
NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-97-018

WVU-IVV-97-018

WVU-CS-TR-97-020

Providing the Persistend Data Storage in a Software
Engineering Environment Using Java/COBRA and a DBMS

Swarn S. Dhaliwal

,3

National Aeronautics and Space Administration

West Virginia University

NASA-IVV-97-018

NASA IV&V Facility, Fairmont, West Virginia

Providing the Persistent Data Storage in a Software Engineering

Environment Using Java/COBRA and a DBMS

Swarn S. Dhaliwal

December 5, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http://www.ivv.nasa.gov/

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

Providing the Persistent Data Storage in a Software Engineering

Environment Using Java/CORBA and a DBMS

THESIS

Submitted to the Eberly College of Arts and Sciences
Of

West Virginia University

In Partial Fulfillment of the Requirements for

The Degree of Master of Science

Sward S. Dhaliwal

Department of Computer Science

West Virginia University

Morgantown, WV 26506

December 1997

APPROVAL OF ADVISORY COMMITTEE

Steve M. Easterbrook, Ph.D.

V. "Juggy" Jagannathan, Ph. D.

John R. Callahan, Ph.D., Chair

II

To my brother, my sisters,

my sister-in-law, and

my wife

Ill

Acknowledgements

I wish to express my deep sense of gratitude to my major Professor Dr. Jack

Callahan for giving me an opportunity to be a part of the wonderful SRL (Software

Research Laboratory). His ever-willingness to provide technical support and his

ability to stimulate intellectual interest has had a profound influence on me and has

gone a long way in the successful completion of this thesis.

I can never express enough appreciation to my supervisor Dr. Steve

Easterbrook whose able guidance and foresight made the planning and completion of

this thesis possible. His cheerful and friendly disposition, his ever-willingness to

help, and his ability to provide constructive criticism and intellectual stimulation are

exemplary. I consider myself fortunate having had an opportunity to work with him.

Thanks are also due to Dr. V. "Juggy" Jagannathan far agreeing to be on my

committee and his willingness to provide technical help during planning the thesis

research. I wish to thank everybody at SRL for always being ready to help and for

providing an excellent work environment. I have really enjoyed being a part of such

an outstanding organization. I express my gratitude to Todd Montgomery for

providing technical help. Appreciation is also extended to my fellow graduate

students : Mani (my office-mate), Zhang (my team-mate), Reshma, and Nichalay far

their help and pleasant companionship. They have really made my stint as a

computer science graduate student enjoyable.

I will always be grateful to my parents whose love and moral support have

enabled me to come thus far. No words suffice to thank my elder brother, my

sisters, my sister-in-law, and my wife for their love and moral support. The love of

my nieces and nephews has always been a source of inspiration for me.

The financial support provided by NASA-IV&V Cooperative Research Project

in the form of a Graduate Research Assistantship is gratefully acknowledged.

Table of Contents

List of Figures .. 1

CHAPTER 1: Introduction ... 2

CHAPTER 2: Literature Review .. 7

2.1 Requirements Engineering .. 8
2.2 ViewPoints Framework ... 11

2.3 Computer Supported Collaborative Work .. 14
2.4 Persistent Data Storage in Software Development Environments 22

CHAPTER 3: Methodology ... 31

3.1 TCM Software ... 33

3.2 Java Programming Environment ... 35
3.3 C++ to Java Translation of TCM ... 37

3.3.1 Templates ... 37
3.3.2.Strings .. 38
3.3.3 Parameter Passing ... 38
3.3.4 GUI Code ... 39

3.3.5 Storage�Retrieval .. 41
3.3.6 Other Miscellaneous Issues .. 44

3.4 Java, CORBA, Web, and Database Server Approach ... 45

3.4.1 Overview of CORBA ... 46
3.4.2.Visibrokerfor Java ORB ... 49
3.4.3 Extensible Structs .. 54

3.5 Java Relational Binding ... 56

CHAPTER 4: Results and Discussion .. 61

4.1 Java Component: Storage/Retrieval Mechanism of TcmJava 62
4.2 CORBA Component: CORBA Compliant Java Code ... 68

4.3 Web Component: Integration of TcmJava and CORBA components with Web 73
4.4 Database Server Component: JRB and Database Server 74

4.4.1 The tcmJavaServer Package .. 76

4.4.2 Using the Database Server .. 78
4.4.3 Persistent Objects .. 79
4.4.4 Transaction Management .. 81
4.4.5 Access Control ... 81

4.4.6 Creating Persistent tcmJavaServer Objects .. 82

4.4. 7 Retrieving Persistent tcmJavaServer Objects ... 83
4.4.8 Deleting Persistent Objects .. 85

CHAPTER 5 Summary, Conclusions, and Future Work 87

REFERENCES ... 91

List of Figures

1. A client application invoking operations on an object through ORB 50

2. Interaction of an applet with HOP Gatekeeper in a distributed setting 52

3. Architectural overview of a JRB application ... 56

4. Architecture of the Java, CORBA, Web, and Database Server approach 59

5. Conceptual view of the process of storing a document generated by TCM 63

6. Implementation of typical WriteMembers methods for Subject and Shape classes. 64

7. Translated code of WriteMembers methods for Subject and Shape classes 65

8. Conceptual view of the storage/retrieval process in TcmJava 67

9. Interface definition for the CORBA object providing persistent storage 70

10. An implementation of the TcmLoadSave CORBA interface 70

11. Java source code for the sk TcrnLoadSave class 71

12. Java source code for the _TcmLoadSavelmplBase class 71

13. Description of the operation of the prototype implementation 73

14. Corresponding class-hierarchies in the tcmJava and tcmJavaServer packages 77

15. A typical class from tcmJavaServer package before being persistence capable 79

16. A typical class from tcmJavaServer package after being persistence capable 80

17. Retrieval of a previously stored document from the database 84
t

ABSTRACT

An investigation was undertaken to build the software foundation for the WHERE (Web-

based Hyper-text Environment for Requirements Engineering) project. The TCM

(Toolkit for Conceptual Modeling) was chosen as the foundation software for the

WHERE project which aims to provide an environment for facilitating collaboration

among geographically distributed people involved in the Requirements Engineering

process. The TCM is a collection of diagram and table editors and has been implemented

in the C++ programming language. The C++ implementation of the TCM was translated

into Java in order to allow the editors to be used for building various functionality of the

WHERE project; the WHERE project intends to use the Web as its communication back-

bone. One of the limitations of the translated software (TcrnJava), which militated

against its use in the WHERE project, was persistent data management mechanisms

which it inherited from the original TCM; it was designed to be used in standalone

applications. Before TcmJava editors could be used as a part of the multi-user,

geographically distributed applications of the WHERE project, a persistent storage

mechanism must be built which would allow data communication over the Internet, using

the capabilities of the Web. An approach involving features of Java, CORBA (Common

Object Request Broker), the Web, a middle-ware (Java Relational Binding (JRB)), and a

database server was used to build the persistent data management infrastructure for the

WHERE project. The developed infrastructure allows a TcmJava editor to be

downloaded and run from a network host by using a JDK 1.1 (Java Developer's Kit)

compatible Web-browser. The aforementioned editor establishes connection with a

server by using the ORB (Object Request Broker) software and stores/retrieves data

in/from the server. The server consists of a CORBA object or objects depending upon

whether the data is to be made persistent on a single server or multiple servers. The

CORBA object providing the persistent data server is implemented using the Java

programming language. It uses the JRB to store/retrieve data in/from a relational

database server. The persistent data management system provides transaction and user

management facilities which allow multi-user, distributed access to the stored data in a

secure manner.

V

CHAPTER 1: INTRODUCTION

Introduction

The importance of Requirements Engineering in the software development life cycle can

never be over-emphasized. Requirements Engineering refers to the earliest phase of the

software development cycle when requirements are elicited, defined, and specified.

Requirements are the statements of need and are intended to convey understanding about

a desired result independent of its actual realization (Kotonya and Sommerville, 1996).

The requirements engineering process is aimed at providing a clear, consistent, and

precise model and unambiguous statement of the problem to be solved by the software

development process. Formulation of requirements may have a substantial impact on the

success of a software development project and poorly formulated requirements are

known to have resulted in partial success and, in some extreme cases, total abandoning of

high budget software development projects (Boem, 1984; Boem, 1987; Kotonya and

Sommerville, 1996). The problems of establishing an adequate set of requirements for a

software system, often manifest in failure of the system to satisfy customer needs, are

many and inadequate communication among requirements engineers is one of them.

Since the requirements engineering process is a human endeavor, the need for

communication among the members of the engineering team is natural. This

communication need may be tantamount to providing collaboration among

geographically distributed people as it is not uncommon for the members of a

requirements engineering team to be located at geographically distant locations. The

emergence and astonishing success of the World Wide Web offers an opportunity for

facilitating aforementioned collaboration among geographically distributed people.

Although the Internet has revolutionized the information sharing, the kind of information

that can be shared and the security with which it can be shared, is still limited. The

requirements engineering process requires sharing of information which could be much

more structured and in a complicated form than that could be provided with HTML

(Hyper Text Markup Language). For instance, requirements documents may contain

textual as well diagrammatic information that may be required to be viewed and modified

on-line with restricted access. The plain HTML lacks the capabilities to accomplish this

task. Therefore, use of a more powerful technology is required in order to facilitate

collaboration among geographically distributed requirements engineers using the World

Wide Web.

Java, a programming language designed for the Intemet, offers a lot of promise

for providing the kind of capabilities required for enabling collaboration among

geographically distributed people who need to share and transact on complex

information. The capability the java applets provide for sharing complex information

over the internet is one of the major reasons it has been selected as the implementation

language for the WHERE (Web-base Hypertext Environment for Requirements

Engineering) project being undertaken by WVU/NASA SRL (Software Research

Laboratory). The WHERE project is concerned with the communication and

coordination problems faced on large, geographically distributed requirements

engineering projects.

The ultimate goal of the WHERE project is to support the process of collaborative

development of requirements specifications with tools to manage incremental changes to

large specifications. The project builds upon the earlier work on ViewPoints (Finkelstein

et al., 1992). The ViewPoints represent chunks of a specification and each of them has

an owner and a representation style. The WHERE project aims to implement the

ViewPoints framework and introduce the approach into a real project in order to collect

information about the relationships between ViewPoints. At present, the WHERE project

implementation is in the initial stage which involves building information representation

infrastructure required for building the later parts of the project. The activities to be

carried out during WHERE implementation require a set of editors and viewers for

representing and modifying various kinds of information required for implementing

ViewPoints framework.

A survey of the available software engineering tools revealed that TCM (Toolkit

for Conceptual Modeling) project developed at Vrije Universteit fulfilled the information

representationneedsof the WHERE project. Therefore,TCM was adoptedas the

foundation for implementation of various tools to be used for building various

functionality in theWHEREproject. TheC++ programminglanguageimplementationof

the original TCM had to be translatedinto the Javaprogramminglanguagein order to

Web-enablethe toolkit. Also, the original TCM has been designedto be used by

individual userswho do not necessarilyneedto collaborateon-line from geographically

distributedlocations.

Therefore,astudyis neededto adapttheJavaversionof TCM (TcrnJava)in order

to support distributed collaboration using the WWW and proven Web-browser

technology. The issuesinvolved includeimplementingvarioustools in TcmJavausing

appletsdownloadeableover the WWW. Also, the datageneratedby using thesetools

need to be storedpersistentlyand securely. Since the Web-browsersimpose strict

restrictionson JavaApplets whenit comesto datastorage,a mechanismis requiredto

allow the appletssave/loaddata from a persistentdata storewhich may, possibly be,

geographicallydistributed. Thepersistentdatahasto beavailableto the membersof the

requirements engineering team collaborating on a project. Access restrictions,

transactionmanagement,andconcurrencycontrol havealsoto be consideredin order to

providemeaningfulcollaborationin real-time. The presentinvestigationwas, therefore,

undertakenwith thefollowing objectives:

• Explorewaysto adaptTcmJavato theInternet.

• Investigate mechanismsto facilitate the transfer and persistent storage of data

generatedby appletsimplementingvarious tools in the TcmJavaand downloaded

over theInternet.

• Investigate various kinds of data storage mechanisms(Files Systems/Relational

Databases/ObjectDatabases)for meetingaforementioneddata storageneedsof the

WHEREproject.

The rest of this thesisis organizedinto four chapterswhich review (Chapter2) the

literaturerelatedto thepresentinvestigation;describe(Chapter3) the methodologyused

during this investigation;describeanddiscuss(Chapter4) theresultsof the investigation;

andsummarize,andconclude(Chapter5) pointingout theneedsfor futurework.

CHAPTER 2: LITERATURE REVIEW

Literature Review

This chapter presents a review of the literature related to the present investigation.

information presented here is organized into following topics.

• Requirements Engineering

• ViewPoints Framework

• Computer Supported Collaborative Work

• Persistent Data Storage in Software Development Environments

The

2.1 Requirements Engineering

Requirements engineering deals with the earliest phase of the software development

process where the foundation for a software development project is laid down. It

involves the elicitation, definition, and specification of the need the software project is

being undertaken to fulfil. Many of the problems of software engineering have been

attributed to the difficulties with the requirements specification (Kotonya and

Sommerville, 1996). A greater proportion of the errors in a software system occurs

during requirements and design phase (64%) rather than during coding phase (34%)

(Boem, 1984; Boem, 1987). Moreover, it is more expensive to fix an error made at

earlier stages if they are discovered during final stages. A requirements error found at the

requirements stage costs only about one-fifth compared with the cost for fixing the same

error if it were found after the system is in use. Discrepancies between the capabilities of

a delivered system and the needs it intended to fulfil are common and may incur very

high costs (Roman, 1985). Findings of a survey on nine software development projects

(US Government Accounting Office, 1979) showed that 47 % of the money was spent on

the software that was never used. Another 29 % was spent on the software that was never

delivered and 19% of the money resulted in software that was either reworked

extensively or abandoned after delivery. According to the aforementioned study only 2%

of the total money spent resulted in software that completely met its requirements.

Therefore, an improvement in methods used in requirements engineering has a potential

for tremendously curtailing the software cost.

