.9 56.0 58.6 13.7

48.5 55.6 58.5 13.8

48.1 55.5 58.4 143

47.7 54.9 57.8 14.3

48.7 56.4 59.2 14_7

48.5 56.1 59.0 15.0

48.1 55.3 58.2 14.4

51.5 59-3 622 8.7

51.1 58.9 62.0 7.1

52.5 6O.0 63.2 10.8

53.3 60.4 63.1 14.5

51.9 60.0 63.1 13.3

52.6 60.0 63.1

Temperature - 77_

122

Nos. Spec. ID Orient. .2% Y.S. U.T.S.

1 T1 L

2 T2 L

3 T3 L

4 T4 L

5 M1 L
i

6 M2 L

7 M3 L

8 M1 T

9 M2 T

10 B1 T

11 B2 T

12 IE T

13 B4 T

U.T.S. % Elon_

5%/rain 5%train 5%/ram
(hi) (hi) (_)

48.6 55.7 58.5 12.8

482 55.6 5&6 21.2

49.2 55.7 58.4 18.6

482 55.2 5&0 20.7

48.6 55.4 582 19.5

49.3 57.0 59.7 16.8

51.6 573 602 14.8

50.8 59.0 62.1 9.0

5L2 59.5 62.1 6.7

483 57.4 60.1 8.2

49.0 57.5 60.7 7.6

48.3 57.0 60.1 8.0
i

48.9 57.4 60.0 7.0
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Table la (cont.)

EXTRUSION: 92A024 NOSE Temperature - 505K

Nos. Spec. IX) Orient. .2% Y.S. U.T.& U.T.S.
0.5 %/rain 0-5%/rain 5%/rain

(MPa) (Ml'a) (M/a)

% Elong.

1 T5 L 234.9 246.7 267.3 10.1

2 T6 L 233.6 245.3 266.6 14.2

3 T7 L 232.9 246.7 267.3 15.2

4 "1"8 L 234.3 249,4 270.8 13.9

5 M4 L 230.1 263,2 263.2 10.4

6 M5 L 236.3 250.1 267.3 7.7

7 M6 L 237.7 272.8 272.8 10.1

8 M3 T 249.4 266.6 288.0 4.0

9 M4 T 248.7 266.6 288.0 3.7

10 B5 T 252.9 267.3 289.4 9.1

11 I36 T 252.9 268.0 288.7 9.1

12 B7 T 253.6 268.0 290.2 6.0

13 B8 T 272.8 273.5 296.3 7.0

EXTRUSION: 92A024 TAIL Tem tmramre - 505K

Nos. Spec. ID Orient. .2% Y.S. U.T.S. U.T.S. % Elong.
o.5%/min 0.5%/ram 5%/rain

(M/a) (M/a) (M/a)

1 T5 L 237.0 252.2 272.8 14.5

2 T6 L 235.6 251.5 272.8 13.2

3 T7 L 237.7 250.8 271.5 14.2

4 "1"8 L 238.4 250.8 271.5 I3.3

5 M4 L 261.1 271.5 293.5 10.4

6 M5 L 247.4 259.8 279.0 11.3

7 M6 L 239.8 252.9 272.8 14.2

8 M3 T 250.1 274.2 294.9 5.1

9 M4 T 254.2 275.6 2983 6.5

10 B5 T 2493 294.2 294.2 5.9

11 136 T 245.3 267.3 286.6 8.1

12 B7 T 248.7 291.4 291.4 7.0

13 137 T 246.7 266.0 289.4 9.0
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Table lb (cont.)

E'XTRUSION: 92A024 NOSE Tenmeramr¢ -45ff'F

N_¢,. Spee. ID Oriem. .2% Y.S. U.T.5. U.T.S.

o.s _/ma 0.5_/ma 5_/min
_ksi) (k_) (ksi)

% _o_.

1 "1"5 L 34.1 35.8 3&8 10.1

2 T6 L 33.9 35.6 38.7 14.2

3 T7 L 33.8 35.8 38.8 15.2

4 "1"8 L 34.0 36.2 39.3 . 13.9

5 M4 L 33.4 38.2 38.2 10.4

6 M5 L 34.3 36.3 38.8 7.7

7 M6 L 34.5 39.6 39.6 10.1

8 M3 T 36.2 38.7 41.8 4.0

9 M4 T 36.1 38.7 41.8 3.7

10 135 T 36.7 38.8 42.0 9.1

11 136 T 36.7 38.9 41.9 9.1

12 IF/ T 36.8 38.9 42.1 6.0

13 B8" T 39.6 39.7

EXTRUSION: 92A024 TAIL Tem_ramre - 450"I:

43.0 7.0

Nos. Spe.c. ID Orient. .2% Y.S. U.T.S. U.T.S. % Elong.
o.5%/min 0.5_tmin 5%tmi,,

1 T5 L 34.4 36.6 39.6 14.5

2 T6

3 "17

4 "1"8 L

5 M4 L

6 M5 L

7 M6 L

8 M3 T

9 M4 T

10 135 T

11 136 T

12 117 T

12 B7 T

L 34.2 36.5 39.6 13.2

L 34.5 36.4 39.4 14.2

34.6 36.4 39.4 13.3

37.9 39.4 42.6 10.4

35.9 37.7 40..5 11.3

34.8 36.7 39.6 14.2

36.3 39.8 42.8 5.1

36.9 40.0 43.3 6.5

36.2 42.7 42.7 5.9

35.6 38.8 41.6 &l

36.1 42.3 42.3 7.0

35.8 38.6 42.0 9.0
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Table 2

MATERIAL SUPPUED TO THE UVA FOR TESTING

Casting Modification A

ID

92A022-1C

92A022-1A

92A022-2A

92.A022-ZA

92A022-2B

92A022-2B

92A022-2C1

92A022-2C1

92A022-1B1

92A022-2C2 0.10x 10.20

Di cnsiom (cm) Comment_

92A022-1B2 0.10 x 34.30 x 207.00

|

92A022-2C3 0.10 x 17.10 x 124.50

92A022-2C3 0.10 x 15.90
i i i

92A022-1B3 x 204.50

0.63 x 36.80 x 88.90 Hot, Cross Rolled

0.63 x 22.90 x 139.70 Hot, Straight Rolled

0.26 x 35.60 x 114.30 Hot, Cross Rolled

0.25 x 35.60 x 162.60 Hot, Cross Rolled
i

0.26 x 22.90 x 167.60 Hot, Straight Rolled

0.26 x 21.60 x 241.30 Hot, Straight Rolled

0.07 x 21.60 x 198.10 Hot, Straight Rolled

0.07 x 21.60 x 22350 Hot, Straight RoLled

0.10 x 35.60 x 203.20 Hot, Cross Rolled

x 245.10 Cold, Straight Rolled

Cold Cross Rolled

i i

0.10 x 35.60

x 12450
i

Cold/Anneal, Straight Roll
i

Cold/Anneal, Straight Roll

Cold/Anneal, Cross Roll

128



Table 3

MATERIAL SUPPLIED TO THE UVA FOR TESTING

ID

Castin_ Modification B

Dimensions (era) Comments

9ZA024-1C 0.64 x 2920 x 78.70 Hot, Cross Rolled

9ZA024-1A 0.64 x 23.50 x 83.80 Hot, Straight Rolled

92A024-1B 027 x 23.50 x 108.00 Hot, Straight Rolled

92A024-1B 0.27 x 23.50 x 185.40 Hot, Straight Rolled

9ZA024-1D 0.22 x 27.90 x 121_30 Hot, Cross Rolled

9ZA024-1D 0.22 x 27.90 x 182.90 Hot, Cross Rolled

92A024-2A1 0.08 x 24.10 x 125.70 Hot, Straight Roiled

92A024-2A1 0.08 x 25.40 x 73.70 Hot, Straight Rolled

92A024-2B1 0.10 x 29.80 x 175.30 Hot, Cross Rolled

92A024-2A2 0.10 x 10.10 x 160.00 Cold, Straight Rolled

92A024-2A2 0.09 x 10.80 x 80.00 Cold, Straight Rolled

92A024-2B2 0.10 x 26.70 x 171.50 Cold, Cross Roiled

92A024-2A3 0.09 x I520 x 63.90 Cold/Anneal, Straight Rolled
i

92A024-2B3 0.10 x 27.30 x 40.60 Cold/Anneal, Cross Rolled

0.11 x 27.30 x 177.8092A024-2B3 Cold/Anneal, Cross Rolled
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Table 4a

........................ • ........... _ "_----_-:::__ _3-.................. __._;.-.--

!_ 92A0_1C HOTCROSSROLLED _ ....._
381.0i

589

413.91 427.5 18.4 48.40.64 cm 298 L
298 T 376.9 i 407.5 t 426.1 19.6 "*

i 422 L 295.6 i 342.81 359.0 8.6 32.8
422 T 271.1 ! 335.21 352.1 7.8 **
505 1 L 246.7 ', 266.2 ! 293.6 16.2 27.6
505 T 241.1 ! 280.4 ! 292.9 11.6 **
589 L 155.21 171.41 197.9 25.8 25.1

T 129.8 _ 167.8 i 193.8 25.2 **
403.8! 447.9298E* L

I

296E" _
14.0I427.9:

T 380.3 412.0 I 432.0 14.1
92A022,1A HOT STRAIGHT ROLLED .... ......

0.64 cm 298 L 421.0 431.7 445.8 13.0 **
298 T 396.2 421.0 433.0 11.6 **
422
422

L
T

347.9
319.0

350.7
347.9

362.1
361.7

7.8
6.5 *e

505 L 163.2 292.0 305.4 14.3 **
505 T 241.2 267.0 294.8 10.7 **
589 L } 162.6 174.4 201.9 28.7 **
589 T I 155.4 190.0 203.5 18.3 **

298E* L 411.3 449.9, 460.9 11.5 **
2_)8E* T 401.01 429.9! . 441.0 9.7 **

92A022-2A HOT CROSSROLLED ....
0.25 cm 298! L 378.3 1 431.3 ', 448.5 ! 9.7 38.0

: 298 T 372.1 i 408.21 427.5 13.5 **
422 L 289.7 i 346.9i 366.5 6.9 31.3

422 T 291.4i 338.6! 357.9 8.3 **
505 L 208.8 i 274.41 302.9 13.2 34.3

i 505 T 130.1 i 255.01 264.1 14.6 **

; 589 L 157.6 1 172.3 i 201.2 25.8 26.7
i 589 T 156.51 175.1 I 203.9 21.3 **
', 298E* L 396.9 ! 436.1 I 457.5 11.3 53.5
i 298E* T 392.7 _ 443.0 !. 453.4 7.6 **

.-92A022,2B HOT_GHTROLLED _ ....:_i_: _ _::_ !.::_!i!!!:!:!i:-i_!_: __::: ii:::_
0.25 cm " 298 L I 34.4 i 438.71 457.3 10.1 **

298 T { 81.9 1 425.3 1 435.2! 9.6 **
,- i

: 422 L 325.6 i 347.91 364.5 6.4 **
422 T 330.0 i 346.9t 363.8 5.3 **

i 505 L 243.9 i 256.7 285.5 16;7 *°
'm't' 505 T

L

298E*

206.4 i
162.1 i

2.75.41 289.5

382.4 i

9.6
589 202.0 26.3 **

i 589 T 157.5 i 203.5 16.0 **
! 298E* L 394.1 I 434.81 450.6 9.3 **

T 7,7 **

173.9 t

174.5 i

428.6 t 449.2
Samples tested at 298K after 644K for 100 hrs. exposure
Not Measured
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Table 4b

;92A,02.2.-1C HOTCROSSROLLED " : : :: .... :::_:: : ........
0.25 Gauge! 77 L I 55.3 60.1 62.1 18.4 48.4 I

T 54.71 59.2 61.9 19.6 ** i
300 L 42.9 i 49.8' 32.81

T E 39.4_ 48.7

450 L ! 35.8; 38.6
T ! 40.7I 35.0

600 L 22.5i 24.9
i T ! 18.8 ', 24.4

77E* i L ] 58.61 62.1
77E* T b 55.2 59.8

52.1 8.6
51.1 7.8
42.6 16.2
42.5 11.6
28.7 25.8
28.1 25.2
65.0 14.0
62.7 14.1

27.6

25.1
tt

48.1

92.A022-1A HOT STRAIGHT ROLLED
0.25" Gauge L

I
61.1:

77E*

62.7
61.177 T 57.5 ': 62.9 11.6

L i 50.5: 50.9 52.6 7.8 **

300 T I 46.3i 50.5 52.5 6.5 **
L ,' 23.71 42.4 44.3 14.3 **

450 T i 35.0 : 38.8 42.8 10.7 **

T

L 23.6
: 600 T J 22.61 27.6

77E* L i 59.7 _ 65.3

25.3 29.3

92.A022-2A HOT CROSS ROLLED:
58.2 62.4 64.0

64.7 13.0 **

28.7
29.5 18.3 **
66.9 **

et

11.5
97i

0.10" Gauge,
i

77
77

L i
T _

!

54.9!

54.0

62.6
59.3

65.1
62.1

9.7
13.5

38.0
i

300 L I 42.1t 50.4 53.2 6.9 31.3
300 T i 42.3' 49.2 52.0 8.3 **

Lr 450 L I 30.3 i 39.8 44.0 13.2 34.3
i 450 T I 18.91 37.0 41.2 14.6 **

22.91
22.71

i 600
T

25.0
25.4
63.3
64.3T i

t 600
29.2 25.8 26.7

57.6i
29.6 21.3 **
66.4 11.3 53.5

7.657.0_ 65.8
_92AO22-2B HOT S_IGPITROLLED : :. :; ::.::ii::::: ; :::: :!ii!:.::: :
0.10" Gauge i

I

77 59.7 63.7 66.4 10.1
77 58.61 61.7 63.2 9.6 **

tl't

T I
L i300 47.3 50.5

i 300 T i 47.91 50.4
i 450 L I 35.41 37.3

450 T i 30.01 40.0
i 600 L I 23.5! 25.2
i 600 T I 22.9i 25.3

i

i 77E* L i 57.2 ! 63.1
I 77E* T I 55.51 62.2

* Samples tested at 77"F after 700"F for 100 hrs. exposure
** Not Measured

52.9 6.4
52.8 5.3 **
41.4 16.7 **
42.0 9.6 **
29.3 26.3 **
29.5 16.0 **
65.4 9.3 **
65.2 7.7
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Table 5a

92A022-1B1 HOTCROSS:ROLLED - ::. " :!:.;:. :/:_:::_::_:!.
0.10 cm 298 L ! 418.9 436.1 448.2 10.2 44.3

298 397.2 434.8 459.2 7.0 **T [
L i422 272.8 359.3 377.6 2.1 37.6

422 T ! 306.9 361.7 379.6 2.7 **
505 L ! 258.2 267.2 295.4 10.8 30.4
505 259.9 271.1 301.9 9.4 **
589
589

r
L

i

T
128.9
129.5

156.3
159.2

128.4

182.5
185.3

23.9

169.1!

13.1
27.3

201.0 16.8

298E* L i 370.0 441.6 453.4 5.7 51.3

291_E* T " 401.0i 438.9 i 461.6 5.6 *"
92A022-2C1 HOT STRAIGHT ROLLED

0.10 cm : 298 L ', 395.1 i 438.9 I 460.3 7.3 t **

• 298 T _ 384.1 ! 448.5 t 481.6 6.6 I ""
4221 L i 311.1 : 354.1 ! 369.6 2.7 **
422 t T i 313.8, 369.6 i 390.0 2.2 **
5051 L ! 143.0! 257.1 i 284.3 12.0 **

' 505 I T i 230.71 250.8! 278.6 12.2 **
: 79.2! 189.2 ! 205.6 20.6 **

; i tt

! 449.9 i

5891 L
589i T i

298E* I L I
I T !

0.10 cm i 435.4

360.3 460.9 7.9 **
291_E* 430.6 _ 456.1 ! 476.8 4.5 **

92A022-182 COLD CROSS ROLLED
28.8i 381.4_

I 408.2[
: 405.1! 431.3 **
' _ 263.9 E 345.21 370.3 26.5

I

256.3 369.3 10.1 **i

204.81

298 L
298 T
422 L
422 T
505 L
505 T
589 L
589 T

298E* L
298E* T

343.8!
287.3
280.1
189.6

253.8
246.7
189.6

18"9 t
17.1
9.2

15.7
15.2
25.1

186.1 i
111.11

21.2

22.5

126.1! 156.1 192.0 25.4 **
: 414.8 l 449.2 476.8 3.0 27.4
i 421.0i 476.81 491 3 5.7 **

92A022-2C2 COLD S;TRAIGHT ROLLED :_
0.10 cm i 298 L 376.2 1 397.2 423.7 15.5 °*

i 298 T 354.11 396.5 423.7 15.9 **
i 422 L 271.1 ! 338.6 i 365.2 8.3 **

422 T 251.11 341.1 i 365.9 7.3 **I

! 505 L 210.91 248.0 280.8 15.9 **
; 505 T 183.51 251.8 286.3 12.6 *°

L 110.2 1 154.3 188.4 25.9 *°

i

; 298E*

t 298E*

589
589i T 108.0

L 435.4
T 425.1

t 166.9
i 459.6
; 483.7

* Samples tested at 298K after 644K for 100 hrs. exposure
*° Not Measured

183.1 19.9
487.1 6.6 /
497.51 5.1 I
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Table 5b

1::::92A022-;1B1HOTGRGSSROELED: . ;'::: : I.::.:]Z :i_:_!::_1
0.040" Gauge 77

! 77 T
_ 300 L
*, 300 T
', 450
i 450

600
! 600

77E*

T I
L
T

i 77E* L
T

44.61

60.8 i 63.3 65.1 10.2 44.3
57.7 63.1 66.7 7.0 **
39.6! 52.2 54.8 2.1 37.6

tR

37.51
37.7[

j 58.21

52.5 55.1
38.8 42.9
39.4j 43.8
22.7 1

2.7
10.8
9.4

30.4

18.7 P 26.5 23.9 27.3
18.8J 23.1 26.9 13.1 **

53.7r 64.1 65.8 5.7 51.3
*t5.663.7 67.0!

92A022-2C1 HO'F STRAIGHT ROLLED
0.030" Gaug_ 77 L I

77 T

92A022"1B2

77E*
I 77E* T

57.4 '_ 63.7! 66.8 7.31
55.8 65.1 I 69.9 6.6!

300 L 45.2_ 51.4! 53.7 2.71 *°
300 T i 45.61 53.71 56.6 2.21 **

' 450 L F 20.8i 37.3! 41.3 12.0 **
! 450 T } 33.51 36.4! 40.4 12.2 **

600 L 11.5! 27.5! 29.81 20.6 **
i 600 I T 18.61 24.6 29.2 16.8 **
t L 52.31 65.3 66.9 7.9 **1

tt62.51 66.2 69.2 4.5
COLDCROSS ROLLED ii:i < " f: i • - .. :d ! Z̧ F ii 7 " " ;

10.040" Gauge 77
77

L i

77E*

T i
55.4i
5o2j

59.3l
58.81

63.2
62.6

18.9
17.1

28.8
r

; 300 L 38.3t 50.1 I 53.8 9.2 26.5
i 300 T 37.2 t 49.9 53.6 10.1 **
I 450 L 29.7 36.8 41.7 15.7 21.2
I 450 T 27.0 35.8 40.7 15.2 **
! 600 L 16.1 27.5 27.5 25.1 22.5

600 T 18.3 22.7 27.9 25.4 **
77E* L 60.2 65.2 69.2 3.0 27.4

T 1 _1.1, 69.2 5.771._
i 92A022_2C2COLD STRAIGHT ROLLED .... .......:::_ ::.iii::i:-::

_t:0.040" Gauge_ 77 54.61 57.7 61.5

36.5! 49.5
t 450 L 30.6t 36.0
i 450 T

15.5
77 T 51.4 57.6 61.5 15.9 **

300 L 39.4 49.2 53.0 8.3 **
300 T **53.1 7.3

40.8 15.9 **
41.6 12.6 *°26.6t

16.0 i
36.5

600 L 22.4 27.3 25.9 "'
600 T 15.7 24.2 26.6 19.9 **

63.2 66.7I 77E*
! 77E* T

70.7
72.261.71 70.2

6.6
5.1

Samples tested at 77"F after 700"F for 100 hrs. exposure
** Not Measured
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Table 6a

• . i i H. ...................................... i_

_-' _ ....... - ..... _:::" = ----- -_%- " _-..... _,_-.-,_ ii __ _:n- -..... i-_ -_-_-'?

_92A022-1B3 COLD CROSS ROLLED/ANNEALED _ .......... ::: :, : _: _:_ _ : :_,:
0.10 cm 298 t L 362.1 393.8 419.6 15.9 48.1

298 T 346.2 386.5 415.1 15.8 **
284.6 325.2 349.3 7.9 31.8422

422t T 244.6 328.3 352.8 8.0 **
5051 L ' 197.1 226.3 259,1 16.9 26.1
505 I T 201.7 243.2 276.4 14.1 **

589 i L 117.8 171.1 188,6 21.2 26.2
589 1 T 111.3 159.2 193,7 24.4 **

298E* t L 394.8 482.3 501.6 8.2 41.8
298E* J T 422.4 467.8 481.6 4.9 **

92A022-2C3 COLD STRAIGHT ROLLED/ANNEALED
0.10 cm 298 L 374.8 387.9 412.0 17.4 **

298 T 335.5 388.6 415,1 16.6 **
422 L 298.2 340.1 365,3 5.9 **
422 T 280.8 348.0 362.1 6.2 **
505 L 210.8 250.0 281.6 15.3 **
505 T 205.3 249.4 283.9 13.4 **
589 L 107.6 149.7 183,8 25.1 **

589 T _ 109.6 155.8 189,5 23.2 **
298E* L 384.5 459.6 482,3 8.8 **
298E* T 413.4

* Samples tested at 298K after 644K for 100 hrs. exposure
** Not Measured

480.2 493.3 4.8 I
*t

I I

134



Table 6b

- , _ - - - T T, , r

:92AO2:2-tB3COEDCROSS:ROLLEDfANNEALED_ :i: ;_:; ;!:::::::;i:!i :::: ii!ii!!_::i::::!:

0.040" Gauge 77
77

L 52.6
T 50.3

I 57.2
56.1

60.9 15.9 48.1
60.3 **', 15.8

300 L 4131 47.2 50.7 7.9 31.8
300 T 35.5i 47.7 51.2 8.0 **
450 L 28.6 ! 32.9 37.6 16.9 26.1

450 T 29.3! 35.3 40.1 14.1 **
600 L 17.11 24.8 27.4 21.2 26.2
600 T 16.2! 23.1 28.1 24.4 **

70.0 f 72.8i 77E* L
I 77E* ,l T

57.3'
61.3 67.91 69.9

8.2

4.9
41.8

92A022-2C3 COLD STRAIGHT ROLLED/ANNEALED
10.040" Gauge 77i

771
L I 54.4

J
; 56.3 59.8

T 48.7 ' 56.4 60.3

300 L 43.3 49.4 I 53.0
300 T t 40.81 50.51 52.6
450 L
450
600

[ 30.6:
T i 29.8;
L [ 15.6!

600 T
77E* L

T

t 15.9_55.8_
t 60.01

for 100 hrs. exposure

77E*

21.7
22.6
66.7
69.7

Samples tested at 77"F after 700"F
Not Measured

40.9
41.2
26.7
27.5
70.0

17.4 **
16.6 **
5.9 **
6.2 **

15.3 **
13.4 **
25.1 "*
23.2 **

8.8 **

71.6! 4.8, **
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Table 7a

`:_:`:.`:.:`:.::.::.:.:_:':.:`:.:::_::::::_.::;::::::::::::::::::::::::::::::::::::.:_:::.::::.: :.: :.: :, :.:.:.::::k:::.:: ...::.: "::::.::'::.,.._...-'-" .',. -._ ....... _,.--._- ....... _,._,._ .:..:,:.:,:..:..:+:,;+::,: -_ ::, _,;:.. :, ::::,;.;_: .:.;...:,:..::.. :.::.:.:..:. k ::'V :'_" .::" :':':_: _,. ,::,>..-,"

i:_:[:iii:i!i:[:i:!.<.:i:!:i:! _:::::::::i:_;:;_ ::::::::::::::::::::::::::::::::::::::::::::::: ]!:!!!i::_:i_ !;!:::{i:i: :_:i:F.:!:i:_:i:i:i:i:_: :::ii:i: :i:i:i:::i!:i:!:!:i: :_:i:i:i:i:i:i:!: :_:]:!:_:_;i:i:ii:i:i_!:_:_:i:i:i:i:>],:k:_i_i:_:;i_:.:::;;i_ ii ::i] !ii_ _iiiX:i::-.L::i::: ki :::_':: ::i! _iii ::[ii: iki:!:i:i:i:i: ::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

_;_:_i_:ii_;_:_}_;_.:_?i!;!;ii_i_:iii;_i;>:;i;_ij;_i_!;!i_:_:;;!:;;.;;_i_!;1i...:.b`._;ii_;F_.ii_;_ii:i-.-':_::::,_?-_:;_:_::_::::::j_ :_'; :37.,:::::.-8,">:"'-:_"-:_j:,<.'_ "qD::_ ........................... =============================================================

0.84 cm i 298 L
i T
! 4:,2' L
I T
! 505 L

T

589i L
: T

298E* L
: t T

437.2 i 449.6 13.2

344.51
301.6 j

49.5411.3
411.0 423.7 1 443.0 13.8 **
328.9 354.1 i 372.1 7.4 28.7

330.7 3,62.4 6.0 "
13.4 30.4
12.5 *"

280.4 301.6
277.9! 289.9i 303.6

201.3 i 214.7 22.8178.5 t
169.8 i

31.0
184.0 i 210.1 21.7 *"

404.9 ! 437.5 _ 457.5 16.4 49.6
409.7 i 438.2t 458.9 1 1.3

92A024-1A HOT STRAIGHT ROLLED
2981 L0.84 cm i

i T
!, 422 L
t } T
i L
] j T
,' 589t L
i r

505i

t 298E* L
I T

407.9i 437.9! 456.5

434.81
428.8! .,449.0 i 469.2

16.6
396.2 i 434.1 i 453.0 11.0 *"
312.7 i 360.3 I 376.9 6.5 "*
321.91 350.4 i 367.9 7.9 *"

265.9 i 273.8 i 301.6 13.2 **
290.1 t 312.7! 312.7 10.1 **
113.8 i 186.21 196.6 23.6 *;'

162.8 I 183.6 i 210.5 20.9 **
414.2! 454.4 15.1 *"

10.3
92A024-1D

0.23 cm
HOT CROSS ROLLED

298t
I, i
I,

I 422i

505

298E*

L
T

T
L
T

T

T

5891

J 408.6! 429.2 i 456.8 8.9 44.6
421.0 432.7 461.6 9.4 **
335.31 354.8 371.2 7.7 34.3

308.7! 351.4 365.2 8.9 **
207.5 280.4 308.2 13.0 32.2
189.1 271.3 298.7 8.5 **
114.9 188.3 215.5 19.9 36.9
172.5 201.8 215.9 20.9 **
404.2 443.7 465.1 10.3 35.1

450.6 47_._
::i92A024-1B HOT S_IGHT ROLLED:

396.9
: -i::_::i_?L i/_-:: ¸-¸ :<_!:_'_::(/?:!i:(_!;!_i!i!ii%:!_i_iii:i:iii:!ii!i_::!i::?:i:_!il :_!i?

0.23 cm 298 L
T

422 LT
505 L

T
589 L

T
298E* L

T

* Samples tested at 298K after 644K
** Not Measured

414.8
404.8
327.3
322.2
240.5
242.6
169.9

113.2 t
442.31
435.5i

for 100 hrs. exposure

437.5 457.2 10.1 **
442.3 459.2 8.2 **
355.0 369.9 4.9 *°
352.1 367.2 3.3 **
278.0 292.8 16.2
286.3 315.5 9.5
204.8 219.9 22.7 **
209.0 223.9 17.4 **
445.8 468.5 11.5
461.6 473.3 13.1
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Table 7b

:;92A024"1C HOT CROSSROLLED ;::: : .... :':: ::;:_: ::;::;: ;::_-i::;i:! : : :

0.25" Gauge _ 77
77

300
300
450
450
600
600

77E*

L
T
L
T
L
T
L
T

59.7
59.7
47.7
48.0
40.7
40.3
25.9
24.6

63.5
61.5
51.4
50.0
43.8
42.1
29.2
26.7

58.8 63.5

65.3
64.3
54.0
52.6
43.8
44.1
31.2
30.5
66.4

T 59.5 63.6 66.6

13.2
13.8
7.4
6.0

13.4
12.5
22.8
21.7
16.4
11.3

49.5

28.7

30.4

31.0

49.6

92A024-1A HOT STRAIGHT ROLLED
0.25" Gauge _ 77 ', L

i T
3001 L

T
450

600

77E*

T

T

T

59.2 63.6
57.5_ 63.0
45.4
46.7
38.6
42.1
16.5
23.6
60.1
62.2

52.3
50.9
39.7
45.4
27.0
26.7
63.1

66.3
65.8
54.7
53.4
43.8
45.4
28.5
30.6
66.0

65.2 1 68.1

16.6
11.0
6.5
7.9

13.2
10.1
23.6
20.9
15.1
10.3

92A024-1D HOT CROSS ROLLED
_G_ 77 L

' i

i T
) 300i

59.3
( 61.1 _

62.3

30.1 i

62.8
44.6

L t 48.71 51.5 34.3

T ) 44.8i 51.0
L 40.7 32.2450
T 27.4i 39.4

600 L 16.7 i 27.3 36.9
T 25.01 29.3

77E* L 58.7! 64.4 35.1
T 57.6! 6_.4

92.AO24-1B HOT S_IGHT ROLLED
0.09" Gauge j 77

T
300 L

T

60.21 63.5
58.8! 64.2
47.5_ 51.5
46.8_ 51.1
34.9_ 40.4
35.21 41.6
24.7_ 29.7
16.4= 30.3
64.21 64.7

450 L I
r I

600 L !
T i

I

77E* L I

66.3 8.9

! 67.0 9.4 **
! 53.9 7.7
I 53.0 8.9 **

44.7 13.0
43.4 8.5 **
31.3 19.9
31.3 20.9 **
67.5 10.3
_,7 6._ "t'

i 66.4 10.1 **
66.7 8.2 **
53.7 4.9 **
53.3 3.3 **
42.5 16.2 **
45.8 9.5 **
31.9 22.7 **
32.5 17.4 **
68.0 11.5 **
68.7 13.1 **T I 63.2_ 67.0

Samples tested at 77"F after 700" F for 100 hrs. exposure
** Not Measured
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Table 8a

:92.A024_2B_I:IiHOT!GROSSiROLI:ED :" ::!':". ..... i:i:iiiii:: ....:: ..... .:!i:_::::.i ....... :::::::::;!i_. _ _ , ,H,. I

0.076 cm 298 L 360.7 i 442.0 463.4 7.7 45.7

T 381.0 i 442.0 464.4 7.0 **
422 L 334.9 t 370.0 379.6 2.2 26.9

T 323.1 "I 363.8 381.0" 2.7 **
505 L 158.31 268.5 296.2 8.7 27.9

T 247.4 _ 264.5 293.9 9.3 **
589 L 151.1 i 196.3 227.9 22.2 34.4

T 141.9 _ 187.4 218.6 17.0 **
298E* L 386.5 j 427.9 449.2 4.6 28.9

T 387.9 ! 4_.cJ 453.4 5.1 **
92A024,2Al!!HOTST_IG_RO_ED !:! ....... ::i> : : :_.... ::: : . :

0.10 cm 298 L 323.1 i 430.6 451.3 4.1 **
T 376.2_'_ " 439.2 479.5 3.9 **

422 L 312.1 _ 350.0 359.0 8.3 **

T 321.8 _ 362. 4 369.3 11.0 **
505 L 199.3 251.2 266.2 13.7 **

T 217.0 249.3 280.0 6.2 **
589 L 145.7 182.8

T

213.7
215.5

21.4
T 147.9 198.8 26.0

298E* L 458.2 469.9 479.5 3.2 **
*t479.5454.1 408.5 2.8

*t

92A024-2B2 COLD CROSS;ROLLED
0.10 crn 298 L

T
366.5
357..9

422 L 277.7 4.8 31.9

T 281.1 4.6 I **
505 L 240.7 17.3 36.0

T 212.8 17.1 **
589 L 124.6 27.2 24.4

T 143.4 24.9 **
298E* L t 424.4 5.1 29.1

T
I;2A024_2A2::: GOLD:S_tG_::RO_ED

.L0.10 cm 298

434.1

354.8

407.5 434.8
404.8 430.6
344.8 369.2
343.8 369.7
283.0 317.9
261.5 295.4
167.8 203.0
192.6 209.9
476.8 489.9
480.2 493.$

424.4 424.4

17.,9: 44.812.2 **

4.8

16.7

422

5O5

T
L
T
L
m

331.4
291.4
304.5
224.6

206.7
589 L 132.3

T 141.2
298E* L 429.91

T 4:34..1 :
II

* Samples tested at 298K after ¢o44Kfor 100 hrs. exposure
** Not Measured

• 419.9 433.7
353.5 373.4
352.1 371.4
251.7 287.2
250.8 286.8
174.2 208.1
183.1 199.9
485.1 500.9
483.0 496.8

16.8 **
6.8 **
5.4 **

12.8 **

20.9 **
5.2 **
5.0 **
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Table 8b

0.03" Gauge 77

300

L
T

T

52.4 64.2
55.3 64.2
48.6 53.7
46.9 52.8

67.3 7.7 45.7
67.4 7.0 **
55.1 2.2 26.9
55.3 2.7 **

450 L 23.0 39.0 43.0 8.7 27.9
T 35.9 38.4 42.7 9.3 **

600 L 21.9 28.5 33.1 22.2 34.4
T 20.6 31.7 **27.2

56.1 62.1 1
/

65 .277E*
T 56.3 62.41 65.8

17.01
4.6
5.1

28.9

92A024-2A1 HOT STRAIGHT ROLLED

0.04" Gauge 77 46.9 62.5 65.5 4.1t
3.9iT 54.6 63.8 69.6 **

300 L 45.3 50.8 52.1 8.31 **
T 46.7 52.6 53.6 11.0 **

38.6450 28.9 36.5

600

77E*

13.7 **

T 31.5 36.2 40.6 6.2 **
L 21.2 26.5 31.0 21.4 **
T 21.5 28.9 31.3 *"
L 66.5 68.2 69.6 **
T t 65.9 68.0 69.6 2.8" **

! 53.2 59.2 63.1 44.8
te

92A024-2B2 COLD CROSS ROI IF:D
0.04" Gauge 77 ' L

T
300 L

T
450 L

T
600 L

T
77E* L

T

t 52.0 58.8

i 17.9I
62.5I 12.21

18.1

I 4.8! 31.940.3 50.1 53.6
i 40.8 49.9 53.7] 4.6', "*
! 34.9 41.1 46.1 17.3 i 36.0

30.9 38.0 42.9 17.1 **
24.4 29.5 27.2 24.4

24.9 i30.5 **
71.1 5.1! 29.1

20.8 28.0
61.6 69.2

t 63.0 69.7 71.6
2A024-2A2. COLD STRAIGHT ROrl :Fn

0.04" Gauge 77

300

450

600

T

T

T

T

51.5 61.6
48.1 61.0
42.3 51.3
44.2 51.1
32.6 36.5
30.0 36.4
19.2 25.3
20.5 26.6

77E* L 62.41
T I 63.0

* Samples tested at 77"F after 700"F for 100 hrs. exposure
** Not Measured

70.4
70.1

61.6
63.0
54.2
53.9
41.7

16.7 i
16.8 I

.8 .t

29.0
72.7
72.1 .0 _'t
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Table 9a

:92.A024_2B3:;COED GROSSROLLED/ANNEALED
0.10 cm .... 298 L 328.0. 382.7 406.9 16.3 42.3

T 321.8 384.1 405.5 13.8 **

422 L 296.3 _ 338.6 362.9 4.4 32.8
T 301.8 338.8 364.1 4.4 **

505 L 199.1, 246.2 281.9 17.6i 29.9
T 185.8 246.6 279.4 16.7 i **

589 L 121.3 170.5 206.5 21.9i 19.5
T t19.3 169.6 205.7 20.11 **

298E* L 381.7' 467.8 480.9 2.0! 36.6
I T 411.3, 475.4 1 493.3 2.3 t **

_92A024-2A3 COLD STRAIGHT ROL:LED/AN NEALED
0.10 cm 298 L 355.5 385.5 411.7 16.8 "*

T 359.0 388.3 407.9 14.0 1 **
422 L 283.2 5.78! **

T
505 L

q ,

328.2
316.8
257.0

207.4

352.3
! : o.5

289.0
293.5 5.941 **

1 '222.5 16.4 _ **
T 243.0 11.3 i **

589 L I 114.4 183.8 200.2 22.8 1 **

T t 117.8 166.7 200.4 21.2 ! **298E* L 462.3 479.5 492.6 2.0! **

1 276.7

Samples tested at 298K after Co44Kfor 100 hrs. exposure
** Not Measured
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Table 9b

: 92A 24:2B3 COED CROSS ROLLED/ANN_ED :
0.040" Gau.qe 77 47.6! 55.6[ 59.1

46.7', 55.8
49.2

77E*

16.3 42.3
T 58.9 13.8

300 L 43.0 52.7 4.4 32.8
T 43.8 49.2! 52.9 4.4 **

450 L 28.9i 35.7 1 40.9 17.6 29.9
T 27.0i 35.8} 40.6 16.7 **

17.6! 24.81 30.0 I17.3 _ 24.6! 29.9
55.4: 67.91 69.8

59.7'

21.9 19.5
20.1 **

600 L
T

2.0
69.07 71.6J 2.3T

36.6

92A024-2A3 COLD:STRAIGHT ROLLED/ANNEALED
*t0.040" Gauge 77 L

T
300 L **

T **
450 L *"

m **
te

tt

51.6 _ 56.0 t 59.8 16.8 I
52.1 _, 56.4 59.2 14.0

5.781
41.1! 47.6 51.1 I k
42.6_ 46.0] 49.4 1 5.94 !
32.3 37.3i 41.9! 16.4!
30.1 35.3 i 40.2 I 11.3 i

600 L 16.6 26.7 29.1 I 22.81
T 17.1 24.2, 29.1 21.2!

775* L 67.1 69.6i 71.5! 2.0
i

I T 64.3 70.61 72.3 i 3.1 :

Samples tested at 77"F after 700"F for 100 hrs. exposure
Not Measured
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Table lOa

92A02_1C HOT:CROSS_iROLLED ' :' : .... : i ¸ : iii::.ii / :i/:¢

437.2 I0.64 cm 449.6 456.8 13.2
423.7. 443.0/ 465.8 13.8
354.1 372.1 i ** 7.4
344.5 362.4 ** 6.0

298 L
T

422 L
T

505 L
T

589 L
T
L

13.4
i2.5

298E*

301.6 301.6 *"
.289.9 303.6! "*
201.3 214.7 i ** 22.8
184.0 210.1! ** 21.7

16.4437.5 457.5 t **

_tllt

t_

t_

tt

::i ili ¸ _̧::i

T 438.2! 456.9: *" 11.3 **
92A024-1A HOT STRAIGHT ROLLED

0.64 cm 298 L 437.9 ', 456.5 456.8 16.6 21.9
T

589

434.1

L

453.01 478.2

186.2

11.0 19.0

422 L 360.3 _ 376.9 *" 6.5 **
T L 350.41 367.9i ** 7.9 **

505 L 273.8 i 301.6 i ** 13.2 **
T 312.71 312.7 ** 10.1 **

** 23.6 **196.6
210.5 _tT 183.6 i ! ** 20.9

298E* L 434.8! 454.4 i ** 15.1 **
I ** 10.3 **' 469.2 :T 449.0

92A024-1D HOT CROSS ROLLED
11.70.23 cm 298

422

L
T
L

429.2 _ 456.8
432.7 _ 461.6
354.8 1

J
371.2
365.2
308.2

: 494.7
t 498.8

i

! 450.6! 473.3

8.9
9.4
7.7
8.9T 351.4;

505 L 280.41 13.0 **
T 271.3 ! 298.7! 8.5 ,tIi1:

589 L 188.3 i 215.5 ** 19.9 **
i

T 201.8 1 215.91 ** 20.9 **
2.98E* L 443.7 i 465.1 I *" 10.3

T 8.3! **

8.6

92A024._1B HOT'ST_IGHT ROE_D
0.23 cm. 298 L

T
422 L

T
505 L

T
589 L

T
298E* L

i 437.5 ! 457.2 10.1
8.2i 442.3: 459.2

I 355.0 i 369.9

; 487.1

! 482.3

209.0 i
445.81

4.9
3.3352.1 _ 367.2

278.0 i 292.8! ** 16.2 "*
286.3; 315.5 j ** 9.5 **
204.8 1 219.9 ** 22.7 **

223.9 ** 17.4 **
tt *t

_t,lt

468.5
T , 461.6 t 473.3

* Samples tested at 298K after 644K for 100 hrs. exposure
** Not Measured

11.5
13.1 **

11.8
10.2

t,t
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Table 10b

'117';...¸ i ¸ :i ,92A024.-1C HOT CROSS OL D
0.25" Gauge 77 63.5 65.31 66.3 13.2

13.8
17.6

77 T 61.5 64.3i 67.6
300 L 51.4 54.0 ** 7.4 **

300 T 50.0 52.6! ** 6.0 **
450 L 43.8 43.8 i ** 13.4 **
450 T 42.1 44.1 _ ** 12.5 **
600 L 29.2 31.2; ** 22.8 **
600 T 26.7 30.5_ ** 21.7 **

77E* L 63.5 66.4 ; ** 16.4 **
T 63.6 66.6 i "* ! 11-3 *"

17.6

92A024.-1A HOT STRAIGHT ROLLED

0.25" Gauge 77
T

300 L
T

450 L
T

600 L
T

77E* L
T

63.6 i

63.0!
52.3 1
50.9'
39.7
45.4
27.0
26.7
63.1
65.2!

66.31
65.81

54.7[
53.4i
43.8_
45.4 i
28.5_
30.61
66.0_

I68.1 :

66.31
69.4

*t

te

16.6
1 1.0

6.5
7.9

13.2

10.11
23.6
20.9

15.1I
10. 1

21.9
19.0

92A024-1D
0.09" Gauge

HOT CROSS ROLLED
77 L

T
300 L

T
450 L

T
600 L

T
77E* L

T

62.3 66.3!

40.7

71.8 8.9 11.7

62.8! 67.0! 72.4 9.4 8.6
I 51.5 I 53.9 I ** 7.7 **
t 51.01 53.01 ** 8.9l **
t 44.7 i "* 13.0 **

43.4i
31.3 '
31.3!

I

I 39.4
I 27.3
I 29.3

67.5;

8.5
19.9
20.9
10.3I 64.4

i 65.4, 68.71
92A024-1B HOT S_IGHT ROELED
0.09" Gauge 77 L

T
300 L

T
450 L

T
600 L

T
77E* L

, 63.51
i 64.21

66.41 70.7
66.7 70.0

,I 51.51 53.7, **
i 51.1 53.3 **
t 40.4 42.5 **

41.6 45.8i **

i 29.7 31.9 t **
I 30.3 32.5 t **

tt68.0I 64.7
T 67.0 68.7 **

* Samples tested at 77"F after 700"F for 100 hrs. exposure
** Not Measured

10.11 11.8
8.2 10.2
4.9 **
3.3 **

16.2 **
9.5 **

22.7 **
17.4 **
11.5 **
13.1 **
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Table 11a

0.076 cm 298 442.0! 463.4 i 429.2
442.01

7.7
f 464.4 7.0T 464.4 i

422 L 370.0) 379.61 ** 2.2 **
T 363.8! 381.0i ** 2.7 **

i ** 8.7 **

298E*

505 L 268.5
T 264.5
L
T

T i

i

i

196.3i 227.9 i

187.4 1
427.9
429.9

296.2
293.9 ' ** 9.3 **

** • 22.2 **
218.61 ** 17.0 **
449.2 i ** 4.6 **

*t4_i3.4 I .** 5.1

589

13.0
9.0

:92A024_2A,1:HOT:_IGNT:ROLEED : : .
4.1! 451.3I 456.1 1.90.10 cm 298 L 430.6

T 439.2! 479.5 ! 438.9 3.9 3.9
422 L 350.0 ! 359.0! ** 8.3 **

T 362.4 t 369.31 ** 11.0 **
505 L 251.2 _ 266.2! ** 13.7 **

T 249.3 1 280.0 i ** 6.2 _ **
182.8 213.71 21.4

468.5_ 479.5

589

2.8T

T 198.8 i 215.5! ** 26.0 **
298E* L 469.9 = 479.51 ** 3.2 **

i 11'1' **

92AO24-2B2 COLD: CROSSROLLED ......... : :
0.10 cm 298 L 407.5 _ 434.8 ', 436.1 17.9 16.9

T 404.8 _ 430.6 487.8 12.2 13.0
422 L 344.8 _ 369.2 i ** 4.8 **

T 343.8; 369.7 i ** 4.6 **
505 L 283.0 _ 317.9! ** 17.3 **

T 261.5 295.4 ! ** 17.1 **
589 L 167.8 203.0 ** 27.2 **

.t **

298E*
T

T

192.6 209.9!
476.8 489.9! **
480.2' 4_$.$i **

24.9
5.1
4.9

_>2A02_2A2!:iGOED _RA:IGHT ROLLED ..... :

0.10 crn 298 L 424.4 *: 424.4 i
T 419.9': 433.71 468.5 16.8 17.2

422 L 353.5! 373.4 i ** 6.8 **

T 352.1 ! 371.41 ** 5.4 **
505 L 251.7i 287.21 ** 12.8 **

T 250.8 :. 286.81 ** 11.7 **
** t*589

298E*

L

T 183.1 i 199.9
174.2 i 208.1 1

J

L 485.11 500.9

22.3
20.9

5.2 tt-m

T 483.01 496.8! ** 5.0 t. ,
* Samples tested at 298K after 64,4K for 100 hrs. exposure
** Not Measured
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Table llb

I :02 ;2B_tHOTCRO ROLL 2; 67 7 1 0
0.03" Gauge • i • ' " • • !

T 64 2 _ 6741 67 4 7 0 90
300 L

T
450 L

T
600 L

T
77E* L

T
92A024-2At HOT STRAIGHT ROLLED
0.04" Gauge 77 L

T
300 L

T
450 L

T
600 L

T
77E* L

T

53.71 55.1 I ** 2.2 **
I ** 2.7 **52.8; 55.3_

39.0i 43.0i ** 8.7 **
38.4j 42.7i ** 9.3 **
28.5; 33.1 ** • 22.2 **
27.2 31.7 ** 17.0
62.1 i 65.2 4.6 **
62.4 _ 65.8 *" 5.1 *"

i

62.5! 65.51
i 69.61

66.2 4.1t 1.9
63.8 63.7 3.9 3.9
50.81 52.1 ** 8.3 ""
52.6! 53.6t *" 11.0 *°
36.5; 38.6! ** 13.7 **
36.2i 40.6i *" 6.2 **

** 21.4 **26.5_ 31.0 1
28.91 31.3 t ** 26.0 **
68.2 ! 69.6 I ** 3.2 **
68.0 _ 69.6! ** 2.8! **

92A024-2B2 COLD CROSS ROLLED
I 0.04" Gauge 77 L

T
300 L

T
450 L

T
600 L

T
77E* L

T
2A024-2A2;::COLD:STRAIGHTROLLF_

I 0.04" Gauge 77 L
T

300 L
T

450 L
T

600 L
T

77E* L
T

59.2 63.1 I 63.3 17.9 i 16.9i
58.8 62.5! 67.9 13.0

53.6J
12.2!

50.t ** 4.8 i **
49.9 53.7i ** 4.6i **
41.1 46.1 ** 17.3 I **
38.0 42.9 ** 17.1 **
24.4 29.5 ** 27.2! **
28.0 30.5 ** 24.9t **
69.2; 71.1 ** 5.11 **
69.7: 71.6! ** 4.81 **

61.6' 61.6 I 63.4 16.7 1 17.0
61.0_ 63.0 68.0 16.8 1

6.8_51 3; 54.2 **
51.1 i 53.9 ** 5.4 **
36.5' 41.7 ** 12.8 i **
36.4 41.6 ....

70.1! 72.1

11.7
22.325.3 ! 30.2 ....

26.6i 29.0 **
70.41 72.7 **

lift

20.9 **
5.2 **
5.0 **

17.2

Samples tested at 77"F after 700"F for 100 hrs. exposure
** Not Measured
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Table 12a

i 92A024_2B3_!GOED.GRE)SSRO_tANNEALED :! ....... : " __,_:ii
0.10 crn 298 L 382.7 ; 406.9 405.1 16.3! 20.0
• T 384.1 ! 405.5 403.8 13.8! 19.'1

i

** 4.4 1 **422 L 338.6 i 362.9=
T 338.8 ', 364.1 ! ** 4.4j **

505 L 246.2 1 281.9 i ** 17.6i **
i **

589
T

T

246.6 279.4 1 **

170.5=, 206.5! **
169.6 i 205.7! **

16.7t

21.9 1 t*

2O.li
2.0_
2.3!

298E* L 467.8 480.9
T 475.4 i 493,_3 ** **

97,A024,2A3 COLD S_IGHTROLEEDtANNEALED - ....

. 0.10 cm

;_98 L ,385.51 41i.7i 434.8
T 388.3 _ 407.9' 438.9

T 24,3.0 !
589 L 183.8

T 166.7
298E* L 479.5

T 486.4:
I

* Samples tested at 298K after 644K for 100 hrs. exposure
** Not Measured

16.8 i 16.4
14.01 17.6

492.6
498.1 i

422 L 328.2 352.3 ** 5.78i **

T 316.8 340.5{ ** 5.94 II'e

505 L 257.0 289.0 ( ** 16.4 **

276.7 i ** 11.3 _ **
200.2I ** 22.8 ! **
200.4 1 ** 21.2 ! **

** 2.0 **
*.e ! *t3.1

146



Table 12b

92A024.2B3 COED CROSS ROI 1-FD/ANNEAE_ID ........ i: •

0.040" Gauge 77 55.6 ! 59.1

77E*

58.8 16.3 20.0

T 55.8 i 58.9 58.6 13.8 19.1

300 L 49.2 52.7 ** 4.4 **
T 49.2 52.9 ** 4.4 **

450 L 35.71 40.9 ** 17.6 **
T 35.8 _ 40.6 ** 16.7 **

600 L 24.8 R 30.0 ** 21.9 **
T 24.6' ** 20.1 **29.9

67.9 : 69.8"L
T 69.0 t 71.6

92A024-2A3 COLD STRA1GHTROI I FDIANNEALED
0.040" Gauge 77 L 56.0 _ 59.8t

300
T

77E*

L
56.4 i
47.6!

59.2 b
51.1 I

L 69.6

63.1 I
63.7

16.8
14.o

t 16.4
I 17.6

5.78! **
T 46.0 49.4i ** 5.94 °*

t_ lit450 L 37.3 _ 41.91 16.4L
T 35.3, 40.2! ** 11.3 I **

600 L 26.7 29.1 i ** 22.8! **
T 24.2 29.1 _ ** 21.2! **

i
71.5! ** 2.0

3.172.31T 70.61

Samples tested at 77" F after 700" F for 100 hrs. exposure
** Not Measured

tli

tli
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Table 13. Average Concentration of Si, Fe, and V Measured ny Energy Dispersive X-ray

Spectroscopy in HTA 8009

Sample ID

Extruded

Hot Roiled

0.64 cm (0.25")

Plate

Cold Roiled /

Annealed O.10

an (0.040")
Gauge Sheet

A1

99.8 + 0.05

99.7 + 0.05

99.3 + 0.2

Si

ND

ND

0.4 + 0.2

V

0.1 + 0.04

0.18 + 0.04

0.16 + 0.02

Fe

0.1 + 0.02

0.13 + 0.02

0.12 + 0.02
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Test Temperature : 298K
77'1=

Test Temperature = SO5K
450_F

®®®®®®®®
®l"'._'l® ® ®l-._"l ®

i ",',,,r----I 0 ,.,,_,,,d,,.,,,
Fig. 1 Cut plan for specimens machined from the nose and tail of HTA 8009

extrusions 92A022 and 92A024.

"U
(U
0

--I

5.0% / min

Displacement

Fig. 2. Typical load-displacement curve for a tensile specimen tested in the present

study. After the specimen experienced a maximum tensile stress, the strain

rate was increased ten-fold from 0.5%/rain to 5.0%/min and tested to failure.
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HTA 8009 Extrusion 92A022

Test Temperature = 298K (77"! =)
ii

500 [] UTS (0.5%/rain) • UTS (5.0%/rain) • % Elongation

4oo _:8o.....................................................................................

}

" ii200

_o _o
_2o m_

loo _- =_

o o'__ .....-........""I......\, "'"....'o "_
Top-(L) MId-(L) Mid-(T} Bot-(T) Top-(L} Mid-(L) Mid-(T) Bot-(T)

Nose • I • Tall

Position in Extrusion

500

_; 400
qm_

J:

e. 300
o
am

qmp

6 200

(/I
I:
@ 100

!-

80

Test Temperature = 505K (450"F)

D UTS (0.5%/min) BUTS (5.0%/min) II % Elongation

60 ..............................................................................................................................

_ 4o
¢ _iiiii_.................2°m
__e iiiii""............ o-.9.

_20 i._ 10 m

0 0
Top-(L) MId-IL) Mid-(T) Bot-(T) Top-(L} MId-(L) Mid-(T) Bot-(T)

Nose -- I • Tail

Position in Extrusion _-_--

Tensile strength and ductility as a function of position in HTA 8009 extrusion

92A022 at 298K (77"F) and 505K (450°F) for specimens machined from the

nose and tail of the preforms.
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HTA 8009 Extrusion 92A024

Test Temperature = 298K (77°F)

500 t D UTS (0.5%/rain) Im UTS (5.0%/min) • % ilongation
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Tensile strength and ductility as a function of position in HTA 8009 extrusion

92A024 at 298K (77_F) and 505K (450°F) for specimens machined from the

nose and tail of the preforms.
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Rolling Schedules Practiced at Kaiser CFT

Casting Modification A

I ! I

Straight. &

Cross-Rolling

Performed for Each Heat

I
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Anneeled

Casting Modification B
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Cross-Rolling

Performed for Each Heat
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C._d ltol_d

0.10 ¢wn

CoMIt_edl

Anmmled

Figure 5. Pass schedules were designed to evaluate the effects of roiling direction and

thermo-mechanical processing on ambient and elevated temperature

mechanical properties of HTA 8009 plate and sheet.
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Fig. 6

Tensile Pt', p¢,=rtiesvs. Tes Temp r :ture
92A022-1C Hot Cross Rolled 0.64 cm (0.25") Sheet
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Fig. 7

Tensile D, )pe ties vs. iest T_ rnpera _jre
92A022-1A Hot Straight Rolled 0.64 cm (0.25") Sheet
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Fig. 8

Tensile Properties vs. Test Temperature
0.64 cm (0.25") Hot Cross vs. Hot Straight Rolled Sheet
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Fig. 9

Tensile D'()pe,rzie 3vs. Te:st Tempera[ure
92A022-2A Hot Cross Rolled 0.25 cm (0.10") Sheet
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Fig. 10

Tensile Prop, ,_rtiesvs. Test Temper_ _ure
92AO22-2B Hot Straight Rolled 0.25 cm (0.1 ") Sheet
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Fig. 11

Tensile I=roperties vs. Test Temper . ure
0.25 cm (0.1") Hot Cross vs. Hot Straight Rolled Sheet

80

0
m

UJ
50

0

im

¢-

ETJ

(1) 20
II IBIIB

(D
[---10

0

(L)

_] 0.5%/minHCR

0.5%/min
HSR

7"_ 5.0%/minHCR

5.1_/rainNSR

:_% ElongationHCR

% ElongationHSR

(T)
92A022-2Avs. 92A022-2B

77 77 300 300 450 450 600 600

I
298

Test Temperature (°F)
I I I I I I I

298 422 422 505 505 589 589

Test Temperature (K)

500

400 -"1
¢D

O3
=imml

300 O0

200

"13

100

0

158



Fig. 12

Tensile Properties vs. Tesz TE,mperature
92A022-1 B1 Hot Cross Rolled 0.10 cm (0.04") Sheet
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Fig. 13

Tensile Prop  r iesvs. Test Temperature
92A022-2C1 Hot Straight Rolled 0.08 cm (0.03") Sheet
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Fig. 14

Tensile Properties vs. Test Temper  ttJre
0.1 cm (0.04") Hot Cross vs. Hot Straight Rolled Sheet
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Fig. 15

Tensile D"oper[ies vs. Test TerrLperature
92A022-1 B2 Cold Cross Rolled 0.10 cm (0,04") Sheet
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Fig. 16

Tensile D'oper[ies vs. Test Tempera cure
92A022-2C2 Cold Straight Rolled 0.10 cm (0.04") Sheet
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Fig. 17

Tensile Properties vs. Test Temper . ure
0.1 cm (0.04") Cold Cross vs. Cold Straight Rolled Sheet
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Fig. 18

TensilE_ ='op¢_r[ies vs. Test Temperature
92A022-1 B3 Cold Cross Rolled w/Anneals 0.1 ¢m (0.04") Sheet
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Fig. 19

Tensile =,'operties vs. Test TEmperature
92A022-2C3 Cold Straight Rolled w/Anneals 0,1 cm (0.04") Sheet

80

(,..
070

ED
r-
0 60

m

iii

o_ 5o
t._

0

_4o

2

I_10

0

0.5%/min_ 5.0%/minFT_ % ElongationI

(L)
(T)

(L)

77 77 300

(T)

x_

(L) (T)

......... i"i ..........c'r).......

......I
300 450 450 600 600

- 500

- 400 --I
(D

(/)
mlllm i

CD

Test Temperature ("=_
I I I I I I I I

298 298 422 422 505 505 589 589

Test Temperature (k3

300

200_

"13

IO0

0

166



Fig. 20

Tensile Properties vs. Test Tempena tJre
0.1 em (0.40") Cold Cross vs. Cold Straight Rolled Sheet w/Anneals
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Fig. 21

Tensile Properties vs. Test Temperature
92A024-1C Hot Cross Rolled 0.64 cm (0.25") Sheet
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Fig. 22

Tensile Properties vs. Test Temperature
92A024-1A Hot Straight Rolled 0.64 cm (0.25") Sheet
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Fig. 23

Tensile Properties vs. Test Temperature
Hot Cross Rolled vs Hot Straight Rolled 0.64 cm (0.25") Sheet
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Fig. 24

Tensile Properties vs. Test Temperature
92A024-1D Hot Cross Rolled 0.23 cm (0.09") Sheet

8O

O70

O_

060

uJ

,_50
O

._ 40
V

J_

_0_30

g

0

o_,/min_ 5.0%/min_ % Elongationl

(L)

(L) (T)

....... _v

/I

77 77 300 300

(L) (T)

Test Temperature (°F)
I I 1 I I I I I

298 298 422 422 505 505 589 589

Test Temperature (k3

- 500

- 400
(1)

03

(1)

- 300 GO
,-q
¢D

200 E

IO0

0

171



Fig. 25

Tensile Properties vs. Test Temperature
92A024-1B Hot Straight Rolled 0.23 cm (0.09") Sheet

80

070
II Illl_

060
UJ

o-e
,_ 50
0

BNBII

U)
._ 40
v

,i=

2'--

(/) 20
O

ibm

U)

O10
p.

(L) (T)

(L)

..... °_ °°°

(T)

(L)

0
77 77 300 300 450 450 600

Test Temperature (°F)

(T)

/

/
/

/

/
/
/

/

/
/

/

600

I I I I I ! I I
298 298 422 422 505 505 589 589

Test Temperature (K)

- 500

- 400 --I
CD

if)
DO

(11

- 300 0"_

(1)

r_

- 200

E
"13

- 100

-0

172



Fig. 26

Tensile Properties vs. Test Temperature
Hot Cross Rolled vs Hot Straight Rolled 0.26 cm (0.1") Sheet
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Fig. 27

Tensile Properties vs. Test Temperature
92A024-2B 1 Hot Cross Rolled 0.08 cm (0.03") Sheet
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Fig. 28

Tensile Properties vs. Test Temperature
92A024-2A 1 Hot Straight Rolled 0.1 cm (0.04") Sheet
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Fig. 29

Tensile Properties vs. Test Temperature
Hot Cross Rolled vs Hot Straight Rolled 0.10 cm (0.04") Sheet
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Fig. 30

Tensile Properties vs. Test Temperature
92A024-2B2 Cold Cross Rolled 0.1 cm (0.04") Sheet
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Fig. 31

Tensile Properties vs. Test Temperature
92AO24-2A2 Cold Straight Rolled O.1 cm (0.04") Sheet
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Fig. 32

Tensile Properties vs. Test Temperature
Cold Cross Rolled vs. Cold Straight Rolled 0.1 cm (0.04") Sheet
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Fig. 33

Tensile Properties vs. Test Temperature
92AO24-2B3 Cold Cross Rolled w/Anneals O.1 cm (0.04") Sheet
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Fig. 34

Tensile Properties vs. Test Temperature
92A024-2A3 Cold Straight Rolled w/Anneals 0.1 cm (0.04") Sheet
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Fig. 35

Tensile Properties vs. Test Temperature
Cold Cross Rolled vs. Cold Straight Rolled 0.1 cm (0.04") Sheet w/Anneals
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Fig. 36

Tensile Properties vs. Test Temperature

Hot Rolled 92A022 Sheet
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Fig. 37

Tensile Properties vs. Test Temperature

Cold Rolled 92A022 Sheet with & without Anneals
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Fig. 38

Tensile Properties vs. Test Temperature

Hot Rolled 92A024 Sheet
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Fig. 39

Tensile Properties vs. Test Temperature

Cold Rolled 92A024 Sheet with & without Anneals
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Fig. 40
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Fig. 41
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Fig. 42
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Fig. 43
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Fig. 44

Effect of Strain Rate on Tensile Properties
92A024- 2B3&2A3 Cold Cross & Straight Roiled Sheet w/Anneals
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Tensile Properties of

Abstract

Boeing support for the Aluminum-Based Materials for High Speed Aircraft program was

divided into two areas: 1) alloy characterization and 2) design studies.

Boeing has performed static fracture and fatigue crack growth rate (CGR) studies on

Reynolds alloys RX818 and ML377 in sheet form. The static, fatigue and CGR property studies

were performed on as-received material in the T8 condition as well as after exposure at 200*F,

225°F and 275"F for up to 1000 hrs, both at room temperature and at the exposure temperature.

The results presented in this report just cover tensile properties. Fracture toughness, fatigue crack

propagation and fractographic characterization of fracture surfaces wil be documented in the near

future. The results of these studies showed that RX818 was the strongest of the two alloys both at

room and elevated temperatures but that the ML377 alloy was the most thermally stable, based on

several different interpretations of the data. This is generally consistent with the finds of other

investigators supporting the program.

The design studies were performed using several different design concepts including

skin/stiffener (baseline), honeycomb sandwich, integrally stiffened (including extruded stringers,

orthogrid and isogrid concepts) and hybrid adaptations (conventionally stiffened thin-sandwich

skins). The design concepts were exercised with respect to the wing box (upper), wing box

(lower), wing strake, and the crown, window belt and keel areas of the fuselage. The results of

these studies indicated that the preferred concept depended greatly upon the part of the aircraft

being considered, but that many had advantages over the baseline skin-stringer design.

