NASA /CR—97-206309

Frictionless Contact of Multilayered
Composite Half Planes Containing
Layers With Complex Eigenvalues

Wang Zhang and Wieslaw K. Binienda
University of Akron, Akron, Ohio

Marek-Jerzy Pindera
University of Virginia, Charlottesville, Virginia

Prepared under Grant NAG3-1827

National Aeronautics and
Space Administration

Lewis Research Center

December 1997



Available from

NASA Center for Aerospace Information National Technical Information Service
800 Elkridge Landing Road 5287 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22100

Price Code: A03 Price Code: AQ3



FRICTIONLESS CONTACT OF MULTILAYERED COMPOSITE HALF PLANES
CONTAINING LAYERS WITH COMPLEX EIGENVALUES

Wang Zhang
Wieslaw K. Binienda

Civil Engineering Department
University of Akron, Akron, OH 44325

Marek-Jerzy Pindera

Civil Engineering & Applied Mechanics Department
University of Virginia, Charlottesville, VA 22903

ABSTRACT

A previously developed local-global stiffness matrix methodology for the response of a composite
half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid par-
abolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g.,
honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement
field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier
transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of
layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered
half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary
condition on the top surface of the half plane indented by a rigid punch results in an integral equation for
the unknown pressure in the contact region. The integral possesses a divergent kernel which is decom-
posed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and
a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the
resulting singular integral equation is obtained using a collocation technique based on the properties of
orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the
important influence of low transverse properties of layers with complex eigenvalues, such as those exhi-
bited by honeycomb, on the load versus contact length response and contact pressure distributions for half
planes containing typical composite materials.

INTRODUCTION

In this paper we investigate the response of an arbitrarily laminated composite half plane, contain-
ing layers whose displacement field is characterized by complex eigenvalues, indented by a well-
lubricated rigid punch of a parabolic profile. A solution to this class of problems has been provided previ-
ously for half planes consisting of isotropic, transversely isotropic, orthotropic or monoclinic layers
characterized by real eigenvalues using a generalized plane deformation formulation, Fourier transforms
and the local-global stiffness matrix approach (Pindera, 1991; Pindera and Lane, 1993; Binienda and Pin-
dera, 1994). Displacement fields characterized by real eigenvalues occur in the majority of advanced
continuously-reinforced composite materials in use today (Pagano, 1970). However, in the case of honey-
comb layers oriented in the manner shown in Fig. 1, the solution of the Navier’s equations under the con-
straint of generalized plane deformation in the x—z plane is characterized by complex eigenvalues. The



complex eigenvalues arise due to dramatic differences in the honeycomb’s elastic moduli as will be dis-
cussed later. Herein, we present the solution to a class of composites characterized by complex eigen-
values and subsequently incorporate it into the local-global stiffness matrix formulation of contact prob-
lems involving arbitrarily layered half planes. Numerical examples are provided that illustrate the effect
of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb,
on the contact load versus contact length response and contact presure distributions for certain half plane
configurations containing typical composite materials. Exaét, analytical solutions to contact problems
involving such sandwich configurations, which do not appear to be presently available, have
technologically-significant applications in the aircraft, automotive and marine industry. We note that
complex eigenvalue solutions also appear in the analysis of piezoelectric laminates, as shown by Heyliger
(1994) and Heyliger and Brooks (1995) using the Fourier series representation of the displacement fields.

As a first step, we construct a local stiffness matrix in the Fourier transform domain for layers with
displacement fields characterized by complex eigenvalues by relating the displacement components at the
layer’s top and bottom surfaces to the corresponding traction components. The local stiffness matrix for
the corresponding half planes is recovered as a special case. Assembly of the local stiffness matrices of
the individual layers comprising the arbitrarily laminated half plane into the global stiffness matrix in a
particular fashion ensures satisfaction of displacement and traction continuity at the common interfaces
and the external boundary conditions. Application of the mixed boundary condition on the slope of the
surface displacement in the contact region and traction-free requirement elsewhere on the boundary pro-
duces an integral equation for the determination of the contact pressure. As described elsewhere (cf., Pin-
dera and Lane (1993)), the local/global stiffness matrix approach naturally facilitates decomposition of
this integral equation into singular and regular parts that, in turn, can numerically be solved using the col-
location technique outlined by Erdogan (1969) and Erdogan and Gupta (1972). The decomposition of the
integral equation uses asymptotic properties of the local stiffness matrix and a relation between Fourier
and Hilbert transforms of the contact pressure.