The requirementsengineeringprocessis fraughtwith difficulties which areoften

manifestin thefailure of softwareto satisfythe real needsof thecustomer. Severalof

theseproblemsare listed by Kotonyaand Sommervillein their paperon Requirements

Engineering with ViewPoints (Kotonya and Sommerville, 1996). Some of these

problems stem from the lack of appropriatetools for supportingthe requirements

engineeringprocess. There is a needfor tools to help the requirementsengineersto

collect, structure,and formulate requirementsin an efficient and consistentmanner.

Sincethe requirementsprocessis a humanendeavor,the occurrenceof communication

problemsduring the processis natural. In largeprojects,a group of individuals must

collaborate in the requirementsengineeringprocessthat leads to the production of

requirementsspecification, the documentationof the outcome of the requirements

elicitation and definition. The requirementsarenever stableand so the requirements

specificationsare apt to evolve. Managingevolving requirementsspecificationsis a

significantproblembecausea smallchangeto onepartof aspecificationmayimpact the

whole systemspecificationdocumentation.Theseimpactsareoftenhardto reasonabout

and henceit is hard to know that all implicationsof a changehave beentaken into

account.

ResearchonRequirementsTraceablility(Gotel andFinkelstein,1994;Gotel and

Finkelstein, 1995) have tried to addressthe problemsarising out of evolution of

specifications and need for recording information about individual who must

communicatein order to carry out the processof softwarespecification. Requirements

traceability tools help to alleviate the problemsof changemanagementin evolving

specificationsby recording links betweenrequirementsat different levels, between

requirementsand test cases,designobjects,and so on. However,existing traceability

tools only recordlinks without anyotherinformationabouttherelationshipexpressedby

thelink. Suchtoolsencodea simpleprocessmodelbasedon flow downof requirements

throughdifferent levels. They do not captureany knowledgeabout the method and

notationsbeingused,andhencefail to provideany activesupportfor the development

andevolutionof specifications.Therefore,aframeworkis requiredthatwill provide tool

support for recording more comprehensiveinformation about chunks of evolving

specificationsandrelationshipsamongthem. In addition,the framework must support

collaborativedevelopmentamonggeographicallydistributedengineers. The following

sectionbriefly reviews the literature relatedto the ViewPoints framework which the

WHERE projectintendsto useas its foundationfor providing tool supportto facilitate

changemanagementin evolvingrequirementsspecifications.

2.2 ViewPoints Framework

The ViewPoints framework supports distributed software engineering in which multiple

perspectives are maintained separately as distributable objects (Finkelstein et al., 1992).

A ViewPoint can be thought of as a combination of the idea of an actor, knowledge

source, role, or agent in the development process, and the idea of a view or perspective,

which an actor maintains. ViewPoints are loosely coupled, locally managed, coarse-

grained objects which encapsulate partial knowledge about the system and domain, and

the process of development. The system and domain may have been specified in a

particular, suitable representation scheme. The knowledge contained in a ViewPoint is

assigned to five different parts of the ViewPoint called slots. A ViewPoint has the

following five slots (Nuseibeh et al., 1993; Nuseibeh et al., 1994):

• A representation style which is the scheme and notation used by the ViewPoint to

express the knowledge it possesses.

• A domain describing the area of concern addressed by the ViewPoint, with respect to

the overall system under development.

• A work plan comprising the set of actions that will be used to build the specification,

and a process model to guide application of these actions.

• A specification describing the ViewPoint domain using the notation described in the

ViewPoint style and developed using the strategy described in the work plan.

• A work record containing an annotated history of actions performed on the

ViewPoint.

Each ViewPoint has an owner who is the development participant associated with the

ViewPoint. It is the responsibility of the ViewPoint owner to develop a specification for

the ViewPoint using the notation defined in the style slot, following the strategy defined

by the work plan, and for a particular problem domain. Various actions and events

involved in the ViewPoint are recorded in the work record. The ViewPoints framework

deliberately encourages multiple representations and departs from attempts to develop

monolithic specification languages. The framework does not make a commitment to a

particular software development method. In general, a software development method is

composed of various techniques. Each technique has its own notation and associated

rules governing when and how to use that notation. The ViewPoints framework presents

10

anopportunityto implementa particularsoftwaredevelopmentmethodby defining a set

of ViewPoint templates. These templates,as a group, describethe set of notations

providedby the method,andtherulesgoverningtheir useasa groupor independentlyof

eachother.

The ViewPoints framework provides for inconsistencytoleration without any

requirementfor changesto oneViewPointto beconsistentwith others(Finkelsteinet al.,

1994). A set of inter-ViewPoint rules canbedefineddependinguponthe methodbeing

used. These rules express the relationships that should hold between particular

ViewPoints and are used to perform consistencychecking. The consistencymay be

checked incrementally between ViewPoints at particular stagesrather than being

enforcedat all times. The applicationof consistencychecksis governedby a protocol

where the checkingprocessis initiated by either ViewPoint owner. The resolutionof

inconsistenciesis guidedby afine-grainedprocessmodelin eachViewPoint (Nuseibehet

al., 1993).

Tools support for the ViewPoints framework hasbeenbuilt in the form of a

prototypecomputer-basedenvironment(NuseibehandFinkelstein,1992). Theprototype

environment provides a ViewPoint Viewer which has two distinct modesof use: 1)

method design; 2) method use. Method design involves the creation of ViewPoint

templateswhich are the ViewPoints for which only the representationstyle and work

plan slots have been filled. In method use, ViewPoints are instantiatedfrom the

templatescreatedin methoddesignandareusedto representvariousperspectives.Each

ViewPoint instantiatedfrom a particular templateinherits the knowledgenecessaryfor

building and manipulating a specificationin the chosennotation, and cross-checking

consistencywith otherViewPoints. Therefore,eachViewPoint servesasa self-contained

specificationdevelopmenttool.

The ViewPoints framework offers a coherentapproachto the managementof

multiple perspectives.The approachsupportsmulti-languagespecification,without the

requirementfor acommondatamodelor language.The framework,therefore,facilitates

11

method integration as well as distributed development. The framework has been used to

implement software engineering methods such as CORE (Nuseibeh et al., 1993) and the

CDA (Kramer and Finkelstein, 1991). This use of the framework has demonstrated its

ability to express relationships between different representation schemes.

Since the ViewPoints framework is designed to support distributed software

engineering, an implementation of the framework will involve providing tool support for

geographically distributed collaboration. A number of architectures have been developed

which aim to provide tool support for collaborative work. The following section presents

a brief review of these architectures pointing out their suitability for use in a system

intended to provide tool support for facilitating collaboration among individuals involved

in requirements specification.

2.3 Computer Supported Collaborative Work

The magnitude of software development projects demands that a team consisting of more

than one software engineers work together on a project. This requires collaboration

among individuals, in the form of being able to access, view, and modify common

information. The need for providing computer support to facilitate effective

collaboration has spawned a large volume of research into development of tools aimed at

making the collaborative activity less costly and less time consuming (Bentley et ai.,

1997; Callahan and Ramakrishnan, 1996; Dix, 1996; Johnson, 1996; Toye et al., 1994).

The World Wide Web (WWW) has become a potent platform for collaborative work.

The Collaborative Software Developmerit Laboratory (CSDL) has been doing research in

development of tools for facilitating collaboration during various phases of software

development process. The World Wide Web Consortium (w3c) has also organized a

number of symposia since 1995 aimed at identifying extensions to web technology which

would facilitate wide-area asynchronous collaboration. Research has also been done on

developing tools for providing collaboration during design phase of the software

development process (Emmerich and Schafer, 1996). Although the aforementioned

research has resulted in the development of tools/technology that claim to facilitate

12

collaborationduring variousphasesof softwaredevelopment,thesetoolseither lack the

capability to providepersistentstorageof andcontrolledaccessto complex information

or fail to support collaboration among geographicallydistributed individuals. The

following sectionwill briefly reviewsomeof thesetechnologies.

The WWW offers a globally accessible,platform independentinfrastructureand

beingincreasinglylookeduponasa potentialplatform for richercooperativework (Dix,

1996). However, the web was designedprincipally as a mechanismfor information

accessandits usefor richer forms of collaborativeactivity maynot be obvious. There

are architectural issuesinvolved in the use of WWW for cooperation and the most

obvious one is the possible extensions and/or modifications to the parts of web to adapt it

for cooperative work. There are three parts of the Web which may be extended or

modified to infuse cooperative work capability into it; server, client, and protocol. A

number of systems have tried to use sever-end extensions to facilitate cooperation. These

systems have typically used CGI scripts and independently running servers. Most

notable among these aforementioned systems are BSCW (Bentley et al., 1996) and

futplex (Holtman 1996). Another possible extension is the use of client helpers and

applets. The incorporation of Java and Java-script into web-browsers has emphasized the

value of client-end computing, especially for rapid user interface feedback. Some

systems have also made use of downloaded helper applications and modified clients to

run Tcl/Tk as a client-side script language (van Welie and Elins, 1996). There are other

proposed extensions/modifications which are not particularly relevant to the present

investigation but are discussed in an excellent report by Dix (1996).

J

In the Web, the information is usually represented as web pages or electronic

documents without any facilities for direct communication, as such. Therefore, a number

of applications intended to facilitate collaborative work supply direct communication

facilities which could be either synchronous or asynchronous. The synchronous

communication facilities include applications such as HushTalk (van Welie et al., 1996)

supplying talk-style facilities. Asynchronous communication is primarily supplied by

transforming communication into information structure which can be accessed and

13

replied to by multiple users. Providing asynchronouscommunicationrequires less

deviation from the Web model than providing synchronouscommunication which

effectively bypassesthe web protocolsentirely. Therefore,the use of asynchronous

communicationfacilities is likely to beeasierto provideandpresenta greatersupportfor

usingtheexitingcapabilitiesof theWeb.

The WWW hasa numberof distinct advantagesasthebasisfor tools to support

collaborativeinformation sharing, the most important being the availability of proven

technologyin the form of Web-browsers(Bentleyet al., 1997). The Web-browsersare

availablefor all popularcomputingplatformsand operatingsystemsandprovide access

to informationin a platform independentmanner. Theyoffer a simpleuserinterfaceand

consistentinformation presentationacrossplatforms. Although WWW is an excellent

platform for geographicallydistributedcollaborativework, it is limited by its inability to

storestateinformation, representcomplex information, supportmultiple authoring,and

provide concurrencycontrol. Providing tool support for geographicallydistributed

collaborationin a systemlike requirementsengineeringrequiresthe supportsystemto be

very flexible in the kind of informationthat may be represented,persistentlystored,and

concurrentlyaccessedin a controlledmanner. This mayrequiremakingclient aswell as

server side extensionsto the existing WWW infrastructureif the well developedand

proven Web technology has to be taken advantageof in providing geographically

distributed collaboration. The following section will further discuss the attempts at

extendingtheWWW in orderto facilitatearichercollaboration.

The 'Egret' system developedby the Collaborative Software Development

Laboratory(CSDL) at Universityof Hafvaii implementsa multi-client, multi-server,and

multi-agentarchitecture(Johnson,1995). Egretprovidesboth low andhigh level storage

andcommunicationfacilities for thedevelopmentof cooperativework applications.Data

ranging from unstructuredbinary storage, to schema-basedand structured storage

records,to HTML-compatible hypertext may be represented. The architectureuses

indexing and local replicationmechanismsto enableefficient "relational-style" queries

over theunderlyingnetworkdatabase.Inter-processcommunicationis implementedvia

14

TCP/IP sockets, and provides a variety of programmatic and interactive client

communication facilities. Passwordmechanismsare provided to facilitate secure

collaborationin groupsdispersedacrossthe internet. The architecturehasbeenusedto

developapplicationsprovidingtool supportfor softwarereviewandquality improvement

(Johnson,1994),collaborativeauthoringand learning (Johnsonand Moore, 1995),and

collaborativelearningandreview (WanandJohnson,1994). The architecture,however,

supportscollaborationinvolving only textual information and fails to makeuseof the

proventechnologyin theform of thecapabilitiesof theWWW. Therefore,this systemis

not suitable,assuch, for providing geographicallydistributedcollaborationin a system

like requirementsengineeringwherecooperationinvolving textualaswell asnon-textual

informationmustbesupported.

The BSCW (BasicSupportfor CooperativeWork) systemdevelopedat German

National ResearchCenter for Information Technology provides basic features for

cooperation in an integratedservice, accessiblefrom different computing platforms

(Bentley et al., 1997). This systemmakesno demandson usersto adoptnew word

processing,spreadsheet,or otherapplicationsoftware. Moreover,thesystemdoesutilize

the capabilitiesof theWeb andin fact is anextensionof a standardWeb serverthrough

the serverCGI ApplicationProgrammingInterface. A 'BSCW server' (Web serverwith

the BSCW extension)managesa numberof sharedworkspaces.Theseworkspacesare

repositoriesfor sharedinformation,accessibleto membersof a groupusinga simpleuser

name and passwordscheme. A sharedworkspacecan contain different kinds of

information suchasdocuments,pictures,URL links to otherWeb pagesor FTP sites,

threadeddiscussions,membercontactinformationetc. Facilitiesareprovidedfor saving

information from client machinesand alsoloading information to client machinesfrom

theBSCW server. The BSCW systemsupportsuploadof multiple typesof documents,

automaticallydetectingthedocumenttypeandprovidingfull feedbackon theprogressof

the documenttransmissionto the BSCW server. The eventservicethat is built into the

systemprovidesuserswith informationon theactivitiesof otherusers,with respectto the

objectswith in a sharedworkspace. The systemalso providescontrolled sharingand

memberadministrationcapabilities. The systemhas beendesignedto provide basic

15

features for supporting cooperative work for widely-dispersedworking groups,

independentof their computing,network,and application infrastructures.The system

supportscollaborationinvolving documentswith textual as well as pictorial contents.

The systemis, however,not suitablefor usein a requirementsengineeringenvironment

which generally requiresthe capabilitiesto generate,persistentlystore, and modify a

wide variety of information.Moreover,the requirementsfor information representation

may changeovertime requiring the capability to be ableto generateand managenew

kinds of information which is possibleonly with supportof full-fledged programming

language.

The SHAREprojectbeingundertakenat StanfordUniversity intendsto providea

methodologyandenvironmentfor collaborativeproductdevelopment(Toyeet al., 1995).

