NASA-IVV-97-018

NASA/WVU Software IV & V Facility IR dade
Software Research Laboratory
Technical Report Series

Providing the Persistend Data Storage in a Software
Engineering Environment Using Java/COBRA and a DBMS

Swarn S. Dhaliwal

National Aeronautics and Space Administration

West Virginia University

NASA-IVV-97-018

NASA IV&V Facility, Fairmont, West Virginia

Providing the Persistent Data Storage in a Software Engineering
Environment Using Java/COBRA and a DBMS

Swarn S. Dhaliwal

December 5, 1997

This technical report is a product of the National Aeronautics and Space Administration
(NASA) Software Program, an agency wide program to promote continual improvement
of software engineering within NASA. The goals and strategies of this program are
documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the
World Wide Web site http://www.ivv.nasa.gov/

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU
Software Research Laboratory.

Providing the Persistent Data Storage in a Software Engineering
Environment Using Java/CORBA and a DBMS

THESIS

Submitted to the Eberly College of Arts and Sciences
Of
West Virginia University
In Partial Fulfillment of the Requirements for
The Degree of Master of Science

Swarn S. Dhaliwal
Department of Computer Science
West Virginia University
Morgantown, WV 26506

December 1997

APPROVAL OF ADVISORY COMMITTEE

Steve M. Easterbrook, Ph. D.

V. “Juggy” Jagannathan, Ph. D.

John R. Callahan, Ph. D., Chair

II

To my brother, my sisters,
my sister-in-law, and
my wife

A

Acknowledgements

I wish to express my deep sense of gratitude to my major Professor Dr. Jack
Callahan for giving me an opportunity to be a part of the wonderful SRL (Software
Research Laboratory). His ever-willingness to provide technical support and his
ability to stimulate intellectual interest has had a profound influence on me and has
gone a long way in the successful completion of this thesis.

I can never express enough appreciation to my supervisor Dr. Steve
Easterbrook whose able guidance and foresight made the planning and completion of
this thesis possible. His cheerful and friendly disposition, his ever-willingness to
help, and his ability to provide constructive criticism and intellectual stimulation are
exemplary. I consider myself fortunate having had an opportunity to work with him.

Thanks are also due to Dr. V. "Juggy" Jagannathan for agreeing to be on my
committee and his willingness to provide technical help during planning the thesis
research. I wish to thank everybody at SRL for always being ready to help and for
providing an excellent work environment. I have really enjoyed being a part of such
an outstanding organization. I express my gratitude to Todd Montgomery for
providing technical help. Appreciation is also extended to my fellow graduate
students : Mani (my office-mate), Zhong (my team-mate), Reshma, and Nicholay for
their help and pleasant companionship. They have really made my stint as a
computer science graduate student enjoyable.

I will always be grateful to my parents whose love and moral support have
enabled me to come thus far. No words suffice to thank my elder brother, my
sisters, my sister-in-law, and my wife for their love and moral support. The love of
my nieces and nephews has always been a source of inspiration for me.

The financial support provided by NASA-IV&V Cooperative Research Project

in the form of a Graduate Research Assistantship is gratefully acknowledged.

Table of Contents

0 L T R |
CHAPTER 1: INtrodUcCtiON vevvveeescrcscescccecsscsccssorsssascssssesssesscsssssescsssassascss &

CHAPTER 2: Literature ReVIEW ...cciciieeeeeeeeseersssccecrssocssossssscsosssassansnsscnsoss 7

2.1 Requirements Engineeringoooviiiiiiiiniiiiiii i e 8
2.2 ViewPoints Frameworkooooiiiiiiiiiiiii 11
2.3 Computer Supported Collaborative Workcocovvviiiiiiiiin 14
2.4 Persistent Data Storage in Software Development Environmentsc...c.ooooeiin.. 22

CHAPTER 3: MethodolIOZY «cuvceecrcersscsnssnssassessesssssssssssessesssscossnascsssesones 31

I I L1 Yo (2 (O 33
3.2 Java Programming Environmentooovuiiininiiiiiiii 35
3.3C++toJava Translation of TCM ..o 37
3.3 T Templatesccccooeovvviviiiiiiiniiiiiiiiiiiii e 37
3.3 28I1I0GS oo e e e e e e e 38
3.3.3 Parameter PASSINGccueeemeeummiineiiiinciiiis it i s aa s 38
B3 A GUICOME o...ccoooeeeeieeeiieeeiieeeereee e ettt eerar e e e e e e e seeinses 39
3.3.5 St0rage/Retrievalcoovvievivviiiniiiiiiiiiiiiiiiii e 41
3.3.6 Other Miscellaneous ISSUEScoveeiiiimmiiiiniiiiiiiniinininss e, 44
3.4 Java, CORBA, Web, and Database Server Approachooi 45
3.4.1 Overview of CORBAccccoovvvimmiiiiiiiiiiiiiiiii et 46
3.4.2.Visibroker for Java ORBcocommuviiiiiiiiiiiiiiiiiiiiiiiiiec i 49
3.4.3 Extensible SIUCES «...oevvivieeiieiiiiiiiiiec ettt 54
3.5 Java Relational Bindingcovviiiieiniiiiiiiiii e 56

CHAPTER 4: Results and DiSCUSSION vccceveerereerecensescssoscscerorasocrsassasccscssces Ol

4.1 Java Component: Storage/Retrieval Mechanism of TemJavacooooiiiniiininn 62
4.2 CORBA Component: CORBA Compliant JavaCodec.cooiiiiiiiiiin, 68
4.3 Web Component: Integration of TcmJava and CORBA components with Web............. 73
4.4 Database Server Component: JRB and Database Serverccoceviiiiiiinininini 74
4.4.1 The temJavaServer Packageoooviiviiiiiiiiniiiiiniinieeecec, 76
4.4.2 Using the Database SEIVETcoveiiireiiiniiecimiiinciinesesinsiseeresesnsnnon 78
4.4.3 Persistent ObJEctSuvevuiiivviiiiinimmmiiinieiiiiieiiiiiec e 79
4.4.4 Transaction Managementc.cc.cceevieeiiiimmniciiiimininciinicicrsaneenenon 8!
4.4.5 Access CONIIOlccovuuuivemeniiiiiiiiiici it et et 81
4.4.6 Creating Persistent tcmJavaServer OBjectscocovevinveiiiiiiiiiniiiiniiiininn. 82
4.4.7 Retrieving Persistent tcmJavaServer OBJectscoocoeviriviivininnniiiiniininnnn, 83
4.4.8 Deleting Persistent OBJECtScoocoveiiiiiiiiimminiiiimmiiiiiesc i sennes 85

CHAPTER 5 Summary, Conclusions, and Future Workcccccceuvevineeneeen. 87

REFERENCES BEDOPOOSCRINENS DS RERCNINIBENENRCRRDREDPREPRINAORINOORONEPROINRGINGNIIOVITOINOEOESROESIINRIOITDTSE 91

10.

11.

12.

13.

14.

15.

16.

17.

List of Figures

A client application invoking operations on an object through ORB 50
Interaction of an applet with IIOP Gatekeeper in a distributed setting 52
Architectural overview of a JRB applicationcocovviiiiiiiiiiiiiiiiiiinan.. 56
Architecture of the Java, CORBA, Web, and Database Server approach 59
Conceptual view of the process of storing a document generated by TCM 63

Implementation of typical WriteMembers methods for Subject and Shape classes . 64

Translated code of WriteMembers methods for Subject and Shape classes 65
Conceptual view of the storage/retrieval process in TcmJava ...l 67
Interface definition for the CORBA object providing persistent storage 70
An implementation of the TcmLoadSave CORBA interface 70
Java source code for the _sk_TcmLoadSave classccoooiiiiiiiiiiniiiiinian, 71
Java source code for the _TcmLoadSavelmplBase classooooiviiinn 71
Description of the operation of the prototype implementation 73
Corresponding class-hierarchies in the tcmJava and tcmJavaServer packages 77

A typical class from tcmJavaServer package before being persistence capable 79
A typical class from tcmJavaServer package after being persistence capable 80

Retrieval of a previously stored document from the database 84

ABSTRACT

An investigation was undertaken to build the software foundation for the WHERE (Web-
based Hyper-text Environment for Requirements Engineering) project. The TCM
(Toolkit for Conceptual Modeling) was chosen as the foundation software for the
WHERE project which aims to provide an environment for facilitating collaboration
among geographically distributed people involved in the Requirements Engineering
process. The TCM is a collection of diagram and table editors and has been implemented
in the C++ programming language. The C++ implementation of the TCM was translated
into Java in order to allow the editors to be used for building various functionality of the
WHERE project; the WHERE project intends to use the Web as its communication back-
bone. One of the limitations of the translated software (TcmJava), which militated
against its use in the WHERE project, was persistent data management mechanisms
which it inherited from the original TCM; it was designed to be used in standalone
applications. Before TcmlJava editors could be used as a part of the multi-user,
geographically distributed applications of the WHERE project, a persistent storage
mechanism must be built which would allow data communication over the Internet, using
the capabilities of the Web. An approach involving features of Java, CORBA (Common
Object Request Broker), the Web, a middle-ware (Java Relational Binding (JRB)), and a
database server was used to build the persistent data management infrastructure for the
WHERE project. The developed infrastructure allows a TcmlJava editor to be
downloaded and run from a network host by using a JDK 1.1 (Java Developer’s Kit)
compatible Web-browser. The aforementioned editor establishes connection with a
server by using the ORB (Object Request Broker) software and stores/retrieves data
in/from the server. The server consists of a CORBA object or objects depending upon
whether the data is to be made persistent on a single server or multiple servers. The
CORBA object providing the persistent data server is implemented using the Java
programming language. It uses the JRB to store/retrieve data in/from a relational
database server. The persistent data management system provides transaction and user
management facilities which allow multi-user, distributed access to the stored data in a

se€cure manner.

CHAPTER 1: INTRODUCTION

Introduction

The importance of Requirements Engineering in the software development life cycle can
never be over-emphasized. Requirements Engineering refers to the earliest phase of the
software development cycle when requirements are elicited, defined, and specified.
Requirements are the statements of need and are intended to convey understanding about
a desired result independent of its actual realization (Kotonya and Sommerville, 1996).
The requirements engineering process is aimed at providing a clear, consistent, and
precise model and unambiguous statement of the problem to be solved by the software
development process. Formulation of requirements may have a substantial impact on the
success of a software development project and poorly formulated requirements are
known to have resulted in partial success and, in some extreme cases, total abandoning of
high budget software development projects (Boem, 1984; Boem, 1987; Kotonya and
Sommerville, 1996). The problems of establishing an adequate set of requirements for a
software system, often manifest in failure of the system to satisfy customer needs, are

many and inadequate communication among requirements engineers is one of them.

Since the requirements engineering process is a human endeavor, the need for
communication among the members of the engineering team is natural. This
communication need may be tantamount to providing collaboration among
geographically distributed people as it is not uncommon for the members of a
requirements engineering team to be located at geographically distant locations. The
emergence and astonishing success of the World Wide Web offers an opportunity for
facilitating aforementioned collaboration among geographically distributed people.
Although the Internet has revolutionized the information sharing, the kind of information
that can be shared and the security with which it can be shared, is still limited. The
requirements engineering process requires sharing of information which could be much
more structured and in a complicated form than that could be provided with HTML
(Hyper Text Markup Language). For instance, requirements documents may contain

textual as well diagrammatic information that may be required to be viewed and modified

on-line with restricted access. The plain HTML lacks the capabilities to accomplish this
task. Therefore, use of a more powerful technology is required in order to facilitate
collaboration among geographically distributed requirements engineers using the World
Wide Web.

Java, a programming language designed for the Internet, offers a lot of promise
for providing the kind of capabilities required for enabling collaboration among
geographically distributed people who need to share and transact on complex
information. The capability the java applets provide for sharing complex information
over the internet is one of the major reasons it has been selected as the implementation
language for the WHERE (Web-base Hypertext Environment for Requirements
Engineering) project being undertaken by WVU/NASA SRL (Software Research
Laboratory). ¥The WHERE project is concemned with the communication and
coordination problems faced on large, geographically distributed requirements

engineering projects.

The ultimate goal of the WHERE project is to support the process of collaborative
development of requirements specifications with tools to manage incremental changes to
large specifications. The project builds upon the earlier work on ViewPoints (Finkelstein
et al., 1992). The ViewPoints represent chunks of a specification and each of them has
an owner and a representation style. The WHERE project aims to implement the
ViewPoints framework and introduce the approach into a real project in order to collect
information about the relationships between ViewPoints. At present, the WHERE project
implementation is in the initial stage which involves building information representation
infrastructure required for building the later parts of the project. The activities to be
carried out during WHERE implementation require a set of editors and viewers for
representing and modifying various kinds of information required for implementing

ViewPoints framework.

