Reprinted from

PROCEEDINGS OF THE
13th WORLD CONGRESS
International Federation of Automatic Control

San Francisco, USA, 30th June - 5th July 1996
(in 18 volumes)

Edited by

Janos J. GERTLER
George Mason University

Jose B. CRUZ Jr
Ohio State University

Michael PESHKIN
Northwestern University

VOLUME H
ROBUST CONTROL II, STOCHASTIC SYSTEMS

Volume Editors

R. BITMEAD (Australia), I. PETERSEN (Australia),
H-F. CHEN (China) and G. PICCI (Italy)

Published for the

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL

by

PERGAMON
An Imprint of Elsevier Science
QFT MULTI-INPUT, MULTI-OUTPUT DESIGN
WITH NON-DIAGONAL, NON-SQUARE COMPENSATION MATRICES

R. A. Hess and D. K. Henderson
Dept. of Mechanical and Aeronautical Engineering
University of California
Davis, CA 95616
rahess@ucdavis.edu

ABSTRACT

A technique for obtaining a non-diagonal compensator for the control of a multi-input, multi-output plant is presented. The technique, which uses Quantitative Feedback Theory, provides guaranteed stability and performance robustness in the presence of parametric uncertainty. An example is given involving the lateral-directional control of an uncertain model of a high-performance fighter aircraft in which redundant control effectors are in evidence, i.e. more control effectors than output variables are used.

Keywords: Flight Control, Robust Control, Uncertainty, Decoupling Precompensators

1. INTRODUCTION AND BACKGROUND

A frequent criticism of multi-input, multi-output (MIMO) Quantitative Feedback Theory (QFT) is focused on the use of square plants and diagonal compensation matrices (Yaniv and Horowitz, 1987). The price paid for using such diagonal controllers is in the bandwidth of the resulting design. A number of schemes have been proposed for removing the restriction of diagonal compensation of square plants in MIMO QFT, e.g. (Horowitz, 1991). More recently, Yaniv (1995) proposed a new approach for obtaining non-diagonal controllers using the so-called "improved" method for QFT design involving sequential loop closures.

In the research to be described, the use of non-diagonal compensators to control non-square plants is demonstrated using the aforementioned sequential QFT design approach. Consider Fig. 1 which shows a MIMO feedback system, with P representing the plant matrix (possibly non-square), and S and Gp representing, respectively, a gain matrix and transfer function matrix both of which are intended to produce an "effective" plant PSGp which is square and approximately diagonal. The matrix Gp is designed to minimize cross-coupling in the effective plant and uses a methodology first discussed by Catapang, et al (1994).

1.1 Distributing Controls

The control distribution matrix is simply a means for distributing "pseudo-control" outputs to the actual control effectors in any design. Consider the plant dynamics to be given by

\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) \]

where

\[x \in \mathbb{R}^{n_x} \quad A \in \mathbb{R}^{n_x \times n_x} \]
\[y \in \mathbb{R}^{n_y} \quad B \in \mathbb{R}^{n_y \times n_u} \]
\[u \in \mathbb{R}^{n_u} \quad C \in \mathbb{R}^{n_y \times n_x} \]

In the QFT approach one wants the number of pseudo controls to equal the number of outputs, q. Thus, we first define a \(B_\nu \in \mathbb{R}^{n_x \times q} \) as any matrix whose column space spans the same column space as B. Write B as

\[B = \begin{bmatrix} B_1 \\ \vdots \\ B_m \end{bmatrix} \]

One immediate choice for \(B_\nu \) is
\[B_r = \begin{bmatrix} I \\ 0 & \vdots & 0 \end{bmatrix} \]

(4)

where \(I \) is \(q \times q \). The new plant with pseudo-controls is

\[\dot{x}(t) = Ax(t) + B_r v(t) \]

\[y(t) = Cx(t) \]

(5)

where \(v \in \mathbb{R}^{q \times 1} \) and is the pseudo control vector.

Obviously, a transformation between \(v \) and \(u \) is needed. An optimization procedure can be created to find \(u \) so that

\[J = [u^T(t) W u(t)] \]

(6)

is minimized, subject to the necessary constraint

\[B_r v - Bu = 0 \]

(7)

In Eq. 6, \(W \) is a constant diagonal matrix with elements chosen here as the square of the reciprocals of the maximum control effector displacements. Thus, the \(J \) in Eq. 6 represents the weighted sum of the instantaneous control effector displacements. The use of Lagrange multipliers shows that the optimal \(u(t) \) is given by

\[u(t) = Sv(t) \]

\[S = \left \{ W^{-1} B_r [B_r W^{-1} B_r^T]^{-1} \right \} \]

(8)

Of course, plant uncertainty means that the \(P_\phi \), which is used in determining \(S \) will not be optimum for all \(P \) in the uncertain plant set \(\Phi \). However, this is a small price to pay for a very simple technique for producing a square plant and is superior to the somewhat \textit{ad hoc} techniques which have been previously proposed (Hamilton, et al, 1989). In addition, it can be shown that \(S \) can be changed, i.e. the weighting matrix used in the optimization procedure can be altered, with \textit{no} change required in the compensation \(G \) or \(G_p \) in Fig. 1 (Voulgaris, and Valavani). This means, for example, that if there exists control redundancy,

i.e. more control effectors that outputs being controlled, a very simple approach to control reconfiguration is possible in the event of failure of one of the control effectors. Essentially one precomputes a number of \(S \) matrices, say \(S_i \), \(i = 1, \ldots, n_s \), where \(n_s \) is the number of control effectors. Each \(S_i \) is calculated with the weighting element on \(\delta \) to infinity. Assuming that the inoperative or damaged control effector can be identified, the \(S \) matrix in Fig. 1 can be replaced by \(S_k \) (\(\delta_k \) being the inoperative/damaged control effector) and the control load distributed to the remaining effectors, with no change in \(G \) or \(G_p \). The stability and performance characteristics of the resulting system will be identical to those of the original system.

