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ABSTRACT

We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled
magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole
accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead,
we assume the existence of a tangled field with coherence length _coh, which is the average distance
between the magnetic "kinks" that scatter the particles. For simplicity, we assume that the field is self-
similar, and take 2cob to be a fixed fraction _ of the local disk height H. Ion viscosity in the presence of
magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is
the ion Larmor radius 2L, which is much less than the ion-ion Coulomb mean free path 2u in hot accre-
tion disks. However, we arrive at a formulation for a "hybrid" viscosity in which the tangled magnetic
field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The
hybrid viscosity greatly exceeds the standard cross-field viscosity when (l/It.)_ (it./lu), where t--(2_ .t
+ l_ht)-t is the effective mean free path for the ions. This inequality is well satisfied in hot accretion
disks, which suggests that the ions may play a much larger role in the momentum transfer process in the
presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the struc-
ture of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity
is influenced by the degree to which the magnetic field is tangled (represented by _ -= 2coffH), and also
by the relative accretion rate M/-_/E, where A_/E= LE/c 2 and Le is the Eddington luminosity. We find
that ion viscosity in the presence of magnetic fields (hybrid viscosity) can dominate over conventional
magnetic viscosity for fields that are tangled on sufficiently small scales.

Subject headings: accretion, accretion disks -- black hole physics -- magnetic fields -- MHD -- plasmas

1. INTRODUCTION

1.1. Background

Viscosity in accretion disks around compact objects has
been the subject of investigation for nearly 20 yr (for a
review, see Pringle 1981). It was recognized very early on
that ordinary molecular viscosity cannot produce the level
of angular momentum transport required to provide accre-
tion rates commensurate with the observed levels of emis-

sion in active galaxies, quasars, and galactic black hole
candidates (Shakura & Sunyaev 1973). Consequently, the
actual nature of the microphysics leading to viscosity in
such flows has been the subject of a great deal of specula-
tion. For plane-parallel flows with shear velocity - = u(y)_,
the shear stress is defined as the flux of _-momentum in the

_-direction. In lieu of a detailed physical model for the
process, the work of Shakura & Sunyaev (1973) led to the
embodiment of all the unknown microphysics into a single
parameter st, defined by writing the shear stress as

du

for plane-parallel flow, or, in an accretion disk,

3

stP = _ _Tf2k,pi, (l.lb)
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where P is the total pressure, r/is the dynamic viscosity, and

f2k,pt is the local orbital frequency inside a quasi-Keplerian
accretion disk. Note the appearance of the negative sign.
which is required so that q is positive-definite. Order-of-
magnitude arguments advanced by Shakura & Sunyaev
(1973) lead to the general conclusion that 0 < st < 1. This
simulated the development of a large number of theoretical
models in which st is treated as a free parameter; in many of
these models _ is taken to be a constant. This has been

partially motivated by the fact that in quasi-Keplerian acc-
retion disks around black holes, observational quantities
like the luminosity depend only weakly upon st. This
enabled progress to be made without precise knowledge of
the microphysical viscosity mechanisms. However, this does
not eliminate the need for an understanding of these mecha-
nisms, and without such an understanding, much of the
high temporal resolution data being collected by space
instrumentation cannot be fully interpreted. Several pro-
cesses have been suggested to explain the underlying micro-
physical viscosity mechanism. Initial developments focused
on the turbulent viscosity first proposed by Shakura &
Sunyaev (1973), and later investigated more rigorously by
Goldman & Wandel (1995). Although the presence of turb-
ulence in accretion disks is probably inevitable, it is unclear
whether this particular viscosity mechanism will dominate
over other processes that may be operating in the same
disk, such as radiation viscosity (Loeb & Laor 1992), mag-
netic viscosity (Eardley & Lightman 1975), and ion viscosity
(Paczyfiski 1978; Kafatos 1988).

The paper is organized as follows. In § 1.2 wc provide a
general introduction to ion viscosity in accretion disks. In
§ 1.3 we give a heuristic derivation of ion viscosity in the
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absence of magnetic fields. In § 1.4 we discuss the cross-field
ion viscosity in the presence of magnetic fields. We also
discuss the topology of magnetic fields embedded in accre-
tion disks in § 1.5, and conclude that tangled fields are likely
to exist. In § 2 we derive the hybrid viscosity due to ions in
the presence of tangled magnetic fields for the general case
of a plane-parallel shear flow. We apply our results to
quasi-Keplerian two-temperature accretion disks in § 3 and
discuss the main conclusions in § 4.