A survey of the available software engineering tools revealed that TCM (Toolkit
for Conceptual Modeling) project developed at Vrije Universteit fulfilled the information

representation needs of the WHERE project. Therefore, TCM was adopted as the
foundation for implementation of various tools to be used for building various
functionality in the WHERE project. The C++ programming language implementation of
the original TCM had to be translated into the Java programming language in order to
Web-enable the toolkit. Also, the original TCM has been designed to be used by
individual users who do not necessarily need to collaborate on-line from geographically

distributed locations.

Therefore, a study is needed to adapt the Java version of TCM (TcmJava) in order
to support distributed collaboration using the WWW and proven Web-browser
technology. The issues involved include implementing various tools in TcmJava using
applets downloadeable over the WWW. Also, the data generated by using these tools
need to be stored persistently and securely. Since the Web-browsers impose strict
restrictions on Java Applets when it comes to data storage, a mechanism is required to
allow the applets save/load data from a persistent data store which may, possibly be,
geographically distributed. The persistent data has to be available to the members of the
requirements engineering team collaborating on a project. Access restrictions,
transaction management, and concurrency control have also to be considered in order to
provide meaningful collaboration in real-time. The present investigation was, therefore,
undertaken with the following objectives:

e Explore ways to adapt TcmJava to the Internet.

e Investigate mechanisms to facilitate the transfer and persistent storage of data
generated by applets implementing various tools in the TcmJava and downloaded
over the Internet. -

e Investigate various kinds of data storage mechanisms (Files Systems/Relational
Databases/Object Databases) for meeting aforementioned data storage needs of the
WHERE project.

The rest of this thesis is organized into four chapters which review (Chapter 2) the
literature related to the present investigation; describe (Chapter 3) the methodology used
during this investigation; describe and discuss (Chapter 4) the results of the investigation;

and summarize, and conclude (Chapter 5) pointing out the needs for future work.

CHAPTER 2: LITERATURE REVIEW

Literature Review

This chapter presents a review of the literature related to the present investigation. The
information presented here is organized into following topics.

e Requirements Engineering

e ViewPoints Framework

e Computer Supported Collaborative Work

e Persistent Data Storage in Software Development Environments

2.1 Requirements Engineering

Requirements engineering deals with the earliest phase of the software development
process where the foundation for a software development project is laid down. It
involves the elicitation, definition, and specification of the need the software project is
being undertaken to fulfil. Many of the problems of software engineering have been
attributed to the difficulties with the requirements specification (Kotonya and
Sommerville, 1996). A greater proportion of the errors in a software system occurs
during requirements and design phase (64%) rather than during coding phase (34%)
(Boem, 1984; Boem, 1987). Moreover, it is more expensive to fix an error made at
earlier stages if they are discovered during final stages. A requirements error found at the
requirements stage costs only about one-fifth compared with the cost for fixing the same
error if it were found after the system is in use. Discrepancies between the capabilities of
a delivered system and the needs it intended to fulfil are common and may incur very
high costs (Roman, 1985). Findings of a survey on nine software development projects
(US Government Accounting Office, 1979) showed that 47 % of the money was spent on
the software that was never used. Another 29 % was spent on the software that was never
delivered and 19% of the money resulted in software that was either reworked
extensively or abandoned after delivery. According to the aforementioned study only 2%
of the total money spent resulted in software that completely met its requirements.
Therefore, an improvement in methods used in requirements engineering has a potential

for tremendously curtailing the software cost.

The requirements engineering process is fraught with difficulties which are often
manifest in the failure of software to satisfy the real needs of the customer. Several of
these problems are listed by Kotonya and Sommerville in their paper on Requirements
Engineering with ViewPoints (Kotonya and Sommerville, 1996). Some of these
problems stem from the lack of appropriate tools for supporting the requirements
engineering process. There is a need for tools to help the requirements engineers to
collect, structure, and formulate requirements in an efficient and consistent manner.
Since the requirements process is a human endeavor, the occurrence of communication
problems during the process is natural. In large projects, a group of individuals must
collaborate in the requirements engineering process that leads to the production of
requirements specification, the documentation of the outcome of the requirements
elicitation and definition. The requirements are never stable and so the requirements
specifications are apt to evolve. Managing evolving requirements specifications is a
significant problem because a small change to one part of a specification may impact the
whole system specification documentation. These impacts are often hard to reason about
and hence it is hard to know that all implications of a change have been taken into

account.

Research on Requirements Traceablility (Gotel and Finkelstein, 1994; Gotel and
Finkelstein, 1995) have tried to address the problems arising out of evolution of
specifications and need for recording information about individual who must
communicate in order to carry out the process of software specification. Requirements
traceability tools help to alleviate the problems of change management in evolving
specifications by recording links between requirements at different levels, between
requirements and test cases, design objects, and so on. However, existing traceability
tools only record links without any other information about the relationship expressed by
the link. Such tools encode a simple process model based on flow down of requirements
through different levels. They do not capture any knowledge about the method and
notations being used, and hence fail to provide any active support for the development
and evolution of specifications. Therefore, a framework is required that will provide tool

support for recording more comprehensive information about chunks of evolving

specifications and relationships among them. In addition, the framework must support
collaborative development among geographically distributed engineers. The following
section briefly reviews the literature related to the ViewPoints framework which the
WHERE project intends to use as its foundation for providing tool support to facilitate

change management in evolving requirements specifications.

2.2 ViewPoints Framework

The ViewPoints framework supports distributed software engineering in which multiple
perspectives are maintained separately as distributable objects (Finkelstein et al., 1992).
A ViewPoint can be thought of as a combination of the idea of an actor, knowledge
source, role, or agent in the development process, and the idea of a view or perspective,
which an actor maintains. ViewPoints are loosely coupled, locally managed, coarse-
grained objects which encapsulate partial knowledge about the system and domain, and
the process of development. The system and domain may have been specified in a
particular, suitable representation scheme. The knowledge contained in a ViewPoint is
assigned to five different parts of the ViewPoint called slots. A ViewPoint has the
following five slots (Nuseibeh et al., 1993; Nuseibeh et al., 1994):
e A representation style which is the scheme and notation used by the ViewPoint to
express the knowledge it possesses.
e A domain describing the area of concern addressed by the ViewPoint, with respect to
the overall system under development.
e A work plan comprising the set of actions that will be used to build the specification,
and a process model to guide application of these actions.
e A specification describing the ViewPoint domain using the notation described in the
ViewPoint style and developed using the strategy described in the work plan.
e A work record containing an annotated history of actions performed on the
ViewPoint.
Each ViewPoint has an owner who is the development participant associated with the
ViewPoint. It is the responsibility of the ViewPoint owner to develop a specification for
the ViewPoint using the notation defined in the style slot, following the strategy defined
by the work plan, and for a particular problem domain. Various actions and events
involved in the ViewPoint are recorded in the work record. The ViewPoints framework
deliberately encourages multiple representations and departs from attempts to develop
monolithic specification languages. The framework does not make a commitment to a
particular software development method. In general, a software development method is
composed of various techniques. Each technique has its own notation and associated

rules governing when and how to use that notation. The ViewPoints framework presents

10

an opportunity to implement a particular software development method by defining a set
of ViewPoint templates. These templates, as a group, describe the set of notations
provided by the method, and the rules governing their use as a group or independently of

each other.

The ViewPoints framework provides for inconsistency toleration without any
requirement for changes to one ViewPoint to be consistent with others (Finkelstein et al.,
1994). A set of inter-ViewPoint rules can be defined depending upon the method being
used. These rules express the relationships that should hold between particular
ViewPoints and are used to perform consistency checking. The consistency may be
checked incrementally between ViewPoints at particular stages rather than being
enforced at all times. The application of consistency checks is governed by a protocol
where the checking process is initiated by either ViewPoint owner. The resolution of
inconsistencies is guided by a fine-grained process model in each ViewPoint (Nuseibeh et
al., 1993).

Tools support for the ViewPoints framework has been built in the form of a
prototype computer-based environment (Nuseibeh and Finkelstein, 1992). The prototype
environment provides a ViewPoint Viewer which has two distinct modes of use: 1)
method design; 2) method use. Method design involves the creation of ViewPoint
templates which are the ViewPoints for which only the representation style and work
plan slots have been filled. In method use, ViewPoints are instantiated from the
templates created in method design and are used to represent various perspectives. Each
ViewPoint instantiated from a particular template inherits the knowledge necessary for
building and manipulating a specification in the chosen notation, and cross-checking
consistency with other ViewPoints. Therefore, each ViewPoint serves as a self-contained

specification development tool.
The ViewPoints framework offers a coherent approach to the management of

multiple perspectives. The approach supports multi-language specification, without the

requirement for a common data model or language. The framework, therefore, facilitates

11

method integration as well as distributed development. The framework has been used to
implement software engineering methods such as CORE (Nuseibeh et al., 1993) and the
CDA (Kramer and Finkelstein, 1991). This use of the framework has demonstrated its

ability to express relationships between different representation schemes.

Since the ViewPoints framework is designed to support distributed software
engineering, an implementation of the framework will involve providing tool support for
geographically distributed collaboration. A number of architectures have been developed
which aim to provide tool support for collaborative work. The following section presents
a brief review of these architectures pointing out their suitability for use in a system
intended to provide tool support for facilitating collaboration among individuals involved

in requirements specification.

2.3 Computer Supported Collaborative Work

The magnitude of software development projects demands that a team consisting of more
than one software engineers work together on a project. This requires collaboration
among individuals, in the form of being able to access, view, and modify common
information. The need for providing computer support to facilitate effective
collaboration has spawned a large volume of research into development of tools aimed at
making the collaborative activity less costly and less time consuming (Bentley et al.,
1997; Callahan and Ramakrishnan, 1996; Dix, 1996; Johnson, 1996; Toye et al., 1994).
The World Wide Web (WWW) has become a potent platform for collaborative work.
The Collaborative Software Development Laboratory (CSDL) has been doing research in
development of tools for facilitating collaboration during various phases of software
development process. The World Wide Web Consortium (w3c) has also organized a
number of symposia since 1995 aimed at identifying extensions to web technology which
would facilitate wide-area asynchronous collaboration. Research has also been done on
developing tools for providing collaboration during design phase of the software
development process (Emmerich and Schafer, 1996). Although the aforementioned

research has resulted in the development of tools/technology that claim to facilitate

12

collaboration during various phases of software development, these tools either lack the
capability to provide persistent storage of and controlled access to complex information
or fail to support collaboration among geographically distributed individuals. The

following section will briefly review some of these technologies.

The WWW offers a globally accessible, platform independent infrastructure and
being increasingly looked upon as a potential platform for richer cooperative work (Dix,
1996). However, the web was designed principally as a mechanism for information
access and its use for richer forms of collaborative activity may not be obvious. There
are architectural issues involved in the use of WWW for cooperation and the most
obvious one is the possible extensions and/or modifications to the parts of web to adapt it
for cooperative work. There are three parts of the Web which may be extended or
modified to infuse cooperative work capability into it; server, client, and protocol. A
number of systems have tried to use sever-end extensions to facilitate cooperation. These
systems have typically used CGI scripts and independently running servers. Most
notable among these aforementioned systems are BSCW (Bentley et al., 1996) and
futplex (Holtman 1996). Another possible extension is the use of client helpers and
applets. The incorporation of Java and Java-script into web-browsers has emphasized the
value of client-end computing, especially for rapid user interface feedback. Some
systems have also made use of downloaded helper applications and modified clients to
run Tcl/Tk as a client-side script language (van Welie and Elins, 1996). There are other
proposed extensions/modifications which are not particularly relevant to the present
investigation but are discussed in an excellent report by Dix (1996).

In the Web, the information is usually represented as web pages or electronic
documents without any facilities for direct communication, as such. Therefore, a number
of applications intended to facilitate collaborative work supply direct communication
facilities which could be either synchronous or asynchronous. The synchronous
communication facilities include applications such as HushTalk (van Welie et al., 1996)
supplying talk—style facilities. Asynchronous communication is primarily supplied by

transforming communication into information structure which can be accessed and

13

replied to by multiple users. Providing asynchronous communication requires less
deviation from the Web model than providing synchronous communication which
effectively bypasses the web protocols entirely. Therefore, the use of asynchronous
communication facilities is likely to be easier to provide and present a greater support for

using the exiting capabilities of the Web.

The WWW has a number of distinct advantages as the basis for tools to support
collaborative information sharing, the most important being the availability of proven
technology in the form of Web-browsers (Bentley et al., 1997). The Web-browsers are
available for all popular computing platforms and operating systems and provide access
to information in a platform independent manner. They offer a simple user interface and
consistent information presentation across platforms. Although WWW is an excellent
platform for geographically distributed collaborative work, it is limited by its inability to
store state information, represent complex information, support multiple authoring, and
provide concurrency control. Providing tool support for geographically distributed
collaboration in a system like requirements engineering requires the support system to be
very flexible in the kind of information that may be represented, persistently stored, and
concurrently accessed in a controlled manner. This may require making client as well as
server side extensions to the existing WWW infrastructure if the well developed and
proven Web technology has to be taken advantage of in providing geographically
distributed collaboration. The following section will further discuss the attempts at

extending the WWW in order to facilitate a richer collaboration.