Objective

The primary objective of this task is to investigate both thermal stability and elevated

temperature properties of two Al-Li sheet alloys which were recently developed by Reynolds

Metals Company. One sheet alloy has an unrecrystallized grain structure with a composition of

A1-3.5 Cu-1.0 Li-0.4 Mg-0.4 Ag-0.12 Zr (RX818), and another has a recrystallized structure with

a composition of Al-3.5 Cu-l.0 Li-0.4 Mg-0.4 Ag-0.4 Mn-0.12 Zr (ML377).
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Introduction

A1-Cu-Li-Mg-Ag alloys, which were recently developed by Reynolds Metals Company,

and designated as RX818 and ML377 internally, have been recognized as potential materials for

primary structural applications for the Mach 2 high speed civil transport (HSCT). This type of

alloy in the T8 temper is strengthened primarily by T 1 (Al2CuLi) plate shaped precipitates (1) and

has both high strength and fracture toughness (2). The credit for achieving high fracture toughness

is associated with the absence of shearable/coherent _i' precipitates since these precipitates have

been found to be a primary factor in the low fracture toughness observed in commercial A1-Li

alloys (2, 3, 4). However, the superior mechanical properties of these materials will deteriorate

somewhat when subjected to thermal exposures between 200 - 275°F and/or tested in this

temperature range (anticipated during Math 2 HSCT aircraft service). The extent of degradation in

the properties depends on both exposure temperature and time, and will also depend on both test

temperature and strain rate.

Preliminary investigation from the NASA, HSR Metallic Materials Task, showed that

RX818 was thermally stable (with respect to tensile properties) at 225"F for longer than 27,000

hours and had no significant degradation of the microstructures (1, 5). These intrinsic properties

further indicate that this type of alloy is a potential candidate for structural materials for a Mach 2

HSCT aircraft which operates in this temperature range. However, there are two major concerns;

one is the degradation of fracture toughness with thermal exposure, and another is the creep strain

in the operation temperature range. The Aluminum Alloy Development Task undertaken by Boeing

is to address the first item, i.e., the effect of thermal exposure on tensile properties, fracture

toughness and fatigue crack growth rates. The results presented in this report just cover tensile

properties. Fracture toughness, fatigue crack propagation and fractographic characterization of

fracture surfaces will be documented in the near future.

Subtask 1

Procedures

Materials

Two pieces of each RX818-T8 and ML377-T8 Al-Li alloy sheet were received for property

evaluation. Their dimensions are approximately 0.09"(T) by 47"0h r) by 72"(L) where T, W, and

L represent thickness, width and length, respectively. RX818 has an unrecrystallized grain

structure and a typical composition of Al-3.5 Cu-l.0 Li-0.4 Mg-0.4 Ag-0.12 Zr; whereas ML377
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has a recrystallized grain structure and a typical composition of A1-3.5 Cu-l.0 Li-0.4 Mg-0.4

Ag-0.4 Mn-0.12 Zr.

Thermal Ex_tmsure

Tensile specimens of each alloy were divided into seven groups. These seven groups were

separately thermally-treated as : (a) no thermal exposure, (b) 200*F for 300 hours, (c) 200*F for

1000 hours, (d) 2250F for 300 hours, (e) 2250F for 1000 hours, (f) 275"F for 300 hours, and (g)

2750F for 1000 hours.

Tensile Tests

Tensile specimens of each alloy were machined to the following dimensions: thickness -

0.09 inch, gauge width - 0.25 inch, and gauge length - 1.13 inches. They were tested at four

different temperatures: room temperature (R. T.), 2OO*F, 225°F., and 275"F. The test matrix is

listed in Tables 1, 2 and 3. Each alloy in the T8 temper (no thermal exposure) was tested in

longitudinal (L), 45 degree and long transverse (LT) directions. Others were tested in both L and

LT directions. Duplicate specimens were used for each case. Both elastic and plastic strains of

each specimen were measured with a one inch gage length extensometer which was directly

attached to the specimen being tested. The loading rate (cross-head-speed) of about 0.04

inch/minute was used. For specimens tested at elevated temperatures, the specimens were soaked

at the specific temperature for 15 minutes prior to testing.

Results and Discussion

Grain Structure and Intermetallic Particles

The elevated temperature properties of all metals, such as strength and creep resistance,

strongly depend on their grain structure. These properties are governed by dislocation interaction,

dislocation climb and the rate of vacancy diffusion, and these three parameters are accelerated by

the presence of grain and subgrain boundaries since both boundaries are the primary sources and

sinks of dislocations and vacancies. Correspondingly, above a certain temperature the smaller the

grain size, the lower the elevated temperature tensile properties and the higher the creep strain. In

order to determine the difference in elevated temperature properties of A1-Li alloys having

recrystallized and unrercrystallized grain structures, RXS18 was processed to have an

unrecrystallized grain structure, Figure l(a) and l(b), whereas, ML377 was intentionally

processed to give a recrystallized grain structure, Figure 2(a) and 2(b). RX818 exhibits a thin

recrystallized layer on the rolling surface, Figure 1(a). The straight line grain boundary pattern
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with small interspacing (about 0.0005 inch) illustrated in Figure l(a) and l(b) indicates a thin

pancake unrecrystallized grain structure for this A1-Li sheet. These straight lines represent high

angle grain boundaries. As is obvious from Figure 2(a) and 2(b), ML377 has large, thick and

elongated recrystallized grains.

The elevated temperature properties of aluminum alloys are profoundly influenced by the

size, volume fraction, distribution and thermal stability of both strengthening precipitates and

insoluble particles (dispersoid particles). The addition of 0.4% Mn to ML377, which forms

thermally stable Mn dispersoids, was intended to improve the thermal stability, elevated

temperature tensile properties and creep resistance.

Tensile Properties at Room Temperature

Tensile Properties in the L, 45 Degree and LT Directions

Tensile properties in these three orientations are important parameters for structural design.

The 45 degree properties are directly related to shear strength of the material, and the shear strength

becomes particularly critical when the body skin of an aircraft contains numerous rivets and

fasteners. The tensile strength of both RX818-T8 and ML377-T8 are plotted as tensile yield

strength (TYS) and ultimate tensile strength (UTS) vs test direction, i.e., 0 (L direction), 45 (45

degree angles with respect to L) and 90 (LT direction) as illustrated in Figure 3.

As can be seen from Figure 3, the 45 degree strength of RX818-T8 is substantially lower

than both L and LT directions, while the strength in these three directions for ML377-T8 is

comparable. The diffference between RX818 and M1,377 is associated with crystallographic

texture. RX818 with an unrecrystallized grain structure exhibits a strong deformation texture (5)

resulting in a noticeably lower strength in the 45 degree angles; whereas, ML377 with a

recrystallized structure develops a strong recrystallized texture (5) resulting in a comparable

strength in the L, 45 degree and LT directions. This behavior is similar to that displayed by

commercial A1-Li alloys when they have either unrecrystallized or recrystallized grain structures, i.

e., alloys 2090, 2091 and 8090 in sheet form (8, 9).

When comparing the tensile strength between RX818 and ML377, both the TYS and UTS

of RX818-T8 in the L and LT directions are higher than those for ML377-T8. The higher strength

of RX818 is mainly due to the substructure strengthening effect. On the other hand, due to texture

strengthening, the 45 degree strength of ML377-T8 is superior to RX818-T8. This higher 45

degree strength also implies that ML377-T8 has a greater shear strength than RX818-T8.

Separately, it is very interesting to note that the magnitude of strain hardening (in terms of

the difference between UTS and TYS) is relatively constant for RX818 in all L, 45 degree and LT
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directions; however, it is smaller in the L direction than both 45 degree and LT directions for

ML377. The higher strain hardening in both 45 degree and LT directions of ML377-T8 is directly

related to more slip systems operated which are, in turn, associated with crystallographic texture.

Tensile Properties of RX818-T8 and ML377-T8 With Thermal Exposure

The room temperature tensile properties of RX818-T8 and ML377-T 8 after thermal

exposure at temperatures of 200"F, 225"F and 275"F for both 300 hours and 1000 hours are listed

in Tables 4 and 5 for RX818 and ML377 respectively. The data for TYS in the L direction are

plotted against thermal exposure time at three temperatures; 200, 225 and 2750F (see Figure 4).

This figure is plotted with a semilog axis in which "1" in the x-axis represents the T8 temper (no

thermal exposure). Figure 4 shows that tensile yield strength of both RX818-T8 and ML377-T8

increases slightly with exposure time for all three temperatures studied. For example, the TYS of

RX818-T8 increases 2-3 Ksi after exposure to each temperature (200, 225 and 275"F) for 1000

hours, but it increases only about 1 Ksi for ML377-TS. Additionally, Tables 4 and 5 also

demonstrate that the TYS of both alloys in the LT direction have a similar response to thermal

exposure as found for the L direction. The slight increase in tensile strength is associated with the

formation of additional small amounts of S" and 5' precipitates (1).

It is surprising to note that the unrecrystallized RX818-T8 and recrystallized ML377-T8

have only a slightly different response to thermal exposure. This subtle difference between RX818

and ML377 implies that the presence of subgrain boundaries in RX818-T8 plays a small role in

influencing aging kinetics during these thermal exposures, when the alloy is already in the T8

temper. It has been noted that subgrain boundaries in the unrecrystallized AI-Li alloys significantly

accelerate the age hardening process when the materials are in the T3 condition (8). The different

responses between T8 and T3 tempers may be due to a fact that T 1 precipitates form on subgrain

boundaries in the T8 temper at the expense of vacancies along these boundaries. The lack of

vacancies on subgrain boundaries slows down the diffusion process which, in turn, reduces aging

kinetics. Likewise, precipitation of T 1 phase in the interior of subgrains reduces the diffusion rate.

This thermal exposure study clearly shows that both RX818-T8 and ML377-T8 are quite

thermally stable at 200, 225 and 275"F up to 1000 hours, and that ML377-T8 has a slightly higher

thermal stability than RX818-T8. In addition, another investigation from D. L. Dicus (5)

demonstrated that RX818-T8 was thermally stable at 225F for more than 27,000 hours.
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Effect of Test Temperature on Tensile Properties

Alloys RX818 and ML377 in the T8 temper were tested at 75, 200, 225 and 275"F. In

addition, both alloys in the T8 plus various thermal exposures were tested at 200 and 225"F.

These studies were undertaken to understand the interactions of thermally activated dislocations

and, thus, dynamic recovery during tests at the elevated temperatures to which a Mach 2 HSCT

airplane will be exposed.

T8 Temper

Tensile properties of RX818-T8 tested at 75, 200, 225 and 275*F are listed in Table 6, and

these properties for ML377-T8, tested at the same conditions, are listed in Table 7. In order to

facilitate the comparison of effect of both test temperature and orientation on tensile propeties for

each sheet alloy, the data documented in Tables 6 and 7 are plotted as tensile strength vs test

temperature, (see Figure 5). In addition, the same plot for the elongation is shown in Figure 6.

These plots show three consistent results regardless of the alloys and test directions. They are: (i)

both TYS and UTS decrease with increasing test temperature, (ii) strain hardening (in terms of the

difference between UTS and TYS) decreases with increasing test temperature, and the difference

becomes almost zero at a test temperature of 275"F, and (iii) elongation increases with increasing

test temperatures except for the L direction of ML377 where its elongation decreases slightly.

These three temperature dependent properties can be explained by the dislocation interaction

mechanisms. The reasons why tensile yield strength of both alloys decreases with increasing test

temperature may include: (i) thermal activation reducing the pinning force between dislocations

and solute atoms, (ii) screw dislocations and the screw components of the mixed dislocations

having more opportunites to escape obstacles, i.e., precipitates, by cross slip resulting from

thermal activation, and (iii) pre-existing dislocation loops and jogs that are introduced during

stretching may climb and then become mobile as the test temperature increases, especially for

dislocations on which no T 1 phase nucleates during artificial aging.

The decrease in ultimate tensile strength and strain hardening with increase in temperature

can be explained by the decrease of dislocation interactions and dislocation/precipitate interactions.

Besides, both dislocation loops and jogs that are formed by dislocation interactions are able to

climb when tested at elevated temperature. The extent of reducing dislocation interactions and the

intensity of dislocation climb and annihilation increase with increasing test temperature. At a

temperature of 275°F, UTS is almost equal to TYS, i.e., little strain hardening. This indicates that

the rate of strain hardening is almost equivalent to that of dynamic recovery. Separately, the
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increasingrateof dynamic recovery with test temperatures, from 75 to 275"F, results in a higher

elongation for the materials. The single abnormal ease, in which longitudinal elongation of

ML377-T8 decreases slightly when tested at these temperatures, may be associated with

crystallographic texture which, in turn, influences the deformation behavior. This becomes an

interesting topic for further investigation.

The effect of test orientation, L and LT, on the tensile strength for RX818-'1"8 is illustrated

in Figure 5(a) and 5(b). Both TYS and UTS in the L direction are greater than those for the LT

direction at the same test temperature. On the contrary, elongation in the L direction is lower than

that in the LT direction (see Figure 6).

The effect of test orientation on tensile propeties for ML377 can be seen from Table 7 as

well as Figure 5(c) and 5(d). TYS in the LT direction is lower than that in the L direction at the

corresponding test temperature; whereas UTS is higher in the LT direction than that in the L

direction. It is quite clear that the magnitude of strain hardening in the LT direction is noticeably

greater than that for the L direction. This result is identical to that of the specimens tested at room

temperature. The reason for this behavior was discussed earlier. As is obvious from Figure 6,

elongation in the L direction decreases slightly when tested at these temperatures; whereas, that in

the LT direction increases with increasing test temperatures.

Finally, tensile strength comparisons were made between RX818-T8 and ML377-T8 for

test temperatures of 75, 200, 225 and 275"F. As noted earlier, the former has unrecrystallized

grain structure, and the latter has recrystallized structure, with 0.4% Mn for dispersoid formation.

For all four test temperatures, both the TYS and UTS of RX818-T8 are greater than those for the

ML377-T8 counterparts. This reflects that substructure strengthening effects still dominate the

tensile strength of RX818-T8 for test temperatures up to 275"F, when using a cross head speed of

0.04 inch/minute. In other words, the magnitude of the substructure strengthening effect is greater

than that of the subgrain boundary contribution to dynamic recovery.

Another comparison method, which may give new insight regarding the dynamic recovery

in RX818-]'8 and ML377-T8, was to subtract the TYS tested at various elevated temperatures from

that tested at 75"F, and also use these differences, divided by the 75"F TYS, for obtaining the

percentage of change. The same calculation was also made for UTS and elongation. The resultant

data are listed in Table 8 for both RX818 and ML377. The meaning of this calculation is that the

smaller the difference betweeen the 75"F and the elevated temperature test results, the smaller the

degree of dynamic recovery and, naturally, the better is the stability of elevated temperature tensile

properties.

204



Based on this criterion, the data in Table 8 indicates that the LT direction performs slightly

better than the L direction for both TYS and UTS of each alloy, except the UTS of ML377-T8

tested at 275"F. With regard to elongation, the LT direction performs noticeably better than the L

direction for RX818-T8, but opposite is true for ML377-T8. Note that the elongation in the L

direction of ML377 slightly decreases when tested at elevated temperatures. No relationship can be

established between elongation and test temperature for this direction.

A comparison of both TYS and UTS between RX818-T8 and ML377-T8 was made using

the same criterion just described. The data in Table 8 show that RX818-T8 performs, in general,

slightly worse than ML377-T8. This slightly worse performance implies that subgrain boundaries

in RX818-T8 play a small adverse role in dynamic recovery at the present test conditions. It is

different from pure metals in that precipitates of T 1 phase on subgrain boundaries reduce the

dynamic recovery process. A similar behavior was observed in AI-Li-Cu-Mg alloys by M.

Pridham et al. (10), and they explained that precipitation of S phase (AI2CuMg) along subgrain

boundaries in alloy 8090 prevents the subgrain boundaries from acting as efficient dislocation

sinks and hence, delays dynamic recovery.

With respect to the comparison of elongation between RX818 and ML377, the results of

Table 8 clearly demonstrate that ML377-T8 performs significantly better than RX818-T8 in both L

and LT directions, especially for the L direction for which its elongation decreases slightly when

tested at these temperatures.

From this discussion of tensile test results at elevated temperatures, one concludes that

ML377-T8 has a slightly better thermal stability than RX818-T8. This is in agreement with both

the grain structure and chemical composition; ML377-T8 has large recrystallized grains and

contains Mn dispersoids.

The elevated temperature test results and analysis present a most interesting topic from

both a practical and research point of view. Does the magnitude of the difference in tensile

properties between the 75"F test and the elevated temperature test have a correlation with the creep

strain? If it does, this simple tensile test can be used to qualitatively rank both thermal stability and

creep strain of these materials. This subject is reserved for further investigation.

T8 Temper Plus Various Thermal Exposures

The Elevated temperature tensile properties of RX818-T8, which were exposed to

temperatures of 200 and 225"F for both 300 and 1000 hours and then tested at these two exposure

temperatures, are listed in Table 9. Likewise, these properties for ML377-T8 are listed in Table

10. In addition, the properties of both alloys in the T8 condition when tested at 200 and 225"F are
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included as baselines for comparison purpose. In order to facilitate a comparison of the effect of

thermal exposure on the tensile properties for RXS18 and ML377, the data listed in Tables 9 and

10 are plotted as strength vs thermal exposure time at 200 and 225°F in Figures 7 and 8.

Figures 7 and 8 show a consistent result that both the TYS and UTS of RX818-T8 and

ML377-T8 increase slightly with thermal exposure time at each of the 200 and 225°F exposure

temperatures. For example, both alloys increase their TYS and UTS of about 2 Ksi in both L and

LT directions when exposed to each temperature of 200 and 225°F for 1000 hours, and then tested

at these two exposure temperatures. This trend is similar to that of the same materials tested at

room temperature after thermal exposure, described in the section Tensile Properties of RX818-T8

and ML377-T8 With Thermal Exposure. Therefore, the explanation used in the previous section

can be applied to the present case. It is noted that elongation of both alloys is not affected by

thermal exposure.

In conclusion, thermal exposure at temperatures of 200 and 225°F for up to 1000 hours is

slightly beneficial to elevated temperature tensile strength for both alloys.

Conclusions

(1) In room temperature tests, RX818-T8 has both longitudinal and transverse tensile

strengths greater than ML377-T8; whereas the opposite is true for the 45 degree

direction. Correspondingly, the former alloy has a significantly lower strength in

the 45 degree direction than both longitudinal and transverse directions, but the

latter has a comparable strength in all three directions.

(2) The tensile strength for RX818 increases 2-3 Ksi and ML377-T8 increases its

strength only about 1 Ksi when exposed to temperatures of 200, 225 and 2750F for

1000 hours and then tested at room temperature.

(3) The tensile yield strength, ultimate tensile strength and strain hardening effect for

both RX818-T8 and ML377-T8 decrease with test temperatures from 75 to 2750F.

On the other hand, the elongation of both alloys increases with increasing test

temperature except for ML377-T8 in the longitudinal direction where it decreases

slightly when tested at elevated temperatures.

(4) RX818-T8 exhibits a stronger tensile strength in the longitudinal and transverse

directions than ML377-T8 when testing at 200, 225 and 2750F; while ML377-T8

has a slightly higher stability in its elevated temperature tensile properties compared

to RX818-T8.
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(5) The tensile strength for both RX818-T8 and ML377-T8 increases about 1 Ksi when

exposed to temperatures of 200F and 225"F for 1000 hours and then tested at these

two exposure temperatures.

Subtask 2

This task was subdivided into four Phases as shown in Fig. 1. As no materials

properties were generated during the subject program that could be reduced to very

preliminary property allowables for use in the design studies, it was not possible to initiate

Phases I, HI, and IV of the trade studies. However, substantial progress has been made in

Phase II, particularly with respect to the development of structural/manufacturing concepts

that would be particularly applicable to an "Aluminum" HSCT.

The aluminum structuraYmanufactudng design concepts for the wingbox, wing strake,

and fuselage were developed with reference to projected materials properties from ongoing

internal Boeing studies (Low-Cost Airplane Trade Study - LCATS). Aluminum material

structural design concepts are summarized in the matrices shown in Figs. 2, 3 and 4. They

are grouped into four major design families: (A) integrally stiffened, (B) sandwich, (C)

hybrid concepts, and (D) conventional skin/stringer construction. The details axe described

below:

A. Integrally Stiffened Three arrangements are included: extruded stringers,
orthogrid, and isogrid according to airplane location and type and magnitude of
loading.

B. Sandwich Arrangements include two variations on sandwich edge treatments
according to location and loading.

C. Hybrids (conventionally stiffened thin-sandwich skins) Included to study effects
of hybrids on structural performance and cost. In addition, hybrids could provide
redundant load paths, fail safety, and better damage tolerance, among other
benefits.

D. Conventional skin/stringer Included to provide a baseline from which to
measure concept improvements in terms of both performance and cost. (these
concepts are not shown in Figs. 2, 3, and 4).

To make the best use of materials, a tailored structural approach was used. Materials

possessing desired properties, along with novel structural arrangements that matched design and

manufacturing process requirements at different locations, were selected. In developing each of

the concepts, care was taken to address low-cost producible structure, as well as low weight and

high performance.
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Structural sizing of each of the design concepts was bcgnn under this grant and continued

under NASA contract NASI-19349. Sizing focused on refining the most promising concepts and

processes to provide design data for weight and later cost estimation. To understand the sensitivity

to material and structural concept changes, performance first was evaluated and compared at the

concept level. The plan and schedule for these activities arc shown in Figs. 5 and 6.

Six materials or structural concepts at the subcomponent level and four concepts at the

component and airplane level were examined. For airplane level weights analysis, the concepts

were not completed to the same degree of fidelity. A global (airplane) - loc. al (panel) optimization

iteration was used to determine minimum weight for each of the four airplane concepts. The

global-local optimization process proved to bc particularly difficult for the Mach 2.0 PMC skin-

stringer concept and did not converge satisfactorily. In addition, the methods for determining

fuselage weights for both the PMC skin-stringer and Titanium Honeycomb Sandwich concepts

were based on data from Lockheed and Northrop, respectively. Both different from the Boeing

method used for the PMC Honeycomb Sandwich concept. Therefore, the fuselage weights for the

PMC skin-stringer and Titanium Honeycomb Sandwich concepts, and wing weights for the PMC

skin-stringer concept arc subject to significant revisions. The effect of durability and damage, and

thermomechanical considerations on the overall weight were addressed in a preliminary fashion

during the FY94 effort. Our plans during FY95 are to complete the airplane weight evaluation

process to assure weights for the different concepts are consistent, and perform a more thorough

assessment of durability, damage tolerance, and thermomechanical considerations. The details of

this study can be found in NASA Contractor Report, Boeing Document Number D6-81508,

"NASA Materials and Structures Design Integration Trade Study, First Year Written Report,

January 1995" by Kumar G. Bhatia, Ludwig Suju, Stephen Sergev, David Gimmestad, Robert A.

Seis, Bryan D. Johnson, Mark Nazari, James Fogleman, S. Eric Cregger, Terry Tsuchiyama, Kim

Tran, Gcne Arnold, Nell E. Zimmer, Jr., and Dennis Stogin.
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Table 1. Test matrix for RX818 and ML377 sheet (no thermal exposure) tested at various elevated

temperatures

Type of Specimen

L Tensile

LT Tensile

45" Tensile

Test at R. T.

RX-L-1

RX-L-2

ML-L-1

ML-L-2

RX-LT-1

RX-LT-2

ML-LT-1

ML-LT-2

RX-45-1

RX-45-2

ML-45-1

ML-45-2

Test at 200 °F

RX-L-3

RX-L-4

ML-L-3

ML-L-4

RX-LT-3

RX-LT-4
ML-LT-3

ML-LT-4

Test at 225°F

RXoL-5

RX-L-6

ML-Lo5

ML-L-6

RX-LT-5

RX-LT-6

ML-LT-5

ML-LT-6

I Test at 275°F

RX-L-7

RX-L-8

ML-L-7
ML-L-8

RX-LT-7

RX-LT-8
ML-LT-7

ML-LT-8

Table 2. Test matrix for RX818 and ML377 sheet (with various thermal exposures) tested at room

temperature

Type of Thermal Exposure
Specimen

L Tensile

LT Tensile

200"F/

300 hrs

RX-L-9

RX-L-10

ML-L-9

ML-L-10

RX-LT-9

RX-LT- 10

ML-LT-9

ML-LT-10

200"W

1000 hrs

RX-L- 11

RX-L-12

ML-L-11

ML-L-12

RX-LT- 11

RX-LT-12

ML-LT-11

ML-LT-12

225"F/

300hrs

RX-L-13

RX-L-14

ML-L-13

ML-L-14

RX-LT-13
RX-LT- 14

ML-LT- 13

ML-LT-14

225"W

1000hrs

RX-L-15

RX-L-16

ML-L15

ML-L-16

RX-LTd5

RX-LT-16

ML-LT-15

ML-LT-16

275"F/

30O hrs

RX-L-17

RX-L-18

ML-L17

ML-L-18

RX-LT- 17

RX-LT- 18

ML-LT- 17

ML-LT-18

275"F/

1000 hrs

RX-L-19

RX-L-20

ML-L19

ML-L-20

RX-LT- 19

RX-LT-20

ML-LT-19

ML-LT-20
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Table 3. Test matrix for RX818 and ML377 sheet (with various thermal exposures) tested at two elevated

temperatures of 200"F and 225"F

Type of Specimen Thermal Exposure & Test Temperature

200"F/300 hrs 200"F/1000 hrs 225"F/300 hrs 225"F/1000 hrs

Test at 200"F Test at 200"F Test at 225"F Test at 225"F

L Tensile

LT Tensile

RX-L-21

RX-L-22

ML-L-21

ML-L-22

RX-LT-21

RX-LT-22

ML-LT-21

ML-LT-22

RX-L-23

RX-L-24

ML-L-23

ML-L-24

RX-LT-23

RX-LT-24

ML-LT-23
ML-LT-24

RX-L-25

RX-L-26

ML-L-25

ML-L-26

RX-LT-25

RX-LT-26

ML-LT-25

ML-LT-26

RX-L-27
RX-L-28

ML-L-27

ML-L-28

RX-LT-27
RX-LT-28

ML-LT-27

ML-LT-28

Table 4. Tensile properties of RX818-T8 as affected by thermal exposure (R.T. test)

Properties Thermal Exposure

T8 T8+200"F/ T8+200"F/ T8+225"F/ T8+225"F/ T8+275"F/ T8+275"F/

300 hrs 1000 hrs 300 hrs 1000 hrs 300 hrs 1000 hrs
I

TYS L 83.6 83.8 85.5 83.9 86.0 86.6

(Ksi) LT 80.1 80.6 81.7 81.6 82.9 82.2

UTS L 87.9 88.3 88.4 88.2 89.5 90.1

(Ksi) LT 84.9 85.3 85.9 86.0 86.7 85.9

Elong L 8.9 9.3 8.7 8.9 8.8 8.6

(%) LT 12.0 -- 11.2 10.8 10.6 10.5

86.8

84.1

90.1

87.5

8.1

9.1
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Table 5. Tensile properties of ML377-T8 as affected by thermal exposure (R.T. test)

Properties Thermal Exposure

1"8 TS+200"F/ T8+200"F/ T8+225"F/ T8+225"F/

300 hrs 1000 hrs 300 hrs 1000 hrs
I I II

TYS L 76.0 76.5 76.7 76.7 77.1

(Ksi) LT 74.2 74.2 75.1 75.0 75.6

UTS L 78.0 78.7 78.3 78.4 78.7

(Ksi) LT 80.1 80.1 80.8 81.0 81.6

Elong L 9.5 9.9 9.7 9.8 9.3

(%) LT 9.7 9.5 8.9 8.9 9.0

T8+275"_

300 hrs

76.7

75.9

78.5

81.7

8.8

9.0

TS+275"F/

1000 hrs

76.2

75.5

78.0

81.1

8.2

7.9

Table 6. Tensile property variation of RX818-T8 (no thermal exposure) with test temperature

Tensile

Properties

Test Temperature

75"F 200"F [ 225"F [ 275"F
I I

TYS L 83.6 79.4 78.5 75.7

(Ksi) LT 80.1 77.0 76.0 73.2

UTS L 87.9 81.1 79.7 75.6
I

(Ksi) LT 84.9 79.2 77.5 73.2

Elong L 8.9 11.0 11.9 13.1

(%) LT 12.0 13.5 13.9 16.0
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Table 7. Tensile property variation of ML377-T8 (no thermal exposure) with test temperature

Tensile Test

Properties 75"F 200"F

Temperature

225"F I 275"F

TYS L 76.0 72.4 71.8 69.6

(Ksi) LT 74.2 71.2 70.7 68.7

UTS L 78.0 73.0 71.8 69.8

(Ksi) LT 80.1 75.1 73.9 70.6

Elong L 9.5 9. I 8.6 9.1

(%) LT 9.7 10.6 10.9 12.0

Table 8 Tensile strength and elongation difference between the 75"F test and the elevated temperature tests
for RX818 and ML377

Alloy

RX818

ML377

Tensile

Properties

75"F 75"F-200"F 75"F-225"F 75"F-275"F

TYS L 83.6

LT 80.1

UTS L 87.9

LT 84.9

Elong L 8.9

LT 12.0

TYS L 76.0

LT 74.2

UTS L 78.0

LT 80.1

Elong L 9.5

LT 9.7

4.2 (5.0%) 5.1 (6.1%) 7.9 (9.4%)

3.1 (3.9%) 4.1 (5.1%) 6.9 (8.6%)

6.8 (7.7%) 8.2 (9.3%) 12.3 (14.0%)

5.7 (6.7%) 7.4 (8.7%) 11.7 (13.8%)

11.0 (24%) 3.0 (34%) 4.2 (47%)

1.5 (13%) 1.9 (16%) 4.0(33%)

3.6 (4.7%) 4.2 (5.5%) 6.4 (8.4%)

3.0 (4.0%) 3.5 (4.7%) 5.5 (7.4%)

5.0 (6.4%) 6.2 (7.9%) 8.2 (10.5%)

5.0 (6.0%) 6.2 (7.7%) 9.5 (11.9%)

-0.4(-4%) -0.9 (-9%) -0.4(-4%)

0.9 (9%) 1.2 (12%) 2.3 (24%)

* Percent change from 75"F.
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Table9. Tensile property variations of RX818-T8 (T8 and 1"8 plus thermal exposure) with test temperature

Tensile

Properties

Thermal Exposure & Test Temperature

1"-8

200"F Test
200"F/300 200"F/1000 1"-8 225"F/'300 225"F/1000

hrs hrs 225"F Test hrs hrs
200"F Test 200"F Test 225"F Test 225"F Test

TYS L 79.4 80.0 80.7 78.5 79.5 80.5

(Ksi) LT 77.0 77.4 78.2 76.0 76.3 78.3

UTS L 81.1 81.5 82.2 79.7 80.0 80.8

(Ksi) LT 79.2 79.5 80.0 77.5 77.4 79.1

Elong L 11.0 11.4 11.1 11.9 11.7 11.6

(%) LT 13.5 12.8 12.2 13.9 14.1 13.3

Table 10. Tensile property variations of ML377-T8 (T8 and 1"8 plus thermal exposure) with test

temperature
o

Tensile Thermal Exposure & Test Temperature

Properties T-8 200"F/300 200F/1000 T-8 225"F/300 225"F/1000

200"F hrs hrs 225"F Test hrs hrs
Test 200"F Test 200"F Test 225"F Test 225"F Test

TYS L 72.4 73.1 73.4 71.8 72.3 73.2

(Ksi) LT 71.2 72.1 72.5 70.7 71.8 72.2

UTS L 73.0 73.4 73.6 71.8 72.3 73.3

(Ksi) LT 75.1 76.0 76.4 73.9 74.8 75.4

Elong L 9.1 9.4 9.4 8.6 8.7 8.8

(%) LT 10.6 10.3 10.1 10.9 10.4 10.6
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Figure 1. Optical micrographs showing unrecrystallized grain structure of

RX818-T8; (a) near the surface area, and (b) the center region.
100X
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Figure 2. Optical micrographs showing recrystallized grain structure of
ML377-T8; (a) near the surface area, and (b) the center region.
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Objectives:

(1) To evaluate aluminum-based materials and processes in terms HSCT
airplane performance.

Approach:

Phase ImMaterial Property Projections

(1) Review/update LCATS property proiections
(2) Develop property projections for non-LCATS alloys
(3) Develop pref. "allowables" for non-LCATS alloys

Phase llmConcept Weight Evaluation

(1) Select concepts

(2) Conduct structural analysis on selected concepts
(3) Develop weights data

Phase HlmAirplane Performance Evaluation

(1) Develop three (3) airplane c0ncepts/materials
(2) Develop point-design weights
(3) "FI3_ airplanes for equivalent mission sizin_

Phase IVmTechnology Recommendations

(1) Prepare list critical technical needs
(2) Prepare technology recommendations

Deliverables:

Phase ImMaterial Property Projections

(I) Material property proiections

Phase llmConcept Weight Evaluation

(1) Concept relative weights

Phase lllmAirplane Performance Evaluation

(1) Airplane concepts/materials
(2) Mission-sized relative MTOWs

Phase IVmTechnology Recommendations

(1) List of technical needs

(2) Technology recommendati0r_

Figure 9. 1992 Material Technology Trade Studies for the Airframe
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LCATS/UVA ALUMINUM CONCEPTS SUMMARY

Aluminum Concept Package Summary

WING CONCEPTS

CONCEPT TYPE

INTEGRALLY
STIFFENED

SANDWICH
PANELS

THIN
SANDWICH
STIFFENED

SKIN/STRINGER
CONVENTIONAL

WING BOX

UPPER PANELS

1A

2A

3A

N/A

WING BOX

LOWER PANELS

1B

2A

3B

N/A

STRAKE WING
LWR/UPPR

1C

2B

3A & 3B

N/A

FUSELAGE CONCEPTS

CONCEPT TYPE

INTEGRALLY
STIFFENED

SANDWICH PANELS

THIN SANDWICH
STIFFENED

SKIN/STRINGER
CONVENTIONAL

WING BOX
UPPER PANELS

7A

8A

9A

N/A

WING BOX
LOWER PANELS

7B

8B

9A

N/A

STRAKE WING
LWR/UPPR

7A OR 7B

8C

9B

N/A

N/A: Pictorial representation of this concept family is not available at this moment. However
extensive amount of information is available for this conventional type of structural

arrangement.

Figure 10. LCATS/UVA Aluminum Concepts Summary
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Objectives:

(1) To evaluate aluminum-based materials and processes in terms HSCT
airplane performance.

Approach:

Phase ImMaterial Property Projections

(1) Review/update LCATS property __r.ojections
(2) Review supplier updates

Phase ll--Concept Weight Evaluation

(1) Develop/update/select design concepts
(2) Conduct structural ,analysis on selected concepts
(3) Develop concept-level weights data

Phase Ill--Technology Recommendations

(1) Prepare list critical technical needs
(2) Prepare technology recommendations

Deliverables:

Phase ImMaterial Property Projections

(1) Material property projections

Phase II--Concept Weight Evaluation

(1) Concept-level relative weights

Phase lll--Technology Recommendations

(1) List of technical needs
(2) Technology recommendations

Figure 13. 1993 Material Technology Trade Studies for the Airframe
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McDONNELL DOUGLAS

Aluminum-Based Materials for High

R.S. Kahandal

Senior Manager

Advanced Materials and Processes Laboratories

Speed Aircraft - Final Report

Abstract

NASA-LaRC has provided the University of Virginia (UVa) with a grant to investigate

aluminum-based materials for use on future high speed aircraft. UVa has directed material

suppliers to develop aluminum alloys and metal-matrix composites (MMCs), not included in this

report, with improved elevated temperature properties and stability. McDonnell Douglas

Aerospace (MDA) and Boeing have been selected by the University of Virginia to evaluate the

design and material properties of these improved materials and conduct trade studies using these

properties. This report focuses on four aluminum alloys. These alloys include: RX818-T8 and

ML377-T8 from Reynolds Metals Company; and C415-T8 and C416-T8 from Alcoa.

Introduction

The economic viability of the next generation of supersonic transport depends on the timely

development of materials and structures which can perform efficiently for extended periods in an

elevated temperature environment. The University of Virginia (UVa), as directed by

NASA-LaRC, has assembled a team of material suppliers experienced in alloy development in a

program to address this challenge. The overall objective of this program is to investigate and

develop improved aluminum alloys and metal matrix composites (MMCs) as candidates for

application on a High Speed Civil Transport (I-ISCT). These will be developed to meet target

properties supplied by HSCT airframe companies McDonnell Douglas Aerospace (MDA) and

Boeing. The most promising candidates will be evaluated in baseline designs to obtain optimized

material and structural vehicle concepts.

The RX818-T8 sheet and extrusion material was received in March 1994. An initial

shipment of C415-T8 and C416-T8 was received in December 1994. An additional shipment of

the C416-T8 was received in May 1995 to augment the previous C416-T8 material received. The

ML377-T8 material was received in June 1995.
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Approach

The approach for this program includes a six month material characterization and

evaluation effort. This effort was to be performed according to the test matrix shown in Table 1.

However, changes in the program necessitated a modification of the test matrix to that shown in

Table 2.
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Table 1. Original UVa Test Matrix(/)

TEST ORIENTATION TESTS

L-T; T-L 4Fracture Toughness (ASTM E399)(2)

Salt Fog Corrosion ASTM ( B 117) (2)

Blank Coupons

Interference-fit Fastener Panels (3)

Stress Corrosion Cracking (ASTM G49) (2,4)

Machining Trials

Cutting

Drilling/Reaming

Forming Trials

Brake Forming(5)

Hydro forming

Joining Study

Welding(6)

Adhesive Bonding

Chemical Processing

Chemical Milling

Anodizing

N/A

N/A

LT

N/A

N/A

L; 30; 45, 60; LT

N/A

N/A

N/A

N/A

N/A

4

4

18

50

5

Total Number of Tests per Alloy 113

(1)

(2)
(3)
(4)

(5")
(6)

Material Required; 1,000 sq. in. per lot; multiple lots acceptable; 12-inch
minimum sheet width

Testing before and after thermal exposure

Six each Ti fasteners installed wet and dry at standard interferences per specimen

Spring-loaded fiat tensile specimens tested by alternate immersion in substitute
ocean water (ASTM D141)

Minimum Bend Radius; 2 specimens/radii for 5 radii

TIG, laser, capacitor discharge, and flash welding techniques used successfully

until acceptable welds are produced
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Table 2. Revised UVa Test Matrix

TEST MATERIAL

RX818-T8 [ ML377 [ C415-T8 [ C416-T8

Sheet Ext. Sheet Sheet Ext. Sheet Ext.

Corrosion Test

Alternate Immersion ASTM G 44 5 1 1 2 2 2 2 15

Aanospheric ASTM G 50 5 1 1 1 2 1 2 13

Machining

Drilling 6 12 6 6 30

Reaming 6 12 6 6 30

Milling 6 6 6 18

Chemical Processing

Anodize 2 4 2 2 10

Chem Mill 4 2 4 2 2 2 2 18

No. of

Tests

* Note: These materials were not received.

CORROSION STUDY

Procedure

The corrosion study consisted of both atmospheric and alternate immersion interference fit

test panels. The atmospheric tests followed the procedures of the American Society for Testing

and Materials (ASTM) specification G 50 and the alternate immersion tests followed ASTM G 44.

The atmospheric testing is currently proceeding at the Douglas Aircraft Company (DAC) E1

Segundo Beach test site shown in Figure 1. This test requires two years to complete. The

alternate immersion test is performed in the DAC Long Beach test laboratory facilities shown in

Figure 2. This test requires 90 days for completion.
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Figure1. DAC E1SegundoBeachAtmosphericEnvironmentCorrosionTestSiteLocation
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Figure2. DAC Alternate Immersion Testing Facility

Ten panels were made from the RX818-T8 sheet and two from the extrusion. Six panels made

from the RX818-T8 sheet were double panels where two sheets of material were mate drilled with

holes 0.244 inch in diameter for 1/4 inch titanium lockbolts allowing for an interference fit of

0.0045 inch. The layout of fasteners is shown in Figure 3. Of these panels, two panels were

bare, two were alodine coated, and two were anodized. One half of the surface area of each

alodine coated and anodized panel was painted with primer. For details refer to the chemical

processing section on page _ of this report. Four panels made from the RX818-T8 sheet were

single panels with varying fastener interference fits. The layout pattern was modified to optimize

testing and take advantage of additional interferences. These interferences were 0.003, 0.004,

0.005, and 0.006 inches. Figure 4 shows this new layout pattern, Table 3 shows the

interferences, and Table 4 summarizes tests for all ten panels. Single sheet test panels were used

for corrosion evaluation on the remaining alloys. Three panels each were made from the C415 and
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C416 materials, one for alternate immersion and two for atmospheric testing. Two 4" x 10"

subsized corrosion panels were made from the ML377 material. The panels for the C415, C416

and ML377 all used the same interference fit set-up parameters as those for the single sheet

RX818-T8 panels.

a

8"

-F- --I--F

holedi_n.=0244" (20places)O.O045hte_erence

Figure 3. Built-up Two Sheet RX818-T8 Interference Fit Corrosion Panels, 6 each
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10"

Figure 4. Single Sheet Interference Fit Corrosion Panels for RX818-T8, C415-T8,
C416-T8, and ML377-T8 (Note various interference fits,)

Table 3. Interference Fit For RX818-T8 Sheet Corrosion Test Panels

COATING

Beve

B_e

AlodineJPrime

Anodize3Pdme

TYPE

Double

Single

Double

Double

QUANTITY

2

4.

2

2

INTERFERENCE

0.0045

0.003, 0.004, 0.005, 0.006

0.0045

0.0045
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Table 4. Surface Condition Configuration For Atmospheric and Alternate

Immersion Interference Fit Fastener Panels

ALLOY

RX818-T8

RX818-T8

RX818-T8

RX818-T8

RX818-T8

RX818-T8

C415

C415

C416

C416

ML377

ML377

No. of

PANELS

3

1

1

3

1

1

2

1

TEST

Atmospheric

Atmospheric

Atmospheric

Alt Immersion

Alt Immersion

Alt Immersion

Atmospheric

Alt Immersion

Atmospheric

Alt Immersion

Atmospheric

Alt Immersion

CHEMICAL

TREATMENT

Bare

Alodine

Anodize

Bare

Alodine

Anodize

Bale

Bare

Bale

Bare

Bale

Bare

COATING

Bare

1/2 FR Prime

1/2 FR Prime

Bale

1/2 FR Prime

1/2 FR Prime

Bale

Bare

Bale

Bare

Bale

Bare

Two RX818-T8 extrusions were also fabricated with 1/4 inch titanium lockbolts

into corrosion specimens following the layout pattern in Figure 5. These included interference fits

of 0.002, 0.0035, 0.0045, and 0.006 inches. One specimen was subjected to atmospheric testing

and the other was subjected to alternate immersion testing. Since ML377-T8 extrustions were not

available for evaluation, testing was not performed.
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Figure 5. RX818-T8 Extrusion Interference Fit Corrosion Panels

Figure 6. RX818-T8 Extrusion Interference Fit Alternate Immersion Test Panels
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Results and Discussion

Visual inspection was performed after completion of the alternate immersion test

for the RX818-T8 test coupons and is summarized in Table 6. These results show that for the bare

and alodine panels there is moderate, and slight to moderate pitting, with no cracking. For the

panels that received alodine with primer and anodize with primer there was no visible corrosion or

cracking. Figure 6 shows the RX818-T8 sheet alternate immersion panels after 90 days exposure

and Figure 7 shows the RX818-T8 extrusion panels prior to test.

Table 5. Corrosion Panel Status

Material

RX818-T8 Sheet

R.X818-T8 Sheet

RX818-T8 Ext.

R.X818-T8 Ext.

C415-T8 Sheet

C415-T8 Sheet

C416-T8 Sheet

C416-T8 Sheet

ML377-T8 Sheet

ML377-T8 Sheet

Test

Atmospheric

Alternate Immersion

Atmospheric

Alternate Immersion

Atmospheric

Alternate Immersion

Atmospheric

Alternate Immersion

Atmospheric

Alternate Immersion

Length

2 Years

90 Days

2 Years

90 Days

2 Years

90 Days

2 Years

90 Days

2 Years

90 Days

Date of Completion

12/96

12/94

3/97

10/95

8/97

11/95

8/97

11/95

8/97

11/95

Table 6. RX818-T8 Corrosion Results

Material

RX818-T8 Sheet

RX818-T8 Sheet

RX818-T8 Sheet

RX818-T8 Sheet

RX818-T8 Sheet

Test

Bare

Alodine

Anodize

Alodine and Prime

Anodize and Prime

Visual Observation

Moderate Pitting

Slight to moderate pitting

none

none

none

Cracking

none

none

none

none

none
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Figure7. RX818-T8SheetAfter 90DaysExposure

Microstructuralexaminationof theRX818-T8sheetshowspittingandmoderateexfoliation
corrosionat the exposedsurfacesof the alternateimmersionspecimens,seeFigures 8 and 9.
Measurementsof a typical pitting site for thealternateimmersionspecimensshoweddepthsof
0.008 inch. This is typical for bare aluminum wrought products exposedto sucha severe
environment.Although pitting andexfoliation wasevidenton theRX818-T8testpanels,there
werenosignsof stresscorrosioncrackingdetectableby dyepenetrantinspectiontechnique.
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Figure8. PhotomicrographShowingPittingandExfoliationCorrosionat theSurface
of RX818-T8SheetNearaCountersunkHole

Figure9. PhotomicrographShowingPitting and Exfoliation Corrosionat the Surfaceof
RX818-T8SheetNeartheEdgeof aFastenerHole
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MATCHING STUDY

Procedure

The machining study included determination of optimum speeds and feeds for routing,

reaming, and milling and drill tool wear for hole preparation. The RX818-T8, C415-T8,

C416-T8, and ML377-T8 materials were compared to both 2090-T6 aluminum lithium alloy and

7075-T8 aluminum alloy.

The drill wear study was done with two different drill bit types, a HSS twist drill and a

double margin twist drill, both 3/16 inches diameter. The test of RX818-T8 material was

performed on a CNC Mill. The other materials were tested by manual drill feed. Drilling speed

parameters are from 1,000 to 3,000 rpm. Feed rate ranged from 4 to 32 inches per minute. Drill

wear was measured with a microscope set at 40 power at the drill tips lip and margins as shown

in Figure 10.

Routing was done with three router types: a two flute, straight fluted, HSS router; a three

flute, right hand spiral, left hand cut router; and a two flute, right hand spiral, right hand cut

router. The-speeds ranged from 2,000 to 20,000 rpm. Feed rates ranged from 4 to 200 inches

per minute.

Material hardness of each material was measured on a Rockwell hardness tester using the

Rockwell B (Rb) indentor.

Figure 10. Drill Tip Showing Drill Wear Measurement Locations
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Results and Discussion

With RX818-T8 material, the surface finish appeared good without the spalling seen

when drilling softer aluminum alloys.

Routing tests showed that the RX818-T8 material can be routed at a wide variety of

speeds and feeds without difficulty. Routing with light cuts produced fine surface finishes,

according to visual inspection.

The drill wear study compared the RX818-T8 to 2090 and 7075 aluminum alloys. The

spindle speed was 4,000 rpm and the feed rate was 32 inched per minute. Drilling was done dry

without coolant. The results shown in Table 7 shows that drill wear from the RX818-T8 is

greater than the wear of the 7075 and 2090 alloys. The drill bit used drilled 8,265 holes before

reaching the DAC Manufacturing Research and Development internal department standard limit of

0.005 inches wear. The drill wear was consistent and regular with no sign of excessive physical

or chemical abrasion.

Correlation of lab RX818-T8 test results to production line hand drilling applications

indicate that the drill should last about 4,000 holes in production. This is approximately 80% of

typical tool life for 7075-T6 aluminum.

In addition, drilling by hand, routing, reaming and milhng were performed. The operator

varied the speeds and feeds. During this no chipping, spalling or work hardening was observed,

as with the 2090 aluminum. Tool life is slightly shorter than for 7075, but not significantly

shorter. The material did not present any machinability problems that would require special tools

or techniques in production. Figure 11 shows the RX818-T8 panels after the drill wear test was

complete.
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Figure 11. RX818-T8 Sheet Drill Wear Panels

The C415-T8, C416-T8, and ML377-T8 materials faired better in the drill study than did

the RX818-T8. For all three materials the drill wear is consistently less than for the 2090, 7075,

and RX818 materials, as documented in Table 7. The dominant wear mechanism for the

C415-T8 and C416-T8 alloys is erosion rather than steady wear. However, the amount of

erosion is significantly less than was seen with the 2090 drill tests. Some drills eroded the

aluminum alloys more quickly than others probably due to the quality of tool grinding. Most of

the drills showed erosive wear of the cutting edge from 0.001 to 0.002 inches, after that steady

wear became the dominate wear mechanism. Erosive wear blunts the cutting edge caused by

chipping of the lips whereas steady wear is further material removal such as rounding of the

comers without blunting the cutting edge.

In the previous tests, CNC controlled equipment was used to reduce operator induced

variation in drill tests. The CNC equipment was not available for this test so a manual milling

machine was used. Manual drilling will lower drill life but it correlates closer to typical drill life

in the shop.

Projecting the test data, C415-T8 would wear out drills after about 10,000 holes. Wear

data for C416-T8 is less clear, showing drill bit would wear out anywhere from 5,000 holes to

15,000 holes. In neither case was there a notable tool problem. All four alloys have hardness

values comparable to 2090-T8 and 7075-T6 per DPS 1.05. Hardness values are shown in Table

8.
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Table 7. RX818-T8, C415-T8, C416-T8, and ML377-T8 Drill Wear Data (inches)

No.of

Holes

0

159

276

500

552

636

689

828

927

1000

1104

1245

1320

1380

1500

1563

1595

1656

1669

1696

1870

1932

1987

2000

2145

2305

2332

2420

2500

2623

2650

2943

3000

3186

3500

3926

4000

4244

4500

4562

RX818-T8

Wear

0.000

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.008

C415-T8

Wear

0.000

.OOO5

.0OO5

.0008

.0010

.0010

.0013

.0013

.0013

.0016

.0016

C416-T8

Wear

0.000

0.008

0.0013

0.0013

0.0013

0.0013

0.0013

0.0013

0.0013

0.0013

0.0013

ML377-T8
Wear

0.000

0.0005

0.0005

0.0010

0.0014

0.0014

0.0014

0.0014

2090-T8

Wear

0.000

0.0026

0.0026

0.0026

0.0026

0.0026

0.0026

0.0026

0.0026

0.0026

7075-T6

Wear

0.000

0.0018

0.0018

0.0018

0.002

0.002

0.0021

0.0021

0.0021

0.0021
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Table 8. Hardness Values

Material Hardness, R b

RX818-T8 Sheet

C415-T8

C416-T8

ML377-T8

2090-T8

7075-T6

92

87

83

90

85

90

CHEMICAL PROCESSING

Procedure

All materials were analyzed in 4L and 17L solutions, per Douglas Process Standard

(DPS) 9.481-2, for chemical milling characteristics. The etch rate and surface roughness were

measured with 7075-T6 and 2090-T8 used as baseline materials for comparison. See Table 9.

The 4L and 17L solutions are typically used for chemical milling of 2000 and 7000 series

aluminum alloys, per DPS 9.482-2. The chemical milling solution chemistries are described in

Table 10.

Table 9. UVa Chemical Process Analysis Table

Alloy

RX818-T8

ML377-T8

C415oT8

C416-T8

Bath

4L, 17L

4L, 17L

4L, 17L

4L, 17L

Comparison

2090-T8,7075-T6

2090-T8,7075-T6

2090-T8,7075-T6

2090-T8,7075-T6

Measure

Etch Rate, Roughness

Etch Rate, Roughness

Etch Rate, Roughness

Etch Rate, Roughness
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Table 10.ChemicalMilling Solutions

Solution

4L

17L

Tank

Mild Steel

Stainless

Temperature, oF

190 to 195

220 to 225

Chemical Composition

40 gal. 4L solution

(proprietary NaOH & S)

24.2 gal. NaOH, 2.0 gal.
Triethanolamine, 3.3 gal. TFE #3

The other chemical processing tests include chromic acid anodize per DPS 11.01 and

alodine 1500 coating per DPS 9.45. For the RX818-T8, these tests are being performed in

conjunction with the alternate immersion and atmospheric tests as described in section 3.0. The

other materials were tested with these chemical processes to evaluate adhesion but not subjected to

corrosion testing.

Results and Discussion

DPS 9.482-2 requires that the average roughness measured in both parallel and

perpendicular directions to be less than 100 microinches Ra, average roughness. The roughness

for RX818-T8 sheet in the 17L solution meets this requirement. The roughness values for both

the 17L and 4L solutions for the RX818-T8 extrusion, C415-T8 sheet, C416-T8 sheet, and

ML377-T8 sheet all meet this DPS requirement. All four alloys are chemically milled resulting in

less surface roughness values than for 2090-T8 sheet. Tables 11 though 14 show the details of

this data. In these Tables, the parallel measurement for roughness is the first value and the

perpendicular measurement is the second value.

The etch rate was measured in mils (thousands of an inch) per minute per surface. The

etch rate for all four materials is comparable to the etch rate for the 7075-T6 aluminum, in these

chemical milling solutions
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Table11. RX818-T8SheetChemicalMilling Results

Alloy

RX818-T8
Sheet

2090-T8

7075-T6

RX818-T8
Sheet

2090-T8

7075-T6

Solution

4L

4L

4L

17L

17L

17L

Etch Rate

(mils/min.
/surface)

0.82

0.80

0.70

2.55

2.50

2.30

Roughness

(lxin, Ra)

130/140

140/143

76/94

15/24

22/31

8/26

Table 12. RX818 Extrusion Chemical MiUing Results

Alloy

RX818-T8 Ext

2090-T8

7075-T6

RX818-T8 Ext

2090-T8

7075-T6

Solution

4L

4L

4L

17L

17L

17L

Etch Rate

(mils/min.
/surface)

0.9

0.6

1.2

2.6

1.5

2.6

Roughness

(ttin, Ra)

74/65

595/655

29/32

47/55

200/180

30/36
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Table13. C415andC416SheetChemicalMilling Results

Alloy

C415-T8 Sheet

C416-T8 Sheet

2090-T8

7075 -T6

C415-T8 Sheet

C416-T8 Sheet

2090-T8

7075-T6

Solution

4L

4I.,

4L

4L

17L

17L

17L

17L

Etch Rate

(mils/min.
/surface)

1.2

1.3

0.6

1.2

2.6

2.5

1.5

2.6

Roughness

((in, Ra)

41/47

38/37

595/655

29/32

45/44

50/42

200/180

30/36

Table 14. ML377-T8 Sheet Chemical Milling Results

Alloy

ML377-T8 Sheet

2090-T8

7075-T6

ML377-T8 Sheet

2090-T8

7075-T6

Solution

4L

4L

4L

17L

17L

17L

Etch Rate

(mils/min.
/surface)

0.78

0,88

0.90

2.1

1.9

1.9

Roughness

((in, Ra)

70/78

380/410

95/110

53/59

205/240

53155

For the RX818-T8 the chromic acid anodize and alodine tests were performed in

conjunction with the alternate immersion and atmospheric tests. As discussed earlier, the results

of corrosion testing was favorable, there was no visible corrosion damage found. For all four

materials, adhesion of the coatings was visually inspected and considered equivalent to the

adhesion on the 2090-T8 and 7075-T6 aluminum alloys. Figures 12 though 15 show the various

chemical processing treatments on samples of RX818-T8 extrusion, C415-T8, C416-T8, and

RX818-T8 sheet.
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Figure 12. RX818-T8,C415-T8,C416-T8Alodine Coupons

Figure 13. RX818-T8,C415-T8,C416-T8AnodizeCoupons
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Figure14. RX818-T8Extrusion,C415-T8,C416-T8ChemMill Coupons
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Figure15. RX818-T8SheetChemMill Coupons

Conclusions

Preliminary corrosion test results are promising. Visual inspection of RX818-T8 revealed

moderate, and slight to moderate pitting, with no cracks. The machinability characteristics are

consistent with conventional aluminum alloys such as 7075-T6 and 2090-T8 and no difficulties

such as those encountered with 2090-T8 were experienced. The drill wear of C415-T8,

C416-T8, and ML377 is comparable to the wear from 2090 and 7075 alloys yet is less than the

drill wear of RX818-T8. The chemical processes normally required for airframe manufacturing

are successfully performed and meet DPS requirements. The roughness values for both the 17L

and 4L solutions for the RX818-T8 extrusion, C415-T8 sheet, C416-T8 sheet, and ML377-T8

sheet all meet this DPS requirement.
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REYNOLDS METALS COMPANY

NASA-UVA Light Aerospace Alloy and Structures Technology Program:
Aluminum-Based Materials for High Speed Aircraft

Investigators:
Dr. Alex Cho (Principal Investigator) - Reynolds Metals Company
Mr. M.A.Cantrell - Reynolds Metals Company
Dr. James Howe - University of Virginia
Dr. William Quist - Boeing Aircraft Company
Mr. R. Kahandal - Douglas Aircraft Company

Abstract

Successful development of the high speed civil transport system (HSCT) depends on the

availability of high performance elevated temperature materials. Among the ingot metallurgy

aluminum alloys, Reynolds Metals Company selected an AI-Cu-Li-Mg-Ag alloy as a candidate

alloy to meet the property and thermal stability requirements of the high speed civil transport

research program. Initial evaluation of the A1-Cu-Li-Mg-Ag alloy (RXS18) demonstrated

excellent combinations of strength and fracture toughness in T8 temper condition. However,

fracture toughness of these alloys after thermal exposure are lower than those in T8 temper. To

minimize the thermal degradation of fracture toughness, a study was conducted to examine the

effects of compositional and microstructural variations on the evolution of strength and fracture

toughness during thermal exposure. The composition study included both major alloying

elements such as Cu, Li, Mg and Ag and dispersoid forming elements such as Zr, V and Mn. To

examine the effect of grain structure on thermal stability, 0.0905 gauge sheet with both

unrecrystallized and recrystallized grain structures were produced and evaluated. For high

strength applications, unrecrystallized grain structures were favored. For full scale

characterization of these alloy variants, plant size ingots were cast for both recrystallized and

unrecrystallized alloy variants. These ingots were rolled to .0905 gauge sheet and delivered to

NASA and other HSCT team members for evaluation. In addition, a possible contamination by

alkali elements were examined from the plant produced sheet products. The result showed that

grain boundary segregation of alkali elements were not observed from the material even after

thermal exposure.
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Introduction

The objective of I/M AI-Cu-Li-Mg-Ag alloy development is to optimize a

precipitate-strengthened ingot metallurgy alloy, based on the AI-Cu-Li-Mg-Ag system, to meet the

property and thermal stability requirements of the High Speed Civil Transport Research Program.

A concurrent goal is to understand the effects of thermal exposure on the microstructural/property

evolution of the alloy as a function of time and temperature in order to help composition

optimization and to develop techniques for predicting the evolution of the alloy during long term

service environments.

Boeing Aircraft Company proposed several ambitious property goals for ingot metallurgy

aluminum alloys for damage tolerant HSCT applications. It is desired that the combination of

tensile yield strength and Kip p. fracture toughness fall within the range between

70ksi/140/ksi-inch 1/2 to 80ksi/100 ksi-inch 1/2 after exposure to an anticipated elevated

temperature service of up to 275°F (135°C).

Successful development of the high speed civil transport system (HSCT) depends on the

availability of high performance elevated temperature materials. Among the conventional

aluminum alloy systems, 2XXX series alloys are commonly used for elevated temperature

applications because Cu bearing particles exhibit greater thermal stability. For example, alloys

2618 and 2519 contain a large volume fraction of coarse intermetallic particles, which not only

enhance thermal stability, but also contribute to alloy strength. Unfortunately, coarse intermetallic

particles are only marginally effective as strengthening agents while being deleterious on fracture

toughness. Therefore, conventional 2XXX alloys offer limited strength and fracture toughness

capability.

Among conventional aluminum alloy systems, only 7XXX series alloys could potentially

meet the proposed property goals, but only prior to any thermal exposure. 7XXX series alloys are

strengthened by a combination of metastable GP zones and MgZn 2 precipitates which provide a

good combination of high strength and fracture toughness. However, these precipitate phases are

not stable above 100°C, therefore, 7XXX series alloys are not suitable for elevated temperature

applications.

Recent work at Reynolds Metals Company has demonstrated that a new proprietary

AI-Cu-Li-Mg-Ag alloy (RX818) could potentially meet Boeing's requirements for high

combinations of strength and fracture toughness. RX818 is mainly strengthened by

thermodynamically stable phases which form extremely fine distributions of precipitates (i.e. T 1

and S'-like phases). These are effective in providing high combination of strength and fracture
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toughnessbecausetheformation of large intermetallic particlesis avoided.A high level of

propertystabilityin RX818hasbeenestablishedin thermalexposurestudiesat Reynolds.Further

improvementof thermalstabilityof thealloycouldbeachievedby addingoptimumamountsof

dispersoidsin additionto theprecipitatedistribution.In TASK 2 program,theoptimumamounts

of precipitatesanddispersoidswill be establishedto improvethe mechanicalpropertiesand
thermalstabilityof RX818alloy.

Procedures

To accomplish the above objectives, TASK 2 program consists of the following subtasks:

SUBTASK 2A: Evaluate RX818 Variation Alloys as Model Materials to Understand the

Role of Various Strengthening Phases During Thermal

Exposure.(Reynolds Metals Co.)

SUBTASK 2B: A study of the microstructural evolution of the AI-Li-Cu-Mg-Ag

Systemwith RX818 alloy (UVa Participation)

SUBTASK 2C: A1-Cu-Li-Mg-Ag Alloy Evaluation (Boeing Participation)

SUBTASK 2D: AI-Cu-Li-Mg-Ag Alloy Evaluation (McDonnell Douglas Participation)

The SUBTASK 2A program consists of the following Subtasks:

Subtask 2A 1:

Evaluate the three variants of RX818 alloy with modified Mg and Ag content to examine the effect

of T 1 and S'-like phases on thermal stability and mechanical properties during the long term

exposure.

Subtask 2A2:

Examine the effect of dispersoids on thermal stability and mechanical properties of RX818 alloy -

moderate level of dispersoids for conventional casting.

Subtask 2A3:

Examine the effect of dispersoids on thermal stability and mechanical properties of RX818 alloy -

high level of dispersoids by Spray Deposition Technique.

Subta_k 2A4:

Examine the effect of recrystallization on thermal stability and mechanical properties of RX818

alloys.
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Subtask 2A$:

Examine the alloy variants with very high Cu:Li ratio on thermal stability and mechanical

properties.

Subtask 2A6:

Examine the grain boudary segregation of alkali metal elements during thermal exposure as a

possible cause for the loss of fracture toughness.

SUBTASK 2A: Evaluate RX818 Variation Alloys as Model materials to understand the

Role of Various Strengthening Phases During Thermal Exposure.

Subtask 2Al: Evaluate the three variants of RX818 alloy with modified Mg and Ag

content to examine the effect of T 1 and S'-like phases on thermal

stability and mechanical properties during long term thermal exposure.