1.2. Ion Viscosity

Ion (plasma) viscosity in accretion flows has been pre-
viously investigated by Paczyfiski (1978), Kafatos (1988),

Filho (1995), and (Katz 1991). In this process, angular
momentum is transferred between different layers in the
shear flow by ions that interact with each other via
Coulomb collisions. The mean free path for the process is
then the Coulomb mean free path. Few detailed astro-
physical models have been constructed using the plasma
viscosity as the primary means for angular momentum
transport because of the presumed sensitivity of this mecha-
nism to the presence of magnetic fields. The effect of the
magnetic field is particularly important when the ion gyro-
radius is less than the Coulomb mean free path and the
orientation of the local field is perpendicular to the local
velodty gradient, because in this case different layers in the
shear flow cannot communicate effectively. This point was
first raised by Paczyfiski (1978), who argued that even for
very weak fields (as low as 10- _ G), this effect is enough to
almost completely quench the ion viscosity. This is prob-
lematic, since it is very reasonable to expect near-
equipartition magnetic fields to be present in an accretion
flow, with strengths many orders of magnitude greater than
10-TG.

Implicit in Paczyfiski's argument is the assumption that
the local magnetic field is exactly perpendicular to the local
velocity gradient. However, near-equipartition magnetic
fields would probably be tangled over macroscopic length
scales, as evidenced, for example, by simulations of the non-
linear stage of the magnetic shearing instability
(Brandenburg et al. 1995; Hawley, Gammie, & Balbus
1995; Matsumoto & Tajima 1995). We argue below that the
presence of tangled magnetic fields effectively eliminates
Paczyfiski's concern, because ions are able to transfer a
significant fraction of their momentum by traveling along
field lines connecting two different layers in the shearing
plasma. We address the issue of tangled fields being embed-
ded in the accreting plasma further in § 1.5.

1.3. Field-Free Coulomb Viscosity

Consider a field-free plasma with Coulomb mean free
path 2, and shear velocity distribution u -- u(y)£, where we
set u(0)--0 without loss of generality. The shear stress is
equal to the net flux of $-momentum in the )%direction. In
terms of the field-free dynamic viscosity r/ff the shear stress
is given by

du
N _ du (1.2)

--r/t' _yy- - 'fl 2--_ m,_y 2,,2,

where Ni is the ion number density, mt is the ion mass, and
Tt is the ion temperature (Mihalas & Mihalas 1984). The first
factor on the right-hand side of equation (1.2) represents the
unidirectional oarticle flux crossin_ the v = 0 plane, and the

e
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second factor is the magnitude of the average _-momen),_.

carried by particles originating a mean distance 2, from t
plane. The factor of 2 accounts for the transport of panic
in both directions across the plane. For pure, fully ioniz
hydrogen, we have

,[, = v,,_tu = 1.8 x l0 s T_
N_InA ' (1

where In A is the Coulomb logarithm, v,_ --(3kT.Jm_) 1/:
the root mean square velocity of the Maxwellian distriL
tion, and

T_a/2

t. = I1.4 Mi In---"_ (1

is the mean time between Coulomb collisions. This yiei
the standard result for the field-free dynamic viscos

obtained by Spitzer (1962),

T_ 5/2
_ht=2.2x I0-xs " cm -xs -IlnA g . (I

Equation (1.5) is valid provided the gas is collision
which in this case requires that the mean free path of t.
protons _.. be much smaller than any macroscopic leng
scale in the problem. It turns out, however, that for g:
accreting onto a black hole, 2_o/Rand 2r,/H can exceed uni
in general, where R is the local radius and H is the local di
height. In this case, regions that are separated by distanc
larger than the characteristic length over which the veloci
varies [el(de�dR)~ R] can easily exchange particles a_
therefore momentum as well. In such "nonlocal" situatior

the shear stress is no longer simply proportional to the loc
velocity gradient, and one must solve the full Boltzmar
equation in order to study the dynamics of the flo
Another problem that arises involves the shape of the ic
velocity distribution. When the ions are not effectively co
fined to a small region of the flow, the local velocity di
tribution can become distinctly non-Maxwellian due to tt
influence of processes occurring far away in the disk. :
such circumstances, the very existence of the ion ter.
perature must be called into question.

If this were the whole story, then the construction of dis
models using ion viscosity would present formidable cha
lenges. However, so far we have completely neglected tl-
effects of the near-equipartition, tangled magnetic fie.
likely to be present in an actual accretion disk. As we argt
below, the presence of such a field will completely alter tt
conclusions reached above if the coherence length of t)
field is much less than the local disk height H, because th_
the ions will be effectively confined to a region of plastr
with characteristic size L _[ H. If the disk is thin (H < E
this also implies L ,_ R.