The °‘Egret’ system developed by the Collaborative Software Development
Laboratory (CSDL) at University of Hawaii implements a multi-client, multi-server, and
multi-agent architecture (Johnson, 1995). Egret provides both low and high level storage
and communication facilities for the development of cooperative work applications. Data
ranging from unstructured binary storage, to schema-based and structured storage
records, to HTML-compatible hypertext may be represented. The architecture uses
indexing and local replication mechanisms to enable efficient “relational-style” queries

over the underlying network database. Inter-process communication is implemented via

14

TCP/IP sockets, and provides a variety of programmatic and interactive client
communication facilities. Password mechanisms are provided to facilitate secure
collaboration in groups dispersed across the internet. The architecture has been used to
develop applications providing tool support for software review and quality improvement
(Johnson, 1994), collaborative authoring and learning (Johnson and Moore, 1995), and
collaborative learning and review (Wan and Johnson, 1994). The architecture, however,
supports collaboration involving only textual information and fails to make use of the
proven technology in the form of the capabilities of the WWW. Therefore, this system is
not suitable, as such, for providing geographically distributed collaboration in a system
like requirements engineering where cooperation involving textual as well as non-textual

information must be supported.

The BSCW (Basic Support for Cooperative Work) system developed at German
National Research Center for Information Technology provides basic features for
cooperation in an integrated service, accessible from different computing platforms
(Bentley et al., 1997). This system makes no demands on users to adopt new word
processing, spreadsheet, or other application software. Moreover, the system does utilize
the capabilities of the Web and in fact is an extension of a standard Web server through
the server CGI Application Programming Interface. A ‘BSCW server’ (Web server with
the BSCW extension) manages a number of shared workspaces. These workspaces are
repositories for shared information, accessible to members of a group using a simple user
name and password scheme. A shared workspace can contain different kinds of
information such as documents, pictures, URL links to other Web pages or FTP sites,
threaded discussions, member contact information etc. Facilities are provided for saving
information from client machines and also loading information to client machines from
the BSCW server. The BSCW system supports upload of multiple types of documents,
automatically detecting the document type and providing full feedback on the progress of
the document transmission to the BSCW server. The event service that is built into the
system provides users with information on the activities of other users, with respect to the
objects with in a shared workspace. The system also provides controlled sharing and

member administration capabilities. The system has been designed to provide basic

15

features for supporting cooperative work for widely-dispersed working groups,
independent of their computing, network, and application infrastructures. The system
supports collaboration involving documents with textual as well as pictorial contents.
The system is, however, not suitable for use in a requirements engineering environment
which generally requires the capabilities to generate, persistently store, and modify a
wide variety of information. Moreover, the requirements for information representation
may change overtime requiring the capability to be able to generate and manage new

kinds of information which is possible only with support of full-fledged programming

language.

The SHARE project being undertaken at Stanford University intends to provide a
methodology and environment for collaborative product development (Toye et al., 1995).
Their domain is to facilitate collaboration among engineers involved in design and
production. The SHARE architecture consists of a set of agents interacting as peers over
the Internet. Each agent can represent one or more of the following: a designer and his
personal CAD tools, a database or other information service, a computational service that
supports engineering or the engineering process. The agents exchange information and
services using a simple command language (Finin et al., 1992) and representation of
multimedia information (Bornstein and Freed, 1992). The messages are sent using
standard e-mail and TCP/IP transport services. The architecture uses e-mail as the
primary medium for both human communication and tool integration. The rationale
behind using e-mail in this project is pervasiveness of e-mail and its familiarity to large
number of designers. This project is geared specifically towards providing tool support
for collaboration among engineers and is not suitable for use in a software engineering

environment where the requirements for collaboration are different.

The WISE (Web Integrated Software Environment) system developed by SRL
(Software Research Laboratory) at West Virginia University, makes use of existing Web
technology to support measurement of change activity as an implicit part of the software
process (Callahan and Ramakrishnan, 1996). The WISE provides a forms based, work-

flow management system that helps members of a software development team overcome

16

geographical barriers to collaboration. Development of the WISE system is an excellent
example of using the existing proven technology to provide tool support for collaboration
in software engineering process. The WISE system has been designed to provide tool
support for software project management and process measurement and can be used in
conjunction with tool support for collaboration in various phases of software

development.

Various architectures have been developed to provide tool support for
collaborative work. Some of them make use of existing and proven technologies that
minimizes the effort to provide the initial infrastructure on which to build the more
specialized frameworks geared towards supporting the collaborative work in specific
domains. Various systems that are currently available to provide tool support for
collaborative work are either limited in the kind of information that can be represented or
are designed to serve the collaborative needs of the people engaged in work in specific
domains. None of the currently available systems provide the kind of tool support
required to facilitate collaborative work in software requirements specification which
requires representation and sharing of information more complex than textual and
statically pictorial information contained in documents supported by currently available
systems. The WHERE project which aims to use the ViewPoints framework for
managing evolving requirements specifications requires an infrastructure providing tool
support to represent various kinds of diagrammatic and textual information encountered

during requirements specification process.

As pointed out in the discussion above, one of the limitations of the current
architectures for collaborative work is the kind of information that can be maintained
persistently, accessed concurrently in a consistent and controlled manner, and modified
while maintaining the integrity of the persistent store. Tool support for a collaborative
work environment, being built on a framework like ViewPoints designed to support
distributed collaboration, needs to provide persistent storage of data with aforementioned
constraints. Therefore, providing persistent storage facilities for the WHERE project is

important and formative part of the implementation. Before the implementation could

17

proceed further, availability of a persistent storage infrastructure is exigent. The
mechanisms used to manage the persistent data may have a significant impact on the way
some of the tools supporting the subsequent functionality of the project are built. The
following section reviews the issues involved in persistent data storage in software
engineering environments and its relationship to the persistent data storage needs of the

WHERE project.

2.4 Persistent Data Storage in Software Development Environments

Software Development Environments (SDEs) include tools intended to support one or
more of the software life-cycle phases (Emmerich et al., 1993). This often involves
construction and analysis of documents and document interdependencies. The value of
an SDE is judged by its ability to enable incremental, intertwined, and syntax-directed
development of documents. Good SDEs also provide for maintenance of these
documents, tracing back of errors through different documents, and change propagation
through document boundaries to correct errors (Engels et al., 1992; Habermann and
Notkin, 1986). These environments are also expected to provide multi-user and often
geographically distributed support. They should have flexible and adaptable mechanisms
to facilitate controlled sharing of information by a number of users. These environments
usually require the storage/retrieval of large number of objects and relations among them
at different levels of granularity. Moreover, these objects must be manipulated under the
control of an advanced transaction mechanism. These considerations emphasize the

importance of storage/retrieval mechanism underlying an SDE.

It has been argued that dedicated database systems that are specialized with
respect to functionality and implementation are necessary for use in software engineering
(Bernstein, 1987). The functionality and efficiency of purely relational database
management systems is considered inadequate to satisfy the needs of software
engineering tools and environments (Taylor et al.,, 1988). The computer science
community has seen the development of a number of systems which radically differ from
standard relational technology. Despite the substantial number of these new database

systems, a suitable database system for SDEs still does not exist (Emmerich et al., 1993).

18

A process-centered environment (PSDE) is a software development environment
in which providing multi-user support is based on a well-defined development process.
A database for software engineering should provide: 1) efficient manipulation of the
document representation defined by the software development process; 2) advanced
transaction mechanisms on the stored structures to enable sophisticated collaborative
support. In many of the existing collaborative development environments the documents
are handled as monolithic blocks. This representation militates against the attempts for
providing inter-document consistency checking and preservation. Therefore, the need of
support for incremental, intertwined development and maintenance of software is not
served. The lack of appropriate persistent data storage and retrieval mechanisms is
thought to be responsible for the lack of appropriate functionality in the currently
available SDEs.

Architecturally, PSDE consists of three main components:

e A well-defined process engine to coordinate the work of developers involved in a
project.

e A set of integrated, syntax-directed tools for allowing the developers to conveniently
manipulate and analyze documents without compromising consistency between
related documents of different types.

e An underlying database for software engineering (DBSE) which is capable of storing

project information and documents.

The first two of the requirements outlined above are being addressed in separate
investigations being undertaken as parts of the WHERE project. Since the present
investigation intends to address the third requirement, review here will concentrate on

the storage/retrieval mechanism.
The common internal representation for syntax-directed tools such as syntax

directed editors, analyzers, pretty-printers and compilers is a syntax-tree of some

form (Emmerich et al., 1993). Usually this abstract syntax-tree representation of

19

documents is generalized to an abstract syntax-graph representation for reasons such
as efficient execution of documents, consistency preservation by tools, and user-
defined relations within documents. Use of this approach alone may be inefficient for
operations such as consistency. Therefore, the researchers have developed techniques
based on the introduction of additional, non-syntactic paths for more direct attribute
propagation (Hoover, 1987; Johnson and Fisher, 1982). These non-syntactic paths
are examples of context-sensitive relationships which connect syntactically disjoint
parts of a document and may be used in both consistency checking and change

propagation.

Requirements of persistence and integrity necessitate that a persistent
representation of each document under manipulation must be updated as user-action is
finished. Usually a user-action affects only a very small portion of the document
concerned. The updates resulting from these user-actions may become inefficient if a
complex transformation between the active and persistent representations of a document
is required; and the update process involves unnecessary rewriting of parts of the
document not being modified. =~ To avoid such inefficiency, the underlying
storage/retrieval mechanism must support the definition, access, and incremental update
of the stored structures with facilities for efficient traversal. To preserve the integrity of

stored structures, support for atomic transactions is necessary.

Context-sensitive and user-defined relations between document components
(ViewPoints) necessitate incorporation of some kind of structure in the persistent
stored documents. The aforementioned relations may not be confined to within
individual documents and may exist between components of distinct documents.
Consistent handling of these inter-document relationships requires that the set of
documents making up a project must be represented in the form of a single structure.
Therefore, the underlying storage/retrieval mechanism must be amenable to the kind

of representations discussed above.

20

The kind of structures required to represent a project and attribute information
associated with it cannot be determined by the storage/retrieval mechanism.
However, once these structures have been well-defined, the storage/retrieval
mechanism must be able to define and control the internal storage for those structures.
The underlying database system, therefore, should have capabilities to store and
control the kind of structures (possibly object-oriented) used in software engineering
projects. Incremental changes to these structures should be supported by the
underlying system. The underlying system should provide the facilities for
implementing the operations performed by tools in terms of modifying the overall
structure stored in the database system. This is necessary because of two reasons:

e The structure used to represent the whole project should be encapsulated with
operations that preserve the structure’s integrity and provide a well-defined
interface for accessing and modifying it.

e If the access and modification operations are performed within the
storage/retrieval mechanism, they are more efficient than performing them within
tools as need for transferring unnecessary data over the network is greatly reduced
in the former case.

In order to be able to perform the modification operations within the storage/retrieval
system, it must be powerful enough to express various kinds of relationship which are to
be manipulated in a modification operation. In addition, the process defined for a
development project may specify a reasoning component enabling the users to perform
various kinds queries on the stored data. The system must be able to provide support for
performing those queries. A typical query may be to show a list of all the documents
owned by a particular developer. In addition, the queries may be designed to assess the
overall state of the project. The state assessing criteria, of course, will have to be defined
by the process. The storage/retrieval mechanism must be able to support it transparently
without any need to transfer large amounts of data over the Internet; the latter can be very
inefficient. It may be desirable for the storage/retrieval system to have the capability to
support queries which are not known a priori and may become necessary as the

development of the project progresses.

21

Given the evolutionary nature of the requirements specification process, the
process governing the development of a particular project may need to be changed as
increasing amount of knowledge is obtained about the system. For instance, the stored
data will represent various entities in the system under development and there will be
relationship defined among those entities. Those relationships may change or some
entirely new relationships may have to be defined during the evolution of the project.
This means that the system must be capable of allowing the modification of existing
relationships and definition of new relationships among the stored data. In addition, it is
desirable to have the capability of being able to modify or extend the structures
representing entities in the system as the need for adding additional attributes to an entity

may arise during project evolution.

Since the storage/retrieval system is intended to maintain information about the
entire project and different components being developed concurrently but independently
may be at different stages of development, support of revisions and versioning is highly
desirable and must be provided in a good database system for software engineering. The
system must provide facilities for maintaining version histories of various components

and sub-components of the project.

Providing multi-user support in an SDE necessitates the definition of access rights
for particular documents and their components. Also, the transaction mechanisms are
required to control and enable concurrent multi-user access to shared information. The
storage/retrieval mechanism must provide mechanisms to identify individual users as
well as user groups. The capabilities should be provided to define and modify the
ownership of stored objects representing components of the project and their further sub-
components. The information about a particular component of the project may need to be
accessed by members of more than one groups; the storage/retrieval mechanism must
support definition of multi-group access rights. The access rights may need to be
modified at any time and such a capability must be supported by the underlying
mechanism. In addition, the definition or modification of access rights does not mean

anything unless enforced by the system.