ANALYSIS

We consider a configuration composed of a number of layers bonded to a half plane wherein each
region exhibits (transversely) isotropic, orthotropic, and/or monoclinic properties, Fig. 1. A monoclinic
ply is obtained by rotating a transversely isotropic, unidirectional ply through an angle 8 about its out-of-
plane axis. A local x—~y-z coordinate system is placed in the center of each layer such that the x and y
axes lie in the lamination plane and the z axis is perpendicular to this plane. The layered medium is infin-
ite in the x—y plane and the loading is such that the problem is plane in the x—z coordinate system. For
the bottom half plane, the local coordinate system is placed at the bounding surface. The assemblage is
indented by a rigid, frictionless punch of a parabolic profile and we are interested in the applied load as a

function of the contact length and the resulting normal stress distribution in the contact region.



Due to the presence of monoclinic (i.e. off-axis) plies, generalized deformation formulation is
employed with the displacement components taken in the form,

u=u(x,z), v=v(x,z2), w=w(x,z) €

Using the above displacement field, strain-displacement relations, and constitutive equations for a
transversely isotropic or orthotropic ply with fibers rotated about the z-axis, in the equilibrium equations,

the Navier’s equations for a generic monoclinic ply become,
Ciitt e+ Csstt gy + CigV g+ Casv p + (C 13 + CssIw ;=0
El(,u'n + 545u|u + Eesv,u + E‘leu + ((_,‘36 + E4S)W.xz =0 2)
(C13+ Css)it e +(Cg + CasWuy + Cssw o + Cyw 1z =0

where the barred stiffness elements E,-j are related to the unbarred stiffness elements C;; in the principal
material coordinate system by the familiar transformation equations. We note that coupling exists
between all the displacement components for a monoclinic layer. The above equations can be specialized
for an orthotropic or (transversely) isotropic layer by setting the stiffness elements C 165 c 36 and C 45 tO
zero, and by replacing the remaining E‘U’s by Cj;’s. In this case, the out-of-plane displacement component

v (x,z) becomes uncoupled from the in-plane displacement components u (x,z) and w (x,z).

The solution of the equilibrium equations for each layer must satisfy the external surface mixed
boundary conditions as well as the interfacial traction and displacement continuity conditions at each
interface. The external surface mixed boundary conditions ensure that the normal traction component G,
is zero outside the contact region |x | > ¢, while inside the contact region the vertical displacement
w(x,z) conforms to the profile of the punch. The contact length 2c is assumed to be given and the resul-
tant load P is calculated by integrating the contact pressure distribution over 2c, provided that ©,, remains
compressive in the contact region. The formulation is thus valid provided that no separation takes place
between the punch and the half plane during continuing loading (Urquhart and Pindera, 1994). These

mixed boundary conditions are given in the form,
wi (x,+h22)=f(x) for Ixl <c and 0,=0 for Ixl >¢ (3a)
Oy, =0y, =0 for —o < x < 400 (3b)
while the interfacial traction and displacements continuity conditions are,
wex,—~h/2) = wpn (b 2) - Ok (n—h/2)=ol hen/2)  i=xy.2 )

where uy, = (wy, Uy, v;), 1s the displacement vector for the kth ply.



The solution to eqns (2) subject to the boundary and continuity conditions given by eqns (3) and (4)
is obtained using Fourier transforms defined, along with the inverse transform, by

oo oo
u(s,2) = _—\/;_n [ upx,2)e™ dx, w(x,2) = \/21_1'5 ] ui(s,2)e 7 ds (5)

where u;(s,z) is the displacement vector for the kth ply. Application of the Fourier transform reduces the
system of partial differential equations, eqns (2), to a system of ordinary differential equations in z with
the transform variable s appearing as a parameter. For a monoclinic layer these equations are,

ESSH,ZZ - SZEHE + 5453'12 - 826|6V - l'S(El3+C55)W’Z =0
6455,11 - 52516E + (_:44;'& - 525661_7 - iS(E36+C45)P7’Z =0
—l‘S(E|3+E55)E‘Z - is((_336+545)3‘z + E33V—V,Zz - Szassv_v =0 (6)

As indicated previously, the corresponding equations for orthotropic or transversely isotropic layers are

obtained by setting E‘,-j = Cjj, with 516 = 536 = 545 =0.