1.4. Cross-Field Coulomb Viscosity

Next we consider the shear stress exerted by ions inside
plasma containing a magnetic field oriented in the :
direction and moving with velocity u--u(y)£, whe:
u(0) = 0. Hence the magnetic field is exactly perpendicul:
to the local velocity gradient. In hot accretion disks, or
generally finds that 2L _ 2ij for near-equipartition magnet
fields (Paczyfiski 1978), where

2L = 0.95Tit/2B- 1 (1.



786 SUBRAMANIAN, BECKER, & KAFATOS Vol. 469

is the Larmor radius of the ions in the presence of a mag-
netic field B. The shear stress is therefore given by

du _ du 2L
-q_ -_y -- -2Ns I_ ms 2L (1.7)

where q± is the cross-field viscosity. This is similar to
equation (1.2), except that the magnitude of the average
_-momentum carried by particles crossing the plane is now
-..(du/dy)2L ms because the particles originate at a mean dis-
tance ~ 2L from the plane. Another modification is the addi-
tion of the factor (2L/2u) which accounts approximately for
the efficiency of the momentum transfer process. To under-
stand the efficiency factor, imagine an ion originating on the
right side of the plane, and spirafing about a magnetic field
line. During one gyration, the particle crosses from the right
side of the plane to the left side. Since 2L '_ 2, by assump-
tion, the probability that the particle will experience a
Coulomb collision with another ion before returning to the
right side is --,2L/2U. Hence this factor gives the mean effi-
ciency of the momentum transfer process. The cross-field
viscosity can also be written as

q.L .m qtt m 6.11 x 10 -z6 Tsa/,B z . (1.8)

This expression agrees with the result for this case given by
Kaufman (1960), to within a factor of the order of unity. We
attribute the discrepancy to the approximate nature of our
efficiency factor (2L/2,), which does not take several details
like the pitch angle of the spiraling ions into account, and to
the fact that we take the ions to be originating exactly at a
distance 2t. away.

Since (2t/2,) z ,_ 1even for field strengths as low as 10- vG,
Paczyfiski (1978) concluded that the ion viscosity plays a
negligible role in determining the disk structure unless the
magnetic field essentially vanishes. However, Paczyfiski's
conclusion relies upon the assumption that the magnetic
field is exactly perpendicular to the local velocity gradient.
We do not believe that this assumption is justified when the
magnetic field is created dynamically within the disk, rather
than imposed from the outside. When the field is created
dynamically in turbulent plasma, it is reasonable to assume
that the small-scale field varies randomly in time and space.
In such situations, the field is tangled, and it is more useful
to consider a new, "hybrid" viscosity, where the effective
mean free path is limited by the coherence length of the
magnetic field. We present a derivation of the hybrid vis-
cosity in § 2, culminating with the expression for t/h_b in
equation (2.14).

1.5. Tangled Magnetic Fields

The picture of spatially intermittent magnetic "cells"
arising out of a balance between amplification by the
Keplerian shear and dissipation due to reconnection was
invoked by Eardley & Lightman (1975) in one of the earliest
discussions of magnetic viscosity. There have been several
revisions of that picture since then, treating the effects of
buoyancy and turbulence on the flux tubes. A review of this
aspect including a comprehensive reference list can be
found in Schramkowski & Torkelsson (1996). Furthermore,
recent simulations of the Balbus-Hawley magnetic shearing
instability (Brandenburg et al. 1995; Hawley et al. 1995;
Matsumoto & Tajima 1995) indicate that the magnetic field

will be tangled over macroscopic length scales. This has
motivated us to assume the existence of a tangled magnetic
field, although we do not self-consistently model the gener-
ation of the field. The models we present in this paper
assume the field to be tangled in a self-similar manner with
respect to disk height. In particular, we take the parameter

-= 2o,_/H to be a constant, where 2c.h is the coherence
length of the magnetic field. While this might not be satis-
fied in a realistic scenario, the expressions we derive for the

viscosity do accommodate the possibility of a ¢ which varies
with radius and arc therefore sufficiently general. It might
be noted that treatments of the magnetic shearing insta-
bility suggest that the most rapidly growing eigenmode of
the instability has a spatial size that is a fixed fraction of the
local disk height (e.g., Matsumoto & Tajima 1995).