22

The PSDEs require storage/retrieval systems having transaction mechanisms
which are much more sophisticated than the conventional transaction mechanisms
(Emmerich et al., 1993). The conventional mechanisms could result in rollback which
deletes the effect of a possibly long-lasting developer effort, or they could block the
execution of certain activity for days or even weeks. Such properties are too restrictive
for a PSDE and result in situations which are intolerable. These shortcomings of the
conventional mechanisms have been realized and advanced transaction mechanisms such
as split/join transactions (Pu et al., 1989) and cooperating transactions (Nodine et al.,
1991) have been developed. These mechanisms have tried to achieve the desired result
by relaxing one or more properties of atomicity, consistency preservation, isolation, and
durability which characterize the conventional mechanisms. A detailed overview and
critical evaluation of those advanced mechanisms is given in Barghouti and Kaiser
(1991).

Emmerich et al. (1993) argue that none of these advanced mechanisms is
powerful enough to serve as the transaction mechanism for a database of a PSDE. They
quote Peuschel et al. (1992) to point out that only the process engine, which knows the
current state of an ongoing project, can decide whether and when to request a lock for a
particular sub-graph and how to react in case of inability to acquire the lock. The process
engine also defines whether a transaction is executed in isolation or in a non-serializable

mode.

The preceding sections have briefly pointed out the expectations of a
storage/retrieval mechanism underlying an SDE. In this section, we will briefly look at
some of the available technologies. The relational DBMS, as such, are inappropriate for
meeting the persistent data storage needs of SDEs (Emmerich et al., 1993) because of
three reasons: 1) The data model of RDBMSs cannot appropriately express the structures
required to store project information of an SDE; 2) They do not support versioning at a
level that may be required in an SDE; 3) They do not allow the implementations of

customized transaction schemes. Emmerich et al. (1992) gives a more detailed

23

discussion and reasoning about the unsuitability of RDBMSs for use in SDEs. The
00DBMSs (Object-Oriented DBMSs) provide a natural way of meeting the requirements
of client/server systems and systems whose data is more complex than that can be lined
up in relational tables (Orfali et al., 1996). The 0coDBMSs have an advantage over
RDBMS:s in that they know the overall structure of complex objects and sometimes their
behavior as well. However, the 00DBMSs are still under development with respect to
functionality as well as standardization. Pure coDBMSs still lack functionality in areas
of complex search, query optimizers, and server scalability. Orfali et al. (1996) predict
that with the efforts of standardization (ODMG-93 is an example) going on for
00DBMSs and the promotion of standardization of these systems with in the CORBA

ORB committee, these systems will be the successor to RDBMSs.

The emergence of new software technologies such as the Java Programming
Environment and CORBA implementations and ever-increasing popularity and
usefulness of the WWW may have changed the way people think of multi-user
distributed applications which may involve extensive database access. In addition, a
combination of these technologies along with emerging database technology may have
bridged the gap between the functionality provideable by RDBMs and the persistent
storage/retrieval needs of an SDE. The present investigation intends to explore the use of
these software technologies to provide the persistent data storage needs of an SDE

(WHERE project).

24

CHAPTER 3: METHODOLOGY

25

METHODOLOGY

This chapter describes the methods and technologies used and evaluated during this
investigation. The chapter also gives details of the implementation done to achieve the

objectives of the proposed research.

This investigation was conducted as a part of the WHERE project being
undertaken by SRL. Since the WHERE project intends to provide tool support for
collaborative development of requirements specifications, a foundation was required on
which to build the tools required to meet the specific needs of the project. There were
two options available to the WHERE project team: 1) build all the tools from scratch; 2)
adopt some already existing toolset as foundation and build on top of it. Since building
tools is a time-consuming process and a lot of effort may be expended on building tools
from scratch, the WHERE team decided in the favor of the second option provided a
suitable toolset already existed. A survey of various tools intended to provide tool
support for software engineering environments was done and the TCM (Toolkit for
Conceptual Modeling) project being undertaken at vrije Universteit seemed to be a good
foundation for the tools to be built during the WHERE project. The following section
gives a brief description of the TCM software which will be followed a description of the
functionality that was required in the WHERE project but was not provided by the TCM

software.

3.1 TCM Software

The TCM project was undertaken with an aim to produce software support for software
requirements and design engineering. The software delivered by the project can be used
to represent various kinds of information during requirements and design phases of
software development process. The functionality to be provided by TCM includes:
various graphical editors to provide visual representation of different, mutually consistent

views of product requirements and product designs; tool support for graphical simulation

26

of the specified product; and support for generation of prototype code for the product.
All representations of the product produced using TCM software are conceptual, meaning
the representations are meant to externalize conceptualizations of the software product.
Various requirements and design engineering methods supported by the TCM are

described in Wieringa (1996).

The current version of the TCM is a collection of graphical editors for a range of
graphical notation systems used in requirements and design engineering methods. The
TCM runs on Unix systems with X-Windows. The graphical editors constituting the
TCM can be used for editing several kinds of documents including diagrams, tables, and
trees. The editors are available for following kinds of documents:

e Diagrams: Generic Graph Diagrams, Entity-Relationship Diagrams, Class
Relationship Diagrams, State Transition Diagrams, Recursive Process Graphs, Data
and Event Flow Diagrams, and JSD Process Structure and System Network diagrams.

o Tables: Generic Tables, Transaction Decomposition Tables, Transaction Use Tables,
and Function Entity Type Tables.

o Trees: Generic Textual Trees, and Function Refinement Trees.

Various editors share a mostly common user-interface which has been designed to be

user-friendly and usable without any further help. Limited on-line help is provided. The

current version supports constraint checking for single documents (e.g. name duplication,

cycles in an is-a relationship). The TCM distinguishes built-in constraints (of which a

violation cannot even be attempted) from immediate constraints (of which an attempted

violation is immediately prevented) and soft constraints (for which the editor issues a

warning if a violation occurs during drawing). The current version of TCM does not yet

support constraint checking across documents which is required for integrated conceptual
modeling. The implementers of the TCM are planning to enhance it with cross-diagram

checking functions. More information about TCM, its detailed design, source code, a

running version with all the necessary documentation can be obtained by contacting the

TCM developers at tcm@cs.vu.nl.

27

The aforementioned features make TCM a suitable foundation on which to build
various kinds of functionality required to implement the ViewPoints framework, the
conceptual framework underlying the WHERE project. Since the WHERE project aims
to support collaboration among geographically distributed people and TCM is not
designed for that purpose, the TCM could not be used as such to meet the needs of the
project. In addition, we wanted to take advantage of the Web as the communication
back-bone because of various kinds of proven technology it offers in the form of
communication protocols and Web-browsers. But to be able take advantage of Web
technologies, a complementary technology was required which would allow using the
power of Web technology to serve the communication needs of our environment. The
Java Programming Environment seemed to fit the profile of that complementary
technology we were looking for. Therefore, we decided to translate the TCM software
into Java Programming Language. The translation process was started in August of 1996
and the first version of the TcmJava (The Java version of the TCM software) was
released in the summer of 1997. The following section briefly describes the Java
Programming Environment followed by a brief description of the C++ to Java translation
of the TCM software.

3.2 Java Programming Environment

Java is an object-oriented programming language which is relatively new and have been
gaining increasing popularity among the software developers especially those involved in
using the Web. Java has many interesting features, two of which are of particular
importance for use in distributed applications that want to take advantage of the proven
Web technology. First, Java source code can be compiled into a format which is
independent of any particular machine architecture. This format consists of virtual
machine instructions and symbolic data and is called byte-code format. Execution of this
bytecode requires Java Runtime Environment (JRE) which contains a special program
called Java Interpreter. The Java Interpreter knows the meaning of the bytecodes and can
execute Java bytecode irrespective of the underlying machine architecture. The
Interpreter itself, however, needs to be ported to a particular platform on which Java

programs have to run. The Interpreter knows how to convert the bytecodes to the

28

memory addresses and machine-instructions of the underlying architecture. The Java
approach is a trade-off between speed and portability. Execution of the bytecode is
slower that of the compiled code but the bytecodes are completely independent (at least
in theory) of the architecture of the underlying system. Consequently, if the JRE is
available for a platform, the Java bytecode will run on it irrespective of the architecture.
Execution of the Java bytecode is faster than the fully interpreted code. Therefore, Java
approach is a judicious compromise between portability and speed. The second feature is
not a feature of the Java Language itself but allows the Java applets to complement and
enhance the capabilities of the Web. It is the APPLET tag of the HTML (Hyper-Text
Markup Language). The APPLET tag provides the information which enables a Web-
browser to find and execute the applets. An applet is a Java program which requires a
Java-enabled Web-browser or an appletviewer to run. In order to be able to execute a
Java applet the Web-browser must have been extended to incorporate the JRE. If the
Web-browser has this capability, it can then automatically download an applet to the
user’s host machine and execute it there. This feature provides a powerful mechanism
for transferring the executable code over the Internet which can be used to extend client-
side capabilities of a Web-browser greatly. The executable code in the form of
downloadable Java applets can be provided to the user when it is actually needed which
obviates the need for installing it at the client side ahead of time. Therefore, a
combination of Web and Java technology provides a powerful infrastructure that may
greatly simplify the communication complexities involved in developing and deploying a
client server environment intended to provide collaboration among geographically
distributed people. More details about Java and its relationship to Web can be obtained
from Hamilton (1996) and Yourden (1996). These considerations motivated the
translation of C++ code of TCM into Java. The following section describes the

translation process.

3.3 C++ to Java Translation of TCM

Since both C++ and Java are object-oriented languages, translation process for most part
was straightforward. However, there are some features where the two languages

markedly differ and there is no direct mapping from one language to the other. For most

29

part, the translation process involved making some syntactic changes to the C++ code in
order to convert it into Java code. The parts of the translation process involving

significant changes between C++ and Java code are described below.

3.3.1 Templates

The templates in C++ has no direct equivalent in Java. The TCM code has a List class
which implements a ordered collection of a generic type and provides methods for
performing various operations on the collection. This class is extensively used
throughout the TCM code and is implemented using templates. In TcmJava, this class
has been implemented by subclassing the Vector class included in the standard Java
library provided with JDK (Java Developer’s Kit). All the operations of the C++ List
class could be mapped to the Java version with variations in some cases. Because Java
language did not support defining operators at the time of translation, copy (==) and other
operators defined in the class, could not be directly mapped. However, equivalent
operations could be provided. The generic parameter in the template was mapped to Java
Object which is the type stored in the Java Vector class. The translated List class could

be used naturally during the rest of the translation process.

3.3.2 Strings

The C++ programming language does not have a standard String class. The TCM code
has defined a String class which provides a convenient way to manipulate a collection of
characters. This class is also extensively used throughout the TCM code. Although the
functionality provided by this class can be derived from the Java String class, the
mapping between the two is not natural. Therefore, we defined a new string class in
TcmJava. This class uses the standard String class to implement various operations
declared by the TCM string class. Implementation of this new string class simplified the
translation of the code involving the use of the string (C++) class. Although we could
have used the standard Java String class as such, it would have made the translation
process more difficult and error prone because it would require keeping track of the

mapping which was convoluted in some cases. Although implementing a new string

30

class involved work and some performance overhead, it simplified the translation process

making it straightforward.

3.3.3 Parameter Passing

The C++ allows passing of primitive data types by reference. This can be done by using
pointers or by using the C++ reference operator. Java did not have a built-in mechanism
for passing primitive by reference at the time of translation. Therefore, we had to
implement wrapper classes for various primitive types (int, float, long etc.) in order to

allow them to be passed by reference.

In Java, the reference types are also passed by value whereas in C++ these may be
passed by reference by using double pointers. Some of the TCM code uses passing by
reference semantics while passing reference type parameter. The double pointers in the
Java code were simulated by passing arrays of reference types which behave exactly like
double pointers in C++. The passing of the String variables by reference was achieved
by using the StringBuffer class. In C++ the strings can be passed by reference by passing
a pointer to a char. Since Java does not have pointers and Java strings are static, one
must use StringBuffer in order to allow the String variables to be manipulated in the
called methods.

3.3.4 GUI Code

The C++ and Java versions of the TCM code have very little similarity in the Graphical
User Interface (GUI) code. The C++ code uses X/Motif libraries and callback
mechanism to implement various GUI components. There is no facility in Java to use
these mechanisms. Therefore, a large portion of the GUI have to be redesigned and re-
implemented in the TcmJava. Java’s event model markedly differs from C++’s callback
mechanism. This is the part of the TCM which required redesigning in order to
implement it in Java. However, we were able to duplicate most of the X/Motif
functionality of the original TCM by using various GUI components provided in the
standard Java AWT package. A significant amount of effort was, however, expended on

implementing an image button which is not a part of the standard Java. The standard

31

Java Button class included in the AWT package provides a very limited functionality in
terms of the kind of information it can present to the user. In fact, only textual
information can be presented. The GUI code of TCM makes extensive use of image
buttons to present the information about various drawing functions to the user in an
intuitive manner. To duplicate this in Java, we had to design and implement (in some
cases using freely available existing Java code) a number of classes that handle
displaying of image buttons and handling of events resulting from user interaction with

those images buttons.