The solutions to the above equations are sought in the form w(s,z) = wo(s)e“"", u(s,2) = ug(s)e™™,
and v(s,z) = vo(s)e”‘z, where A is determined from a characteristic equation whose form depends on the
layer’s material symmetry as discussed below. If the thicknesses of the layers comprising the half plane
are finite, the exponential terms in the transform domain solutions are expressed in terms of hyperbolic

functions to facilitate construction of the local stiffness matrix for a given layer.

The eigenvalues A’s for monoclinic, orthotropic and isotropic layers or half planes are obtained
from the following equations (upon substitution of the assumed displacement solutions into eqns (6)),

monoclinic: -AM +BM +CA2+D=0
orthotropic:  (Cy4A? — Cee)AM + BA2 + C)=0
isotropic: (A2 - 1A -2A2 +1)=0 (7

where the coefficients A through D for are lengthy algebraic expressions involving the elastic stiffness
elements Eij’s for monoclinic layers and Cj;’s for orthotropic layers (cf. Pagano (1970)). The eigenvalues
for an isotropic layer are real (i.e., A| ; = %1, A3 4 =1, A5 ¢ = £1). In the case of most advanced unidirec-
tional composites modeled as either transversely isotropic or orthotropic, the eigenvalues A’s are also real.
The same holds true for an orthotropic unidirectional composite laminae rotated through an off-axis angle
in its plane (i.e., the x—y plane in Fig. 1). Such a rotated laminae behaves like a monoclinic layer in the
fixed coordinate system x—y—z shown in Fig. 1. Solutions for isotropic, orthotropic and monoclinic lam-
inae with real eigenvalues, and subsequent construction of the local stiffness matrix, have been provided
by Pindera and Lane (1993). In the case of orthotropic materials with honeycomb-type microstructures,



however, the eigenvalues are typically complex. The solution for this class of materials is provided next.

Solution for orthotropic materials with complex eigenvalues

The coefficients A, B, and C for an orthotropic material appearing in the second of eqn (7) are given
in terms of the elastic stiffness constants C;; as follows,

A=C3Css, B=Ci3(C13+2Cs5)—C1C33, C=C Css

The expressions for the eigenvalues of an orthotropic material are thus obtained in the following form:

C11C33 — C13(C13 +2Cs5) + V[C).Ca3 = C13(C 13 +2Cs5)]2 = 4C |, C13CEs
2C33Cs5

2
}‘1,2 =

C11C33 — C13(C 3 +2Cs5) = V[C 1 Ca3 — C13(C 3 +2Cs5)]> = 4C |, C33Cls
2C3Css

Ase =3VCe6/Caa (8)

2
A4 =

Solutions with complex eigenvalues to eqn (6) are obtained when the expression under the square root
appearing in the first two sets of eigenvalues in eqn (8) becomes negative. This expression can be fac-
tored to determine the region in the elastic stiffness constant space where complex eigenvalues are found.
Setting this expression to zero,

(C13+NC1C33 XC 13 —NC1C33)[C i3 — (-2C55 + NC 11 C33)][C13 = (-2Cs5 —NC 1 C33)] =0
yields four planes in the 4/C,;C13-C,3-C'ss space that separate the region with real and complex eigen-
values, Flg 2. These planes are: C|3 = i\jC1|C33 s C13 = —'2C55 + C“C33 .

Complex expressions for the eigenvalues in the solutions for the displacement components u(s,z)
and w(s,z) are obtained for honeycomb materials which are characterized by very large Young’s modulus
associated with the z direction, E 33, and small Young’s moduli associated with the x and y directions, E |,
and E,;, respectively. In this case the eigenvalues have the form,

)\'I,Z =azib, 7\3|4 =—azxib 9

’C
a= \f;cos(g) , b= ‘Fsin(%) , r= C_;;

I \4C(1C33C35 ~ [C1C3 — C13(C 13 +2Cs5))
C1Cs3 — C13(C 13 +2Cs5)

where

) (10)

0 =tan"



Thus the complex eigenvalue solutions to the Fourier-transformed Navier’s equations for orthotro-
pic layers are conveniently expressed in terms of hyberbolic functions as follows,

u(s,2) = [F(s)cos (sbz) + G (s)sin (sbz)]sinh (saz) + [F y(s)cos (sbz) + G(s)sin (sbz)]cosh (saz)
W(s,z) = i [I1(s)cos (sbz) + K | (s)sin (sbz)}sinh (saz) + [1(s)cos (sbz) + K y(s)sin (sbz)]cosh (saz)
V(s,2) = F3(s)cosh (sAsz) + G3(s)sinh (sAsz) (1)
where the coefficients /;(s) and K;(s) are related to the coefficients Fi(s) and Gi(s) (i = 1, 2) as follows,