2. ION VISCOSITY IN THE PRESENCE OF A TANGLED

MAGNETIC FIELD

In § 1.4, we considered the case of a shearing plasma
containing a magnetic field oriented in the _-direction,
exactly perpendicular to the local velocity gradient. In an
actual accretion disk, we do not expect this to be the case
very often. Instead, the direction of the field is likely to be a
random function of position on scales exceeding the corre-
lation length of the tangled magnetic field, which arises
from MHD turbulence. It is therefore interesting to con-
sider the shear stress exerted by ions in the general case of a
randomly directed field. IfAL _ 2u, then we expect that ions
moving between different layers in the fluid will spiral
tightly around the field lines, in which case two of the com-
ponents of the ion momentum are obviously not conserved.
On the other hand, the component of the ion momentum
parallel to the magnetic field/s conserved until the particle
either experiences a Coulomb collision with another ion or
encounters an irregularity in the magnetic field. Hence the
transfer of momentum from one layer to another occurs via
the component of the particle momentum parallel to the
magnetic field, and in this sense the particles act like beads
sliding along a string in what is commonly referred to as
the ideal MHD approximation.

The irregularities that scatter the ions may appear as
either stationary " kinks " or fast, short-wavelength electro-
magnetic waves depending on the details of the turbulence.
If the particles interact with the field primarily via wave-
particle scattering, then the waves must be explicitly
included as a dynamical entity in the momentum transfer
process. In fact, the shear stress due to the waves themselves
may dominate the situation ff the wave energy density sur-
passes that of the particles. However, such large wave
energy densities cannot be created if the field is generated
dynamically within the plasma, as we assume here. Further-
more, the relatively fast-moving ions that carry momentum
in our picture will not often encounter short-wavelength
electromagnetic waves with sufficient amplitude to scatter
them very strongly. Conversely, the ions will be strongly
scattered by encounters with long-wavelength, slow-moving
kinks in the magnetic field. We therefore ignore the dynami-
cal consequences of the fast waves, and treat the irregu-
larities as stationary kinks.

If the field is frozen into the plasma, then the ion momen-
tum will ultimately be transferred to the local gas via either
Coulomb collisions or encounters with magnetic irregu-
larities. The probability per unit length for either type of
interaction to occur is proportional to the reciprocal of the
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associated mean free path. It follows that if the two types of
interactions are statistically uncorrelated, then the effective
mean free path 2 is given by

1 1 1
+ (2.1)

2u _oh

where )._o_isthemean distancebetweenkinksinthefield,
whichisequivalenttothecoherenceorcorrelationlength.
We willcontinuetofocuson thecaseofa plane-parallel

shearflowcharacterizedby thevelocitydistribution

u = u(y)_, (2.2)

where u(0)= 0. To eliminate unnecessary complexity, we
will also assume that the ions are isothermal with tem-

perature T_. This is reasonable so long as the temperature
does not vary on scales shorter than the ion effective mean
free path 2. It will be convenient to introduce a local polar
coordinate system (r, 0, ¢0 using the standard transform-
ation

x = r sin O cos c_ , y = r sin O sin ¢_ , z -- r cos O ,

(2.3)

in which case the velocity v, along the :-direction is related
to v_, vy, and v, by

v, = vx sin 0 cos _b+ vy sin 0 sin _b+ v, cos 0. (2.4)

Let us first consider a case with no magnetic field. Then,
viewed from a frame comoving with the local fluid, the local
ions have a Maxwellian velocity distribution with tem-
perature Tv However, viewed from the rest frame of the
fluid located at y = 0, the distributions of v_,,v,, and v: for
particles located at an arbitrary value ofy are given by

/_,,/2( )f(v,) --- {_1 exp m,
- ,

'-'"' ( )f(v,)= {_/ exp m, v_
\z_tr _/ -- _ '

f(v,) -- [_1 exp m,- Ev,- uCv)]2 , (2.5)

due to the presence of the shear flow, wheref(vMv_ gives the
fraction of particles with ith component of velocity between
vl and v, + dr, and S__®f(vL)dv_ = I. Since v_, v,, and v: are
independent random variables, it follows from equation
(2.4) that the distribution of v. is given by

/ m' \ t/2 ( m' }f(v,)=_2-=_i ) exp -_-_ll'v,-u(y) cos0]2 •

(2.6)

Next we consider the effect of" turning on" a magnetic field
oriented in the :-direction specified by the angles (0, _b). If
the field is so strong that 2L '_ 2#, then the ions spiral tightly
around the field lines. However, the component of the
velocity parallel to the field (v,) is completely unaffected, and
therefore the distribution of v, is still given by equation (2.6)
even in the presence of a magnetic field.