Three levels of Mg and Ag contents were selected with fixed Cu and Li contents as three

RX818 variant alloys. To meet the material reqiurement, four ingots (12" thick x 20" wide x 36"

long) were cast and hot rolled to 0.1255 gauge unrecrystallized sheet for evaluation. Sheet

products were solution heat treated at 990"F for 1 hour followed by cold water quench and 5%

stretch. The sheet product were aged at 320°F for 16 hours as a standard age practice for all the

RX818 variant alloys.

Compositions:

Cu M_M_g IA Zr A_.g Si F_ge

(target) 3.6 .8 1.0 .14 .4 <.08 <.08
64627(actual) 3.8 .8 .9 .13 .4 .06 .06

(target) 3.6 .8 1.0 .14 .8 <.08 <.08
64641 (actual) 3.6 .76 .8 .14 .8 .06 .07

(target) 3.6 .4 1.0 .14 .4 <.08 <.08
64653 (actual) 3.6 .4 .8 .14 .4 .05 .07
64667(actual) 3.4 .4 .8 .14 .5 .04 .07

Tensile tests and plane stress fracture toughness test results by 16" wide center-notched

panel tests in longitudinal direction are listed in Table 1. Also included are the tensile and fracture

toughness properties after a thermal exposure of 1,000 hours at 275°F. After the thermal
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exposure,tensilestrengthsincreasedby 2-3 ksi andtheductility (tensileelongation)by 3-4%at
thesametime. However,fracturetoughness(Kc) decreased by 20-30 ksi-inchl/2. Tensile yield

stress vs. fracture toughness values by K c are plotted in Figure 1 to compare the results to the

typical properties of 7075-T6, 2024-T3 and 2090-T8. The T8 temper fracture toughness values

of the three alloys, S-64641, S-64667 and S-64627 are significantly higher than both 2090-T8

and 7075-T6 properties. Even after the thermal exposure, the K c fracture toughness values of

S-64667, S-64627 and S-64653 are still higher than that of 7075-T6. In order to compare the

fracture toughness values to the property targets proposed by Boeing Aircraft Company, the

Kap p. values of RX818 type alloys are plotted in Figure 2. Prior to the thermal exposure, the

Kap p. fracture toughness values of the RX818 type alloys in T8 temper are higher than the

proposed fracture toughness goal. However, after the thermal exposure, the fracture toughness

values of the RX818 type alloys are lower than the proposed fracture toughness goal, even

though the strengths are still higher than the proposed strength goal. This suggests that a further

composition optimization is necessary to further improve the fracture toughness after the long

term thermal exposures. Among the alloys tested, the best property combination was achieved by

S-64627 which contains 0.8% Mg and 0.4% Ag.
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TABLE 1

Tensile Test andPlaneStressFractureToughnessTestResultsfrom hot rolled 0.125" gauge

sheetof four RX818typealloysinT8 temperandin T8 after 1,000h at 275°F.

S.No. UTS(ksi) TYS(ksi) El.(%) K__ K__

64627-T8 84.7 82.3 6.3 148.3 119.9

T8+l,000h 89.7 85.4 6.3 116.7 98.2

64641-T8 87.8 85.4 6.3 116.9 98.2

T8+l,000h 89.7 87.1 9.5 67.9 62.1

64653-T8 82.1 78.9 8.0 ....

T8+1,000h 85.1 81.7 12.0 102.0 89.4

64667-T8 85.4 82.1 8.0 131.0 102.8

T8+l,000h 87.3 84.1 11.5 92.9 78.9

Note:

All the tensile properties are averaged from duplicates and K c and Kap p. values are from single

tests.

Ke and Kap p. values were tested by single 16" wide center notched and fatigue precracked

specimens

K¢ and Kap p. values are in ksi-(inch) 1/2
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Subtask 2A2: Examine the effect of dispersoids on thermal stability and mechanical properties of

RX818 alloy - moderate level of dispersoids for conventional casting.

The strength of RX818 alloy is based on precipitate strengthening. Further improvement

of thermal stability of the alloy could be achieved by introducing optimum amount of dispersoids

in addition to the precipitate distribution. The addition of dispersoids will improve thermal

stability but could be deleterious to fracture toughness if too many are added. The key to the

further improvement, therefore, would be identifying the optimum combination of precipitation

strengthening and dispersoid strengthening. Two considerations were given in selecting alloying

elements to form dispersoids: the first, its ability to form a thermally stable coherent phase to

maximize strengthening effect; and the second, its cost to be economical enough for commercial

scale production.

In this work, Zirconium, Vanadium and Manganese additions are being examined among

the peritectic elements. For the initial five compositions of 30 lbs. permanent mold ingots were

selected and cast. The target and actual compositions are as follows:

Compositions:

c__uu Li M__g A_.g Zr V

65836 (target) 3.5 1.0 .4 .4 .17 .1
(actual) 3.4 .99 .52 .34 .15 .12

65837 (target) 3.5 0.8 .4 .4 .17 .1
(actual) 3.5 .86 .39 .22 .18 .12

65638 (target) 3.0 1.2 .4 .4 .17 .1
(actual) 3.1 1.21 .4 .36 .15 .12

65839 (target) 3.5 1.0 .4 .4 .17 .1
(actual) 3.35 1.04 .4 .34 .17 .12

65840 (target) 3.5 1.0 .4 .4 .17 --
(actual) 3.5 1.0 .39 .36 .16 .01

Mn

.3

.3

.3

.3

.3

.29

b--

The ingots were homogenized, scalped and hot rolled to 0.125_i gauge sheet. The hot

rolled sheet were then cold rolled to .0908 gauge sheet. The final gauge sheet products were

solution heat treated at 990°F for 1 hour followed by cold water quench. T8 temper sheet were

stretched by 5% and aged at 320°F for 16 hours as a standard T8 temper practice. Metallographic
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examination of the .090_igaugesheet.samplesin T8 tempershowedvarious degreesof

recrystallizationdependingon the alloy chemistry. The grainstructuresof thefive alloys are
shownin Figure3. FourvariantalloyscontainingMn andV, S.No.65836,65837,65838and

65839,were recrystallizedat variousdegrees. S.No. 65840,which containsonly Zr, is not

recrystallized.Thetensilepropertiesof all fivevariantsinT8 tempermaterialunderwentcomplex

property changesduring the initial stageof the thermal exposuresat 275"F. No significant

changesoccurredin strengthor fracturetoughnessafter exposurefor 1,000hours and2,500
hoursat275*.

Additional Experiment

Among the five alloy variants examined, only S.No. 65840 was not recrystallized. The

cause of the various degrees of recrystallization for the four other variants were not very clear at

the time. To provide more information regarding the effect of dispersoid forming elements on the

grain structure and fracture toughness after thermal exposure, additional five compositions of the

30 lbs. permanent mold ingots were cast. The five compositions are as follows:

Li M__g A__g Zr V Mn

66932 (target) 3.5 1.0 .4 .4 .16 .1 .3
(actual) 3.49 1.11 .43 .43 .17 .11 .19

66933 (target) 3.5 0.8 .4 .4 .16 .1 .3
(actual) 3.46 0.82 .42 .46 .19 .11 .34

66934 (target) 3.0 1.2 .4 .4 .16 .1 .3
(actual) 2.92 1.21 .4 .44 .18 .12 .33

66936 (target) 3.5 1.0 .4 .4 .16 ....
(actual) 3.42 1.02 .39 .42 .17 ....

66937 (target) 3.5 1.0 .4 .4 .16 -- .3
(actual) 3.50 1.0 .41 .43 .18 -- .32

The ingots were homogenized, scalped and hot rolled to 0.125_5 gauge sheet. The hot

rolled sheet were then cold rolled to .090_5 gauge sheet. The final gauge sheet products were

solution heat treated at 990"F for 1 hour followed by cold water quench. T8 temper sheet were

stretched by 5% and aged at 320°F for 16 hours as a standard T8 temper practice. Metallographic

examination of the .090_5 gauge sheet samples in T8 temper showed various degrees of
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recrystallizationdependingon the alloy chemistry. Thegrain structuresof thefive alloys are

shownin the Figure 4. Alloys with Zr alone retainedunrecrystallizedgrain structuresafter

solutionheattreatment. Othervariantswith additionaldispersoids(Mn, V) wererecrystallized

aftersolutionheattreatmentatvariousdegrees.

Tensile test andfracturetoughnesstest resultsof the .0908 gaugesheetin T8 temper

beforeandaftera thermalexposurearelisted in TABLE 3. Dueto amistakeduringtheT8 test

samplepreparation,therewereno tensilepropertieswereavailablefor S.No.66936in T8 temper.

Fracturetoughnessvalues by K c and Kap p. values of all ten alloy variants after thermal exposure

of 2500 hours at 275"F are plotted in Figure 5 and Figure 6. respectively. The data are presented

in three groups by the degree of recrystallization. These observation suggests that materials with

recrystallized grain structure would be favored for higher fracture toughness applications at a

medium strength level, and materials with unrecrystallized microstructures would be favored for

higher strength applications with a limited fracture toughness capability. Another observation is

that alloy variant containing Zr and Mn without Vanadium exhibited better fracture toughness at a

similar strength level than the alloy variants containing Zr, Mn and V.
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TABLE 2

Tensiletest (longitudinaldirection) and plane stress fracture toughness test (L-T)* after thermal

exposures at 275"F for 1,000 hours (-2) and 2,500 hours (-3).

S.No. UTS(ksi) TYS(ksi] El(%) K__

65836-2 77.3 74.0 9.0 105.7 81.1

65836-3 76.6 74.0 8.5 93.3 77.4

65837-2 72.3 67.6 9.0 139.7 93.3

65837-3 72.3 68.5 8.5 126.0 88.1

65838-2 73.7 70.6 8.0 92.5 75.8

65838-3 73.6 70.7 5.5 91.2 72.9

65839-2 78.0 75.0 7.0 87.2 73.3

65839-3 78.2 75.1 7.0 82.4 67.7

65840-2 83.6 79.8 6.5 80.4 71.6

65840-3 82.8 78.4 8.5 88.7 73.2

Note:

All the tensile properties are averaged from duplicate test results.

K c and Kap p values are from single test results in ksi-(inch) lt2

* 108 wide .0908 thick cold rolled center notched panels
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TABLE3

Tensile test (longitudinal direction)andplanestressfracturetoughnesstest ( L-T)* in theT8

temper(-1) andafterthermalexposuresat275°Ffor 2,500hours(-2).

S.No_. UTS(ksi) TYS(ksi) _ K__

66932-1 79.6 76.5 8.0 N.A. N.A.

66932-2 81.5 78.5 8.5 76.9 67.6

66933-1 74.0 69.9 9.0 140.5 97.5

66933-2 76.5 73.2 10.2 114.8 83.9

66934-1 69.5 65.1 10.0 136.9 93.6

66934-2 73.2 70.8 10.5 91.0 74.4

66936-1 N.A. N.A. N.A. N.A. N.A.

66936-2 79.5 76.7 8.8 97.1 79.1

66937-1 75.4 70.9 9.0 150.0 100.3

66937-2 78.6 74.5 9.3 99.7 88.1

Note:

All the tensile properties are averaged from duplicate test results.

K c and Kap p values are from single test results in ksi-(inch) 1/2

* 105 wide .0905 thick cold rolled center notched panel
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Subtask 2A3: Examine the effect of dispersoids on thermal stability and mechanical properties

of RX818 alloy - high level of dispersoids by Spray Deposition Technique.

The dispersoid particles formed by Zr, V, and Mn are coherent phases which are effective

strengthening agents. However, addition of too much of these elements would result in coarse

incoherent particles which are extremely deleterious to fracture toughness.

Therefore, the total amount of these coherent dispersoid particles is very limited compared

to the precipitate particles in RX818 alloy. One way to increase the amount of these coherent

dispersoid particles is to employ a casting technique with a faster solidification rate.

In this work, RX818 variation alloys with a high volume fraction of dispersoids were

evaluated with the billet cast by Spray Deposition Technique. Spray Deposition Technique was

selected for its enhanced solidification rate and its economic feasibility for commercial scale

production. Five compositions of 30 lbs permanent mold ingots were cast as starting stock

material for Spray Deposition casting. The compositions are as follows:

S.No_......._. C___u Li M_.M_g A_g Zr V Mn

65831 (target) 3.5 1.0 .4 .4 .3 .2 --
(actual) 3.45 1.0 .43 .29 .29 .18 .01

65632 (target) 3.5 1.0 .4 .4 .3 .2 .5
(actual) 3.6 1.04 .43 .38 .28 .18 .44

65833 (target) 3.5 1.0 .4 .4 .25 .2 .3
(actual) 3.6 1.1 .43 .44 .26 .17 .32

65834 (target) 3.5 1.0 .4 .4 .25 .1 .3
(actual) 3.39 1.02 .41 .43 .22 .09 .3

65835 (target) 3.0 1.2 .4 .4 .3 .2 --
(actual) 3.58 1.21 .42 .46 .27 .17 --

The Spray deposited billets were machined to 3" diameter billets and extruded to .25" x

1.5" cross section bars. To compare the properties to the sheet from the conventionally cast

ingots, these extrusions were hot rolled to 0.125" gauge and then cold rolled to 0.090_5 gauge

sheet. The final gauge sheet products were solution heat treated _it 990°F for 1 hour followed by

cold water quench. T8 temper sheet were stretched by 5% and aged at 320"F for 16 hours as a

standard T8 temper practice.
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Themostsurprisingobservationwasthata Mn additionsignificantlyincreasesthedegree

of recrystallizationafterheattreatment. Metallographicexaminationof thegrainstructuresafter

solutionheattreatment(Figure7)revealedthatthealloyscontainingZr andnoMn arecompletely

unrecrystallizedandthealloys containingboth Zr andMn are fully recrystallizedwith coarse

recrystallized grains. It appearsthat V content does not show a strong effect on the

recrystallizationbehavior. It shouldbe noted that the strengthsof thesealloys are strongly

influencedby thedegreeof recrystallization.
Dueto thenarrowsheetsamplesfrom thespraydepositedbillets,it wasdecidedto utilize

KahnTear testsasafracturetoughnessindicatortest. ThetensileandKahnTeartestresultsof

thesamplesin T8 andin T8 + thermalexposureconditionsarelistedin Table4. Tensileyield

stressesandPropagationEnergy from Kahntestsfrom thefive variantsafterthermalexposureat

275°Fareplotted in Figure8. As statedearlier, thematerialquality of thesebillets werevery

questionable,sowedonothaveenoughconfidencein thequalityof thetestresults.
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TABLE 4

Longitudinal Tensile Test and Kahn Tear test results of 0.0905 gauge sheet which were extruded

and rolled from Spray Deposited billets and aged at 320°F for 16 hours.

S. No. Exposure UTS (ksi) Tys (ksi)

65831 as T8* 78.8 74.8 9.5
500

1000
2500 78.6 73.1 7.0

72.6 69.7 10.565832 as T8
500

1000
2500

65838 as T8
500

1000
2500

65834 as T8
500

1000
2500

65835 as T8
500

1000
2500

73.3 69.1 9.0

69.8 67.2 12.5

66.8 63.0 7.5

68.9 67.1 10.5

69.5 67.2 10.5

83.9 80.6 9.5

79.6 73.3 6.5

Tear

Strength (ksi)

Propagation

Energy (in-lb/in2)

18.1 297
16.7 342
18.7 419

17.9 417
16.9 360
16.7 290

16.0 187
8.2 36
9.1 21

19.0 270
18.8 266
18.3 270

13.7 186
13.0 135
13.4 135

* Aged at 3200F for 16 hours.

Note: tensile test results are averged values from duplicates.
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Subtask2A4:Examinetheeffectof recrystallizationonthermalstabilityandmechanical

propertiesof RX818typealloyswith full sizeinqots.

The earlier work showedpromisingstrength-toughnessresultsfrom RX818 alloy and
alsoshowedpotentialbenefitsof recrystallizedvariants.Therefore,RMC decidedto castfour full

sizeingotsto verify thefull potentialof thesealloysfor thefuturehighspeedaircraftapplications.

The unrecrystallized variant was designatedas RX818 and the recrystallized variant was
designatedasML377.

Four 10,000pound ingots with 16" thick by 45" wide crosssection were cast with

RXS18chemistry (IngotNo. 13839-5and 13839-6)andML377 chemistry(Ingot No. 1385-2
and1385-4).Theactualchemistriesarelistedbelow:

RX818

IngotNo. Lot No. FinalGauqe Cu Li Mg Ag Zr
13839-5 930K665B .090inch 3.76 .99 .51 .36 .14

13839-6 930K665A scrapped 3.49 .96 .47 .33 .15

ML377

Ingot No. Lot No. Final Gauge Cu Li Mg Ag Zr Mn

1385-2 930K664A .063 inch 3.53 .96 .44 .42 .14 .29

1385-4 930K664B .090inch 3.50 .95 .39 .42 .12 .30

Ingot 13839-5 (RX818) and the ingot 1385-2 (ML377) were rolled to .090_i gauge. Ingot

13839-6 (RX818) and 1385-4 (ML377) were rolled to .063_i gauge sheet. Ingot No. 13839-6

was scrapped after solution heat treatment due to the extremely coarse recrystallized grain

structure. Sheet product were solution heat treated at 990°F for an hour followed by water quench

and 3% stretch. The sheet product then aged at 320°F for 20 hours as a standard age practice for

all RX818 variant alloys. Optical metallographic examination revealed that RX818 alloy sheet

(930K665B) was not recrystallized, and ML377 alloy sheet (930K664B) was fully recrystallized

(Figure 9).

Crystallographic texture of both alloys are examined by X-ray diffraction method. Figure

10 shows the (111) Pole figures from RX818(930K665B) and ML377(930K664B) sheet. The

Pole figure of RX818 sheet demonstrates the typical unrecrystallized texture with a strong
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intensity of Brasscomponent(110)[112]. Figure 11showsvolumefraction calculatedfrom

CODF (CrystallographicOrientationDistribution Function)from the two alloy sheet.ThePole
figure from ML377 sheet,by contrast,showsastrongGosscomponent(110)[001]which is one

of thetypical recrystallizedtexturecomponent.Theeffectof thesedifferencesin texturebetween

RX818andML377 sheetresultedin thesignificantdifferencein strengthanisotropy.

Tensile and planestressfracture toughnesstest resultsfrom .090" gaugeRX818 and

ML377 sheetarelistedinTable5 andTable6,respectively.Tensiletestswereconductedwith 2"

gaugelengthsheetspecimensin bothT3 andT8 temperconditions. Mechanicalpropertiesin T3

temperareof interestbecausemostsheetformingoperationsareperfomedin T3 temper.

In Figure 12,ML377 sheetshowshigh tensileelongationvaluesin all threedirectionswhile

unrecrystaUizedRX818sheetshowslimitedductilityin thelongitudinaldirection.In T8

temperconditions,RX818sheetshows a significant strength anisotropic behavior as can be seen

in Figure 13. Even though the strength of ML377 in the longitudinal direction is not as high as

that of RX818, the ML377 T8 temper sheet exhibited uniform strength in all three directions as a

result of the fully-recrystallized grain structure with strong Goss component.

The plane stress fracture toughness tests were conducted in T8 temper with 16 inch wide,

center notched, fatigue precracked panel specimens. Duplicate tests were conducted in the

longitudinal direction for both RX818-T8 and ML377-T8 sheet. The test results are plotted in

Figure 14 with typical strength fracture toughness values of 2024-T3 and 7075-T6 sheet. Both

RX818-T8 and ML377-T8 show an excellent combination of strength and fracture toughness

properties compared to these conventional alloys.
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TABLE 5

Mechanicalpropertiesof .090"gaugecoldrolledML377 sheeetin T3 and T8 temper

(Ingot No. 1385-2, Lot No. 930K664B)

T3 temper (3% stretched)

Ga. direction UTS(ksi) TYS (ksi) El(%) Kc(ksi(inch) 1/2)

.090" L 54.1 40.8 19.8 N.A.

45 deg. 52.7 38.3 18.0

LT 51.9 37.0 21.0

K.app. (ksi(inch) 1/2)

N.A.

T8 temper (3% stretched, aged at 320°F for 20 hrs.)

Ga.___. direction UTS(ksi) TYS(ksi) El(%) wKc(ksi(inch) l/2)

.090" L 79.0 75.1 8.3 136.1

161.2

45 deg. 81.4 75.8 8.5

LT 80.0 73.4 12.0

Kap p. (ksi(inch)l/2)

105.9

114.2

Note:

All the tensile properties are averaged from duplicate test results.

Kc and Kap p. values are from single test results in Ksi-(inch)1/2
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TABLE 6

Mechanical properties of .090" gauge cold rolled RX818 sheeet in T3 and T8 temper

(Ingot No. 13838-5, Lot No. 930K665B)

T3 tem tmr (3% stretched)

Ga. direction UTS(ksi) TYS(ksi) El(%) Kc(ksi(inch ) 1/2)

.090" L 66.5 50.7 11.5 N.A.

45 deg. 53.8 40.5 23.3

LT 64.0 46.7 17.7

Kap p. (ksi(inch) 1/2)

N.A.

T8 temper (3% stretched, aged at 320"F for 20 hrs.)

Ga. direction UTS(ksi) TYS(ksi) El(%) Ke(ksi(inch) 1/2)

.090" L 85.4 83.1 7.5 119.6

116.5

45 deg. 70.4 68.3 11.6

LT 83.2 80.4 10.3

Kap p. (ksi(inch) 1/2)

92.3

97.1

Note:

All the tensile properties are averaged from duplicate test results.

K¢ and Kap p. values are from single test results in Ksi-(inch)l/2
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Subtask 2A5: Examine the the alloy variants with very high Cu:Li ratio on thermal stability and

mechanical properties.

The alloys selected for this study (Variation #1 and Variation #2) are mainly strengthened

by thermodynamically stable phases which form extremely fine distributions of plate-shaped

precipitates (T1 phases) and also by theta' precipitates. Depending on the alloy compositions,

different volume fractions of T1 (AI2CuLi) and theta' (A12Cu) would precipitate according to the

thermodynamic requirements. As a result, the overaging characteristics of the alloys would be

determined by not only diffusion-controlled coarsening kinetics of the two strengthening phases

and the solute partitioning between the two phases according to their solvus temperatures, but also

by their relative grain structures. Two different Cu:Li ratios were selected for this study along with

a standard RX818 alloy. Their compositions are as follows:

Composition (wt.%)

Alloy._ C_._u_u Li M__M_g A_.g Zr

Variation#1 4.0 0.8 0.25 0.25 0.12 5.0

Variation #2 4.4 0.85 0.25 0.25 0.12 5.2

RX818 3.56 0.87 0.41 0.35 0.14 4.1

Cu:Li ratio

The material was cast as two 10,000 lb ingots. These ingots included Variation #1 and

Variation #2. The ingots were homogenized, scalped and hot rolled to 0.090" gauge sheet. The

sheet products were solution heat treated at 950°F for an hour followed by water quench and 3%

stretch. The sheet products were then aged at 320°F for 20 hours as a standard age practice.

Figure 15 shows the strength-fracture toughness values of the two variant alloys and

RX818 alloy before and after thermal exposures. After thermal exposure, there is no significant

differences among the three alloys for post 275°F exposure only.

The evolution of strength and fracture toughness during thermal exposure

The evolution of strength and fracture toughness during thermal exposure at 275*F was

studied with variation #1 alloy. The results are summarized in the TABLE 7. Figure 16 shows a

sharp strength increase in the very beginning of the thermal exposure and decreases after 500 hours

at 275* F. Figure 17 shows a sharp decrease in fracture toughness in the very beginning of the

thermal exposure up to 200 hours at 275 ° F. The fracture toughness value after 1000 hours of
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exposureis no lower thanthatat after200hoursof exposure.

of fracturetoughnessoccurrsduringthe200 hoursat 275°F.

to reproducetheresultfrom theothersamplealloys.

This suggeststhatthe severeloss

Theimmediatenextstepwouldbe

TABLE 7

Theevolutionof strengthandfracturetoughnessduringthermalexposureat 275°Ffor variation#1

alloy.

Exposure
S.No. at 275"F UTS(ksi) TYS(ksi) El(%) Kc(ksi-sqrt(inch))

70302-5 as T8 79.0 75.0 7.5 135.5

70302-5-1 T8+50h 80.7 76.6 8.3 117.9

70302-5-2 T8+100h 80.2 76.6 7.1 107.1

70302-5-3 T8+200h 80.0 77.5 6.3 99.8

70302-5-5 T8+500h 80.0 76.7 5.0 81.0

70302-5B T8+1000h 80.1 75.7 7.3 102.0

NOTE:

Tensile test results are averaged values from duplicates

K c values are from single test by 16" wide center notched, fatigue precracked panel specimens.
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Subtask 2A6: Examine the grain boundary segregation of alkali metal elements during thermal

exposure as a possible cause for the loss of fracture toughness

Alkali metal elements such as Na and K are present in aluminum alloys as trace elements.

It has been suggested by some researchers that these allkali metal impurties could diffuse through

grain boundaries even at the very moderate temperatures and form eutectic phases. Such grain

boundary particles would lower the surface energy and promote intergranular embrittlment. An

experiment was conducted with ML377 alloy sheet to examine the grain boundary segregation of

alkalai metal elements during thermal exposure as a possible cause for the loss of fracture

tougness.

A sample of ML377 alloy sheet in T8 temper was exposed at 275°F for 500 hours. After

the exposure, the sample was pre-pumped and fractured at a vacuum level in the low 10-8 torr

range. Figure 18 shows the area where four particles, identified as A,B,C and D in the SEM

micrograph, and the matrix, identified as M, were analyzed. The spectra indicate varied levels of

oxygen for the particles, and may be related to reaction with air during the time between fracture

and collection of the spectra. This can be attributed to the time elapsed at least 1 hour from fracture

time and data collection for the spectra. Particle "A" , partcle "B" and partcle "C" appeared to be

A1-Cu-Fe-Li partcles (Figure 19, Figure 20 and Figure 21) and particle "D" appeared to be A1

oxide(Figure 22). Figure 23 shows the spectra of matrix detecting A1, Cu and Li. Na, K, P or CI

were not detected even though this technique has very good dectectability of those elements.

Therefore, it was concluded that the grain boundary segregation of alkalai metal elements during

thermal exposure is not a cause for the loss of fracture tougness after the thermal exposure for

these alloys.
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Figure18 SEMmicrograph(x 1000)showingtheareawherefour particles,

identifiedasA,B,C andD, andthematrix, identifiedasM, were

analyzedby AugerSpectroscopy.
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UNIVERSITY OF VIRGINIA

Elevated Temperature Fracture Toughness Of Advanced RS/PM And I/M
Aluminum Alloys

Principal Investigator: R.P Gangloff

Abstract

Since January of 1992, research on deformation and fracture has been conducted at the

University of Virginia to support aluminum alloy and process development for the High Speed

Civil Transport Airframe. During 1992 and 1993, this work focused on rapidly-solidified (RS)

powder metallurgy (PM) AA8009 and was conducted in conjunction with staff at Allied Signal.

In 1994 and 1995, the emphasis changed to an investigation of the behavior of advanced ingot

metallurgy (IM) AA2519 with silver and magnesium additions, as produced by Alcoa.

This work has aimed to: (a) develop a method to characterize the fracture toughness of

plate and thin-sheet aluminum alloys, (b) establish the effects of test temperature and loading rate

on fracture toughness, (c) establish the effects of alloy composition and thermomechanical

processing on fracture toughness, (d) understand fundamental mechanisms of deformation and

fracture, (e) improve models of fracture toughness, and (f) apply micromechanical modeling to

predict the temperature dependence of fracture toughness from tensile properties. This research

was carried out in five tasks; important findings are summarized.

A. Task I---High Resolution K-Aa Measurement of Fracture Toughness

The objective of Task I was to develop a laboratory method to characterize plane strain

crack initiation and plane stress crack growth fracture toughnesses from a single small fracture

mechanics specimen of thin sheet aluminum alloy. The direct current electrical potential difference

method provided high resolution detection of the onset and subsequent stable growth of a fatigue

precrack. The J-integral provided a rigorous measure of the crack tip driving force for fracture.

The resulting K-Aa R-curve yielded KjICi, KjIC, and a measure of tearing resistance; these results

compared reasonably to fracture toughnesses from thick specimens and from R-curves determined

for large middle tension specimens from thin sheet. The small specimen method is an effective tool

for studies pertaining to alloy development, environmental effects, and fracture mechanisms.

B. Task lI---Elevated Temperature Deformation and Fracture of RS/PM

AA8009

The objective of Task II was to employ modified melt-spinning and thermomechanical

processing methods to solve two problems that limit some applications of RS/PM AA8009: (1)

anisotropic fracture toughness, and (2) reduced fracture toughness at elevated temperatures or slow
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loading rates. Extensive fracture toughnessmeasurementsdemonstratedunequivocally the
deleteriouseffect of increasingtest temperaturefor severalproduct forms of AA8009. Two

modificationsto themeltspinningprocess,designedto reduceoxidesfrom particlesurfaces,were
ineffectivein improvingthefracturetoughnessof AA8009. Thetoughnessfor eachmodification

of AA8009 decreasedwith increasingtemperatui'e,analogousto conventionallymelt spunalloy.
Processingto reducethetotaldissolvedhydrogencontentof thealloydid notamelioratethe lossof

damagetolerancein AA8009 at elevatedtemperature.Changesin thermomechanicalprocessing

(rolling reduction, temperatureand direction) were ineffective in reducing the toughness
degradationwith increasingtemperature.Thermomechanicalprocessingadverselyaffectedfracture

toughnessdueto reducedoxidesheetspacing,anddynamicrecoveryandreducedworkhardening.
Thermomechanicalprocessingeliminatedanisotropyin toughessfor AA8009. Plateandsheet

exhibitedisotropic(in-plane)fracturetoughnessin contrastto theextrudedalloy.

C. Task III---Deformation and Fracture Mechanisms in Sub-micron Grain Size

Aluminum Alloys

The objective of Task III was to determine the mechanism for the deleterious effects of

increasing elevated temperature and decreasing loading rate on the fracture toughness of RS/PM

alloys such as AA8009. This study employed a model aluminum alloy, cryogenically milled high

purity aluminum, to establish that dynamic strain aging is not the sole cause of reduced fracture

toughness at elevated temperature. Rather, an alternate mechanism was suggested that is generic to

submicron grain-size alloys. In this new view, toughness is reduced at increased temperature (and

reduced loading rate) because such conditions reduce work and strain-rate hardening between

growing primary microvoids, leading to intravoid instability and coalescence at lowered strain.

Decreased strain-rate hardening is attributed to increased mobile dislocation density due to

dislocation emission and detrapping from dispersoids in dynamically recovered dislocation

source-free grains.

D. Task IV---Elevated Temperature Fracture Toughness of AA2519 with Mg
and Ag Additions

The objective of Task IV was to characterize the effects of Mg plus Ag additions and

elevated temperature on the fracture toughness of an advanced I/M aluminum alloy, and to define

the governing mechanisms of deformation and fracture. The fracture toughnesses of several alloys

in this class are competitive with conventional 2000-series aluminum alloys. That fracture

toughness is essentially constant with increasing temperature from 25°C to 175°C is explained by a

micromechanical model. This behavior is governed by the fact that the intrinsic fracture resistance

of this, and other I/M aluminum alloys, increases substantially with increasing temperature. This
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behavioris traced to decreased intravoid strain localization, and decreased void-sheeting instability,

with increasing temperature. Localization is governed by time-temperature-dependent

microvoiding at dispersoids between growing primary microvoids. Such microvoiding declines

with increasing temperature as dislocations are increasingly able to bypass dispersoids.

Additionally, increased strain rate hardening with increasing temperature suppresses intravoid

strain localization and coalescence.

E. Task V---Micromechanical Modeling of the Temperature Dependence of
Fracture Toughness

The objective of Task V was to determine if a modem micromechanical mode] of ductile

fracture can predict the effect of temperature on the fracture toughness of aluminum alloys. This

study employed extensive data on the temperature dependence of fracture toughness for a large

number of aluminum alloys in order to: (1) test the accuracy of micromechanical models, and (2)

understand the continuum-mechanics factors that govern elevated temperature fracture toughness.

A critical plastic strain controlled model successfully predicted initiation fracture toughness,

confirming the micromechanical modeling approach. For each of eight alloys, the temperature

dependence of fracture toughness was controlled by the temperature dependent interplay between

alloy strength, elastic modulus, and intrinsic fracture resistance. The former two material

properties determine the extent of crack tip plastic strain and hydrostatic stress, for a given applied

stress intensity level. The latter material property determines the resistance of an alloy

microstructure to the nucleation, growth and coalescence of microvoid damage. A correlation

suggests a means to predict the temperature dependency and absolute value of fracture toughness,

based only on measured tensile properties and microstructural features.
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II. TASK I---HIGH RESOLUTION K-Aa MEASUREMENT OF FRACTURE
TOUGHNESS

M.J. Haynes and R.P. Gangloff

Abstract

The plane strain initiation fracture toughness and plane stress stable crack growth resistance

were determined with a single small compact tension (CT) specimen for each of three precipitation

hardened aluminum alloy sheets (AA2024-T3, AA2519-T87 (+Mg+Ag), and AA2650-T6). Crack

length was monitored precisely with direct current potential difference (DCPD) measurements, and

specimen plasticity was accounted for with the J-integral. The DCPD technique resolves a small

amount of crack-tip process-zone damage (= 20 _tm) that constitutes crack initiation under plane

strain constraint. Two measures of initiation toughness are calculated; the elastic-plastic fracture

toughness detected by DCPD (JIci, KjIci) and the toughness based on ASTM standard E 813 (Jic,

KjIC). High resolution of fracture initiation is necessary to obtain a lower bound initiation

toughness, Kjici, because plane strain constraint is present ahead of the fatigue precrack, but is

rapidly lost with crack extension in thin sheet. KjI c overestimates toughness due to constraint loss

coupled with the offset blunting line definition of fracture initiation. The J-integral/DCPD method

provides a reproducible measure of the plane stress linear-elastic resistance curve (Kj-Aa) that

compares reasonably to R-curves determined for large middle tension specimens. The small

specimen method is effective for studies pertaining to alloy development, environmental effects,

and fracture mechanisms.

Introduction

Accurate characterization of the fracture toughness of thin-sheet aluminum alloys is

important to flaw-damage tolerant design of aerospace components such as airframes. For the next

generation High Speed Civil Transport, the toughness of candidate aluminum alloy sheet is being

evaluated by linear-elastic resistance curves determined from wide-panel, middle tension (MT)

specimens, often according to the ASTM Standard Practice of R-Curve Determination (Designation

E 561-92a). Use of the wide-panel MT specimen in alloy development is limited by the

requirement for a large quantity of material and a high capacity load-frame. Application of the NIT

geometry is further complicated by complex experimental conditions including elevated

temperature, thermal preexposure or aqueous environmental corrosion. Additionally, this test

method does not define initiation fracture toughness.

Elastic-plastic fracture mechanics 0EPFM) can characterize plane-strain initiation toughness

and plane-strain or plane stress stable crack growth resistances for a single specimen which is

small and not described accurately by linear-elastic fracture mechanics [1-3]. J-integral based
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initiation toughness(JIc) and resistance curve (J-Aa) measurements account for uncracked ligament

plasticity and can be converted to the equivalent linear-elastic initiation toughness (KIc) and the

resistance curve (Kj-Aa) [3,4]. The ASTM Standard Test Method for JIc, a,Measure of Fracture

Toughness (Designation E 813-89) and the ASTM Standard Test Method for Determining J-R

Curves (Designation E 1152-92) encompass accepted methods for toughness characterization.

Presently, these two standards are being consolidated [5].

Stress state effects on initiation and growth toughnesses must be considered carefully.

J-integral resistance curves for ductile alloys are increasingly steep as specimen thickness declines,

as represented schematically in Figure 1 [6,7]. Such sharp rises in the J-Aa curve are due to a loss

in plane strain constraint as the crack extends, which results in increased alloy resistance to

crack-tip process-zone fracture. Substantial crack growth in thin sheet occurs under plane stress

deformation. Qualification of JQ as a plane strain initiation toughness (JIc), independent of

specimen thickness, is based on the use of an offset blunting line and specimen size specified in

ASTM standard E 813. Specifically, JQ at the intersection of the 0.2 mm offset blunting line and

the power law fit to the R- curve qualifies as JIc if both the thickness and uncracked ligament

exceed 25 JQ/O'FL. (t_FL is the average of the yield and ultimate tensile strengths.) The E 813

standard is based on extensive experimentation with relatively thick (25 to 75 mm) specimens of

ductile steels [8-10]. Its applicability to thin-sheet aluminum alloys, where constraint loss may

influence JIc, has not been investigated.

Based on Figure 1, it should be possible to determine plane strain initiation toughness by

detecting the initial small amount of cracking at the mid-thickness point ahead of a fatigue precrack.

As the resolution of measured crack extension increases, initiation toughness measurements will

depend less on specimen thickness. Accurate and continuous high resolution measurement of

crack extension during rising load is therefore a critical component of successful J-Aa toughness

measurement. Direct current potential difference (DCPD) monitoring is well-suited for this

purpose.

The objective of this study is to establish a small specimen-based method to characterize

fracture toughness for aluminum alloy development. The aim is to develop data that are

quantitative for alloy ranking and relevant to structural analysis. This paper evaluates the

applicability and accuracy of EPFM and DCPD crack-length monitoring methods to determine

plane strain initiation toughness and plane stress growth resistance with small compact tension

(CT) specimens of thin sheet aluminum alloys. Three precipitation hardened alloys are studied

(AA2024-T3, AA2650-T6, and AA2519-T87 (+Mg+Ag)). Fracture initiation is detected by

DCPD, and experimentally verified through microstructural observations of process-zone damage.
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Offset blunting line and high resolution DCPD measures of initiation toughness are compared

based on observed crack-tip constraint and the ASTM E 813 thickness criterion. Resistance curves

for AA2024-T3 are compared to the results of several laboratories using CT and MT geometries

from the same material lot.

Procedure

Materials

The ambient and elevated temperature tensile properties of the ingot metallurgy aluminum

alloys (AA) investigated are listed in Table 1. Boeing provided 3.2 mm thick sheet of AA2024-T3

(AI-4.4Cu-1.5Mg-0.6Mn by wt%), and the Aluminum Company of America provided 3.2 mm

thick sheet of AA2519-T87 (+Mg+Ag) (Al-5.8Cu-0.5Mg-0.3Mn-0.5Ag-0.2Zr-0.1V by wt%), a

variant of AA2519 with Mg and Ag additions. Pechiney Aluminum supplied 6.0 mm thick rolled

plate of AA2650-T6 (A1-2.7Cu-I.6Mg-0.3Mn-0.2Fe-0.2Ni-0.2Si-0.1Ti by wt%), a low Fe and

Ni variant of AA2618.

Fracture Toughness Experiments

Fracture toughness experiments were performed over a range of temperatures and loading

rates. AA2024-T3 was tested at ambient temperature and a relatively rapid load-line displacement

rate (d_/dt=15 gm/sec). AA2650-T6 and AA2519-T87 (+Mg+Ag) were tested at a slower

load-line displacement rate (0.26 gm/sec) and at temperatures ranging from 25"C to 175"C. The

rapid loading rate corresponds to crack initiation in 40 seconds, while the slower loading rate

corresponds to initiation in roughly 45 minutes. Sample identifications and test temperatures are

listed in Table 2.

Fracture toughness was characterized with J-integral based crack growth resistance (J-Aa)

curves, utilizing fatigue precracked CT specimens tested under monotonically increasing load.

Specimens were machined in the LT orientation, with a width (W) of 76.2 mm and a thickness (B)

of 3.2 mm. An anti-buckling fixture with teflon sheet lubrication was placed around the CT

specimen. Stainless steel spacers prevented lateral motion of the CT specimen at the loading-pin

holes. For AA2650-T6, a sidegrooved CT specimen (6.0 mm gross thickness and a 4.8 mm net

thickness) was tested to investigate the influence of constraint on aluminum alloy R-curve

behavior. All specimens were precracked at a constant stress ratio (R=Kmin/Kmax) of 0.1 and

under decreasing stress intensity (K) conditions to a Kma x of 8.5 MPa_/m at the final crack length

(Table 2).

Rising load fracture toughness experiments were performed on a closed-loop servoelectric

testing system operated under constant grip-displacement rate control. A circulating air oven was

mounted on the load frame, as shown in Figure 2, and temperature was regulated to +1 °C with a
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thermocoupleattachedto theCT specimen. The specimen was heated to temperature in 30 minutes

and stabilized for 30 minutes prior to loading. A PC-based acquisition system continuously

recorded applied load, electrical potential difference across the notch, notch mouth opening

displacement, and time (Figure 2). A linear variable differential transformer (LVDT) measured

notch mouth opening displacement for conversion to load-line displacement using a geometric

relationship [11 ].

Crack Initiation and Growth Measurement_

Crack initiation and growth in a precracked CT specimen were monitored continuously by

the DCPD method [12]. A constant current of 7 to 10 A, stable to one part in 5000, was applied

with a DC power supply and the electrical potential difference (V) was conditioned with a 104 gain

amplifier. A 12 bit analog to digital (A/D) converter, with a full scale capability of 10 volts,

averaged 144 readings per second of sampling time. For tests run at the slow displacement rate,

2880 readings were obtained per data point, while at the fast rate 144 readings were obtained. The

large number of readings minimized random noise and reduced the error associated with the bit

resolution of the A/D converter (0.24 laV/bit) [12]. In this study, a voltage resolution of 0.1 I.tV

was reported. For experiments at the slow displacement rate, thermoelectric potentials were

eliminated by periodically reversing the polarity of current flowing through the CT specimen. A

thermally induced potential, equal to one-half the difference of measured positive and negative

potentials, was subtracted from V. A reference probe was not employed in this study [ 12].

Ductile-fracture crack initiation is indicated by a rise in measured V because the electrical

resistance of a cracked body increases as the crack extends. The definition of crack initiation is

complicated by artificial rises in V (fictitious crack growth)or unexplained declines. Both of these

artifacts were observed in this study and reported in the literature [13,14]. Bakker categorized

fictitious crack growth in high toughness mild steel into components of crack-tip blunting,

plasticity ahead of the crack tip, and void damage [13]. Plasticity is negligible, and blunting and

void damage are invariant once the crack initiates [ 13]. Thus, ductile fracture initiation is defined

reasonably by the first change in slope of the specimen potential difference versus load-line

displacement (_i) record.

The variability in V- _5data dictates the resolution to which crack initiation can be detected.

Variability is generally lowest for ambient temperature experiments at a rapid load-line

displacement rate, as seen by comparing Figure 3(a) to 3(b). In practice, the DCPD technique

resolves 0.1 _tV to 0.2 l.tV changes, or 0.025% to 0.05% of the potential difference associated

with the fatigue crack.

A standard method was developed to define crack initiation for each sample, using

measurements of load (P) and V versus 5. Characteristic P- _i and V- _5curves for AA2024-T3 and
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AA2519-T87(+Mg+Ag) areshownin Figures3(a)and3(b),respectively.An estimatedload-line

displacement(8') wherethe V- 8 curvechangesslopeis usedasa referencepoint for linear

regressionsto P- 8 andV- 8 data. Theelasticcomplianceof thecrackedplateis definedby least

squaresregressionof P- 8 datafrom 0.2 5' to 0.8 5'. BaselineV- 8 data(i.e.-not associatedwith

crackgrowth) arefit by linear regressionfrom 0.5 5' to 0.955', whilecrackgrowthV- 8 dataare

fit from 1.05 5' to 1.30 _i'. From 0.0 5' to 0.5 8', V- 8 datawereexcludedfrom thebaseline

regressionbecauseof artifactssuchasclosurecontactof the fatiguecracksurface. Thesethree

linear fits andtheregressionlimits areindicatedin Figure 3(a). The changein slopeof theV- 8

curveis dramaticfrom thebaselinefit (-.48btV/mm) to the crack growth fit (3.7 l.tV/mm). The

intersection of the two linear fits indicates the transition from baseline response to crack growth,

and the potential difference at this point (Vai) is the potential difference associated with the fatigue

precrack length, a i.

A fracture initiation toughness, representative of about 20 _tm of process-zone crack

growth, is defined by a positive 0.2 _tV vertical offset of the baseline V- _5regression. The

intersection of the 0.2 I,tV offset fit and crack growth fit defines fracture initiation; the associated

Pi, Vi, and 8 i measurements are shown in Figures 3(a) and 3(b). In Figure 3(b), 0.2 ILtV is the

minimum offset that places the defined initiation point outside of the scatter band in the baseline

V-8 trend. Pi, Vi, and 8 iare employed to calculate initiation fracture toughness. For all but two

specimens, Pi deviated between 1.3% and 3.4% from linearity, as given by the load from the P- _i

linear regression evaluated at 8 i" The average difference was 2.1%. Two exceptions were the

AA2519-T87 (+Mg+Ag) specimens tested at 150°C and 175°C, where Pi deviated by 4.4% and

5.4% respectively, probably due to substantial plastic or creep deformation of the uncracked

ligament. The narrow range of deviation from linearity supports the reproducibility of the 0.2 lxV

offset definition of initiation fracture toughness.

Crack length was determined from measured V using the calibration relationship of Hicks

and Pickard [12,15]:

a ('_0t ('_0/ ['_"0 )
m=_0.5051+0.8857 V 0 V 2 V 3
W - . 1398 +0.0002398 [1]

where V o is the reference potential for a/W : 0.241. The current input and potential wire

placements are a compromise between high resolution and reproducibility [ 12,15]. As indicated in
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Figure2, thecurrentis input alongtheload-line,from thetopto thebottomof theCT specimen.

The potentialwires arepositionedon the front faceandareoffset 1.7mm (vertically) from the

notchedge. With respectto thickness,the currentleadsarepositionedat the midplaneandthe
potentialwiresareplacedatoppositeedgesof theCT specimen[12,15].

Equation1is basedon finite elementanalysisandwasverifiedexperimentallyfor 0.24<

a/W < 0.70 [15]. V0 wasdeterminediteratively 1with Equation1from themeasuredpotential

immediatelyprior to crackinitiation (Vai) and the optically measured precrack (fatigue + notch)

length a i. The final crack length was marked by heat tinting or by growing a fatigue crack. Final

crack lengths calculated with Equation 1 (AaDCPD) and measured optically (Aaoptical) are displayed

in Table 2 for each sample.

EPFM Resistance Curves

The J-integral was utilized to account for uncracked ligament plasticity [3]. Applied J,

equal to Jelastic + Jplastic, was calculated according to the ASTM Standard E 1152-92. Jelastic is

equal to K2/E ', where K is the applied elastic stress intensity factor for a CT specimen from the

ASTM Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials

(Designation E 399-90). E' equals E for plane stress and E/(1-v 2) for plane strain, where E is

elastic modulus and v is Poisson's ratio 2.

Using the area method of ASTM E 1152, Jplastic was determined from the measured load,

load- line displacement, crack length, and the calculated unloading compliance. Using the

compliance-crack length relationship for a CT specimen, an effective modulus was calculated from

the initial measured slope of P-8 for a CT specimen with a fatigue precrack length a i (Table 2).

This value was used subsequently in calculating unloading compliance and Jplastic from DCPD

measured crack length. It was not necessary to partially unload the specimen during an

1 The exact solution for V0 in Equation 1 involves complex numbers and is unwieldy. The following
polynomial expression can be applied as an alternative to an iterative solution for V0:

+ 6.24111 (-_- - 7.66191 (-_-/'+ 4.28949 (-_V0 =0.60014+ 1.85514 (-_)- 1.93452/-_) 2 / 3 / 5

According to ASTM E 1152, (1-v 2) is always used to calculate Jelastie, which is not reasonable for plane stress

crack tip deformation. In this study, (l-v2) is included for plane-strain-dominated fracture initiation toughness
and is omitted for crack growth under plane stress.
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experiment. To determineAa for eachJ, DCPD measurementswerecorrected linearly to the

optically observed final crack length, with zero error assumed for the fatigue precrack length.

Initiation and growth fracture toughness parameters were determined from J-z_a data. Plane

strain deformation is assumed to control fracture initiation and plane stress deformation is assumed

to dictate crack growth after an initial amount of mixed-mode growth. The applied J at

DCPD-detected fracture initiation (JIci) was calculated from defined Pi, ai, and 8 i" JIci was

converted to a linear elastic initiation toughness, Kjici, by the relation [3,4]:

K [ JmE _-_

,,c,= [ 1_'7_ J [21

The ASTM E 813 standardized initiation toughness from an 0.2 mm offset blunting line (Jxc) was

converted to KjI C by the same relationship. The linear elastic R-curve (Kj-Aa) for small scale

yielding was determined from J-Aa curves (Kj = (J E)I/2), and generally described plane stress

cracking. Figure 4(a) shows a- 8 and P- _5traces for AA2024-T3 over 13 mm of crack growth at

25°C, which are used to calculate the Kj-Aa curve as well as Kjici and KjI C. A typical result of

this analysis is shown in Figure 4(b).

Results

Microscopic Ductile Fracture Initiation

To test the capability of DCPD monitoring to detect process-zone damage associated with

crack initiation, two rising load fracture toughness experiments were interrupted after a small,

detectable increase in V. ACT specimen of aluminum alloy N203 3 was loaded at 150"C and

subsequently fatigued (Kmax=21 MPa_/m, R=0.65) to mark the extent of ductile crack growth.

The specimen was separated to observe the variation in microvoid crack growth through the

thickness (Figure 5(a)). For the second experiment, a CT specimen of AA2519+Mg+Ag was

testedat 25"C and sectioned in profile to a depth of approximately 0.6 mm from the midplane.

From the polished crack-tip profile, the micromechanism of ductile fracture initiation was directly

observed (Figure 6(a)). Vai, V0, and the average final DCPD crack growth (AaDcPD) were

calculated from potential versus time data for N203 (Figure 5(b)); load-line displacement is directly

proportional to loading time. For AA2519+Mg+Ag at 25"C, V- 8 data were used (Figure 6(b)).

From the measured increase in V at the interrupt load, Aaocr, D was calculated and compared to

3 N203 is a developmental spray formed precipitation hardened alloy (AI-4.9Cu-0.5Mg-O.5Mn-0.4Ag-0.4Zr-0.2Ti-

0.2V by wt%) similar to AA2519+Mg+Ag [16].
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optical measurements of the average crack growth (Aaoptical).

Figure 5(a) shows that microvoid crack initiation associated with the rise in V (Fig. 5(b))

develops primarily in the center of the CT specimen, exceeding 200 l.tm at the midplane. The

extent of crack growth rapidly declines away from the midplane and is essentially zero over 0.5

mm of thickness adjacent to either face of the CT specimen. If the region of microvoid damage is

approximated as a triangle, then Aaoptica I is calculated as 103 _tm from the area divided by the

thickness of the CT specimen. The measurement of Aaoptiea I includes the stretch zone width

associated with crack tip blunting (roughly 10 _tm). From Figure 5(b) and Equation 1, AaDCPD is

calculated as 117 I.tm, which agrees reasonably with Aaopti _.

Crack initiation in AA2519+Mg+Ag developed by void nucleation at large constituent

particles, followed by limited void growth and coalescence to the precrack tip (pt) by void-sheeting

coalescence (Figure 6(a)). The large constituents are primarily undissolved A12Cu, and void

sheeting coalescence involves void nucleation, growth, and coalescence at submicron dispersoids

located between constituent-nucleated voids [17-19]. Optically measured crack growth of 86 _tm is

in excellent agreement with 88 lxm of crack growth calculated from the increase in V (Figure 6(b)).

In Figure 5(a), Aaoptica I at 0.6 mm from the midplane is 140 lxm, indicating that this position

represents a reasonable through thickness average of crack growth, consistent with the good

agreement obtained from the crack tip profile. Measured crack extension should increase as the

specimen is polished to the midplane.

Macroscopic Fracture Path

Crack initiation developed in the center of each CT specimen under plane strain conditions,

as shown in Figure 5(a). The low magnification fractograph in Figure 7 demonstrates that fiat

fracture (normal to the Mode I applied load) occurs over approximately 80% of the thickness at the

precrack tip, and changes to 45°-slant fracture as the crack extends. The interface between plane

strain fracture and plane stress shear lips is indicated by arrows, and shows the gradual transition

from flat to shear fracture that yields a triangular morphology for the former. Fracture was

predominately plane stress after approximately 1.5 mm of crack growth. The results of Figures 5,

6, and 7 suggest that plane strain dominated for KjICi from DCPD and plane stress was typical of

Kj- Aa behavior, after a modest amount of mixed mode cracking.

Initiation Fracture Toughness

ASTM standardized toughness:

JIc was calculated in accordance with ASTM Standard E 813. J-dominance was

maintained for all Aa, and crack straightness and data spacing requirements were met. The

thickness and original uncracked ligament always exceeded 25JIc/CFL, and the calculated effective
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modulus was always within 10% of the elastic modulus (Table 2). Calculated crack growth

(AaDcPD) was within 12% of Aaoptica I (Table 2). (In some cases, heat tinting was unsuccessful,

and the final crack length was not determined). Five specimens (2024-#3, 2519-#1, 2519-#2,

2519-#5, and 2519-#6) did not satisfy the E 813 requirement that the absolute difference between

AaDCPD and Aaoptica I must be less than 0.15 Aama x for crack extensions larger than Aamax, where

Aama x is given by the intersection of the 1.5 mm exclusion line and the R-curve. This requirement

is not necessarily compatible with the generation of R-curves to large crack extensions. These 5

samples do meet the less stringent requirement from the proposed draft of the E813/El 152

combined standard; namely that the difference between AaDCPD and Aaoptiea I does not exceed

0.15Aaoptica I for crack extensions less than 0.2b 0 and does not exceed 0.03b 0 thereafter [5]. By

comparing JIc determinations from samples that met E 813 crack length accuracy requirements to

samples that did not satisfy this requirement, we infer that DCPD crack length monitoring is

sufficiently accurate to yield consistent JIc values.

For each specimen, JIc and the corresponding linear elastic initiation toughness (Kylc) are

given in Table 3. For the four replicate CT specimens of AA2024-T3, JIc ranges from 27.0 to

36.2 kJ/m 2, and calculated KjI c values from 45.2 to 52.4 MPa_/m, with an average of 48.5

MPa_/m- JIc for 3.2 mm thick AA2650 (18.5 kJ/m 2) is 70% higher than JIc for 6.0 mm thick

AA2650 (10.9 kJ/m2), and KjI C of the thinner specimen is 31% higher than KjI C of the thicker

specimen. Jm and KjI C for AA2519-T87 (+Mg+Ag) are essentially temperature invariant, but are

variable.

Electrical-potential-based initiation toughness:

Table 3 lists DCPD based initiation toughnesses, JIci and KjICi , for each sample, which

were verified by the same requirements as for a valid Jlc. Values of Jlci and Kjici for each sample

were substantial lower than Jlc and Knc. For AA2024-T3, JIci ranges from 13.4 kJ/m 2 to 17.8

kJ/m 2, and Kjici ranges from 31.9 MPa_/m to 36.7 MPa_/m, with an average of 33.3 MPa_m.

For AA2519-T87 (+Mg+Ag), KjICi decreases mildly from 25"C (31.4 MPa_/m) to 175"C (28.5

MPa_/m), and shows considerably less scatter than KjI C values. Least squares linear regression

analysis of Kjici versus temperature data yielded an intercept of 32.6 MPa _/m (at 0°C) and a slope

of-0.016 MPa_/m/*C. The 95% confidence interval of the slope (g) implies a temperature invariant

toughness (-.044 < B < +.011). Values ofJic i for 3.2 mm thick and 6.0 mm thick AA2650-T6 are

9.9 and 9.7 kJ/m 2 respectively, and Kjici values are essentially equal (28.8 and 28.5 MPa_/m).
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Ratiosof KjIc/KjIci are listed in Table 3 and range between 1.29 and 1.74 for 3.2 mm

thick specimens. For the 6.0 mm thick AA2650 specimen, this ratio is reduced to 1.06. The

thickness dependencies of Kjici and KjI c for AA2650-T6 are illustrated in Figure 8. Increasing

KjI C as thickness decreases is traced to a sharply rising R-curve for the 3.2 mm thick CT

specimen, compared to a relatively shallow Kj-Aa curve for the 6.0 mm thick CT specimen. The

sharply rising R-curve is likely due to a substantial loss in plane strain constraint (Figure 7) 4

Presumably, Kjici is thickness independent because similar plane strain constraint is maintained at

the precrack tip for both thicknesses.

KI-Aa Resistance Curves

Complete Kj-Aa resistance curves are presented in Figure 8 for AA2650, Figure 9 for

AA2519, and Figures 4(b) and 10 for AA2024. The value of Kj at a crack extension of 3 mm is

listed in Table 3 for each sample, and serves as a "figure of merit" in ranking plane stress crack

growth resistance.

Qualification of Experimental Data:

For the J-Integral to be a valid crack tip parameter, microscopic fracture processes must be

contained well within the annular zone of validity of the J-fields [1-3]. For all CT specimens

tested, J-dominant conditions prevailed throughout loading, with J values well below the

maximum allowed by ASTM E 1152. J-Aa curves are specific to a thickness of 3.2 mm, reflected

by the applied J exceeding B 6FL/20 at crack extensions between 1 and 2 mm. J-controlled growth

occurs for Aa < 3 mm, corresponding to crack growth within one-tenth the original untracked

ligament. Applied loads in the crack growth regime are below the modified Green's fully plastic

limit load (PL) solution for plane stress [20]; below 0.4 PL at initiation and increasing to a

maximum of 0.86 PL at the completion of J-controlled crack growth.

Displacement rate partitioning analysis suggests that J is the valid crack tip parameter for

rising load experiments of AA2519-T87 (+Mg+Ag) between 25°C and 175"C. Saxena and Landes

developed a displacement rate partitioning analysis that separates measured load-line displacement

rate (v) into the sum of elastic (ve), plastic (vp), and creep (ve) rate components [21]. v c is

determined from empirical values of v e, Vp, and v. There is no established criteria for ascertaining

the value of v c above which creep is sufficiently extensive to compromise J, but Saxena and

Landes argue that creep crack growth rates in stainless steel are not uniquely correlated by J when

Vc/V exceeds 0.8. For AA2519, v e + Vp dominated the measured total displacement rate, and ve/v

4 2650-#2 maintains plane strain constraint over the entire crack growth regime, but shows a rising R-curve

due to a weaker strain singularity ahead of a moving crack tip [2].
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wasalwaysbelow 0.8. Experiments on creep crack growth of AA2519-T87 at 135°C support the

dominance of time independent crack tip fields [22]. Hamilton and Saxena found that ve/v ratios

varied from 0.0 to 0.8 and concluded that creep does not affect K-governed crack tip fields.

Interlaboratory R-Curve Characterization of AA2024-T3

Specimen geometry can affect the magnitude and validity limits of Kj-Aa. The J-

integral/DCPD test method was employed with CT specimens to determine Kj-Aa data at 25"C for

3.2 mm thick AA2024-T3 sheet in the LT orientation (W=76.2 mm), as part of an interlaboratory

R-curve characterization [23]. DCPD based measurements of Kj-Aa for a single specimen are

represented by filled circles in Figure 10, and error bars represent the maximum variability

associated with three additional replicate experiments, as quantified by 95% confidence interval

estimates of Kj. Kj-Aa curves were measured for the same lot of 3.2 mm thick AA2024-T3 sheet

by several laboratories employing different experimental methods and specimen geometries.

Boeing employed a 1.5 m wide MT panel with visual observation of crack length. Fracture

Technology Associates (VI'A) used partial unloading compliance (PUC) measurements of crack

length for a 30.5 cm wide MT panel as well as a 50.8 mm wide CT specimen. All the specimens

were 3.2 mm thick. For modest crack extensions (Aa< 7 ram), the R-curves in Figure 10 are

nearly identical for the CT and small MT specimens. The higher R-curve for the widest MT

specimen is not understood, but may be due to underestimated crack length measurements [23].

Discussion

Results show that the J-_t R-curve method, based on elastic-plastic fracture mechanics and

high resolution DCPD monitoring of crack length, accurately characterizes the plane strain crack

initiation toughness and the plane stress stable crack growth resistance of aluminum alloys. The

thickness-independence of KjIci, and the thickness-dependence of JIc and the stable crack growth

portion of the R-curve (Figure 1), are established by experimental results. The small specimen

used in this method enables efficient yet quantitative alloy development. This method is also

relevant to mechanistic studies of elevated temperature and aqueous environment effects on fracture

toughness [24-27]. Several factors are critical to the correct application and interpretation of results

from the J-integral/DCPD method.

Microscopic Fracture Initiation

High resolution detection of ductile fracture initiation is the crucial component of accurate

Kjici measurement. Initiation in precipitation hardened aluminum alloys evolves under high

constraint at the midplane of the CT specimen, as established by fractographic studies of microvoid

damage associated with small increases in measured V (Figures 5 and 6). Consequently, Kjici is a

relevant measure of plane-strain initiation toughness.
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Crack growth is averaged over the specimen thickness when calculated based on the DCPD

calibration relationship (Equation 1). Based on potential difference data for N203 and AA2519

(Figures 5 and 6), a 0.1 I.tV increase in V corresponds to 8 Ixm and 13 I.tm of average crack

extension, respectively. Consistent with the 0.2 IxV offset from the baseline V-_ trend (Figures 3,

5(b), and 6(b)), initiation fracture toughness based on DCPD is thus associated with average crack

extensions of 16 and 26 l.tm, respectively. A similar resolution is reported elsewhere [14]. The

higher sensitivity (dV/da) for N203 is due to a smaller a/W ratio after fatigue precracking relative to

AA2519-T87 (+Mg+Ag).

In principle, partial unloading compliance is more sensitive to crack tip damage compared

to DCPD. The percentage increase in specimen compliance for a small change in crack length,

(dC/C)/da, is higher than the percentage increase in V from DCPD, (dV/V)/da. For example, 50

Bm of crack extension in a CT specimen of N203 (ai/W=0.493 , W--48.26 mm, B=3.2 mm) results

in a 0.5% increase in specimen compliance versus a 0.1% increase in V. However, a 0.1% change

in V can be discerned by DCPD monitoring, while a 0.5% in compliance may be difficult to

resolve. Precise compliance measurements may be obscured by complications due to friction at the

loading pins, clip gage misalignment, and hysteresis in the unload/reload cycle [ 14]. Additionally,

the number of crack length measurements by compliance during a rising load test is limited to the

number of unloadings, which effectively limits the resolution of process-zone damage that

constitutes crack initiation.

In practice, DCPD more effectively resolves fracture initiation [14]. However, artifacts in

the V-_5 signal due to thermal fluctuations and the initial elastic loading must be minimized.

Thermal fluctuations affect measured V by altering the resistivity of the alloy and by changing the

potential difference across dissimilar metal junctions within the DCPD circuit. The latter is

accounted for by switching the polarity of the current, while the former requires a reference probe

to eliminate drift in the V-_5 signal. In addition, the environment should be maintained at a nearly

constant temperature. Initial elastic loading can affect the potential signal by separating crack faces

that are electrically contacted and by providing a parallel current path through the load frame. The

magnitude of the latter effect depends on the resistance through the test sample versus the

resistance through the load frame. If the resistances are similar, then the specimen must be

electrically isolated from the load frame.