I\(s)=foF2(s) + 880G 1(s), I2(s)=foF (s)+g0G2a(s)

Ki(s)=—goF (s) + foGa(s), K (s)=—goF2(s)+ foG (s) (12)
where
al(a® +b*)Css - Cyy] bl(a® +b*)Css + Cyyl
f():_ ) 2 » §0=— 2 ) (13)
(@ +b°)(Cy3+Css) (@ +b°)Cy3+Css)

For orthotropic half planes, on the other hand, it is convenient to express the corresponding solu-
tions in terms of exponential functions as follows,

u(s,z) = [F(s)cos (15 1bz) + Fo(s)sin (s 1bz)]e's '
#(s5,2) = sgn(s)il(foF 1(s) + goF2(s))cos (15 1b2) + (=g oF 1(5) + foF y(s)sin (15 1bz))e s 142

V(s,2) = Fa(s)e'* ™ (14)

The displacements given by eqn (11) are substituted back into the constitutive equations in order to
determine interfacial tractions needed in applying the continuity conditions, eqn (4), in the transform
domain, and ultimately in the construction of the local stiffness matrix. For an orthotropic layer, the con-
tinuous interfacial stresses given in terms of displacements in the transform domain are,

O, (5,2) =—isC3u(s,2) + C33w ,(5,2)
0,(5,2) = Css5(ut, (5,2) — isw(s,2))
ayz(s’Z) = C44‘7.Z (15)

Rather than determining the unknown Fourier coefficients F j(s) and Gj(s) in the solutions for the dis-
placement field in terms of the unknown contact pressure distribution through the application of the



interfacial continuity conditions and the mixed boundary condition at the top surface, the problem is
reformulated in terms of the unknown interfacial displacements using the local-global stiffness matrix
approach outlined in the sequel.

Local-Global Stiffness Matrix Formulation

The local-global global stiffness matrix approach naturally facilitates the reduction of the contact
problem to a singular integral equation in the unknown pressure distribution in the contact region. This
singular integral equation is then solved using the technique developed by Erdogan (1969) and Erdogan
and Gupta (1972). First, a local stiffness matrix is developed for the kth layer that relates the traction
components on top and bottom surfaces of the layer to the corresponding displacement components. This
is accomplished by expressing the Fourier coefficients F j(s) and G;(s) in terms of interfacial displace-
ments obtained from eqns (11), and subsequently using these expressions in the interfacial tractions
obtained from eqns (14). For orthotropic layers with complex eigenvalues, the resulting local stiffness
matrix equation has the following form,

(L) —+

D‘ll ki 0 ki ks O||w's (Gu/’s
ki ko 0 kyy kos 0| 5" Gro/s

0 0 kyz 0 0 Ky 4;* - G,/ a6)

kia k2 O ky —kip 0 Vsl ~ ‘_(—;;Z/,'S>
kis k 0 -k k il -
15 Kas 12 k2 O m 55
0 0 k36 0 0 k33 ;_ -

L I —Gyz/sj

where the "+" and "-" superscripts refer to the top and bottom surfaces of a given ply, respectively. The

above equation is expressed symbolically in the form,

k% k4|0, T,

=<4 17
K5 k%, |\U, T, an

The elements k;; of the local stiffness matrix are functions of the transform variable s, material stiff-
ness constants Cj;, and layer’s geometry. These are provided in the Appendix. The elements k; for
monoclinic, orthotropic, and transversely isotropic layers characterized by real eigenvalues have been
provided previously by Pindera (1991) and Pindera and Lane (1993).

Next, imposition of continuity of displacements and tractions along the common interfaces together
with the external boundary conditions (eqns (3)-(4)) gives rise to a system of equations in the unknown
interfacial displacement components represented in the matrix form below. It is observed that the assem-

bly of the global stiffness matrix for the entire layered medium is carried out by superposing local



stiffness matrices of the individual layers along the main diagonal of the global matrix in an overlapping

fashion.
ST o . . |g] 'ﬁ‘
Ku Kn+Kh Kh . . U, 0
0 K3 Kh+Kii. N (18)
0 0 K3 . ) . 0| -
0 : . . k% +k7||Un 0

In the above, K17 is the stiffness matrix of the bottom half plane.