Another part of the user interface where standard Java functionality was really
limited to serve the needs of TcmJava is the drawing capabilities provided by the AWT in
the form of standard Graphics class. This class provides no direct methods for drawing
of a number of shapes that the TCM uses to represent various kinds of information. Most
notable ones are drawing of various kinds of line patterns (dashed, stippled etc.) while
drawing various shapes. We had to implement new Java classes to duplicate this
functionality of the TCM in TcmJava.

Although the event model used in TCM and the Java event model are
fundamentally different, translation of the event handling code did not present many
problems. This is because the event model used in Java is more systematic and
simplified than using X/Motif callbacks which is messy and error-prone. Although the
parts of the TCM implementation responsible for event handling had be completely
redesigned and re-implemented, duplicating the functionality of the original code
probably took lesser time and effort than it would if it were translated. This is because of

better and more systematic event handling mechanisms provided by the Java language.

3.3.5 Storage/Retrieval
The mechanisms used for persistent data storage/retrieval in the original TCM are
probably the only parts of the TCM implementation which are less than impressive. This

is a direct result of the limitations of the C++ programming language to provide suitable

32

mechanisms on which to build. This is where the perfectly object-oriented design of the
TCM falls apart a little bit. The TCM maintains the persistent data by storing it in Unix
files which contain textual information in a predefined file format defined by the
implementers of the TCM. The details about the TCM file format are given in the TCM
design document. The object references are converted into ASCII characters and stored
in the files. While reading the file, the reference information stored in ASCII format is
converted to an object reference by converting it into an integral type (primitive type
‘long’ in C++) and casting it to an object pointer. Storing of other information also
involves disassembling of the information represented in an object and storing the
resulting pieces of information in ASCII format. These pieces of information stored in
ASCII format must be put back together and the objects reconstructed during retrieval of
a stored document. After reconstructing the objects and obtaining the reference
information, the object references are reset to construct the original structure of the
document in memory as it were before it was stored. This approach has many
limitations. First, it destroys the modularity of the design and implementation because
the code responsible for storage/retrieval must be scattered among various classes which
otherwise have nothing to do with persistent data storage. Second, a lot of extra
information must be written to files in order to allow the system to interpret the
information correctly at retrieval time. This information has no relevance to the
conceptual information being stored but has to be there to overcome the limitations of
the approach used. Since there is extra stored information, reading this information and
using it to interpret the actual information involves extra work which is an unwanted
overhead. Third, the file format defined to store the information is apt to change over
time as the project evolves to incorporate increasing functionality because of the need to
store additional information. This introduces the burden of keeping the newer versions of
the TCM software compatible with the documents generated and persistently stored using
the older version. The TCM software already have at least two different file formats
which will multiply further simply to meet the evolving persistent storage needs of the
software as it itself evolves. Although the evolution of the file format is natural, the
mechanism used to manage it in current versions of the TCM software is cumbersome.

This is because there is lot of overhead involved in ensuring compatibility among various

33

formats each of which has extra stored information which must be interpreted differently
depending upon the format. These limitations of the storage/retrieval mechanism used in
the TCM forced us to look for alternative mechanisms which will be described in the

following sections.

One of our goals during the translation process was to stay as close to the original
implementation as possible in order to be able to incorporate the enhancements to the
original software into the translated software. Therefore, we tried to adapt the
storage/retrieval mechanism of the TCM to Java. It simply did not work. There is no
way in Java to cast an object reference to an integral type so that it can be stored in
ASCII format as it is done in the TCM. Java does allow converting the object references
into ASCII format. However, if we used it that way, it would mess-up the C++ to Java
mapping which will be difficult to manage especially because the storage/retrieval code is
scattered and involves lot of checking. Therefore, we decided to use the Java language
mechanisms which are more systematic, object-oriented, and intuitive. To do so, we had
to drift away from the storage/retrieval philosophy of the original TCM and use the
mechanisms built in the Java language to do the checking while loading the stored

information.

The Java Programming Environment introduced the concept of Object
Serialization into the second major version the language (JDK 1.1). The object
Serialization extends the core Java Input/Output classes with support for objects. Object
Serialization supports the encoding of objects and the objects transitively reachable from
them, into a stream of bytes; and it supports the complementary reconstruction of the
object graph from the stream. Serialization can be used for lightweight persistence and
for communication via sockets or Remote Method Invocation (RMI). The default
encoding of objects protects private and transient data, and supports the evolution of the
classes. A class may implement its own external encoding and is then solely responsible
for the external format. Originally, we tried to complement the TCM approach with the
Java Object Serialization by storing the objects as such, instead of first converting them

into ASCII and them storing them. The design of the storage/retrieval mechanism was,

34

however, kept the same as that of the TCM. This approach worked well for stand-alone
editors maintaining storing the persistent data in the local Unix or DOS files. However, it
involved extra and unnecessary work which could later be dispensed with by using a pure
Java and totally different approach. Moreover, since our major objective in the
implementation of the WHERE project is to provide tool support for collaboration among
distributed people, this hybrid approach using a combination of original TCM mechanism
and Java Object Serialization did not meet our needs. Devising a suitable mechanism
that would facilitate the persistent data storage by TcmJava editors to a remote server was
one of the objectives of this investigation. A detailed description of the mechanism

developed to achieve this objective will be given in a later section of this chapter.

3.3.6 Other Miscellaneous Issues

This section describes some other issues involved in the translation process, none of
which warrants a category of its own. The virtual methods in C++ mapped naturally to
normal non-static, non-final Java methods because by definition these methods in Java
are virtual. The concept of “friendliness” in C++ is handled by the Java language by
using the package concept and various access modifiers. The enumerations in C++ were
mapped to final classes in Java. Such a Java class has a final field corresponding to each
member of the enumeration. The class also provides methods for constructing the
enumerations, and accessing and setting the values of the their members, in order to
prevent the assignment of illegal values by the user. The C++ global variables and
constants are mapped to static fields and static final fields of the corresponding classes.
In cases where C++ code defines globals outside any class definition (for instance in
header files), new final Java classes were implemented to map those variables.

The preceding sections have briefly described the translation process pinpointing
the parts of the process involving significant effort. One of these parts is the code
responsible for persistent storage/retrieval of data generated by various TcmJava editors.
The section on storage/retrieval pointed out the limitations of the TCM approach and
described the hybrid approach used to provide a storage/retrieval mechanism for the

Tcmlava version using local Unix/DOS file system for persistent data storage. The

35

following sections will describe the approach developed in this investigation to allow
persistent storage/retrieval of the data generated by TcmJava editors downloaded over the

Internet and storing/retrieving data in/from a remote server.

3.4 Java, CORBA, Web, and Database Server Approach

Since the WHERE project aims to provide tool support for collaborative development,
we adopted Java Programming Environment for implementing the functionality. Reasons
for selecting Java were discussed in an earlier section. Having selected Java, we needed
a mechanism which would be used for persistent storage of data generated by applets
launched from distributed locations using a Web-browser. The 1.0 release of Java, the
one available at the time of planning of this investigation, did not provide any mechanism
for using remote methods by distributed application components. Therefore, we needed
some mechanism for allowing the TcmJava editors, launched as applets from distributed
locations, to store/retrieve data in/from TcmJava database server/servers. The features of
CORBA seemed to complement Web-based TcmJava applets well for serving the
persistent data management needs of our environment. Hence, we decided to use
CORBA ORB (Object Request Broker) technology (and possibly other CORBA services)
to implement a persistent data storage infrastructure. This infrastructure would serve as a
base for building additional functionality required in the WHERE project as the process
underlying the project is defined. For instance, one of the functionality could be to build
the inter-document consistency checking mechanism into the storage/retrieval
mechanism. The following section will give a brief overview of the CORBA before

proceeding further with the details of the approach.

3.4.1 Overview of CORBA

The CORBA (Common Object Request Broker Architecture) is an industry standard
developed and promoted by the Object Management Group (OMG), an industry
standards organization. The CORBA specifies rules for communication among object-
based, distributed applications in a platform independent manner. One of the core
functionality specified by CORBA is the ORB (Object Request Broker) which is a

standard mechanism enabling the distributed software objects and their clients to interact.

36

An ORB is the hub of the communication facilities providled by a CORBA
implementation. The ORB provides the communication mechanisms needed by objects
and their clients to communicate with each other. Using an ORB, an object and its clients
may be present in the same process, or in different processes. The processes may be
executing on different hosts connected by a network. The operations that a client may
invoke upon an object are specified using a declarative language. This language is a part
of the CORBA specification and is called Interface Definition Language (IDL). The
clients invoke the services of an object by invoking the operations specified in IDL and
objects provide these services by implementing those operations. The objects and their
clients may be implemented independently of each other and in different programming
languages. The operation requests specified in IDL are conveyed from client to object by
the ORB software in a transparent manner. The ORB software is also responsible for
conveying the responses from the objects back to their clients. Usually, the implementers
of the ORB software provide an IDL compiler which generates the source code for some
of the software necessary for allowing the objects and their clients to communicate. The
IDL compiler takes operation definitions specified in IDL as input and generates the
necessary source code. The generated source code consists of two parts: 1) the part
which is compiled and linked with the code providing implementation for an operation;
2) the part which is compiled and linked with the code which intends to use an operation
in order to use a service provided by an object implementing that operation. The IDL
mappings are available for various programming languages such as C, C++, Smalltalk,
and Java. These mappings provide language mechanisms which can be used by the
programs written in the language of a particular mapping to invoke the CORBA services

specified in IDL and converted to that language by the IDL-to-language compiler.

Since the details involved in passing of information between the objects and their
clients are implemented by the ORB software and are transparent to the object as well as
its clients, the objects and clients do not have to know various details about each other.
These details about objects and their clients may include the specific locations, host
machine and data representations, languages used for implementation, operating system

underlying the host, or communication protocols used for information transfer.

37

Therefore, the use of the ORB software allows developing distributed applications which
may comprise of the programs written in different source languages which are executable
on different host machines and operating system platforms. The flexibility provided by
the CORBA approach allows the distributed applications to be composed of legacy and

third-party software as well as newly developed software.

The CORBA approach as it is today, has some limitations. The CORBA does not
solve the problem of deploying the components of a distributed application (Evans and
Rogers, 1997). The programs comprising a distributed application must be installed on
the hosts where they will execute. This usually represents a problem for the client
software in a multi-user distributed application. The deployment problems are faced in
both the initial setup and in maintenance because software upgrades may require
replacing of older components with the new ones. The deployment problem is further
complicated by platform heterogeneity because the same component software may be
required to execute properly on a range of different host architectures and operating
systems. This is where the use of proven Web-technology consisting of Web-browsers
and revolutionary language Java complements the CORBA in providing a very powerful
and flexible approach to developing distributed client servers applications. Another
limitation of CORBA is the power of the IDL. Although IDL allows specifying the
operations containing parameters which may consist of any of the primitive data types
and common constructed types in common programming languages (C, C++, Smalltalk,
Java), the power of IDL is limited in that it does not allow the passing of arbitrarily
complex types definable in the object-oriented languages (for instance, Java). The
problem can be circumvented by disassembling the information contained in the
aforementioned types into pieces and defining IDL interfaces for transfer of individual
pieces. This, however, may involve making unreasonably higher number of remote
invocations and callbacks from server to clients. Some of the providers of the ORB
software have realized this limitation of the IDL and have defined upwardly compatible
extensions to the IDL which enable transfer of complex data. One such technology will
be described in a later section following a description of the ORB implementation chosen

for this investigation.

38

3.4.2 Visibroker for Java ORB

The ORB software used in this investigation was the trial version of ‘Visigenic
Software’s implementation of the ORB. This software is called Visibroker for Java
(VBIJ) and is available, for free evaluation for a period of three months, from ‘Visigenic
Software’. The version of the software used in the present investigation was VBJ3.0.
The decision about using the VBJ was made after evaluating other rival technologies (for
instance ORBIX WEB from the Iona Technologies). The major reason for choosing VBJ
was its strict adherence to the industry standards which promises long-term success and

viability of the technology. The following section will briefly describe the VBJ.

The VBJ is a complete implementation of CORBA 2.0 (OMG, 1995) ORB and
supports a development environment for building, deploying, and managing distributed
object applications (Visigenic, 1997). These applications are interoperable across
platforms. Objects built with VBJ are easily accessible by Web-based applications that
communicate using the OMG’s Internet Inter-ORB Protocol (IIOP). The IIOP is the
standard for communication between and among distributed objects running on the

Internet, intranets, and in enterprise computing environments.

The VBJ connects (Fig. 1) a client program (an applet or an application), running

Local Host Remote Host

\

Java Interpreter or Browser

Object
Implementation

Client
Application

request request

Object Request Broker

Figure 1. A client application invoking operations on an object through ORB

39

in a Java Virtual Machine (JVM) or in a Java-enabled browser, with the objects
providing services the client program wishes to use. The execution of the object and its
way of providing a particular service are transparent to the client program. The object
may reside on the same host computer as the object or may be located on a remote
computer somewhere on the network. The only things client program needs to know are
the name of the object or the object reference and the way to use the object’s interface.