Initiation Fracture Toughness in Thin Sheet

Three measures of initiation fracture toughness are discussed in this section; KjI c, Kjici,

and Kxc from ASTM standard E 399. The discussion focuses on precision (variability) and

accuracy (absolute values) of KjI c and Kjici.
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Variability:

Table 3 reveals that KjIci may be a more precise measure of initiation fracture toughness

relative to KjIc. The discrepancy in precision is small for AA2024-T3, with differences of 15.0%

and 15.9% between the maximum and minimum measurements of Kjici and KjI C, respectively.

For AA2519+Mg+Ag, results presented in TASK IV show that initiation toughtness is

temperature-independent. Additionally, the discrepancy in Kjici and KjI c is significant, with

differences of 14.4% and 32.8% between the maximum and minimum values of Knc i and KjI C.

The definition of crack initiation must be objective and reproducible to obtain precise

initiation toughness measurements. The 0.2 lxV vertical offset definition of fracture initiation

adheres to both requirements and minimizes scatter in Kjici. The 15% variability may be related to

variations in constituent particle distributions ahead of the fatigue precrack tip or to artifacts in the

V-8 signal that appear concurrent with fracture initiation. The 0.2 mm offset blunting line

definition of crack initiation for KjI c is objective but not reproducible. The lack of reproducibility

is traced to variability of DCPD-based Kj-Aa measurements between crack extensions of 0.0 mm

and 0.7 mm, as illustrated in Figure 9. The reason for this scatter is not known, but may be related

to artifacts in measured electrical potential during initial crack growth, or to variation in the

proportions of plane strain and plane stress crack growth.

Absolute measures of initiation fracture toughness:

A comparison of KIc data for 2000 series aluminum alloys [28] to Kjici and KjI c values in

Table 3 suggests that Kjici approximates the true initiation toughness for a thin sheet, while Knc is

an overestimate. The average Kjici and KjI C for AA2024-T3 sheet from Table 3 are 33.3 MPa_/m

and 48.5 MPa_/m, respectively. The published plane strain fracture toughness of AA2024-T3

(from E 399) varies from 31 MPa_/m to 44 MPa_/m at the strength level studied (Cys=390 MPa)

[28]. Bucci reported a KIc of 36 MPa_]m for AA2024-T351 with a yield strength of 325 MPa

[29].

For 20 mm thick CT specimens of AA2024-T351, Schwalbe and coworkers determined a

J-integral initiation toughness Jlin, similar to Jlci [14]. From Equation 2, Knn values of 33.2 and

36.9 MPa_m were calculated. Griffis and Yoder employed three thicknesses of three point bend

specimens (B=6.4 mm, 12.7 mm, and 23.6 mm) and a multi-specimen technique to determine J-Aa

curves for 25 mm thick AA2024-T351 plate [30]. The applied K at fracture initiation, KIC°, was

determined by extrapolating the J-Aa curve to zero crack extension and converting the extrapolated

J value to a linear-elastic initiation toughness. Average Kic ° for the three specimen thicknesses
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was33.5MPa_/m.Basedon theseresults,literaturevaluesof initiation toughnessfor naturally

agedAA2024 areaboutequalto Kjici and are well below KjI c. In Figure 11 Kjici, Kli n, and

KIc ° are plotted versus thickness for naturally aged AA2024. This plot strongly suggests that

initiation fracture toughness based on high resolution detection of crack tip process-zone damage is

thickness independent, at least to a thickness of 3.2 mm.

From a metallurgical perspective, it is unclear whether the initiation toughness for 3.2 mm

sheet should equal the toughness of thick AA2024 plate. Hot rolling might increase strength to

lower toughness, but the subsequent solution heat treatment could cause substantial recovery or

recrystallization to counterbalance the effect of rolling. Large constituent particles would break and

redistribute during rolling to alter the toughness. Measurements of initiation toughness for the two

CT thicknesses of metallurgically identical AA2650-T6 (Table 3 and Figure 8) confirm the

thickness independence of Kjici suggested in Figure 11.

Comparisons between Kjlci, KjI 0 and KIC:

Using the same experimental technique applied in this study, but a slightly different

definition of Kjici, Somerday et. al. determined Kjici, KjI C, and Kic from sidegrooved CT

specimens of AA2009/SiC that maintained plane strain constraint and met all the geometry

requirements in ASTM E 399 and ASTM E 813 [25]. The three measures are compared in Figure

12, where KjI C and Kjici are plotted versus Kit. The solid line represents a one-to-one

relationship between the elastic and elastic-plastic measurements, while the dashed line represents

initiation toughness measurements which are 15% below KIC. Both KjI c and Kjtci correlate with

KIC. KjI C is slightly higher than Kit, and Kjici is consistently less than KI¢. (The average

difference is 17%.) K_ici represents the lower bound initiation toughness associated with an early

stage of process-zone damage [25]. KjI C and Kic are higher than Kjici because the former are

each defined based on an arbitrary amount of stable crack extension. If fracture in an E399-valid

specimen is truly unstable at K=KIc, then KIC and KjICi (from a thinner specimen) should be

equal.

In thin sheet alloys where constraint is lost with crack extension (Figure 7), initiation

toughness is overestimated by KjI C and well represented by Kjici, as shown in Table 3 and Figure

8. Values of KjI ¢ (solid triangles) and Kjici (open triangles) for the two (metallurgically identical)

thicknesses of AA2650-T6 are plotted in Figure 12, with the provisional fracture toughness from

ASTM E 399 (KQ) assumed to approximate K]c. (Sample 2650-#2 did not meet the E 399

requirements that B exceed 2.5(KQ/_ys) and that Pmax/PQ be less than 1.1. Sidegrooves added

constraint not recognized by ASTM E 399.) For the thick sidegrooved specimen, KjI c, and to a

313



lesser extent Kjici, correspond closely to KQ and conform with the data for AA2009/SiC. As

thickness is decreased to 3.2 mm (2650-#1), Kjici is unchanged while KjI C is increased to well

above the standardized plane strain initiation toughness. Hence, Knci best represents initiation

toughness in CT specimens of sheet aluminum alloys. As specimen thickness declines and/or alloy

toughness increases, Knc becomes increasingly larger than the true initiation toughness.

The thickness independence of Kjici (Figures 8 and 11) is consistent with the argument

that fracture initiation toughness is constant, given a predominantly plane strain crack tip stress

state [28]. A plane-strain stress-state was present directly ahead of the fatigue precrack in both

thicknesses of AA2650-T6, but some plane-strain constraint was lost near the specimen edges after

0.2 mm of crack growth in the thinner CT specimen. For single edge-notched bend specimens of

mild steel, Green and Knott reported thickness invariant crack tip opening displacements at fracture

initiation under plane strain constraint, and a higher crack tip opening displacement for a thin

specimen where constraint was lost [31].

Applicability of ASTM E 813 Thickness Criterion:

KjI c overestimates the initiation toughness in thin sheet AA2650-T6, even though the

thickness criterion from ASTM E 813 (B > 25 JQ/OFL = 1.09 mm) was easily satisfied. As

thickness increases and constraint is maintained to larger crack extensions, KjI C presumably

approaches a thickness independent value that is comparable to KIc and 5 to 20% higher than

KjICi. KQ for 2650- #2 is nearly equal to KjI c (30.1 MPa_/m), which suggest that a 6.0 mm thick,

sidegrooved specimen yields a JIc that is thickness independent. If JIC for 3.2 mm thick

AA2650-T6 is assumed invalid, and JIc for the 6.0 mm thick specimen is valid (Figure 12), then

bounds can be estimated for the constant M in a generalized thickness criterion ( B > M JQ/OFL ).

Based on this argument, M must be between 75 and 225 for aluminum alloys and the CT

geometry. Kjici from high resolution DCPD measurements is independent of thickness to 3.2 mm

for CT specimens of aluminum alloys with flow strengths as low as 420 MPa and toughnesses as

high as 40 MPa_/m (Figure 11). This implies that M is less than 65 for this case.

Ks-zla Curves:

Over a substantial crack extension, the Kj-Aa resistance curve determined by the J-

integral/DCPD method for AA2024-T3 compares favorably to Kj-_t determined by the J-integral

and PUC for MT specimens (Figure 10). The general equivalence of DCPD and PUC in

measuring crack lengths for R-curve determination is reported elsewhere [23,32]. Kj-Aa data for

MT specimens are valid to significantly higher crack lengths relative to the CT geometry, probably
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dueto a loss of J-dominance in the latter [1,3].

Kj-Aa curves, determined from small specimens with significant ligament plasticity, are

relevant to linear elastic R-curves determined from large specimens that satisfy small scale yielding

conditions. For 1.6 to 2.0 mm thick sheet of AA2024-T3, K-Aa is plotted in Figure 10 for various

specimen sizes [23,32,33]. R-curves determined from elastic analysis (KR-Aa) are indicated by

lines, while those determined from elastic plastic analysis (Kj-Aa) are represented by symbols. An

excellent correspondence is observed between Kj-Aa curves from small specimens (50.8 mm wide

CT [23] and 30.5 cm wide MT [23]) and KR-Aa curves from large specimens that satisfy small

scale yielding conditions (60.0 cm wide MT [32] and 1.52 m wide MT [23]).

Crack growth resistance can be ranked by Kj 3ram, an arbitrary point on the R-curve.

Kj 3ram is less than K o the critical plane stress fracture toughness, but is a relative indicator of K c

for different alloys and testing conditions. The geometry, width, thickness, and initial precrack

length of the test specimen affect K o so K c determined from small CT or MT specimens is not

relevant to K C determined from large center cracked panels [32]. The Kj-Aa curve from a small

specimen could be combined with an accurate extrapolation procedure to predict Kj at longer crack

lengths. K C for a wide panel could then be estimated with the extrapolated K-Aa result and a

tangency condition for crack instability [32]. A Kj-Aa curve determined from a CT specimens thus

provides a potential means of characterizing K c for alloy development.

Kj-Aa resistance curves, generated from CT specimens by the J-integral/DCPD method, are

useful for screening purposes and testing under complex experimental conditions, such as elevated

temperature or aqueous environments. For example, the resistance curve behavior of AA2519-T87

(+Mg+Ag) as a function of temperature is displayed in Figure 9. These data illustrate the

temperature independence of Kjici, as well as the peak crack growth resistance at 75°C, and the

decreased crack growth resistance at 150°C and 175°C. The superior room temperature crack

growth resistance of AA2519-T87 (+Mg+Ag) alloy sheet relative to AA2650-T6 and AA2024-T3

is seen from Table 3. Determining these results with MT specimens would be material-intensive

and expensive.

Conclusions

The results presented in this paper establish the accuracy, reproducibility, and relevance of

initiation fracture toughness and Kj-Aa measurements determined from thin compact tension (CT)

specimens by the J-integral/DCPD method.
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1. Direct current potential difference (DCPD) monitoring is an effective technique for detecting

microvoid fracture initiation in precracked CT specimens of aluminum alloy sheet, with a

resolution of 20 Ixm of crack tip damage. Crack initiation develops under plane strain constraint

at the midplane of the thin CT specimen, and is thus representative of plane strain initiation

toughness.

2. For 3.2 mm sheet of precipitation hardened 2xxx AI alloys, the plane strain initiation toughness

measured according to ASTM E813 is thickness-dependent and 50% higher than the plane

strain initiation toughness based on DCPD monitoring (Kjici). The thickness criterion for

geometry-independent initiation toughness is non-conservative for thin sheet aluminum alloys.

3. The plane strain initiation toughnesses of AA2024-T3 and AA2650-T6 are independent of

specimen thickness, when Kjici is defined based on high resolution detection of an early stage

of crack tip process-zone damage.

4. Ambient temperature J-Az resistance curves of 3.2 mm thick AA2024-T3 sheet, measured from

CT specimens by the J-integral/DCPD method, compare closely with data from larger middle

tension (MT) and smaller CT geometries.

5. Results from the small specimen J-integral/DCPD method are relevant to prediction of large

specimen R-curve behavior, alloy development, and mechanistic studies.
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III. TASK II---ELEVATED TEMPERATURE DEFORMATION AND
FRACTURE OF RS/PM AA8009

S.S. Kim and R.P. Gangloff

Abstract

The objective of this work was to evaluate the effects of processing variables on two

problems that limit the performance of AA8009 (A1-8.5%Fe-l.3%V-1.7%Si, by weight): (1)

decreasing fracture toughness with increasing elevated temperature and decreasing loading rate,

and (2) anisotropic fracture toughness for extruded AA8009. Modified rapid-solidification

processing, including inert gas shrouding of the ribbon surface and mechanical obstruction of the

gas boundary layer, reduced oxide thickness on prior ribbon particle boundaries and the hydrogen

content associated with oxides. The expected improvement in elevated temperature fracture

toughness was not observed. AA8009 was processed thermomechanically (TMP) by a variety of

rolling and annealing schedules. Substantial improvement in toughness isotropy was obtained by

homogenization of the microstructure. Kic tended to decrease with rolling reduction, independent

of fracture temperature and due to microstructural changes during rolling. Reduced oxide sheet

spacing and enhanced dynamic recovery, that reduces work hardening, each acted to reduce

fracture toughness. Considering all TMP conditions, the expected improvement in elevated

temperature fracture toughness was not realized.

A second objective was to improve understanding of time-temperature-dependent

deformation and fracture in AA8009. AA8009 failed by microvoid processes, regardless of the

processing route and testing temperature/loading rate. Low toughness was associated with a single

size of shallow dimples, while igh toughness was correlated with a bimodal distribution of

spherical dimples. The likely mechanism for the time-temperature-dependent fracture behavior of

AA8009 is localized plastic deformation between growing microvoids. This flow instability

truncates stable void growth and is attributed to reduced work hardening characteristic of the

unique dislocation substructure in submicron grain-size aluminum alloys.
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Introduction

Backmound and Problem Statement

Future high speed civil transportation systems, aimed at speeds of Mach 2.0 to 2.4, require

new high performance airframe materials that are stable microstructurally and mechanically at

temperatures up to 350"C, and as low as -80°C, with expected service lives on the order of

100,000 hours [34,35]. A variety of aluminum-based compositions and novel processing

techniques have been considered. Among the emerging materials, rapid solidification/powder

metallurgy (RS/PM) processed AI-Fe-X alloys have received significant attention due to their high

volume fraction of dispersoids and ultrafine grain size, which are stable to 425°C [36-38].

It was demonstrated, however, that the fracture toughness, crack growth resistance and

tensile ductility of RS/PM A1-Fe-X alloys are reduced significantly at temperatures between 175

and 200"C [24,39-47]. For example, results for AA8009 (an alloy based on A1-Fe-Si-V) show

that tensile ductility and fracture toughness may be anisotropic and further decrease with decreasing

strain rate at elevated and ambient temperatures [24,39-43]. Similar results were reported for

A1-Fe-Ce and other elevated temperature aluminum alloys which contain submicron grain size and

a high volume fracture of small (of order 50 nm diameter) dispersoids [44-47].

Improved Elevated Temperature Damage Tolerance

Fracture toughness may be improved by modifications to the planar flow RS casting

procedure as well as to subsequent thermomechanical processing. During solidification and

compaction, oxides form along the prior ribbon particle boundaries of many RS/PM alloys. Porr

demonstrated that AA8009 fails by microvoid coalescence and the oxide-matrix interfaces serve as

the first void nucleation sites, regardless of testing temperature [24,39]. Therefore, oxide

decorated prior ribbon particle boundaries are potentially detrimental to fracture toughness and

provide a likely cause for toughness anisotropy.

Several processing modifications were proposed to improve the elevated temperature

damage tolerance and toughness isotropy of AA8009 [48]. As a first attempt, thermomechanical

processing (TMP) was performed on extruded AA8009 to refine the oxide layers and homogenize

the microstructure by pulverizing oxide films on prior ribbon particle boundaries. A recent study

indicates that TMP effectively reduces toughness anisotropy [24]. Alternately, the planar flow

RS-casting process was modified, including dry inert gas shrouding of ribbons and mechanical

obstruction of surface boundary gas layer, to reduce the overall oxide population [48].

The effects of processing variables on time-temperature-dependent deformation and fracture

in AA8009 need to be further examined. Understanding of micromechanical mechanism for time-

temperature dependent fracture behavior of AA8009-type alloys is limited. This poor mechanistic

understanding has further limited the effectiveness of processing variations.
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Proposed Mechanisms for Time-Temperature Dependent Fracture of Ultrafine Grain Sized

Materials

Several mechanisms have been proposed to explain the reduction in tensile ductility and

fracture toughness for dispersion strengthened, ultrafine grain sized alloys at elevated temperatures

and/or slow strain rates. Delamination toughening was believed to be responsible for the reduced

elevated temperature damage tolerance of AA8009, since compact tension specimens from

extrusion delaminated significantly at 25 and 300"C, but not at 175°C [49-52]. Boundary failure

can lead to a loss of through-thickness specimen constraint to increase the initiation and growth

fracture toughness of a delaminating alloy. Low magnification SEM fractographs of AA8009 plate

and sheet products, however, demonstrated a total lack of delamination, regardless of test

temperature, suggesting that delamination is not a central factor in reduced fracture toughness at

elevated temperature.

Kim argued that residual atomic hydrogen associated with powder surface oxides is

responsible for reduced tensile ductility in PM aluminum alloys [53]. This argument is based on

the relatively high total dissolved hydrogen content in RS/PM processed aluminum alloys, as a

result of the low degassing temperature compared to IM-processed alloys. Porr and Gangloff,

however, demonstrated that reduced hydrogen content in AA8009 did not improve fracture [39].

It was concluded that hydrogen in AA8009 is strongly trapped in the form of hydrated oxides,

independent of the starting level or alloy product form. Heating between 25°C and 175"C is

insufficient to detrap this hydrogen and thus to provide a source for alloy embrittlement. This

hypothesis was confirmed by limited thermal-desorption spectroscopy experiments [54].

Experiments with AA8009 demonstrated that fracture toughness was degraded similarly with

increasing temperature for precracked specimens loaded in either moist air or ultra-high vacuum

[39,55]. Accordingly, hydrogen produced by environmental reactions is not responsible for

elevated temperature embrittlement of AA8009.

It was suggested that dynamic strain aging (DSA) occurs in AA8009-type alloys at

intermediate temperatures due to the sluggish diffusion of substitutional Fe and V present in the

matrix. DSA was argued to cause the loss of tensile ductility and possibly fracture toughness

[40,41,56]. Even though DSA is a broadly accepted mechanism for A1-Fe-X alloys, it can be

challenged for several reasons. Lloyd and Westengen proposed that a decrease in tensile ductility

for ultrafine grain sized materials at elevated temperature is the result of a thermally accelerated

dynamic recovery process and the formation of Ltiders band [46,47,57,58]. Kim et al. advocated

the dynamic recovery mechanism for the reduced elevated temperature damage tolerance based on

TEM micrographs of tensile deformed AA8009 [59]. It was demonstrated that dislocation density

in as-received and elevated temperature tensile deformed AA8009 is extremely low; in each case,

any presence of dislocations was in the form of subgrain boundaries which segment the existing
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solidification-produced subgrains. Dynamic recovery would be, in general, favored at high

temperature and/or slow strain rate, either by dislocation climb or diffusional relaxation [60]. Port

et al. suggested that reduced tensile ductility and fracture toughness at elevated temperature for

AA8009-type alloys is related to dislocation climb over the particles at elevated temperature,

leading to localized plastic deformation between growing microvoids [39].

Objective

The objectives of the present study were: (1) to precisely characterize the effects of planar

flow-RS casting variables and thermomechanical processing conditions on the

temperature-dependent toughness of AA8009, and (2) to establish micromechanical mechanisms

for time-temperature dependent deformation and fracture of AA8009-type alloys.

Procedures

Materials

RS/PM AAS009 (A1-8.5%Fe-l.3%V-1.7%Si, by wt pet) plate and sheet, produced with a

variety of processing routes, were supplied by Allied Signal Inc. for the present study. These

alloys were rapidly quenched from the melt into ribbons using the planar flow casting process,

either in a moist air atmosphere (Conventional AA8009) or a dry-inert gas atmosphere

(Modification A AA8009). Ribbons produced by Modification A were further modified by

mechanical obstruction of the surface boundary gas layer (Modification B).

During powder solidification and compaction, a considerable amount of oxides form as

flakes which align predominantly along the prior powder particle boundaries which are parallel to

the rolling direction. These oxides contain hydrogen in the form of A120 3 • H20. XPS/AES

measurements of oxide thicknesses on ribbons from each process were obtained by Allied Signal.

Hydrated oxide thickness decreased from 4.5 nm for Conventional AA8009 to 2.9 nm for

Modification B.

Ribbons were pulverized mechanically into -32 mesh powders, and consolidated into bulk

compacts by vacuum hot pressing followed by hot extrusion. Gas analysis of extruded AAS009

established that the hydrogen content varied from 3.5 ppm for Conventional AA8009 to 2.1 ppm

for Modification A and 1.5 ppm for Modification B. Oxide thickness, oxygen content, and

hydrogen content associated with the final product from each ribbon are summarized in Table 4.

Modification B of AAS009 was found to have a high carbon content in the form of coarse

quasicrystalline icosahedral particles, which were provided by erosion of the component used to

obstruct the surface gas boundary layer. Therefore, the present study concentrated on

Conventional and Modification A of AA8009.

Extrusions from each processing route were rolled into plate and sheet with gauge

thicknesses of 6.3, 2.3 and 1.0 mm. Rolling direction (straight and cross rolling) and temperature
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(hot, cold and cold/anneal) were varied systematically.

The microstructures of as-received AA8009 plate and sheet were characterized elsewhere

[35,48,59]. Thermomechanical processing practice refined the oxide layers and reduced the

interplanar spacing between these layers. (See Figure 23). The planar separation of oxide stringers

averaged approximately 7 _tm for 6.3 mm thick plate, while it deceases to approximately 2 to 5 _tm

for 1.0 mm thick sheet. The average grain size of AA8009 varied between 0.1 lxm and 0.3 lttm

depending on product form. Most grain boundaries observed in AA8009 were low-angle

boundaries, with the angle between adjacent boundaries estimated to be less than 5*. AA8009 had

approximately 25% volume fraction of nearly spherical AII2(Fe,V)3Si particles. The average

particle diameter ranged from 50 to 100 nm. Dispersoid particles were mainly located along

subgrain boundaries. Clusters of small silicide particles were often observed within the subgrain

interiors.

Fracture Toughness Experiments

Compact tension (CT) specimens, with a width of 38.1 mm, were prepared from each plate

and sheet product of AA8009. CT specimens of 6.3 mm thick AA8009 plate had a 6.3 mm gross

thickness with sidegrooves of 19.8% of the gross specimen thickness (5.05 mm net thickness) to

increase through-thickness constraint. CT specimens without sidegrooves were machined from

each AA8009 sheet. All specimens were fatigue precracked at a Kma x of 9 MPa_/m to an a/W ratio

of approximately 0.5. For 1.0 mm thick C(T) specimen, the fatigue precrack was grown to an a/W

ratio of 0.7 in order to prevent buckling. Fracture toughness tests were conducted on a

servo-electric testing machine, employing direct current electrical potential measurements to yield

crack extension (Aa) and computed unloading compliance to determine J-integral values. The

initiation fracture toughness was determined by the first nonlinearity in direct current potential

versus load line displacement data. As established in Task I, this is a sensitive measure of the first

stage of crack tip process zone damage, at the center of the specimen under plane strain constraint.

Elevated temperature fracture toughness experiments were conducted in a circulating air

oven mounted on the testing system. All specimens were heated to temperature in 45 minutes and

held at temperature for 60 minutes prior to loading. All experiments were conducted at constant

applied actuator displacement rate; selected rates varied from 2.5 x 10 -2 mrn/sec to 5.1 x 10 -6

mm/sec.

Results

Effect of Temperature on Fracture Toughness of Conventional AA8009

Figure 13 shows the effect of temperature on the initiation fracture toughness (Kjici from

Task I) of Conventional AA8009 (1991 Vintage), in three thicknesses of 6.3, 2.3 and 1.0 mm, at a
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displacementrateof 2.5 x 10.3 mm/sec. 6.3 mm thick plate was produced by hot cross-rolling,

while 2.3 and 1.0 mm thick sheets were prepared with cold cross-rolling. Regardless of product

form, fracture toughness decreases with increasing temperature within the range studied. For

example, Kjici for 6.3 mm thick AA8009 plate decreases from 35 MPa_/m to 10 MPa_/m with

increasing temperature from 25 to 175"C. Due to the limited data, each point is connected with

straight line. A detailed temperature dependence of KjICi for extruded AAS009, reported by Porr

and Gangloff [24], showed a similar trend to the present results. Unlike tensile elongation which

shows a minimum at near-175°C [42], an initiation toughness minimum is not observed for each

product form within the temperature range studied.

The strong effect of temperature on the complete K vs Aa crack growth resistance curve is

shown in Figure 14. This plot presents the results of replicate fracture toughness experiments,

conducted with AA8009 plate at 25 and 175°C. Both the direct current electrical potential (pot) and

compliance (com) methods were utilized to monitor crack growth in middle-cracked tension (MT)

and compact tension (CT) specimens. These various experimental procedures yielded essentially

identical R-curve data.

The R-curves shown in Figure 14 can be analyzed to yield the tearing modulus (T R o_

dJ/dAa), a measure of the resistance of an alloy to stable crack growth [24,50,51]. The

temperature dependence of T R is presented in Figure 15 for the forms of AA8009 represented in

Figure 13. T g exhibits a minimum with increasing temperature. This trend is not necessarily

indicative of an intrinsic effect of temperature on fracture resistance because T R is extremely

sensitive to stress state; which is governed by yield strength, specimen thickness and delamination.

Figures 13 and 15 indicate that the absolute fracture toughness values for AA8009 vary

with thermomechanical processing from plate to sheet. At 25"C, for example, Kjici for 6.3 mm

thick plate is 35 MPa-,/m, while initiation toughness decreases to 19 MPa_/m for 1.0 mm thick

sheet.

Figure 16 shows SEM fractographs of cracks in 6.3 mm thick AA8009 plate fractured at:

(a) 25°C, (b) 175*C and (c) 300°C at an actuator displacement rate of 2.5 x 10 -3 mm/sec. The

crack growth direction is from left to right, and the fractograph is located adjacent to the fatigue

precrack at the specimen mid-thickness position. Regardless of test temperature, the fracture mode

in AA8009 appears to be microvoiding. This notion is based on a stereoimaging fractographic

analysis of matching fracture surfaces conducted by Porr [39]. Notably, the size, morphology and

distribution of voids vary with the testing temperature. At 25°C, the fracture surface is

characterized by a bimodal distribution of spherical dimples. The size of the large spherical

dimples ranges from 2 to 5 _m, while that of the small dimples is about 1 I.tm. At 175°C, on the
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otherhand,auniform distributionof shallowdimplesis observed with an average diameter of 3

I.tm. The morphology of voids at 300"C is similar to that at 175"C.

Effect of Loading Rate on Fracture Toughness

Figure 17 shows the effect of actuator displacement rate on the fracture toughness of 6.3

mm thick conventionally processed AA8009 plate (1991 Vintage) at 25°C and 175°C. For

comparison, fracture toughness data for 10.0 mm thick AA8009 extrusion, obtained by Porr and

Gangloff [24], is included in Figure 17. Decreasing loading rate has a similar effect on the fracture

toughness of AA8009 as increasing temperature; that is, initiation fracture toughness decreases

with decreasing displacement rate at both 25 and 175°C. For example, the toughness of 6.3 mm

thick AA8009 plate at 25°C decreases from 41 MPa_/m to 16 MPa_/m with decreasing actuator

displacement rate from 2.5 x 10-2 to 5.1 x 10 .6 mm/sec. The time taken from the start of the test to

unstable crack growth was 20 seconds for the test at 2.5 x 10 -2 mm/sec and two days for 5.1 x

10-6 mm/sec.

The data in Figure 17 clearly demonstrate that the fracture toughness of AA8009 depends

on both temperature and time; low toughness fracture can be produced at 25"C provided that

sufficient time is provided. This time-dependent fracture behavior is not normally observed in

ingot metallurgy processed aluminum alloys such as AA2618.

The trend lines in Figure 17 indicate that the magnitude of the loading rate dependence of

Knc i for 6.3 mm thick plate changes at a critical loading rate of about 10-5 mm/sec for fracture at

25°C. Due to limited data for plate at 175°C, such a critical loading rate can not be determined

with accuracy. However, the data for AA8009 extrusion show that the critical loading rate equals

10 -2 mm/sec for fracture at 175°C [39]. The significance of the temperature dependence of this

critical or transition loading rate is discussed in an ensuing section.

Figure 18 shows SEM fractographs of 6.3 mm thick conventionally processed AA8009

plate fractured at: (a) 25"C and 5.1 x 10- 6 mm/sec, (b) 25"C and 2.5 x 10 -2 mm/sec, (c) 175"C and

5.1 x 10 -6 mm/sec, and (d) 175°C and 2.5 x 10 -2 mm/sec. Decreasing loading rate has a similar

effect on the fracture mode of AA8009 as increasing temperature; that is, a bimodal distribution of

spherical dimples for short-term tests compared to and a uniform size of shallow dimples for the

long term test at each temperature. At 175"C and 5.1 x 10 .6 mm/sec, for example, dimples are

uniformly distributed and aligned along a certain direction (Figure 18c), while the size and

distribution of the dimples are not as uniform for the fast loading rate case at 175°C (Figure 18d).

Moreover, comparing Figures 16 and 18, there exists a close resemblance in fracture mode

between the room temperature-very slow loading rate case and the high temperature-standard

loading rate case.
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Effect of Modified RS and Thermomechanical Processing on Fracture Toughness

In order to understand the effect of each RS process modification on the fracture

toughnesses of AA8009, Kjici values at 25, 175, and 300°C are plotted in Figure 19 for

differently processed 6.3 mm thick hot cross-rolled plates of AAS009. Data are presented for

Conventional AA8009 (1991 Vintage), as well as for Modifications A and B, all from the present

study. For comparison, fracture toughness data are plotted for extruded AA8009 and rolled plate

of AA8009 (1990 Vintage), as reported previously by Porr and Gangloff [24,39]. Similar tearing

modulus results are presented in Figure 20 for these materials. All toughness data in Figure 19

represent the LT orientation initiation toughness, except for Modification A results which represent

the TL case. (The final rolling direction in cross rolling is always perpendicular to the initial

extrusion direction. Accordingly, if an orientation is expected to be lower toughness, it would be

LT.)

Average initiation fracture toughnesses are represented with the bars in Figures 19 and 20,

and individual toughness values are indicated by filled circles to indicate the range of experimental

error. The initiation toughness changes from 35 MPa'4m for Conventional AA8009 to 22 and 29

MPa_/m for Modifications A and B, respectively, at 25"C. The toughness at 175°C varies from 15

MPa_/m for extruded AA8009 to 10 MPa_/m for the AA8009 plates, including Conventional and

Modifications A and B. For each processing condition, the initiation fracture toughness decreases

with increasing temperature from 25 to 300oC. A weak toughness minimum is suggested only for

the 1990 Vintage plate case.

Metallogaphic analyses suggested that eachmodified process method reduced the oxide

population somewhat. Quantitative metallography was not conducted. Despite the reduced oxide

thickness and total dissolved hydrogen content, as reported by Allied Signal Inc. (Table 4), the

modified processes do not improve elevated temperature fracture toughness. Delamination, and

possible associated toughening, was only observed for LT-oriented fatigue precracked specimens

from the extrusion, and then only for fracture at 25"C.

Figure 21 shows SEM fraetographs of 6.3 mm thick AA8009 plate, produced with (a)

Modification A and (b) Modification B, respectively, and fractured at 25°C and 2.5 x 10 -3 mm/sec.

The modified processes did not alter the basic fracture mode of microvoid coalescence. There is,

however, a subtle difference in fracture morphology between conventional and modified-processed

AA8009. The dimples in Modification A appear to be shallower; a void impingement-type

coalescence process is evidenced. The fracture surface of Modification A at 25"C is similar to that

of Conventional 8009 at elevated temperature and/or slow loading rate. Modification B, on the

other hand, has a featureless surface with occasional large dimples, aligned along the crack

propagation direction.
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Theeffectof temperatureon thefracturetoughnessof threethicknessesof hot-cross-rolled

Modification A AA8009 is representedin Figure 22. Despite the modified RS and

thermo-mechanicalprocessing,Kjici decreases significantly at 175"C compared to the toughness

at 25"C. The toughness difference between each thickness appears to be reduced for Modification

A of AA8009, compared to that of Conventional AA8009 (see Figure 13). An SEM fractographic

examination of the various sheet/plate thicknesses of Modification A showed a change in fracture

mode with increasing temperature. This change was identical to that discussed for Conventional

AA8009 (Figure 16). Figure 22 demonstrates that the fracture toughness of the 6.3mm and

2.3ram thicknesses of AA8009 decreases with decreasing temperature from 25°C to -60°C. The

toughness of 1.0mm sheet increased modestly with this decrease in temperature.

For both conventionally and modified-processed AA8009, rolling reduction from 6.3mm to

1.0mm resulted in a reduced spacing of oxide layers, as well as a reduced oxide size. Typical

microstructures are presented in Figure 23 for three thicknesses of conventionally processed

AA8009.

Effect of TMP on Fracture Toughness of 8009

Figure 24 shows the effect of plate/sheet thickness on the initiation fracture toughnesses,

KjICi, for Conventional AA8009 and hot cross-rolled Modification A of AA8009, at three test

temperatures. 6.3 mm thick Conventional AA8009 plate was produced with hot cross-rolling,

while 2.3 and 1.0 mm thick Conventional AA8009 sheets were produced with cold cross-rolling.

Each thickness of Modification A was produced by hot cross-rolling. For any rolling reduction

and specimen thickness, KjICi decreases with increasing temperature, regardless of processing

route. For example, for 1.0 mm thick Conventional AA8009 sheet, the initiation toughness

decreases from 20 MPa_/m at 25°C to 5 MPa_/m at 175°C.

Previously, it was demonstrated that tensile strength increases, while tensile ductility

decreases, for Conventional AA8009 with increasing rolling reduction, regardless of test

temperature [48]. For each test temperature, the initiation toughness for Conventional AA8009

reflects this trend in tensile properties; Kj1ci decreases with thermomechanical processing from 6.4

mm thick plate to 1.0 mm thick sheet. The effect is particularly pronounced at 25"C for

Conventional AA8009. For Modification A, the thickness dependence at 25°C is less clearly

defined. KjIci tends to decrease with increasing rolling reduction for Modification A fractured at

175"C. These initiation toughness differences at 25°C and 175°C appear to be significant for

Modification A 8009, but are approaching the order of the expected variability in toughness from

replicate experiments.

Two points are important with regard to the data in Figure 24. First, the J-integral R-curve

method reasonably establishes the plane strain initiation fracture toughness (Kjici) for AA8009
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specimens as thin as 1.0 mm. This point is supported by the extensive experiments reported in

Task I and by the presence of a plane strain region, at the fatigue preeraek and in the center of each

specimen of AA8009 examined at each test temperature. Typical low magnification fraetographs

are presented in Figure 25 for 1 mm thick CT specimens of Modification A of AA8009, tested at

25°C (a) and 175°C (b). Second, the processing of Conventional AA8009 represented in Figure

24 was hot, however, the 2.3 mm and 1.0 mm thick sheets were subjected to final cold rolling.

Neither the amount of rolling deformation, nor a final cold pass, mitigated the deleterious effect of

increasing test temperature on fracture toughness.

Figure 26 shows SEM fractographs of Conventional AA8009 sheet, with a gauge thickness

of 2.3 mm fractured at (a) 25°C and (b) 175°C compared to 1.0 mm sheet fractured at (c) 250C and

(d) 175°C. The actuator displacement rate was 2.5 x 10 -s mm/sec. Compared to the 6.3 mm thick

Conventional AA8009 plate represented in Figure 16, the distribution of dimples typical of the

thinner gauges of AA8009 appear to be more uniform with less evidence of void sheeting-type

microvoiding at 25°C. At 175°C, dimples of less than 1 ]xm in size are shallower than those

produced at 250C and are aligned along the crack propagation direction.

The effects of rolling reduction on the tensile yield strength and elongation of Modification

A of AA8009 plate and sheet tested at 250C and 150oc were obtained by Allied-Signal Inc. and

presented elsewhere [48]. Modified AA8009 showed similar trends in tensile behavior compared

to Conventional AA8009; mechanical processing to reduced thickness slightly enhances yield

strength, but reduces tensile elongation for each temperature. The more relevant tensile ductilities

of Modifications A and B of AA8009 are presented in Figures 27 and 28, respectively, as a

function of gauge thickness for the L orientation at four tensile-test temperatures from 25 to 316oc.

Three cases were hot cross rolled, without final cold reduction, in contrast to the data presented in

Figure 24. Two of the 1.0 mm thick sheets were cold rolled to final thickness. For each of the

AA8009 product forms represented in Figures 27 and 28, ductility is high at 25°C, sharply

decreases with increasing temperature to 150oc, and only exhibits a weak minimum for four of the

ten cases examined. None of the processing conditions affected a reduction in the deleterious

effect of increasing temperature from 250C to 150°C, for both modifications to the RS processing

method.

Considering the tensile tests at 25°C of Modifications A and B, ductility decreased with

increasing rolling from 6.3 mm to 2.3 mm, consistent with the data in Figure 24. Further

reduction to 1.0 mm produced a modest ductility increase for each modification.

Figure 29 shows the initiation fracture toughness for 1.0 mm thick Modification A AA8009

sheet, produced by cross-rolling at different rolling temperature (hot and cold) or with intermediate

annealing. Each toughness value represents Kjici for the TL orientation and an applied

displacement rate of 2.5 x 10 -s mm/sec. Regardless of rolling temperature and intermediate
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annealing,the initiation fracture toughnessdecreaseswith increasingtemperaturefrom 25 to
175°C. Toughnessesat 25 and 175°Careunaffectedby rolling temperatureor intermediate

annealing.

Effect of Long Term Heat Treatment

Selected specimens from cold rolled 1.0 mm thick Modification A AA8009 sheet were

thermally exposed at 370°C for 100 hours without stress. Fracture toughness data are compared

with as- received AA8009 sheet in Figure 30. High temperature exposure has no effect on

toughness for AA8009 regardless of testing temperature, analogous to a previous study of high

temperature exposure on the fracture toughness of AA8009 extrusion [39]. Temperature alone is

not sufficient to induce a damaging microstructural change in 8009. This result is notable because

uniaxial tensile experiments at Allied Signal. demonstrated that the 370"C annealing treatment

substantially reduced the elongation to fracture (necking) of cold rolled 8009 sheet [48].

Summary_ of Fracture Toughness Measurements

Figure 31 provides a summary plot of the temperature dependencies of the initiation

fracture toughness for many of the RS and thermomechanical processing conditions examined in

this study. Data are also provided for ultra-fine grain size aluminum (Exxon DS A1), AA2618, and

AA2519 (Ag + Mg), studied in Tasks III and IV. The results for SiC reinforced AA2009 were

obtained at UVa under a separate NASA grant program [61-63]. The fracture toughness of several

forms of AA8009 is excellent at 25°C, compared to the IM alloys and the metal-matrix composite.

Increasing temperature to 150°C and above results in the same substantial fracture toughness

degradation for each form of AA8009 studied. Toughness minima were not observed. The

fracture toughnesses of the thin-sheet forms of AA8009 are particularly low compared to plate at

each temperature.

Discussion

The results of this study are interpreted in order to understand: (a) the mechanism for

brittle fracture of AA8009 at elevated temperatures or slow loading rates, and (b) the effects of

processing variables on elevated temperature fracture of RS/PM AA8009.

Mechanism for Time-Temperature Dependent Fracture of AA8009

It has been well established that tensile ductility and fracture toughness decrease with

increasing temperature and decreasing strain rate for submicron grain sized, dispersion

strengthened aluminum alloys [24,39-47]. Several mechanisms were proposed for this unique

time-temperature dependent fracture and deformation behavior, including: (1) macroscopic

delamination toughening [50-52], (2) hydrogen or oxygen environment embrittlement [55,64], (3)

intemal hydrogen embrittlement from processing [53], (4) dynamic strain aging (DSA)
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[40,42,43,56], and (5) slip localization with nil work hardening due to dislocation-dispersoid

interaction [39].

Each proposed mechanism is reviewed here. Emphasis is placed on plastic instability and

flow localization which appears to be most relevant to deformation and fracture of AA8009-type

alloys. Additional work in this regard is reported in Task Ill.

Macroscopic Delamination Toughening:

A delamination-toughening mechanism to explain reduced toughness in AA8009 at elevated

temperature was advocated by Chan [50,51] and Jata [52] based on SEM observations of extruded

AA8009 showing significant delamination at 25 and 300"C, but not at 175"C. Such boundary

failure results in a loss of through-thickness specimen constraint if the height of the out-of-plane

cracks are on the order of the crack tip plastic zone, and if the height exceeds spacing so that shear

operates under plane stress on planes at 45* to the Mode I crack. Delamination can therefore

increases the initiation and growth fracture toughness, as originally proposed for improved

toughness of A1-Li alloys at cryogenic temperatures [65].

Delamination toughening of AA8009 was examined by Porr and Gangloff [24]. They

concluded that this mechanism is not a central factor to explain the time-temperature dependence of

KIC i, and does not necessarily contribute to the excellent ambient temperature fracture toughness.

Unlike extruded AA8009, plate and sheet product forms do not delaminate, regardless of the

loading rate or test temperature. Macroscopic SEM fractographs of Conventional AA8009 sheet

with gauge thickness of 1.0 mm fractured at 25°C and 175°C, shown in Figure 25, further confirm

this notion. Regardless of test temperature, sheet AA8009 does not delaminate, but fracture

toughness declines with increasing temperature. Porr and Gangloff also demonstrated that,

independent of specimen constraint or the occurrence of delamination, the effective strain to

fracture decreases from 25 to 175°C [24]. This result indicates that the intrinsic fracture resistance

of AA8009 declines with increasing temperature, independent of stress state effects. The same

conclusion is established in Task rll for a different ultra-fine grain size PM aluminum alloys.

Internal and External Hydrogen EmbrittIement:

Compared to ingot metallurgy counterparts, AA8009 contains an extremely high hydrogen

content due to the relatively low degassing temperature employed to avoid formation of a

detrimental intermetallic phase and coarsening of silicide particles. Consequently, the possibility

exists for hydrogen-induced damage at elevated temperatures [53,64]. The effect of internal and

external hydrogen on fracture toughness of 8009 was examined by Porr et al. [55]. Prolonged

heating in vacuum, or reduced total dissolved hydrogen content by autoclaving, has no effect on

fracture toughness. They concluded that hydrogen in 8009 is similarly strongly trapped in each
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productform at both 25°C and 175°C. Very high temperature,perhaps400*C, is required to

chemicallyproduceatomichydrogenin theAA8009microstructure.

As summarizedin Table4, ModifiedAA8009hastwo-or three-foldlesshydrogencontent

comparedto ConventionalAA8009. Despitethissignificantlyreducedhydrogencontent,elevated

temperaturefracturetoughnesswasnot improved. A recent,thermaldesorptionspectroscopy

studyof AA8009plateconfirmedthathydrogenis stronglybondedup to 350°C[54]. It is likely

thathydrogenin AA8009is beneficiallychemicallytrappedby stronglybondedhydratedoxides

andis notreleasedin atomicform for embrittlementatrelativelylow temperatureon theorderof
175°C.

Dynamic Strain Aging:

Skinner et al. suggested that dynamic strain aging (DSA) occurs in AA8009 at intermediate

temperatures due to the sluggish diffusion of substitutional Fe and V present in the matrix. DSA

was proposed as the mechanism for the loss of tensile ductility with increasing temperature and/or

decreasing strain rate.

The DSA arguments focuses on work hardening and strain rate sensitivity effects on flow

localization and necking. While elongation to fracture in a uniaxial tensile specimen may decline

due to DSA-induced plastic instability, it is unclear how this relates to the more relevant crack tip or

notch root process zone that is under complex triaxial deformation and elastic constraint. The

dislocation structure of deformed AA8009 is unique in that classical forest dislocation structures

are not formed. Interaction between solute atoms and forest dislocation networks, which is the

cause of DSA, is thus questionable. Experiments with high purity fine grain size aluminum,

reported in Task III, demonstrate that DSA is not responsible for the time-temperature dependent

fracture behavior observed in AA8009.

Plastic Instability and Flow Localization:

The present SEM fractographic examination demonstrates that 8009 fails by microvoiding.

Based on a systematic fractographic study by Porr [39], several factors interact to affect the

fracture resistance of 8009-type alloys. Fracture initiates by microvoid nucleation at prior ribbon

particle boundary oxides, followed by void growth through ribbon particles, either by secondary

microvoid nucleation and growth or by cracking of locally intense deformation bands. AA8009

fractures by a different void coalescence process depending on the testing condition; results

suggest void sheeting at 25°C and/or fast loading rates, and void impingement at 175°C and/or

slow loading rate. An alteration in the void coalescence process is likely due to the change in the

magnitude of plastic instability and flow localization in AA8009 with different testing conditions.

Flow instability may be governed by complex dislocation-particle interactions that vary with test

temperature.
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Plasticflow localizes for several reasons. Dynamic strain aging can cause a negative strain

rate sensitivity, within some temperature range that can lead to plastic instability and flow

localization, as proposed by Thomason [66]. Since AA8009 appears to have a negative strain rate

sensitivity within the temperature range between 175 and 200"C, it can be argued that plastic flow

localization would be possible in this temperature range due to DSA. However, as proposed by

Edwards et al. for zinc, containing a large volume fraction of small A1203 or W particles and with a

typical grain size of 1 to 3 I.tm, generation of mobile dislocations at particles and limited matrix

recovery can cause a similar strain rate sensitivity [67].

Lloyd and Westengen proposed that a high rate of dynamic recovery at elevated temperature

in ultraflne grain sized materials can enhance plastic instability and flow localization [46,47,57,58].

They attributed the lack of intragranular dislocation substructure during deformation to the

annihilation and redistribution of dislocations due to enhanced dynamic recovery process in

ultrafine grain sized materials. When the grain size is similar to the mean free path for the

dislocations (1 to 2 _tm), the formation of dislocation cell structures is not favored within the grain

interior, unlike medium to coarse grain size I/M aluminum alloys. Dynamic recovery rate increases

with increasing temperature and/or decreasing strain rate. TEM micrographs of tensile deformed

AA8009 supports the occurrence of dynamic recovery [59]. At elevated temperatures, oxide and

silicide particles are free of dislocations and overall dislocation density is extremely low.

Characteristic of recovery, any remaining dislocations are neatly arranged in arrays after high

temperature deformation.

Porr suggested that flow localizes due to dislocation climb over particles at elevated

temperatures in AA8009 resulting in intense shear bands between primary voids nucleated at oxide

layers along the prior ribbon particle boundaries. Porr's dislocation climb mechanism in AA8009

is based on the Humphrey and Kalu model which considers that the rate of dislocation

accumulation at nonshearable spherical particles is balanced by the rate of dislocation climb and/or

diffusional relaxation around particles [68]. The HK model predicts that the critical strain rate,

above which dislocations accumulate at particles and below which climb can dominate, is

approximately 4 x 10 -6 sec -1 at 25°C and 2 x 10 -1 see -1 at 175°C for AA 8009 with an average

silicide particle size of 80 nm. A four to five order of magnitude increase in the critical strain rate is

predicted for increasing temperature from 25°C to 175"C.

As demonstrated in Figure 17, Kj1ci for 6.3 mm thick AA8009 plate is significantly

reduced at a loading rate of about 10 -5 mm/sec for fracture at 25"C. Data from Porr for a similar

AA8009 extrusion show that such a toughness decrease occurs at a critical loading rate of about

10 -2 mm/sec for fracture at 175°C. Accordingly, the toughness experiments indicate that the

critical strain rate is increased by three orders of magnitude for increasing temperature from 25°C to
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175"C. It is necessaryto compareactuator displacementrates in this analysisbecauseof
uncertaintiesassociatedwith calculatingcracktip strainrate.

The HK modelprediction of "critical" strain rate versustemperature,along with data
representingAA8009,areplottedin Figure32. Forconditionswherestrainrate,temperatureand

particle diameterresult in a valueof ln(_Td3) to the left of the deformationtransition lines,

dislocationsclimb (ordiffusionalrelaxationoccurs)aroundparticlesfasterthantheyaccumulate;

whenright of the line,particle-dislocationinteractionsresultin hardening,andpresumably,more

homogeneousslip. Eventhoughthereis a substantialdiscrepancybetweenthepredictionsof the

climb-basedmodel for flow localization,and the time dependenceof KjICi measured at 25"C

compared to 175°C, overall agreement is encouraging.

Evolution of Fracture in AI 8009

Regardless of processing route and testing condition, AA8009 fails by dimpled rupture.

Void impingement-type coalescence is evidenced at elevated temperature and/or slow strain rate, in

contrast to void sheeting at ambient temperature and/or fast strain rate. At 25"C, microvoids

nucleated and grew from oxide-matrix interfaces, then coalesced by formation of a second

population of smaller spherical voids. These secondary voids initiated at dispersoids between

oxide nucleated voids, forming void sheets between oxides. At elevated temperatures, on the other

hand, coalescence of voids occurred by void impingement after shear instability from intense shear

that developed between oxides or growing voids on different parallel planes.

The change in microvoid coalescence may be attributed to localized plastic deformation

between growing microvoids, perhaps due to the weakened dislocation-particle interactions.

Weakened dislocation-particle interactions may result from dislocation climb, as proposed by Porr

[24]. Dislocation climb over silicide particles has not been evidenced in deformed AI-Fe-X alloys.

As demonstrated in tensile deformed AA8009 at elevated temperature [59], however, most

dislocations after deformation are in the form of subgrain boundaries with neater, less ragged

arrays, indicating a high rate of dynamic recovery. At 25°C, on the other hand, a high density of

dislocations is evidenced around oxide and silicide particles. The lack of dislocation structures at

elevated temperatures would lead to low work hardening and enhanced plastic instability.

Effect of Different Processing Route

A variety of product forms of AA8009, produced by modified planar flow casting as well

as different thermomechanical processing routes, were examined in the present study. Despite

reduced oxide population and homogenized microstructure from modified processing,

improvements in elevated temperature fracture toughness was not observed. Beneficial dislocation

structures with thermomechanical processing was not evidenced.

331



Effects of Modification Processes:

Modified RS processes, including Modifications A and B, successfully reduced the

thickness of the hydrated oxide layer, percent oxygen and hydrogen content in AA8009, as

summarized in Table 4. None-the-less, AA8009 still suffered from degraded fracture toughness at

elevated temperature and slow strain rate. Moreover, the ambient temperature fracture toughnesses

for Modifications A and B of AA 8009 plate are substantially lower than that of Conventional

AAS009 plate. Even though the RS process modifications substantially reduced the oxide

thickness on AA8009 ribbon, a considerable amount of oxide can form during compaction.

Therefore, the reduced oxide population from the modified processes may not be sufficient to

improve elevated temperature fracture toughness. Alternately, void nucleation at oxide-matrix

interfaces, which should be affected by the change in oxide population, may not significantly affect

the overall fracture toughness, especially at elevated temperature. The second notion is reasonable

since the present study suggests that void coalescence, rather than void nucleation, controls the

fracture behavior of AA8009. This notion is controversial, since Porr suggested that void

nucleation, rather than void coalescence, is a controlling factor, based on SEM micrographs of

interrupted and sectioned notched tensile specimens [39].

Modification A of AA8009 plate has a lower room temperature fracture toughness

compared to both Conventional AA8009 and Modification B at the same gauge thicknesses. The

explanation for this effect is uncertain. SEM fractographs in Figures 16, 21 and 26 indicate that

the fracture surface of Modification A is similar to that of Conventional AA8009. A considerable

amount of carbon was present in Modification B, due to contamination from the modified RS

equipment. As shown in Figure 21, Modification B plate has a featureless surface with

occasionally large dimples at 25°C. This fracture surface may reflect the reduced oxide population

in Modification B 8009, which would provide less void nucleation sites. The large dimples may

be associated with coarse quasicrystalline icosahedral carbide particles.

Effect of Thermomechanical Processing:

Thermomechanical processing was performed on extruded AA8009 at Allied-Signal to

improve: (1) fracture toughness isotropy by obtaining a uniform microstructure, and (2) elevated

temperature fracture resistance by both refining oxide layers on prior ribbon particle boundaries

and introducing beneficial dislocation structure by cold deformation.

Thermomechanical processing has been proven to effectively reduce the fracture toughness

anisotropy in AA8009 [24]. Porr reported that LT oriented AA8009 extrusion has approximately

50% higher initiation toughness than that for the TL orientation at 25"C. The TL orientation is

intrinsically less tough because of prior ribbon boundary cracking and a lack of beneficial

delamination which does not occur because KIc is low for TL orientation. Delamination for the LT

extrusion magnifies the difference in toughness. The degree of toughness anisotropy for extruded
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AA8009decreasedwith increasing test temperature.

Figure 33 shows blunting line offset fracture toughness values for 2.6 mm thick

Modification A of AA8009 sheet at 25 and 175°C for the LT and TL orientations. These data were

obtained by Fracture Technology Associates (FTA) employing the ASTM-standard unloading

compliance method to define J-Aa. This figure shows that the TL orientation has approximately

30% higher toughness than LT for the 2.6 mm thick sheet. The final rolling direction for

cross-rolling is always perpendicular to the initial extrusion direction. Accordingly, if an

orientation is expected to be lower toughness, it would be the LT case in cross-rolled plate, as

controlled by fracture along the original extrusion-aligned prior ribbon boundaries. Compared to

the AA8009 extrusion, however, toughness anisotropy is substantially diminished with

thermomechanical processing.

Thermomechanical processing did not induce beneficial dislocation structure that lead to

improved elevated temperature fracture toughness. As shown in Figures 24 and 29,

thermomechanical processing to increasingly thin sheet slightly degraded fracture toughness at each

test temperature. Increased rolling reduction, either hot and cold, affects the oxide population and

perhaps the dislocation substructure. These factors are likely to each influence the intrinsic

deformation, flow localization, and fracture resistance of AA8009-type alloys. Additionally,

rolling affects yield strength and work hardening; these factors, coupled with intrinsic fracture

resistance, affect temperature-dependent KIC.

Refined oxide layers and reduced spacing between those layers with increasing rolling

reduction to sheet was demonstrated for AAS009 (Figure 23) [59]. SEM studies on as-received

Conventional AAS009 plate and sheet showed that the average interplanar spacing between the

oxide stringers on prior ribbon particle boundaries was reduced from 7/,tm for 6.3 mm thick plate

to 2 to 5 _tm for 1.0 mm thick sheet. Refined oxide layer should increase the applied strain

required for void nucleation. On balance, void growth could be facilitated by rolling reduction,

because of decreased intra ribbon particle spacing between the void nucleating oxides at 25°C. At

elevated temperature, rolling reductions in prior ribbon particle thickness may not affect void

growth if governed by local shear.

Cold rolling to 1.0 mm thick sheet from 10.0 mm thick extrusion forms subgrain

boundaries within the existing solidification-produced subgrains, resulting in a further refined

subgrain structure [59]. Such subgrain boundaries may act as sinks for dislocation annihilation

during deformation, and dynamic recovery would be generally favored for the finer subgrain

structure. The enhanced dynamic recovery would lead to lower work hardening and intensify the

localized deformation. Reduced work hardening and flow localization would, in turn, induce

strong shear bands between voids formed at oxide layers. SEM fractographs of thinner gauges of

Conventional AAS009 sheet, as shown in Figure 26, suggest enhanced flow localization with
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increasedthermomechanicalprocessing.Void impingement-typecoalescenceprocessisnotableon

the fracture surface of thinner gauges of 8009 even at 25"C.

If the aforementioned notion is correct, the same gauge thickness of cold rolled AA8009

should have higher ductility and fracture toughness at each temperature, compared to hot rolled

sheet. Dynamic recovery is favored during hot rolling and should promote a fracture-prone

microstructure. Notably, however, any difference in tensile ductility and fracture toughness

between cold rolled and hot rolled AA8009 sheet is within experimental error as shown in Figures

27, 28, and 29. Moreover, intermediate annealing after cold rolling had no effect on tensile

ductility or fracture toughness. A plausible speculation is that with such a severe rolling of almost

1000% reduction, the microstructure of each sheet was fully recovered.

Conclusively, cold rolling does not enhance the fracture toughness of AA8009. In contrast

Westengen observed that a 4% cold prestrain by rolling produced a 50% increase in the tensile

elongation to fracture for an ultra-fine grain size aluminum alloy [46]. He suggested that this is

due to suppressed plastic instability by activating dislocation sources throughout the grains which

otherwise do not have a mobile dislocation density to enable work hardening. Such dislocation

sources within the small grains were neither specified nor evidenced. Additionally, uniaxial tensile

elongation data, governed by necking instability, may not be relevant to ductility and fracture

toughness. In the present study, the magnitude of the rolling reduction was between 100% and

1000% of the original thickness. Dislocations which are activated at a relatively early stage of

rolling deformation may be annihilated during the final stage of rolling.

Dynamic recovery would be favored with refined microstructure due to the rolling

reduction. Enhanced dynamic recovery would lead to lower work hardening and intensify

localized deformation. Accordingly, tensile ductility and fracture toughness decrease with

increasing rolling reduction, producing a decreasing size of subgrain structure, superimposed on

the effect of rolling reduction on the oxide population. It is presently not possible to establish the

relative contributions of oxide-based factors and slip localization/work hardening-based factors.

Conclusions

The effects of temperature and loading rate on the fracture toughness of AA8009 plate and

sheet, processed by either conventional rapid solidification or modified RS and by a range of

thermomechanical routes, were examined by using J-integral fracture mechanics. Several

conclusions were drawn.

I) The initiation fracture toughness of AA8009 decreases with increasing temperature and
decreasing loading rate, regardless of processing route and product form.
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2)

3)

4)

5)

6)

7)

8)

Time-temperature-dependent degradation in AA8009 fracture toughness is not due to
delamination toughening, hydrogen embrittlement, or dynamic strain aging.

AA8009 fracture is by microvoid processes initiated at boundary oxides, regardless of
processing route and test condition; a single size of shallow dimples characterizes low
toughness cracking.

The likely mechanism for time-temperature-reduced toughness is localized plastic
deformation between growing microvoids; flow instability truncates stable void growth.

The flow localization appears to be promoted by several factors, including low work
hardening without dislocation substructure, dynamic recovery, dislocation evasion of
silicides, and discontinuous dislocation emission.

The lack of dislocation structure in AA8009 is attributable to dislocation-climb assisted

dynamic recovery at elevated temperature, leading to low work hardening and plastic flow
localization developing locally intense shear bands between oxide particles.

Thermomechanical processing degrades fracture toughness due to the reduced oxide sheet

spacing coupled with dynamic recovery and reduced work hardening.

Modified processes to reduce the oxide population and total dissolved hydrogen content of
AA8009 do not ameliorate the loss of damage tolerance at elevated temperature.
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IV. TASK III---DEFORMATION AND FRACTURE MECHANISMS IN
SUB-MICRON GRAIN SIZE ALUMINUM ALLOYS

S.S. Kim, M.J. Haynes, and R.P. Gangloff

Abstract

Advanced aluminum alloys with thermally-stable submicron grains, fine dispersoids, and

metastable solute are limited uniquely by reduced ductility and toughness at elevated temperatures.

The mechanism is controversial. Experimental results for cryogenically milled oxide dispersion

strengthened pure aluminum (CM A1) extrusion; with 3 volume pct of 20 nm A1203, and a 0.5 I,tm

grain size, establish that uniaxial tensile ductility, plane strain crack initiation fracture toughness

(Knci), and tearing resistance (T R ) decrease monotonically with increasing temperature from 25 to

325oC. Fracture is by microvoid processes at all temperatures; reduced toughness correlates with

changed void shape from spherical to irregular with some faceted walls. Strain-based

micromechanical modeling predicts fracture toughness, and shows that temperature-dependent

decreases in KjICi and T R are due to reduced yield strength, elastic modulus, and intrinsic fracture

resistance. Since CM A1 does not contain solute such as Fe, dynamic strain aging is not necessary

for low-toughness fracture at elevated temperature. Rather, increased temperature reduces work

and strain-rate hardening between growing primary voids, leading to intravoid instability and

coalescence at lowered strain. Decreased strain-rate hardening is attributed to increased mobile

dislocation density due to dislocation emission and detrapping from dispersoids in dynamically

recovered dislocation source-free grains.

Introduction

Advanced rapidly solidified (RS) or mechanically alloyed (MA) powder metallurgy (PM)

aluminum alloys, with submicron grain size and a substantial volume fraction (5 to 30 vol pet) of

small (20 to 200 nm diameter) dispersoids, are candidates for next generation light-weight elevated

temperature structures [69-71 ]. The microstructures and ambient-temperature tensile properties of

such alloys are stable after prolonged high temperature exposure, however, tensile elongation and

fracture toughness decrease with increasing deformation temperature above 25°C, and with

decreasing strain rate, in sharp contrast to ingot metallurgy (IM) precipitation hardened aluminum

alloys [42,49].
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For example,sheet,plate andextrusionof melt spunRS aluminumalloy (AA) 80095

exhibit a50%decreasein tensileductility andan80%or moredecreasein fracturetoughnesswith

increasingtest temperaturefrom 25 to 200oC [24,39,42,49,72]. Preexposureat 350°C for

hundredsof hourshasnoeffectonstrengthor ductility measuredat25°C. Reduction-in-areaand

totalelongation-to-fractureareaminimumatatemperaturethatincreaseswith increasingstrainrate

[24,39,42,49,72],but the initiation fracturetoughnessof AA8009 declineswithout a minimum

[24]. Thetemperaturedependenceof fracturetoughnesswastracedto adegradationin intrinsic

fractureresistance,ratherthananextrinsicchangein thecracktip stressandstraindistributionsthat
drive fracture[24].

Severalmechanismshavebeenproposedfor the unique time-temperature-dependent

fracturebehaviorof submicrongrainsize,dispersoid-bearingAI alloys. Changesin theamountof
cracktip constraint(so-calleddelaminationtoughening)[51,73,74],aswell asembrittlementdueto

dissolvedhydrogenfrom RS-powderprocessingor environmentalexposure,wereshown to be

unlikely causesof reducedintrinsicductility andtoughnessat elevatedtemperatures[24,39,55].
Rather,reducedfractureresistancewasattributedspeculativelyto strain localization between

growingmicrovoids[24,39,72];dueto reducedwork hardening(or softening)[75], reducedstrain

rate hardening,or dislocation-particle-boundaryinteractions. Such behavior is unique to
submicrongrainsizealuminumalloys,with dispersoidsbut withoutintragranulardislocationcell

structuredueto dynamicrecovery[46,57,58].

Alternately, dynamicstrainaging (DSA) was reportedto governdeformation and,by

inference, fracture of A1-Fe-Xalloys [40,42,56]. Mg promotes DSA in cast and wrought

aluminumalloysattemperaturesbelowabout100oC;DSA in-turncausesplasticflow localization

andshearfractureatreduceduniformtensileelongation[77,78]. Skinneret al. arguethatFe andV

similarly interactwith dislocations,and that this DSA is most apparentat temperaturesabove

100°Cdueto the sluggishdiffusion of substitutionalsolutesuchasiron [42]. This view was

supportedby ScanningTransmissionElectronMicroscopy(STEM) measurementsof ahigh (-1

atom percent) solid solution Fe concentration in RS AA8009, correlation between

temperature-dependentminima in tensileelongationto failure and strain rate sensitivity, and

comparisonof activationenergiesfor deformationandFe diffusion. Fractureof AA8009-type
alloyswasnot,however,definedsufficientlyto provetherole of DSA.