Inverting the global stiffness matrix yields a relation between the top surface displacements and the

{ﬁl}ﬂmd{ﬁ} (19)

where H}, is the first 3 x 3 submatrix of the inverse of the global stiffness matrix in eqn (18). Defining

top surface tractions,

the elements of the matrix H{; by H;;, the transform of the normal displacement on the surface of the half
11 by 4, P

plane can be expressed in terms of the normal contact stress G, in the absence of friction (ie.

Oy, = Oy, =0),

+c

Wi =H11(S)Gzlz(s)/s with 6;(5)=5(3)=ﬁip(f)e"‘“'dx'

Imposing the top surface mixed boundary condition on the slope of the normal displacement, w , = f(x)
in the interval —c < x < c, an integral equation for the unknown contact stress distribution p(x) is then

obtained in the form,

—i

2r

Wix ™=

T = —isx — —i T = =i
__Ls w, e ™ds= —i;_J;H“(s)p(s) e ds (20)

The above is a singular integral equation because as s approaches * oo the kernel H;(s) does not vanish,
making the integral unbounded. To find the unknown function p(x), the dominant or singular part of the
kernel must be identified. This is accomplished by first examining the asymptotic behavior of the local
stiffness matrix as the transform variable s approaches positive or negative infinity. In this case, the cou-

pling submatrices K%, and K%, in eqn (17) vanish and the stiffness matrix assumes the following form,



T |k o|U;

[~ | o k¥\u; D

The elements of the asymptotic stiffness matrices K% and K55 are functions of the material properties of
the given layer but not functions of the transform variable s or geometry (Pindera (1991)).

The asymptotic behavior of the local stiffness matrix given by eqn (21) ensures that in the limit as s
approaches * oo, the resulting global stiffness matrix has only diagonal elements, so that there is no cou-
pling between top and bottom surfaces of each lamina of the layered half plane for this limiting case.

Consequently, the limiting behavior of eqn (19) becomes

{ﬁ.} = [K}} 1“{ﬂ} (22)

These results are used to separate the divergent integral in eqn (20) into one integral containing a
Cauchy kernel and another integral with a regular kernel. Defining sgn(s) Hy; = lim H,,(s) to be the
§—ytoo

first element of the inverse of the asymptotic stiffness matrix in eqn (22) (or eqn (19)), where H,(s) is
the first element of the inverse of the global stiffness matrix in eqn (18), the mixed boundary condition
given by eqn (20) becomes,

wix= 2 [ sgn(s) Hiy pls) ™ ds - o= [ CHu(s) = sgn(s) Hiy )p(s) ™ ds (23)

In view of eqn (22), a relationship between the Fourier and finite Hilbert transforms of the contact pres-
sure can be derived in the following form (cf. Gladwell (1980, p.210),

oo +c

1 ; = —is. — 1 4 (t)
E_'L_l sgn(s)p(s)e ¥ ds = ;_J'C - dt 24)
reducing the dominant term of the singular integral to an integral containing a Cauchy kernel. Using odd-

even properties of the regular kernel, the following form of the singular integral equation for the contact

stress distribution is then obtained,

_‘j 2O 4y 1 j j HY) () p(o) sin(t—x)s dt ds (25)

Wix =

X -
R

where R is the punch radius and HY, (s) = H,(s) - sgn(s)H}, is the regular kernel.



NUMERICAL RESULTS

The solution to eqn (25) has been obtained using the numerical technique for singular integral equa-
tions developed by Erdogan and Gupta (1969, 1972) which is based on orthogonal properties of Che-
byshev polynomials in a Gaussian integration approach. The details of the application of the technique to
the outlined contact problem have been provided by Pindera and Lane (1993).