Their domain is to facilitate collaborationamong engineersinvolved in design and

production. TheSHAREarchitectureconsistsof a setof agentsinteractingaspeersover

the Intemet. Eachagentcanrepresentoneor moreof the following: a designerandhis

personalCAD tools,adatabaseor otherinformationservice,acomputationalservicethat

supportsengineeringor the engineeringprocess. The agentsexchangeinformation and

servicesusing a simple commandlanguage(Finin et al., 1992)and representationof

multimedia information (Bomstein and Freed, 1992). The messagesare sent using

standarde-mail and TCP/IP transportservices. The architectureusese-mail as the

primary medium for both humancommunicationand tool integration. The rationale

behindusinge-mail in this projectis pervasivenessof e-mail andits familiarity to large

numberof designers.This project is gearedspecificallytowardsproviding tool support

for collaborationamongengineersand is not suitablefor usein a softwareengineering

environmentwheretherequirementsfor collaborationaredifferent.

The WISE (Web IntegratedSoftwareEnvironment)systemdevelopedby SRL

(SoftwareResearchLaboratory)at WestVirginia University,makesuseof existingWeb

technologyto supportmeasurementof changeactivity asanimplicit partof thesoftware

process(CallahanandRamakrishnan,1996). The WISE providesa formsbased,work-

flow managementsystemthathelpsmembersof a softwaredevelopmentteamovercome

16

geographicalbarriersto collaboration. Developmentof theWISE systemis anexcellent

exampleof usingtheexistingproventechnologyto providetool supportfor collaboration

in softwareengineeringprocess. The WISE systemhasbeendesignedto provide tool

supportfor softwareproject managementandprocessmeasurementand canbe usedin

conjunction with tool support for collaboration in various phases of software

development.

Various architectures have been developed to provide tool support for

collaborativework. Someof them makeuseof existingand proventechnologiesthat

minimizes the effort to provide the initial infrastructureon which to build the more

specializedframeworksgearedtowardssupportingthe collaborativework in specific

domains. Various systemsthat are currently available to provide tool support for

collaborativework areeitherlimited in thekind of informationthatcanbe representedor

aredesignedto servethe collaborativeneedsof thepeopleengagedin work in specific

domains. None of the currently availablesystemsprovide the kind of tool support

requiredto facilitate collaborativework in software requirementsspecificationwhich

requires representationand sharing of information more complex than textual and

statically pictorial informationcontainedin documentssupportedby currently available

systems. The WHERE project which aims to use the ViewPoints framework for

managingevolving requirementsspecificationsrequiresan infrastructureproviding tool

supportto representvariouskinds of diagrammaticand textualinformationencountered

duringrequirementsspecificationprocess.

As pointed out in the discussionabove,one of the limitations of the current

architecturesfor collaborativework is the kind of information that canbe maintained

persistently,accessedconcurrentlyin a consistentand controlledmanner,andmodified

while maintainingthe integrity of thepersistentstore. Tool supportfor a collaborative

work environment,being built on a framework like ViewPointsdesignedto support

distributedcollaboration,needsto providepersistentstorageof datawith aforementioned

constraints.Therefore,providing persistentstoragefacilities for the WHERE project is

important and formativepart of the implementation. Before the implementationcould

17

proceed further, availability of a persistent storage infrastructure is exigent. The

mechanismsusedto managethepersistentdatamayhaveasignificantimpacton theway

someof the tools supportingthe subsequentfunctionality of the project arebuilt. The

following section reviews the issuesinvolved in persistentdata storagein software

engineeringenvironmentsandits relationshipto the persistentdatastorageneedsof the

WHEREproject.

2.4 Persistent Data Storage in Software Development Environments

Software Development Environments (SDEs) include tools intended to support one or

more of the software life-cycle phases (Emmerich et al., 1993). This often involves

construction and analysis of documents and document interdependencies. The value of

an SDE is judged by its ability to enable incremental, intertwined, and syntax-directed

development of documents. Good SDEs also provide for maintenance of these

documents, tracing back of errors through different documents, and change propagation

through document boundaries to correct errors (Engels et al., 1992; Habermann and

Notkin, 1986). These environments are also expected to provide multi-user and often

geographically distributed support. They should have flexible and adaptable mechanisms

to facilitate controlled sharing of information by a number of users. These environments

usually require the storage/retrieval of large number of objects and relations among them

at different levels of granularity. Moreover, these objects must be manipulated under the

control of an advanced transaction mechanism. These considerations emphasize the

importance of storage/retrieval mechanism underlying an SDE.

It has been argued that dedicated database systems that are specialized with

respect to functionality and implementation are necessary for use in software engineering

(Bernstein, 1987). The functionality and efficiency of purely relational database

management systems is considered inadequate to satisfy the needs of software

engineering tools and environments (Taylor et al., 1988). The computer science

community has seen the development of a number of systems which radically differ from

standard relational technology. Despite the substantial number of these new database

systems, a suitable database system for SDEs still does not exist (Emmerich et al., 1993).

18

A process-centeredenvironment(PSDE)is a softwaredevelopmentenvironment

in which providing multi-usersupportis basedon a well-defined developmentprocess.

A databasefor softwareengineeringshould provide: 1) efficient manipulation of the

documentrepresentationdefined by the softwaredevelopmentprocess;2) advanced

transactionmechanismson the storedstructuresto enablesophisticatedcollaborative

support. In manyof theexistingcollaborativedevelopmentenvironmentsthe documents

arehandledasmonolithic blocks. This representationmilitates againstthe attemptsfor

providing inter-documentconsistencycheckingandpreservation.Therefore,the needof

support for incremental,intertwined developmentand maintenanceof software is not

served. The lack of appropriatepersistentdata storageand retrieval mechanismsis

thought to be responsiblefor the lack of appropriatefunctionality in the currently

availableSDEs.

Architecturally,PSDEconsistsof three main components:

• A well-defined process engine to coordinate the work of developers involved in a

project.

• A set of integrated, syntax-directed tools for allowing the developers to conveniently

manipulate and analyze documents without compromising consistency between

related documents of different types.

• An underlying database for software engineering (DBSE) which is capable of storing

project information and documents.

The first two of the requirements outlined above are being addressed in separate

investigations being undertaken as parts of the WHERE project. Since the present

investigation intends to address the third requirement, review here will concentrate on

the storage/retrieval mechanism.

The common internal representation for syntax-directed tools such as syntax

directed editors, analyzers, pretty-printers and compilers is a syntax-tree of some

form (Emmerich et al., 1993). Usually this abstract syntax-tree representation of

19

documentsis generalizedto anabstractsyntax-graphrepresentationfor reasonssuch

as efficient executionof documents,consistencypreservationby tools, and user-

definedrelationswithin documents.Useof this approachalonemaybe inefficient for

operationssuchasconsistency.Therefore,theresearchershavedevelopedtechniques

basedon the introductionof additional,non-syntacticpathsfor moredirect attribute

propagation(Hoover, 1987;Johnsonand Fisher, 1982). Thesenon-syntacticpaths

areexamplesof context-sensitiverelationshipswhich connectsyntacticallydisjoint

parts of a documentand may be used in both consistencychecking and change

propagation.

Requirements of persistence and integrity necessitate that a persistent

representationof eachdocumentundermanipulationmustbe updatedasuser-actionis

finished. Usually a user-actionaffects only a very small portion of the document

concerned. The updatesresultingfrom theseuser-actionsmay becomeinefficient if a

complextransformationbetweentheactiveandpersistentrepresentationsof a document

is required; and the update processinvolves unnecessaryrewriting of parts of the

document not being modified. To avoid such inefficiency, the underlying

storage/retrievalmechanismmust supportthedefinition, access,andincrementalupdate

of thestoredstructureswith facilities for efficient traversal.To preservethe integrity of

storedstructures,supportfor atomictransactionsis necessary.

Context-sensitiveand user-definedrelations between document components

(ViewPoints) necessitateincorporationof somekind of structure in the persistent

storeddocuments. The aforementionedrelationsmay not be confined to within
/

individual documents and may exist between components of distinct documents.

Consistent handling of these inter-document relationships requires that the set of

documents making up a project must be represented in the form of a single structure.

Therefore, the underlying storage/retrieval mechanism must be amenable to the kind

of representations discussed above.

20

The kind of structures required to represent a project and attribute information

associated with it cannot be determined by the storage/retrieval mechanism.

However, once these structures have been well-defined, the storage/retrieval

mechanism must be able to define and control the internal storage for those structures.

The underlying database system, therefore, should have capabilities to store and

control the kind of structures (possibly object-oriented) used in software engineering

projects. Incremental changes to these structures should be supported by the

underlying system. The underlying system should provide the facilities for

implementing the operations performed by tools in terms of modifying the overall

structure stored in the database system. This is necessary because of two reasons:

• The structure used to represent the whole project should be encapsulated with

operations that preserve the structure's integrity and provide a well-defined

interface for accessing and modifying it.

• If the access and modification operations are performed within the

storage/retrieval mechanism, they are more efficient than performing them within

tools as need for transferring unnecessary data over the network is greatly reduced

in the former case.

In order to be able to perform the modification operations within the storage/retrieval

system, it must be powerful enough to express various kinds of relationship which are to

be manipulated in a modification operation. In addition, the process defined for a

development project may specify a reasoning component enabling the users to perform

various kinds queries on the stored data. The system must be able to provide support for

performing those queries. A typical query may be to show a list of all the documents

owned by a particular developer. In addition, the queries may be designed to assess the

overall state of the project. The state assessing criteria, of course, will have to be defined

by the process. The storage/retrieval mechanism must be able to support it transparently

without any need to transfer large amounts of data over the Internet; the latter can be very

inefficient. It may be desirable for the storage/retrieval system to have the capability to

support queries which are not known a priori and may become necessary as the

development of the project progresses.

21

Given the evolutionary nature of the requirements specification process, the

process governing the development of a particular project may need to be changed as

increasing amount of knowledge is obtained about the system. For instance, the stored

data will represent various entities in the system under development and there will be

relationship defined among those entities. Those relationships may change or some

entirely new relationships may have to be defined during the evolution of the project.

This means that the system must be capable of allowing the modification of existing

relationships and definition of new relationships among the stored data. In addition, it is

desirable to have the capability of being able to modify or extend the structures

representing entities in the system as the need for adding additional attributes to an entity

may arise during project evolution.

Since the storage/retrieval system is intended to maintain information about the

entire project and different components being developed concurrently but independently

may be at different stages of development, support of revisions and versioning is highly

desirable and must be provided in a good database system for software engineering. The

system must provide facilities for maintaining version histories of various components

and sub-components of the project.

Providing multi-user support in an SDE necessitates the definition of access fights

for particular documents and their components. Also, the transaction mechanisms are

required to control and enable concurrent multi-user access to shared information. The

storage/retrieval mechanism must provide mechanisms to identify individual users as

well as user groups. The capabilities should be provided to define and modify the

ownership of stored objects representing components of the project and their further sub-

components. The information about a particular component of the project may need to be

accessed by members of more than one groups; the storage/retrieval mechanism must

support definition of multi-group access fights. The access rights may need to be

modified at any time and such a capability must be supported by the underlying

mechanism. In addition, the definition or modification of access fights does not mean

anything unless enforced by the system.

22

The PSDEs require storage/retrievalsystemshaving transactionmechanisms

which are much more sophisticatedthan the conventional transactionmechanisms

(Emmerichet al., 1993). The conventionalmechanismscould result in rollback which

deletesthe effect of a possibly long-lastingdevelopereffort, or they could block the

executionof certainactivity for daysor evenweeks. Suchpropertiesaretoo restrictive

for a PSDEand result in situationswhich are intolerable. Theseshortcomingsof the

conventionalmechanismshavebeenrealizedandadvancedtransactionmechanismssuch

as split/join transactions(Pu et al., 1989)and cooperatingtransactions(Nodine et al.,

1991)havebeendeveloped.Thesemechanismshavetried to achievethe desiredresult

by relaxing oneor morepropertiesof atomicity,consistencypreservation,isolation,and

durability which characterizethe conventionalmechanisms.A detailed overview and

critical evaluation of thoseadvancedmechanismsis given in Barghouti and Kaiser

(1991).

Emmerich et al. (1993) argue that none of these advancedmechanismsis

powerfulenoughto serveasthe transactionmechanismfor a databaseof a PSDE. They

quotePeuschelet al. (1992)to point out that only theprocessengine,which knows the

currentstateof anongoingproject,candecidewhetherandwhento requesta lock for a

particularsub-graphandhow to reactin caseof inability to acquirethe lock. The process

enginealsodefineswhetheratransactionis executedin isolationor in anon-serializable

mode.

The preceding sections have briefly pointed out the expectations of a

storage/retrievalmechanismunderlying_nSDE. In this section,we will briefly look at

someof theavailabletechnologies.TherelationalDBMS, assuch,are inappropriatefor

meetingthe persistentdatastorageneedsof SDEs (Emmerichet al., 1993)becauseof

threereasons:1)Thedatamodelof RDBMSscannotappropriatelyexpressthe structures

requiredto storeproject informationof anSDE; 2) Theydo not supportversioningat a

level that may be requiredin an SDE; 3) They do not allow the implementationsof

customized transactionschemes. Emmerich et al. (1992) gives a more detailed

23

discussionand reasoningabout the unsuitability of RDBMSs for use in SDEs. The

ooDBMSs(Object-OrientedDBMSs)providea naturalway of meetingtherequirements

of client/serversystemsandsystemswhosedatais morecomplexthan that canbe lined

up in relational tables (Orfali et al., 1996). The ooDBMSs have an advantageover

RDBMSs in thattheyknow theoverall structureof complexobjectsandsometimestheir

behavioraswell. However,the ooDBMSs arestill underdevelopmentwith respectto

functionalityaswell asstandardization.PureooDBMSs still lack functionality in areas

of complexsearch,queryoptimizers,andserverscalability. Orfali et al. (1996)predict

that with the efforts of standardization(ODMG-93 is an example) going on for

ooDBMSsand the promotionof standardizationof thesesystemswith in the CORBA

ORBcommittee,thesesystemswill be thesuccessorto RDBMSs.