Thefracturemechanismuncertaintyis,therefore,centeredon thecauseof flow localization

between growing microvoids [24,39]; be it derived from DSA, dislocation-dispersoid-grain

5 AA8009 (AI-8.5%Fe-l.3%V-I.7%Si, weight pct) has a grain size of 0.3 to 0.5 lain and contains 25 volume pct

of 50 to 100 nm diameter all3 (Fe,V)3Si particles [43].
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boundary interactions, or both processes. Luton and coworkers produced ultrafine grain

aluminum by ball-milling elemental AI and alumina powders at cryogenic temperatures [79].

Grain size is refined by A1203 and A1N particles from reactive mechanical alloying, and is stable

during subsequent powder compaction and hot extrusion processing. Supersaturated Fe, Cr, Si or

V are not present in solid solution. Accordingly, this material provides a means to isolate the

contributions of DSA and fine grain size/dispersoids to elevated temperature deformation and

fracture. These features are coupled in RS alloys such as AA8009.

The objective of this research is to characterize the time-temperature-dependent fracture

resistance of cryogenically milled oxide dispersion strengthened pure aluminum (CM A1), at

temperatures between ambient and the moderately elevated levels where ductility and fracture

toughness could decrease. Goals are to test the importance of DSA compared to the grain

size/dispersoid-based mechanism for fracture, and to model fracture toughness.

Procedures

Extruded plate (6.4 mm thick) of CM A1 was provided by Exxon Research and Engineering

Co. Elemental aluminum powder (99.99% pure) was mixed with 3 volume pet of AI203 powder

and ball-milled in a liquid nitrogen slurry for five hours at -196°C. Milled powders were degassed

at an elevated temperature, compacted, and extruded at 460°C to form plate. Extrusions were not

heat treated.

Uniaxial tensile experiments were conducted at temperatures between 25 and 325"C.

Round specimens were prepared with the loading axis parallel to the extrusion (L) direction. A

capacitance extensometer was used to measure L-direction displacement over a 25.4 mm uniform

gauge length at 25, 175 and 250°C. A grip displacement rate of 12.7 Ixrn/sec was employed,

yielding a nominal strain rate of 5 x 10-4 sec -I.

Compact tension (CT) specimens with a width of 38.1 mm were prepared from the

extrusion in the L-T orientation. Sidegrooves (gross specimen thickness = 6.3 mm and net

thickness = 5.1 mm) were used to increase through-thickness constraint. Specimens were fatigue

precracked at a maximum stress intensity (Kmax) of 7 MPa_/m to an a/W ratio of 0.5 + 0.05.

Resistance-curve fracture toughness experiments were conducted with a closed-loop

servo-electric machine under constant grip displacement rate control, as detailed elsewhere

[19,24,39,62]. Crack growth (Aa) was determined by direct current electrical potential difference

(dcEPD) measurements, as a function of the applied J-integral. The plastic component of J was

determined from calculated unloading compliance, and the elastic component from a standard stress

intensity (K) solution. J-Aa data were analyzed to establish: (1) the small-scale yielding stress
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intensityat the first dcEPDdetectionof crackpropagation(theplanestraininitiation toughness,

JIci' or Kjici = { [JlciE]/[1-v2] }1/2), (2) a standard measure of the initiation fracture toughness

(KjIc) [80], and (3) the plane strain tearing modulus (TR). [81] 6 Fracture toughness experiments

were conducted at temperatures between 25 and 325°C in a forced-circulating air oven mounted on

the testing system. CT and tensile specimens were heated to temperature in 45 minutes and

maintained for 60 minutes prior to loading.

Results

Microstructure

The composition of CM A1 in Table 5, measured by LECO and atomic absorption

spectroscopy, is consistent with the processing route. The addition of 3.0 volume pet of A1203

provides a calculated elemental oxygen concentration of 2.05 weight pet compared to the measured

level of 2.04 weight pet. The high level of nitrogen is probably due to A1N formation during

cryogenic milling. Since less than 0.01 weight pet Fe was present in the starting powders, the

high Fe content is most likely from contamination by fractured particles from the stainless steel

milling balls and vessel wall. The optical micrograph of as-polished CM AI in Figure 34 shows

infrequent large particles, sized between 2 and 20 _tm. Image analysis established that the amount

of these inclusions is 0.43 volume pct. Energy dispersive X-ray analysis of particles with the

Scanning Electron Microscope (SEM) (e.g., the SEM micrograph in the inset of Figure 34)

showed that these particles contain 32 weight pct Fe in addition to A1, Si and Cr. This composition

is consistent with stainless steel contamination. These results account quantitatively for the

measured iron level of 0.12 weight pct, consistent with the view that there is no reason for iron to

be present in solid solution in CM A1 powders, above the solubility limit of about 10 -4 weight pct.

Other than the few iron-based inclusions, the microstructure of CM A1 is free of micron or larger

constituent phases. The submicron-sized particles suggested in Figure 34 were not identified by

optical or scanning electron microscopy, and the grain size was not resolvable.

The grain size of CM A1 is 0.4 to 1 I.tm, as shown by the TEM micrograph in Figure 35a.

Figure 35b shows that the diameter of individual A1203 dispersoids is about 10 to 20 nm, and that

clusters of dispersoids are present with an effective diameter of about 100 nm. Occasional

rod-type carbides are apparent, as determined by STEM of several particles. (These larger carbides

may correspond to the small-particle structure suggested in Figure 34.) Neither A1N nor

6 TR = [dJ/dAa][E/oo2], where E is modulus, v is Poisson's ratio, Oo is flow strength, and dJ/dAa is

determined by linear regression of Aa data from 0.15 to 1.5 ram.
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submicronsized iron-chrome particles were observed by TEM. The total fraction of A1203, plus

unresolved A1N dispersoids was not measured, however, it may exceed the amount of alumina

added, 3 volume pet, due to powder reactions during milling.

Tensile Properties

Figure 36 presents true tensile stress-true strain (o-E) data for CM A1, deformed to

maximum load at 25, 175 and 250oC. The work hardening parameter (n) was determined by

regression analysis of the slope of the linear relation between log c and log plastic strain (Ep),

consistent with the Ramberg-Osgood flow curve [41]. Table 6 shows the 0.2 pet offset tensile

yield strength (Cys), ultimate strength (_'rs or aTS ), ductility (reduction in area at fracture, RA),

total strain at maximum load, and n for CM A1 at test temperatures of 25 to 325oC and a nominal

strain rate of 5 x 10 -4 sec "1. The temperature dependencies of trh,s, t_trrs and RA are shown in

Figure 37. CM A1 exhibited a relatively low proportional limit, high work hardening rates at low

ep, and low average work hardening thereafter. Serrated flow was not observed. While the n

values in Table 6 indicate temperature-independent hardening, the data in Figure 36 suggest that the

average hardening capacity of CM A1 decreased with increasing temperature. Since necking

occurred at decreased and low uniform strains at 175 and 250°C, data are insufficient for accurate

assessment of the temperature dependence of hardening, and of the possibility that work softening

occurred beyond maximum load [75]. (The n values in Table 6 include a contribution from the low

strain regime where log ep depends nonlinearly on log t:r.) Compression experiments are required

to better define the flow properties of CM A1 over a range of strain, strain rate and temperature.

Unlike conventional large grain-size aluminum alloys, which exhibit improved tensile

ductility at elevated temperatures, the ductility (as well as the modulus and yield strength) of CM A1

decrease with increasing temperature to 325"C, as shown in Figure 37. RA for CM A1 does not

exhibit a minimum for temperatures between 25 and 325°C; similar to the behavior of AA8009, but

contrary to the temperature-dependent minimum of total elongation to fracture for RS A1-Fe-X

alloys [24,39,40,42]. The limited data in Figure 36 suggest that uniform elongation to necking

declines with increasing temperature, but may exhibit a minimum or plateau below 250°C.

Figure 38 shows macroscopic side-views of CM AI tensile specimens fractured at: (a)

25"C and (b) 175°C. For this uniaxial tensile geometry, necking and a cup-cone fracture mode

occurred at 25°C; however; at 175°C, the fracture surface was slanted to the tensile (L) axis at an

approximate angle of 40 °, indicating a localized shear instability. Figure 39 shows SEM
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fractographsof CM A1tensilespecimensfracturedat: (a)25"Cand(b) 175"C.Thefracturemode

isdimpledrupture,regardlessof testingtemperature,but thedimplemorphologyappearsto change

with increasingtemperature.Detailedanalysisof theCM A1fracturemorphologyis deferredto the

sectionon theSEMstudyof CT cracksurfaces.

Fracture Toughness

Table 7 and Figure 40 present plane strain fracture initiation toughness, Kn¢ i, and tearing

modulus, T R, results for the L-T orientation of CM A1 at two constant grip displacement rates, and

as a function of temperature to 325°C. Kjici data for ingot metallurgy AA2618 [39], as well as

standard-based KjI C for CM A1 [80], are included. The J-integral characterization of toughness

accounted accurately for plastic deformation and provided reasonable measurements of plane strain

initiation and plane strain tearing-resistance fracture toughnesses [19,24,62,80,81 ]. Plane strain

constraint was substantial for all toughness levels examined and fracture was normal to the Mode I

load without shear elements.

Kjici underestimates plane strain fracture toughness compared to elastic (KIc from ASTM

Standard E399 [82]) or elastic-plastic (KjI C from ASTM Standard E813 [80]) methods with an

offset blunting line definition of crack initiation. The room temperature KjI c value of 24 MPa_/m

for CM A1 is reasonably high, and KjI C is greater than Kjici at each temperature between 25°C and

325°C (Table 7). KjIci is emphasized here because it is independent of alloy tearing resistance and

mixed mode plane strain-plane stress cracking, and is relevant to modeling [19,24,61,62]. The

temperature dependencies of Kjici and KjI c are identical for CM AI (Table 7).

The temperature dependencies of the fracture toughnesses of CM A1 mirror that of tensile

ductility; Kjici, KjI C, T R and RA each decrease with increasing temperature. Temperature-

dependent minima in these properties are not observed, at least between 25"C and 325°C. The

tendency for reduced toughness with decreasing crack tip strain rate is indicated in Table 7; Kjici

for CM AI decreases from 13.6 MPa_/m to 11.0 MPa_]m, and T R from 22.1 to 4.7, with

decreasing grip displacement rate from 2.5 lam/sec to 0.005 I.tm/sec at 25°C.

Microscopic Crack Surface Morpholog3,_

CM A1 compact tension specimens fractured at 25°C exhibited several (2 to 6) large

delaminations, approximately perpendicular to the fatigue and Mode I fracture toughness crack

planes, as illustrated by the low magnification SEM fractograph in Figure 41a. This behavior is

typical of extruded RS PM aluminum alloys and may be caused by oxide inclusions on powder

particle surfaces [73,74]. The number of delaminations is less for CM A1 compared to extruded

AA8009, for the same side-grooved CT specimen geometry [24,39]. This difference is probably
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due to the large amount of ribbon surface oxide, produced during melt spinning of AA8009 in

moist air, compared to limited powder surface oxidation during cryogenic milling and subsequent

powder handling for CM Al.

The number of delaminations decreased and the amount of stable crack growth prior to

delamination increased with increasing test temperature. Delaminations were similar at 25"C and

80"C (e.g., Figure 41a). Delaminations occurred at 125"C and 175"C, but only after 0.5 mm of

crack advance, as shown by the SEM fractograph in Figure 41b. (Delamination at 25°C occurred

closer to, but not precisely at, the fatigue precrack front (Figure 41a).) CM A1 did not delaminate

during loading to Kjici at either 215, 250, or 325°C, as illustrated in Figure 41c.

Fracture of CM A1 evolves during straining by microvoid nucleation, growth and

coalescence at all temperatures. Figure 42 shows SEM fractographs of CT fracture surfaces

produced at a single grip displacement rate of 2.5 _m/sec, and at either 25oC (a, b and c) or 175*C

(d, e and f). These fractographs were obtained at the specimen mid-thickness, for Aa between 50

and 200 lxm, and represent the plane strain initiation toughness. Dimple morphology changes

significantly with increasing temperature. At 25°C a bimodal distribution of dimples is observed;

1 to 3 I.tm diameter dimples are interspersed with 0.5 _tm dimples. Figure 42a shows evidence of

surface roughness, manifest as walls on the fracture surface and inclined 50* to 90* from the

average Mode I crack plane. These walls are visible in Figure 42a as bright regions and are

covered by the smaller dimples. Dimples produced by plastic deformation at 25"C are spherical

and well-developed, as demonstrated in Figures 42b and 42c. Stereofractographic observations,

not reproduced here, confirmed that the 25*C dimples are spherical holes. Microscopic

delaminations were not observed on CM Al fracture surfaces produced at 25°C or any higher

temperature.

The CM A1 fracture surface produced at 175°C shows significant roughness on the

microscopic scale, Figure 42d. Dimples range in diameter from 1 to 2 lxm, but are less

well-developed compared to the 25°C case. For example, note the discontinuous dimple

perimeters and walls that form triple-point junctions in Figures 42e and 42f. The morphology

shown in the upper-right portion of Figure 42f is the dominant feature of elevated temperature

fracture in CM A1. When dimples are well developed (e.g., the lower left of Figure 42f), the

perimeters form polygonal shapes (pentagonal or hexagonal), dimple walls are faceted and

triple-point features are present when wail-facets intersect. The 175"C dimples were often

elongated in the Mode I crack opening direction. The comparison between Figures 42c and 42f

shows the difference between the 25 and 175°C dimpled-fracture morphologies.

The features shown in Figure 42f could be interpreted as intergranular fracture, however,

this is not the case. Figure 43 summarizes a high-magnification, matching crack surface,
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stereofractographicanalysisof theCM A1CT fracturesurfaceproducedat 175"C.Figures43aand

43b areastereo-pairof asingleareaonone-halfof thecracksurface,while Figures43c and43d

areastereo-pairof the identicalareaon thematchinghalf of thefracture. (Thesefour imagesare

viewablesimultaneouslyin a stereo-viewer.)By invertingFigures43a and43b, top-to-bottom,

over thebottom two images,thethree-dimensionalcharacterof microscopicfracturefeaturesis

revealed.For example,thethreeareasmarkeda, b andc inFigures43aand43cmatchacrossthe

crackplane. Stereo-viewingof either43a/bor43c/dshowedthatholesarethepredominantfeature
oneachfracturesurface.In all casesexamined,aholeonone-halfof thecracksurfacematcheda

holeon thematinghalf. Interlockingfeaturesthataretypicallyproducedby intergranularcracking
wereneverobservedfor CM A1at 175°C(orat25*C).

Dimpled rupture is confirmed as the dominantfracture mode for CM AI at elevated

temperatures.Reducedtoughnessat 175°Ccorrelateswith themixtureof poorlydevelopeddimple-

like featuresandthe unusualfacetednatureof thedimples,with no interspersedsmall dimples,

comparedto thebimodaldistributionof well-definedsphericalholesformedat 25°C. A similar

resultwasreportedfor AA8009basedonadetailedmatching-surfacestereofractographicanalysis

[39]. A bimodaldistributionof sphericaldimpleswasproducedat 25°C;while asinglepopulation
of shallowlenticulardimples,with a depthto diameterratioof about0.3,correlatedwith reduced

toughnessat 175°C.Thedimplegeometryin RSPM AA8009sheetwasaffectedby thespacingof

sheetsof prior (ribbon) particleboundaryoxidethat arenot presentin CM AI. Intergranular
fracturewasnotobservedfor AA8009atanytemperature[39].

CM A1fracturebehaviorat 250and325°Cwasexaminedby SEM,butnot in detailbecause

thetoughnessreductionof interestoccurredbetween25and 175*C.Themorphologiesshownin
Figures42d through42f, aswell as in Figure 43, were typically observedfor CM A1 cracks

produced at 250 and 325*C. Additionally, there was evidence of localized superplastic

deformationbetweendimplesgrowing at thehighesttwo temperatures.This phenomenonwas

reportedpreviously for creepcrack growth in submicrongrain sizeRS PM aluminum alloys,

includingAA8009 [83,84], and is not a central feature of the decline in fracture toughness up to

about 200oC.

Discussion

The plane strain crack initiation and growth fracture toughnesses (Figure 40 and Table 7) as

well as the tensile ductility (Table 6) of submicron grain size, oxide-dispersion-strengthened,

cryogenically milled aluminum decrease monotonically with increasing temperature and perhaps

with decreasing loading rate. This behavior is analogous to that of RS and MA PM aluminum

alloys [24,39,40,42,49,55,56,72,76], at least for temperatures up to 325°C, and is in sharp

343



contrast to the fracture of IM aluminum alloys with coarser microstruetures. This discussion will

establish that DSA is not the sole cause of this behavior; rather, dislocation interactions with

clispersoids in submicron grains lead to localized plastic deformation and reduced toughness.

The extent to which fracture properties exhibit a temperature-dependent minimum is

important for mechanistic interpretation [42]. The intrinsic fracture resistance of CM A1,

approximated by tensile RA, declines with increasing temperature, but does not exhibit a minimum

below 3250C. The minima reported in the tensile elongation of AA8009, at strain rate-dependent

temperatures between 150°C (9 x 10 -s sec -1) and 225°C (9 x 10 -2 sec-1), and of an AI-Fe-Si-V

with a lower volume fraction of silicide between 100°C (9 x 10-5 sec -1) and 200°C (9 x 10 .2 sec -1)

[42], are not directly representative of ductility. The more relevant RA exhibited a very mild

minimum near 2000C for extruded AA8009, and a low ductility plateau above 200°C without a

minimum for plate AA8009 (at least to 3160C) [24]. The initiation toughness is a simple fracture

mechanics parameter to consider; Kn¢ i decreased monotonically, without a minimum for extruded

CM A1 between 250C and 3250C, similar to both extrusion and plate of AA8009 at temperatures

between 250C and 316°C [24]. The tearing modulus of CM A1 declined monotonically over this

temperature range, however, T R passed through a minimum at about 175°C for extrusion and plate

of AA8009 [24].

Micromechanical Modeling

Continuum fracture mechanics concepts provide a first step to understand the factors that

control temperature-dependent toughness.

Delamination Toughening:

Extrinsic delamination toughening of CM A1 complicates interpretation of temperature

dependent Kjici, KjI c and T R [51,65,73,74,85,86]. The issues are: (a) the extent to which

delamination at 25°C elevates toughnesses above intrinsic plane strain values, and (b) the

likelihood that the elimination of this mechanism with increasing temperature (Figure 41), explains

decreasing toughness trends.

Results for CM A1 indicate that delamination does not govern intrinsic fracture initiation

toughness and the deleterious effect of elevated temperature, but may affect KjI c and T R. Electrical

potential measurements indicate the precise value of the critical stress intensity level, KjICi,

corresponding to between 25 grn and 50 _tm of crack extension localized in the mid-50% of the CT

specimen. SEM analysis of the CM A1 specimens represented in Figure 41 showed that

delamination did not occur within this region for any temperature examined. Rather, delamination

occurred after the initiation event, as easily seen in Figure 4lb. Since T R and Kjx c reflect stable
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crack growth, delamination at 25"C possibly elevated these toughnesses above intrinsic values.

This contribution declined with increasing temperature. For the 25°C case in Table 7, the low

value of KjIci, and the higher values of KjI C and T R are consistent with this argument. As the

extent of delamination increases, T R decreases to zero and KjI c approaches Kjici. This secondary

role of delamination is consistent with the relatively low values of toughness for CM A1 compared

to results for classic delaminating alloys such as A1-Li-Cu [65].

Three factors contribute to declining delamination with increasing temperature; increasing

boundary strength, decreasing alloy flow strength and decreasing intrinsic fracture resistance

[24,65]. There is no mechanism or data showing that boundary fracture resistance increases with

increasing temperature for PM AI alloys. Second, 6ys for CM A1 declines by 40% between 25

and 325*C (Table 6), suggesting a similar decrease in crack tip process zone stresses, normal to the

delamination plane and existing over a critical distance.7 Third, an intrinsic low-toughness fracture

process intervened to limit applied stress intensities to below the level necessary for delamination.

The secondary importance of delamination toughening was substantiated for AA8009; Kjici and

T R decreased with increasing temperature for plate and sheet alloys which did not delaminate at any

temperature [24].

Prediction of Initiation and Growth Fracture Toughnesses:

Micromechanical modeling of several IM and RS PM aluminum alloys demonstrated that

Kjici and T R are governed by the interplay between the temperature-dependent crack tip strain

distribution (alloy modulus, n and 6ys-dependent), and process zone damage resistance (related to

alloy RA) [19,24,61,85,86]. Temperature-dependent Kjici and T R were well-predicted with a

single adjustable parameter.

The toughness of CM A1 was predicted by strain-based crack tip modeling. 8 Input

parameters included temperature-dependent E, n, ays, and the critical effective plastic strain to

nucleate crack tip microvoid damage (err'). Temperature-dependent elastic modulus was based on

Each normal component of the crack tip stress field within the plastic zone is proportional to a work

hardening- dependent multiple of Uys, while the distance over which such stresses are elevated scales with
stress intensity [85].

The detailed fracture mechanics basis, assumptions, specific equations and shortcomings of the models for
Kjlci and TR are detailed elsewhere [19,61,85,86]. The purpose of the analysis here is to show the roles of

temperature- dependent tensile properties in affecting fracture toughness.
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data for pure aluminum (E = 72, 68, 66, 64, 63, 62 and 58 GPa at 25, 80, 125, 175, 215, 250 and

325°C, respectively) [87]. efP was approximated by -In(1 - pet RA/100) divided by a plane strain

constraint factor (r) of 7 [19,61,86]. Three mildly temperature-dependent constants (CI, C2 and

tiN) were used to describe the crack tip strain field [61 ].9 The critical distance over which crack tip

damage is produced (1") was calculated to equal 10 I.tm from the measured Kjici at 25°C (Table 7).

This distance is of the correct order of magnitude and is assumed to be constant with increasing

temperature because of the invariant CM A1 microstructure and microvoid fracture mode. 1" is not

relatable to a specific microstructural feature because of modeling uncertainties [61 ].

With these values, the strain-based initiation toughness model reasonably predicted

absolute values and the monotonic decline in Kjici with increasing temperature for CM A1, without

a minimum for temperatures between 25 and 325"C. These model predictions are compared with

experimental results in Table 7 and Figure 44. Predicted toughnesses are within 30% of measured

values for any temperature between 25 and 325°C. The plane strain tearing modulus model [86]

predicts declining T R with increasing temperature, without adjustable parameters. Predicted values

are lower than measured TR, particularly for the 25"C case where the measurement is high due to

delamination toughening that is not included in the model. For the higher temperature cases,

predicted T R is less than zero, indicating unstable crack growth without resistance to tearing. As

indicated by the values in parentheses in Table 7, predicted TR is increasingly negative with

increasing temperature, as controlled by the constant, _, (f_ = E efP / r Ors ) that decreased with

increasing temperature. A modest change in the constants in the tearing modulus model (e.g., r)

would result in excellent agreement between the measured and predicted tearing modulus. This

model suggests either a low TR plateau or minimum at a temperature near 175°C.

For conventional aluminum alloys, E, n and Ors decrease with increasing temperature,

tending to reduce Kjici and TR; however; efP increases, with the net effect of a constant or

increasing toughness with increasing temperature [19]. In contrast the adverse effect of

temperature on the initiation and growth fracture toughnesses of CM A1 is traced to the

C l and C2 are curve fitting constants that describe the distribution of plastic strain with distance ahead of

the crack tip. d_qis the proportionality constant relating blunted crack tip opening displacement to

applied J. These parameters depend mildly on work hardening, and hence on temperature. Single values
of C1 (0.126) and C2 (1.23) were employed because CM AI is essentially elastic-perfectly plastic at each

temperature considered. For the highest work hardening level (n = 0.03, Table 6) to the lowest (n -- 0), dn

varies from 0.68 to 0.78. This constant was equated to 0.70 for each temperature.

346



temperature-dependent decline in intrinsic efe, analogous to the behavior of RS AA8009 [24].

Either Knc i or T R could exhibit a temperature-dependent minimum or plateau, because of the

relative temperature dependencies of the material flow and fracture properties. From a mechanistic

perspective, the inverse temperature dependence of the intrinsic fracture resistance of CM A1 and

8009-type alloys is centrally important; the mechanism for this behavior is controversial.

Dynamic Strain Aging

The results in Tables 6 and 7, as well as in Figures 37 and 40, demonstrate that dynamic

strain aging is not the sole cause of elevated temperature reductions in tensile ductility and fracture

toughness for submicron grain PM AI alloys. The temperature dependencies of RA, Kjici and T R

are identical for CM A1 and RS alloys such as AA8009 between 25 and 325"C. The former alloy

does not contain Fe, V or Cr in metastable solid solution, while the latter may. If DSA is the only

mechanism for reduced intrinsic fracture resistance, then E_, Kjici and T R should not decrease

with increasing temperature for low solute CM A1, counter to the experimental results. A

mechanism other than DSA, or acting in concert with DSA, causes reductions in ductility and

toughness at elevated temperature for submicron grain PM A1 alloys.

In the literature, DSA has not been linked irrefutably to fracture in A1-Fe-X alloys. STEM

measurements revealed about 1 atomic percent of iron in the matrix of RS A1-Fe-Si-V [42,56],

however, such experiments were not documented in detail and may be complicated by the large

amount of All2(Fe,V)3Si particles relative to the volume of electron beam-affected matrix. The

DSA argument for RS PM alloys was not supported by fracture surface and microscopic fracture

mechanism analyses or modeling [42,56]. Rather, DSA was inferred from uniaxial tensile

elongation data which are not necessarily relevant to intrinsic fracture resistance.

Temperature-reduced RA-ductility and intrinsic toughness parameters for CM A1 (and AA8009) did

not exhibit the minima observed for elongation-to-fracture and analyzed to support DSA in

A1-Fe-Si-V alloys. The mechanism for DSA in the dislocation substructure unique to ultrafine grain

size alloys, particularly the lack of intragranular dislocation cells [46,57,58,69,72,75,76], has not

been considered in contrast to forest dislocation and vacancy models of strain aging in conventional

alloys [78,88-90]. The temperature and strain rate dependencies of flow stress; taken as indicative

of DSA in A1-Fe-Si-V, A1-Cr-Zr and AI-Fe-Ce alloys [40,42,56]; are equally rationalized based on

dislocation interactions with dispersoids in submicron grains, as developed in an ensuing section.
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Localized Plastic Deformation and Instability

Hypothesis:

A new hypothesis is presented for the deleterious effect of increasing temperature on the

intrinsic fracture resistance of CM A1, and possibly other RS PM alloys. Primary voids, growing

from oxide or dispersoid-cluster nucleation sites, coalesce at reduced strains with increasing

temperature because of increasing intravoid plastic instability. Elevated temperature, and the

tendency for increased strain rate between microvoids in any microstructure, promote strain

localization due to: (1) thermally activated recovery that eliminates dislocation cell and source

structure within ultrafine grain interiors, and (2) dispersoids in ligaments between growing

microvoids providing a mobile dislocation source and hence decreasing flow resistance with

increasing strain rate.

In essence dislocation-dispersoid interactions in cell-free submicron grains provide a

means, other than DSA, for enhanced void growth and coalescence within a window of

temperature and time. Outside of this window, or for large grains with many dislocation sources,

work and strain rate hardening are sufficient for stable growth of primary microvoids, resulting in

high ductility and fracture toughness that increase between 25°C and 350"C. This hypothesis is

supported, as follows, by results for CM A1 and AA8009 coupled with literature on flow

localization and dispersoid-particle interactions in submicron size grains.

Plastic Instabilities in CM Al and RS 8009:

Results for CM A1 indicate the importance of shear instability and localized deformation in

microvoid fracture. The flat (cup and cone) to slant fracture mode transition for uniaxial tensile

specimens of CM AI (Figure 38) suggests that a macroscopic plastic instability is favored at higher

temperatures. This behavior was reported for RS AA8009 [39] and A1-Si [73] as well as certain

IM alloys [78], but is not typically observed for IM precipitation hardened aluminum alloys.

Second, the transition from a bimodal distribution of spherical dimples to the irregularly formed

and faceted dimples in CM AI (Figures 42 and 43), or to the shallow lenticular dimples in AA8009

(7), suggests that stable microvoid growth is truncated by intravoid ligament flow localization at

elevated temperatures.

Evolution of Microvoid Fracture in Uhrafine Grain Al Alloys:

Thomason argues that, with increasing temperature: a) microvoid nucleation at particle

interfaces requires higher applied strain since matrix recovery reduces interface stress, b)

microvoid growth rate increases due to reduced work hardening, and c) microvoid coalescence is

retarded by increasingly strain rate (_)-sensitive flow strength, o o (increasing m in the relation o o

= K _m) [66]. Thomason estimates that intravoid strain rates are 100 to 10,000-fold higher than
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theaveragemacroscopicdeformationrate[66]. Increasingm promotesvoid-ligamenthardeningto
stabilize void growth for IM aluminum alloys, causingfracture resistanceto rise, all with

increasingtemperature.In contrastmicrostructuresthatfavor low work or strain ratehardening

promotemicrovoid growthandflow localizationbetweendefectsincludingprimary microvoids

[91-93]. Low-elongation shear-fracturein solution treatedand quenchedIM 7000-series

aluminumalloys[78], aswell asin IM AA3004[77],wasattributedto intravoidplasticinstability
causedby Mg-DSA.

Thefollowing scenariois proposedfor fractureof CM A1. At all temperatures,primary

microvoidsnucleateat the largerclustersof A1203dispersoids,iron-rich constituents,carbides,

and weakly bondedprior particle boundaries. At 25°C, microvoids grow spherically with

increasingstrainuntil secondarysmallvoidsnucleateatsmallerparticles,leadingto primaryvoid

coalescence.At elevatedtemperatures,irregular regionsof dimple-like fracture, and faceted

dimples,areproducedbecauseprimaryvoidgrowthis truncatedby intravoidplasticinstabilityand
crackingin this ligamentsubjectedto locallyintensedeformation.Theformer fracturefeaturesare

typical of crackingalongregionsof local deformation.Thecauseof facetson the dimplewalls

(Figures42 and 43) is not clear, but may involve slip bandcracking or interaction with the

growing primary void. Intrinsicductility andplanestrainfracturetoughnessarereducedif void

growth ceasesdueto low-straincoalescence.Thequestionis why increasingtemperaturecauses
thisplasticinstability in ultrafinegraindispersion-strengthenedaluminumalloys,in contrastto the

behaviorof coarse-grainIM alloys.

A calculationbasedon sphericalparticles,with averagespacingestimatedfrom volume

fraction,establishesthatabout40A1203(20nmdiameter)and30A112(Fe,V)3Si(50nmdiameter)

dispersoidsintersecta primary void diameter(2/am length), while 31,000oxides and 15,000

silicides arecontainedwithin the volume of sucha sphericalvoid for CM AI and AA8009,
respectively. About 50 equiaxedgrainsof 0.5/am diameterarecontainedwithin this sizeof

sphericaldimple. RatherthanDSA, weproposethatdislocationinteractionswith dispersoidsand
boundariesgovern low work and strain rate hardening,causingintravoid flow instability and

prematuremicrovoidcoalescencein submicrongrainalloys.
Dislocation-Dispersoid Interactions and Flow Localization:

Westengen and Lloyd concluded that dynamic recovery in submicron grain size aluminum

is high and responsible for nil strain hardening, inhomogeneous flow localization (Luders

banding), plastic instability, and reduced elongation to fracture [46,57,58]. TEM observations

showed that intragranular dislocation cell structure does not evolve with straining when grain size

is less than the low energy cell size, typical of equilibrium and between 0.5 to 2/am for aluminum

[46,57,58]. Straining is accommodated by emission and trapping of dislocations by grain and

349



particle interfaces. Transientwork softening was observed and predicted for several submicron

grain size aluminum alloys with dispersoids [71,75,94,95]. This phenomenon was not observed

in all cases [24,96], and is not well understood.

Considering strain rate-sensitive flow, m for IM aluminum alloys without DSA is about

0.01 at 25°C and increases monotonically to 0.04 at a homologous temperature of 0.5 [19,66]. In

contrast m for RS AA8009 decreases from 0.025 at 25"C to a negative value (-0.005) at 150°C,

then increases to 0.04 at 300"C [42]. Mitra argued that m is near zero at 25°C, increases to 0.01 at

75"C, declines through a minimum (at 0.002) near 150*C, and achieves 0.02 at 300"C for a similar

RS AI-Fe-Si-V alloy [56]. This behavior was attributed to Fe-DSA. For A1-Fe-Mn (1.2 lxm grain

size, but not RS and presumably without Fe in solid solution), m increased monotonically from

0.008 at 25°C to 0.025 at 150"C and 0.06 at 250°C [46]. Negative m was reported for both

melt-spun and spray deposited A1-Si at 25°C [74]. It is difficult to interpret small changes in m

values that are near-zero, however, this exponent does not appear to increase strongly with

temperature between 25 and 200°C, and a minimum in strain rate sensitivity occurs at about 150°C

for RS aluminum alloys.

Edwards et al. clarified these strain rate hardening trends [67]. The flow strength of PM

zinc (with a 2 _tm grain size and 5, 15 or 30 volume pct of 300 or 600 nm diameter AI20 3

dispersoids) is approximately strain rate-independent for T m between 0.3 and 0.7, particularly in

the near- threshold stress regime, with small positive and negative m suggested. Low-m

stress-strain rate behavior was explained based on the argument that dispersoids are the major

source of mobile dislocations for submicron grain microstructures which are otherwise

dislocation-source deficient due to a lack of cells from dynamic recovery [67]. The emission of

mobile dislocations from particles is triggered when the local interface stress exceeds a threshold

level. The intermediate temperature strain rate insensitivity (m = 0 + 0.05) in such materials is

attributed to the balance between dislocation emission from particles and local matrix recovery by

diffusional processes. At increased strain rate, particle interface stresses increase due to reduced

local recovery; enhanced dislocation emission increases the mobile dislocation density (Pro) to

accommodate the applied strain rate at lower stresses according to dislocation dynamics models

[97]. Increasingly smaller particles emit mobile dislocations with increasing local strain rate

because the threshold stress for emission increases with decreasing particle size [67]. This model

explains flow strength behavior that mimics a DSA-type response.

In a similar vein, Arzt and Rtisler emphasize that dislocations climb over impenetrable

dispersoids, but are trapped and must detach from the particle to continue glide [98]. Dislocation

trapping, due to reduced line energy from diffusional relaxation at the incoherent particle-matrix
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interface,was evidenced experimentally and predicted theoretically for AI alloys similar to CM AI

[98,99]. A detachment stress (aD) and activation energy must be exceeded for the dislocation to

escape the particle and become mobile. Dislocation detachment provides a basis for understanding

the threshold stress, as well as a mechanism for low or negative m. At increased strain rates,

particle interface stresses are higher due to reduced local recovery, and dislocations detach from

particles at lower applied stress to increase Pm and accommodate the strain rate. Larger particles

emit more mobile dislocations with increasing strain rate because OD increases with increasing

particle size [98]. Reduced diffusion near the particle interface increases the energy of the trapped

dislocation (reduces the benefit of particle-interface capture) and promotes detrapping [99].

These dislocation-particle interactions provide a mechanism for time-temperature-reduced

m, and in turn for intravoid plastic instability and coalescence for submicron grain alloys such as

CM AI, but not for larger grain size microstructures. The role of the small grain size is to preclude

dislocation cells at times and temperatures where intragranular recovery occurs, and thus to

preclude alternate sources of mobile dislocations. The role of the thousands of dispersoids

between cluster or inclusion nucleated primary voids is to provide a means for intravoid strain rate

softening, and flow instability, in response to the local strain rate increase that accompanies void

growth.

Uncertainties:

Results for CM A1 suggest a plausible mechanism for intravoid flow localization and

reduced fracture toughness in ultrafine grain dispersoid-bearing aluminum at elevated temperatures,

when DSA-solute are absent. Whether DSA is ever operative in RS aluminum alloys remains to be

defined. In principle both mechanisms may contribute to the mechanical behavior of alloys with

submicron grain size, dispersoids and metastable solute.

Both the dislocation-dispersoid and DSA mechanisms for reduced elevated temperature

fracture toughness remain speculative. The kinetics and microstructural details of void nucleation,

growth and coalescence have not been determined sufficiently for submicron grain aluminum

microstructures [ 17]. The relationship between deformation mode, intravoid instability and void

shape is not well understood. The temperature dependence of m is not established for CM AI.

Analysis of strain rate hardening in fracture is complicated by the uncertain levels of strain and

deformation rate in the ligament between growing voids ahead of a crack tip under triaxial tension.

For example, the strain rate sensitivity exponent varies with stress, as does the importance of the

dispersoid-source mechanism [67]. Compressive deformation and TEM studies are required to
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betterdefinetemperature-dependentinteractions between dislocations and dispersoids.10

Since the grain size of CM AI is less than lgm, and ductility is low at homologous

temperatures between 0.40 and 0.55, it is necessary to consider the contribution of time-dependent

plastic deformation, particularly Coble creep, to fracture. Microvoid wall facets (Figures 42 and

43) could be interpreted based on stress-driven vacancy transport along grain boundaries, leading

to cavity formation and growth at boundaries that are prevented from sliding by particles (Figure

35) [100]. Deformation mechanism map calculations using parameters for aluminum indicate that

CoNe creep is insufficient to affect fracture of CM for the conditions examined [101]. For a 0.5

l.tm grain size at 175°C, dislocation creep progresses at much faster strain rates compared to Coble

creep and explains the high stresses that were achieved in the CM AI tensile experiments (Figure

37). For Coble creep to dominate at these conditions, grain size would have to be less than about

0.07 gm, well below the actual grain size of CM A1. Neither stress-strain rate data nor constitutive

law parameters have been published for CM A1; limited creep experiments with submicron-grain

size AA8009 showed that strain rate depends on stress raised to the 5 to 10 power for the

temperature-stress regime pertinent to tensile and CT fracture [83]. The linear stress dependence

expected for Coble creep was not observed. While the slow loading rate toughness data in Table 7

are limited, experiments with AA8009 demonstrated that Kjici and T R are reduced at 25"C,

analogous to the higher temperature case, provided that loading rate is reduced 100-fold [39]. In

total it is unlikely that Coble creep contributed to deformation and fracture of CM A1.

Differences in 6YS and dispersoid characteristics (volume fraction, size, composition,

crystal structure and interface properties) between CM A1 and AA8009 do not compromise the

conclusions of this work. The dispersoid volume fraction and size of CM A1 are significantly less

than that of both AA8009 [42,43] and PM zinc-alumina [67]. If CM A1 had not exhibited

temperature-reduced toughness, as did AA8009, then poor elevated temperature fracture resistance

of the latter would be traced to either DSA or the high volume fraction of dispersoids. Since the

toughness of CM AI declined upon heating, without Fe-DSA, the combination of submicron grain

size and dispersoids are implicated as argued. Similar large numbers of dispersoids were within

the ligament defined by two growing microvoids for CM AI (31,000) and AA8009 (15,000).

While the effect of dispersoid size and spacing on dislocation emission, intravoid flow localization

and fracture is unknown, there is no reason to believe that differences will cause dramatically

1 0 Porr speculated on a different deformation-based mechanism for fracture of AAS009, as an alternative to

DSA [76]. Building on a dislocation model by Humphries and Kalu [68], he argued that deleterious flow
localization results when dislocations evade impenetrable dispersoids by climb at a sufficiently elevated
temperature or low strain rate.
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differentbehavior. Skinnerandcoworkersreportedsimilar temperature-dependentdeformation

andfracturebehaviorfor A1-Fe-Si-Valloyswith silicidecontentsbetween10and40 volumepet,
andsizesbetween40 and200nm [42,43]. Edwardsel al. foundthat dislocationemissionfrom

A1203particlespromotedlow strainratehardeningat elevatedtemperaturesfor anA1203volume

fractionaslow as5petatthe300nmdispersoidsize[94].

A route to improvetheintrinsic ductility andfracturetoughnessof advancedaluminum

alloys such as CM AI and AA8009 may be to modestly increasethe grain size to provide

intragranulardislocationcell structureandmobiledislocationsourcesthatimprovework andstrain

rate hardening. Limited results for spray deposited A1-Fe-Si-V showed flow localization,

including transient work softening for submicron grain sizes [94]. The same alloy, but with a 5

lttm grain size, deformed homogeneously with increased work hardening and tensile elongation.

The temperature-dependence of deformation and fracture was not defined. Additionally,

inclusions, dispersoid clusters and microdelaminations that nucleate primary voids should be

reduced for improved toughness. Solute such as Si, Mg or Fe should be minimized.

Conclusions

The fracture behavior of cryogenically milled, powder compacted and hot extruded

aluminum; with a submicron grain size and 3 volume pct of 20 nm-sized AI203 dispersoids, but

free of solute such as iron; was examined as a function of temperature. The goal was to determine

the mechanism for elevated temperature/low strain rate degradation of fracture toughness by

separating the contributions of Fe-dynamic strain aging and microstructurally localized plastic

deformation.

1. The uniaxial tensile ductility, plane strain crack initiation fracture toughness (KjIci), and

plane strain stable-tearing resistance (TR) of CM AI decrease monotonically with increasing

temperature between 25°C and 3250C. Delamination does not affect the magnitude or
temperature dependence of Kj1ci.

. Continuum micromechanical models of Kjici and TR show that temperature-dependent

toughnesses decrease because of declining yield strength, elastic modulus and intrinsic
fracture resistance. This latter property is controlling for submicron grain alloys, but
increases with increasing temperature for conventional aluminum alloys.

Toughness-minima or plateau behavior is due to the relative temperature dependencies of
alloy flow and fracture resistances.

. Fracture in CM A1 is by microvoid processes at all temperatures, however, reductions in
fracture resistance correlate with a change in primary void morphology from spherical to
irregularly shaped and occasionally faceted.
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Dynamic strain aging, due to diffusing solute such as iron, is not a necessary element of the

elevated temperature reduction in intrinsic tensile ductility and fracture toughness for
submicron grain size, dispersoid-strengthened A1.

Speculatively, the intrinsic fracture resistance of alloys such as CM A1 is degraded by
temperature-reduced work and strain rate hardening which promote plastic instability
between growing primary microvoids and exacerbate low-strain coalescence.

Plasticity localizes between primary voids at elevated temperatures due to dynamic
recovery, which eliminates work hardening dislocation cell and source structures in

submicron grains, coupled with reduced strain-rate hardening or softening. Decreased
strength with increasing strain rate is due to increased mobile dislocation density from the
emission or detrapping of dislocations from dispersoids in the source-deficient
microstructure.
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V. TASK IV---ELEVATED TEMPERATURE FRACTURE TOUGHNESS OF
AA2519 WITH Mg AND Ag ADDITIONS

M. J. Haynes and R.P. Gangloff

Abstract

The plane strain initiation fracture toughness (KjIci) and plane stress tearing modulus

(TRPS) of an ingot metallurgy A1-Cu-Mg-Ag alloy are characterized as a function of temperature by

a J-integral method, f_-strengthened AA2519+Mg+Ag exhibits mildly decreasing fracture

toughness (Kjici--31 MPa_]m) from 250C to 175°C, while TRPS increases monotonically to 7 at

100"C and subsequently declines as temperature increases. A critical plastic strain-controlled

micromechanical model of initiation toughness successfully predicts temperature independent

Kjici. Constant initiation toughness is due to rising intrinsic fracture strain (el) with temperature,

which balances the effects of decreasing flow strength, work hardening, and elastic modulus on

the crack-tip strain distribution. Microvoids nucleate at cracked constituent particles, with growth

truncated by void sheeting associated with dispersoids. Intravoid strain localization (ISL) between

primary voids is a precursor to void sheet coalescence, and is retarded by alloy strain and strain

rate hardening. Modeling predicts a transition from dislocation accumulation at dispersoids at low

temperature to dislocation bypassing by climb at elevated temperature, implying that void

nucleation and flow softening in the ISL band are reduced, and strain to fracture (ef*) increases.

Decreased void sheeting and increased primary void growth at 1500C versus 25°C are consistent

with the proposed ISL mechanism of microvoid fracture.

Introduction

A significant effort is currently aimed at the development of advanced aluminum alloys for

the airframe of the high speed civil transport (HSCT). Airframe materials will be required to

maintain strength and toughness at temperatures ranging from 100*C to 2000C for a projected life

of 60,000 hrs. [102] Advanced ingot metallurgy (IM) alloys, rapidly solidified powder metallurgy

(RS/PM) alloys, and metal matrix composites (MMC) are candidate aluminum-based materials.

Selection of HSCT materials hinges on at least three critical issues: 1) intermediate loading rate

fracture toughness at elevated temperatures, 2) slow loading rate or creep crack growth fracture

resistance at elevated temperatures, and 3) elevated temperature thermal exposure effects on

ambient temperature fracture toughness. The first issue is considered here for an advanced IM

aluminum alloy.
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Ductile fracture of metals typically occurs by microvoid nucleation, growth, and

coalescence, as reviewed in general [17,66,103-106] and specifically for aluminum alloys (AA)

[29,107-109]. Important microstructural variables affecting the three stages of microvoiding in

aluminum alloys, and hence the intrinsic fracture resistance, include: size, spacing, and fracture

behavior of brittle constituent phases; [29,107,108] composition and volume fraction of

dispersoids; [17,107] slip mode as affected by precipitation hardening; [108,110] and grain

boundary precipitation. [108,109] Continuum factors; including alloy yield strength,

[17,29,66,103,106] work hardening, [17,66,103,104,108] strain rate hardening, [66] and stress

state triaxiality; [17,66,103] dictate the local stresses and strains that control the rates of void

nucleation, growth and coalescence. The effects of these factors on plane strain fracture toughness

are well defined for precipitation hardened aluminum alloys deformed at cryogenic to ambient

temperatures [29,107], but not sufficiently at elevated temperatures [39,111,112].

Polmear and Couper showed that certain IM A1-Cu-Mg-Ag alloys possess superior elevated

temperature yield strength and creep/stress rupture properties over conventional AA2024, AA2219,

and AA2618 [113]. This improvement was attributed to the formation of a coherent precipitate

phase, _, promoted by small Ag additions to an alloy with a sufficiently high Cu/Mg ratio. The t2

phase is believed to be a metastable variant of the equilibrium O (A12Cu) phase, forming on { 111 }

A1 matrix planes as a uniform dispersion of thin hexagonal shaped plates [114]. Polmear and

Couper concluded that I) is more coarsening resistant than ®', but provided no evidence. This

hypothesis was recently confirmed [115,116]. The elevated temperature fracture behavior of

Ag-modified A1-Cu-Mg alloys has not been defined.

Understanding of ductile fracture within the crack-tip process-zone is derived through

coupled micromechanical modeling and microstructural studies. The most developed models of

microvoid fracture initiation toughness combine crack tip stress and strain distributions with a

microstructural based, critical strain - critical distance failure criterion [24,61,111,117,118]. These

models are effectively tested by predicting and measuring the temperature dependence of fracture

toughness [24,61,111], but additional work is required. Experimental estimates of a

constraint-sensitive intrinsic failure strain [24,61,111,117,119,120], and the use of an adjustable

critical distance parameter in modeling, must be supplemented by detailed microstructural studies

of the strain-dependent progression of void nucleation, growth, and coalescence [18,119,121 ].

Results on stress-based void nucleation [122-124] and strain-based void growth to coalescence

[17,121,125] must be related to crack tip damage and toughness prediction.

The objective of the current study is to quantitatively characterize plane strain initiation and
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planestressgrowth fracturetoughnessesasafunction of temperaturefor anIM A1-Cu-Mg-Ag

alloy. A second goal is to test the capability of a strain-controlled micromechanical model to

predict elevated temperature initiation-toughness. To understand the mechanisms of fracture,

interrelationships between microstructure, continuum flow properties, and the progression of

microscopic ductile fracture damage are considered. Prior thermal exposure effects on the

toughness of IM aluminum alloys, as well as static-load crack growth at elevated temperature, are

considered elsewhere [22,112,126-128].

Procedures

Material

The Aluminum Company of America (ALCOA) supplied experimental AA2519, with Ag

and Mg additions (denoted AA2519+Mg+Ag), as 3.2 mm thick hot rolled sheet. Composition was

specified as AI-5.75Cu-0.52Mg-0.49Ag-0.30Mn-0.16Zr-0.09V by weight percent. A second

sheet, A1-5.83Cu-0.52Mg-0.30Mn-0.14Zr-0.10V (AA2519+Mg), was also supplied. Both alloys

were solution treated at 529"C for 1 hr, cold water quenched, stretched 7% and aged at 177"C for 3

hours, producing a peak strength (T87) condition [ 129].

The microstructure of AA2519+Mg+Ag was characterized with optical and electron

microscopy. Constituent particles were qualitatively identified through scanning electron

microscopy (SEM) with energy dispersive spectroscopy (EDS). Constituent area fraction (A f) and

size distribution were measured by optical microscopy and image analysis on polished surfaces of

the three principal planes of the sheet. The average radius (r) and Af were used to determine the

constituent volume fraction (Vr=Af) and the nearest neighbor spacing between randomly distributed

spherical particles in a volume (A3=l.18r (_6Vf) 1/3) [130]. Based on particles observed on

fracture surfaces, only constituents larger than 2.0 _m in diameter were counted. Grain structure

was revealed by a 45 second Graft-Sargent etch followed by a 10 second exposure to Keller's

etch. Dispersoids and precipitates were resolved through Transmission Electron Microscopy

CI'EM). TEM disks were mechanically reduced to a thickness of 150 _m and subsequently thinned

by electrolytic polishing at -30°C in 30% HNO 3 and 70% methanol solution.

Elastic-Plastic Fracture Toughness Experiments

Fracture toughness was characterized with the J-integral based crack growth resistance

(J-Aa) curve method detailed elsewhere [81,131]. Compact tension (CT) specimens were

machined in the LT orientation I l, with a width (W) of 76.2 mm and a 3.2 mm thickness (B). To

1 1 For sheet, the rolling direction is L, the width is T, and the thickness is S.
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prevent buckling, CT specimens were fatigue precracked to a final crack length (a) corresponding

to an a/W ratio of 0.6 + .001, and an anti-buckling fixture with teflon sheet lubrication was placed

around the specimen. Specimens were precracked at a constant stress ratio (R=Kmin/Kmax) of 0.1

and under decreasing stress intensity (K) conditions from a Kma x of 19.4 MPa_/m at a/W of 0.4 to

8.5 MPa_/m at the final crack length.

Rising load fracture toughness experiments were performed on a closed-loop servoelectric

testing system operated under constant grip-displacement rate control. A circulating air oven was

mounted on the load frame, and temperature was regulated to +1 *C with a thermocouple attached

to the CT specimen. The specimen was heated to temperature over a 30 minute interval and

stabilized for 30 minutes prior to loading. A PC-based acquisition system continuously recorded

applied load, crack length, notch mouth opening displacement, and time. Crack length was

continuously monitored by the direct current electrical potential difference (DCPD) method

[12,39]. A linear variable differential transformer (LVDT) measured notch mouth opening

displacement for conversion to load-line displacement using a geometric relationship [11].

The J-integral elastic-plastic crack tip parameter was utilized with relatively small specimens

to obtain both plane strain initiation toughness and plane stress crack growth resistance data,

accurately accounting for untracked ligament plasticity 12 [ 132]. J-Aa resistance curves were

calculated according to ASTM Standard E1152, and all requirements of the standard were met.

Initiation and growth fracture toughness parameters were determined from J-Aa data, as detailed

elsewhere [131 ]. Initiation fracture toughness (J i) was defined at the first change in the slope of

potential difference versus load-line displacement data. The stress state at initiation was plane

strain for all cases examined. Ji was converted to a plane strain linear elastic initiation toughness

(Kjlci) by the relation [132]:

[3]

12 At higher temperatures, creep deformation ahead of the crack-tip could invalidate J and necessitate the use of

creep- based crack-tip parameters (C* or C(t)). Saxena and Landes developed a displacement rate partitioning

analysis that separates measured load-line displacement rate (v) into the sum of elastic (re), plastic (vp), and

creep rate (ve) components [21]. There is no established criteria for ascertaining the value ofvdv above which J

is compromised as a crack-tip parameter, but creep crack growth rates in stainless steels do not correlate with J
when Vc/Vexceeds 0.8 [21]. J is the valid crack-tip parameter for AA2519+Mg+Ag at all temperatures. Vc/V

was always less than 0.8. Partitioning analysis applied to creep crack growth experiments of AA2519-T87 at
135"C supports the dominance of time independent crack-tip fields [22].
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The DCPD methoddetectsearly stage crack initiation, with a small level of crack tip damage

compared to that embodied in the ASTM E399 standardized definition of KIC [62,82,131]. The

linear elastic R-curve (Kj-Aa) for small scale yielding was determined from J-Aa curves (Kj =

[J'Ell/2), and generally described plane stress cracking for Aa above about 1.5 mm. A plane

stress tearing modulus (TRPS) was defined from the average slope (dJ/dAa) of the linear portion of

the J-Aa curve over a range of crack growth (2 mm < Aa < 3 mm) 13 [85].

Four measures of toughness were determined for AA2519+Mg+Ag: 1) Kjici, 2) TRPS, 3) J

at a crack length of 3 mm (j3mm), and 4) the corresponding Kj at 3 mm (Kj3mm). Toughnesses

were measured at a CT load-line displacement rate (dS/dt) of 0.26 _tm/s and at temperatures of

25°C, 75°C, 100"C, 125°C, 150°C, and 175°C. This displacement rate corresponded to crack

initiation in about 40 minutes and 3 mm of crack growth in 2.4 hours. Limited experiments were

conducted on AA2519+Mg.

Uniaxial Compression Experiments

The compressive flow properties of AA2519+Mg+Ag, including the 0.2% offset yield

strength (Gys c) and the strain hardening exponent (N), were measured at the same temperatures as

the fracture toughness experiments. Compression specimens, with a 2.6 mm by 2.6 mm square

base and a height of 5.2 mm, were machined with the long axis parallel to L. The compression

fixture consisted of two aligned and interlocking four post cages that converted tensile motion to

compressive force. An LVDT, mounted on the inner two compression plates measured total

displacement to a resolution of 1 lxm. The specimen was centered between two A1203 platelets,

lubricated with colloidal graphite to minimize barreling, and deformed to 5% true strain at a

constant cage displacement rate of 0.33 ILtm/sec. The displacement rate corresponded to an average

true strain rate of 6xl0 -5 sec -1 over the full strain range.

Calculating the true total strain (E) was complicated by compliant deformation between the

inner compression plates. The measured LVDT displacement equaled sample plastic displacement

plus sample and fixture elastic displacements. A correction procedure involved subtraction of the

total measured elastic displacement to give load versus sample plastic displacement data, that were

converted to true stress (if) versus true plastic strain by the usual relations. The temperature

13 TR ps = [E/ofl2](dJ/dAa), where the flow stress (off) equals the average of the yield and ultimate tensile

strengths.
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dependenceof the AA2519+Mg+Ag elastic modulus (E) was estimated with published E versus

temperature for pure aluminum [87], scaled to the ambient temperature modulus of

AA2519+Mg+Ag specified by ALCOA (E=72.4 GPa). Elastic strain, based on the estimated

modulus, was added to plastic strain to obtain e.

The Ramberg-Osgood (R-O) constitutive equation (e/e 0 = o/o 0 + (x(o/g o)n) was fit to

compression o - e data [41 ]. Fitting parameters include a reference stress (o0) , a reference strain

(e0) given by g0/E, a constant (o0, and the R-O plasticity exponent (n). From 1.0% to 5.0% true

strain, n was determined from the linear regression slope of true plastic strain versus true stress

plotted logarithmically [133]. The work hardening exponent (N) equals the inverse of n. The

parameters go and oc are not independent; assuming a value of one for o_ yielded reasonable go

values and accurate curve fits.

Tensile Experiments

L-oriented smooth tensile bars, with a 19.1 mm gauge length and a 1.6 mm diameter, were

strained to failure at a grip displacement rate of lxl0 -3 mm/sec; corresponding to an initial true

strain rate of 6x10 "5 sec-:. 0.2% offset tensile yield strength (gyst), ultimate tensile strength (Outs),

and the percentage reduction in area (RA) were ascertained at each fracture toughness testing

temperature.

L-oriented, circumferentially notched round-tensile-specimens, with varying notch acuity,

were fractured to establish the effect of macroscopically imposed triaxial stress-state on the tensile

ductility of AA2519+Mg+Ag. Stress-state triaxiality was expressed as the ratio of mean stress

(gin) to effective stress (g) and depended on notch geometry according to [24,63,120,134,135]:

=-g-+ln -_--+ 1 [4]

The initial notch root profile radius (R) for a semi-circular notch was varied, at a constant initial

notch-root diameter (do) of 1.6 mm, to obtain five constraint levels: Om/O values of 1.54, 1.13,

0.77, 0.55 and 0.33; where the later ratio corresponds to a smooth (uniform gauge) tensile

specimen. The small size of the notch precluded continuous measurement of notch-root

contraction with a diametral extensometer. The effective diameter at failure (d f) was determined to
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aresolutionof 2.5 _tmfrom four equallyspaceddiametralmeasurementsof thefracturesurface.

Effective plastic strainat fracture (efP)dependson diametralcontraction,or equivalently,RA

accordingto [120]:

_"_'=2 In (-_)=- In (1 - 1_ ) [5]

Since d o and R were not monitored during testing, ef p was related to the initial stress state

triaxiality.

Results

Microstructure

Inhomogeneously distributed constituent particles are present in AA2519+Mg+Ag (Figure

45(a)); the volume fraction is 1.2%, the average diameter is 5.7 l.tm, and the 3-D nearest neighbor

spacing (A3) is 11.9 _tm. Based on EDS, most constituents are undissolved O (AI2Cu), although

AI- Cu-Mn-Fe particles were also detected. This O originates from the high Cu content (5.75

wt%), which exceeds the solubility limit of 5.25 wt% for Cu in AI+0.5 wt% Mg at the solution

heat treatment temperature [136]. Large O particles form during ingot solidification, break into

smaller particles and redistribute during thermomechanical processing, and do not dissolve during

solution treatment. Constituents are clustered along the sheet rolling direction, and constituent

cracks are oriented normal to L (Figure 45(b)).

Flattened-and-elongated grains are observed in the etched microstructure of

AA2519+Mg+Ag as shown in Figure 46, with grain dimensions on the order of 50 to 200 l.tm or

larger in the L-direction. X-ray diffraction pole figures and orientation distribution function (ODF)

calculations, performed by ALCOA to determine if the alloy is re.crystallized, produced conflicting

evidence. ODF values imply small components of recrystallization textures (Cube=2.40,

Goss=0.30 times random) and large components of deformation textures (Brass=6.60,

Copper=3.50) [129]. However, <111> and <200> pole figures did not correspond to

experimentally observed hot rolling textures of aluminum alloys [137]. Despite the anisotropic

grains and deformation components of the texture, the alloy is essentially recrystallized. TEM

detected only two subgrains within a large sample area. Recrystallization is expected in this alloy.

The high volume fraction of large O particles and hot rolling reduction (=98%) promote particle
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stimulated nucleation of recrystallization [138]. Some subgrains may be present in

A.A2519+Mg+Ag, because submicron dispersoids inhibit re,crystallization [139].

TEM resolved Mn- and Zr-containing dispersoids in AA2519+Mg+Ag, which were

identified using EDS. Both dispersoids are around 0.2 to 0.4 l.tm in diameter and contain

significant levels of Cu. The dominant strengthening precipitate in AA2519+Mg+Ag is f2, as

indicated by the brightfield TEM image in Figure 47 and the diagonal streaks (perpendicular to the

precipitate plates) in the selected area diffraction pattern. Small volume fractions of O' plates and

S' (A12CuMg) laths were also observed. In AA2519+Mg, O', S', and _ are present in

comparable volume fractions, with no one precipitate dominating. Grain boundary precipitation

and precipitate free zones (PFZs) were observed, with PFZ widths on the order of 0.05 lxm.

Fracture Toughness

Macroscopic Fracture Path:

Crack initiation develops in the center of each CT specimen under plane strain conditions,

and flat fracture occurs over approximately 80% of the thickness. As the crack extends, the

proportion of flat plane strain fracture decreases and that of slant plane stress increases, yielding a

triangular morphology of the former [131]. Fracture is predominately plane stress after

approximately 2.0 mm of crack growth. These results establish that plane strain dominates Kjici

and plane stress is typical of TRPS.

Effect of Temperature:

Kj-Aa resistance curves for LT oriented CT specimens of AA2519+Mg+Ag, tested at a

load- line displacement rate of 0.26 I.tm/sec, are displayed in Figure 48 as a function of

temperature. The Kj-Aa curve of AA2519+Mg at 175°C is also shown. The dotted line located at

a crack extension of 3 mm represents one-tenth the original uncracked ligament or the estimated

limit of J-controlled crack growth from ASTM E1152, but the data are well behaved and the trends

remain unchanged up to Aa of at least 4 mm. Kjici is plotted versus temperature in Figure 49 for

AA2519+Mg+Ag and AA2519+Mg. Crack growth resistance, quantified by TRPS, is plotted

versus temperature in Figure 50 Kjici and three growth toughness parameters (TRPS , j3mm,

Kj 3ram) are listed in Table 8 for both AA2519+Mg+Ag and AA2519+Mg at each test temperature.

Knc i is variable, most likely due to the inhomogeneous distribution of O constituent within

the crack-tip process-zone. At 25"C, Kjici is 30.5 MPa_/m for AA2519+Mg and varies from 29.6

362



MPa_/m to 37.1 MPa_m for AA2519+Mg+Ag. The Ag-bearing alloy has plane stress tearing

moduli of 5.4 and 4.0 at 25°C, while TRPS is 5.4 for AA2519+Mg. Values of j3mm are 127.8

kJ/m 2 and 134.6 kJ/m 2 for AA2519+Mg+Ag and AA2519+Mg, respectively. The corresponding

Kj 3rnrn values for small scale yielding are 96.2 MPa_/m and 98.7 MPa_/m. Kj 3ram approximates,

but is always substantially less than the critical plane stress fracture toughness from a

wide-center-cracked plate experiment [131 ].

AA2519+Mg+Ag exhibits a mildly decreasing initiation fracture toughness with increasing

temperature at a load-line displacement rate of 0.26 l.tm/sec (Figure 49). Least squares linear

regression analysis of Kjici versus temperature yielded an intercept of 33.1 MPa_/m (at 0°C) and a

slope of-0.013 MPa_/m/*C. The 95% confidence interval of the slope (B) implies a temperature

invariant toughness (-.043 < B < +.018). Limited KjICi data for 2519+Mg show toughness rising

slightly as temperature increases to 100"C and declining to 25.4 MPa_/m at 175°C. The plane

stress tearing moduli for 2519+Mg and 2519+Mg+Ag increase monotonically to peak values near

100°C, and subsequently decline as temperature increases (Figure 50). Table 8 shows that j3mm

and Kj 3mm exhibit similar trends, increasing to 75°C and declining above 125°C.

Microscopic Fracture Processes

The midplane region of plane strain fracture surfaces, within 500 _tm of the fatigue

precrack tip, was analyzed by SEM. For the relatively rapid loading rate examined, microvoid

coalescence is the operating fracture mechanism in AA2519+Mg+Ag at both ambient and elevated

temperatures, as illustrated in Figures 5 l(a) & 5 l(b). A bimodal distribution of dimple sizes

characterizes each surface. Larger dimples (5 to 30 I.tm in diameter) are associated with primary

void initiation and growth from undissolved O particles, with some contribution from manganese

and iron bearing constituents. Microscopically flat fracture facets were observed on undissolved

O, consistent with cracked particles in the as received material.