Here, we illustrate the developed solution by investigating the effect of stacking sequence and
material properties on the contact load as a function of contact length, and normalized contact stress pro-
file, for layered half planes constructed with commonly used metal matrix and polymeric matrix unidirec-
tional composites, and honeycomb-like layers. The unidirectional composites employed in the analysis
include three types of polymeric matrix composites, namely glass/epoxy (GI/Ep) and two types of
graphite/epoxy (Gr/Ep) (T300/934 or Gr/Ep-1, and P75/934 or Gr/Ep-2), and two types of metal matrix
composites, namely boron/aluminum (B/Al) and P100/6061 graphite/aluminum (Gr/Al). These compo-
sites provide a wide range of material properties with different orthotropy ratios. The elastic constants of
these materials are given in Table 1. The honeycomb properties included in the table are based on the data
reported by Shuart (1978) for an aluminum honeycomb whose macroscopic elastic properties were gen-
erated using a finite-element homogenization analysis. For the purpose of the present illustration, these
properties (except the Poisson’s ratios) were multiplied by a factor of seven in order to avoid excessively
high deformations in the contact region caused by the low value of the Young’s modulus in the direction
of the applied load, which may have invalidated the present analysis based on linear elasticity. We point
out that the Young’s modulus in the direction of the applied load of the stiffer honeycomb is now of the
same order of magnitude as that of glass/epoxy, graphite/epoxy and graphite/aluminum, and an order of
magnitude smaller than that of boron/aluminum. We also note that, in practice, honeycomb properties can
be controlled by the choice of material, wall thickness and cell dimensions. Figure 3 shows the locations
of three of the six composite materials and the honeycomb in the m —C13—Css space, with the
planes that define the region with complex eigenvalues included.

For the layered half planes, the following configurations were studied: a honeycomb layer bonded
to a composite half plane; a composite layer bonded to a honeycomb half plane; and a composite layer
bonded to a honeycomb layer which, in turn, was bonded to a composite half plane. We note that
although the configuration with the honeycomb layer on top is neither practical nor technologically
important, nevertheless the results can be used for comparison with more technologically meaningful
configurations as well as correlation with past results. The composite layers in all the investigated confi-
gurations had fibers oriented along the x-axis (see Fig. 1). Thus their response in the x—z plane was that of
an orthotropic material characterized by real roots in the displacement field solutions. The thickness of
the surface and interior plies comprising the layered half planes was 1.27 and 2.54 mm, respectively. The
punch radius employed in the calculations was 25.4 mm.

As a first step, and to provide a point of reference, we compare the load versus contact length
responses of homogeneous half planes constructed with the aforementioned materials, Fig. 4. As dis-
cussed previously by Binienda and Pindera (1994), the response of the homogeneous composite half

10



planes with fibers oriented along the x-axis is primarily influenced by the Young’s modulus in the direc-
tion of the applied load, E33, with the longitudinal modulus E, playing a less significant role. Thus the
contact load versus contact length response is stiffest for the composite with the largest E3;, and
decreases with decreasing E13. This trend, however, does not hold for the honeycomb half plane which
exhibits the most compliant response despite its larger E33 relative to that of the two Gr/Ep half planes.
Evidently, the properties transverse to the load direction play a substantial role in this case. To
emphasize this point, we have included in Fig. 4 the response of a fictitious isotropic material, which will
be referred to as "isotropic honeycomb”, with the Young’s modulus equal to the honeycomb’s modulus in
the direction of the applied load, E33, and a Poisson’s ratio of 0.30. Considerable stiffening of the load
versus contact length response is observed by increasing the Young’s moduli transverse to the load direc-
tion to equal that in the direction of the applied load.

Next, we compare the response of the configuration comprised of the honeycomb layer bonded to a
composite half plane, Fig. 5, to that of the configuration comprised of a composite layer bonded to the
honeycomb half plane, Fig. 6. In the first instance, the initial load versus contact length response, Fig. 5a,
follows closely the response of the honeycomb half plane irrespective of the properties of the supporting
half plane. Thus, as is well known, the initial response is governed by the properties of the top layer.
Beyond the contact half length of approximately 1 mm, the influence of the supporting half plane is
becoming apparent, with the trends following those seen in Fig. 4. The normalized pressure distributions
for these configurations at the contact half length of 2.54 mm, i.e., ¢/h| = 2 (where h, is the thickness of
the top layer, see Fig. 1), given in Fig. 5b, exhibit departures from elliptical profiles that increase with
increasing Young’s modulus in the direction of the applied load. These departures are characterized by a
higher maximum pressure in the center of the contact region (i.e., x/c = 0.0) relative to that of an elliptical
profile. When the stacking sequence is reversed in the second instance, Fig. 6, the influence of the com-
posite surface layer’s properties is immediately evident in the load versus contact length response, Fig.
6a. The configuration with the stiffest surface layer and lowest E |/E 3; ratio, i.e., B/Al-honeycomb half
plane, exhibits load versus contact length response that initially departs substantially from parabolic, indi-
cating the presence of localized bending of the surface layer. This is also evident in the contact pressure
distribution, Fig. 6b, which is pronouncedly nonelliptical, characterized by maximum values occuring at
the edges of the contact region. The remaining configurations exhibit parabolic load versus contact length
responses and nearly elliptical contact pressure distributions. As in the previous case, the small departures
from elliptical profiles increase with increasing Young’s modulus in the direction of the load and decreas-
ing ratios E}|/E33. In this case however, the departures are characterized by a lower maximum pressure
at the center of the contact region relative to that of an elliptical profile. This, in turn, indicates decreasing
resistance to localized bending, with the B/Al-honeycomb half plane being the least resistant.