The ORB software takes care of the details of locating the object, routing the request, and

returning the result. It is important to note that the VBJ ORB is not a separate process

but is a collection of Java objects and network resources that integrates within end-user
applications allowing the client applications to locate and use objects. The VBJ has
several key features which are described in Visibroker Programmer’s Guide (Visigenic,

1997). Various applications need not use all of the features and typically only use a few

of them. This discussion will only briefly describe the ones relevant to this investigation.

e Interface Repository: The Interface Repository (IR) is an online database of meta
information about ORB object types. Meta information stored for objects includes
information about modules (an IDL namespace), interfaces, operations, attributes, and
exceptions, all of which must have been defined using IDL.

® Smart Binding: This is a VBJ enhancement to the CORBA specification which
improves performance by choosing the optimum transport mechanism whenever a
client binds to a server object.

e If the object is local to the client process, local method calls are used to
communicate.
e If the object resides in a different process, IIOP is used to communicate.

e Smart Agents: A VBJ smart agent, which is also an extension to the CORBA
specification, facilitates obtaining) object references. A Smart Agent can
automatically reconnect a client application to an appropriate object server if the
server currently being used becomes unavailable due to a failure. Furthermore, the
Smart Agents can use Visibroker’s Object Activation Daemon (OAD) to launch
instances of a server process on demand.

e Object Activation Daemon: This is a facility to allow an object server to be launched

automatically when a client expresses a desire to use the services provided by the

40

objects contained in the server. In order to allow the servers to be launched
automatically, they must be registered with the OAD which includes command-line
utilities for registering, unregistering, and listing objects.

o GateKeeper: The GateKeeper is an optional feature in Visigenic’s implementation of
the CORBA specification. The gatekeeper implements a mechanism which allows
the client programs to make calls over the Internet to objects that do not reside on the

Web server (Fig. 2). The client programs may also receive callbacks from the

Host X

Local
Network

Client Host

GateKeeper Host

Host Y

Figure 2. Interaction of an applet with IIOP GateKeeper in a distributed setting

aforementioned objects. The Gatekeeper runs on a Web server and uses mechanisms
which fully conform to the security restrictions imposed by the Web-browsers. In
addition, the GateKeeper handles communication through firewalls. The GateKeeper
can also be used as an HTTP daemon, thereby eliminating the requirement for a
separate HTTP server during the application development phase.

e ORB: The ORB supports the functionality specified by CORBA 2.0 (OMG, 1995)
specification. The ORB includes:

41

® Runtime: The runtime supports the execution of the client or server programs.
e Utilities: Basic utilities used by the system administrator or the developer to
obtain information about the state of the ORB environment.

e Server Components: Include Interface Repository, Smart Agent, and the OAD.
As pointed out earlier, IDL has limitations with regard the type of parameters that can be
passed around. In Java, one can define arbitrary data types some of which may be
analogous to IDL structures (an IDL data type struct). If a Java class is defined in a way
such that it conforms to certain requirements, then it can be mapped to an IDL struct. If a
Java class has to be mapped to an IDL struct, it must satisfy the following requirements:
¢ It must be a final class.
e It must be a public class.
e The class implementation does use inheritance.
¢ All the data members of the class are public.
If a Java class does not meet all of the above requirements, it cannot be mapped to a
standard IDL struct type. This limits the kind of information that may be passed around
as parameters using standard CORBA specification. The implementations of CORBA
have tried to get around this limitation by defining extensions which are upwardly
compatible with standard CORBA. One such extension is Visibroker’s extensible structs

which are described below.

3.4.3 Extensible Structs

The extensible structs implement pass by value semantics and allow parameters of an
operation to be of an arbitrary Java class type. This mechanism allows passing of an
object state from client Java program to server program using ORB brokered
communication provided that a class deﬁ/nition of the Java object is present on the server
side. The Java programs on the server side may invoke methods on the passed object
which is a clone of the original object and has the same state as the original object. This
mechanism uses Java Serialization to pass classes in the form of extensible structs. Java
Serialization compresses a Java object’s state into a serial stream of octets that can be
communicated as a part of the remote requests. The extensible struct mechanism allows

the data using pointer semantics to be passed successfully. A group of interrelated

42

objects appears to be the same after its transport across a network. The use of this
mechanism, therefore, greatly simplifies developing distributed Java applications that use

CORBA and Web as their communication back-bone.

The preceding sections have described the Java, CORBA, and Web components
of the approach used in this investigation to develop the infrastructure for building
persistent data storage capabilities into the WHERE project. Use of this approach allows
Java applets running at remote clients to store/retrieve data in/from a server which is free
to choose any mechanism for managing the data. The methods employed for managing
the data at the server are totally transparent to the clients. Therefore, the server
implementation is free to choose from various mechanisms such as file systems,
relational database management systems, or object database management systems. The
persistent data management needs of the software engineering environments involving
distributed collaboration are best served by using an object database management system
(Emmerich et al., 1993; Orfali et al., 1996). However, the object database management
systems are still under development and have not reached the popularity enjoyed by the
relational systems. The ever-increasing popularity of Java has resulted in development
of technologies which integrate the Java Programming Environment with the relational
and/or object database management systems and allow Java objects to be stored
transparently. These technologies take advantage of various features of proven database
management technology while providing access to stored data using Java language
features. One of such technologies is the Java Relational Binding (JRB) developed by
the ‘O2 technology’. This technology seemed to fit well into our approach for bridging
the gap between a standard relational database management system (Sybase, Oracle, etc.)
and an object-oriented language (Java). Therefore, we decided to explore the use of JRB
in our attempt to build persistent data storage infrastructure. The following section gives

a brief description of the JRB.

43

3.5 Java Relational Binding
The JRB (02 technology, 1997) is a middle-ware product that bridges the gap between

Java applications and relational databases. The JRB consists of a development

environment and a runtime environment (Fig. 3):

JRB Development

Database
Cache

javac

Relational Database | | jrtb_import

S—

Figure 3. Architectural overview of a JRB application.

® The development environment consists of a set of tools (e.g. jrb_import) which, given
the description of a set of Java classes, generate an equivalent relational schema and
associated methods to read and write objects in the database. The generated methods
map Java objects to their representation in the relational schema.

® The runtime may consist of a totally platform independent set of Java classes.

However, particular RDBMS and platform specific versions are also available which

44

improve performance by using proprietary API of the RDBMS. The runtime runs on
top of any JDBC compliant driver and manages an object cache to improve
performance.

The JRB provides an alternative to the Java developers who want to store data in a

relational database. The other alternative available which may be used by a Java

developer for this purpose is the JDBC interface. However, the JDBC interface provides

very limited functionality and leaves the burden of mapping a Java object to a relational

schema on the developer. This involves writing Java code to map the Java object to the

corresponding rows of the corresponding relations (tables). The same process must also

be performed in the reverse direction in order to read the stored data into a Java program.

Therefore, using JDBC interface involves lot of extra and unnecessary effort on the part

of the Java developer. The JRB enables the developer to get rid of the drudgery of

writing and debugging the same code over and over. The JRB attempts to overcome the

limitations of the JDBC interface by providing the following capabilities:

e The developer only deals with Java class description and does not need to know the
details of the relational model.

e The JRB development environment automatically generates the relational schema
from the Java class description.

e The environment also generates the code mapping objects to the relations and in the
reverse direction.

e Facilities are provided to allow limited evolution of class definitions.

e The JRB utilizes the native mechanisms of the RDBMS to provide transaction
management and referential integrity among the objects stored in the database.

The interface, provided by JRB to access the database functionality, is very simple. The

API of the JRB uses standard Java classes and builds on and reinforces the style and

virtues of the existing core Java classes. The developers of the JRB have plans to make

the binding available on the O, Engine (O; object database management system) in near

future. This further enhances the suitability of JRB for an approach like ours because the

interface will be same whether the underlying database management system is an O,

database engine or a relational system.

45

Having described individual components of the approach used in this
investigation, it is now time to put them together and describe how the overall system
will work. The architecture of the infrastructure developed during this investigation is
given in Figure 4. The bytecodes for the TcmJava classes and other code necessary for
the TcmJava editors to run is located on the Web server which is under the control of the
person responsible for administering the persistent data management system. A TcmJava
editor may be launched by an authorized person by using a JDK 1.1 compatible Web-
server. Whether a person is authorized is determined by the persistent data management
system based on login and password information furnished by the user intending to the
launch a TemJava editor. A user will request access to a TcmJava editor by specifying
the URL of the Web page containing the applet that will control the subsequent operation

providing the user various kinds of information. Once the authenticity of the user is

User Host Server Host

TcemJava Editor

User Host

Figure 4. Architecture of the Java, CORBA, Web, and Database Server approach

46

verified, the system will try to initialize the CORBA environment displaying error
messages in case of failures. However, the initialization process is carried out
transparently and the user does not need to know what kind of initialization occurs. The
system would have done necessary initializations and established connections for remote
invocation before the user runs an editor. The user can then read the documents, edit
them, and save them back to the server. Similarly new documents may be created and
saved. The system keeps track of the owner of a document who may change the access
rights for the other users. The TcmlJava editors used by the user execute on the client
machines and make remote requests through CORBA calls which are conveyed by the
ORB to the appropriate object. Rest of the management of persistent data is transparent
to the clients and is done by the object implementations. In our approach the objects are
implemented in Java and use JRB API to store and retrieve data from a relational
database server. The details about the system will be given in the next chapter which will
discuss the results of this investigation. The purpose of this chapter was to give an
overview of various methods and technologies used in the approach developed during

this investigation.

47

CHAPTER 4: RESULTS AND DISCUSSION

48

Results and Discussion

This chapter discusses the results of the present investigation. The previous chapter
(Methodology) described various methods and technologies used to implement the
approach developed during this investigation for building persistent data storage
infrastructure for the WHERE project. This chapter discusses various components of the
infrastructure providing implementation information wherever appropriate. There are
four components of the “Java, CORBA, Web, and Database server” approach used for
building the persistent storage infrastructure. These components will be described and
discussed in order of their implementation during this investigation. The order of
description is as follows:

= Java Component: Storage/Retrieval Mechanism of the TcmJava

* CORBA Component: CORBA compliant Java code

* Web Component: Integration of TcmJava and CORBA components with Web

* Database Server Component: JRB and Database Server

4.1 Java Component: Storage/Retrieval Mechanism of TemJava

The previous chapter described the translation of C++ code (TCM) into Java code
(TcmJava). One of the major problems with the translated code was mapping of the
storage/retrieval mechanisms used in TCM to those in TemJava. In TCM the
storage/retrieval process starts in the class Document and subsequently ripples through
subclasses of the Document and other two classes (Shape and Subject) and their
subclasses. The conceptual view of the process of storing the simplest document in the

TCM (a Generic Diagram) is given in Fig. 5. The process starts with the Save method in

49

Document

o

Inheritance

Mathod Call

Diagram

Figure 5. Conceptual view of the process of storing a document generated by TCM

the Document class. This method writes information, which is common to all documents
generated by TCM, to a file by calling the Savelnfo method in the same class. The Save
method also calls the SaveEntries method of a sub-class of the Document (Diagram,
Table). The SaveEntries method calls WriteSubjects and WriteShapes methods in classes
Graph and Viewer, respectively. The WriteSubjects and WriteShapes methods call the
Write method in classes Subject and Shape, respectively. The Write methods of both the
Subject and Shape classes write some information to the file and then call WriteMembers
methods in their sub-classes which usually involve more than one level down the class
hierarchy depending upon the kind of document being saved. These WriteMembers
methods are where the information specific to a particular part of the document is written.
The implementation of a typical WrittMembers method from both a Subject and Shape

classes is given in Fig. 6. Problem with translating this code into Java was the storing of

50

Document

Figure 6. Implementation of typical WriteMembers methods for Subject and Shape classes

object references (casting of a pointer to unsigned long) as long values into a file.
Fortunately, by the time we reached that stage of translation Java Serialization was
introduced as a part of the JDK 1.1. Use of Java Serialization made the storing of objects
much simpler. It allows the object to be written as such along with any other objects
transitively reachable from the object being written. Therefore, we used Java
Serialization’s WriteObject method to translate the TCM code which used pointer to
unsigned long conversion before storing it into an ASCII file. The C++ code shown in

Fig. 6 was translated into the Java code given in Fig. 7. This approach worked for the

51

Document

Figure 7. Translated code of WriteMembers methods for Subject and Shape classes

standalone TcmJava application which stored/retrieved data in/from a local Unix/DOS
file. However, it involved making a very large number of input/output (IO) calls and
wrote unnecessary information to the file. Moreover, this approach would not work for a
distributed TcmJava application involving remote method invocations to store/retrieve
data in/from a remote server. As such this approach was grossly inefficient and would

become impractical if data was to be stored/retrieved over a network. Since our objective