1.2 Minimizing Control Cross-coupling

The matrix of transfer functions \(G_p \) is designed to reduce the control cross-coupling in the square, modified plant PS. Taking a \(2 \times 2 \) modified plant as an example,

\[\begin{bmatrix} P_{m1} & P_{m2} \\ P_{m3} & P_{m4} \end{bmatrix} \]

(9)

Then \(G_p \) takes the form

\[\begin{bmatrix} 1 & G_{p1} \\ G_{p2} & 1 \end{bmatrix} \]

(10)

Now, in the absence of uncertainty, one could write

\[G_{p1} = \frac{P_{m2}}{P_{m1}}, \quad G_{p2} = \frac{P_{m1}}{P_{m2}} \]

(11)

and exact decoupling would occur. However in the presence of uncertainty, one must choose \(G_{p1} \) and \(G_{p2} \) so that (1) Eq. 11 is approximately satisfied over \(\Phi \), and (2) the resulting \(G_{p1} \), \(G_{p2} \) are stable and proper. This task is best accomplished by transfer function fits in the complex plane. Space does not permit a discussion here.

1.3 The Final Compensator

The final compensator, i.e. the one which is implemented in the control system of Fig. 1, is
\[G = SG_p G_c \]

(12)

where \(G \in \mathbb{R}^{p \times q} \).

2. DESIGN EXAMPLE

To exemplify the proposed methodology, an aircraft flight control problem was chosen. The task and vehicle are the lateral-directional control of a supermaneuverable fighter aircraft based upon the F-18 and shown in Fig. 2. The response variables were roll-rate about the velocity vector, \(p \), and sideslip, \(\beta \). Five control effectors were used. These were \(\delta_{DT} \), differential horizontal stabilizer, \(\delta_{A} \), aileron, \(\delta_{R} \), rudder, \(\delta_{RTV} \), differential pitch thrust vectoring, and \(\delta_{YTV} \), yaw thrust vectoring. The vehicle dynamic model was taken from Adams, et al. (1992). Plant uncertainty resulted from considering 15 different equilibrium flight conditions defined by altitude and Mach No. The altitude varied from 10,000 to 30,000 ft, and Mach No. varied from 0.3 to 0.9, depending upon altitude.

The control distribution matrix \(S \) was found by using a weighting matrix based upon the square of the reciprocals of the maximum control effector deflections for a nominal plant case. The matrix \(G_p \) was chosen to reduce control cross-coupling in the modified plant PS set for all \(P \) in the plant set \(\mathcal{P} \). Tracking bounds were selected based upon estimates of acceptable performance. Cross-coupling bounds were selected as follows: First, the compensation elements in \(G_c \) were approximated around their crossover frequencies as

\[
G_c = \frac{\omega_c}{s} \frac{1}{(PSG_p)_{pp}}
\]

(13)

\[
G_c = \frac{\omega_c}{s} \frac{1}{(PSG_p)_{pp}}
\]

where

\((PSG_p)_{pp}\) and \((PSG_p)_{pp}\)

represent the diagonal elements of the effective plant transfer function matrix \(PSG_p \). The crossover frequencies \(\omega_c \) were then varied until the performance bounds could be met across all the plants. Second, greatest upper bounds on the magnitudes of the transfer functions \(\beta / p \) and \(p / \beta \) which were then in evidence were used as the cross-coupling bounds in the QFT design.

Figures 3-6 show the resulting system performance in tracking and cross-coupling responses. Table 1 lists the compensators, prefilters and the crossover frequencies, the latter for the nominal plant. The sequential design began with the \(\beta \) loop. It should be noted that, without inclusion of the \(G_p \) matrix, the design could not be completed with reasonable loop bandwidths. As the figures show, excellent performance was obtainable with the design procedure, despite the fact that significant uncertainty existed in \(P \) and that considerable cross-coupling was evident between roll-rate and sideslip in the basic airframe.

3. CONCLUSIONS

A technique for the QFT design of MIMO systems using non-diagonal, non-square compensation matrices has been formulated and exercised on a challenging flight control problem. The technique does not rely upon ad hoc design procedures for producing an effective plant which is square and approximately non-diagonal. Ongoing research is aimed at determining better techniques for choosing the control distribution matrix and for accommodating the effects of possible actuator saturation.

REFERENCES

Table 1 QFT Design Results

<table>
<thead>
<tr>
<th>Compensators:</th>
<th>(G_c = \frac{7.15 \times 10^2[0.16][1,1.8][48]}{(0)(400)^2[0.76,1.25]})</th>
<th>(G_p = \frac{2.6 \times 10^5[0.12,1.48][0.12,3][1,0.53][0.89,45]}{(0)(125)(300)^2[0.49,0.9][0.078,2.36]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (K(z_1))</td>
<td>(K(s+z_1))</td>
<td>(F_p = \frac{288.5(1.98)(2)}{(2.3)^2(12)(18)})</td>
</tr>
<tr>
<td>Prefilters:</td>
<td>Nominal Crossover Frequencies:</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: A MIMO feedback system
Figure 4: Side-slip rolling responses in OFT design

Figure 3: Roll-rate rolling responses in OFT design

Figure 2: The supermanoeuvrable fighter
Figure 5: Roll-rate to sideslip command responses in QFT design

Figure 6: Sideslip to roll-rate command responses in QFT design