The substantial impact of the low transverse properties of the honeycomb substrate on the contact
responses shown in Fig. 6 is highlighted by comparison with the corresponding results, given in Fig. 7,
generated using the properties of the fictitious isotropic honeycomb introduced earlier. Comparison of
Figs. 6a and 7a demonstrates the considerable stiffening of the contact load versus contact length
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response due to the increase in the transverse properties of the honey'comb substrate. The extent of the
stiffening is most evident for the B/Al configuration which nearly regains a parabolic contact load versus
contact length response due to the increase in the transverse properties of the substrate. Comparison of
Figs. 6b and 7b demonstrates that the departures from elliptical contact pressure distributions are reduced
at the given contact length (¢ = 2.54 mm) due to this increase, which is particularly evident for the B/AL
configuration.

The last investigated configuration is composed of a composite layer bonded to the honeycomb
layer which, in turn, is bonded to a composite half plane. Figures 8a and 8b present the load versus con-
tact length response and the contact pressure distributions at the contact half length of 2.54 mm, respec-
tively, for these configurations. The load versus contact length responses appear parabolic, and are stiffer
than the corresponding responses observed in the configurations composed of a composite layer bonded
to the honeycomb half plane. The influence of the supporting half plane is thus very much in evidence in
these configurations. The contact pressure distributions are nearly elliptical for most configurations with
the exception of the configuration with the B/AIl ply. In this case, the pressure distribution is similar to,
but not as pronouncedly nonelliptical as, that seen in Fig. 6b, suggesting the presence of some localized
bending despite the parabolic load versus contact length response. Replacing the honeycomb layer with
the fictitious isotropic honeycomb layer (not shown) does not visibly stiffen the contact load versus con-
tact length response and decreases the departures from elliptical contact pressure distributions at the con-
sidered contact length only for the B/Al configuration, in contrast with the preceding configuration. This
demonstrates that the extent of the influence of honeycomb layers’ low transverse properties on the con-
tact response of layered half planes also depends on the layer dimensions.

CONCLUSIONS

The capability to analyze arbitrarily layered half planes with differently oriented composite plies,
indented by a frictionless, rigid parabolic punch, was extended to enable incorporation of layers or half
planes characterized by complex-eigenvalue displacement fields into the analysis. Honeycomb layers or
half planes with very low elastic properties perpendicular to the applied load fall into this category of
materials. Expresssions for the elements of the local stiffness for such materials were developed and
incorporated into the solution strategy for the contact problem of arbitrarily layered half planes based on
the local/global stiffness matrix approach in the Fourier-transform domain.

Unlike homogeneous half planes constructed with typical advanced unidirectional composites, the
load versus contact length response of honeycomb-like homogeneous half planes is significantly influ-
enced by the elastic constants associated with directions perpendicular to the applied load. The low values
of these constants relative to the Young’s modulus in the direction of the applied load, E 33, i.e., along the
axis of the honeycomb, substantially degrade the load versus contact length response relative to that of
homogeneous composite half planes with comparable Young’s moduli E3; but higher E;,. When a
honeycomb-type layer is inserted directly underneath the top layer of a half plane laminated with typical
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advanced unidirectional composites, the ability of the top layer to resist localized bending under the
punch tends to be degraded due to the honeycomb’s low transverse properties. This may result in nonpar-
abolic contact load versus contact length responses and nonelliptic pressure distributions with maximum
magnitudes occuring at the outer edges for surface layers with sufficiently high values of E3; and
E)/E33. Increasing the transverse Young’s moduli of the honeycomb-like layer to equal the modulus in
the direction of the applied load was shown to substantially stiffen the load versus contact length
response, and decrease the departure of the pressure distributions from elliptical, thereby directly demon-

strating the importance of honeycomb layers’ transverse properties.