The emergenceof new softwaretechnologiessuch as the Java Programming

Environment and CORBA implementations and ever-increasing popularity and

usefulnessof the WWW may have changedthe way people think of multi-user

distributed applicationswhich may involve extensivedatabaseaccess.In addition, a

combinationof thesetechnologiesalongwith emergingdatabasetechnologymay have

bridged the gap betweenthe functionalityprovideableby RDBMs and the persistent

storage/retrievalneedsof anSDE.Thepresentinvestigationintendsto explorethe useof

thesesoftware technologiesto provide the persistentdata storageneeds of an SDE

(WHEREproject).

24

CHAPTER 3: METHODOLOGY

25

METHODOLOGY

This chapter describes the methods and technologies used and evaluated during this

investigation. The chapter also gives details of the implementation done to achieve the

objectives of the proposed research.

This investigation was conducted as a part of the WHERE project being

undertaken by SRL. Since the WHERE project intends to provide tool support for

collaborative development of requirements specifications, a foundation was required on

which to build the tools required to meet the specific needs of the project. There were

two options available to the WHERE project team: 1) build all the tools from scratch; 2)

adopt some already existing toolset as foundation and build on top of it. Since building

tools is a time-consuming process and a lot of effort may be expended on building tools

from scratch, the WHERE team decided in the favor of the second option provided a

suitable toolset already existed. A survey of various tools intended to provide tool

support for software engineering environments was done and the TCM (Toolkit for

Conceptual Modeling) project being undertaken at vrije Universteit seemed to be a good

foundation for the tools to be built during the WHERE project. The following section

gives a brief description of the TCM software which will be followed a description of the

functionality that was required in the WHERE project but was not provided by the TCM

software.

/

3.1 TCM Software

The TCM project was undertaken with an aim to produce software support for software

requirements and design engineering. The software delivered by the project can be used

to represent various kinds of information during requirements and design phases of

software development process. The functionality to be provided by TCM includes:

various graphical editors to provide visual representation of different, mutually consistent

views of product requirements and product designs; tool support for graphical simulation

26

of the specifiedproduct; and supportfor generationof prototypecode for the product.

All representationsof theproductproducedusingTCM softwareareconceptual,meaning

the representationsaremeant to externalizeconceptualizationsof the softwareproduct.

Various requirementsand design engineeringmethods supportedby the TCM are

describedin Wieringa (1996).

Thecurrentversionof theTCM is acollection of graphicaleditorsfor a rangeof

graphicalnotationsystemsusedin requirementsand designengineeringmethods. The

TCM runs on Unix systemswith X-Windows. The graphicaleditors constitutingthe

TCM canbe usedfor editing severalkinds of documentsincludingdiagrams,tables,and

trees. Theeditorsareavailablefor following kindsof documents:

• Diagrams: Generic Graph Diagrams, Entity-Relationship Diagrams, Class

Relationship Diagrams, State Transition Diagrams, Recursive Process Graphs, Data

and Event Flow Diagrams, and JSD Process Structure and System Network diagrams.

• Tables: Generic Tables, Transaction Decomposition Tables, Transaction Use Tables,

and Function Entity Type Tables.

• Trees: Generic Textual Trees, and Function Refinement Trees.

Various editors share a mostly common user-interface which has been designed to be

user-friendly and usable without any further help. Limited on-line help is provided. The

current version supports constraint checking for single documents (e.g. name duplication,

cycles in an is-a relationship). The TCM distinguishes built-in constraints (of which a

violation cannot even be attempted) from immediate constraints (of which an attempted

violation is immediately prevented) and soft constraints (for which the editor issues a

warning if a violation occurs during drawing). The current version of TCM does not yet

support constraint checking across docuIfients which is required for integrated conceptual

modeling. The implementers of the TCM are planning to enhance it with cross-diagram

checking functions. More information about TCM, its detailed design, source code, a

running version with all the necessary documentation can be obtained by contacting the

TCM developers at tcm@cs.vu.nl.

27

The aforementionedfeaturesmakeTCM a suitablefoundationon which to build

various kinds of functionality required to implement the ViewPoints framework, the

conceptualframework underlyingtheWHERE project. Sincethe WHERE project aims

to support collaboration among geographicallydistributed people and TCM is not

designedfor that purpose,theTCM could not beusedassuchto meetthe needsof the

project. In addition,we wantedto takeadvantageof the Web asthe communication

back-bone becauseof various kinds of proven technology it offers in the form of

communicationprotocols and Web-browsers. But to be able take advantageof Web

technologies,a complementarytechnologywas requiredwhich would allow using the

power of Web technologyto servethe communicationneedsof our environment. The

Java Programming Environment seemedto fit the profile of that complementary

technologywe were looking for. Therefore,we decidedto translatethe TCM software

into JavaProgrammingLanguage.Thetranslationprocesswasstartedin Augustof 1996

and the first version of the TcmJava(The Java version of the TCM software)was

releasedin the summer of 1997. The following section briefly describesthe Java

ProgrammingEnvironmentfollowed by a brief descriptionof theC++ to Javatranslation

of theTCM software.

3.2 Java Programming Environment

Java is an object-oriented programming language which is relatively new and have been

gaining increasing popularity among the software developers especially those involved in

using the Web. Java has many interesting features, two of which are of particular

importance for use in distributed applications that want to take advantage of the proven

Web technology. First, Java source code can be compiled into a format which is
f

independent of any particular machine architecture. This format consists of virtual

machine instructions and symbolic data and is called byte-code format. Execution of this

bytecode requires Java Runtime Environment ORE) which contains a special program

called Java Interpreter. The Java Interpreter knows the meaning of the bytecodes and can

execute Java bytecode irrespective of the underlying machine architecture. The

Interpreter itself, however, needs to be ported to a particular platform on which Java

programs have to run. The Interpreter knows how to convert the bytecodes to the

28

memory addressesand machine-instructionsof the underlying architecture. The Java

approachis a trade-off betweenspeedand portability. Executionof the bytecodeis

slower that of thecompiledcodebut the bytecodesarecompletelyindependent(at least

in theory) of the architectureof the underlying system. Consequently,if the JRE is

availablefor a platform, the Javabytecodewill run on it irrespectiveof the architecture.

Executionof theJavabytecodeis fasterthan thefully interpretedcode. Therefore,Java

approachis a judiciouscompromisebetweenportabilityandspeed.Thesecondfeatureis

not a featureof the JavaLanguageitself but allows theJavaappletsto complementand

enhancethe capabilitiesof the Web. It is the APPLET tagof the HTML (Hyper-Text

Markup Language). The APPLET tag providesthe informationwhich enablesa Web-

browser to find and executethe applets. An appletis a Javaprogramwhich requiresa

Java-enabledWeb-browseror anappletviewerto run. In orderto be ableto executea

Javaapplet the Web-browsermust havebeenextendedto incorporatethe JRE. If the

Web-browserhas this capability, it can then automaticallydownloadan applet to the

user's host machineand executeit there. This featureprovidesa powerful mechanism

for transferringtheexecutablecodeovertheIntemetwhich canbeusedto extendclient-

side capabilities of a Web-browsergreatly. The executablecode in the form of

downloadable Java applets can be provided to the user when it is actually needed which

obviates the need for installing it at the client side ahead of time. Therefore, a

combination of Web and Java technology provides a powerful infrastructure that may

greatly simplify the communication complexities involved in developing and deploying a

client server environment intended to provide collaboration among geographically

distributed people. More details about Java and its relationship to Web can be obtained

from Hamilton (1996) and Yourden (1996). These considerations motivated the

translation of C++ code of TCM into Java. The following section describes the

translation process.

3.3 C++ to Java Translation of TCM

Since both C++ and Java are object-oriented languages, translation process for most part

was straightforward. However, there are some features where the two languages

markedly differ and there is no direct mapping from one language to the other. For most

29

part, the translationprocessinvolvedmakingsomesyntacticchangesto theC++ codein

order to convert it into Java code. The parts of the translationprocessinvolving

significant changesbetweenC++andJavacodearedescribedbelow.

3.3.1Templates

The templatesin C++ hasno directequivalentin Java. TheTCM codehasa List class

which implements a ordered collection of a generic type and provides methods for

performing various operations on the collection. This class is extensively used

throughout the TCM code and is implemented using templates. In TcmJava, this class

has been implemented by subclassing the Vector class included in the standard Java

library provided with JDK (Java Developer's Kit). All the operations of the C++ List

class could be mapped to the Java version with variations in some cases. Because Java

language did not support defining operators at the time of translation, copy (==) and other

operators defined in the class, could not be directly mapped. However, equivalent

operations could be provided. The generic parameter in the template was mapped to Java

Object which is the type stored in the Java Vector class. The translated List class could

be used naturally during the rest of the translation process.

3.3.2 Strings

The C++ programming language does not have a standard String class. The TCM code

has defined a String class which provides a convenient way to manipulate a collection of

characters. This class is also extensively used throughout the TCM code. Although the

functionality provided by this class can be derived from the Java String class, the

mapping between the two is not natural. Therefore, we defined a new string class in

TcmJava. This class uses the standard String class to implement various operations

declared by the TCM string class. Implementation of this new string class simplified the

translation of the code involving the use of the string (C++) class. Although we could

have used the standard Java String class as such, it would have made the translation

process more difficult and error prone because it would require keeping track of the

mapping which was convoluted in some cases. Although implementing a new string

30

classinvolved work andsomeperformanceoverhead,it simplifiedthetranslationprocess

makingit straightforward.

3.3.3 Parameter Passing

The C++ allows passing of primitive data types by reference. This can be done by using

pointers or by using the C++ reference operator. Java did not have a built-in mechanism

for passing primitive by reference at the time of translation. Therefore, we had to

implement wrapper classes for various primitive types (int, float, long etc.) in order to

allow them to be passed by reference.

In Java, the reference types are also passed by value whereas in C++ these may be

passed by reference by using double pointers. Some of the TCM code uses passing by

reference semantics while passing reference type parameter. The double pointers in the

Java code were simulated by passing arrays of reference types which behave exactly like

double pointers in C++. The passing of the String variables by reference was achieved

by using the StringBuffer class. In C++ the strings can be passed by reference by passing

a pointer to a char. Since Java does not have pointers and Java strings are static, one

must use StringBuffer in order to allow the String variables to be manipulated in the

called methods.

3.3.4 GUI Code

The C++ and Java versions of the TCM code have very little similarity in the Graphical

User Interface (GUI) code. The C++ code uses X/Motif libraries and callback

mechanism to implement various GUI components. There is no facility in Java to use

these mechanisms. Therefore, a large portion of the GUI have to be redesigned and re-

implemented in the TcmJava. Java's event model markedly differs from C++'s callback

mechanism. This is the part of the TCM which required redesigning in order to

implement it in Java. However, we were able to duplicate most of the X/Motif

functionality of the original TCM by using various GUI components provided in the

standard Java AWT package. A significant amount of effort was, however, expended on

implementing an image button which is not a part of the standard Java. The standard

31

JavaButton classincludedin the AWT packageprovidesa very limited functionality in

terms of the kind of information it can presentto the user. In fact, only textual

information canbe presented. The GUI codeof TCM makesextensiveuse of image

buttons to presentthe information aboutvarious drawing functions to the user in an

intuitive manner. To duplicatethis in Java,we had to designand implement(in some

casesusing freely available existing Java code) a number of classesthat handle

displayingof imagebuttonsandhandlingof eventsresultingfrom userinteractionwith

thoseimagesbuttons.

Another part of the user interfacewherestandardJavafunctionality was really

limited to servetheneedsof TcmJavais thedrawingcapabilitiesprovidedby theAWT in

the form of standard Graphics class. This class provides no direct methods for drawing

of a number of shapes that the TCM uses to represent various kinds of information. Most

notable ones are drawing of various kinds of line patterns (dashed, stippled etc.) while

drawing various shapes. We had to implement new Java classes to duplicate this

functionality of the TCM in TcmJava.

Although the event model used in TCM and the Java event model are

fundamentally different, translation of the event handling code did not present many

problems. This is because the event model used in Java is more systematic and

simplified than using X/Motif callbacks which is messy and error-prone. Although the

parts of the TCM implementation responsible for event handling had be completely

redesigned and re-implemented, duplicating the functionality of the original code

probably took lesser time and effort than it would if it were translated. This is because of

better and more systematic event handling mechanisms provided by the Java language.

3.3.5 Storage/Retrieval

The mechanisms used for persistent data storage/retrieval in the original TCM are

probably the only parts of the TCM implementation which are less than impressive. This

is a direct result of the limitations of the C++ programming language to provide suitable

32

mechanismsonwhich to build. This is wheretheperfectlyobject-orienteddesignof the

TCM falls aparta little bit. TheTCM maintainsthepersistentdataby storing it in Unix

files which contain textual information in a predefinedfile format defined by the

implementersof theTCM. ThedetailsabouttheTCM file formataregiven in theTCM

designdocument. The objectreferencesareconvertedinto ASCII charactersandstored

in the files. While readingthe file, the referenceinformationstoredin ASCII format is

convertedto an object referenceby convertingit into an integral type (primitive type

'long' in C++) and castingit to an object pointer. Storing of other information also

involves disassemblingof the information representedin an object and storing the

resultingpiecesof information in ASCII format. Thesepiecesof informationstoredin

ASCII format mustbeputbacktogetherandtheobjectsreconstructedduring retrievalof

a stored document. After reconstructingthe objects and obtaining the reference

information, the object referencesare reset to construct the original structureof the

document in memory as it were before it was stored. This approachhas many

limitations. First, it destroysthe modularityof the designandimplementationbecause

thecoderesponsiblefor storage/retrievalmustbe scatteredamongvariousclasseswhich

otherwise have nothing to do with persistentdata storage. Second,a lot of extra

information must be written to files in order to allow the system to interpret the

information correctly at retrieval time. This information has no relevance to the

conceptual informationbeingstoredbut hasto be thereto overcomethe limitations of

the approachused. Sincethereis extrastoredinformation,readingthis informationand

using it to interpret the actual information involvesextra work which is an unwanted

overhead. Third, the file format definedto storethe information is apt to changeover

time astheprojectevolvesto incorporateincreasingfunctionalitybecauseof the needto

storeadditionalinformation. This introducestheburdenof keepingthenewerversionsof

theTCM softwarecompatiblewith thedocumentsgeneratedandpersistentlystoredusing

the older version. The TCM softwarealreadyhave at least two different file formats

which will multiply further simply to meetthe evolving persistentstorageneedsof the

softwareas it itself evolves. Although the evolution of the file format is natural, the

mechanism used to manage it in current versions of the TCM software is cumbersome.