Sheets of small voids (0.5 to 5 lxm in diameter, depending on temperature) nucleate from

smaller second phase particles in strain localized regions between primary voids [17,18]. Void

sheets, marked by "vs" in Figures 51(a) and 51(b), truncate the growth of primary voids and

connect primary void clusters in AA2519+Mg+Ag. Stereographic fracture surface observations

show that sheets propagate at angles ranging between 45 and 80" from the Mode I crack plane.

Void sheets are seen directly ahead of the fatigue precrack tip [ 131 ], underlying their importance to

fracture initiation toughness. High magnification SEM tilt fractography was employed to
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characterizethe morphologyof dimples on void sheets (Figures 52(a) and 52(b)). At 25"C and

150"C, the sheet surfaces are covered by dimples of shear character, and the shear nature is more

dominant at 150°C, as indicated by the shallower dimples (Figure 52(b)). Dimples within void

sheets increase in size as temperature increases. Submicron dispersoid particles are observed

within void sheet dimples at 25°C, but less often at 150"C. TEM observations of dispersoid size,

shape, and composition; correlated to particles observed in void sheet dimples; suggest that

Mn-bearing dispersoids are likely void nucleation sites.

As temperature increases, stereographic observations show that void sheeting is retarded in

AA2519+Mg+Ag. The area fraction of void sheets at 150"C markedly declines relative to the area

fraction formed at room temperature. Metallographic profile sections of crack tips formed at

ambient temperature and 150°C, shown in Figures 53(a) and 53(b) respectively, corroborate both

crack growth due to O particle fracture and the character of void sheeting. Crack growth was

interrupted at a Kj level of approximately 80 MPa_/m for each CT specimen (corresponding to

approximately 900 lam of crack growth), and was subsequently polished to the midplane or plane

strain region. Arrows indicate void sheets, which are confirmed as less prevalent at 1500C;

indicated by shorter "canals" between primary voids and also by areas ahead of the crack tip with

high amounts of local damage that are not yet linked by the void sheet mechanism.

The effect of temperature on the stable growth of primary voids was evaluated by

quantitative fractography. The radius of primary dimples (rD) was measured from a montage of 30

1000X magnification fractographs which covered a 500 I.tm by 500 _tm area in the plane strain

region. At 25°C, average r D equals 9.2 lxm or 3.2 times the average constituent radius, r. At

150°C, average r D equals 10.7 _tm or 3.8r. An increased extent of primary void growth (rD/r) at

150°C in AA2519+Mg+Ag implies an enhanced resistance to void sheeting, consistent with

qualitative fractographic evidence (Figure 53) and increased intrinsic alloy ductility [103].

A limited amount of small dimples oriented within the mode I crack plane was observed on

the 150°C fracture surface (represented by the upper left-corner of Figure 51(b)). This was

interpreted as grain boundary ductile fracture (GBDF) [109]. The area fraction of GBDF is small

at the loading rate employed in this study.

Deformation and Tensile Fracture

Uniaxial mechanical properties of AA2519+Mg+Ag are listed in Table 9 as a function of

deformation temperature, and the temperature-dependencies of t_ys and N are plotted in Figure 54.

With increasing temperature, (Iyst, t_ysC, (I 0, (_uts, N, and estimated E decrease, while RA increases
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monotonically. Compressiveyield strengthis 17-40MPa below thetensileyield strength,and

bothdeclineby about20%between25°Cand175°C.Valuesof N approachzero(perfectlyplastic
behavior)astemperatureincreases.

Experimentalmeasurementsof efPversusam/t_for AA2519+Mg+Agat25°Cand150°C

are plotted in Figure 55 along with a theoretical prediction of efP versus Om/O obtained by

integrating the Rice and Tracey void growth law [103,120,125]. Fracture strain decreases

dramatically with increasing triaxiality at each temperature. For high triaxiality (t_m/c---1.7) the

ductility approaches an intrinsic fracture strain, denoted ef, and described in detail elsewhere

[111]. Figure 56 plots efP versus temperature for two constraint levels; am/a=0.33 and 1.13. As

temperature increases, efP rises. A smooth-to-notched ratio, rsn, is defined as _fP at t_m/t_---0.33

divided by efP at c m/c=l. 13. Based on the linear regression fits to efP versus temperatures at the

two constraint levels, rsn is essentially constant at 4.2 between 25°C and 175°C. The effect of

triaxial constraint on efP is independent of temperature, at least for these two constraint levels. This

information is necessary for micromechanical predictions of Kjici and TrPS.

Discussion

Engineering Implications

The average initiation fracture toughnesses of experimental AA2519+Mg+Ag (Knci=32.9

MPa_/m) and AA2519+Mg (30.5 MPa_/m) at 25°C are comparable to or exceed that of

conventional aluminum alloys [140]. KjICi for AA2024-T3 is 32.4 Mpa_/m [131], but the yield

strength of this alloy is 100 MPa less than that of the AA2519 variants. KIC of AA2024-T851

(t_ys=460 MPa) ranges from 23 to 28 MPa_m for the LT orientation, while equal strength but

higher purity AA2124-T851 exhibits improved toughness (KIc=27 to 36 MPa_/m). KIC values of

AA2219-T851 are high (36 to 41 MPa_m), but strength levels are low (t_ys=345 to 360 MPa).

Considering high strength AA7075- T651 (t_ys=515 to 560 MPa), KIC varies from 27 to 31

MPa_/m.

Elevated temperature fracture toughness comparisons between competing aluminum alloy
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systemsareimportantin materialsselectionfor HSCTapplications.Figure57 is asummaryplot
of initiation fracture toughnessversustemperaturefor conventionalIM alloys (AA2219-T851

[112] and AA2618-T851 [39]) and advancedalloys (AA2519+Mg+Ag, AA2090-T81 [141],

AA2009/SiC/20p-T6[62], andRS/PMAA8009 [24]). ASTM E399KIC is usedto characterize

initiation toughnessfor AA2219-T851and AA2090-T81,andthesemeasurementsareslightly

higherthanaKjici measurement[ 131]. All specimens were tested in the LT orientation, except for

TL oriented AA2090-T81. AA2519+Mg+Ag displays ambient and elevated fracture toughness

behavior similar to AA2219-T851, but with yield strength levels 130 to 160 MPa higher [112].

KIC increases mildly with temperature for AA2090-T81 [141], and the strength and absolute

toughness levels are similar to AA2519+Mg+Ag. AA2618-T851 and AA2009/SiC/20p-T6

possess essentially constant fracture toughness with temperature, but absolute toughnesses are

degraded by high volume fractions of FeNiAl 9 and SiC particles, respectively [39,62]. A marked

decrease in KjIci with temperature is observed for RS/PM aluminum alloys; the unique

mechanisms responsible for this trend are discussed elsewhere [39]. The good toughness of

AA2519+Mg+Ag is notable given the significant volume fraction of undissolved Al2Cu. A modest

decrease in the Cu content should reduce the amount of this phase and increase the fracture

toughness.

AA2519+Mg shows a significant decrease in Kjici at 175°C, corresponding to widespread

grain boundary ductile fracture (GBDF). The Ag-bearing alloy did not display significant amounts

of GBDF. Kjici degradation by GBDF may be due to an increasing contribution of creep fracture

or environmental effects. This fracture mechanism was not explored.

Two approaches must be coupled to understand and predict temperature dependent KjICi

and TaPS for use in damage tolerant life prediction and alloy development. First, micromechanical

modeling of the crack tip process zone defines the temperature-dependent contributions of alloy

deformation and fracture properties to initiation and growth fracture toughnesses. Second,

strain-driven evolution of microscopic void damage must be related to microscopic plasticity and

microstructural features.

The Critical Plastic Strain-Contr011ed Model

Components of the Model:

The critical plastic strain-controlled model of initiation fracture toughness, for alloys that

fail by dimpled rupture, couples the following three elements: 1) the intrinsic fracture resistance of

the alloy, 2) the strain distribution ahead of a stationary crack-tip that drives microscopic fracture
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processes,and3) a microstructuraldistance(1")necessaryfor thefractureprocess.Themodelis

discussedin detailelsewhere[61,85,111,117].

PlanestrainKjici correspondsto the appliedstressintensity (K) level requiredfor the

crack- tip plastic strain field (EPversusdistanceaheadof the crack tip, x) to exceedthe

position-dependentfractureresistance(e_ versusx) overI*. At K=KjIci, the _P-xcurveexceeds

the EfP-xcurveat x < I*, and the intersection of these two curves defines the intrinsic fracture

strain, el* [ 111 ].

(1) Fracture Resistance: For AA2519+Mg+Ag, fracture is by microvoid nucleation,

growth, and coalescence. Strain is assumed to characterize fracture resistance because it explicitly

drives void growth [17,103,125] and implicitly controls the void nucleation stage [61,122,124].

Microvoid fracture resistance is affected by Om/a; a stress state-dependent failure-strain, e_(_m/_ ),

must therefore be predicted or measured and coupled with t_m/O(x ) to obtain fracture resistance as a

function of distance ahead of the crack tip, efP(x) [85,111,120].

The constraint-sensitivity of efP was not measured at each temperature studied, so

simplifying assumptions were employed to model KjIci. A smooth bar constraint ratio (rs) was

defined as E_ at _m/_=0.33 divided by ef, and a notched bar constraint ratio (rn) was defined as

efP at _m/t_=l. 13 divided by el. The model failure criterion was employed in conjunction with the

measured failure locus for AA2519+Mg+Ag at 25°C (Figure 55) to determine an I_f of 0.08, an rs

of 6.5, and an r n of 1.5 [111]. Measurements of e_ versus t:rm/C at 150"C, or any other test

temperature, are not sufficient to repeat these calculations with confidence. Both constraint ratios

are assumed to be temperature independent, which is consistent with temperature invariant rsn

observed in Figure 56.

The precise intrinsic fracture strain for toughness modeling is that required to produce

microvoid damage in the notch root corresponding to damage in the crack-tip process-zone at

KjICi. Measurements of fracture strain based on RA, instead of the strain at the critical damage

event, result in overestimated ef. Experimental and computational studies suggest that this error is

small because reduction of the minimum cross-sectional area is limited after a critical damage event
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correspondingto Kjici, such as void sheet coalescence [120,142].

(2) Crack-Tip Strain Field: For eP, a finite element-based elastic-plastic strain field was

used, derived by McMeeking from the finite-strain flow theory of plasticity [143]. The strain field

was calculated for large deformation geometry changes and a smoothly blunting crack. The

function, EP=C 1(15Ix) c2, was fit to McMeeking's results for N values of 0, 0.1, and 0.2, and an

angular orientation of 45* from the crack plane [61,111]. The variable 6 is the crack tip opening

displacement and C1 and C2 are curve-fitting constants. The magnitude of EP for a given x

increases as _i and K increase.

(3) Critical Distance: A critical distance over which microvoid damage occurs is an

essential model element since the crack-tip strain singularity precludes defining the failure criterion

at the point of maximum strain [61,85,120]. An accepted definition of 1" for initial crack extension

is some multiple of the nearest-neighbor interparticle spacing [85,117]. It is not correct to equate 1"

with the average spacing of void-nucleating particles, because more than one void ahead of the

crack tip can participate in void link-up. It is not possible presently to determine 1" a priori by

metallographic or fractographic measurements, thus this parameter is used as a curve-fitting

constant to match experimental toughness data [61,85,111,117,144]. If the microvoid fracture

mechanism is constant as temperature varies, then 1" may be invariant, enabling model predictions

of temperature-dependent toughness. This assumption must be critically examined.

The three components of the critical plastic strain controlled model are combined to yield

[61,111]:

l t_y_E/* - ( 1 -RA )r C/ /_ [6]

* °

where ef is estimated by -ln(1-RA)/r, r is either rs or r n depending on available data, x) is

Poisson's ratio, and t_ys is the average of tensile and compressive yield strengths. The parameter

d(N) is a proportionality constant between 6 and J/t_y s, and is a function of N, stress state, Crys/E,

and the definition of _5. Values of d(N) are related linearly to N between 0 and 0.2 (d(N) =

0.58-1.4N) [143], and are similar to those given by analytical solutions [145]. The parameters C1

and C2 are obtained for any N by interpolating linearly between curve fits of FEM results for N =
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0, 0.1, and0.2 [61,111]. MeasuredN at eachtemperature(Table9) wasemployedto determine
d(N), C1, andC2. Poisson'sratio wasassumedto equal0.3at all temperatures.The remaining

alloy deformationpropertiescanbemeasured.Table10showstheinputparametersfor modeling

of AA2519+Mg+Agateachtemperature.
Becausethetensilepropertiesof AA2519+Mg+Agarestrain-ratesensitive,thecracktip

strainrateis estimatedfor aCT specimenfracturedat a load-linedisplacementrateof 0.26_tm/sec

(dK/dt=l.2 x 10-3MPa_/rn/sec).Differentiation of McMeeking'scrack tip strain field, for the

stationarycrack at K._<KjIci, yields a crack tip strain rate gradient, dependent on K, dK/dt, and the

distance ahead of the crack tip [146]. For the specimen fractured at room temperature, at K=KjIci,

and at a process zone distance of 30 lxm, the crack tip strain rate is estimated as 6x10 -5 sec -1.

Uniaxial tension and compression specimens were deformed at this strain rate to obtain flow

properties (Table 9) for input to the micromechanical model.

Model Predictions:

With the parameters; _ys, E, ef, d(N), C1, and C2; determined as a function of

temperature, KjICi for AA2519+Mg+Ag is predicted through Eq. 6. The constant I* is the single

adjustable parameter. Equal values of 1" (20.5 _tm) were calculated from average measured Kjici

at 25°C for both the smooth- and notched-tensile cases, and were used to predict KjICi from 75"C

to 175"C. The calculated value ofl* is nearly twice as high as the calculated spacing of A12Cu and

Fe-bearing constituent particles in a volume (A3= 11.9 lttm).

The temperature dependence of KjICi for AA2519+Mg+Ag is predicted successfully as

shown in Figure 58, with ee* based on both smooth- and notched-tensile bar RA. Variability in the

measured tensile properties leads to variability in predicted Kjici. A linear-regression fit to Kjici

measurements (Kjici = 33.1 MPa_/m - 0.013*T) agrees well with fits to predictions from both

smooth (KjIci = 32.7 + 0.001*T) and notched-specimen (Kjici = 32.9 MPa_/m - 0.001*T) data,

where T is the temperature in Celsius. A 95%-confidence-interval estimate of the slope (13) using

the student-t-distribution indicates that there is no significant difference between 13 for the

measurements (-0.043< 13 <0.018), smooth-specimen predictions (-0.026< 13 <0.027) and

notched-specimen predictions (-0.028< 13 < 0.026). Both measured and predicted Kjici are

essentially temperature-independent from 25°C to 175°C (13*0).

The strain-controlled model quantifies the interplay between crack-tip eP, Ef*, and 1" that
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governsinitiationfracturetoughness.Microvoid-ruptureKnci does not scale solely with either the

intrinsic fracture resistance (Ef) or the deformation properties (cry s, E, N) that govern eP in terms

of K. Rather, both elements must be combined with a fracture initiation criteria to predict the

"composite" property of KjICi. The relative sensitivities of crack-tip eP and ef* to temperature

dictate the temperature dependence of KjICi, when 1" is assumed to be temperature-invariant. As

_ys, E, and N decline with increasing temperature, which is observed in AA2519+Mg+Ag and

other IM aluminum alloys, crack tip strain increases for a fixed x and K [61,111]. Crack-tip eP is

thus enhanced at elevated temperatures, resulting in a lower applied K necessary for eP to exceed a

ar *

given ef over 1". Increased ef for AA2519+Mg+Ag at elevated temperatures essentially offsets

enhanced crack-tip strain, resulting in a constant predicted Krici with temperature.

The experimental verification of predicted Kjici versus temperature for AA2519+Mg+Ag

(Figure 58) provides a strong confirmation of the plastic-strain based model of crack-tip initiation

toughness. The model is verified similarly based on measured and modeled KJICi versus

temperature in other aluminum alloy systems [24,61,111,144].

Modeling Difficulties:

Strain-based micromechanical modeling of initiation fracture toughness yields reasonable

values of 1", as well as accurate temperature dependencies of Kjici. Absolute values of Kj[ci are

S S •

not predicted, however, due to uncertainties in ef and 1s. Accurate determination of ef is

complicated by the need to correlate damage at the critical microvoid damage (or coalescence)

event, within the notch root of tensile specimens and the process-zone ahead of a crack-tip. The

Bridgman approximation of ef ° and uncertainty in the effect of stress-state-constraint on efP also

hinder accurate measurements of el*. These issues are discussed elsewhere [63,111 ].

Ultimately, 1s must be determined independently for absolute toughness prediction. 1"

might be measured independently from measured particle spacings on a polished microstructural

section, measured void spacings on a polished section of a notched tensile bar interrupted at the

critical fracture event, or measured dimple spacings in the high constraint region of a CT fracture

surface. For example, model evaluations for several aluminum alloys and steels indicate an

empirical relationship between A 3 from microstructural sections and 1" calculated from measured
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fracturetoughness[111]. I* ranges from 1 to 6 times A 3.

Notched-tensile experiments of AA2519+Mg+Ag at 25°C were interrupted at peak load and

sectioned longitudinally to independently determine 1". The nearest neighbor spacings of voids

nucleated from constituent particles within the cross section of the notch were measured from a

metallographic section of one unloaded tensile bar. Void spacing measurements were confined to a

longitudinal distance of 150 lxm above and below the minimum notch root diameter. The nearest

neighbor void spacing in a plane (A2v°id) varied from 11.8 _tm to 163.4 _tm, reflecting severe

clustering of the constituents. Average A2v°id equals 43 lttm, and is converted to an average 3-D

nearest neighbor void spacing (A3v°id) of 28 lXm by the relation A3v°id/_2v°id =1.23(1/Vf) "1/6, with

Vf equal to 0.02 [130]. A3v°id Was equated to 1" for an absolute prediction of initiation toughness.

The measured diametral contraction of the notch and Eq. 5 were used to calculate an average Et.Pof

0.071, which was divided by r n to obtain an Ef of 0.047. Predicted Kjici from Eq. 6 with these

estimates of I* and el* equals 31.0 MPa_/m for AA2519+Mg+Ag at 25°C.

This absolute prediction agrees well with the average measured Kjlci of 32.9 MPa_/m, but

is not rigorous. Peak load probably represents a lower amount of microvoid damage relative to

that in the crack-tip process-zone at Kjici. Moreover, 1" does not necessarily equal A 3 or A3v°id.

Rather, the ratio of calculated 1" (for agreement between measured and predicted initiation

toughness) to A3 depends directly on the extent of primary void growth, rD/r [111]. Thus,

measured constituent spacings from a metallographic section are not necessarily sufficient to

determine 1" independently. The ratio rD/r, and its influence on the multiple of particle or void

spacings that constitutes the critical distance, must be determined.

Void size and spacing measurements from CT fracture surfaces or sectioned notched tensile

bars appear to be the most promising method of independently determining 1", since information on

both A3v°id and rD/r can be obtained. Caution is dictated. More detailed microscopic studies of the

evolution of microvoid fracture is required to understand the relationships between 1", A3v°id, and

rD/r. Quantitative tilt fractography is necessary to obtain the true nearest neighbor spacing of

particles from a 3-D fracture surface. Moreover, the strong distance and angular dependencies of

crack-tip eP, coupled with a heterogeneous distribution of void-nucleating particles, makes
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independentdetermination of 1" a formidable problem that is beyond the scope of this work.

The Moving Crack Model of Tearing Resistance

Chan formulated an expression for the plane strain tearing modulus (TRPe) based on Rice's

continuum analysis of the strain field ahead of a moving crack [86]. The temperature-dependent

material parameter, f_ = E _f/t_fl, governs plane strain tearing resistance. Both absolute values and

the temperature dependence of TRPe for AA8009 were reasonably predicted by this model,

including a minimum in tearing resistance at 200°C [24].

A simple modification to Chan's micromechanical model for TRP e does not yield accurate

predictions of either the absolute values of the plane stress tearing modulus, or the temperature-

maximum in plane stress TR ps, for AA2519+Mg+Ag. Specifically, the constraint factor was

reduced from r of 6.5 for plane strain to unity for plane stress, and mildly temperature dependent

constants (t:t, 13, and _, in Chan's model) were assumed to equal the values for AA8009 [24,86].

Measured (Table 8) versus predicted TRPS are 4.7/40, 7.2/83, and 3.7/142 for AA2519+Ag+Mg

fractured at 25"C, 100*C, and 1750C, respectively. This poor agreement may be traced to the

notion that stable crack growth under plane stress involves a local shear-based failure criterion,

while the model for TRPe was derived by equating the critical Mode I crack opening to the principle

fracture strain for uniaxial tensile loading, reduced to account for increased plane strain constraint

[86]. Further work is needed to model plane stress tearing resistance, and the associated

temperature and microstructural dependencies of the deformation and fracture properties that

constitute TRPS.

Elevated Temperature Fracture Ev.o!ution

Understanding of temperature-dependent Kjici also requires basic analysis of the

temperature- dependent factors that govern the intrinsic resistance of the alloy to microvoid

nucleation, growth, and coalescence. Mechanism-based study of elevated temperature microvoid

fracture in IM aluminum alloys is limited [66,147], counter to the ambient temperature case

[29,107,108,148]. Increasing temperature greatly affects el* by promoting stress relaxation

around second phase particles and by altering flow properties such as yield strength, work

hardening and strain rate hardening [147].

Higher temperature or lower strain rate enhances recovery at particle/matrix interfaces,
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lowering the stresseson the interfaceandpostponingvoid nucleationto higherappliedstrains,

providedthat interfacialstrengthsarenotseverelydegraded[147]. Microvoid nucleationfrom a

dilutevolumefraction(<5%)of largeconstituentsin aluminumalloysoccursat asmallfractionof

the strain required for dimpled rupture [17]. A large fraction of constituent particles in

AA2519+Mg+Ag were crackedprior to testing(Figure 45), andthe polishedcracktip profiles

showthat all largeparticleseventuallycracked(Figure53). Becausemicrovoidnucleationoccurs

at low strain,thetemperaturedependenceof thenucleationrateis not significantin describingthe

temperaturedependenceof fracturetoughness.

Temperatureaffectsmicrovoidgrowthratesandthestrainattheonsetof void coalescence

[147].Strain-basedratesof void growthincreasewith higherstressstatetriaxiality andlowerwork

hardening[125,149].Theglobalstressstatetriaxialitydid notchangefrom ambienttemperatureto

175°C, based on fracture surfaceappearance. Work hardening decreasesmarkedly with

temperaturefor 2519+Mg+Ag(Figure54),andthevoid growthrateis expectedto increase.Since

ef increases with increasing temperature for AA2519+Mg+Ag (Figure 56), counter to an

increasing void growth rate with temperature, temperature-dependent void coalescence must

dominate fracture.

Increasingly strain rate sensitive plastic deformation at elevated temperatures retards void

coalescence [66,147,150,151 ]. Fractography of AA2519+Mg+Ag shows clusters of O nucleated

voids separated by void sheets associated with submicron dispersoids (Figure 52). At elevated

temperature, fractographic evidence indicates that void sheeting is retarded (Figure 53). A

necessary precursor to void sheeting is intravoid strain localization (ISL) of shear deformation

between large, primary voids nucleated at O. The onset of ISL depends on stress state triaxiality

[ 121,152], strain hardening [ 151,153,154], strain rate sensitivity [66,147,150,151 ], constituent

particle spacing and distribution [153,154], slip mode [108,119], and microvoid nucleation at

dispersoids within the strain localized band [17,148]. The critical strain for ISL rises with

increasing strain hardening and strain rate sensitivity. Increasing triaxiality, clustering of

constituents, planar slip (from cutting of precipitates), or a higher volume fraction of submicron

dispersoids in the intravoid ligament should decrease this critical strain.

Speculatively, reduced void sheeting in AA2519+Mg+Ag at elevated temperatures (Figure

53) is responsible for increasing ef. The change in void sheeting is not due to changes in

triaxiality, second phase particle distributions, or slip mode. Macroscopic fracture surface

observations suggest that triaxiality did not change with temperature, and constituent and
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dispersoid particle spacing distributions remain unchanged to 175"C. Slip is not localized due to

dislocation cutting of _ and does not exacerbate ISL. Li found that f_ precipitates are not fully

sheared during plastic deformation at 25"C or 150"C; rather, dislocation cutting disperses evenly

along fl [155]. Because the effects of these factors appear negligible, the propensity for void

nucleation at dispersoids, as well as changes in strain hardening and strain rate hardening of

AA2519+Mg+Ag, are believed to be responsible for retarded ISL and reduced void sheeting at

elevated temperatures.

Intrav0id Strain Localization

Factors Controlling ISL:

As strain accumulates and primary voids grow in the crack-tip process zone, the critical

condition for microscopic ISL is attained due to: 1) a high volume fraction and non-homogenous

distribution of second phase particles and associated voids, 2) a reduction in cross sectional area

between primary microvoids, and 3) stress-state triaxiality. Strain rate within an ISL band (EISL)

increases, and because the global strain rate must be conserved, strain rate in the surrounding

continuum (esurr) decreases, els L is estimated as two to four orders of magnitude greater than esurr

[66,151]. Here, exs L is assumed to increase by 1 to 3 orders of magnitude, and Esurr decreases by

an order of magnitude, relative to the global strain rate.

The progression or abatement of ISL depends on competition between flow hardening and

softening in the ISL band. Void nucleation and growth at dispersoids within the band contribute to

softening and promote continued localization. Strain and strain rate hardening, coupled with the

accelerated strain rate in the intravoid shear band, produce ISL band flow hardening relative to the

flow strength of the surrounding material. If the band hardens enough to overcome flow

softening, then ISL is abated and shifted to other primary voids [151 ]. Hardening is governed by

time and temperature dependent dynamic recovery.

Temperature and Strain Rate Dependence of Flow Stress:

Time-dependent dynamic recovery occurs in aluminum alloys at ambient and elevated

temperatures, and lowers flow stress. The kinetics of dislocation recovery, the imposed strain

rate, and temperature dictate the amount of dynamic recovery and the associated flow stress

decrease. Reduced recovery in the ISL band, due to amplified strain rates relative to the

surrounding continuum, is a substantial source of band hardening.

Figure 59 summarizes the temperature and strain rate sensitivity of flow stress for

AA2519+Mg+Ag, AA2219-T851 [156], and low solute aluminum alloys [157,158] in terms of the

374



Zener-Hollomon parameter14. For a strain rate of 6xl0 -5s-1, the equivalent temperature

correspondingto a givenZ is plottedasasecondordinate. At constanttemperature,anorderof

magnitude decreasein Z is equivalent to an order of magnitudereduction in strain rate.

Consequently,thestrainratesensitivityof flow stress(m in therelationc0 o_E m)isestimatedat

constanttemperaturefrom theslopeof eachcurve,overthestrainratesof interest.

Flow stressdependsuniquelyonZ for eachalloy, anddependssimilarly on temperature

andstrainratewithin two regimes.For Z largerthanabout1016 S "l, the flow stress is relatively

insensitive to changes in temperature or strain rate. For Z less than 1015 s -l, dynamic recovery is

enhanced and the flow stress decreases markedly with decreasing Z (decreasing e or increasing T).

These two regimes correspond to changes in the equilibrium subgrain size during steady state

deformation of pure aluminum [159]. Of importance to fracture is the result that m increases with

increasing temperature and is substantial for Z less than 1015 s -1 or T greater than 100*C.

Temperature Dependence of lSL and _;:

With increasing temperature, m increases and N decreases. For example, at 25"C and the

strain rate employed in this study (e=6xl0 "5 s-l), flow stress is in the strain rate insensitive regime

of Figure 59 (Log Z=20.6 s -1) and m is 0.020 for AA2219-T851. At 150°C, flow stress is in the

strain rate sensitive regime (Log Z=13.3 s -I) and m is 0.035. Conversely, N decreases from 0.05

at 25°C to 0.03 at 150°C, based on work hardening data from uniaxial compression of

2519+Mg+Ag, modified to reflect work hardening within the ISL band.

When the strain rate is amplified within an ISL band, strain and strain-rate hardening are

responsible for band hardening and abatement of strain localization. As temperature increases, the

change in ISL band hardening is difficult to predict due to uncertainties in strain, strain rate, and

the constitutive law for ISL band material. It is possible to approximate combinations of strain

14 The Zener-Hollomon parameter (Z), a temperature-compensated strain-rate, is given by:

Z= _ exp _

where All is the activation energy associated with the temperature dependence of flow stress and is assumed to
equal the activation energy for self diffusion in aluminum (140 kJ/tool) [68]. R is the universal gas constant and
T is temperature in Kelvin. The parameter Z represents conditions for constant dislocation recovery; at equal Z,
decreased temperature or increased strain rate equivalently increases flow strength.
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enhancement(AE=EIS L- Esurr ) and strain rate enhancement (_,=EisL/Esurr) for which ISL band

hardening, due to m and N, is equal at 25°C and 150"C 15. For example, increased strain rate

hardening within the ISL band for k=100 and higher m at 150°C versus 25°C, is counterbalanced

by reduced strain hardening for A8--0.08 and lower N at 150°C compared to 25*C. For _, equal to

1000 and 10000, ISL band hardening is equal at 25*C and 150°C for Ae equal to 0.25 and 0.64,

respectively. The quantitative contributions of strain and strain rate hardening to ISL band

hardening can not be determined because 2, and A(z are not known. Reasonable choices of A(_

(0.08) and _. (100) suggest that ISL band hardening, void sheeting behavior, and ef* may be

temperature independent. However, the softening effect of void nucleation at dispersoids must be

considered.

Temperature and strain-rate dependent bypassing of dispersoids controls the rate of

dislocation accumulation at the dispersoid/matrix interface and therefore should control the rate of

secondary void nucleation and flow softening in the ISL band between growing primary voids.

Humphreys and Kalu modeled the critical strain rate for dislocation bypassing by climb around

particles, as influenced by particle size and temperature-dependent bulk and interface diffusion

[68]. A critical temperature versus strain rate prediction is plotted in Figure 60 for

AA2519+Mg+Ag and measured dispersoid sizes ranging from 0.1 to 0.3 Ixm. (The average size of

0.2 _tm is plotted as a solid line.) The plot is a "micro-deformation mechanism map", where

dislocation bypassing of dispersoids is predicted at all temperature/strain-rate combinations below a

line and dislocation accumulation is predicted for combinations above a line. Superimposed on the

plot are the temperature and applied global strain rate conditions (e) for AA2519+Mg+Ag tensile

testing. The dashed lines represent local strain rate enhancements (_.) in an ISL band of two, three,

and four orders of magnitude, while the lower horizontal line represents a 10-fold reduction in the

surrounding matrix strain rate.

During tensile fracture at ambient temperature, dislocations do not bypass 0.1 to 0.3 lxm

diameter dispersoids, even at the reduced strain rate outside the ISL bands. Dislocation

15 The Hollomon constitutive law Go=K EN Em was assumed,[73] and the incremental increase in G Odue to

increased strain and strain rate within the ISL band relative to the surrounding material was calculated. K

values at 25"C and 150"C were calculated at 5% strain and the global strain rate, using N values from Table 9
and m values given in the text.
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accumulationandvoid nucleationatdispersoidsshouldbeabundantandleadto significant flow

softening,enhancedISL, andrelativelylow strainfractureinvolving void sheeting.For a given

dispersoidsizeand _,,bypassingoccursabovea critical temperature.For example,with 0.2 lttm

diameterdispersoidsanda_.of 100,themodelpredictsthatdislocationbypassingwithin theband

occursattemperaturesabove120°C.Abovethecriticaltemperature,dislocationaccumulationand

void nucleationat dispersoidsarereduced,flow softeningdiminishes,andISL is retarded. This

critical temperatureriseswith increasingdispersoidsizeand _.. The critical temperaturefor

bypassingof at least the smaller dispersoidsis between25°C and 175°C,regardlessof _,.

Therefore,dislocation bypassingof dispersoidsis augmentedin AA2519+Mg+Ag between

ambientandelevatedtemperature,leadingto reducedflow softeningandretardedISL.

In summary, dislocations do not bypass dispersoids at 25"C in alloys such as

AA2519+Mg+Ag, void nucleation is abundantwithin the ISL band,flow softeningbetween

primaryconstituent-nucleatedvoidsis significant,andISL iscatalyzed.Void sheetingis prevalent
sincestrain ratehardeningandwork hardeningarenot sufficient to overcomesubstantialflow

softening. At elevatedtemperatures(150°C),dislocationsbypassdispersoids,void nucleation

within the ISL banddecreases,andflow softeningis reduced. Speculatively,void sheetingis

retardedand ef is higher at 150°CbecauseISL bandhardeningovercomesthe reducedflow

softeninganddelaysISL. This hypothesisis consistentwith retardedvoid sheeting(Figure53),

thechangein morphologyof voidsheetdimples(Figure52),andtheincreasein measuredprimary
void growth(rD/r)astemperatureis increasedfrom 25°Cto 150°C.

The effectsof m, N, and void nucleationat dispersoidson ISL, void sheeting,andef

must be quantified. The void-filled band can be represented by a Gurson yield potential [161]; but

the strain, strain rate, and criteria for void nucleation within an ISL band are uncertain. Two

studies have addressed these issues. Becker and Smelser's finite element simulation of strain

localization and fracture between 2 mm diameter holes in an aluminum sheet quantified strain and

strain rate enhancements within ISL bands under plane stress, as well as abatement of ISL due to

m and N [ 151 ]. Pan and coworkers analyzed the localization of deformation within a porous band

using Gurson's yield potential and found that strain to failure increased with increasing strain rate

hardening [150]. These results are insufficient to predict the temperature-dependence of ef*

necessary to model Kjici and to develop fracture resistant aluminum alloys.
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Correlations Between m and eft*:

The intrinsic fracture resistance of AA2519+Mg+Ag (and AA2618) correlates with strain

rate sensitivity, as expected based on the discussion of ISL. Values of m for AA2519+Mg+Ag are

assumed equal to the slopes of the curve for AA2219-T851 in Fig. 15, and ef* for smooth- and

notched-bars is obtained from Table ]II. el* for AA2618, calculated from smooth-tensile-bar

RA[47] using a r s value of 7, are correlated to m determined from creep data [156]. Figure 61

displays the linear correlations for each alloy and supports the role of increasing m in retarding

ISL. Increasing ef is not due solely to m since reduced void nucleation at dispersoids also retards

ISL as deformation temperature increases.

ef* is less dependent on m for AA2618 and absolute fracture resistance is lower at any

temperature, compared to AA2519+Mg+Ag. The fracture resistance of AA2618 is lower due to a

significantly higher volume fraction of more closely spaced constituents (V_-0.08, A3=8.3 _m),

resulting in reduced primary void spacing and growth to coalescence. Speculatively, the reduced

sensitivity of ef* to m in AA2618 reflects a lower amount of void sheeting due to the higher volume

fraction of constituents. Void sheeting may occur in AA2618 [39], but microvoids nucleate and

grow from a higher density of sites and therefore coalesce by impingement at lower strains relative

to AA2519+Mg+Ag in the absence of void sheeting. The abatement of ISL at elevated

temperatures in AA2618 does not affect alloy ductility as strongly as it does in AA2519+Mg+Ag.

Alternately, ef for AA2618 is not less dependent on m, but rather is less dependent on temperature

due to the lower volume fraction of submicron particles and the absence of Mn and Zr containing

dispersoids that contribute to ISL band softening.

Woodford correlated strain rate hardening and total elongation to fracture for several

superplastic alloys based on Fe, Ni, Mg, Pb, Ti, and Zr [162]. While total elongation is a poor

indicator of intrinsic fracture strain, this correlation shows a qualitatively similar m-dependence to

Figure 61. In contrast, mechanisms such as dynamic strain aging (DSA) produce a negative strain

rate sensitivity and associated reduction in elongation or Ef. Parks and Morris related low post-

uniform strain to negative m values and DSA in AA3004 [77]. King et. al. attributed low ductility

in a solutionized 7000 series AA to DSA producing ISL and void sheeting [78]. Kim et. al. cited

low m as the cause of elevated temperature ductility and fracture toughness degradation in

cryogenically milled ultra-fine grain size A1 with A1203 dispersoids [144].
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Conclusions

1. Fracture initiation toughness is high (KJIci > 30 MPa_/m) for AA2519+Mg+Ag with a

substantial volume fraction (1.2%) of large undissolved A12Cu particles, and decreases slightly

with increasing temperature from 25°C to 175°C. AA2519+Mg possesses a significantly lower
Knci than its Ag-bearing counterpart at 175°C.

2. Fracture of AA2519+Mg+Ag involves a bimodal distribution of microvoids. Fracture evolves
by primary void initiation at processing-cracked AI2Cu particles, followed by limited void

growth and unstable coalescence through propagation of fine dimpled void sheets nucleated at
dispersoids. Void sheeting is retarded and primary void growth is enhanced as temperature
increases.

3. Yield strength and strain hardening decrease monotonically with increasing temperature for
AA2519+Mg+Ag, consistent with increasing dynamic recovery.

4. The effective plastic strain to fracture of AA2519+Mg+Ag decreases markedly with increasing
Maxim constraint, and increases with increasing temperature for two levels of constraint.

5. The critical plastic strain-controlled micromechanical model of initiation toughness accurately
predicts the measured temperature dependence of KjIci regardless of whether smooth or

notched bar reduction in area is employed to estimate the intrinsic fracture strain, ef*. As

temperature increases, toughness is temperature invariant due to decreasing Gy s, E, and N

which enhance crack-tip strain, balanced by increasing ef*.

6. The flow stress of IM 2000 series aluminum alloys and pure aluminum shows two regimes: a

relatively temperature/strain rate insensitive region above a Zener-Hollomon parameter of 1016
s-t and a relatively temperature/strain rate sensitive region below 1015 s-1. Flow strength at the
standard strain rate employed in this study is within the strain rate sensitive region for

temperatures above about 100*C.

7. The propensity for strain localization between growing primary microvoids (intravoid strain

localization or ISL) has a major influence on £f*. Strain and strain rate hardening between

primary microvoids act to retard ISL, but the net retardation may be temperature independent.

8. As temperature increases from 25°C to 175"C, modeling of stress relaxation at a particle/matrix
interface predicts a transition from dislocation accumulation at dispersoids to dislocation
bypassing in AA2519+Mg+Ag. Dislocation bypassing results in decreased void nucleation at
dispersoids, decreased flow softening within an ISL band, reduced void sheeting, and hence

increased Ef*. This hypothesis is consistent with fractographic evidence of retarded void

sheeting and increased primary void growth at 150*C.

9. ef* increases linearly with strain rate hardening in AA2519+Mg+Ag and AA2618.
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VI. TASK V---MICROMECHANICAL MODELING OF THE TEMPERATURE
DEPENDENCE OF FRACTURE TOUGHNESS

M.J. Haynes, B.P. Somerday, C.L. Lach, and R.P. Gangloff

Abstract

The temperature dependence of initiation fracture toughness (KjIci) is modeled

micromechanically for a variety of advanced aluminum alloys; including

precipitation-hardened-ingot metallurgy, spray formed, rapidly-solidified or mechanically-alloyed

powder metallurgy, and metal-matrix composite alloys; that fail by microvoid processes. A

critical-plastic-strain-controlled model, employing tensile yield strength, elastic modulus, work

hardening, and reduction-in-area measurements, successfully predicts KjICi vs temperature for

eight alloys, providing a strong confirmation of this approach. In each case,

temperature-dependent Kjici is controlled by the interplay between the temperature dependencies of

the intrinsic microvoid-fracture resistance and the crack-tip stress/swain fields governed by alloy

flow properties. This model quantifies these microstructure-sensitive contributions to

temperature-dependent fracture toughness. Uncertainties in the triaxial-stress-modified critical

fracture strain, as well as the critical distance (volume) for crack-tip-damage evolution, hinder

absolute predictions of fracture toughness. The critical distance, calculated with the model from

measured Kjici , correlates with the nearest-neighbor spacing of void nucleating particles

determined by quantitative metallography, as well as with the extent of stable void growth

determined from quantitative fractography. These correlations suggest a means to predict absolute

fracture toughness.

Introduction

Problem Statement and Objective

Recent research has focused on measuring the plane-strain fracture-initiation toughness,

and plane-strain as well as plane-stress crack-growth resistances, of advanced plate and sheet

aerospace A1 alloys [19,24,25,39,62,144]. Experimental J-integral (J) vs. crack extension (Aa)

curves were established using elastic-plastic fracture mechanics (EPFM) and precision crack length

monitoring by direct-current potential difference (DCPD) or unloading compliance [12]. The

DCPD technique detected more effectively microscopic damage constituting initial crack extension

compared to standardized offset methods, particularly in thin-sheet or high-tearing-resistance alloys

[62,131 ]. The linear-elastic plane-strain fracture toughness calculated from J at the DCPD-detected

initial crack extension (Kjici), as well as the J vs. Aa (or equivalently K vs. Aa) curves, were
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reportedas a function of temperaturefor experimentalandcommercialAI alloys; including

advanced2XXX precipitation-hardenedalloys[19,39],submicron-grain-sizepowder-metallurgy

alloys [24,144],aspray-formed2XXX alloy, anda2XXX alloy reinforcedwith SiC particulate

[62]. In all cases,fracturewasbasedonmicrovoiddamage.

It is importantto model fracturetoughnessin order to understandKjICi and K vs. Aa,

particularly with regard to the temperature dependencies of the basic microstructural and

deformation properties that govern fracture toughness. Measured Kjici vs. temperature data for AI

alloys vary widely. In addition Kjici and tensile ductility for an alloy can depend on temperature

differently. These trends must be understood. The critical-plastic-strain-controlled model is most

pertinent for predicting M-alloy fracture toughness, and is detailed below. Although this model is

simple conceptually, model accuracy over a range of flow properties and microstructures has not

been established. Some model parameters are difficult to define unambiguously.

The objective of this work is to apply the strain-controlled model to predict the temperature

dependencies of fracture-initiation toughness for A1 alloys. This study aims to understand the

fundamental elements of the measured temperature dependencies of fracture toughness. In addition

the variation of model parameters with temperature and microstructure offers a unique opportunity

to critically test the model. Temperature-dependent Kjici is modeled for eight advanced AI alloys,

based on measured deformation and fracture properties, with one adjustable parameter. In one

alloy, microstructure is altered to examine the influence of slip mode and particle spacing on model

parameters and KjICi. 16

Background on Strain-Controlled Fracture-Toughness Model

Advanced micromechanical models of fracture toughness couple the following three

elements [85]: 1) an estimate of the intrinsic fracture resistance, 2) solutions for the crack-tip stress

and strain fields which drive the microscopic fracture process, and 3) a microstructural distance

necessary for the fracture process. These models overcome the limitations of earlier work which

only considered the crack-tip driving force and critical distance [ 108,163]. Including the fracture

resistance is critical for understanding the effects of temperature and microstructure on fracture

toughness.

16 In this paper, only the initiation toughness is characterized and modeled. Plane-strain growth toughness
(tearing modulus, TR) was measured for the metal-matrix composite and submicron-grain-size alloys, and was

predicted successfully using a micromechanical model which coupled the moving crack-tip displacement field
with a local criterion for crack propagation [24,61,86,144].
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Fracture Resistance:

For the A1 alloys considered, fracture is by microvoid nucleation, growth and coalescence

(MNG) involving second-phase particles. Strain should characterize the fracture resistance

regardless of the relative contributions of void nucleation and growth. While strain is shown

explicitly to drive void growth [ 17,66,103,120,125], void-nucleation criteria are couched typically

in terms of a critical stress. The stress which concentrates near the particle/matrix interface is,

however, a function of the remote strain [61,122,123].

There are two approaches for estimating the critical fracture strain: modeling and direct

measurement. Each stage of MNG is affected by triaxial stress (characterized by 6m/O fl, where o m

is mean stress and c a is flow stress) [17,66,103], as well as plastic strain. A gradient of _m/Cfl

exists ahead of a crack tip [85,163]. A stress state-dependent failure-strain locus (etP(Om/Oa))

must therefore be predicted or measured. Ideally, the effective plastic strain to failure, 8fP, is the

sum of the void-nucleation strain, plus the strain required to grow the voids to the critical event

characterized by Kjici.

The modeling approach must derive 8 fP(t_m/fffl) from considering the detailed MNG

processes for an alloy. Models exist for predicting both the nucleation and growth strains

[17,66,103]; however, calculating 8fP(fm/On) is complicated. MNG model elements, such as the

void-nucleating- particle fracture strength or interface decohesion strength, and the solution for

stress local to a particle, are uncertain [122,123,124]. Second, for "growth-controlled" MNG,

where stable void growth contributes substantially to efP(6m/6fl), voids coalesce by two means:

void impingement or shear-based strain localization [17,18]. Strain-localized coalescence criteria

are uncertain and depend on the spacing of "primary" void-nucleating particles [153,154],

strain-hardening and strain rate-hardening exponents [66,150,151,153,154], stress-state triaxiality

[120,125], and the volume fraction of smaller "secondary" void-nucleating particles (i.e.,

dispersoids) [17,19]. Third, the contribution of each MNG stage to efP(6m/fn) can vary among

alloys. For example, 8fP(t_m/($fl) may be governed by the nucleation strain if voids coalesce

spontaneously upon nucleation, as is likely for a metal-matrix composite with a high volume

fraction of large void-nucleating reinforcement particles [61]. An alloy with few large inclusions

may behave differently under void-growth control.
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In addition to thesecomplications associatedwith "isolated" particles and voids,

particle-particleandvoid-voidinteractionsmustbeconsidered,aswell aslocal triaxialstresswhich
evolvesfrom elasticconstraintonmatrixplasticflow, if thealloycontainsahigh volumefraction

of primary void-nucleating particles and/or the particles are distributed heterogeneously.

Furthermore,theprimaryvoid-nucleatingparticlesmayhavearangeof sizesandshapesand,asa
result, the nucleationstrain variesfrom site to site. Void nucleationand growth may not be

uniformamongthepopulationof particlesin threedimensionsthroughoutthemicrostructure.

Directmeasurementof e_(_m/_fl)avoidsthecomplexitiesassociatedwithMNG modeling.

TheefP(Crn/t_fl) locus is typically measured by straining notched-tensile specimens, which impose a

range of Om/_fl values [117,120]. A second experimental technique used to estimate EfP(t_m/Ofl) is

measurement of fracture-surface microroughness [85,164]. While measured values of et-P(t_m/O fl)

include the three stages of MNG, and thus cannot offer insight into MNG mechanisms, such

values are reliable inputs for micromechanical fracture-toughness models.

Crack-Tip Strain Field:

The solution for effective plastic strain (P) should be consistent with the observed mode I

crack-tip profile geometry, as well as the angular orientation of void-damage sites ahead of the

stationary crack tip. Hutchinson, Rice, and Rosengren (HRR) derived the stress and strain fields

for a crack tip undergoing small geometry change (i.e., no blunting) where J-dominance prevails

[165,166]. Solutions for eP ahead of a crack tip undergoing substantial blunting

[118,143,163,167] are assumed to be more relevant for fracture of high-strength A1 alloys.

McMeeking's finite-strain, flow-theory, finite-element-modelling (FEM) results for a smoothly

blunting crack tip are used in this study [143].

results for a t_ys/E ratio of 0.003:

e = C1

The following function is fit to McMeeking's

[7]

The variable, x, is radial distance from the crack tip, 5 is Mode I crack-tip-opening displacement,

and C1 and C2 are curve-fitting constants. The function is fit to FEM results reported for

work-hardening exponents (N from _ tx eN) of 0, 0.1, and 0.2. The FEM solution for an angular

orientation of 45 ° from the crack plane is used since eP is maximum in this plane for all x [143].
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Critical Distance:

A critical distance (1") over which MNG-damage occurs is an essential model element since

the crack-tip strain singularity precludes defining the failure criterion at the point of maximum

strain [120,121,149]. An accepted definition of 1" for initial crack extension by MNG is some

multiple of the nearest-neighbor interparticle spacing [85,103,117]. It is not correct to equate 1"

with the average spacing of void-nucleating particles, because every particle does not participate in

void link-up during crack extension and coalescence may depend on particle properties. It is

presently not possible to determine 1" a priori by metallographic or fractographic measurements,

thus this parameter is often used as a curve-fitting constant to match experimental toughness data

[19,24,61,117,144]. If the MNG mechanisms are constant as temperature varies, then 1" may be

invariant, enabling model predictions of temperature-dependent toughness trends. This

assumption must, however, be critically examined.

Model Formulation

The strain-controlled fracture-toughness model is based on the assumption that the

plane-strain initiation toughness corresponds to that applied stress-intensity (K) level required for

the crack-tip plastic strain to exceed the pertinent fracture resistance over a finite distance. A

graphical illustration of this model is shown in Figure 62, where ep,efp(¢m/Crn), and arn/Cfl are

plotted as a function of distance ahead of the crack tip, x. The eP and _m/t_n crack-tip

distributions, both derived for N equal to 0, are from the FEM and slip-line continuum analyses of

McMeeking [143] and Rice and Johnson [163], respectively. The EfP(Gm/Cfl ) locus is plotted

given et9 vs. Gm/t_ (measured or calculated) for the alloy coupled with the continuum relationship

between _m/Cn and x. Represented schematically below the abscissa of Figure 62 are the crack

tip, blunted to an opening displacement of _i, the critical distance, 1", and void-nucleating particles.

As 8 increases with increasing remote loading, the eP field shifts as indicated by the solid arrow in

Figure 62. The ¢rm/t_fl field shifts in a similar manner as _ increases, but is also affected by yield

strength and work hardening levels [85,143]. The 5 increases until the eP and efP(Grn/Gfl) curves

intersect and eP exceeds e_(Gm/_ta ) at x < 1". This applied _icorresponds to the fracture initiation

toughness, _iIC, and defines the associated critical value of e _ (E f*).
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A predictiveequationis derivedfromEq.7, giventhatEP= Ef andx = 1"for 8= 8 IC:

<_,c=l* / _ ) [81

IC is the product of intrinsic ductility and the critical size scale for microvoid processes, similar to

an expression derived based on the extent of stable void growth [103]. Equation 8 is expressed in

terms of K through the following relationships between J, K and 8 [132,143,145]:

J

_5=d. or----_- [91

K2(1-v ')
j= [10]

E

The dimensionless constant, d n, is a function of N, stress state, Gys/E, and the definition of 5. The

quantity, v, is Poisson's ratio. For plane-strain constraint, K = Kjici corresponding to 8 = 8 Ic:

GysEl* Pq

K,,c+= [1ll

Values ofd n are related linearly to N between 0.0 and 0.2 (Table 11; d n = 0.58 - 1.4N),

and are similar to those given by analytical solutions [143,145]. The parameters, C1 and C2, are

obtained for any N by interpolating linearly between curve fits (Eq. 7) of FEM results for N = 0,

0.1, and 0.2 (Table 11). The remaining alloy deformation properties can be measured. Each of

these parameters (C 1, C2, dn), as well as Gys, E and Ef in Eq. 11, are temperature-dependent.

Procedures

Alloy Systems

Extensive data on microstructure, as well as temperature-dependent deformation properties,

stress state-governed fracture strains and fracture-initiation toughnesses were obtained for nine M

alloys. The nine alloys belong to four systems: 1) ingot metallurgy (I/M) [19,39,119], 2) spray

formed (SF), 3) powder-metallurgy (P/M), SiC-particulate-reinforced metal-matrix composite
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(MMC) [61-63], and 4) P/M, submicron-grain-size (SM/GS) [24,144]. Alloy designation,

product form, and nominal composition are listed in Table 12. The I/M alloys, MMC matrix, and

SF alloy are precipitation-hardened, and the tempers are indicated. AA2134 was characterized in

both the underaged (UA) and overaged (OA) conditions [119]. The composition of N203 is

similar to AA2519+Mg+Ag, differing mainly in the Mn and Zr contents. The SM/GS alloys were

processed by two different P/M techniques, cryogenic milling (CM A1) or rapid solidification by

melt spinning (AA8009), followed by powder compaction, hot extrusion, and rolling [24,144].

Thicknesses of sheet, plate, and extrusion range from 3.2 mm to 25.4 mm. Processing and

microstructural details for each alloy are reported elsewhere [ 16,19,24,39,62,144,168].

Fracture Toughness

Longitudinal-transverse-oriented (LT) compact-tension (CT) specimens were precracked

by fatigue to crack length-to-width ratios (a/W) between 0.5 and 0.6. The CT thickness was 3.2

mm for AA2519+Mg+Ag and N203, 3.9 mm for AA2095 and AA2195, 6.3 mm for CM A1 and

AA2009/SiC/20p, and 7.6 mm for AA2618 and AA8009. The 6.3 mm- and 7.6 mm-thick

specimens were sidegrooved by 20% of the gross thickness. Fracture-toughness temperatures

ranged from -185oC to 325oC, depending on the alloy system. Specimens were tested at a

constant actuator displacement rate of between 0.26 _tm/s and 2.5 _tm/s, and the duration of each

experiment ranged from 15 minutes to 3 hours.

The J vs. Aa behavior for AA2618, AA2519+Mg+Ag, N203, CM A1, AA8009, and

AA2009/SiC/20p was characterized using the ASTM Standard Test Method for Determining J-R

Curves (E 1152) and the DCPD technique without partial unloading [12,25,39,131]. Initial crack

extension was associated with the first deviation from the baseline trend of the DCPD vs. load-line

displacement data. Values of Kjici were calculated at this point from the applied J using Eq. 10.

J- dominance and plane strain prevailed for each alloy at initial crack extension according to the

criteria of ASTM E 1152 [132]. Details of these experiments are reported elsewhere

[ 19,24,39,62,144].

The J vs. Aa curves for AA2095 andAA2195 were measured using ASTM E 1152 and

unloading-compliance-based crack-length measurements. The 0.2 ram-offset-blunting-line

construction from the ASTM Standard Test Method for Jxc, A Measure of Fracture Toughness

(E813) defined the applied J associated with initial crack extension. Significant crack extension

accompanies the blunting-line definition of fracture-initiation toughness (KjI¢), leading to an

overestimate of Kjici compared to values from the DCPD method [62]. The provisional fracture-
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initiation toughness (KQ) from the ASTM StandardTest Method for Plane-StrainFracture

Toughnessof Metallic Materials(E 399)wasreportedfor AA2134[119].

Deformation Properties

Based on uniaxial-tensile tests, the 0.2%-offset yield strength, t_ys, elastic modulus, E,

work- hardening exponent, N, and percent reduction of area, %RA, were reported for each alloy

as a function of temperature [19,24,39,41,61,119,144,169]. Recent results for N203 are listed in

Table 13. Table 14 summarizes values of t_ys, E, N, and %RA corresponding to the lowest and

highest test temperatures for each alloy. Values of _ys, E, and N decrease monotonically for each

alloy as temperature increases, with the rate of decline dependent on the specific alloy. Values of

%RA show two temperature dependencies: increasing %RA as temperature increases for the I/M,

SF and MMC systems [19,41,61,169]; and decreasing %RA as temperature increases for SM/GS

alloys [24,49,144].

Void-Nucleating Particle Spacings

The size and spacing of primary void-nucleating particles were evaluated, as these influence

ductility and fracture toughness strongly, and are correlated with I* [17,103,163]. Measured

volume- fraction (fv) and average radius (r) data for void-nucleating particles in AA2618, AA2134,

and AA2009/SiC/20p were taken from the original studies [39,62,119]. For AA2095, AA2195,

AA2519, and N203, measurements of r and fv were averaged over longitudinal, transverse, and

through- thickness metallographic sections. With the exception of AA2195, particles smaller than

2 pm in diameter were assumed not to participate in primary void nucleation and were ignored. In

AA2195, constituent particles were small, and the lower-bound diameter was 0.5 l.tm.

Three measures of interparticle spacing were obtained for each alloy. The mean free path

(k), which is independent of particle shape and distribution, is equal to (4/3)r(1-fv)/f v [130]. The

center-to-center nearest-neighbor spacings of a random distribution of spherical particles on a plane

(A2) and in a volume (A3) are given by [130]:

A2= r [121

m _ T

As= 1.18 r [13]
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Theareafractionmeasuredby imageanalysisis assumedto equalfv- For AA2134, the average

constituent-particleradiusfor thefour differentMn contentswascalculatedfrom publishedvalues

of fv and _,[ 119]. The resultsof theparticle-spacinganalysisaresummarizedin Table 15. The

typesandcompositionsof constituentparticlesarelistedfor eachalloy, anddiscussedelsewhere
[19,39,62,119,168].

Stress State-Governed Intrinsic Fracture Resistance

In order to determine el* for input into the strain-controlled model (Figure 62), the effective

plastic failure strain, efP, must be measured or calculated for a wide range of am/a n. Failure in this

context is defined as the measured strain for a critical level of void damage [120,142]. The

efP(6m/Cn) loci considered here were constructed by testing notched-tensile specimens for selected

alloy systems and deformation temperatures.

Values of efP are calculated from the following expression [ 120,134,135,170]:

_f= 21n = -ln 1 100 [14]

The initial and final diameters at the minimum cross section, d o and df, respectively, are measured

for each smooth- or notched-round-tensile specimen [19,24,61,120,121]. In this study, the

easily-measured %RA at fracture was used in Eq. 14, instead of the diametral strain at the critical

damage event, resulting in an overestimated _. Experimental and computational studies suggest

that this error is small because reduction of the minimum cross-sectional area is limited after the

critical damage event [120,142]. The stress state, _m/an, is governed by the ratio of the initial

notch-root diameter, do, to the profile radius of the notch (R) [120,121,135,170]:

Figure 63 shows a failure locus for AA2519+Mg+Ag measured at 25oC, compared to a

model prediction of the locus based on a void-growth law [19,125]. The ratio of uniaxial-tensile

E_ (Cm/_ n - 0.3) to _ is defined as the constraint ratio (r), and is determined rigorously by the

construction shown in Figure 62. The value of r for AA2519+Mg+Ag at 25oC is 6.5 (Figures 62
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and 63) [19]. The ratio, r, is used to reduce uniaxial-tensile fracture strains to high-constraint

values of _fP, representative of the crack-tip process zone.

The dependence of efP on 6miCa varies significantly for different aluminum alloys, as

illustrated in Figure 64 for AA2009/SiC/20p as well as UA and OA 2134 (0.6% Mn) [63,119].

Values of efP for OA 2134 are more sensitive to 6miCa (r = 8, from the construction in Figure 62)

compared to those for UA 2134 (r = 3). This difference may relate to localized slip in the UA

temper which promotes strain-localized void nucleation and/or void coalescence at low GmlG fl

[119]. Values of EfP for AA2009/SiC/20p are insensitive to global 6m/6n up to 175°C (i.e., r = 1)

because local constraint on matrix plastic flow dominates efP [63]. These systems illustrate that r

can vary from 1 to as high as 8, depending on alloy microstructure and the mechanisms of void

nucleation through coalescence.

Failure loci do not exist for the widely varied temperatures of interest; it is necessary to

employ simplifying assumptions to facilitate modeling of KjICi. In most cases, rr.fPis measured

from uniaxial-tensile specimens (Gin/6 fl = 0.3) as a function of temperature and divided by r to

obtain Ef. For alloys where a failure locus was measured for only one temperature, r was

determined from the construction in Figure 62 and was assumed to be temperature-invariant.

Temperature-independent r was observed for 2519+Mg+Ag and AA2009/SiC/20p up to a

temperature of 175°C, as shown in Figures 65 and 66 [19,63]. The value of r for AA8009 was

measured as seven from the EfP(6m/6 n) locus at 25 °C [24]. For the remaining systems, r was

estimated as seven 17

Values of ef* are plotted in Figures 67 through 69 for the UM and SM/GS AI alloys over

the temperature ranges given in Table 14, and the appropriate r values are indicated. Fracture

strains for AA2519+Mg+Ag and N203 rise sharply as temperature increases, and are significantly

higher than the values for AA2618 which increase only modestly with increasing temperature

(Figure 67). Values of El* increase monotonically from cryogenic to elevated temperatures for

17 A constraint ratio of 7 is a reasonable choice, based on void-growth laws [103,125] and measured failure loci for

AI alloys and steels [19,24,63,117,120].
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AA2195, but exhibit a possibleminimum for AA2095 (Figure 68). Fracturestrainsdecrease

significantly from 25oC to 175oCfor CM A1 and AA8009 (Figure 69), consistent with

observationsfor otherSM/GSA1alloys[70,171]. Valuesof ef for AA2009/SiC/20p are inferred

from Figure 66 Up to 175°C, r equals 1 and thus ef* equals e_, while for temperatures above

200°C r is greater than 1. Values of r above 175oC cannot be determined using the construction in

Figure 62 since only one notched- tensile constraint level (_rn/_fl = 1.0) was tested, and ef* is

assumed to equal notched-specimen efP. The mechanisms controlling the temperature

dependencies of gf for the various A1 alloys are considered elsewhere [19,24,61,144].

Results

With the parameters; _ys, E, ef, dn, C1, and C2; determined as a function of temperature,

Kjici is predicted through Eq. 11. Uniaxial-tensile properties are the sole inputs for AA2095,

AA2195, AA2618, N203, and CM AI [39,41,144,169]. Notched-specimen experiments are used

to augment these inputs for AA2519+Mg+Ag, AA2OO91SiCi2Op-T6, AA8009, and AA2134

[19,24,61,119]. A single adjustable parameter, 1", is calculated by equating measured and

predicted Kjici at a single temperature. This constant is assumed to be temperature-independent.

Precipitation-Hardened Alloys

AA2519-T87 (+Mg+Ag):

The temperature dependence of Kjici for AA2519+Mg+Ag is predicted successfully by Eq.

11, as shown in Figure 70 and with el* based on both uniaxial- and notched-tensile %RA (Figure

67) [19]. Variability in the measured tensile properties (e.g., %RA) leads to variability in predicted

Kjici. A linear-regression fit to the Kjici measurements agrees reasonably with fits to predictions

from both uniaxial- and notched-specimen data, as shown in Table 16. A 95%-confidence-interval

estimate of the slope (13) using the student-t-distribution indicates that there is no significant

difference between 13for the measurements (-0.043 < 13< 0.018), uniaxial-specimen predictions

(-0.026 < B < 0.027), and notched-specimen predictions (-0.028 < B < 0.026).

Both measured and predicted Kjici of AA2519+Mg+Ag are essentially

temperature-invariant from 25oC to 175°C (13=13). Equal values of 1" (20.5 _m) were calculated

from average measured Kjici at 25°C, for both the uniaxial- and notched-tensile cases, and were
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usedto predictKjICi from 75°C to 175°C. The calculated value of 1" correlates with the planar

nearest-neighbor spacing of undissolved A12Cu and Fe-bearing constituent particles for AA2519

(A 2 = 18.8 _tm), and is nearly two times greater than their nearest-neighbor spacing in a volume

(A 3 = 11.9 l.tm).