52

in this investigation was to build persistent data management infrastructure for a project
aiming to build tool support for distributed collaboration, we must devise an approach
which would involve making the least number of invocations while storing/retrieving
data. In addition, we wanted to leave the original architecture of TCM intact in the
translated version. After analyzing the storage/retrieval mechanism of the original TCM,
we were able to devise an approach which involves storing/retrieving lesser information
than the original approach and is more elegant. Our approach involves writing the
Document object itself to the persistent storage. The Java Serialization takes care of
Saving/Loading of the information which is a part of the Document Object (i.e referenced
by it). The writing of information derivable from the stored information is prevented by
making the fields representing that information transient. The reading/writing activity
now involves making a single invocation of an operation irrespective of whether it is a
local or remote invocation. Moreover, the reading/writing occurs entirely in the
Load/Save methods of the Document class. This approach does not require to explicitly
store extra information needed to interpret the stored information when it is retrieved,
Java serialization takes care of that. A comparison between Figs. 5 and 8 illustrates the

features of our approach vis-a-vis the approach used in TCM. The document

Document

GlobalName.load_save.save(file, this);

‘document = qubalugmp.lsgd_save.Lcad(fi1§jt I

-

Figure 8. Conceptual view of the storage/retrieval process in TcmJava.

storage/retrieval process in our approach involves making a single call to the Save/Load

method of the load_save class which implements the persistent storage mechanism. The

53

details of how and where the persistent storage occurs are transparent to the TcmJava
application performing the storage/retrieval. The load_save class may implement a
storage mechanism which saves the Document object to a local file or may be a
mechanism which transports data over a network and makes it persistent on a remote
server. Again, the details of how the data is made persistent locally/remotely are
transparent and may be changed without any effect on the working of the TcmJava
application using them. The development of this approach was the first step in building
the infrastructure. With this first step in place, if the data were to be persistently
managed locally, implementing the load_save class meant using WriteObject and
ReadObject methods of the Java interface java.io.Serialization. However, our aim was to
develop an infrastructure which will be used by geograhically distributed multi-client
TcmJava application. To accomplish this, we needed a mechanism which will allow
storage/retrieval of Java objects to a remote server transparently. This leads to the second

component of our approach which will be discussed in the following sections.

4.2 CORBA Component: CORBA Compliant Java Code

While using the Web as a communication back-bone for building distributed Java
applications, one faces the problem of applet authentication. The Java language and run
time have built-in mechanisms to ensure that the applets downloaded from the Web via a
Web-browser do not compromise the security of the local system. Java runtime has a
built-in authentication mechanism which checks to determine whether an applet is
allowed to perform a particular action. Whenever, an applet tries to perform a security-
sensitive operation, the runtime throws security exception and the operation is prevented.
Examples of the security-sensitive actions include accessing the file system of a Web-
browser’s host, or opening a network connection to another host. Therefore, a
mechanism is required such that the security-sensitive actions could be delegated to that
mechanism which will perform them transparently in a secure manner. Implementations
of CORBA represent one of such mechanisms which can be used in developing
distributed Java applications involving data transport and using Web as the
communication back-bone. The Remote Method Invocation interface released as a part

of the JDK 1.1 is another such mechanism. Two mechanisms are capable of serving the

54

kind of functionality required for implementing the infrastruture we are building.
However, we decided to use the CORBA approach because: it allows a greater flexibility
in implementing the server functionality; the software required to enable the remote
invocations is available in the form of ORB implementations; CORBA offers additional
functionality (CORBA services) which can be taken advantage of during building
subsequent parts of the infrastructure. An overview of CORBA and one of its
implementations (Visibroker for Java) used in this investigations was given in the
previous chapter. Here we will discuss the details of using the CORBA technology to

provide the functionality required during the present investigation.

The use of ORB technology for transporting information between TcmJava client
applications and the persistent data management server, required defining CORBA
interfaces which will then be transparently used by the clients for sending and receiving
data from the server. Normally, one would define the interfaces using the IDL which
makes them usable by any CORBA compliant application irrespective of the platform
and implementation language. However, the data transfer capabilities of the standard
IDL did not meet our needs. Fortunately, the CORBA implementation, we are using,
uses an extended version of standard IDL which allows transferring of information
represented by an arbitrary Java class. This version of IDL is upwardly compatible with
standard CORBA and the interfaces making use of extended features can be used in
conjunction with the standard IDL interfaces which will still be completely platform and
implementation independent. Since our client applications will be Java anyway, it did
not matter for client. However, it affords the capability of being able to provide the part
of the server implementation by using environments other than Java if such a need should
arise during building various functionality into the infrastructure. Our prototype of the
infrastructure defines a CORBA interface (Fig. 9) specifying the operations available to

the client TcmJava applications for storing and retrieving the persistent data. A TcmJava

55

public interface TcmLoadSava extends org.omg. CORBA Objoct {
/7
- public String save(String fileName, Document documont);*ﬂ
public Document load(String fileName); « e :
public boolean fileExists(String fileName) ;

public ‘boolean isDirectory(String fileName);

public boolean isFile(String fileName);

public Stringl] listFiles(String dirName);

Figure 9. Interface definition for the CORBA object providing persistent storage.

Client application uses this interface without worrying about how the data is made
persistent. The CORBA object implementing this interface determines how and where to
store the data. An implementation of TcmLoadSave interface may be a CORBA object
which manages the persistent data in a file system of some operating system running on a

host machine somewhere over the network. One such implementation is given in Fig.10.

public class TcmlioadSaveServer extends: LoadSave. sk TcmLoadSave {
Public static f£inal String LOAD _SAVE_DIR = . , e
"/projects/nasa/dnta/tcmaava/root'
public TcmLoadSaveServer(String name)(
super(mum) ;
}
/7
public String save(String fileName, Document document) {
fileName = LOAD SAVE_DIR + fileName;
//
if (ReadWriteUtility.writeobjectrile(fileNama, document))
return "Succeeded'
else ‘
» return "Failed"; ‘ P
¢+ + + + . Implementation of the remaining methods . . . o e e il

}

Figure 10. An implementation of the TcmLoadSave CORBA interface .
The class in this implementation (TcmLoadSaveSever) sub-classes (extends) the
LoadSave._sk_TcmLoadSave class which is a class that is automatically generated by the
IDL compiler and used by the ORB software for delegating the requests to the actual
implementation. The Java source code for the LoadSave._sk_TcmLoadSave class is

given in Fig. 11. This class is a sub-class of another automatically generated class

56

In our prototype implementation, the Java classes implementing the TcmJava
editors are located on a host running in the domain 129.164.10.x (x is a specific host
address) and can be accessed via a Web-server (Fig. 13). Any user (for the
demonstration version) having access to the Web and having a JDK 1.1 compatible Web-
browser could download and run the TcmJava editors. When an editor is launched, it
establishes Internet connection with a CORBA object managing the persistent data that is
generated by the editor and communicated to the CORBA object. The communication
between the TcmJava and the CORBA objects is mediated by the combination of the
IIOP GateKeeper and the OSAGENT. In our prototype implementation, the CORBA
objects run on two hosts in the domains 157.182.114.x and 157.182.112.x. One of the
hosts is an NT workstation and the other one is Sun SPARC station. The CORBA

User Host

157.182.114.x

129.164.10.X w

Figure 13. Description of the operation of the prototype implementation

58

objects running on these hosts store the data communicated to them on the local
DOS/UNIX files, respectively. A user of the TcmJava may specify on which host to
store the data. However, the data does not have be stored in a file system. Instead, a
more powerful mechanism such as a relational or object-oriented database server may be
used for managing the data. These considerations will be discussed in a later section

following the next section which discusses the third component of our approach.

4.3 Web Component: Integration of TcmJava and CORBA components with Web

This component deals with using the well-developed Web-technology as a
communication back-bone in our approach. Our decision to translate the C++ code of
TCM into Java allowed us to use the capabilities of the Web. Furthermore, the security
issues involved in the use of the Web technology were circumvented by using ORB
technology. Although our approach works with any Web-server implementing the
WWW protocol, it allows the use of a specialized Web-server. In our prototype
implementation, we used the JavaWebServer from Sun Microsystems running on an NT
Workstation as well as general purpose Web-servers running on Sun SPARC stations.
The JavaWebServer provides Java specific capabilities which may be taken advantage of
during subsequent developments of the persistent storage infrastructure. The present
investigation, however, did not explore the use of these capabilities. An important
feature of our approach is that it benefits from the development of browser technology;
the Netscape Communicator has in-build Java and Visigenic-ORB Run-time
environments which greatly reduce the Internet traffic involved in launching TcmJava

applications using the Web.

In this and two previous sections, we have discussed the components of our
approach involved in running a TcmJava editor from multiple Web-clients and
communicating the data generated by the editor to CORBA objects responsible
persistently storing the managing the data. The following section discusses the

mechanism to be used for making the data persistent.

4.4 Database Server Component: JRB and Database Server

59

Various issues involved in meeting the persistent data storage needs of a Software
Development Environment (SDE) were reviewed in the chapter on Literature Review
(Chapter 2). It was pointed out that the relational database management systems as such
are not suitable for use in SDEs because of lack of ability to specify and manage the
complex data generated during various phases of an SDE. The object-oriented databases
although very suitable for use in an SDE have not reached a development stage which
warrants their exclusive use in providing the persistent data storage needs of an SDE.
Therefore, we explored the use of a hybrid approach which uses the object-oriented
methods to persistently manage data in a relational database management system. This

section will describe the details of the approach,

This hybrid approach uses a middle-ware product from ‘O, Technology’ called
Java Relational Binding (JRB) which provides a high level interface to an underlying
database, where Java objects and class information are stored. An overview of the JRB
was given in the chapter on Methodology (Chapter 3). In this section, we will discuss the
details involved in its use in our approach. The JRB API consists of a set of Java classes
which are used by the Java applications intending to store/retrieve Java objects from the
database. The methods used for Storage/Retrieval of Java objects in/from the database
are specified in Java Interface called PersistentObject. Any class whose objects are to be
stored in the database must implement this interface. The implementations of the
methods declared in the PersistentObject interface are generated by a tool provided with
the JRB which takes the Java class (whose objects are to be made persistent) as input.
Therefore, any classes which represent the information to be made persistent (stored in
the database) must be imported into the database by using the import tool (rb_imporr).
In TcmJava there are a large number of classes which represent the information generated
by various TcmJava editors. If the approach is to be used as such, all these classes must
be imported. Also, if any modification is made to any of them, the modified class must
be re-imported. In addition to the need for importing unnecessary classes, the approach
would make the storage mechanism dependent on the classes used to generate the
information. This necessitated developing another mechanism which would involve

importing of a smaller number of classes and would make the storage mechanism

60

idependent of the TcmJava classes. Therefore, a set of new classes were implemented
y circumvent the difficulties involved with using the TcmJava classes as such. These
lasses are packaged in a Java Package (tcmJavaServer) and are described in the

>llowing section.

4.1 The tcmJavaServer Package

his package contains the classes used to represent the information to be made persistent
ad will be imported into the database. The rationale for implementation of these classes
ame from the fact that in TcmJava, the information to be made persistent, was
:presented by only a small number of classes. However, these classes were either very
»w or very high in the class hierarchy, thereby, necessitating the storage of intermediate
lasses which actually did not represent any information but must be stored because of
eing part of the class hierarchy. One of such class hierarchies of the tcmJava is given in
igure 14. The Figure also shows the corresponding hierarchy in the new package
nplemented for making the information persistent. In this case, if an object of class
‘ripleBox as it occurs in the tcmJava package has to be made persistent, all the classes

hown in the hierarchy in the left-hand side of the Figure must be imported into the

temJava tcmJavaServer

Figure 14. Corresponding class-hierarchies in the temJava and tcmJavaServer
packages.

interface and will contain methods required for performing various operations required
for reading, writing, and managing the data. The following section discusses each of

these operations by using one of the classes in the tcmJavaServer package as an example.

4.4.3 Persistent Objects
Figure 15 shows the implementation of one of the classes in tcmJavaServer package

before being persistence capable (being imported into the database). This class will be

public abstract class Subjegt,extends,cbjggt{.
protected String name; gRET L
protected Graph graph; Cel n e
Protected initialize(subjectData,data){“,j

this.name = data.name.getstr(); =

if (data.graph instanceof temJava. sd. DFGraph) Shoagaiiay
this.graph = new DFGraph((tchaanSd.DFGraph)data.grapﬁ);a o

»elsex_) SR R : S T S
this.graph = new Graph (data.graph);

1

Yoo
brotected void initSubject(;chava;dg.Subjeét subject, SubjectData
data) i el - e Giedn

.. more méthodstj

Figure 15. A typical class from temJavaServer package before being persistence capable.

used as an example to illustrate the process of making tcmJava objects persistent, using
the JRB and a relationa] database server. In order to store/retrieve data represented by
this class in/from the relational database, the class must be made persistence capable by
importing it into the database and subsequently changing its class-definition followed by

Tfecompilation. The persistence capable version of this class is shown in Figure 15.