This is because there is lot of overhead involved in ensuring compatibility among various

33

formatseachof which has extra stored information which must be interpreted differently

depending upon the format. These limitations of the storage/retrieval mechanism used in

the TCM forced us to look for alternative mechanisms which will be described in the

following sections.

One of our goals during the translation process was to stay as close to the original

implementation as possible in order to be able to incorporate the enhancements to the

original software into the translated software. Therefore, we tried to adapt the

storage/retrieval mechanism of the TCM to Java. It simply did not work. There is no

way in Java to cast an object reference to an integral type so that it can be stored in

ASCII format as it is done in the TCM. Java does allow converting the object references

into ASCII format. However, if we used it that way, it would mess-up the C++ to Java

mapping which will be difficult to manage especially because the storage/retrieval code is

scattered and involves lot of checking. Therefore, we decided to use the Java language

mechanisms which are more systematic, object-oriented, and intuitive. To do so, we had

to drift away from the storage/retrieval philosophy of the original TCM and use the

mechanisms built in the Java language to do the checking while loading the stored

information.

The Java Programming Environment introduced the concept of Object

Serialization into the second major version the language (JDK 1.1). The object

Serialization extends the core Java Input/Output classes with support for objects. Object

Serialization supports the encoding of objects and the objects transitively reachable from

them, into a stream of bytes; and it supports the complementary reconstruction of the

object graph from the stream. Serialization can be used for lightweight persistence and

for communication via sockets or Remote Method Invocation (RMI). The default

encoding of objects protects private and transient data, and supports the evolution of the

classes. A class may implement its own external encoding and is then solely responsible

for the external format. Originally, we tried to complement the TCM approach with the

Java Object Serialization by storing the objects as such, instead of first converting them

into ASCII and them storing them. The design of the storage/retrieval mechanism was,

34

however,kept the same as that of the TCM. This approach worked well for stand-alone

editors maintaining storing the persistent data in the local Unix or DOS files. However, it

involved extra and unnecessary work which could later be dispensed with by using a pure

Java and totally different approach. Moreover, since our major objective in the

implementation of the WHERE project is to provide tool support for collaboration among

distributed people, this hybrid approach using a combination of original TCM mechanism

and Java Object Serialization did not meet our needs. Devising a suitable mechanism

that would facilitate the persistent data storage by TcmJava editors to a remote server was

one of the objectives of this investigation. A detailed description of the mechanism

developed to achieve this objective will be given in a later section of this chapter.

3.3.6 Other Miscellaneous Issues

This section describes some other issues involved in the translation process, none of

which warrants a category of its own. The virtual methods in C++ mapped naturally to

normal non-static, non-final Java methods because by definition these methods in Java

are virtual. The concept of "friendliness" in C++ is handled by the Java language by

using the package concept and various access modifiers. The enumerations in C++ were

mapped to final classes in Java. Such a Java class has a final field corresponding to each

member of the enumeration. The class also provides methods for constructing the

enumerations, and accessing and setting the values of the their members, in order to

prevent the assignment of illegal values by the user. The C++ global variables and

constants are mapped to static fields and static final fields of the corresponding classes.

In cases where C++ code defines globals outside any class definition (for instance in

header files), new final Java classes were implemented to map those variables.
/

The preceding sections have briefly described the translation process pinpointing

the parts of the process involving significant effort. One of these parts is the code

responsible for persistent storage/retrieval of data generated by various TcmJava editors.

The section on storage/retrieval pointed out the limitations of the TCM approach and

described the hybrid approach used to provide a storage/retrieval mechanism for the

TcmJava version using local Unix/DOS file system for persistent data storage. The

35

following sectionswill describethe approachdevelopedin this investigationto allow

persistentstorage/retrievalof thedatageneratedby TcrnJavaeditorsdownloadedover the

Intemetandstoring/retrievingdatain/from aremoteserver.

3.4 Java, CORBA, Web, and Database Server Approach

Since the WHERE project alms to provide tool support for collaborative development,

we adopted Java Programming Environment for implementing the functionality. Reasons

for selecting Java were discussed in an earlier section. Having selected Java, we needed

a mechanism which would be used for persistent storage of data generated by appIets

launched from distributed locations using a Web-browser. The 1.0 release of Java, the

one available at the time of planning of this investigation, did not provide any mechanism

for using remote methods by distributed application components. Therefore, we needed

some mechanism for allowing the TcmJava editors, launched as applets from distributed

locations, to store/retrieve data in/from TcrnJava database server/servers. The features of

CORBA seemed to complement Web-based TcmJava applets well for serving the

persistent data management needs of our environment. Hence, we decided to use

CORBA ORB (Object Request Broker) technology (and possibly other CORBA services)

to implement a persistent data storage infrastructure. This infrastructure would serve as a

base for building additional functionality required in the WHERE project as the process

underlying the project is defined. For instance, one of the functionality could be to build

the inter-document consistency checking mechanism into the storage/retrieval

mechanism. The following section will give a brief overview of the CORBA before

proceeding further with the details of the approach.

3.4.1 Overview of CORBA

The CORBA (Common Object Request Broker Architecture) is an industry standard

developed and promoted by the Object Management Group (OMG), an industry

standards organization. The CORBA specifies rules for communication among object-

based, distributed applications in a platform independent manner. One of the core

functionality specified by CORBA is the ORB (Object Request Broker) which is a

standard mechanism enabling the distributed software objects and their clients to interact.

36

An ORB is the hub of the communication facilities provided by a CORBA

implementation. The ORB providesthe communication mechanisms needed by objects

and their clients to communicate with each other. Using an ORB, an object and its clients

may be present in the same process, or in different processes. The processes may be

executing on different hosts connected by a network. The operations that a client may

invoke upon an object are specified using a declarative language. This language is a part

of the CORBA specification and is called Interface Definition Language (IDL). The

clients invoke the services of an object by invoking the operations specified in IDL and

objects provide these services by implementing those operations. The objects and their

clients may be implemented independently of each other and in different programming

languages. The operation requests specified in IDL are conveyed from client to object by

the ORB software in a transparent manner. The ORB software is also responsible for

conveying the responses from the objects back to their clients. Usually, the implementers

of the ORB software provide an IDL compiler which generates the source code for some

of the software necessary for allowing the objects and their clients to communicate. The

IDL compiler takes operation definitions specified in IDL as input and generates the

necessary source code. The generated source code consists of two parts: 1) the part

which is compiled and linked with the code providing implementation for an operation;

2) the part which is compiled and linked with the code which intends to use an operation

in order to use a service provided by an object implementing that operation. The IDL

mappings are available for various programming languages such as C, C++, Smalltalk,

and Java. These mappings provide language mechanisms which can be used by the

programs written in the language of a particular mapping to invoke the CORBA services

specified in IDL and converted to that language by the IDL-to-language compiler.

Since the details involved in passing of information between the objects and their

clients are implemented by the ORB software and are transparent to the object as well as

its clients, the objects and clients do not have to know various details about each other.

These details about objects and their clients may include the specific locations, host

machine and data representations, languages used for implementation, operating system

underlying the host, or communication protocols used for information transfer.

37

Therefore,theuseof the ORB softwareallowsdevelopingdistributedapplicationswhich

maycompriseof theprogramswritten in different sourcelanguageswhich areexecutable

on different hostmachinesand operatingsystemplatforms. The flexibility providedby

the CORBA approachallows the distributedapplicationsto becomposedof legacyand

third-partysoftwareaswell asnewly developedsoftware.

TheCORBA approachasit is today,hassomelimitations. The CORBA doesnot

solve theproblemof deploying the componentsof a distributedapplication (Evansand

Rogers,1997). The programscomprisinga distributedapplicationmust be installedon

the hostswhere they will execute. This usually representsa problem for the client

softwarein a multi-userdistributedapplication. The deploymentproblemsare faced in

both the initial setup and in maintenancebecausesoftware upgradesmay require

replacingof older componentswith the new ones. The deploymentproblem is further

complicatedby platform heterogeneitybecausethe samecomponentsoftwaremay be

required to executeproperly on a range of different host architecturesand operating

systems.This is wherethe useof provenWeb-technologyconsistingof Web-browsers

andrevolutionarylanguageJavacomplementstheCORBA in providing a very powerful

and flexible approachto developing distributed client serversapplications. Another

limitation of CORBA is the power of the IDL. Although IDL allows specifying the

operationscontainingparameterswhich may consist of any of the primitive data types

andcommonconstructedtypesin commonprogramminglanguages(C, C++, Smalltalk,

Java), the power of IDL is limited in that it doesnot allow the passingof arbitrarily

complex types definable in the object-orientedlanguages(for instance, Java). The

problem can be circumvented by disassemblingthe information contained in the

aforementionedtypesinto piecesand defining IDL interfacesfor transferof individual

pieces. This, however,may involve making unreasonablyhigher number of remote

invocationsand callbacks from serverto clients. Someof the providers of the ORB

softwarehaverealizedthis limitation of the IDL andhavedefinedupwardly compatible

extensionsto the IDL which enabletransferof complexdata. Onesuchtechnologywill

bedescribedin a later sectionfollowing adescriptionof theORBimplementationchosen

for this investigation.

38

3.4.2Visibroker for Java ORB

The ORB software used in this investigation was the trial version of 'Visigenic

Software's implementation of the ORB. This software is called Visibroker for Java

(VBJ) and is available, for free evaluation for a period of three months, from 'Visigenic

Software'. The version of the software used in the present investigation was VBJ3.0.

The decision about using the VBJ was made after evaluating other rival technologies (for

instance ORBIX WEB from the Iona Technologies). The major reason for choosing VBJ

was its strict adherence to the industry standards which promises long-term success and

viability of the technology. The following section will briefly describe the VBJ.

The VBJ is a complete implementation of CORBA 2.0 (OMG, 1995) ORB and

supports a development environment for building, deploying, and managing distributed

object applications (Visigenic, 1997). These applications are interoperable across

platforms. Objects built with VBJ are easily accessible by Web-based applications that

communicate using the OMG's Intemet Inter-ORB Protocol (IIOP). The IIOP is the

standard for communication between and among distributed objects running on the

Internet, intranets, and in enterprise computing environments.

The VBJ connects (Fig. 1) a client program (an applet or an application), running

Local Host Remote Host

Java Interpreter or Browser

Client

Application

Object

Implementation

request request

Object Request Broker

Figure 1. A client application invoking operations on an object through ORB

39

in a Java Virtual Machine (JVM) or in a Java-enabled browser, with the objects

providing services the client program wishes to use. The execution of the object and its

way of providing a particular service are transparent to the client program. The object

may reside on the same host computer as the object or may be located on a remote

computer somewhere on the network. The only things client program needs to know are

the name of the object or the object reference and the way to use the object's interface.

The ORB software takes care of the details of locating the object, routing the request, and

returning the result. It is important to note that the VBJ ORB is not a separate process

but is a collection of Java objects and network resources that integrates within end-user

applications allowing the client applications to locate and use objects. The VBJ has

several key features which are described in Visibroker Programmer's Guide (Visigenic,

1997). Various applications need not use all of the features and typically only use a few

of them. This discussion will only briefly describe the ones relevant to this investigation.

• Interface Repository: The Interface Repository (IR) is an online database of meta

information about ORB object types. Meta information stored for objects includes

information about modules (an IDL namespace), interfaces, operations, attributes, and

exceptions, all of which must have been defined using IDL.

• Smart Binding: This is a VBJ enhancement to the CORBA specification which

improves performance by choosing the optimum transport mechanism whenever a

client binds to a server object.

• If the object is local to the client process, local method calls are used to

communicate.

• If the object resides in a different process, IIOP is used to communicate.

• Smart Agents: A VBJ smart agent, which is also an extension to the CORBA

specification, facilitates obtaining object references. A Smart Agent can

automatically reconnect a client application to an appropriate object server if the

server currently being used becomes unavailable due to a failure. Furthermore, the

Smart Agents can use Visibroker's Object Activation Daemon (OAD) to launch

instances of a server process on demand.

• Object Activation Daemon: This is a facility to allow an object server to be launched

automatically when a client expresses a desire to use the services provided by the

40

objects contained in the server. In order to allow the servers to be launched

automatically,they must be registeredwith the OAD which includescommand-line

utilities for registering,unregistering,andlisting objects.

GateKeeper: The GateKeeper is an optional feature in Visigenic's implementation of

the CORBA specification. The gatekeeper implements a mechanism which allows

the client programs to make calls over the Internet to objects that do not reside on the

Web server (Fig. 2). The client programs may also receive callbacks from the

Host X

Web Local

Server Network

IIOP

Client Host

GateKeeper Host Host Y

Figure 2. Interaction of an applet with IIOP GateKeeper in a distributed setting

aforementioned objects. The Gatekeeper runs on a Web server and uses mechanisms

which fully conform to the security restrictions imposed by the Web-browsers. In

addition, the GateKeeper handles communication through firewalls. The GateKeeper

can also be used as an HTTP daemon, thereby eliminating the requirement for a

separate HTTP server during the application development phase.

ORB: The ORB supports the functionality specified by CORBA 2.0 (OMG, 1995)

specification. The ORB includes:

41

• Runtime: The runtime supports the execution of the client or server programs.

• Utilities: Basic utilities used by the system administrator or the developer to

obtain information about the state of the ORB environment.

• Server Components: Include Interface Repository, Smart Agent, and the OAD.

As pointed out earlier, IDL has limitations with regard the type of parameters that can be

passed around. In Java, one can define arbitrary data types some of which may be

analogous to IDL structures (an IDL data type struct). If a Java class is defined in a way

such that it conforms to certain requirements, then it can be mapped to an IDL struct. If a

Java class has to be mapped to an IDL struct, it must satisfy the following requirements:

• It must be a final class.

• It must be a public class.

• The class implementation does use inheritance.

• All the data members of the class are public.