AA2618-T851 and N203-T6:

The strain-controlled fracture-toughness model (Eq. 11) predicts effectively the temperature

dependence of Kjici for AA2618 and N203. Figure 71 shows modeling results based only on

uniaxial-tensile tests of AA2618 and N203. Linear-regression fits to measurements and

predictions are in excellent agreement, and show that KjICi increases as temperature increases for

N203 (Figures 71 and Table 16). For AA2618, predicted Kjici is nearly constant from 25°C to

175°C (13 = -0.012), compared to a temperature-invariant measured Kjici (13 = -0.0004). Both

predicted and measured Kjici increase mildly between 175°C and 225°C. From measured Kjici at

25°C, 1" values of 14.8 la.m and 20.3 gm were calculated for AA2618 and N203, respectively.

These I* values are from 1 to 2 times the nearest-neighbor spacing (1" = 1.5A 2 = 1.8A3), and 1 to 3

times the nearest-neighbor spacing (1" = 1.7A 2 = 2.4A3), for AA2618 and N203, respectively.

AA2095-T8 and AA2195-T8:

Considering a wider temperature range including cryogenic levels, modeling using

uniaxial-tensile properties predicts that Kjici is constant for AA2095, and increases monotonically

for AA2195, as temperature increases (Figure 72 and Table 16). For AA2095, Table 16 shows

that the temperature dependencies of predicted (13= 0.003) and measured (13= 0.005) Kjici agree.

Predicted and measured KjICi for AA2195 agree only for selected temperatures (i.e., 135°C and

-140°C; Figure 72). Values of Kjici are predicted to increase as temperature increases (B =

0.023), which does not agree with a linear-regression fit to measured Kjici data (13 = -0.006).

However, measured Kjici for AA2195 shows broad scatter, resulting in uncertainty in the

measured temperature dependence. The variability of measured Kj1ci could be associated with the

offset definition of initiation toughness coupled with the difficulty in measuring precisely the

steeply rising J vs. Aa curve for small crack- growth increments [131]. Calculated values of 1" are

29.6 I.tm for AA2195 (from measured Kjici at 25°C), and 21.9 _tm for AA2095 (from measured
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Knci at-75°C). A value of I* is not calculated at 25°C for AA2095 because of the erratically low

t

Ef.

AA 2 OO9/S iC/2 Op- T6 :

Prediction of Kjici is perhaps most challenging for the complex microstructure of the

MMC, which contains a high volume fraction of void-nucleating SiC particles [61]. Values of of P

(Figure 66) are insensitive to global am/_ fl (i.e., r = 1) only below 175°C, but o tP is assumed to

equal of at all temperatures due to a lack of %RA data for high constraint levels (i.e., _m/Cfl

1.5). Due to the inherent variability in measured Knc i from SiC-particle clustering, upper-bound

and lower-bound 1" values were calculated at 25°C from Eq. 11, and used for toughness

predictions from 50°C to 316°C. Upper-bound and lower-bound predictions of Kjici vs.

temperature are plotted in Fig. 73 [61]. Two symbols are used for measured Kjici , error bars

represent the maximum variability among replicate results, and solid squares show single

measurements. While upper-bound predictions exceed measured Knc i at all temperatures, the

lower-bound predictions agree with the measured values. The measured temperature dependence

is predicted for both 1" values. Upper- and lower- bound 1" values (6.4 ].tm and 11.3 _tm) are

reasonable, corresponding to between 3 and 4 times the nearest-neighbor SiC-particle spacing.

The unique issues associated with modeling Knc i of an MMC are considered elsewhere [61].

Submicron Grain Size Alloys:

Submicron-grain-size alloys suffer losses in ay s, E, N, and of* as temperature increases, as

demonstrated by uniaxial-tensile results (Table 14 and Figure 69) [24,144]. Because each of these

material properties decreases as temperature increases, Kjici is predicted to decrease. Predicted

temperature dependencies correlate with those measured, as established in Figure 74 [24,144].

The temperature dependence of predicted Kjici for CM A1 (B = -0.037 for 25<T<175°C and B =

-0.017 for 175<T<325°C) agrees reasonably with measured trends (B = -0.045 for 25<T<175oC

and B = - 0.015 for 175<T<325°C), as presented in Table 16. The model also predicts the

temperature dependence of measured Kjici for AAS009 (Figure 74 and Table 16), but the

magnitude of Kjici is overpredicted at 175 °C and above. At 25°C, 1" is calculated as 8.0 l.tm for

CM A1 and 16.8 _tm for AA8009. If a second 1" (7.2 _tm) is calculated for AA8009 from
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measured Kjici at 175°C, then predicted and measured values of Kjlci agree for temperatures from

200°C to 316°C [24]. A change in deformation mode was postulated, and a change in dimple

morphology (from spherical and well-developed at 25"C to shallow above 175"C) was observed,

which may correspond to a change in 1". A similar but more subtle change in dimple morphology

from spherical at 25°C to faceted at 175oC was observed in CM AI [144]. If a second I* (6.6 _tm)

is calculated for CM A1 at 175°C, predicted Knc i agrees with measured values. A varying 1' with

a change in the dominant stage of MNG is possible.

Microstructural Influences on Knc i

In addition to temperature effects, the strain-controlled model can provide understanding of

microstructure and yield-strength effects on Kjici. Literature results on UA and OA AA2134-type

alloys provide data for the toughness dependence on Mn content and aging condition [119]

Measured values of KQ are plotted for both aging conditions as a function of Mn content in Figure

75; such values exceed Kit because the thickness criterion from ASTM E 399 was not satisfied.

Values of KQ increase mildly as Mn is added in amounts up to 0.6 wt%, then decrease sharply as

the Mn content is increased to 1.0% [119]. The initial rise in KQ was attributed to the formation of

submicron Mn-rich dispersoids that homogenized slip, while KQ declined as excess Mn formed

large constituents [119]. This trend was observed in both the UA and OA conditions, with a lower

measured KQ in the overaged condition.

Predicted KQ from measured uniaxial- and notched-tensile properties for the UA and OA

tempers is plotted in Figure 75. The model (Eq. 11) predicts the maximum and subsequent decline

in KQ as Mn content is increased, as well as the lower toughness in the OA temper. Agreement

between predicted and measured values is adequate for the OA temper and exceptional for UA

AA2134. Values of I* were not calculated by equating measured and predicted KQ at one Mn

content, rather, such values were assumed to be a constant multiple of A 3, and the constant was

adjusted until the best agreement was obtained at 1' = 4A 3. The spacing, A3, is identical for the UA

and OA tempers because constituent size and distribution are not affected by aging. The 1"

corresponding to each Mn content is listed on the top abscissa in Figure 75. At the three lower Mn

contents, voids nucleated at undissolved A12CuMg particles. For 1.0% Mn, the volume fraction of

Mn containing constituents increased, voids nucleated from these particles, and A3 and 1" decreased

[119].
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Lower toughness is measuredand predicted for the OA temper, despite higher

uniaxial-tensile et.p comparedto the UA temper,becauseEt.Pis less sensitiveto stress-state

triaxiality in theUA condition(Figure64). Thiscomplexityillustratesthedangerin predictingKQ

solely from uniaxial-tensiledata. Microstructuralchangesmayalter theshapeof theefD(Om/Ofl)

locusandr maynotequalseven.

Discussion

Accuracy of Strain-Controlled Model

Comparison between predicted and measured KjICi shows that the plastic-strain-based

model accurately predicts the temperature dependencies of initiation toughness for AI alloys. Once

1" was determined for each of the nine alloys systems modeled, KjICi was predicted for 57

conditions of changing temperature or microstructure. The 57 conditions do not include the single

temperature at which the measured and predicted Kjici were equated. Of the 57 predictions, 49 are

directly comparable to measured Kjici from identical test temperatures and microstructures.

The average difference between predicted and measured Kjici for the 49 conditions is 16%.

Notably, 17 predictions are within 5% of the measured values, 10 predictions are within 10%, and

11 predictions range between 10% and 20% difference. The 11 predictions which differ from the

measurements by more than 20% are among four alloys: AA8009, AA2009/SiC/20p, CM A1,

AA2195. The average difference between predicted and measured Kjici is 28% for these four

alloys with a total of 22 predictions. The average difference between predicted and measured Kjici

is only 7% for the other five systems (AA2095, AA2618, AA2519+Mg+Ag, AA2134, and N203).

The model is least accurate for the two alloys with the most complex microvoid fracture

mechanisms; viz., AA8009 and AA2009/SiC/20p. AA8009 shows a change in dimple

morphology (attributed to a change in deformation mode) as temperature increases from 25°C to

175°C [24,39]. If two values of 1" are employed, corresponding to these two microvoid fracture

modes, then model predictions of Kjici are accurate. The physical interpretation of 1" in this case,

however, is complex and uncertain [39]. AA2009/SiC/20p contains a high volume fraction of

inhomogenously distributed SiC particles that may compromise the continuum nature of the

crack-tip strain field and thus affect model accuracy, as detailed elsewhere [61]. Model accuracy is

better for CM A1 and AA2195, with an average difference between predicted and measured Kjici

of 16%. In AA2195 the variability in measured Knc i accounts for the difference. The difference in
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CM A1is attributed speculatively to a subtle change in dimple morphology as temperature increases

from 25"C to 175" C, analogous to the AA8009 case [144].

These experimental verifications provide a strong confirmation of the plastic-strain based

model of crack-tip initiation toughness.

Temperature Dependence of Knci

The strain-controlled model identifies the interplay between crack-tip eP, ef*, and 1" that

governs initiation fracture toughness. Microvoid-mpture KjIci does not scale solely with either the

deformation properties ((rys, E, N) that govern crack-tip stress and strain or the intrinsic fracture

resistance (ductility). Rather, both elements must be combined with a fracture initiation criteria to

predict the "composite" property of Kjici. This analysis provides a basis for a more fundamental

understanding of temperature-dependent toughness.

The relative sensitivities of crack tip eP and efP(Crm/Cfl) to temperature dictate the

temperature dependence of Kjici, when 1" is assumed to be temperature-invariant. The parameters;

_ys, E, d n, C1, and C2; describe crack-tip strain for a given K (Eqs. 7, 9, and 10). Values of Cy s

and E decline monotonically with increasing temperature for each A1 alloy. In addition dn, C1, and

C2 depend on N (Table 11), and hence indirectly on temperature. Values of d n increase

monotonically with increasing temperature due to decreasing work hardening (decreasing N) for all

alloys. Values of C 1 decrease, while C2 increases, with rising temperature.

The interplay between efP(Crm/_fl ) and crack-tip eP is illustrated by the two terms in Eq. 11

which represent the temperature dependencies of these elements, viz., {l*[£f*/C1] 1/C2} and

_ysE/[dn(1- v2)], respectively. The former term is _c from Eq. 8 and the latter term represents the

conversion of _IC to Kjici (denoted _5-K) from Eqs. 9 and 10. The temperature dependence of the

former term is controlled by ef, since 1" may be temperature-invariant and temperature effects on

C1 and C2 offset 18. In the latter term and as temperature increases, Oy s and E decrease, and d n

increases; _-K and Kjici decline. Physically, crack tip strain is increased with increasing

18 Calculations show that predicted KjIci differ by less than 3% regardless of the C1-C2 pair selected within the

limits given in Table 11.
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temperaturefor afixedx andK19.Theapplied K to initiate fracture is decreased.

Temperature insensitive KjICi arises when 81c and 8-K counterbalance. For

AA2519+Mg+Ag, uniaxial-tensile ef increases by 63%, from 0.08 at 25°C to 0.13 at 175"C. The

absolute values of C1 and C2 in Eq. 8 lead to a moderated increase in _c of 50%, from 13.9 l.tm at

25°C to 20.9 ILtm at 175"C. Over the same temperature range, ay s and E decrease by 20% and

12%, respectively (Table 14), while d n increases by 8%. The parameter 8-K decreases by 35%,

from 7.7x107 MPa 2 at 25°C to 5.1x107 MPa 2 at 175°C. Values of KjICi, expressed as (8ic x 8-

K) 1/2, are nearly equal at 250C and 175"C; the ratio of predicted Kjici from uniaxial-tensile data at

25°C to that at 175*C is 1.002. The increased fracture resistance at 175*C is effectively offset by

the enhanced crack-tip strain field at a given K. A similar competition between the temperature

dependencies of 8xc and _-K results in approximately temperature insensitive Kjici for AA2618

and AA2095.

Values of KjICi decrease above 200°C for AA2009/SiC/20p, despite the dramatically

increasing intrinsic fracture resistance (Figure 66), which demonstrates the strong influence of

temperature-dependent crack-tip e r' on Kjici. From 25°C to 316°C, Ef* changes from 0.03 to 0.26

(a 910% increase), corresponding to increased _Sic from 1.7 lxm to 11.9 l.tm (for the lower-bound

I* of 6.5 I.tm). The term _-K decreases by an order of magnitude, from 1.3x108 MPa 2 at 25°C to

1.1xl07 MPa 2 at 316°C. The KjIci prediction at 316°C (11.6 MPa_/m) is 21% lower than the

prediction at 25*C (14.6 MPa_/m), despite the 7-fold increase in SIC, because enhanced crack-tip P

19 Crack-tip 13Pis derived in terms of K by substituting Eqs. 9 and 10 into Eq. 7 to yield:

which demonstrates the effects of temperature-dependent Oys, E, and dn.
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results in a lower applied K necessary for EP to exceed Ef over 1".2o

Interplay between _Sic and _-K also governs the elevated-temperature degradation of Kjici

for SM/GS A1 alloys. Because of uniquely decreasing ef as temperature increases (counter to

large- grained precipitation-hardened A1 alloys), _IC and _i-K cooperatively degrade Kj]ci. For

AAS009, predicted _Sic declines from 13.9 lxm at ambient temperature to 10.6 lxm at 316"C, while

_-K decreases from 7.7x107 MPa 2 to 3.5x107 MPa 2. The combined effects of the degradation in

ef at elevated-temperature and increased crack tip strains at a given K, cause predicted KjIci to

decline, from 32.7 MPa_/m at 25°C to 19.2 MPa_/m at 316°C. When temperature is increased

from 25°C to 325°C in CM A1, predicted Sic decreases from 4.9 I.tm to 1.7 I.tm, &-K declines from

3.8x107 MPa 2 to 1.7x107 MPa 2, and hence Kjici is predicted to decline from 13.6 MPa_m to 5.5

MPa_/m.

The temperature-dependent interplay between _5ic and 8-K is crucial for successfully

predicting and understanding temperature-dependent Kjici. Micromechanical models that consider

only the temperature-dependent plastic-strain field [108,163] predict declining fracture toughness

with increasing temperature for precipitation-hardened AA2519+Mg+Ag, AA2618, AA2095,

AA2195, and N203, counter to the mildly rising, mildly declining, or temperature-insensitive Kjlci

measured for these alloys. For the SM/GS alloys, AAS009 and CM A1, only a mild decline in

KjIci would be predicted. For AA2009/SiC/20p, the temperature dependence of Kjici is

reasonably predicted solely from declining _ys, E, and N, due to the dominance of crack-tip ep in

controlling initiation toughness [61], but this agreement is fortuitous.

2o The functionality of the crack tip strain field (Eq. 7), described by the absolute values of C1 and C2, diminishes

the impact of temperature dependent El* on Kjlci. For AA2009/SiC/20p, £f* increased by 910% from 25"C to

316"C, but predicted _C (Eq. 8) increased by only 600% If El* and _C were linearly related as has been

proposed [85,103,117], then El* would have a stronger effect on KjiCi. Equation 11, rederived based on this

linear relationship, would not predict the decrease in KjIci above 200"C for AA2009/SiC/20p (Kjici at 316"C

would be predicted as 14. l MPa_m). The relationship between El* and _Ic is important for alloys where El*

is strongly temperature-dependent.

397



The strain-controlled model is an effective tool for screening alloys for further fracture

toughness characterization. For example, AA2195 is a candidate alloy for cryogenic tank

applications. The predicted decline in Kjici from 38.1 MPa_/m at ambient temperature to 30.2

MPa_/m at -185"C indicates that initiation toughness characterization at cryogenic temperatures is

warranted. For this case, the deformation properties increase as temperature decreases to

-185°C, and 8-K increases from 9.8x107 MPa 2 to 1.3x108 MPa 2. However, predicted Sic

decreases sharply from 14.7 lam to 7.3 _tm, resulting in the predicted decrease in Knc. Modelling

traces the predicted decrease in cryogenic temperature KjI C of AA2195 to a decline in ef. Because

the microstructure does not change from ambient to cryogenic temperatures, the likely cause of the

rapid degradation in ef is either an insufficient increase in work hardening, a decrease in strain-rate

sensitivity, or increased yield strength as temperature decreases. The mechanism for this effect

must be established.

Microstructural Influences on K/I.Ca

The effect of microstructure on initiation toughness is understood from the strain-controlled

model, via the interplay between the deformation-property-dependent crack-tip strain-field term, 8-

K, and the intrinsic crack initiation resistance term, Sic. _c does not mirror changes in ef* because

1" is not constant. For AA2134, 8-K changes mildly with the addition of manganese, in either the

underaged (5.9x107 MPa 2 < _5-K < 6.8x107 MPa 2) or overaged (6.9x107 MPa 2 < 8-K < 7.3x107

MPa 2) tempers. Effects of Mn on KQ thus reflect trends in Sic. For Mn contents of 0.0%, 0.3%,

0.6%, and 1.0%, _c equalled 43.3, 48.0, 44.3, and 20.3 I.tm for the underaged (UA) temper and

23.5, 26.9, 20.7, and 11.9 _tm for the overaged (OA) temper.

The success of the strain-controlled fracture toughness model in predicting KQ for UA and

OA tempers of AA2134 with varying Mn (Figure 75) illustrates model flexibility. The peak in KQ

between 0.3% and 0.6% Mn was predicted without explicit modelling of slip localization and its

effect on each stage of MNG [119]. The failure locus for each temper (Figure 64) and its role in

fracture initiation ahead of a crack (with a 6m/6 fl gradient) offers insight into fracture

micromechanics. Fracture of OA AA2134 is sensitive to stress-state triaxiality, while fracture of

UA AA2134 (prone to slip localization) is less sensitive to triaxiality [119].
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Uncertainties in.E_

Strain-based micromechanical modeling of initiation fracture toughness yields reasonable

values of 1", as well as accurate temperature-dependencies of Kjici. Absolute values of Kjici are

not predicted, however, due to uncertainties in el* and 1". Three uncertainties in ef are discussed.

Damage Correlation:

Initiation-toughness models predict the K level for initial crack-tip process-zone damage.

Standard measures of initiation toughness may not be modeled accurately if the measurement

reflects stable crack extension [61,62,131]. Rather, model predictions are best compared to a

high-resolution indication of the K level for initial crack extension. Initiation toughness determined

from DCPD measurements, KjICi, is well suited for this purpose. In contrast the temperature

dependencies of KQ and KI¢ (from ASTM E 399) or KjI c (from ASTM E 813) are predicted from

Eq. 11 (Figures 72 and 75), but 1" values may be overestimated. Fracture initiation defined by the

95% secant line (KQ, KIC ) or 0.2 mm-offset-blunting line (KjIc) leads to increased measured K at

fracture initiation due to stable crack growth along a finite-sloped R-curve. For example, an

overestimated initiation toughness in AA2134 may have resulted in the higher calculated 1" value of

4A 3, compared to 1.7A 3 for AA2519+Mg+Ag and 1.8A 3 for AA2618. The extent of the error in 1"

increases with increasing plane strain-tearing resistance and with decreasing specimen thickness

(due to an increased amount of stable plane stress crack growth with rising K).

Ultimately, the comparison between measured and modeled initiation toughness is an

exercise in equating damage for different stress and strain fields, particularly those for a crack tip

vs. a blunt notch or uniaxial-tensile specimen. The most relevant experiments are those that detect

equivalent levels of microvoid damage at ef for a tensile bar and at Kjici for a precracked

specimen. A technique was developed to detect the formation of a central flaw within uniaxial- and

notched-tensile specimens deformed at a constant strain-gage extensometer rate [120,125], but this

procedure was not correlated with the microvoid damage levels in the crack-tip process-zone at

detected fracture initiation. In principle direct current potential difference monitoring can detect

equivalent levels of microvoid damage in a tensile specimen and ahead of a crack tip, but this has

not been accomplished. Rather, ef is approximated by a more global measurement such as %RA.
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Approximation of eft:

The use of Bridgman's [ 134] analysis to calculate £fP (E,q. 15) may overestimate the actual

strain required to damage and fracture a notched tensile specimen by up to a factor of 2

[25,63,170]. Finite element modelling demonstrated that strains on the surface of a notched

specimen and in the center are overestimated and underestimated, respectively, by Bridgman's

equations [ 170]. The degree of error is insensitive to work hardening [25], but increases for larger

strains and more severe notch acuity [170]. Since this error is independent of work hardening and,

hence, temperature, it is accounted for by calculating 1* at 25"C and does not affect significantly the

predicted absolute values of KjIci at elevated temperatures 21. If the efP values in Figures 66

through 69 are corrected based on FEM results [ 170]; then el* decreases significantly, calculated 1"

is larger, and process zone damage at Kjici is predicted over more average particle spacings.

Stress-State Triaxiality Sensitivity:

Measurements for A1 alloys [19,63,119,120,172] demonstrate differences in the

stress-state-triaxiality dependence of efP. A smooth-to-notched constraint ratio, rsn, is defined as

efP(0.3)/efP(1.0), since some of these alloys were characterized over a limited range of Om/O ft. The

ratio, rsn, equals 0.9 for global stress-state-insensitive AA2009/SiC/20p [63] and 3.9 for highly

sensitive AA2519+Mg+Ag [19]. A range of sensitivities exist between these limits; with rsn values

of 1.4, 1.7, 1.9, 2.0, 2.2, and 3.0 for AA7075 [120], UA AA2134 [119], AA2024 [63], AA2090

[172], AA2618 [63], and OA AA2134 [119] respectively. Values of rsn do not necessarily scale

with the constraint ratio relevant to micromechanical modelling (r) because the sensitivity of efP to

6m/Ofl can change at higher constraint levels leading to crossovers between the failure loci. For

example, r for AA2519+Mg+Ag is 6.5 (rsn=3.9) while r for overaged 2134 equals 8.0 (rsn=3.0).

Experimental variability in failure loci, as well as mechanisms of MNG correlating to r, have not

been defined.

The value of r for a given alloy depends on the stress-state-triaxiality sensitivity of each

MNG stage, as well as the strain dissipated during each stage [173]. An exponential dependence

of ef t' on 6m/6 fl derived from void-growth modelling (Figure 63) results in a theoretical r of 5.8

21 This error in fact depends on the magnitude of applied strain, which varies with test temperature.

400



betweenOm/afi--0.33andgm/gfl=l.5 [103,125]. If void nucleationispromotedby c m[122,124],

thene fP(Cm/_fi)shouldchangesinceanadditionalstressstatedependenceis involved in fracture

evolution[173]. This effectis notsignificantin alloyswherelarge,brittle particlesnucleatevoids

at smallstrains[18,119],butmaybesignificantin alloyswheresmallerparticlesnucleatevoidsby

interfacecohesionat relatively high strains [122,124]. A high volumefraction of largebrittle

void-nucleatingparticlesprecludesglobalstress-state-triaxialitysensitivitybecauselocalconstraint

on matrixdeformationpromoteshigh levelsof local Cm/Cn (i.e.,AA2009/SiC/20p) [63]. Mean

stresscanaffectthecritical conditionfor void coalescence,limiting thestrainevolvedduringstable

void growthandalteringthestress-state-triaxialitysensitivity[121,152].
Becausetheshapeof thestress-state-dependentfailure locusvariessignificantlyfrom alloy

to alloy,rigorousfracturetoughnessmodelingmustincludeefPmeasurementsovera widerangeof

global Cm/Cn. DeterminingEl* from a singleglobal-constraintlevel; asfor AA2618, AA2095,

AA2195,N203,andCM A1; is anoversimplificationfor correlatingmicrovoiddamagein a Crm/_la

gradient. Even for alloys where a failure locus was measured at one or two temperatures

[19,24,63], there is no guarantee that r is invariant with increasing temperature.

Interpretation of Calculated l*-

The critical distance, the sole adjustable parameter in the strain-controlled model (Eq. 11),

is calculated by equating the measured and predicted Kjici at a single temperature, and hence

depends on accurate determination of this measured initiation toughness and each model input.

Measurements or estimation of _ys, E, C 1 and C2 do not affect significantly calculated 1". Values

of d n vary modestly depending on whether analytical [145] or FEM [143] solutions are employed,

affecting calculated 1" by about 20%. The strongest effect on calculated 1" is uncertainties in

measuring El; generally Ef is overestimated, causing 1" to be underestimated.

Ultimately, 1" must be determined by an independent means for absolute toughness

predictions. This distance should relate to the primary void-nucleating particle spacing for alloys

that fail by microvoid fracture, and may represent the distance required for void coalescence at

K=K;ici. Calculated 1" for each A1 alloy is given in Figures 70 through 75, while primary void-

nucleating particle spacings are given in Table 15. The mean free path, _,, from a randomly placed
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straight line on a polished metallographic section, is not relevant because damage does not evolve

in random directions. Rather, microvoiding is confined to directions dictated by heterogeneous

microstructural features and the crack tip strain field. The nearest-neighbor spacing of primary

void-nucleating particles, randomly distributed in a plane (A2) or in a volume (A3) , should relate to

1", because the nearest neighbor particles govern the direction and size scale of void coalescence.

Complex microvoid fracture mechanisms and microstructural features obscure the

relationship between 1" and A 3. For example, the majority of void damage in AA8009 likely

accumulates within planar oxide sheets, oriented parallel to the plane defined by the loading and

crack-growth directions in an LT CT specimen [24]. Void damage coalescence may occur by

transverse ligament shear parallel to the crack front. Although the planar spacing of these oxide

sheets is approximated as 12 _tm [39], the relationship of this spacing with 1" is unclear. Similarly,

clusters of A120 3 dispersoids in CM AI and SiC in the MMC are speculated to nucleate void

damage, but cluster spacing is difficult to define.

Figure 76 shows correlations between 1" and A3 for steels [174-176] (solid symbols) and

six of the AI alloys included in this work (open symbols). The distance, 1", was calculated at each

temperature where KjICi was both measured and predicted. The standard deviation of 1" is given

for AA2009/SiC/20p, AA2519+Mg+Ag, and AA2195 in Figure 7622. The error bars also include

the effect of temperature, if any, on 1". Sufficient data were available in the literature for steels to

calculate 1" from Eq. 11 and measured KIc [174-176]. For each A1 alloy except AA2195, voids

nucleated at 2 to 20 lxm diameter and widely spaced particles identified in Table 15. Voids

nucleated at smaller (0.5 to 1.0 ].tm) and more closely spaced particles in AA2195, and at large (3

_tm) and closely spaced particles in the MMC. For each steel but one, microvoid fracture was

governed by small (0.2 lxm to 0.4 _tm diameter), closely spaced sulfides or carbides. The

exception is a Fe-0.4C low-alloy steel with additions of Ni and Si (') which promoted the

formation of larger 0.7 lam diameter sulfide particles that served as more widely spaced

void-nucleation sites [ 175].

Figure 76 suggests two trends between 1" and A3 for steels and aluminum alloys: one for

alloys where microvoid fracture is controlled presumably by both widely spaced (large) particles as

22 Values of Kjlc for AA2195 at -75"C and -185°C are erratic and result in overestimated 1"values which are not
included in the calculation of the standard deviation.
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well asasecondpopulationof interdispersedsubmicronparticles23, and another for alloys where

microvoid fracture is controlled by void damage associated with a single size distribution of

relatively closely spaced particles. For the former case, 1' is nearly proportional to A 3, while for

the latter case, I* is about 5 times A3. The two trends in Figure 76 are only reasonable if it is

possible to explain the physical significance of the intercept. The linear regressions show that 1" is

not zero for the two correlations, but rather equals 11 _tm and -4 l.tm at a A 3 of zero. While a

positive intercept could be rationalized, the negative value is meaningless. These correlations

remain reasonable at about 1.8A 3 and 3.8A 3, if forced through zero. Alternately, 1" may not be a

fixed multiple of A3; the relationship may depend on microstructure and the details of MNG.

The data in Figure 76 are analyzed further based on the extent of primary void growth prior

to coalescence. Data points with a diagonal slash represent alloys where the extent of stable void

growth was quantified by the measured ratio of the final void radius (Rv) to the nucleating-particle

radius (RI). Values of R v and R I were measured from fracture-surface dimples in high constraint

regions, directly ahead of the specimen fatigue precrack [174,175]. Figure 77 displays a unique

relationship between Rv/R I and I*/A 3. The function I*/A 3 = 1.6 + 0.025(Rv/RI)2 was obtained by

least squares curve fitting, with a coefficient of determination (r 2) equal to 0.92. (A linear fit, I*/A 3

= 0.06 + 0.42(Rv/RI), was also calculated from regression, but the fit is less accurate (r 2 equals

0.78).) For no stable void growth (Rv/RI= 1), voids coalesce spontaneously upon nucleation, and

I*/A 3 might be expected to equal one. The linear and quadratic fits yield I*/A 3 values of 0.48 and

1.63, respectively, at Rv/R I equal to one. Because these values are reasonably close to one, they

provide a physical basis for the correlation.

The effect of stable void growth on 1" in Figure 76 is interpreted as follows. The data are

divided into alloys with relatively high Rv/R I ratios favored by a unimodal size distribution of

particles and low Rv/R I ratios determined by the bimodal size distribution of particles. The critical

distance for each alloy is a fixed multiple of A 3, with the multiple dependent on Rv/R I. For the

high Rv/R I case, stable void growth allows particles further from the crack tip to nucleate voids as

K increases and the plastic strain distribution spreads. Since more particles are involved in the

23 Voids nucleated from submicron particles soften the ligament between large microvoids growing from primary

particles and promote the onset of strain-localized coalescence [19].
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critical coalescence event that constitutes Kjici , 1" is a larger multiple of A 3. For the Rv/R x case

(such as in AA2519+Mg+Ag), the void-coalescence conditions are satisfied before void damage

accumulates over more than one or two particle spacings. The bimodal particle distribution favors

this behavior because secondary void damage from smaller second-phase particles promotes void

sheeting between primary voids [17,19]. The ratio, I*/A3, is relatively low due to this

strain-localized coalescence.

The correlations shown in Figures 76 and 77 may provide a means of defining I* apriori,

and hence predicting absolute values of KjICi from microstructural and fractographic observations.

Caution is dictated. More detailed microscopic studies of the evolution of MNG, as a function of

alloy microstructure and temperature, are required to understand the correlations suggested in

Figures 76 and 77. Measurements of A 3 are complicated by the three-dimensional distribution of

primary void-nucleating particles that can be nonuniform due to panicle clustering or banding from

processing. Spitzig and others employed a Dirichlet cell tessellation procedure to describe the local

geometric properties of inclusions in a steel [177,178]. While this method is encouraging, it has

not been integrated with a model of crack-tip deformation and fracture. The strong distance and

angular dependencies of crack-tip EP, coupled with a heterogeneous distribution of one or more

populations of void-nucleating particles, make this a formidable problem.

Because _f* and Rv/R [ are both measures of intrinsic alloy fracture resistance, critical strain

and critical distance are not independent. It is reasonable to speculate that I*/A 3 is a unique

_g

monotonically increasing function of ef, analogous to the trend in Figure 77. Accordingly, it may

be possible to eliminate 1" in Eq. 11 by substituting the dependence of this parameter on _:f* and A3.

If future studies confirm this relationship, then absolute predictions of temperature and

microstructure effects on Kj]ci; through measured ef, Oys, E, N, and A3; will be enabled.

F. Conclusions

1. The critical plastic strain-controlled model successfully predicts the temperature dependence of
initiation fracture toughness (KjIci) for a variety of advanced aluminum alloys that crack by

microvoid processes. Predictions are based on smooth bar tensile deformation properties, an
estimate of the reduction in smooth bar fracture strain for triaxial stress state constraint

corresponding to the crack tip, and a single adjustable parameter. Results for 50 experiments
effectively demonstrate the ability and accuracy of this modelling approach.
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2. Approximately temperature insensitive KJICi is predicted and observed for 2000 series

precipitation-hardened alloys from cryogenic to elevated temperatures, while a degradation of
Knci with increasing temperature is correctly modeled for submicron grain size alloys.

3. The temperature dependencies of KJICi are traceable to the interplay between thermally-

sensitive intrinsic fracture resistance and the crack tip strain field that is temperature dependent

through _. s, E, and N. Both components are necessary to predict temperature insensitive

mitiation toughness in precipitation hardened aluminum alloys, where the critical fracture strain

(el*) generally rises with temperature and t_ys, E, and N decline.

4. The model correctly accounts for the effect of manganese on the toughness of AA2134,

including changes in the nearest neighbor particle spacing as Mn-rich constituents form, varying

_* due to slip mode changes, and varying dependencies of ea,P on stress-state constraint.

5. Uncertainties in ef* and 1" preclude predictions of absolute values of KjICi. Accurate

determination of el* is complicated by the need to correlate damage at the initiation event, within

tensile specimens and the process zone ahead of a crack tip. The Bridgman approximation of

e_ and uncertainty in the alloy-dependent effect of stress-state constraint also hinder accurate

measurements of ef*.

6. Model calculated critical distance, 1", correlates with the nearest neighbor spacing in a volume

(A3) for several aluminum alloys and steels, and l*/A3 correlates with the extent of primary void

growth (Rv/RI). Both correlations suggest an approach to predict absolute toughness values
from tensile properties coupled with microstructural and fractographic observations.
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VIII. Tables

Table 1 - Mechanical Properties of Aluminum Alloys.

:Material. Test Elastic Oys OUTs OFL
Temperature Modulus 0.2% offset

('C) (GPa) (MPa) 0VlrPa) (MPa)

AA2024--T'3 25 68.9 390 466 428

AA2650-T6 25 75.8 405 445 425

AA2519-T87 (+Mg+Ag) 25 72.4 515 566 541

75 68.4 505 536 521

100 67.6 489 510 500

125 66.3 479 487 483

150 64.9 451 453 452

175 63.7 420 422 421
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Table 2 -Fatigue Precrack Length, Effective Modulus, and a Comparison of Calculated and

Observed Crack Extensions for Each CT Specimen Experiment; Width = 76.2 mm,
Thickness = 3.2 mm.

Sample
Identification

Test

Temperattne

Cc)

Precrack

Length

ai

(nun)

2024-#1 25 38.5

2024-#2 38.6

2024-#3 46.4

2024-#4

2650-#1

2650-#2 2

2519-#1

2519-#2

2519-#3

2519-#4

25 19-#5

25

25

75

100

125

150

1752519-#6

45.4

45.4

44.3

45.9

45.7

45.5

44.2
D

45.4

45.8

Calculated

Crack Growth

aat_D

(mm)

14.49

12.92

4.06

4.14

8.17

7.77

6.40

5.96

5.22

5.70

6.90

6.42

Measured

Crack Growth

(mm)

12.99

4.52

...

8.22

Effective

Modulus

Eeff 1

(GPa)

71.4

7.08

5.30 71.6

5.25 66.4

5.70

7.46

6.77

66.1

72.7

69.0

75.8

71.6

72.1

65.8

71.8

69.3

(1) Calculated from ai, the initial slope of the load versus load-line-displacement curve, and the compliance versus

crack length calibration relationship for a CT specimen.

(2) Sidegrooved; gross thickness = 6.0 mm; net thickness = 4.8 mm
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Table 3 -Elastic-Plastic and Equivalent Linear-Elastic Initiation and Growth Fracture

Toughnesses for 3.2 mm Thick Sheet of Ingot Metallurgy Aluminum Alloys.

Sample Test JIci 1 JIc 2 KjIC i 1 KjIC 2 KjIc/KjIci Kj3mm

ld. Temperature

('C) (kJ/m2) (kJ/m 2) (MPa'dm) (MPa_/m) (MPa_/m)

2024-#1 25 14.0 27.7 32.6 45.8 1.40 85.5

2024-#2 17.8 36.2 36.7 52.4 1.43 86.9

2024-#3 13.5 27.0 32.0 45.2 1.41 86.9

2024-#4 13.4 33.6 31.9 50.5 1.58 83.4

2650-#I 25 9.9 18.5 28.8 39.3 1.36 77.7

2650-#2 3 9.7 10.9 28.5 30.1 1.06 46.8

2519-#1 25 12.4 20.7 31.4 40.6 1.29 96.2

2519--ff2 75 14.1 32.7 32.6 49.6 1.52 103.0

2519-#3 100 12.2 33.5 30.2 49.9 1.65 99.9

2519-#4 125 13.6 29.0 31.5 46.0 1.46 96.7

2519-#5 150 13.4 40.8 31.0 53.9 1.74 86.2

2519-#6 175 11.6 29.8 28.5 45.6 1.60 72.7

O) DCPD detected crack initiation

(2) Crack initiation based on ASTM standard E 813

(3) Sidegrooved; gross thickness = 6.0 mm; net thickness = 4.8 mm
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Table 4 - Oxide thickness, hydrogen content and oxygen content of conventionally

processed AA8009 compared to process-modifications A and B

Oxide thickness

(nm)

Total Hydrogen

(ppm)

Conventional 8009 4.0 - 5.0 3.5 - 4.5

Modification A 3.2 - 3.3 1.6 - 2.5

Modification B 2.8 - 3.0 1.3 - 1.7

Percent Oxygen

0.12 -0.13

0.084 - 0.09

0.076 - 0.082

Table 5 - Chemical Composition of Cryogenically Milled Pure Aluminum (weight pet).

O N Fe Si V Mg Cr Y

2.04 0.78 0.12 0.036 0.005 0.002 < 0.002 < 0.002

AI

Bal.

Table 6 - Tensile Properties of CM Aluminum as a Function of Temperature.

Temperature

(oC)
¢_YS

(MPa)

_lyrs

(MPa)

RA

(%)

25 260 281 38.9

25 270 284 36.5

80 251 261 24.6

125 240 247 22.7

175 230 242 15.6

215 211 216 17.9

Strain @ Pmax n

0.037 0.029

0.011 0.025

250 200 209 13.2 0.013 0.03

325 150 151 12.7
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Table 7 - Fracture Toughness of CM AI as a Function of Temperature and Grip Displacement Rate.

Temp. Grip Disp. Measured Kjlci 1 Predicted K_c i Measured T R Predicted Measured

(oC) Rate (MPadm) (MPa_/m) T R KjIc 2

0_m/scc) (MPa'_m)

25 2.5 13.6 13.6 3 22.1 6.7 24.1
13.4 4 3.8

25 0.005 11.0 4.7 14.5

80 2.5 12.7 10.3 14.5 0 (-3.0) 19.1

125 2.5 9.5 9.6 6.1 0 (-3.8) 14.3

175 2.5 7.1 7.8 3.3 0 (-5.5) 10.0

215 2.5 6.5 7.9 1.6 0 (-4.9) 8.4

2.5 5.0250

325 2.5 4.9

6.6

5.5

1.30

0.70

0 (-5.1)

0 (-5.0)

6.9

5.4

(0

(2)

(3)

(4)

Based on dcEPD definition of JIci [24,25].

Based on ASTM Standard E813 [80].

Measured toughness was employed to define !* for RA = 38.9% and Ovs= 260 MPa.

Predicted based on RA = 36.5% and Oys = 270 MPa (See Table 6).
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Table 8 - Initiation and Growth Toughnesses of AA2519+Mg+Ag and AA2519+Mg.

Temperature

('c)

25

Variant of

2519-T87

+ Mg + Ag

KjICi

(MPa_/m)

29.6

30.9

33.8

37.1

75 + Mg + Ag 32.0

100 + Mg + Ag 31.8

125 + Mg + Ag 31.5

150 + Mg + Ag 31.1

31.4

31.7

175 + Mg + Ag 30.9

J3m

(kJ/m 2)

K_lrml

(MPa_/m)

96.2

95.5

103.0

99.9

96.6

86.2

72.7

25 + Mg 30.5

100 + Mg 34.1

175 + Mg 25.4

TRPS

5.4 127.8

4.0 125.9

7.0 155.1

7.2 147.5

6.6 140.7

6.4 114.4

5.5 82.9

5.4 134.6

7.9 155.0

3.7 61.5

98.7

102.4

62.6
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Table 9 - Uniaxial Tensile and Compressive Flow Properties of AA2519+Mg+Ag.

Temperature

('c)

25

E[g7]

(GPa)

72.4

Oys t

(MPa)

515

°uts

(MPa)

566

RA

(%)

40

Oys ¢

(MPa)

493

O o

(MPa)

524

N

0.045

75 68.4 505 536 40 485 510 0.036

100 67.6 489 510 50 469 497 0.030

125 66.3 479 487 49 440 474 0.023

150 64.9 451 453 52 434 450 0.016

175 63.7 420 422 57 388 407 0.013

Table 10- Critical Plastic Strain-Controlled Model Parameters for AA2519+Mg+Ag.

Temperature

('C)

25

75

100

125

150

175

d(N)

0.52

0.53

0.54

0.55

0.56

0.56

(I) Average of 3 measurements

C1

0.1264

0.1262

0.1261

0.1260

C2

1.219

1.221

1.222

1.223

Oys

(MPa)

504

495

475

459

E[87]

(GPa)

72.4

68.4

67.6

66.3

ef
Smooth

rs=6.5

(%)

7.9

7.8

10.8

10.3

Notched

rn=l.5

(%)

8.10)

9.4

9.8

9.9

0.1259 1.225 443 64.9 11.4 10.4

12.94041.226 63.70.1258 14.8
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Table 11 -
Fracture Toughness Model Parameters as a Function of N (after McMeeking

Cl

[143]).

Work Hardening Exponent
(N from 6 a e N) C2

0.0 0.1256

0.1 0.1274

0.2 0.1302

dn

1.228 0.58

1.208 0.44

1.130 0.30

Table 12 - Chemical Compositions of Ingot Metallurgy, Spray Formed, Ultra Fine

Grain-Size, and Metal Matrix Composite Aluminum Alloys.

Alloy
Designation

Alloy
System

Product
Form

Nominal Alloy
Composition (weight %)

AA2095-T8 I/M Plate AI-4.6Cu- 1.5Li-0.4Ag-0.4Mg-0.15Zr

AA2195-T8 I/M Plate AI-4.0Cu- 1.0Li-0.4Ag-0.4Mg-0.15Zr

AA2618-T851 I/M Plate A1-2.6Cu- 1.6Mg- 1.0Fe- 1.2Ni-0.2Si

AA2519-T87(+Mg+Ag) I/M Sheet AI-5.8Cu-0.5Mg-0.5Ag-0.3Mn-0.15Zr-0.1V

AA2134-type (+Mn) I/M Plate AI-4.0Cu-l.5Mg-0.15Zr (0, 0.3, 0.6, 1.0 Mn)

N203-T6 SF Extrusion AI-5.0Cu-0.5Mg-0.SMn-0.4Zr-0.4Ag-0.2Ti-0.2V

CM Al SM/GS Exl_sion Al + 2.5 vol%Al203

AA8009 SM/GS Extrusion AI-8.5Fe-1.3V-1.7Si

2009/SiC/20p-T6 PM/MMC Plate AI-3.6Cu-l.3Mg + 19.5 vol% SiC

Table 13 - Tensile Properties for Spray Formed N203.

Temperature o ys E N %RA
('C) 0V[Pa) (GPa)

25 447 72.1 0.085 28.2

100 432 70.7 0.063 42.5

150 392 68.9 0.045 46.3

190 342 66.0 0.028 61.2
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Table 14 - Temperature-Dependent Tensile Properties for Aluminum Alloys.

Alloy
Designation

AA2095-T6 [169]

AA2195-T6 [169]

AA2618-T851 [41]

AA2519-T87(Mg+Ag) [19]

N203 -T6

Temperature
Range ('C)

-140 / 135

-185 / 135

25 / 225

25 / 175

25 / 190

O ys
_a)

621 / 524

693 / 538

450 / 365

504 / 404 1

447 / 342

E
(GPa)

79.3 / 69.02

80.3 /69.02

75.3 / 60.0

72.4 / 63.73

72.1 / 66.0

N

108 / 603

.059/.005

.066/.005

.05/.005

.045/.0134

.085/.028

%RA

11/22

15 144

23/35

40/57

28/61

38/13CM AI [144] 25 / 325 265 / 150 72.0 / 58.03 ...

AA8009 [24] 25 / 316 395 / 270 83.4 / 61.5 .077 / .040 51 / 39

2009/SiC/20p-T6 [61] 25 / 316 410 / 90 .125 / .042 2.6 / 23

(1)
(2)
(3)
(4)

Average of tensile and compressive yield strengths
Based on precision modulus measurements at 25"C and -180"C
Based on temperaturedependency of E for pure aluminum [251 ]
Determined fi'omuniaxial compression tests

Table 15 - Interparticle Spacing of Primary Void-Nucleating Particles.

Alloy Primary I_f_ r _, Az A3
Designation Void (I"tm) (ttm) (lim) 0tm)

Nucleating
Particles

AA2095-T8 [168] T1, AITCu2Fe 0.037 3.80 132 14.3 10.8

AA2195-T8 [168] C 0.0066 1.39 279 12.4 7.0

AA2618-T851 [39] FcNiAI 9 0.08 3.75 58 9.6 8.3

AA2519-T87(Mg+Ag) [19] O, C 0.012 2.85 313 18.8 i 1.9

N203-T6 ... 0.022 2.44 145 11.9 8.3

AA2134 (+0.00wtO/dVln) S,C' 0.0175 2.55 190 13.9 9.3

AA2134 (+0.31 wte/dVln) S,C' 0.0196 2.65 180 13.7 9.3

AA2134 (+0.61wte/dVln) S,C' 0.0220 2.50 150 12.2 8.5

AA2134 (+ 1.02 wt%Mn) S, C' 0.1)407 2.90 91 10.4 8.0

2009/SiC/20p-T6 [25] SiC 0.195 1.5 8.3 2.5 2.5

T_: Primary Al2CuLi
O : Primary AI2Cu

C : Impurity fie, S0 constituents
S : Primary AI2CuMg [119]
C': Mn bearing constituents [I 19] (Al20Cu21vln3,Al20Cu2(Mn, Fe)3
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Table 16- Linear Least Squares Regression Fits to Predicted and Measured KjiCi Versus

Temperature.

Alloy
Designation

AA2095-T6

AA2195-T6

AA2618-T851

AA2519-T87(+Mg+Ag)
Smooth Bar
Notched Bar

N203-T6

CM Al

CM Al

AAS009

Temperature
Range ('C)

Predicted Fit

K$1ci =

Measured Fit

KjICi ---

-185/135°C 20.9 MPa_/m + 0.003*T l 21.4 MPa_tm + 0.005*T

-185/135°C 35.9 MPa_/m + 0.023"T 38.6 MPa_/m - 0.006*T

25/175"C 20.4 MPa_m - 0.0004*T 20.4 MPa_/m - 0.012*T

25/175"C
32.7 MPa_m + 0.001*T 33.1 MPa_m - 0.013*T
32.9 MPa_/m - 0.001*T

25/190"C 26.4 MPa_m + 0.028"T 25.4 MPa_m + 0.038"T

25/175°C 14.1 MPa_m - 0.037"T 15.3 MPa_/m - 0.045"T

175/325"C 11.0 MPa_/m - 0.017*T 9.6 MPa_/m - 0.015*T

25/100"C 34.2 MPa_m - 0.055"T 34.5 MPa_m - 0.068"T

AA8009 175/316°C 27.7 MPa_/m - 0.027"T 22.5 MPa_/m - 0.037"T

(1) T is temperature in degrees celsius
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Figure 1: Schematic J-Aa curves illustrating the effect of increasing specimen thickness on

ductile fracture toughness.
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Figure 2: Schematic of a rising-load fracture toughness experiment with a CT specimen;

displaying load, displacement, and crack length measurement equipment.
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Figure 3: Load-displacement and potential-displacement records illustrating the method

employed to determine initiation fracture toughness for: (a) AA2024-T3 at 25°C

and a displacement rate of 15 /zm/sec, and (b) AA2519-T87 (+Mg+Ag) at

1250C and a displacement rate of 0.26 _m/sec.
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Figure 4: (a) Ambient temperature load-displacement and crack growth-displacement

data for AA2024-T3. P-6 and a-6 data axe input into a J-integral expression

to obtain the J-Aa curve. (b) The corresponding Kj-Aa curve, calculated from

J-Aa by Kj = (J E) 1/2.
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Figure 5: (a) SEM fractograph showing microscopic process-zone damage at the midplane

of a spray formed N203 CT specimen. (b) The corresponding potential versus
time curve that resolves the crack-tip damage from (a). Full scale on the Y-axis

represents a 0.58% increase in V.
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Figure 6: (a) Polished crack tip profile of AA2519-T87 (+ Mg + Ag) illustrating the process-

zone damage associated with ductile fracture initiation near Knci. Voids nucleate

at large second phase particles and coalesce with the precrack tip (pt) by void

sheet coalescence (arrows). (b) The corresponding potential versus displacement

curve. Full scale on the Y-axis represents a 0.24% increase in V.
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Figure 7: Low magnification SEM fractograph of an AA2519-T87 (+Mg+Ag) fracture

surface produced at 25°C showing the plane strain fiat fracture at initiation from

the fatigue precrack and the transition to plane stress cracking. The shear lip -

fiat fracture interface is indicated by arrows, with the fatigue precrack just visible

parallel to the bottom edge of the photo and with crack growth from bottom to

top.
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Figure 8: Kj-_a curves for two CT thicknesses of AA2650-T6, illustrating the thickness

dependence of Knc and the thickness independence of Knci. (SG denotes a

sidegrooved CT specimen.)
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Figure 9: KcAa as a function of temperature determined from CT specimens of AA2519-

T87 (+Mg+Ag); d6/dt = 0.26/_m/sec.
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Figure 10: Room temperature KrAa curve (o) for AA2024-T3 CT specimen determined by

the J-integral/DCPD method compared to literature results for AA2024-T3 CT

and MT specimens. Specimen thickness = 3.2 mm.
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Figure 11: Thickness dependence of initiation fracture toughness measurements for naturally

aged AA2024, based on early detection of crack tip process-zone damage.
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Figure 13: Effect of temperature on the initiation fracture toughness, Knci, of Conventional

AA8009 plate and sheet (1991 Vintage) in gauge thicknesses of 6.3, 2.3 and 1.0

mm.

441



A

X
V

_m
A

ttl
m_

+
ul

400

35O

300

250

200

150

100

5O

0
0

i

2.3 mm Thick 8009 (1991 Vintage)
LT Orientation

Diep. Rate : 2.5 pmlsec

B
O

25°C
O []

B
O

• CT-Com.
m MT-Com.
o MT-Pot.
• CT-Com.
• CT-PoI.
+ CT.Com.
,'. liT-Com.
o MT-PoL
x" CT-Pol.
• CT-PoI.

175°C

5 10 15 20 25

Aa (mm)

Figure 14: Applied stress intensity from the J-integral vs Aa R-curves for 2.3 mm thick

Conventional AA8009 sheet (1991 Vintage) at 25 and 175°C, determined by C(T)

and M(T) specimens with unloading compliance and electric potential.
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Figure 15: Effect of temperature on the tearing modulus of Conventional AA8009 plate and

sheet (1991 Vintage) at gauge thicknesses of 6.3, 2.3 and 1.0 mm, respectively, and

a fixed displacement rate of 2.5xl 0 .3 mm/sec.
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(a) Co)

(c)

Figure 16: SEM fractographs of 6.3 mm thick Conventional AA8009 plate (1991 Vintage)
fractured at: (a)25 °C, Co) 175 °C and (e) 300°C, at a displacement rate of 2.5 x 10-3
ram/see.
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Figure 17: Effect of actuator displacement rate on the fracture toughness of 6.3 mm thick

Conventional AAS009 plate (1991 Vintage) at 25 and 175 °C.
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(a) (b)

(c) (d)

Figure 18: SEM fractographs of 6.3 mm thick Conventional AA8009 plate (1991 Vintage)

fractured at: (a) 25°C and 5.1x10 -6 mm/sec, (b) 25°C and 2.5x10 -2 mm/sec, (c)
175°C and 5.1x10 -6 mm/sec, and (d) 175°C and 2.5 x 10.2 mm/sec.

446



n

i

0
n

m

t-
..c
ol

o
I.-

L_

:3

0
m

U.

40

35 -e

30

25

20

15

10

5

0

6.3 mm Thick 8009 Plate
Disp. Rate = 2.5 I_m/sec

i 25oc

[] 175°C

[] 300°C

Extrusion conventional Conventional Modificationk ModificationB
(1990 Vintage) (19D1 Vintage)
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Figure 20: Effect of processing procedure on the tearing modulus of 6.3 mm thick AA8009

plate.
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(a)

(b)

Figure 21:

(c)

SEM micrographs of etched, as-received Conventional AA8009 plate and sheet

(1991 Vintage) with gauge thicknesses of: (a) 6.3 mm, (b) 2.3 mm and (c) 1.0 rnm,

showing stringers of oxides along prior ribbon particle boundariesl

449



(a)

Figure 22:

(b)

SEM fractographs of 6.3 mm thick (a) Modification A and Co) Modification B of
AAS009 fractured at 25°C and 2.5 x 10 .3 ram/see.
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Figure 23: Effect of cryogenic to elevated test temperature on the fracture toughness of

Modification A of AA8009 with gauge thicknesses of 6.3, 2.3 and 1.0 mm.
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Figure 24: Effect of thermomechanical processing on the fracture toughness of Conventional

(1991 Vintage) and Modification A of AA8009 fractured at 25°C and 175°C at a

fixed grip displacement rate of 2.5 x 10 -3 mm/sec.
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Ca)

0.3 mm

Figure 25:

(b)

Low magnification SEM fi'actographs of 1.0 mm thick Conventional AA8009 sheet

(1991 Vintage) fractured at: (a) 25°C and (b) 175°C at 2.5 x 10 .3 mm/sec.
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Ca) Co)

Figure 26: SEM fractographs of Conventional AAS009 sheet (1991 Vintage) with a gauge

thickness of 2.3 mm fractured at: (a) 25°C and Co) 175°C, compared to 1.0 mm

thick sheet fractured at: (c) 25°C and (d) 175°C, all at 2.5 x 10 .3 mm/sec.
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Figure 27: Effect ofthermomechanical processing on the tensile reduction-in-area at fracture

for Modification A of AA8009 fractured at temperatures between 25°C and 316°C.

455



A

m

<
t"

m

C
O

m

(.1

"O

tr

60I
5O

4O

3O

2O

10

0

Modification B 8009
Cross-rolled • 2 5°C []
L Orientation I_1 1 50°C []

I

232°C

316°C

6.3 mm Hot 2.3 mm Hot 1.0 mm Cold 1.0 mm
Cold/anneal

Figure 28: Effect ofthermomechanical processing on the tensile reduction-in-area at fracture

for Modification B of AAS009 fractured at temperatures between 25°C and 3160C.
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Figure 29: Effect of rolling temperature and annealing on the initiation fracture toughness of

1.0 mm thick sheet of Modification A of AAS009 sheet.
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Figure 30: Effect of high temperature exposure on the fracture toughness of 1.0 mm thick

Modification A of AA8009 sheet.
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Figure 31: The temperature dependencies of initiation fracture toughness for a wide variety of
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and AA2519), advanced RS/PM AA8009, and a metal matrix composite.
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Figure 32: The transition for climb-assisted dislocation bypassing of dispersoids in AA8009;

predicted as a function of particle size, temperature, and strain rate by the HK

model and compared to values inferred from fracture toughness experiments.
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Figure 34: Optical micrograph of mechanically polished and unetched CM A1 showing

infrequent, but large constituent particles. The inset shows an SEM-secondary

electron image of an inclusion. The plane of polish is parallel to the transverse

(vertical) and longitudinal-extrusion (horizontal) directions.
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(a)

(b)

Figure 35: TEM micrographs ofCM AI showing: (a) the submicron grain size and Co) clusters

of fine A1203 dispersoids.
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Figure 36: Uniaxial true tensile stress vs true total strain for CM A1 prior to necking, as a

function of temperature.
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Figure 37: The temperature dependencies of tensile yield strength, ultimate tensile strength and

ductility (%RA) of CM A1 at a single loading rate.
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(a) (b)

Figure 38: Macroscopic side-views of CM A1 tensile specimens fractured at: (a) 25 °C and (b)
175°C.
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(a)

(b)

Figure 39: SEM fractographs of CM A1 tensile fracture surfaces produced at: (a) 25 °C and Co)

175 °C, and a nominal strain rate of 5 x 10-4 sec 1.
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Figure 40: Initiation fracture toughness (Knci) and tearing modulus (Trt) for CM A1 and

AA2618 (8), as a function of temperature.
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Figure 41: Low magnification SEM fractographs of macroscopic delaminations in CM A1

fractured at: a) 25°C, b) 175°C, and (c) 250°C. Each crack grew from right to left,

and the fatigue crack-fast fracture interface is shown by the contrast and roughness

changes right-of-center.
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25°C 175°C

Figure 42: SEM fractographs of CM AI compact tension specimen fracture surfaces, at mid-

thickness and for Aa = 0.4 + 0.2 mm, produced at: (a), Co) and (c) 25°C; and (d), (e)

and (f) 175°C. Fractographs are arranged vertically in order of increasing

magnification and the crack grew from right to left.
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Figure 43: High magnification, matching-surface, stereofractographic analysis of a CM A1 CT

fracture surface, for Aa = 0.4 + 0.2 mm and produced at 175°C. (a) and (b) show

one-half of the crack surface, and are tilted 7° and 0 ° (respectively) from the normal

to the fracture plane. (c) and (d) show the matching half of the crack surface and

are tilted 7° and 0°, respectively. The crack grew from right to left.

471



13
IX.
_E

v

¢.)
m

,-j

f/I
@
=..

-!
0

I--

m
L
-!

¢3
0
L

la.

20

16

12

8

4

0

Cryogenically Milled Aluminum

Extrusion, LT

Disp. Rate= 2.5 ,u,m/sec

c

0

0

• Kjic= Measurements

0 Model Predlcflons-_'f from Unloxial gRA (r=7)

I = 1ONto
.... l .... I .... I .... I .... I .... I , ,

50 100 150 200 250 500

Temperature (°C)

, !

350

Figure 44: Critical plastic strain-controlled model predictions compared to experimentally

measured values of the plane strain crack initiation toughness for CM AI as a

function of temperature.
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Figure 45: Optical micrographs of AA2519-T87 (+Mg+Ag) demonstrating: (a) an

inhomogeneous distribution of undissolved e (AI2Cu) particles, and (b)

processing-induced cracks in e.

473



T

Figure 46: Optical micrograph of AA2519-T87 (+Mg+Ag) grain structure.
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Figure 47: Transmission electron micrograph of AA2519-T87 ( + Mg +Ag), with _ precipitate

plates indicated by arrows. The dominance of _ is indicated by the bright

diagonal streaks in the selected area diffraction pattern, each oriented

perpendicular to one variant of _. The electron beam is approximately parallel
to <110>.

475



120
AA2519-T87 (+Mg+Ag)

I • • •

3.2 mm Sheet. LT . . ". -.

loo i - " " ":'" "" "• • • 00 t • •

80 ." . ": :" " " " '• • • • • • J I • • I
my. $ •

i_ • ° • • • • o *

._ 4I_o_.O • • " ' . ......

__._ • .... .-''',"

60 [ •..?''.... • .... ..... ,
F :_." " :
| _" -"" ..... "" _ AA2519-T87 (+Mg) : ..... o"_" ]

• -" , • 25 C I

40 .-..:-. 175°C ', " 750C I
'1 • IO0°C I
:1 12_c I

20 :1 " 150°C [

'1" I
1_ I n n i n n I n I

0 ' ' I ' ' ' I I .... I ' i i i l i ' i a I n i i I I n ' ' ' I ....

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Aa (mm)

Figure 48: Kj-R curves as a function of temperature determined from CT specimens of

AA2519 +Mg +Ag; load-line displacement rate = 0.26 #m/sec. The Kj-Aa curve

for a CT specimen of AA2519+Mg is included.
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Figure 49: Initiation fracture toughness, Kjici , as a function of temperature for

AA2519+Mg+Ag and AA2519+Mg; load-line displacement rate = 0.26

#m/sec.
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Figure 50: Plane stress tearing modulus, TR ps, as a function of temperature for

AA2519+Mg+Ag and AA2519+Mg; load-line displacement rate = 0.26

_m/sec.
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Figure 51: SEM fractography of AA2519+Mg+Ag demonstrating: (a) primary voids

nucleated at undissolved 0 with void sheeting at 25°C and (b) 0-nucleated voids

with reduced void sheeting at 150°C. Micrographs were taken from the midplane

of the plane strain fracture surface and just beyond the fatigue precrack. The

crack growth direction is from bottom to top and void sheets are marked by "vs".
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Figure 52: SEM tilt fractography of AA2519+Mg+Ag showing dimple morphology within

void sheets produced at: (a) 25°C and (b) 150°C. The fracture surfaces in (a)

and (b) were tilted 75 °C and 45 °C respectively, in the direction of crack growth

and about a line parallel to the crack front. The crack growth direction is from

right to left and into the plane of the fractograph.
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Figure 53: Crack tip profiles from midplane of AA2519+Mg +Ag CT specimens fractured

at: (a) 25°C and (b) 150°C; load-line displacement rate = 0.26 _m/sec. The

arrows indicate void sheets. The estimated plane strain plastic zone diameter is

2670 _m at 25°C and 3460 _m at 150°C. Microvoid damage is localized within

a portion of the plastic zone adjacent to the crack tip.
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Figure 54: Tensile yield strength, compressive yield strength, and work hardening exponent

of AA2519+Mg+Ag as a function of temperature; t _ 6x10 -5 sec -1.
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Figure 55: Failure loci for AA2519 +Mg +Ag at 25 °C and 150°C. A theoretical prediction

from integration of Rice and Tracey's void growth law is indicated by the large-

dashed line [103,125].
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Figure 56: Effective plastic strain to fracture of smooth and notched bars of

AA2519 +Mg + Ag as a function of temperature, demonstrating the temperature

independence of the constraint ratio, rsn.
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AA2009/SiC/20p-T6 [62], and AA8009 [24]. The range of Kjm i for AA2024-T3

at 25°C is indicated by the error bar [131].

485



40

35

"e" 30

25

20

10

5

0

1* = 20.5 _tm

0

AA2519-T87 (+Mg +Ag)
3.2 ram, LT Sheet

Least Squares Fit to Measurements

Least Squares Fit to Predictions

[]

0

Measured

Predicted-_ t" from Notched Bar RA (r_=l.5)

Predicted-_ t from Smooth Bar RA (r,--6.5)

.... I . . .. I....I.... I .l i l |i l I . I . . . . I . ...

25 50 75 100 125 150 175 200

Temperature (°C)

Figure 58: Critical plastic strain-controlled model predictions and experimentally measured

values of the initiation fracture toughness as a function of temperature for

AA2519 +Mg+Ag.

486



2.8

2.6

_, 2.4

_ 2.2

U 2.0

1.8

1.6

1.4

Equivalent Temperature at _ = 6x10 -5 sec -1

2500C 150oC 100oC 25°C

i I I I

C e_

8

i , • I , , , I , , , I , , , I ,

12 16 20 24

Log Z (Z= _ exp(AH/RT), s -1)

AA2519+M2+A_

• b. = 6xlO -s s-1

AA2219-T851

• 25oc

• lO0OC

• 150oc

• 175oc

• 205oc

AAll00

a 23oc
o 150oc

v 200oC

A 250oC

o 300oC

o 350oC

99.999% Pure Ah
Stress Relaxation
-- 25oc

Figure 59: Temperature/strain rate dependence of flow stress for AA2519-T87, AA2219-

T851 [156], AAll00 [157], and 99.999% pure aluminum [158].