The presented solution methodology can be employed in studying the contact response of laminated
plates containing layers with complex eigenvalues bonded to a stiff foundation whose response can be
approximated by a half plane. Symmetrically laminated finite-thickness plates loaded by opposing sur-
face contact loads, such as those exerted by aligned rollers, can also be investigated by modifying the
boundary conditions through the imposition of zero vertical displacement along the plane of plate’s sym-
metry. Similary, finite-thickness laminated plates supported at the bottom surface by a system of forces
can be investigated by modifying the formulation to include the effect of the supports in the manner
described by Pindera and Lane (1993). In this case, the singular integral equation for the contact stress
distribution contains the unknown support reactions, requiring an iterative solution approach.

The contact pressure distribution is the first step in obtaining a solution to layered half planes and
plates indented by a punch. The knowledge of this distribution allows the calculation of internal stresses
to determine the regions where potential damage may occur due to the imposition of concentrated loads.
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APPENDIX - Elements of Local Stiffness Matrix

The elements of the local stiffness matrix for orthotropic layers whose generalized plane deformation solutions in
the Fourier transform domain are characterized by complex eigenvalues are given below.
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The asymptotic expressions for the elements of the local stiffness matrix for orthotropic layers with complex eigen-

vatlues as the transform variable s — oo, and for the corresponding half planes are given below.

+ki; =t Cya+ f—°b)
8o

. (f5 +85)
ki =—[C3 + C33——b]

fo

tky; =+Css(a — ——b)
o
t k33 =+ VCsCog

where the notation £ K ,j denotes limiting behavior of k;; as s goes to & co.
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Table 1. Material properties of polymeric and metal matrix unidirectional composites.

Material property

Ey; (GPa)
Ey; (GPa)
E33 (GPa)

V12
Vi3

Va3

G, (GPa)
G 3 (GPa)
G 13 (GPa)

GI/Ep

427
11.7
11.7

0.27
0.27
0.55

8.24
8.24
3.78

Gr/Ep-1
(T300/934)

144.8
10.3
10.3

0.30
0.30
0.50

5.51
5.51
345

Gr/Ep-2
(P75/934)

2430

7.2
72

0.33
0.33
0.49

393
393
241

B/Al

2275
137.9
137.9

0.24
0.24
0.40

55.15
55.15
49.24

Gr/Al

402.6
24.1
24.1

0.29
0.29
0.45

16.75
16.75
8.34

Honeycomb

1.2 x1072
0.7 x1072
114

1.10
0.35 x1073
0.21 x1073

1.52
4.66
1.95
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Figure 1. Multilayered composite half plane with honeycomb layers by a
rigid, parabolic punch.
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22



300 T I T r

—@— Ba/Al, HC
—M - Gr/Al HC
—A— GlEp, HC
250 | —y-- Gr/Ep-1, HC 7

-4 GrfEp-2, HC

200

1560

Load (kN)

100

50

1.0 T T T T T T T T T

09 - .
—e— B/ALHC

—= - GI/Al HC
0.8 + —A— GUEp, HC -
—v-- Gr/Ep-1, HC

-4 GriEp-2, HC
0.7 +- ‘* .

06 -

0.5 -

o,, ¢/P

04

03

0.2

0.1

0.0 | | | | 1 I L 1 L
00 01 02 03 04 05 06 07 08 08 1.0

x/c

Figure 6. Contact response of a composite layer bonded to an aluminum
honeycomb half plane: a) load vs contact length; b) contact pressure
distribution for c=2.54 mm.

23



300 T T T
—ae— B/Al, IsoHC
—m— Gr/Al, IsoHC
250 —a— GVEp, IsoHC .
—wy— Gr/Ep-1, IsoHC
—&— GI/Ep-2, IsoHC
200 |- _
3
5 -—
- 150
o
o
3
100 -
50 —
0
0 1 2 3 4 5
Contact half length (mm)
1 T T I T T T I T T
09 -
—e— B/Al, IsoHC
0.8 —@— Gr/Al, IsoHC N
' ~—a— GUEp, IsoHC
—»— Gr/Ep-1, IscHC
0.7 - —e— Gr/Ep-2, IscHC —
0.6 [
a
S 05|
N
b
04
03
0.2 +
0.1 |
0 1 ] 1 t 1 i t 1 1
0 01 02 03 04 05 06 07 08 09 1

x/c
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