If a Java class does not meet all of the above requirements, it cannot be mapped to a

standard IDL struct type. This limits the kind of information that may be passed around

as parameters using standard CORBA specification. The implementations of CORBA

have tried to get around this limitation by defining extensions which are upwardly

compatible with standard CORBA. One such extension is Visibroker's extensible structs

which are described below.

3.4.3 Extensible Structs

The extensible structs implement pass by value semantics and allow parameters of an

operation to be of an arbitrary Java class type. This mechanism allows passing of an

object state from client Java program to server program using ORB brokered

communication provided that a class definition of the Java object is present on the server

side. The Java programs on the server side may invoke methods on the passed object

which is a clone of the original object and has the same state as the original object. This

mechanism uses Java Serialization to pass classes in the form of extensible structs. Java

Serialization compresses a Java object's state into a serial stream of octets that can be

communicated as a part of the remote requests. The extensible struct mechanism allows

the data using pointer semantics to be passed successfully. A group of interrelated

42

objects appearsto be the sameafter its transportacrossa network. The use of this

mechanism, therefore, greatly simplifies developing distributed Java applications that use

CORBA and Web as their communication back-bone.

The preceding sections have described the Java, CORBA, and Web components

of the approach used in this investigation to develop the infrastructure for building

persistent data storage capabilities into the WHERE project. Use of this approach allows

Java applets running at remote clients to store/retrieve data in/from a server which is free

to choose any mechanism for managing the data. The methods employed for managing

the data at the server are totally transparent to the clients. Therefore, the server

implementation is free to choose from various mechanisms such as file systems,

relational database management systems, or object database management systems. The

persistent data management needs of the software engineering environments involving

distributed collaboration are best served by using an object database management system

(Emmerich et al., 1993; Orfali et al., 1996). However, the object database management

systems are still under development and have not reached the popularity enjoyed by the

relational systems. The ever-increasing popularity of Java has resulted in development

of technologies which integrate the Java Programming Environment with the relational

and/or object database management systems and allow Java objects to be stored

transparently. These technologies take advantage of various features of proven database

management technology while providing access to stored data using Java language

features. One of such technologies is the Java Relational Binding (JRB) developed by

the '02 technology'. This technology seemed to fit well into our approach for bridging

the gap between a standard relational database management system (Sybase, Oracle, etc.)

and an object-oriented language (Java). Therefore, we decided to explore the use of JRB

in our attempt to build persistent data storage infrastructure. The following section gives

a brief description of the JRB.

43

3.5 Java Relational Binding

The JRB (02 technology, 1997) is a middle-ware product that bridges the gap between

Java applications and relational databases. The JRB consists of a development

environment and a runtime environment (Fig. 3):

Access Update

JRB Development

IIjay cll
Read�Write

Java_base

Relational Database

T
jrb_import

Figure 3. Architectural overview of a JRB application.

• The development environment consists of a set of tools (e.g. jrb_import) which, given

the description of a set of Java classes, generate an equivalent relational schema and

associated methods to read and write objects in the database. The generated methods

map Java objects to their representation in the relational schema.

• The runtime may consist of a totally platform independent set of Java classes.

However, particular RDBMS and platform specific versions are also available which

44

improve performance by using proprietary API of the RDBMS. The runtime runs on

top of any JDBC compliant driver and manages an object cache to improve

performance.

The JRB provides an alternative to the Java developers who want to store data in a

relational database. The other alternative available which may be used by a Java

developer for this purpose is the JDBC interface. However, the JDBC interface provides

very limited functionality and leaves the burden of mapping a Java object to a relational

schema on the developer. This involves writing Java code to map the Java object to the

corresponding rows of the corresponding relations (tables). The same process must also

be performed in the reverse direction in order to read the stored data into a Java program.

Therefore, using JDBC interface involves lot of extra and unnecessary effort on the part

of the Java developer. The JRB enables the developer to get rid of the drudgery of

writing and debugging the same code over and over. The JRB attempts to overcome the

limitations of the JDBC interface by providing the following capabilities:

• The developer only deals with Java class description and does not need to know the

details of the relational model.

• The JRB development environment automatically generates the relational schema

from the Java class description.

• The environment also generates the code mapping objects to the relations and in the

reverse direction.

• Facilities are provided to allow limited evolution of class definitions.

• The JRB utilizes the native mechanisms of the RDBMS to provide transaction

management and referential integrity among the objects stored in the database.

The interface, provided by JRB to access the database functionality, is very simple. The
J

API of the JRB uses standard Java classes and builds on and reinforces the style and

virtues of the existing core Java classes. The developers of the JRB have plans to make

the binding available on the 02 Engine (Oz object database management system) in near

future. This further enhances the suitability of JRB for an approach like ours because the

interface will be same whether the underlying database management system is an 02

database engine or a relational system.

45

Having described individual components of the approach used in this

investigation, it is now time to put them together and describe how the overall system

will work. The architecture of the infrastructure developed during this investigation is

given in Figure 4. The bytecodes for the TcmJava classes and other code necessary for

the TcmJava editors to run is located on the Web server which is under the control of the

person responsible for administering the persistent data management system. A TcmJava

editor may be launched by an authorized person by using a JDK 1.1 compatible Web-

server. Whether a person is authorized is determined by the persistent data management

system based on login and password information furnished by the user intending to the

launch a TcmJava editor. A user will request access to a TcrnJava editor by specifying

the URL of the Web page containing the applet that will control the subsequent operation

providing the user various kinds of information. Once the authenticity of the user is

TcmJava Editor

\l

User Host Server Host

User Host

Figure 4. Architecture of the Java, CORBA, Web, and Database Server approach

46

verified, the system will try to initialize the CORBA environment displaying error

messages in case of failures. However, the initialization process is carded out

transparently and the user does not need to know what kind of initialization occurs. The

system would have done necessary initializations and established connections for remote

invocation before the user runs an editor. The user can then read the documents, edit

them, and save them back to the server. Similarly new documents may be created and

saved. The system keeps track of the owner of a document who may change the access

rights for the other users. The TcmJava editors used by the user execute on the client

machines and make remote requests through CORBA calls which are conveyed by the

ORB to the appropriate object. Rest of the management of persistent data is transparent

to the clients and is done by the object implementations. In our approach the objects are

implemented in Java and use JRB API to store and retrieve data from a relational

database server. The details about the system will be given in the next chapter which will

discuss the results of this investigation. The purpose of this chapter was to give an

overview of various methods and technologies used in the approach developed during

this investigation.

47

CHAPTER 4: RESULTS AND DISCUSSION

48

Results and Discussion

This chapter discusses the results of the present investigation. The previous chapter

(Methodology) described various methods and technologies used to implement the

approach developed during this investigation for building persistent data storage

infrastructure for the WHERE project. This chapter discusses various components of the

infrastructure providing implementation information wherever appropriate. There are

four components of the "Java, CORBA, Web, and Database server" approach used for

building the persistent storage infrastructure. These components will be described and

discussed in order of their implementation during this investigation. The order of

description is as follows:

• Java Component: Storage/Retrieval Mechanism of the TcmJava

• CORBA Component: CORBA compliant Java code

Web Component: Integration of TcmJava and CORBA components with Web

Database Server Component: JRB and Database Server

4.1 Java Component: Storage/Retrieval Mechanism of TcmJava

The previous chapter described the translation of C++ code (TCM) into Java code

(TcmJava). One of the major problems with the translated code was mapping of the

storage/retrieval mechanisms used in TCM to those in TcmJava. In TCM the

storage/retrieval process starts in the class Document and subsequently ripples through

subclasses of the Document and other two classes (Shape and Subject) and their

subclasses. The conceptual view of the process of storing the simplest document in the

TCM (a Generic Diagram) is given in Fig. 5. The process starts with the Save method in

49

Viewer Document Graph

Inheritance

Diagram

Subject

Figure 5. Conceptual view of the process of storing a document generated by TCM

the Document class. This method writes information, which is common to all documents

generated by TCM, to a file by calling the Savelnfo method in the same class. The Save

method also calls the SaveEntries method of a sub-class of the Document (Diagram,

Table). The SaveEntries method calls WriteSubjects and WriteShapes methods in classes

Graph and Viewer, respectively. The WriteSubjects and WriteShapes methods call the

Write method in classes Subject and Shape, respectively. The Write methods of both the

Subject and Shape classes write some information to the file and then call WriteMembers

methods in their sub-classes which usually involve more than one level down the class

hierarchy depending upon the kind of document being saved. These WriteMembers

methods are where the information specific to a particular part of the document is written.

The implementation of a typical WriteMembers method from both a Subject and Shape

classes is given in Fig. 6. Problem with translating this code into Java was the storing of

50

Document

Shape

Figure 6. Implementation of typical WriteMembers methods for Subject and Shape classes

object references (casting of a pointer to unsigned long) as long values into a file.

Fortunately, by the time we reached that stage of translation Java Serialization was

introduced as a part of the JDK 1.1. Use of Java Serialization made the storing of objects

much simpler. It allows the object to be written as such along with any other objects

transitively reachable from the object being written. Therefore, we used Java

Serialization's WriteObject method to translate the TCM code which used pointer to

unsigned long conversion before storing it into an ASCII file. The C++ code shown in

Fig. 6 was translated into the Java code given in Fig. 7. This approach worked for the

51

Document

Shape

Figure 7. Translated code of WriteMembers methods for Subject and Shape classes

standalone TcmJava application which stored/retrieved data in/from a local Unix/DOS

file. However, it involved making a very large number of input/output (IO) calls and

wrote unnecessary information to the file. Moreover, this approach would not work for a

distributed TcmJava application involving remote method invocations to store/retrieve

data in/from a remote server. As such this approach was grossly inefficient and would

become impractical if data was to be stored/retrieved over a network. Since our objective

52

in this investigation was to build persistent data management infrastructure for a project

aiming to build tool support for distributed collaboration, we must devise an approach

which would involve making the least number of invocations while storing/retrieving

data. In addition, we wanted to leave the original architecture of TCM intact in the

translated version. After analyzing the storage/retrieval mechanism of the original TCM,

we were able to devise an approach which involves storing/retrieving lesser information

than the original approach and is more elegant. Our approach involves writing the

Document object itself to the persistent storage. The Java Serialization takes care of

Saving/Loading of the information which is a part of the Document Object (i.e referenced

by it). The writing of information derivable from the stored information is prevented by

making the fields representing that information transient. The reading/writing activity

now involves making a single invocation of an operation irrespective of whether it is a

local or remote invocation. Moreover, the reading/writing occurs entirely in the

Load�Save methods of the Document class. This approach does not require to explicitly

store extra information needed to interpret the stored information when it is retrieved;

Java serialization takes care of that. A comparison between Figs. 5 and 8 illustrates the

features of our approach vis-a-vis the approach used in TCM. The document

Document]

l [GlobalName.load save.save(file, thls,, l

-

I ,

Figure 8. Conceptual view of the storage/retrieval process in TcmJava.

storage/retrieval process in our approach involves making a single call to the Save/Load

method of the load_save class which implements the persistent storage mechanism. The

53

details of how and wherethe persistentstorageoccursare transparentto the TcmJava

application performing the storage/retrieval. The load_save class may implement a

storage mechanism which saves the Document object to a local file or may be a

mechanism which transports data over a network and makes it persistent on a remote

server. Again, the details of how the data is made persistent locally/remotely are

transparent and may be changed without any effect on the working of the TcmJava

application using them. The development of this approach was the first step in building

the infrastructure. With this first step in place, if the data were to be persistently

managed locally, implementing the load_save class meant using WriteObject and

ReadObject methods of the Java interface java.io.Serialization. However, our aim was to

develop an infrastructure which will be used by geograhically distributed multi-client

TcmJava application. To accomplish this, we needed a mechanism which will allow

storage/retrieval of Java objects to a remote server transparently. This leads to the second

component of our approach which will be discussed in the following sections.

4.2 CORBA Component: CORBA Compliant Java Code

While using the Web as a communication back-bone for building distributed Java

applications, one faces the problem of applet authentication. The Java language and run

time have built-in mechanisms to ensure that the applets downloaded from the Web via a

Web-browser do not compromise the security of the local system. Java runtime has a

built-in authentication mechanism which checks to determine whether an applet is

allowed to perform a particular action. Whenever, an applet tries to perform a security-

sensitive operation, the runtime throws security exception and the operation is prevented.

Examples of the security-sensitive actions include accessing the file system of a Web-

browser's host, or opening a network connection to another host. Therefore, a

mechanism is required such that the security-sensitive actions could be delegated to that

mechanism which will perform them transparently in a secure manner. Implementations

of CORBA represent one of such mechanisms which can be used in developing

distributed Java applications involving data transport and using Web as the

communication back-bone. The Remote Method Invocation interface released as a part

of the JDK 1.1 is another such mechanism. Two mechanisms are capable of serving the

54

kind of functionality required for implementing the infrastruture we are building.

However,we decidedto usetheCORBA approachbecause:it allowsa greaterflexibility

in implementing the server functionality; the softwarerequiredto enablethe remote

invocationsis availablein the form of ORB implementations;CORBA offers additional

functionality (CORBA services)which can be taken advantageof during building

subsequent parts of the infrastructure. An overview of CORBA and one of its

implementations (Visibroker for Java) used in this investigations was given in the

previous chapter. Here we will discuss the details of using the CORBA technology to

provide the functionality required during the present investigation.

The use of ORB technology for transporting information between TcmJava client

applications and the persistent data management server, required defining CORBA

interfaces which will then be transparently used by the clients for sending and receiving

data from the server. Normally, one would define the interfaces using the IDL which

makes them usable by any CORBA compliant application irrespective of the platform

and implementation language. However, the data transfer capabilities of the standard

IDL did not meet our needs. Fortunately, the CORBA implementation, we are using,

uses an extended version of standard IDL which allows transferring of information

represented by an arbitrary Java class. This version of IDL is upwardly compatible with

standard CORBA and the interfaces making use of extended features can be used in

conjunction with the standard IDL interfaces which will still be completely platform and

implementation independent. Since our client applications will be Java anyway, it did

not matter for client. However, it affords the capability of being able to provide the part

of the server implementation by using environments other than Java if such a need should

arise during building various functionality into the infrastructure. Our prototype of the

infrastructure defines a CORBA interface (Fig. 9) specifying the operations available to

the client TcmJava applications for storing and retrieving the persistent data. A TcrnJava

55

publlcinterface TcmLoadSave extends org.omg.CORBA.ObJect (

san fileExists (String :fileName] 1

isDirectory lString fileName), ' ,

,public ,boolean IsFA le (String fileName) ;

listFiles (St=ing dirName) ;

I

Figure 9. Interface definition for the CORBA object providing persistent storage.