487



!

om

x_

r_
U

Jl

om

101

10 o

10- _

10-2

10-3

104

10- s

10_

10-7

l0 s

Dislocation Bypassing Model

NO BYPASS

• /

Z=IO00

Z=100

strain rate
outside of
ISL band

0.1 pin dispersoids

0.2 pan dispersoids

0.3 pm dispersoids

Deformation Conditions

0 50 100 150 200 250 300 350

Critical Temperature (°C)

Figure 60: Model for dislocation bypassing of submicron dispersoids (after Humphreys and

Kalu) [68]. The region below each curve represents deformation conditions where

dislocations climb around dispersoids, and the region above the curve represents

dislocation accumulation at dispersoids. The solid dots represent deformation

conditions for AA2519+Mg+Ag. The dashed horizontal lines represent strain
rates within an ISL band for Z of 102, 10 3, and 104.

488



"l_ 0.14

o.12

•_ 0.10

o.o8

,- 0.06

e_
on

_ 0.04

_ 0.02

0.00

0.00

.....ll- I

._m

' I ! ' I I ' ! ' ! ' II

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain Rate Sensitivity, m

Figure 61: Correlations between strain rate sensitivity, m, and _f* for AA2519 +Mg +Ag and

AA2618-T851 [39].

489



It,O

1.0

0.8

0.6

0.4

_' > _ P(a= / _a) over 1" at 5 = 5 m (K = Kin)

AA2519-T87 (+M_+A_) fp 25 °C (_= / _,) 2.0
I K m - 32.9 MPa_m

or, = 504 MPa _- ....

......................._ .......

/_lncreasing 5 or K / i '

_,'e,. /_,)_ i ..............
t /i .........................i.............................!...................
_ .................i......................_...................... i................................

. , , I , , , I . I . . . I! . . . I
i

4 8 16 20 24

1.6

1.2

0.8

0.4

• I | l l I

12

x (_m)

1"

f

t_

t_

Figure 62: Illustration of the Critical Plastic Strain-Controlled Model. The crack tip effective

plastic strain field (_P) [143] and stress-state-triaxiality field (am/an) [163] are

plotted with heavy solid and heavy dashed lines, respectively. The filled circles

represent an experimental determination of a failure strain locus (_ fP(am/an)). For

fracture initiation, _P must exceed _eP(em/an) over a critical distance (1").

490



0.8

0.7

0.6

0.5

=_" 0.4

0.3

0.2

0.1

AA2519-T87 (+Mg +Ag)

• 25 °C

_f P= 43[,exp (- 1.5C m / _n)

0.0 , I I I , I I I ,

0.0 0.4 0.8 1.2 1.6 2.0

Figure 63: Stress-state dependent failure strain for AA2519-T87(+Mg+Ag) at 25°C [19].

A theoretical prediction from integration of Rice and Tracey's void growth law

is indicated by the solid line [103,125].

491



0.4

0.3

0.2

0.1

25 °C

Overaged AA2134 (+ 0.6% Mn)
Underaged AA2134 (+ 0.6% Mn)
2009/SiC/20p.-T6

A _A
00. . . . I • • . i . . . il t I l l I i , I .

0.0 0.4 0.8 1.2 1.6 2.0

Figure 64: Ambient temperature, stress-state dependent failure loci for AA2009/SiC/20p-T6

[63] and AA2134 in the underaged and overaged tempers [119].

492



0.8

0.6

g_t,.

I¢o 0.4

0.2

0.0
0

AA2519-T87 (+Mg +Ag)

• a m / a n = 0.33

• a m / a n = 1.13

r,n = _ fP (0.33) / _ fP_

_/_
. / I

I

• • •

o, o. I ,,., I ..., I, o. o I.... I, o.. I.,,. I,. o o

25 50 75 100 125 150 175 200

Temperature (°C)

Figure 65: Effective plastic strain to failure of smooth and notched bars of

AA2519 +Mg +Ag, demonstrating the temperature independence of the constraint

ratio, rsn [19].

493



1.2

1.0

0.8

0.4

0.2

0.0

AA2009 ! SiC / 20p-T6

a Smooth (c m / c n = 0.3)
• Notched (a m / a n = 1.0)

0 50 100

a

150 200 250 300 350

Temperature (°C)

Figure 66: Effective plastic strain to failure of smooth and notched bars of AA2009/SiC/20p-

T6 plotted as a function of temperature, demonstrating the insensitivity of _ fP to

global stress-state-triaxiality at temperatures up to 175°C [63].

494



AA2519 (+Mg+Ag) - Notched (r --1.5)

0.15 v AA2519 (+Mg+Ag) - Smooth (r,---6.5) A

• Spray Formed N203 (r =7) /

0.12 AA2618 (r-7) _7

009
4--

0.03

0.00 ''' l'''' '''. ..'' ' ''I ! I

0 50 100 150 200

Temperature (°C)

Figure 67: The critical fracture strain for spray formed N203-T6, AA2618-T851 [24], and

AA2519-T87(+Mg+Ag) [19] as a function of temperature.
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Abstract

The purpose of this research was to understand and quantify microstructural evolution

in RX818 alloy as a function of time, temperature, alloy composition and initial microstructure

in order to explain and predict the mechanical behavior of RX818 base alloys after elevated

temperature exposure. Significant progress was made in five different areas in this research.

First, the effect of alloy composition (Ag and Mg) and high-temperature thermal exposure such

as 250°C (482oF) on the microstructure of RX818-T8 alloy were determined by TEM.

Secondly, evolution of the T 1particle size distribution in RX818-T8 alloy was quantified for

exposures of up to 7016 hrs at temperatures of 106-163oC (225-325oF) by TEM for

comparison with the mechanical property behavior. Thirdly, the behavior of grain boundary

precipitates in RX818 alloy was studied as a function of time and temperature and correlated

with the grain boundary fracture behavior. Fourthly, kinetic models were developed to

calculate the diffusion fields around spheroidal particles which undergo both size and shape

coarsening with time. Lastly, microstructures of DSC samples of RX818 were examined by

TEM in order to understand the DSC thermograms.

Introduction

Work at Reynolds Metals Company demonstrated that an AI-Cu-Mg-Li-Ag alloy

designated RX818 could potentially meet the strength and fracture toughness properties after

substantial elevated temperature exposure required for high a speed civil transport (HSCT)

airframe. This alloy is mainly strengthened by a fine distribution of equilibrium plate-shaped T 1

•(AI2CuLi) precipitates with some additional lath-shaped S' (AI2CuMg) precipitates.

Objectives

The purpose of this research was to understand and quantify microstructural evolution

in RX818 alloy as a function of time, temperature and alloy composition. Five tasks were
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undertakento accomplishthis objectiveandsomeof themoreimportantresultsfrom eachtask
aresummarizedbelow.

Results

Task 1 - Composition and High-Temperature Exposure

Four different compositions of RX818-T8 alloy were examined by TEM. All of the

coarsening experiments were performed on the RX818 alloy identified as Lot No. 64667

below. The microstructure of the alloy in the -T8 condition viewed along three low-index zone

axes is shown in Fig. 1.

Lot No. C.___u M_M_g Li A_Ag Z_.___r Si Fe

64667** 3.5 0.4 0.8 0.4 0.13 - -

64653 3.6 0.4 0.8 0.4 0.14 0.05 0.07

64627 3.8 0.7 0.9 0.4 0.13 0.06 0.06

64667 3.6 0.8 0.8 0.8 0.14 0.06 0.07

**This was the base alloy used for the coarsening studies.

The TEM studies revealed that increasing the Mg content in RX818-T8 alloy produces a

higher volume fraction of S' phase and less T 1 while increasing both the Mg and Ag contents

causes relatively coarse S' plates to form in the matrix. TEM also revealed that aging the alloy

for relatively short time thermal exposure at a temperature of 250°C (482°F) produces a

dramatic change in the microstructure of RX818 alloy, as seen by comparing Fig. 2 with Fig.

1.

Task 2 - Coarsening Behavior of TL.Plates

The results from this task were discussed in detail in a previous NASA semi-annual

report for this grant. Briefly, quantitative precipitate size distribution measurements by TEM

show that the average thickness and diameter of the matrix T I plates increase with time for a

given temperature or with temperature for constant time (Figs. 3a and b). The T 1 plates are

about twice as thick and 1.5 times wider after aging at 163oC (325°F) than at 107oC (225°F).

The number density of T 1 plates was found to decrease with increasing time and temperature,
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as shown in Fig. 3d. The difference is small for 107oC (225oF) but substantial for 163oC

(325°F). The volume fraction of matrix T 1 plates increases with time and temperature and

approaches a value of about 0.025 after long times (7016 hrs) at 107oC (225oF) and 163oC

(325°F), as shown in Fig. 3e. In addition, the aspect ratio of the T 1 plates approaches 17:1 for

long aging times indicating that this may be an equilibrium value (Fig. 3c). It was also found

that extended thermal exposures at low temperatures such as 107oC (225oF) result in

precipitation of additional metastable _5'and S' phases in the alloy, as shown in Fig. 4.

Task 3 - Behavior of Grain Bo0ndary Precipitates

The results from this task were published [1], and the following is a summary of those

results. Briefly, TEM examination showed that the sizes of the grain boundary T 1 and S phases

generally increase with aging time and temperature in RX818-T8 alloy for exposures of up to

7016 hrs at temperatures of 106-163°C (225-325oF). The proportion of S phase also appears

to increase in comparison to T 1 phase as aging progresses and a precipitate free zone develops

with increasing aging time and temperature. Additionally, T 1 plates and S precipitates are

usually thicker at the grain boundaries than in the matrix. These features are shown in Fig. 5.

TEM examination also showed that the lengths of the grain boundary precipitates

depends on the angle between their habit plane and the grain boundary plane. In general, the

plates/laths increase in length as the angle decreases. Further comparison between the TEM

microsctructures and SEM examination of fracture surfaces indicates that grain boundary T 1

and S precipitates, particularly blocky S particles, very long S laths and long, thick T 1 plates,

are responsible for the formation of voids at the grain boundaries, which leads to early fracture

and a reduction in the fracture toughness of the alloy. This is shown in Fig. 6, where the

transition from smooth intergranular fracture in Figs. 6a and b contrasts with the dimpled

fracture surface due to void formation at grain boundary particles in Fig. 6c.

Task 4 - Kinetic Models of Shape Coarsening

The experimentally determined coarsening data in Task 2 indicated that T 1 plates in

RX818-T8 alloy undergo both size and shape coarsening during prolonged thermal exposure at

temperatures of 107-163oC (225-325oF). In the present task, kinetic models were developed to

include the effect of shape evolution during coarsening of precipitate plates and rods. The full
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treatmentswerepublished[2,3] andfollow thesummarybelow.

The diffusion fields or soluteconcentrationsdistributedaround prolate(rod-shaped)

andoblate(disc-shaped)spheroidalparticlesweresolvedfor variousparticleaspectratiosand

varying concentrationsalong the precipitatesurfacedue to the curvature effect. These

geometriesareindicatedschematicallyinFig. 7.It wasalsofoundthatthetangentcomponent

of theconcentrationgradientsdueto particlecurvaturemaycausecomplicatedmasstransfer

whichis responsiblefor shapecoarsening.Theconcentrationdistributionsaroundbothprolate

andoblatespheroidalparticlesreduceto theconcentrationarounda sphericalprecipitatewhen

theaspectratiosof thespheroidsapproachesunity.

Task 5 - Analysis of DSC Samples

Briefly, TEM analysis of DSC samples of RX818 alloy quenched from various

temperatures (Fig. 8) show that most of the endo/exothermic reactions can be attributed to

precipitation and dissolution of the T l and 0 (or 0') phases. A variant of 0 phase often called

phase was also found in DSC samples quenched from above 360oC, as shown in Fig. 9.

Results from the DSC study that were published [4] follow.

Summary

1) In this research, progress was made in understanding and quantifying the behavior of

matrix and grain boundary precipitates in RX818-T8 alloy as a function of time and

temperature in ranges appropriate to a HSCT airframe.

2) The effect of microstructural evolution in RX818 alloy was qualitatively correlated with

the mechanical behavior of the alloy, particularly with the reduction in fracture

toughness associated with long-term thermal exposure.

3) Kinetic models which are capable of describing the shape evolution of T l plates (oblate

spheroids) during the coarsening process were developed.
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Figure 1. Bright-field TEM images and diffraction patterns of RX818-T8 alloy in:
a) <110>, b) <112, and c) <100> matrix operations.
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Fi.gure 2. Bright-field TEM images and diffraction patterns of RX818-T8 alloy in after additional
aging for 168 hrs at 250°C (428°F) in: a) <110> and b) <100> matrix operations. Arrows in b)

indicate reflections due to 0'phase.
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Figure 4. Dark-field TEM image showing S' laths (arrows) and 8' spheres in RX818-T8 alloy
aged for 2518 hrs at 107°C (225°F).
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Figure 5. Grain-boundary T1 precipitates in RX818-T8 alloy aged at 163"C (325"F) for an
additional 7016 hrs: a) Tl precipitates at subgrain boundaries, b) long TI and S' particles along a

low-angle boundary, c) very thick Tl particles and their corresponding diffraction pattern.
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Figure 6. SEM micrographs of the tensile fracture surfaces of RX818-T8 alloy with different heat
treatments: a) the initial -T8 temper, and after additional aging at b) 107"C (225"F) and c) 163"C
(325°F) for 7016 hrs.
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Figure 9. Bright-field TEM images of DSC samples quenched from: a) 200"C, b) 310"C and c)
360°C. T] plates are present in a) and b). The <112> diffraction pattern in d) was obtained from
the vertical plate near the center of the image in c) and the arrows indicate reflections corresponding

to {111 } 0 (or _2) phase.
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A study has been made of the effect of an externally applied tensile stress on f2 and O'

precipitate nucleation and growth in an A1-Cu-Mg-Ag alloy and a binary AI-Cu alloy which

was used as a model system. Both solutionized and solutionized and aged conditions were

studied. The mechanical properties have been measured and the microstructures have been

characterized by transmission electron microscopy (TEM). The volume fraction and number

density as well as the precipitate size have been experimentally determined. It was found that

for as-solutionized samples aged under stress, precipitation occurs preferentially parallel to the

stress axis. A threshold stress has to be exceeded before this effect can be observed. The

critical stress for influencing the precipitate habit plane is between 120 and 140 MPa for _ and

between 16 and 19 MPa for O' for the aging temperature of 160"C. The major affect of the

applied stress is on the nucleation process. The results are discussed in terms of the role of the

lattice misfit between the matrix and the precipitate nucleus.

Introduction

AI-Cu-Mg-Ag alloys with high Cu:Mg ratios show high strength after artificial aging.

This can be attributed to the precipitation of very thin, hexagonal shaped f2 plates on { 111 } A1

matrix planes which is stimulated by trace additions of Ag. Alloys based on the A1-Cu-Mg-Ag

system have attractive room and high temperature strength and creep resistance for

temperatures up tol20°C and are superior to 2618 and 2219 (1,2). The behavior under creep

conditions is primarily controlled by the thermal stability of the precipitates, i.e., how the

precipitate structure is affected by temperature, time and stress exposure.

In the A1-Cu-Mg-Ag alloy, f2 partially or completely replaces the well known

{001 }-type precipitate sequence in A1-Cu-based systems, i.e., G.P. zones, ®'" and 0", as

520



transition phasesbefore the equilibrium O (A12Cu).As fl was recently discovered, the

structureof this precipitateis still underdiscussion.Proposedstructuresinclude monoclinic

(3,4),hexagonal(5), oththorhomibic(6,7) andtetragonal(8) symmetries.Variouschemical

analysesof f_ have also been carried out (7,9,10,11,12)revealingcompostion close to

®-A1ECU.Resultsindicatethattherole of Ag andMg andtherequirementof a high Cu:Mg

ratio in promoting f_ is still unclear. Recent atom probe field ion microscopy (APFIM) studies

by Hono et al. (13) showed that in the as-quenched condition independent clusters of Cu, Mg

and Ag were present. After 15 s at 180"C, co-clustering of Ag and Mg was observed. After

aging for 30 s at 180°C, they detected extremely small precipitates containing Ag, Mg and Cu

atoms. They assume that this is a precursor phase for the formation of _.

In general, nucleation of precipitates in an age hardenable aluminum alloy can be

described by:

AG = -V.AG v + A.), + V-AG s (1)

where AG is the Gibbs free energy change for the transformation to a more stable phase, AG v

is the volume free energy change for the formation of the precipitate nucleus, V is the volume

of the new phase, A is the area of the interface between the matrix and the precipitate, _, is the

energy of the new surface formed, and AG s is the increase in elastic strain energy per unit

volume of precipitate. The elastic strain energy depends on the misfit, _5,between both phases

and the elastic constants of the matrix phase. It is this term the present investigation addresses.

Under normal aging conditions, i.e., when no applied or residual stresses are present,

an even distribution of precipitates should form on all habit planes. If precipitation occurs

preferentially on certain habit planes, an anisotropy of strength properties may result. It is well

known that plastic anisotropy of a textured single phase material is usually changed when it is

strengthened by second phase particles. The effect depends on both shape and habit planes of

the precipitates and may reduce or increase anisotropy (14-16).

Coherency strains are usually considered to stabilize a single-phase field, i.e., they shift

the solvus line into the equilibrium two-phase field. Externally imposed strains may change the

stability of a phase and may move the solvus line either into the single-phase or two-phase

region. Consequently, externally applied stresses and internal stresses associated with second
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phaseparticlescanaffectbothnucleationandgrowthof precipitatesandsubsequently their

coarsening behavior (17,18).

In several alloy systems it has been found that an externally applied stress may result in

preferential orientation of precipitates. The reported results are contradictory. This is due to the

fact that different alloy systems were investigated with precipitates having different

morphologies and different amounts of positive or negative misfit. Even when similar alloy

systems were studied they were aged at different temperatures and stresses. In some alloys the

nucleation and growth of the precipitation process was studied, while in others the coarsening

behavior was examined. A brief review is given in the following.

Nucleation and growth was investigated for the following systems and it was found

that aging under an externally applied tensile stress results in orienting of Ti-hydride in Ti-H

(19), Zr-hydride in Zircaloy-2 (20), Fe 16N2 in Fe-N (21), Ni 3Nb in a Ni-base superalloy (22)

and Au-rich plates in Fe-Mo-Au (23) perpendicular to the stress axis. Contradictory results are

reported for O' in the AI-Cu system and for Ni3A1- Y' precipitates in Ni-base superalloys.

Hosford and Agrawal (24) found most of the O' precipitates oriented perpendicular to

the tensile stress axis whereas Eto et al. (25), observed precipitation parallel to the stress axis.

It has to be noted that different aging temperatures were used. In the Ni-base alloy the

coarsening of an already aged microstructure was investigated. Tien and Copley (26) found

that tensile annealing enhances _/' coarsening on cube planes perpendicular to the stress axis

but Miyazaki et al. (27), observed that the precipitates tend to be parallel to the stress direction.

However, the chemical composition was different and this has a sensitive effect on the misfit

between precipitate and matrix.

The objective of the present study was to determine the effect of an externally applied

stress on the nucleation and growth of the f_ and O' precipitates in a modified 2519 alloy

containing additions of Mg and Ag to produce the 12 phase. An AI-Cu binary alloy was also

studied as a model system.

Procedure

The composition of the investigated sheet material is given in Table I. Alloy 1 (A1-Cu)

was cast at Reynolds Metals Co. and rolled to 6.3 mm sheet. Alloy 2 (AI-Cu-Mg-Ag) was cast

at the Alcoa Technical Center as 152 mm x 406 mm x > 1524 mm ingot, preheated and rolled

to 3.2 mm sheet. At appropriate temperatures the binary A1-Cu system has the precipitate
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sequenceG.P.zones,6)" (GP2)andO' astransitionphasesbeforetheequilibrium O (A12Cu)

(28).Themicrostructureof alloy 2 is morecomplicated.In additionto theformermentioned

precipitates,thephases_ andS' (A12CuMg)areformed,f_ hasahexagonalplatemorphology

andbecauseits habit planeis { 111}Al, it canbeeasilydistinguishedfrom O' and S' whose

habitplanesare{ 100}A1and{210}Al, respectively.

Texture measurementswere carried out at half sheetthicknessafter solution heat

treatmentof theasreceivedmaterial.A Siemenstexturegoniometerwasusedin combination

with the Schultz reflection methodanda Cu-Ka x-ray tube (TCu-Ka= 0.154178nm). The

softwarepackage"popLA" (29) wasusedto calculatethe orientationdistribution function

(ODF)from { 111}, {200} and {220} polefiguresandthefully constrainedTaylor factorasa

functionof orientation.Differentialscanningcalorimetry(DSC)wasperformedonsolutionized

andwaterquenchedsamplesin aPERKIN-ELMERDSC-7instrument.Differentheatingrates

of 2*C/min, 20*C/minand 50*C/minwereusedto heat samplesfrom room temperatureto
500°C.

Theagehardeningresponsewasdeterminedfor alloy 2 for agingat T = 160"Cusing

Vickershardnessmeasurements.For thepeak-agedT6 temper,sampleswere solution-heat-

treatedat520°Cfor onehour,cold waterquenchedandagedfor 20hoursat 160° C. For the

peak-agedT8 temper,samplesweresolution-heat-treatedat520oC for onehour, cold water

quenched,stretched2%andagedfor 16hoursat 160° C. Themechanicalpropertiesat room

temperatureandT = 160°Cweremeasuredfor bothalloysusinga MTS tensiletestmachine.

Thestrainratewas10-3 l/s. For the hightemperaturetensiletests,a laserextensometerwas

usedto measurethestrain.Rectangularsubsizetensiontestspecimenswereusedin accordance

with ASTM B 557-84(30).

Samplesof constantarea(Fig. 1a)wereagedat 160°Cunderatensilestressin acreep

machine for different times (10, 100, 1000h) and under various constant loads in the

as-solutionheattreatedandthepeakaged(T6) conditions.As thedeformationis very low the

stresst_ is considered as constant. The as-solution heat treated samples were transferred to the

creep machine immediately after the cold water quench in order to avoid aging at room

temperature. The stress was applied to the sample prior to encasement by the furnace. Tapered

samples (Fig. lb) were used to give various stresses and strains in a single sample.
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Themicrostructurewascharacterizedby conventionalTEM usinga 120and200keV

and high-resolutionTEM (HRTEM) with a top-entry 400keV microscope. Samples were

prepared by twin jet polishing at -15 V using a solution of 1/3 HNO 3 and 2/3 Methanol cooled

to -30"C. The stress direction was marked before samples were punched out from creep

samples. The approach of Underwood (31) for projected images was applied to determine the

volume fraction and number density of precipitates. Under the assumption that the precipitates

are disc shaped, the volume fraction of precipitates V v can be calculated by:

a,,I ) (2)

A A' is the area fraction for projected images, e the average thickness of the precipitate and x the

foil thickness. The number of precipitates per volume (number density) N v is given by:

Nv= 4.Vv (3)
_. ¢.D 2

c andD are the average precipitate thickness and diameter, respectively. Convergent beam

electron diffraction (CBED) was employed to determine the foil thickness (32).

Results

Texture and Mechanical Properties

Fig. 2 shows that the microstructures were completely recrystallized after solution heat

treatment. The mean grain size was 307 _m for alloy 1 and 38 I.tm for alloy 2. A typical TEM

micrograph of alloy 2 after solutionizing and aging for 20 h at 160°C, peak strength, is shown

in Fig. 3.

Fig. 3a was taken under a [110] zone axis and two variants of ® and one variant of O'

are visible. Fig. 3b shows two variants of 19'. The zone axis is [001].

The texture measurements of alloy 2 showed a completely random crystal distribution

(Fig. 4). This is not the normal recrystallization texture of aluminum alloys. The reason for the

observed texture may be associated with the high volume fraction of constituent phases (size =
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9 gm) whichproduceddeformation zones during rolling. These deformation zones can serve

as recrystallization sites during subsequent heat treatment and result in a random texture (33).

The texture components are low, between 1.3 and 1.9 times random except for the brass

component which is 3.1 times random. Due to the large grain size of the A1-Cu alloy, texture

analysis was somewhat difficult. The orientation distribution functions show that there is no

texture component present other than rotated cube, which is strong.

Fig. 5 shows the age hardening response after aging at 160°C for alloy 2. The

maximum hardness is reached after about 20 h aging and it remains constant after further aging

due to the high thermal stability of the f_ phase. The mechanical properties at room and high

temperature are shown in Table II. Alloy 2 is very isotropic in uniaxial tensile tests, with only

an 8.3% increase in the yield strength between the rolling direction and 45 ° to the RD for the

as-solution heat treated condition and a 1.9% decrease in yield strength between the RD and

45 ° to the RD for the T6 condition. The fairly isotropic behavior was expected for the solution

heat treated condition because the texture measurements showed a random texture. The swing

of 10.2% that occured during aging must be associated with the precipitation of the _ and ®"

phases. It has been found that the precipitates on { 111 } planes usually increase and those on

{100} planes usually decrease anisotropy (15,16). Further analysis of the effect of

precipitation on anisotropy is being conducted under a separate study. Calculations of the

Taylor factor, M, associated with the texture affect, predict an isotropic mechanical behavior.

M was found to be close to 3.06 which is the theoretical value for random crystal structures.

Tensile strength for the peak aged (T6) condition is increased considerably over that for

the solution heat treated condition. As expected, the yield strength is lower at 160°C for the T6

samples. For the solution heat treated samples, higher strength values were measured at higher

temperature. This is due to the very fast precipitation during heating the samples to the test

temperature. The heating was done as fast as possible but it took about 20 min. before the test

could be carried out. This is obviously enough time for age hardening to take place.

Aging under Tensile Stress

A TEM micrograph of an AI-Cu sample (alloy 1) solutionized and then heated to 180°C

in a DSC (heatup rate: 50 deg./min) with no external stresses, and then immediately quenched,

is shown in Fig. 6a. The 0"" precipitates are equally distributed, which can be seen by close

examination of the micrograph and diffraction pattern. The SAD associated with Fig. 6a
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revealsstreakingthat is uniform in both directions. When alloy 1 is heated to 160"C under an

applied load, c=69.5 MPa, and then immediately cooled, the ®" precipitates align with the

stress axis (Fig. 6b). The associated SAD confirms the preferred orientation of the plates by the

appearance of streaks in only one direction. More precipitates are formed parallel to.the stress

axis than perpendicular to it. This is supported by the diffraction pattern which shows streaks

with a higher intensity for those precipitates parallel to the stress axis (Fig. 6b). Fig. 6c show

the case where the stress axis in approximately 40 degrees from a cube direction. Here the

sample was heated to 160"C with 6 = 59.7 MPa and then isothermally aged for 2 h while

maintaining the stress of 59.7 MPa followed by a cold water quench. Careful analysis of the

micrograph and the streaking in the associated SAD indicates that there are more precipitate

plates whose axis is nearer the stress direction. In the quaternary alloy the 0" precipitates are

even smaller than in the binary alloy and the orientation effect was also observed. Neither the

bright field, nor the diffraction pattern show any indication of f_ (Fig. 6d).

DSC results were obtained for both alloys using different heating rates (2, 20, and 50

deg/min). In the binary alloy the precipitation of O" was not detected and even O' was difficult

to observe. For slow heating rates only a straight line was obtained. Presumably, the reaction

is taking place over a wide temperature range and, therefore, cannot be resolved. Even for the

faster heating rate (50 deg/min) the exothermic peak is very wide. For the quaternary alloy the

precipitation of O' was not observed in the DSC measurements although it was observed in

TEM. The exothermic peaks at 210°C and 225°C, respectively, are attributed to the

precipitation of the I1 phase. The reaction temperatures are in agreement with TEM results

which did not show any f_ at 160"C.

Samples of alloy 2 with constant area were aged under a tensile stress which was 40%

of the room temperature yield stress, i.e., 69 MPa for solution heat treated samples and 191

MPa for peak aged (T6, 160*C/20 hrs) samples. The stress applied to the solutionized tapered

samples was up to 175 MPa which is equivalent to the yield stress at room temperature.

For a quantitative characterization of the stress aged microstructures, the volume

fraction of precipitates, the number of particles per volume, the particle diameter and thickness

have all been experimentally determined. Data from samples aged under stress were compared

to those aged without stress (T6) and 2% prestrained and peak aged (T8). Figs. 7a - d show

the results of the quantitative microstructural analysis. Although comparisons can be made
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betweenthedifferent testingconditionsthey will generallybemadewith respectto the T6

condition.Quantitativemetallographywasconductedfollowing severaltypesof experiments

combiningthermaltreatmentandappliedstress.Eachof thefourplotscanbedividedinto three
sections.Thefirst two datapointson thefour plots in Fig. 7 arefor thepeakaged (T6) and

prestrainingfollowed by aging to peakstrength (T8) conditions. No applied stresswas

involved duringaging.The nextsetof dataarefor solutionheattreating(SHT) the samples
underanappliedstressfor 10,100,and 1000hoursat 40% of theyield strength.The fourth

datapoint in this particularsetis identicalto theprevious100hr agingtreatmentexceptthat

now theappliedstressisequalto theyieldstrength(markedby an*). Thelastthreedatapoints
arefor applyingastressafter peak strength was obtained (T6).

The results show that the 2% prestraining (which greatly increases the dislocation

interactions (34) followed by heat treating to peak strength increases the volume fraction of

both precipitates (Fig. 7a) but does not increase the number density of _ precipitates (Fig. 7b).

The number density of e' precipitates is increased by a factor of two. The plate lengths (Fig.

7c) and thicknesses (Fig. 7d) of both types increase slightly from T6 to T8.

Aging under stress, i.e., nucleation and growth, (SHT+creep, Fig. 7) reveals that

when the applied stress is 40% of the yield stress the volume fraction of f_ increases

dramatically (from 0.7 after 10 hrs to 1.4% after 1000 hrs) and O' remains relatively constant,

while the particle density of f2 drops at a much higher rate (0.04 particles/hr) than O' (0.008

particles/hr) on aging from 10 to 1000 hrs. Note, however, the greatly increased f_ particle

density at SHT+10 hrs compared with the T6 or T8 condition. Figs. 7c & d support these

changes of aging under an applied stress by demonstrating that the plates increase in diameter

and thickness at about the same rate. This means that coarsening and growth occur

simultaneously. The effect of increasing the applied stress to equal the yield stress (marked

"SHT*" in Fig. 7) results in little change in _ after 100 h except for slightly larger particles,

but for ®' the number of particles per unit volume is larger, as is the volume fraction. This

may be due to the resultant plasticity and concomitant increase in dislocation density.

The third general section of the four plots in Fig. 7 is for material first peak aged (T6)

prior to applying the stress. This experiment is designed to examine precipitate growth and

coarsening under an external load. After 10 hrs in this condition both the volume fraction and
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density of f_ is greater than for the T6 condition. The plate diameter and thickness are about the

same. In contrast, O' is about the same after 10 hours compared to the T6 treatment.

As time under stress increases the volume fraction of £1 grows while its number density

decreases significantly, by about 113 at 1000 h compared to 10 h (Fig. 7b). The initial

increased volume fraction is due to the increased number density compared to T6. Apparently,

there is further nucleation of particles. The _2 particle diameter and thickness also increase with

increasing aging time under stress. For times greater than 10 hr,the volume fraction of O' is

fairly constant and the slight increase is due to the increased thickness (Fig. 7d) of the particles.

The number density remains nearly unchanged. After extensive aging times L2 shows a

higher thermal stability than ®'. The O' precipitates start to grow and coarsen very early.

Considerable growth of _ does not occur before 100 h aging.

Further analysis was conducted to investigate whether preferential nucleation or growth

on certain habit planes occur. Therefore, the volume fraction was determined separately for

every precipitate variant and the angle between the precipitate and the direction of the applied

load was measured. The results are illustrated in Figs. 8 and 9.

The value of the measured angle, a, between precipitate and the stress direction is

subtracted from 90*. This means that precipitates with 190" - al = 0 ° are perpendicular and those

with 190" - al = 90* are parallel to the stress direction. The experiment was done twice. Once

for SHT+creep under an applied load (Fig. 8) and repeated for samples that were aged to peak

strength with no applied load (T6), followed by further aging under an external stress (Fig. 9).

The former examines nucleation and growth while the latter focuses on growth and coarsening.

For solution heat treated samples of alloy 2, it was found that the higher volume fractions of O'

are parallel and the lower volume fractions are perpendicular to the stress direction (Fig. 8a).

For £2 the values are randomly scattered over the whole spectrum of angles (Fig. 8b). No

comparable effect was found for samples aged under stress in the T6 condition (Figs. 9a-b)

neither for the volume fractions, nor for the number density or the size of the precipitates. In

order to investigate the possibility of a threshold stress that must be exceeded before a similar

effect could be observed for (, samples were aged under a higher stress. Fig. 10 shows that

after aging under the higher stress, which is equivalent to the room temperature yield stress, the
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highervolumefractionsareobservedparallel to thestressaxisfor both type of precipitates.

The thresholdstressfor f_ in this alloy is estimatedto be between119 and 142MPa for

solutionheattreatedsamples.

Taperedsamplesof the solutionizedbinaryA1-Cumaterial(alloy 1) werealso aged
understressto studytheobservedeffect in greaterdetail. Fig. 11showsthat the resultsare

consistentwith thoseobtainedon thequaternaryalloy (Fig. 10).The O' phaseprecipitates

preferentially parallel to the stressaxis. The thresholdstressfor O" was estimatedto be

between16and 19MPa.Fig. 12 is a micrographof an agedsample.The direction of the

appliedstressis indicatedby arrows.The micrographshowsvery clearly that almost all
precipitatesarealignedparallel to thestressaxis. Figs. 13and14showthe volumefraction

andthenumberdensityasa function of the externallyappliedstressfor the binary andthe
quaternaryalloy. In the quaternaryalloy (alloy 2) (Fig. 13) it was found that the number

densityof f_ precipitatesdecreasedwith increasingstresswhereasthe numberdensityof O'

increasedwith risingstress.For thebinaryalloy(Fig. 14)bothvolumefractionandprecipitate

densitycorrelateswith 19MPaasthethresholdstresswherebygreaterstressesalignO' parallel

to thestressaxis.After aninitial increase,thenumberdensityof O' decreaseswith increasing

stress.

Discussion

Initially thediscussionwill focuson O' ratherthanon_ becauseof thesimplerbinary

system.However, even here the precipitatesequencethat inevitably results due to our

experimentaldesignmake interpretation complicated.Specifically, the material is first

solutionizedandquenchedbeforeheatingup to 160"C(with andwithout anexternalstress).

Thismeansthatprecipitationbeginswith GPzonesandbecause19'is presentat peakstrength,

thesequencelikely passesthroughthe O" phase(Fig. 6). As 0" (sometimesreferredto as

GP2)generallyfollows GPzonesby forming a secondlayer of Cu atomsparallel to the GP

zoneonthe(001)plane,ideallywith twoAI planesbetweenthetwo Cuplanes,theeffectof an

externalstresson thearrangementis notknown.Evenwithout anexternalstressthelayering

of A1planesis sometimestwoor four planesinsteadof three.Calculationsby deFontaine(35)

showthatthreeplanesminimizesthestrain.Therearetwo modelsconcerningthe ®'" -> t9"

529



transition.The first is based on the classical interpretation of e' heterogeneous nucleation at the

e"/A1 matrix interface or nearby at a defect and dissolving the 0" precipitate by utilizing the

Cu. The second is that there are rearrangements of atoms within the e" lattice that lead to the

correct stoichiometry and crystal structure of e' (36). This occurs by a gradual evolution of the

new crystal structure rather than by nucleating a new phase by forming an embryo.

The present results clearly show that for binary A1-Cu both e'" (Fig. 6b) and 19' (Fig.

12) preferentially align with the applied stress (Fig. 15), provided the stress is above a critical

value. Likewise f_ shows exactly the same behavior at a higher critical stress value. Again,

focusing on the A1-Cu binary alloy and assuming that the precipitation of e' is by classical

nucleation and growth, the question of whether the preferred orientation of the plates parallel to

the stress axis is due to nucleation or growth can be examined by quantitatively examining the

data when the alloy is brought to the annealing temperature, all the while under an external

stress, and comparing these results with samples that were first aged to peak strength and then

further aged under an applied stress (Figs. 8 and 9). In the former case the O' plates align with

the applied stress and in the latter they remain randomly distributed. Further, the data in Fig. 11

and the TEM image in Fig. 12 clearly demonstrate that e' preferentially aligns with the applied

stress direction. These data were obtained from a tapered sample where the cross sectional area

gave a stress value of about 50% of the yield stress for this alloy, or 59 MPa. Examination of

other cross sectional areas where the effective stress is greater and less revealed that there is a

critical stress of approximately 19 MPa below which no effect of the applied stress is detected

in the binary alloy. This result is additionally strengthened by Fig. 14a, b where at 20 MPa and

above the density and volume fraction data fall into two clear groups, viz., {001 } planes that

contain a high density of ®' plates and {001 } that have nearly zero density of plates. Again,

TEM reveals that the high density of plates are parallel to the stress axis. The data from Fig. 11

agree with the conclusion of Eto et al (25) that the phenomenon of O" plate alignment is due to

nucleation and not subsequent growth. Also, Eto et al have reported that there is a critical

temperature where this effect applies, which when coupled with our observations of a critical

stress at a particular temperture, i.e, 160°C, suggests that it is the nucleation of these plates that

leads to alignment with the stress axis. Because of the different expansion coefficients between
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theprecipitateplatesandthe aluminummatrix, the critical stress,t_c, dividing the regimes

between plate alignment and randomness is most likely to be temperature dependent. The

applied stress reported by Eto et al is 73.5 MPa which produced alignment of 0' with the

stress axis. However, they did not vary the stress to obtain the minimum, or critical value,

dividing the two regimes. Note also, from Fig. 14, that the volume fraction data seem to be

constant as the applied stress is increased up to the yield point and only the relative population

densities on the cube planes change.

Turning to the quaternary alloy, the trend for the number density (Fig. 13a,b) of f_

precipitates with increasing external stress is downwards. The density on the { 111 } aluminum

matrix planes parallel to the stress axis (f_(h)) initially decreases and then after about 120 MPa

remains constant, whereas those on the matrix planes approximately perpendicular to the stress

axis (_(1)) continuously decrease in numbers as the stress rises. This finding correlates with

the results of Ringer et al (37) who noted that _ densities are dramatically decreased with a T8

treatment. Data from Ringer et al. (37) are plotted on Figs. 7a,b along with our data. Although

their alloy has a different composition than the alloy used in this study, they did observe the

same relative decrease in fl density with prior deformation. They attribute this to the

possibility of dislocations disrupting precursor clusters that lead to f_ nucleation. Perhaps

elastic strain has a similar effect on these clusters if they do exist. Regardless, it suggests a

nucleation effect.

The number density of O' increases with rising stress on {001 } planes parallel to the

stress axis (higher precipitate density) and those perpendicular to the stress axis (lower

density). This result is similar to the binary alloy, but not as dramatic, and wide separation

does not occur until a much higher applied stresses. This could be due to an effective screening

effect of the f_ plates.

As O' precipitates preferentially nucleate at dislocations and O'" interfaces, it was

expected that the number density might increase with a prior plastic strain. The amount of

prestraining (2%) was probably too low to provide a considerable higher number of nucleation

sites. Ringer, et al. (37) recently showed that cold work (6%) before aging refines the mean

size and thickness of _ but the number density is considerably reduced compared to

531



undeformedmaterial.Ontheotherhand,O' wasobservedin amoreuniformdispersion.They

attributethis to the interferenceof coldwork with thenucleationof f_ becausethepassageof

dislocationsthroughthe matrix disruptsthe clusteringprocessesandalsoaltersthe vacancy

contentthatmaybeaprecurserto _ nucleation.In contrastto this,dislocationsprovidesitesto

facilitateheterogeneousnucleationof O'.

The presenteffort indicatesnucleationis responsiblefor the observedeffect of an

applied stress.Cassadaet al. (34) and Wangand Shiflet (38) have demonstratedthat the

influenceof a stressfield can not only determinethe nucleationsitebut alsothat classical

nucleation theory, modified to accountfor the stresssurroundinga lattice defect, canbe
successfullyappliedto explaintheexperimentalobservation.In their studies,thestressfield

surroundinganedgedislocationwasshownto dominatein thenucleationof 8' precipitatesin

A1-Li alloys at the aging temperatureemployed(210-260oC).The presentsituation is to

accountfor thealignmentof O" and®' precipitateswith thestressaxisoncethecritical stress

for thespecificagingtemperaturehasbeenapplied.Like the8' precipitationondislocations,

theO"plateswill form asto minimizethestrainenergyassociatedwith nucleation.Because8'

hasanegativevolumemisfit with respectto thealuminummatrix,theembryosnucleateonly

on thecompressivesideof anedgedislocation.Likewise it is not surprisingthatbecauset9'

plateshaveanegativemisfit with thealuminummatrix theywill nucleateto cancelthismisfit,

i.e., alongthecubeplanesassociatedwith acompressivearea,or parallelto theappliedstress,

andtherebyreducetheenergybarrierassociatedwith nucleation.As only theearlieststagesof

formationshouldthenbeconsidered,acrystallographicrepresentationof thecritical embryois

required.A model developedby DahmenandWestmacott(36) suggestthat thesmallestO'

precipitate (critical nucleus)is 2 unit cells which would havea vacancymisfit (negative).

StobbsandPurdy (39)haveexperimentallyshownthat 2 unit cells or smallerindeedhavea

vacancy-typemisfit (Fig. 16).Fig. 17showsacrystallographicmodelof a O' precipitatein an

Al-matrix properlyorientedin thecube/cuberelationship.A twounit cell O' precipitatefits into

3 unit cells of the Al-matrix with amisfit of - 4.5%(calculatedfrom thelatticeparameters,
Tablel/I). Thecurrentresultssuggestthatin thepresenceof anappliedstressthelatticestrain
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is suchasto reducethisvacancy misfit when the O' plates nucleate parallel to the stress axis.

This contradicts the results of Hosford and Agrawal (24) but is in agreement with Eto et

al. (25). Hosford and Agrawal found a higher density of O' precipitates perpendicular to the

tensile stress axis. Nevertheless, their single published micrograph (in a [310] orientation) is

not conclusive and they did not carry out any quantitative analysis. Eto et al.(25), tried to

reproduce Hosford and Agrawal's results by aging some samples at 210°C but they could not

produce oriented precipitates at this temperature. They found a strong effect on nucleation after

aging at 170"C. Oriented O' precipitates were observed after aging under stress followed by

stress free aging. No orienting effect was observed for stress free aging followed by stress

aging. Eto et al observed the same effect for GP1 and GP2 (O") zones after aging at 80"C.

This led to the conclusion that an applied tensile stress produces, preferentially, variants of

GP1 zones parallel to the tensile stress axis which act as nuclei for GP2 (®") and these will

grow further to O'. They suggest that there is a critical temperature (180*C < T c < 190*C). If

the alloy is aged at T > T c, O' is formed directly and the precipitation is not affected by an

applied stress. This is the reason they give for not reproducing Hosford and Agrawal's results.

Eto et al explain their results through the interaction energy between the GP zones and an

applied stress. The interaction energy can be expressed by the modulus effect due to the

difference of the elastic moduli and the misfit effect due to the presence of misfit strain between

the matrix and the zone. Calculations show that a reverse of the stress direction does not affect

the modulus effect and, therefore, the modulus effect cannot be the reason for the preferential

precipitation. The suggestion is made by Eto et al that there is a larger effect due to the misfit

strain of GP1 zones which is larger parallel to the disc plane than in the perpendicular direction.

The present results indicate that there is a critical stress, o c, coupled with a possible critical

temperature, T c, proposed by Eto et al.

In contrast to this, Sauthoff (23) found that stress orienting occurs primarily by

selective coarsening, but he found a smaller, but observable effect on nucleation, too. He

showed that there is an energy difference between particles which are oriented differently to the

external stress axis (40). He discussed theoretically, how nucleation, growth and coarsening

are affected by the orienting energy and found that particle orienting is feasible primarily by
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coarsening (41). We do not agree with Sauthoff because of the strict application of classical

nucleation theory at such a large undercooling.

The threshold stress for an orienting effect was found to be very different for f_ and e'.

This may have different reasons. There is not as much information available for _ as for O'

which makes the discussion about the observed results more difficult. However, similar

explanations for the effect on e' should be valid for f_, as well. First of all, the habit plane is

different for _ and e'. This means the elastic modulus of the Al-matrix is 20% higher in the

[111] direction for _2 than in the [100] direction for e'. Even so, there must be another reason

because this difference in the modulus is not high enough to explain the large difference in the

threshold stresses. A second important variable should be the amount of misfit between the

precipitate and the matrix. The calculated misfit of f2 is twice as high as that of O' at very early

stages of development and would require a higher stress to accommodate it. Experiments have

determined that ( has a large negative misfit of -9.3% (42) or -8.3% (12) for 1 unit cell thick

nuclei (Table IV). In addition, the crystal structure of the precipitates is probably not the same.

Concerning growth, prestraining (T8) increases the volume fraction of f_ and O'

precipitates but there is only a little change in the number density, compared to the peak aged

condition (T6). This means that growth kinetics were accelerated. For plate growth and latter

stages of development, including coarsening, it is generally accepted now that plate shaped

particles grow by a ledge mechanism (43). Fig. 18 shows a high resolution TEM micrograph

with a growth ledge on a _2 precipitate. During growth the growth ledge height should have the

requisite number of _ subunits (half unit cells) to minimize the elastic accommodation strain.

The mechanism for 12 growth ledges by Fonda et al (42), based on HRTEM observations,

involved both positve and negative misfit associated with the growth ledge. Their model

indicates that multiples of f2 planes can give the requisite misfit that accomodates the applied

stress. Under the present conditions with the plates aligned with the applied stress the ledges

should yield a negative misfit. The micrograph in Fig. 18, when compared to Figs. 6 and 9 in

ref. (42) confirm this conclusion. However, because the growth ledges can accomodate both

positve and negative misfit by merely adjusting the height of the growth riser, growth rates

should not be very different in different directions relative to the applied stress. In coarsening
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studiesunderanappliedstressfollowing anormaltemperT8, coarseningrateswerenot much

differentonhabit planevariantsparallelorperpendicularto theappliedstressaxis (44).This,

again, gives support that the primary affect of an applied stressmanifestsitself during

nucleationandnot growth.FurtherHRTEM work hasto bedoneto analyzethegrowthledge

height.Dueto thefactthatT6 samplesdid notshowpreferentialorientationafterfurtherstress

aging,weassumethatin ourexperimentsthenucleationof precipitatesisprimarily affected.

Conclusion

It was found that f_ and O' precipitates are preferentially oriented parallel to an

externally applied tensile stress in the solution heat treated condition. The nucleation of the

precipitates is strongly affected by the applied stress and there is a critical value of stress that

must be exceeded that leads to preverential nucleation on habit plane varients. Both O' and

plates have a negative misfit with the matrix when very thin which leads to plate nucleation on

variants under compression. For e' the critical stress is between 16 and 19 MPa and for f_ it

is between 120 and 140 MPa at a temperture of 160°C. When combined with the results of Eto

et al (25) this critical stress is temperature dependent.
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Table I: Chemical Composition in wt.%.

Alloy Cu Mg Mn Ag Zr V Fe Si

1" 5.00

2 5.75 0.52 0.30 0.49 0.16 0.09 0.06 0.05

Bal.

Bal.

* high purity

Table II: Mechanical Properties at Ambient and Elevated Temperature

Alloy Condition Orientation T [*C]
(_y [MPa] UTS [MPa] ef [%]

1 SHT RD RT 120.1 274.5 30.8

1 SHT RD 163 168.8 - -

2 SHT RD RT 167.0 408.8 24.3

2 SHT 45" RT 181.2 405.2 24.2

2 SHT TD RT 169.5 402.8 24.2

2 SHT RD 163 244.4 -

2 T6 RD RT 480.0 535.4 12.1

2 T6 45* RT 471.1 520.5 13.3

2 T6 TD RT 481.4 526.7 12.0

2 T6 RD 163 366.7 -
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TablellI: Misfit, 8,calculatedfrom latticeparametersfor ID"and19'in aluminummatrix

(aAl= 0.4049nm, aO"= 0.404nm, cO"= 0.768nm, aO'= 0.404nm,c O"= 0.580nm).

Numberof

19"unit cells

1

1.5

2

2.5

3

3.5

4

4.5

5

Numberof A1

unit cells

2

3

4

5

6

7

8

9

10

Misfit _5[%]

- 5.2

- 5.2

- 5.2

- 5.2

- 5.2

- 5.2

- 5.2

- 5.2

- 5.2

Numberof

19"unit cells

1

1.5

2*

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Numberof A1

unit cells

2

2

3

4

4

5

6

6

7

8

9

9

10

Misfit _5[%]

- 28

+ 7.4

- 4.5

- 10.5

+ 7.4

+ 0.3

- 4.5

+ 7.4

+ 2.3

- 1.5

- 4.5

+2.1

+ 0.3

* Smallestobserved19'nucleus
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TableIV: Misfit, 8,calculatedfrom latticeparametersfor fl (orthorhombicandtetragonal)in

aluminum matrix (aAl= 0.4049nm, at_,ortho_.= 0.496nm, bt_,o_orh.= 0.895rim,c U,orthorh.

= 0.848 rim, af_,tetra.= 0.6066rim,c _, tetra.= 0.496rim).

Numberof

unit cells

(orthorhomb.)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Number of A1

unit cells

4

5

7

9

11

13

15

16

18

20

22

24

25

28

29

31

Misfit _5[%]

- 9.3

+8.8

+ 3.6

+ 0.8

-1.1

- 2.3

- 3.3

I

+ 2.0

+ 0.8

- 0.3

-1.1

- 1.8

+ 1.6

-2.8

+0.1

- 0.5

Number of

unit cells

(tetragonal)

1

1.5

2

2.5

3

I

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of AI

unit cells

2

3

4

!

5

6

6

7

8

9

10

11

12

13

14

15

Misfit _5[%]

- 8.3

- 8.3

- 8.3

I

- 8.3

- 8.3

+ 7.0

I

+ 4.8

+ 3.2

+ 1.9

+ 0.8

+0.1

-0.1

I

- 1.2

1.7

- 2.2
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Fig. 1: Creep sample geometry, a) sample with constant cross section b) tapered sample.
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a)

b)

Fig. 2: Completely recrystallized microstructure after solution heat treatment, a) A1-Cu (alloy 1)
b) AI-Cu-Mg-Ag (alloy 2). (LM)
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a)

b)

Fig. 3: Microstructure of alloy 2 solution heat treated and aged 2Oh/160°C/cold water quenched.

a) Two f2 and one (3" variant: [110] zone axis. b') Two (3' variants: [001] zone axis.
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Fig. 5: Age hardening response of alloy 2 after aging at 160"C.
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a)

b_

Fig. 6: Initial microstructure of the solutionized material, a) AI-Cu: DSC sample heated to 180°C,

no stress applied. ®" is randomly distributed and streak intensity is the same for both orientations.

[001] zone axis b) AI-Cu: creep sample heated to 160°C with cy = 69.5 MPa applied and cold water

quenched. ®" precipitates preferentially parallel to the stress axis. The streak intensity is higher for

this orientation. [001] zone axis c) AI-Cu: creep sample heated to 160°C with _ = 59.7 MPa +

2h/59.7MPa/160°C/cold water quenched. ®" is preferentially oriented parallel to the stress axis.

The streaks begin to break up. Their intensity is higher for parallel oriented precipitates. [001 ] zone

axis d) AI-Cu-Mg-Ag: creep sample heated to 160°C with cy = 140.9 MPa and cold water

quenched. ®" precipitates preferentially parallel to the stress axis No indication for

f2. [I10] zone axis. 548



c)

d)

Fig. 6 continued
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Fig. 12: Microstructure of A1-Cu, solutionized, quenched and aged under a stress of 33.4 MPa

for 100 h at 160°C. The stress direction is indicated by arrows, t9' precipitates are preferentially

oriented parallel to the stress axis. 555
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Fig. 15: Precipitates are preferentially aligned parallel to the external stress direction (schematic

drawing).
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Fig. 17: Crystallographic model of a 2 unit cell O' nucleus which fits into 3 unit cells of the

Aluminum matrix. Cube/cube relationship.

Fig. 18: HRTEM micrograph of A1-Cu-Mg-Ag, solutionized and aged 1000 h at 160°C with a

tensile stress of 69 MPa. f2 precipitate with a growth ledge. The stress axis is indicated by arrows.
559
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Abstract

The objective of this investigation was to modify 2009 (a AI/SiC particulate material

produced by Advanced Composite Materials Corporation) by adding silver to promote the

formation of the f2 phase in the material in order to increase the composite's elevated temperature

stability.

The anticipated _ phase was not obtained in the matrix of the 2009M/SiC composite. It is

felt that this is due to the low Cu/Mg ratio in the material produced by ACMC and an unexpected

large amount of Si in the matrix due to aluminum reaction with the SiC particles from exceeding the

solidus temperature during composite fabrication. Silicon in an AI-Cu-Mg-Ag alloy has been

shown to inhibit f2 phase formation.

The matrix microstructure was composed predominately of very small, uniformly

distributed S' phase. The S' precipitates exhibited considerable thermal stability in that they

showed very little coarsening after 500 hours at 150"C. This is considerably better than literature

data on similar composite systems.

The tensile strength, yield strength, and elongation to failture were 521 MPa, 424 MPa and

5% respectively for the peak aged condition and did not decrease appreciably with prolonged

thermal exposure at 150"C. Naturally aged samples gave a UTS of 500 MPa, a yield strength of

305 MPa and elongation of >10% after 24 hours. Elevated temperature tensile tests at 150"C and

177"C gave a reduction in yield strength of 8% and 15% respectively.

Introduction

Most age hardenable aluminum alloys are limited to application temperatures below

approximately 100*C. Thermal exposure above this temperature will result in a degradation of
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mechanicalpropertiesdue to coarsening of the precipitates on which the alloys depend for their

strength. Discontinuous reinforced composites composed of AI-Cu-Mg/SiCp, because of their

higher modulus than conventional A1 alloys, are being considered for elevated temperature

applications such as the High Speed Civil Transport (HSCT) program.

A1-Cu-Mg alloys containing a small amount of Ag have been shown to possess superior

mechanical properties and thermal stability above 100*C. This is mainly due to formation of the

semi-coherent fl phase in the alloy, which is more thermally stable than the normal 0' percipitate.

It was felt that using an alloy strengthened by the f_ phase as a matrix alloy could generate a high

modulus composite material with greater elevated temperature stablity in HSCT applications.

The objective of this study was to modify 2009 (an A1-Cu-Mg/SiCp material produced by

Advanced Composite Materials Corporation) with Ag additions and optimum Cu/Mg ratio in an

attempt to achieve the formation of the f_ phase in the composite. This modified material was then

characterized with respect to microstructure, aging response, thermal stability, and mechanical

properties.

Summary of Results

Matrix Alloy Development: The results from the A1-Cu-Mg-Ag alloy (to be used for the

composite matrix) studies indicate that variations as small as 0.1 (wt%) Ag addition can change the

thermal stability and hardness of the alloy. The study shows that higher Cu/Mg ratio gives higher

strength. Lower Cu/Mg ratio gives more thermal stability.

All of the experimental Ag containing alloys were more thermally stable than similar alloys

without the Ag addition. Hardness and shear strength data indicated that the alloy

Al-3.2Cu-0.45Mg-O.5Ag (wt%) and designated A11MM possesses the best thermal stability

among the experimental alloys. The shear strength dropped only 15% for the A11MM alloy after

aging at 150°C for 3023 hours.

Four precipitate phases were found in the A1-Cu-Mg-Ag experimental alloys. The f_ phase

was the primary phase while 0' and S' were present in minor amounts. A cubic phase, o"

(AIsCu6Mg2), was also found in the alloy. This phase was scattered throughout the alloy,

however it was not determined how to routinely obtain it in high volume percent.

The _ phase has a cube-on-cube relationship and is semicoherent with the A1 matrix. The

point group of this phase was determined as 23 (one of the cubic point groups) by using

Convergent Beam Electron Diffraction (CBED) techniques. The Young's modulus, shear modulus
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andPoisson'sratioof the intermetallico phase were determined to be: E=159.3 Gpa; G=60.89

Gpa; and Poisson's ratio = 0.308. The o phase possesses a high har&aess value at room

temperature (H=546 Kg/mm2), which translates to a high value for yield strength (1784 MPa). At

350°C, the hardness of the intermetallic a phase retained 70% of its room temperature value. A

very low coarsening behavior for this phase was found after aging at 200°C, which implies that AI

alloys strengthened by the c precipitate could have superior thermal stability.

Coarsening studies show that the 0' phase in an A1-Cu alloy has a larger size and a longer

growth period than the f_ and c phases in AI-Cu-Mg-Ag alloys at 200"C. The f_ phase has a larger

size and a longer growth period than the o phase at 200°C. The morphologies of growth ledges

vary in different precipitates. Straight and facet ledges (which were observed in f_ and o)

correspond to a small size and low growth rate in precipitates. Rounded ledges (as were seen in

0') correspond to a large size and high growth rate. Results from the present study indicate that the

growth of f_ and cr do not follow Lifshitz-Slyozov-Wagner (LSW) predictions. The experimental

data suggests that the I2 phase may not be a stable phase for extended elevated temperature

exposure. After exposure at 150"C for 3023 hours, TEM results show that the density of 0' and S'

precipitates increases, some large size 0 develops, and the density of the f_ phase decreases.

Estimates for the interracial energies of the f2 and o phases were determined. Based on the

van de Merwe model and broken bond model, calculations for the interfacial energy of the o phase

was estimated as 0.014 J/m 2. Using the Zener-Hillert equation, the interracial energy for the f_

phase was estimated to be 0.0118 J/m 2 for the coherent face and 0.354 Jim 2 for the edge.

A strengthening mechanism resulting from dislocation shearing was proposed for alloys

containing semicoherent precipitates. TEM and HRTEM observations showed that multiple cutting

and small steps with the same height occurred in the f_ phase. The cutting caused antiphase

boundaries and disorder in the f_ phase which could be resolved in the TEM. Because of the

difference in crystal structure and slip systems between the precipitates and the matrix, the moving

direction of a dislocation changes as it impinges on the semicoherent precipitate. After cutting, a

high energy interface with a mismatched bond is created at the semicoherent precipitate/matrix

interface because of the different crystal structure and Burgers vector in each phase. The larger the
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Burgersvectorsare,thehigherthe interfacialenergyof thenewlycreatedinterface.Multiple small

cuttingof asemicoherentphase,suchas_, isenergeticallymorefavorablethanalargecutting in

onelocation,therefore,astheBurgersvectorincreases,the interracialenergyof thenewinterface

couldincreasenonlinearly.As aresult,dislocationshearingweakensalloyswith coherent

precipitatesbut thosewithsemicoherentprecipitatesarestrengthened.
Investigationof theeffectof dislocationdensityon f2 phaseformationindicatesthat

preagingdeformationof theAI-Cu-Mg-AgalloycanpromoteS' and0' formationandreducethe

amountof f_ phase.In orderto obtainmaximumf_ phasein thealloyspreagingdeformationmust
beminimized.

Modified Composite Development: The alloy with the composition

AI-3.2Cu-0.45Mg-0.5Ag (designated A11MM) was selected as the matrix alloy for forming the

composites since it was determined that this alloy precipitated a high density of the _ phase with

optimum heat treatment and exhibited the best thermal stability. The composites (2009M/SiCp)

produced from this alloy did not contain appreciable amounts of the _ phase. The S' phase was

seen to be the predominant precipitate in the 2009M/SiCp material. The reasons for the _ phase

suppression can be summarized as follows:

i) high Si content in the matrix of the composite which dissolved from the SiC particles

during composite fabrication (as a result of exceeding the solidus) inhibits the f_ phase

formation

ii) high dislocation density caused by the Coefficient of Thermal Expansion (CTE) difference

of the reinforcement and matrix promotes S' and 0' precipitate formation in lieu of f_ in the

matrix

iii) a low vacancy concentration may be present in the matrix of the composites due to the high

density of vacancy sinks such as sub-grain and grain boundaries (the material has very

small grain size), the A1/SiCp interfaces, and the large number of dislocations

iv) composition segregation which occurred at grain boundaries, triple points, and A1/SiC

interfaces may also alter the matrix composition.
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Althoughthef2 phasewasnotachievedin the2009M/SiCpmaterial,Ag additiongavea

matrixmicrostructurethatwascomposedpredominatelyof verysmall,uniformlydistributedS'

phase.TheS"precipitatesexhibitedunusualthermalstabilityin thattheyshowedverylittle

coarseningafter 1600hoursat 150"C.This isconsiderablybetterthanliteraturedataonsimilar

compositesystems.Thestudyshowsthatkineticsdata(KT value)for coarseningof theS'

precipitatein 2009M/SiCpis lower thanfor thef2 phasein mostAl- Cu-Mg-AgalloysandS' in the

standard2009/SICcomposite.Thethermalstabilityof themodifiedcompositewascomparableto
theA11MM alloy(t"2phasestrengthened).

Theroomtemperaturetensilestrength,yieldstrength,andelongationto failurefor the

2009M/SiCpcompositeswere521MPa,424MPa, and >5% respectively for the 190"C peak aged

condition and did not decrease apprecibly with prolonged thermal exposure at 150°C (8% after

1600 hours). Exposure at 177"C showed a 12% and 19% reduction in UTS after 125 and 500

hours respectively. Peak aging at 160"C gave the highest strengths and elongation (542 MPa, 440

MPa, 6.1%). Elevated temperature tensile tests at 150 and 177°C gave a reduction in yield strength

of 8% and 15% respectively. Thermal cycling over the range of 32-150°C for 500 cycles did not

degrade tensile properties. Fracture toughness for the composite is similar to the standard material

with an unmodified matrix, 22.7 MPam 1/2, does not decrease when determined at 150"C.

Based on the experimental results and theoretical analysis, it is suggested that residual

stress in the particulate reinforced composite reduces the nucleation barrier and increases the

driving force for precipitation in the composite. This may result in a shift of the T-T-T curve and a

uniform distribution of the S' precipitation in the composite. This can also contribute to the aging

acceleration for the composites. As a result of the analysis, the aging acceleration of the

composites can be considered as a combination of several factors:

i) high dislocation density promotes a higher number of nucleation sites, and a lower

nucleation barrier for precipitation

ii) residual stress increases driving force of the precipitation and decreases the nucleation

barrier
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iii) relaxationof theresidualstressesmaycontributeto thesharpincreaseof theagingcurve.

A comparisonof somecharacteristicsfor thematrixalloy(A11MM), 2009M/SiC.pare
summarizedin thefollowing table.

Summary of the characteristics of the alloy and composite

A11MM 2009M]SiCp 15 v/o 2009/SiCp 19 v/o

precipitate (major) f2 S' S'

hardness (HRB) 69 80

E (GPa) 70 91 96

UTS (MPa) 440 550 550

YS (MPa) 344 410 410

elongation (%) > 10 5=6 3

n (R-O) 25°C 13.8 11.1 7'5

n (R-O) 150°C 32.5 13.8 -

k lc MPa_/M >30 21.2 20.3

Q (kJ/mol) 132 (xq) 69 (S') 55.3 (S') (15 v/o)

KT (knm3s -1) 190°C 321 (t2) 50 (S') 149 (S') (15 v/o)
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