63

public abstract class SubJect extends Object implements PersistentObject {
protected String name; L
DProtected Graph graph; B
Protected 1n1t1allze(SubJectData data){
- this.name data.name.getstr() ;. : v
0 1f {data: graph ‘instanceof - tchava ‘sd; DFGraph) i :
i this.graph = hew DFGraph((tchava sd DFGraph)data graph),
ioelse ’
. this. graph

o new Graph(data graph),_ ‘

Yo) !

// E \ , . .
protected void initSubject(tchava.dg.Subject’subject, SubjectData data) (

.. more methods

bodies of methods declared in PersistenObject interface

Figure 16. A typical class from tcmJavaServer package after being persistence capable.

After importing the class into the database, its definition must be modified such that it
implements the PersistentObject interface of JRB APL Before this modified class
implementation can be recompiled, the definitions of the methods declared in the
PersistentObject interface must be inserted into the class body; these method definitions
are generated by the jrb_import tool used for importing the classes into the database,
After this modified definition of the class is compiled by using the Java Compiler, objects

of this class may be stored/retrieved in/from the underlying database.

Once a class is made persistence capable, the application manipulating objects of
that class is given full control over the persistent data through the methods declared i in the
PersistentObject interface. In addition, JRB provides various other functionality through
static methods of some utility classes which are part of the JRB API. The following
sections will discuss management of the persistent data represented by tcmJavaServer
classes which had been made persistence capable by using JRB and an underlying

relational database server.

4.4.4 Transaction Management
The transaction management capability available to the persistent temJ avaServer objects

can be very useful in the view of being able to provide the persistent data to multiple-

users using tcmlava editors from remote sites. The transaction management is
conveniently provided through the methods of a class (Transaction), part of the JRB APL
The methods of this class give control to the application to manage transactions. This
allows the process (to be defined to control the operation of the WHERE environment) to
specify the transaction management policies but yet providing a convenient way to
enforce them. For instance, the process may specify that certain documents may be
viewed by a group of users but may be modified by a subset of those users. The
transaction mechanism together with the access control mechanism (to be discussed later)
provides a convenient way of enforcing such a policy. The users allowed only to view a
document can be restricted to open the document in read-only mode. Regarding the users
with update rights, concurrent updates can be easily supported, of course, according to a
policy specified by the process. The system provides convenient ways and leaves the

control to the programmer who may enforce various policies.

4.4.5 Access Control
The access control is provided by first defining users and then assigning them various
access rights. The user management is done through a Java class which allows adding
users, defining login information, changing the login information, and deleting the users.
The user Mmanagement can only be performed by the person who created the database. A
user can be allowed/refused following six kinds of rights:
® Import : The user is enabled/disabled to import Java classes.
® Access : The user is enabled/disabled to read persistent objects.
* Update : The user is enabled/disabled to write persistent objects.
® Delete : The users is enabled/disabled to delete persistent objects.
® All: The useris enabled/disabled to read, write, and delete persistent objects.
® Grant : The user is enabled/disabled to perform all the previous operations and to
give grant permission.

The user who imports the Java classes into the database has all the rights on the
imported classes. This user may grant or revoke access rights to other users on classes
imported by him. This prevents the unauthorized users from accessing the persistent data

managed while making it accessible to multiple users running tcmJava editors from

65

distributed locations. Also the security control lies with a single user which is a very
desirable feature in distributed applications making persistent data accessible to multiple

Uscers.

4.4.6 Creating Persistent tcmJavaServer Objects

All the tcmJavaServer classes that have been imported into the database are provided
with the methods for writing them into the database. The CORBA object which is
connected to a tcmJava editor running in a remote host implements the persistence
mechanism. This object receives a copy the tcmJava object, whose data is to made
persistent, through a CORBA cal] made by the applet running the editor. The CORBA
object creates a corresponding tcmJavaServer object and copies the data from the
tcmJava object to this object. The tcmJavaServer object and all the objects pointed to by
it are then written to the database through methods in the PersistentObject interface. The
writing occurs inside a transaction where the objects being written are locked to preserve
consistency. Mechanisms are provided to prevent deadlocks among the concurrent
updates to a given object. The enforcement of concurrency is left to the programmer and
may be dictated by the process governing the environment (WHERE), the persistence
mechanism is part of. References among the stored objects may be created according to
some specified policy and may be used to implement a process model. For instance, the
consistency among stored documents may be checked and enforced by creating
references. In addition, the checking may be done at the server side without the need for
transporting lot of data over the network which may be needed if consistency checks are
to be performed at the client side. This approach, therefore, tackles a number of issues
involved in providing persistent data storage in an SDE; these issues were pointed out in

chapter on Literature Review (Chapter 2).

4.4.7 Retrieving Persistent temJavaServer Objects

The temJavaServer objects stored in previous sessions can be accessed in a current
session though data entry points defined in the database, The object access occurs
through class extents. A class extent contains all instances of a class that had been

previously written to the database. The system defines two types of class extents which

66

provide access to instances of a class only or to instances of a class and all its sub-classes.
A class extent can be filtered through a predicate (very similar to the where clause of a
select —from-where SQL query) to obtain a particular instance. For instance‘, a tcmJava
document is represented by an instance of the Document class defined in the
tcmJavaServer package. One of the fields of the Document class is a String which
identifies a particular document. Therefore, a particular document may be retrieved from

the database, inside a Java program (Fig. 16). When an object is retrieved from the

‘Document document; i/ ;;léclare a variable of document type; ,
- Extent documentExtent ; /I declare a variable of type extent, | . L
entExtent = Extent.all(“Document”); // obtain a Teference to all instances of Document and its ~
mer * = dqcuﬁ;’entExtcnt.whc;;rc (“id = ‘some_identiﬁelf’ff),element();

Figure 17. Retrieval of a Previously stored document from the database,

database, all of its fields of primitive data types are read. However, the reference types
must be explicitly read using methods provided in the PersistentObject interface. The
System also provides query capabilities using primitive as well as reference-type fields of
the stored object. For instance, one of the queries could be: retrieve al] documents
created by user X. Since an object of class Document contains a field representing name
of the document creator, the aforementioned query can be easily made. The results of a
query can be read into an object of Java Enumeration type and used in anyway the
programmer deems appropriate. These capabilities can be very useful when building

subsequent components of the WHERE project.

67

4.4.8 Deleting Persistent Objects

stored object. Before an object can be deleted, the system checks to see that the object is

not referenced by any other stored object. If the references to the object being deleted

68

CHAPTER 5; SUMMARY, CONCLUSIONS, AND

FUTURE WORK

69

Summary, Conclusions, and Future Work

distributed environment. An implementation of CORBA (Common Object Request
Broker Architecture) from Visigenic Software (VisiBroker for Java) was used to facilitate

the communicatjon between the tcmJava editors running as Java applets on client hosts

receiving data from and sending data to the temJava editors, The data could be
transparently stored on a single server or multiple servers each of which would be

implemented by a CORBA object. A CORBA object implementing the persistent data

Store/retrieve persistent tcmJava objects in/from a relational database server. The
Transaction and User management facilities provided by JRB could be used by CORBA
objects implementing the server to provide multi-user concurrent access to store tcmJava

objects in a secure fashion.

70

top of the infrastructure developed during this investigation.

development should be governed by the process. This process will specify various
policies to be used in the WHERE project and these policies will govern the decisions
which will have to be made to carry out the further development. For instance, it must be

decided whether the inter-document consistency checks are to be performed on the client

71

REFERENCES

aiser. 1991, Concuxrency control in advanceq database
mputing Surveys 23(3): 269-317.

Barghouti, NS. and GE. K
applications, ACM Co

- Databage System support for software engineering, Jy, Proc. 9% ¢
Conf. Softw. Engg., Monterey, Cal. pp. 166-178.

Boem, B, 1984, Mode] and metrics for software Mmanagement apg engineering. IEEE
Comp. Soc. Press, pp. 4-9,

Emmerich, W.and w. Schafer, 1996 Environments for group-oriented software design -
The Groupie €Xperience.,

- 145-162. In I
. ds.), Software Engincering ESEC 93. Proc. 4t
European Software Engmeenng Conference Garmisch- i
volume 717 of Lecture Notes

Ir. 1992, Building integrated

Tool specification. ACM Trans.

eering and Methodology 1(2): 135-167.

g Java

applets and CORBA for multj
Internet Computi

-user distributed
ng, IEEE Computer Society.

Pp. 43-55,

72

Finin, T. ¢t 41, 1992. Specifi

cation of the QKML agent-comm
Report EIT TR 92-04

» Enterprise Integration Technolog'

Finkelstein, A, D. Gabp

ay, A. Hunter, J. Kramer, and B. Nuseijbeh.
handling in multj

-perspective Specifications, Trans. Softw. En

Gotel, O, and A. Finkelstejn, 1995, Contribution Structures, IEEE Internationaj
Conference op Requirements Engineering, York, UK, IEEE Comp. Soc, Press.
100-107.

Habermann, AN. and D, Notkin. 1986. Ganda]f: Software development €nvironments,
IEEE Trans. Softw. Engg. 12(12): 1117-1127.

Hamilton, M. 1996. Java ang the shift to Net-centric computing. Computer 29(8): 31-39,
Holtman, K 1996. The futplex system. z,

U. Busbach, D e, and K. Sikke] (eds),
ERCIM Workshop on CSCW and the

. K
Web, Sankt Augustin, Germany, GMD/FIT.

editors. pp. 185.195, In Proc, ot
Programming Languages. ACM Press.

Johnson, p. 1996. Egret: A framework for advanced CSCw applications. ACM Softw.
Eng. Notes 21(2).

- Supporting technology transfer of formal technical review through a
computer supported collaborative rey

iew system. I Proc. Fourth Int. Conference
on Software Quality, Reston, VA, Usa

Johnson, p, and C. Moore, 1995. AEN Home Page. www HREF =
“http://www.ics.hawaji.edu/csdI/aen.

Kotonya, G, and I. Sommervi]le, 1996. Requirements engineering with viewpoints.
Softw. Eng. J. 11(1): 5-18.

73

. kelstein, 1991. A confi
integration. Proc. of European Symp.

on Softw. Deve]
CASE Technology, Konigswinter, Ge i
Nodine, M.H,, AH. Sak

arra, and S.p, Zdonik. 1997 Synchronization and fecovery in
Cooperative transactions, gy, Implementing Persistent Object Bases — Principles
and Practjce — Proc, 4 1 Workshop on Persijstent

Object Systems.

method apg tool

Software Engineering
mp. Soc, Pregs. 50-60.

- Fine-grain Process modeling . pp. 42-4¢.
are Specification and Desigp (IWSSD-7),
h, California, USA. 42.4¢,

ternationaj Conference

iple views i Tequirement; g
Eng. 20(10): 760-773.

02 Technology. 1997, Jav.

a Relatiopa] Bi
- suite106, Palo A]

nding User Manual. 3699 West Bayshore Road
to, CA, USA.
Orfalj, R, D. Harkey,

RBA Services: Pe
databases.

istributed Obje
A

Isistence and object

Cts Surviva] Guide,

Peusche], B, w, Schafer, angd S. Wolf. 1997 A knowledge-based Software development
environment Supporting Cooperative work. Int. J. Softw. Engg. Know], Engg.
2(1): 79-106.

Pu,C, G Kaiser, ang N. Hutchinsop, 1989, Split tran
PP 26-37. In proc, 14t Int. Conf

. Very Large D
Roman, G.CR. 1985. A taxonomy of
Computer 18(4): 14-27.

Taylor, RN,RW Selby,
and A L. wolr 19

sactions for open-ended activitjes,

atabases, Morgan Kaufmap,

urrent issues jp requirements engineering. IEEE

- Clarce, J.C. Wileden, L. Osterweil,
88. Foundations of the arcadia epy
SIGSOFT

ironment architectyre, ACM
: : S 1305): 1-13. J Prog. 4" AcM SIGSOFT Symp.
Software D nments, Irvine, CA, USA.

74

Toye, G., J. Tenenbaum, M. Cutkosky, J. Glicksman, and L. Lejfer. 1994. SHARE: A
methodology and environment for collaborative product development. Post-Proc.
IEEE Infrastructure for Collaborative Enterprises (CDR-TR) #19930507. 16 pp.

U.S. Government Accounting Office. 1979, Contracting for Computer Software
development: Serious problems require management attention to avoid wasting
additional millions. FGMSD-80-4.

van Welie, M. and A. Elins. 1996, Chatting on the Web. In U. Busbach, D. Kerr, and K.
Sikkel (eds), ERCIM Workshop on CSCW and the Web, Sankt Augustin,
Germany, GMD/FIT.

Visigenic Software, 1997. Visibroker for Java: Programmer’s Guide Versions 3.0. HREF
http://www.visigenic.com.

Wan, D. and P. Johnson. 1994. Experiences with CLARE: A computer-supported
collaborative learning environment. Int. J. Human-Computer Systems.

Wieringa, R. 1996. Requirements Engineering: Frameworks for Understanding, John
Wiley & Sons, Chichester, UK.

Yourden, E. 1996. Java, and the Web, and the software development. Computer 29(8):
25-30.

75