Client application uses this interface without worrying about how the data is made

persistent. The CORBA object implementing this interface determines how and where to

store the data. An implementation of TcmLoadSave interface may be a CORBA object

which manages the persistent data in a file system of some operating system running on a

host machine somewhere over the network. One such implementation is given in Fig. 10.

public class TcmLoadSaveServer extends LoadSave._sk_TcmLoadSave(

public stati= final String LOAD_SAVE_DIR m

"/pro_ects/nasa/data/tcmJavalroot";

public TcmLoadSaveServer(Strlng name}(

super(name};

)
//

public String save(String fileName, Document document){

fileName - LOAD SAVE_DIR + fileName;

//

if (ReadWrlteUtility.writeOb_ectFile(fileName, document))

return "Succeeded";

else

return "Failed"_

)

...... Implementation of the remaining methods
• ° ° i__-

Figure 10. An implementation of the TcmLoadSave CORBA interface.

The class in this implementation (TcmLoadSaveSever) sub-classes (extends) the

LoadSave. sk TcmLoadSave class which is a class that is automatically generated by the

IDL compiler and used by the ORB software for delegating the requests to the actual

implementation. The Java source code for the LoadSave. sk TcmLoadSave class is

given in Fig. 11. This class is a sub-class of another automatically generated class

56

In our prototype implementation,the Java classesimplementing the TcrnJava

editors are locatedon a host running in the domain 129.164.10.x(x is a specific host

address) and can be accessedvia a Web-server (Fig. 13). Any user (for the

demonstrationversion)havingaccessto theWeb andhavinga JDK 1.1compatibleWeb-

browsercould downloadandrun the TcmJavaeditors. Whenan editor is launched,it

establishesIntemetconnectionwith aCORBA objectmanagingthepersistentdatathatis

generatedby the editor and communicatedto the CORBA object. The communication

betweenthe TcmJavaand the CORBA objectsis mediatedby the combinationof the

HOP GateKeeperand the OSAGENT. In our prototypeimplementation,the CORBA

objectsrun on two hostsin the domains157.182.114.xand 157.182.112.x.Oneof the

hostsis anNT workstationandtheotheroneis SunSPARCstation.The CORBA

User Host

Web

157.182.114.x

Object

129.164.10.X

Object

157.182.112.x

Figure 13. Description of the operation of the prototype implementation

58

objects running on these hosts store the data communicated to them on the local

DOS/UNIX files, respectively. A user of the TcmJava may specify on which host to

store the data. However, the data does not have be stored in a file system. Instead, a

more powerful mechanism such as a relational or object-oriented database server may be

used for managing the data. These considerations will be discussed in a later section

following the next section which discusses the third component of our approach.

4.3 Web Component: Integration of TcmJava and CORBA components with Web

This component deals with using the well-developed Web-technology as a

communication back-bone in our approach. Our decision to translate the C++ code of

TCM into Java allowed us to use the capabilities of the Web. Furthermore, the security

issues involved in the use of the Web technology were circumvented by using ORB

technology. Although our approach works with any Web-server implementing the

WWW protocol, it allows the use of a specialized Web-server. In our prototype

implementation, we used the JavaWebServer from Sun Microsystems running on an NT

Workstation as well as general purpose Web-servers running on Sun SPARC stations.

The JavaWebServer provides Java specific capabilities which may be taken advantage of

during subsequent developments of the persistent storage infrastructure. The present

investigation, however, did not explore the use of these capabilities. An important

feature of our approach is that it benefits from the development of browser technology;

the Netscape Communicator has in-build Java and Visigenic-ORB Run-time

environments which greatly reduce the Internet traffic involved in launching TcmJava

applications using the Web.

In this and two previous sections, we have discussed the components of our

approach involved in running a Tern Java editor from multiple Web-clients and

communicating the data generated by the editor to CORBA objects responsible

persistently storing the managing the data. The following section discusses the

mechanism to be used for making the data persistent.

4.4 Database Server Component: JRB and Database Server

59

Various issues involved in meeting the persistent data storage needs of a Software

Development Environment (SDE) were reviewed in the chapter on Literature Review

(Chapter 2). It was pointed out that the relational database management systems as such

are not suitable for use in SDEs because of lack of ability to specify and manage the

complex data generated during various phases of an SDE. The object-oriented databases

although very suitable for use in an SDE have not reached a development stage which

warrants their exclusive use in providing the persistent data storage needs of an SDE.

Therefore, we explored the use of a hybrid approach which uses the object-oriented

methods to persistently manage data in a relational database management system. This

section will describe the details of the approach.

This hybrid approach uses a middle-ware product from '02 Technology' called

Java Relational Binding (JRB) which provides a high level interface to an underlying

database, where Java objects and class information are stored. An overview of the JRB

was given in the chapter on Methodology (Chapter 3). In this section, we will discuss the

details involved in its use in our approach. The JRB API consists of a set of Java classes

which are used by the Java applications intending to store/retrieve Java objects from the

database. The methods used for Storage/Retrieval of Java objects in/from the database

are specified in Java Interface called PersistentObject. Any class whose objects are to be

stored in the database must implement this interface. The implementations of the

methods declared in the PersistentObject interface are generated by a tool provided with

the JRB which takes the Java class (whose objects are to be made persistent) as input.

Therefore, any classes which represent the information to be made persistent (stored in

the database) must be imported into the database by using the import tool (jrb__import).

In TcrnJava there are a large number of classes which represent the information generated

by various TcmJava editors. If the approach is to be used as such, all these classes must

be imported. Also, if any modification is made to any of them, the modified class must

be re-imported. In addition to the need for importing unnecessary classes, the approach

would make the storage mechanism dependent on the classes used to generate the

information. This necessitated developing another mechanism which would involve

importing of a smaller number of classes and would make the storage mechanism

60

_dependentof the TcmJavaclasses.Therefore,a setof new classeswere implemented

circumventthe difficulties involved with using the TcmJavaclassesas such. These

Lassesare packagedin a Java Package(tcmJavaServer)and are describedin the

_llowingsection.

.4.1The tcmJavaServer Package

his package contains the classes used to represent the information to be made persistent

ad will be imported into the database. The rationale for implementation of these classes

ame from the fact that in TcmJava, the information to be made persistent, was

_presented by only a small number of classes. However, these classes were either very

)w or very high in the class hierarchy, thereby, necessitating the storage of intermediate

lasses which actually did not represent any information but must be stored because of

eing part of the class hierarchy. One of such class hierarchies of the tcrnJava is given in

_igure 14. The Figure also shows the corresponding hierarchy in the new package

aaplemented for making the information persistent. In this case, if an object of class

'ripleBox as it occurs in the tcrnJava package has to be made persistent, all the classes

hown in the hierarchy in the left-hand side of the Figure must be imported into the

tcmJava tcmJavaServer

Figure 14. Corresponding class-hierarchies in the tcmJava and tcmJavaServer

packages.

The classes of the tcrnJavaServer package will be made persistent by importing

them into the underlying database via the jrb_import tool which is a part of the JRB.

After importation into the database, each class will implement the PeristentObject

interface and will contain methods required for performing various operations required

for reading, writing, and managing the data. The following section discusses each of

these operations by using one of the classes in the tcmJavaServer package as an example.

4.4.3 Persistent Objects

Figure 15 shows the implementation of one of the classes in tcmJavaServer package

before being persistence capable (being imported into the database). This class will be

public abstract class Subject

protectedString name;

protected Graph graph;

protected initialize(SubjectDa

this.name = data.name

if (data.graph instanceof

graph = new DFGraph (

{

ava.sd.DFGraph)

this.graph = new Graph(data.graph);

protectedvoid initSubject

data){

ect subject,,,SubjectData

...more methods ..

Figure 15. A typical class from tcmJavaServer package before being persistence capable.

used as an example to illustrate the process of making tcmJava objects persistent, using

the JRB and a relational database server. In order to store/retrieve data represented by

this class in/from the relational database, the class must be made persistence capable by

importing it into the database and subsequently changing its class-definition followed by

recompilation. The persistence capable version of this class is shown in Figure 15.

63

public abstract class Subject extends Object i_pleme_ts PerslstentObJect{

protected String name;

Graph graph;

._cted initialize (SubjectData data) {

s.name = data.name.

f :(data;graph instanceof

this. graph = new DFGraph ((tcmJava. sd. DFGraph) data, graph) ;

else

this.graph = new Graph(data.graph);

)
//

protected Void initSubject (tcmJava. dg. Subject subject, Subj ectData data) {

..more methods ...

I bodies of methods declared in PersistenObject interface

Figure 16. A typical class from tcmJavaServer package after being persistence capable.

After importing the class into the database, its definition must be modified such that it

implements the PersistentObject interface of JRB API. Before this modified class

implementation can be recompiled, the definitions of the methods declared in the

PersistentObject interface must be inserted into the class body; these method definitions

are generated by the jrb_import tool used for importing the classes into the database.

After this modified definition of the class is compiled by using the Java Compiler, objects

of this class may be stored/retrieved in/from the underlying database.

Once a class is made persistence capable, the application manipulating objects of

that class is given full control over the persistent data through the methods declared in the

PersistentObject interface. In addition, JRB provides various other functionality through

static methods of some utility classes which are part of the JRB API. The following

sections will discuss management of the persistent data represented by tcmJavaServer

classes which had been made persistence capable by using JRB and an underlying

relational database server.

4.4.4 Transaction Management

The transaction management capability available to the persistent tcmJavaServer objects

can be very useful in the view of being able to provide the persistent data to multiple-

64

users using tcrnJava editors from remote sites. The transaction managementis

convenientlyprovidedthroughthemethodsof aclass(Transaction),partof theJRB API.

The methodsof this classgive control to the applicationto managetransactions. This

allows theprocess(to bedefinedto controltheoperationof theWHEREenvironment)to

specify the transactionmanagementpolicies but yet providing a convenient way to

enforce them. For instance,the processmay specify that certain documentsmay be

viewed by a group of usersbut may be modified by a subsetof those users. The

transactionmechanismtogetherwith theaccesscontrolmechanism(to bediscussedlater)

providesa convenientway of enforcingsuchapolicy. Theusersallowedonly to view a

documentcanbe restrictedto openthedocumentin read-onlymode. Regardingtheusers

with updaterights,concurrentupdatescanbeeasilysupported,of course,accordingto a

policy specifiedby the process. The systemprovidesconvenientwaysand leavesthe

control to theprogrammerwho mayenforcevariouspolicies.

4.4.5 Access Control

The access control is provided by first defining users and then assigning them various

access rights. The user management is done through a Java class which allows adding

users, defining login information, changing the login information, and deleting the users.

The user management can only be performed by the person who created the database. A

user can be allowed/refused following six kinds of rights:

• Import : The user is enabled/disabled to import Java classes.

• Access : The user is enabled/disabled to read persistent objects.

• Update : The user is enabled/disabled to write persistent objects.

• Delete : The users is enabled/disabled to delete persistent objects.

• All : The user is enabled/disabled to read, write, and delete persistent objects.

• Grant : The user is enabled/disabled to perform all the previous operations and to

give grant permission.

The user who imports the Java classes into the database has all the rights on the

imported classes. This user may grant or revoke access rights to other users on classes

imported by him. This prevents the unauthorized users from accessing the persistent data

managed while making it accessible to multiple users running tcrnJava editors from

65

distributed locations. Also the securitycontrol lies with a singleuserwhich is a very

desirablefeaturein distributedapplicationsmakingpersistentdataaccessibleto multiple

users.

4.4.6 Creating Persistent tcmJavaServer Objects

All the tcmJavaServer classes that have been imported into the database are provided

with the methods for writing them into the database. The CORBA object which is

connected to a tcrnJava editor running in a remote host implements the persistence

mechanism. This object receives a copy the tcmJava object, whose data is to made

persistent, through a CORBA call made by the applet running the editor. The CORBA

object creates a corresponding tcmJavaServer object and copies the data from the

tcmJava object to this object. The tcmJavaServer object and all the objects pointed to by

it are then written to the database through methods in the PersistentObject interface. The

writing occurs inside a transaction where the objects being written are locked to preserve

consistency. Mechanisms are provided to prevent deadlocks among the concurrent

updates to a given object. The enforcement of concurrency is left to the programmer and

may be dictated by the process goveming the environment (WHERE), the persistence

mechanism is part of. References among the stored objects may be created according to

some specified policy and may be used to implement a process model. For instance, the

consistency among stored documents may be checked and enforced by creating

references. In addition, the checking may be done at the server side without the need for

transporting lot of data over the network which may be needed if consistency checks are

to be performed at the client side. This approach, therefore, tackles a number of issues

involved in providing persistent data storage in an SDE; these issues were pointed out in

chapter on Literature Review (Chapter 2).

4.4.7 Retrieving Persistent tcmJavaServer Objects

The tcmJavaServer objects stored in previous sessions can be accessed in a current

session though data entry points defined in the database. The object access occurs

through class extents. A class extent contains all instances of a class that had been

previously written to the database. The system defines two types of class extents which

66

provideaccessto instancesof aclassonly or to instancesof aclassandall its sub-classes.

A classextentcanbe filtered througha predicate(very similar to the where clause of a

select -from-where SQL query) to obtain a particular instance. For instance, a tcmJava

document is represented by an instance of the Document class defined in the

tcmJavaServer package. One of the fields of the Document class is a String which

identifies a particular document. Therefore, a particular document may be retrieved from

the database, inside a Java program (Fig. 16). When an object is retrieved from the

variable of document type.
' declare a variable of type extent. •

"Document"); II obtain a reference to all instances of Document and its

identifier'").element0;

Figure 17. Retrieval of a previously stored document from the database.

database, all of its fields of primitive data types are read. However, the reference types

must be explicitly read using methods provided in the PersistentObject interface. The

system also provides query capabilities using primitive as well as reference-type fields of

the stored object. For instance, one of the queries could be: retrieve all documents

created by user X. Since an object of class Document contains a field representing name

of the document creator, the aforementioned query can be easily made. The results of a

query can be read into an object of Java Enumeration type and used in anyway the

programmer deems appropriate. These capabilities can be very useful when building

subsequent components of the WHERE project.

67

4.4.8 Deleting Persistent Objects

The PersistentObject interface contains a delete method which facilitates deleting of a

stored object. Before an object can be deleted, the system checks to see that the object is

not referenced by any other stored object, ff the references to the object being deleted

exist, the deletion is disallowed and an exception is raised to inform the application

attempting to perform the deletion. The deleted objects remain in the memory of the

application and may be written back to the database. This feature can be very useful for

enforcing consistency among the stored documents according to some process governing

the operation of the SDE (WHERE).

This chapter described and discussed the four components of the approach

developed during this investigation for building persistent data storage infrastructure of

the WHERE project. The approach discussed here will serve as a foundation on which

the subsequent functionality will be built. This approach provides for communication

among geographically distributed people who are part of a software engineering team.

The approach uses the Web as the communication back-bone and CORBA for allowing

multiple users to read/write data from/to multiple servers. The data storage mechanisms

are transparent to the tcmJava applications using them. The approach provides for

performing a large portion of the computing on the server-side, thereby, cutting-down on

the amount of data that must be communicated among the geographically distributed

locations over the Network. A relational database server with Java language access is

used to store the data with flexibility to switch over to an Object-Oriented Database

Server in future. Our system has tried to handle a number of issues involved in providing

persistent data storage for a distributed software engineering environment. The following

chapter (Chapter 5) will summarize and conclude the thesis pointing out needs for future

work.

68

CHAPTER 5: SUMMARY, CONCLUSIONS, AND

FUTURE WORK

69

Summary, Conclusions, and Future Work

This chapter summarizes and concludes the thesis, pointing out the need for future work.

This thesis describes and discusses the results of an investigation undertaken to build an

infrastructure for providing persistent data storage for a Software Development

Environment (WHERE) aiming to provide collaboration among the members of a

geographically distributed team. The aim of the investigation presented in this thesis was

to build the foundation software for the WHERE project. A software implementing a set

of Diagram and Table editors (TCM) was adopted as the foundation software. The C++

code of the TCM software was translated into the Java programming language in order to

enable the software to be used in a distributed environment taking advantage of the Web

technology. The persistent storage mechanism of the TCM software had been designed

to be used in a single user environment and, therefore, had to be redesigned to use it in a

distributed environment. An implementation of CORBA (Common Object Request

Broker Architecture) from Visigenic Software (VisiBroker for Java) was used to facilitate

the communication between the tcmJava editors running as Java applets on client hosts

and the persistent data server managing the data generated by the editors. The persistent

data server was implemented as CORBA objects running on a Network host and

receiving data from and sending data to the tcmJava editors. The data could be

transparently stored on a single server or multiple servers each of which would be

implemented by a CORBA object. A CORBA object implementing the persistent data

server for tcmJava uses a middle-ware called Java Relational Binding (JRB) to

store/retrieve persistent tcmJava objects in/from a relational database server. The

Transaction and User management facilities provided by JRB could be used by CORBA

objects implementing the server to provide niulti-user concurrent access to store tcmJava

objects in a secure fashion.

The results of this investigation have shown that a combination of Java

Programming Environment, World Wide Web, a middle-ware bridging the gap between

Java programs and a data base, and a database server can be used to provide the persistent

data storage for a distributed Software Development Environment. Using proven

70

technology,in theform of existingsoftwareasa foundationfor building softwareaimed

at achievingspecificobjectives,is advantageousasopposedto developingthe software

from scratch.Theformeravoidsexpendingtimeandenergyon thesoftwarewhich is not

of direct use to a particular project but must be developedin order to serve as a

foundationon whichthesoftware,to beusedin theproject,wouldbebuilt. The complex

data which is often generatedin a SoftwareEngineeringEnvironmentand must be

persistentlystoredand managedcould be successfullyhandledby using the approach

developedduring this investigation. By using this approachwe havesuccessfullybuilt

the basic infrastructurerequiredfor building variousfunctionality requiredfor making

the data,to be generatedin WHEREproject,persistentandmanagingit. The following

sectionpoints out thefuturework that will be requiredto build variousfunctionality on

top of the infrastructuredevelopedduringthis investigation.

Thefirst stepin thefuturework, aimedatbuilding functionalityon thetop of the

infrastructuredevelopedduring this investigation,will be to definea processgoverning

theoperationof theWHEREproject. With thebasicinfrastructurein place,any further

developmentshouldbe governedby the process. This processwill specify various

policies to be usedin theWHERE project andthesepolicies will govern the decisions

which will haveto bemadeto carryout thefurtherdevelopment.For instance,it mustbe

decidedwhetherthe inter-documentconsistencychecksareto beperformedon theclient

or the serversideandfurtherdevelopmentcardedout accordingly. Oncethesedecisions

aremade, further implementationthen canbe carriedout using the basic mechanisms

developedduring this investigation. For instance,mechanismsarealreadyin placeto

enforcethe securityrestrictionsrequiredfor allowingcontrolledmulti-useraccessto the

persistenttcmJavadocuments.However,the'securitymechanismto be actuallyusedin

thereal projectcanonly be implementedafterthepolicy for it is specifiedwhich will be

doneasapartof definingtheprocessgoverningtheoverall operationof theproject.

71

REFERENCES

Barghouti, N.S. and G.E. Kaiser. 1991. Concurrency control in advanced database

applications. ACM Computing Surveys 23(3): 269-317.

Bentley, R., W. Appelt, U. Busbach, E. Hirtrichs, D. Kerr, K. Sikkel, J. Trevor, and G.

Woetzel. 1997. Basic Support for Collaborative Work on World Wide Web. Int. J.

Human Computer Studies, Academic Press, Cambridge. In Press. 20 pp.

Bernstein, P.A. 1987. Database system support for software engineering. In Proc. 9 th Int.

Conf. Softw. Engg., Monterey, Cal. pp. 166-178.

Boem, B. 1984. Model and metrics for software management and engineering. IEEE

Comp. Soc. Press, pp. 4-9.

Boem, B. 1987. Industrial software metrics top 10 list. IEEE Softw. 4(5): 84-85.

Borenstein, N. and N. Freed. 1992. MIME (Multipurpose Internet Mail Extensions):

Mechanisms for specifying and describing the format of Internet message bodies.

RFC 1341, USC/Information Sciences Institute.

Callahan, J. and S. Ramakrishnan. 1996. Software project management and measurement

on the World-Wide-Web (WWW). Proc. WET ICE "96, Stanford, California,

USA. IEEE Comp. Soc. Press. 156-161.

Dix, A. 1996. Challenges and Perspectives for cooperative work on the Web. Proc.

ERCIM Workshop on CSCW and the Web, Sankt Augustin, Germany.

Emmerich, W. and W. Schafer. 1996. Environments for group-oriented software design -

The Groupie experience.

Emmerich, W., W. Schafer, and J. Welsh. 1993. Databases for Software Engineering

Environments - The Goal has not yet been attained, pp. 145-162. In I.

Sommerville and M. Paul (eds.), Software Engineering ESEC '93. Proc. 4 th

European Software Engineering Conference, Garmisch-Partenkirchen, Germany,

volume 717 of Lecture Notes in Compu{er Science, Springer.

Engels, G., C. Lewerentz, M. Nagl, W. Schafer, and A. Schurr. 1992. Building integrated

software development environments. - Part h Tool specification. ACM Trans.

Software Engineering and Methodology 1(2): 135-167.

Evans, E. and D. Rogers. 1997. Using Java applets and CORBA for multi-user distributed

applications. IEEE Intemet Computing, IEEE Computer Society. pp. 43-55.

72

Finin, T. et al. 1992.Specificationof theQKML agent-communicationlanguage.Tech.
ReportEIT TR 92-04,EnterpriseIntegrationTechnologies,PaloAlto, CA.

Finkelstein, A., J. Kramer, B. Nuseibeh,L. Finkelstein, and M. Goedicke. 1992.
Viewpoints: A framework for integrating multiple perspectives in system
development.Int. J.Softw.Eng.Knowl. Eng.2(1): 31-57.

Finkelstein,A., D. Gabbay,A. Hunter,J.Kramer,andB. Nuseibeh.1994.Inconsistency
handlingin multi-perspectivespecifications.Trans.Softw.Eng.20(8): 569-568.

Gotel, O. andA. Finkelstein.1994.An analysisof therequirementstraceabilityproblem.
IEEE Int. Conferenceon RequirementsEngineering,Colorado Springs, IEEE
Comp.Soc.Press.94-101.

Gotel, O. and A. Finkelstein. 1995. Contribution Structures. IEEE International
Conferenceon RequirementsEngineering,York, UK, IEEE Comp. Soc. Press.
100-107.

Habermann,A.N. and D. Notkin. 1986.Gandalf:Softwaredevelopmentenvironments.
IEEETrans.Softw.Engg.12(12):1117-1127.

Hamilton,M. 1996.Javaandtheshift to Net-centriccomputing.Computer29(8): 31-39.

Holtman, K. 1996.The futplex system.In U. Busbach, D. Kerr, and K. Sikkel (eds),

ERCIM Workshop on CSCW and the Web, Sankt Augustin, Germany, GMD/F1T.

Hoover, R. 1987. Incremental graph evaluation. Ph.D. thesis, Cornell University, Dept.

Computer Science, Ithaca, NY, USA. Technical Report NO. 87-836.

Johnson, G.F. and C.N. Fisher. 1982. Non-syntactic attribute flow in language based

editors, pp. 185-195. In Proc. 9 th Annual ACM Symp. on Principles of

Programming Languages. ACM Press.

Johnson, P. 1996. Egret: A framework for advanced CSCW applications. ACM Softw.

Eng. Notes 21 (2).

Johnson, P. 1994. Supporting technology transfer of formal technical review through a

computer supported collaborative review system. In Proc. Fourth Int. Conference

on Software Quality, Reston, VA, USA.

Johnson, P. and C. Moore. 1995. AEN Home Page. WWW HREF =

"http://www.ics.hawaii.edu/csdl/aen.

Kotonya, G. and I. Sommerville. 1996. Requirements engineering with viewpoints.

Softw. Eng. J. 11(1): 5-18.

73

Kramer, J. and A. Finkelstein. 1991.A configurable framework for method and tool
integration.Proc.of EuropeanSymp. on Softw.DevelopmentEnvironmentsand
CASETechnology,Konigswinter,Germany.Springer-Verlag.

Nodine,M.H., A.H. Sakarra,and S.D.Zdonik. 1991.Synchronizationand recovery in
cooperativetransactions.In Implementing Persistent Object Bases - Principles

and Practice - Proc. 4 th Int. Workshop on Persistent Object Systems.

Nuseibeh, B. and A. Finkelstein. 1992. Viewpoints: A vehicle for method and tool

integration. Proc. Int. Workshop on Computer-Aided Software Engineering

(CASE '92), Montreal, Canada. IEEE Comp. Soc. Press. 50-60.

Nuseibeh, B., A. Finkelstein, J. Kramer. 1993. Fine-grain process modeling, pp. 42-46.

In Proc. 7 th Int. Workshop on Software Specification and Design (IWSSD-7),

Redondo Beach, California, USA. 42-46.

Nuseibeh, B., J. Kramer, and A. Finkelstein. 1993. Expressing the relationships between

multiple views in requirements specification. Proc. 15 _ International Conference

on Software Engineering (ICSE-93), Baltimore, USA, IEEE Comp. Soc. Press.
187-200.

Nuseibeh, B., J. Kramer, and A. Finkelstein. 1994. A framework for expressing the

relationships between multiple views in requirements specification. Trans. Softw.

Eng. 20(10): 760-773.

O2 Technology. 1997. Java Relational Binding User Manual. 3600 West Bayshore Road

- suitel06, Palo Alto, CA, USA.

Orfali, R., D. Harkey, and J. Edwards. 1996. CORBA Services: Persistence and object

databases, pp. 140-159. In The Essential Distributed Objects Survival Guide,

Johnson Wiley & Sons, Inc., New York, USA.

Peuschel, B., W. Schafer, and S. Wolf. 1992. A knowledge-based software development

environment supporting cooperative work. Int. J. Softw. Engg. Knowl. Engg.

2(1): 79-106.

Pu, C., G. Kaiser, and N. Hutchinson. 1989. Split transactions for open-ended activities.

pp. 26-37. In Proc. 14th Int. Conf. Very Large Databases, Morgan Kaufman.

Roman, G.C.R. 1985. A taxonomy of current issues in requirements engineering. IEEE

Computer 18(4): 14-21.

Taylor, R.N., R.W. Selby, M. Young, F.C. Belz, L.A. Clarce, J.C. Wileden, L. Osterweil,
and A.L. Wolf. 1988. Foundations of the arcadia environment architecture. ACM

SIGSOFT Softw. Engg. Notes 13(5): 1-13. In Proc. 4 th ACM SIGSOFT Syrup.

Software Development Environments, Irvine, CA, USA.

74

Toye, G., J. Tenenbaum,M. Cutkosky,J. Glicksman,andL. Leifer. 1994.SHARE: A
methodologyand environmentfor collaborativeproductdevelopment.Post-Proc.
IEEE Infrastructurefor CollaborativeEnterprises(CDR-TR)#19930507.16pp.

U.S. Government Accounting Office. 1979. Contracting for Computer Software

development: Serious problems require management attention to avoid wasting
additional millions. FGMSD-80-4.

van Welie, M. and A. Elins. 1996. Chatting on the Web. In U. Busbach, D. Kerr, and K.

Sikkel (eds), ERCIM Workshop on CSCW and the Web, Sankt Augustin,
Germany, GMD/FIT.

Visigenic Software, 1997. Visibroker for Java: Programmer's Guide Versions 3.0. HREF

.http://www.visigenic.com.

Wan, D. and P. Johnson. 1994. Experiences with CLARE: A computer-supported

collaborative learning environment. Int. J. Human-Computer Systems.

Wieringa, R. 1996. Requirements Engineering: Frameworks for Understanding, John

Wiley & Sons, Chichester, UK.

Yourden, E. 1996. Java, and the Web, and the software development. Computer 29(8):
25-30.

75