We wish to compute the j%directed flux of _-momentum
due to particles crossing the y = 0 plane from both sides
along the field line. It may be noted that since we assume
u(0) = 0, layers on either side of this plane will have

oppositely directed flow velocities. Since we expect t
2r _ 2u in most cases of interest, we shall adopt the "be
on-string" model for the particle transport and work in
limit 2z./_t -" O, in which case v, and v, are given by

v, = v, sin O sin c_ , v, = v, cos O . (:

Hence we ignore the components of momentum perp
dicular to the field and consider only the transport
momentum along the field lines. For the purpose of cal
lating the momentum flux, it is sufficient to consider p
ticles starting out at a distance 2 from the origin. It folio
that at the starting point

y = _ sin 0 sin q_, (2

and therefore

u(y) = u'(0)2 sin 0 sin _ (2

to first order in 2, where the prime denotes differentiati
with respect to y. The j)-directed flux of_-momentum due
particles approaching the origin from both sides of :
y = 0 plane is given by

I_'P(O, qb)-- 2 (m_v,)[N_ v, f(v,)dv,] , (2.:
ao

where thefirstterminsidethe integralisthe:'-momentu

carriedby theparticlesand thesecondtermisthe_-direct

particleflux.Then tofirstorderin2we obtain

P(0,_) = 2m_Ni cos 0 sin0 sin

r ]x L2m,- cos 0 sin 0 sin

(2.1

which gives the shear stress as a function of 0 and _b. T
first term on the right-hand side describes the "them.
stress" due to the stochastic drifting of particles along t
field lines, which occurs even in the absence of a veloci
gradient. The second term gives the modification due to t
presence of the velocity gradient. Equation (2.11) vanish
when the field is exactly perpendicular to the velocity gr
dient (sin 0 sin _ = 0), which agrees with equation (1.8) f,
the cross-field viscosity in the limit 2L/2, -- 0.

Equation (2.11) for the direction-dependent stress can
used to construct two.dimensional models that treat bo
the radial and azimuthal structure of the disk. In the
models, the direction of the local magnetic field is a rando
function of the radial and azimuthal position on scal
exceeding the coherence (correlation) length 2_.h. In ord
to construct one-dimensional models, we need to avera_

equation (2.11) over all directions to obtain the mean stres_

'I<P> -=_-_ P(0, O)dn, (2.1.

where dD ---sin OdOdt_, and 0 < 0 < n, 0 < _b< 2_t. Subst
tuting equation (2.11) into equation (2.12) and integratir
over 0 and _byields for the mean (direction-averaged) hybr,
viscosity

(P) 2 . ./2kT_'_ t/2

"hyb [ -- _ = 1-'5mtlV'"tk'-_) " (2.1.

Note that the "thermal stress " appearing in equation (2.1
is symmetric and therefore it vanishes upon integration.
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We can also write the hybrid viscosity given by equation
(2.13) as

2 2

t]hyb -- 15 _ti rift, (2.14)

where #ff is the standard, field-free Coulomb viscosity given
by equation (1.5). We see that no factor describing the effi-
ciency of the momentum transfer process appears in the
expression for _hyb,in contrast to the cross-field viscosity 7±
given by equation (1.8). This is because in the hybrid case
particles originating on the right side of the plane and cross-
ing over definitely deposit their momentum on the left side,
since the two planes in question are linked by a field line
along which the particle "slides." Since T]hyd_ff _'_ (_/_ti) and
qx/_ff "" (2t./2u) 2, it is clear that the hybrid viscosity will
greatly exceed the cross-field viscosity if (_/_L)>> (_L,/_i_,
which is likely to be well satisfied in hot accretion disks, as
will be seen in § 3. This suggests that the ions play a much
larger role in the momentum transfer process in the pres-
ence of magnetic fields than originally concluded by
Paczyfiski (1978). In § 3 we use our results to analyze the
structure of a two-temperature quasi-Keplerian accretion
disk with unsaturated inverse-Compton cooling.

3. APPLICATION TO T%VO-TEMPERATURE ACCRETION

DISKS

We consider the two-temperature, steady-state model
first proposed by Shapiro, Lightman, & Eardley (1976) and
adopted by Eilek & Kafatos (1983). The model assumes that
the disk is quasi-Keplerian; i.e., the azimuthal velocity v_ is
equal to the Keplerian value and the radial velocity v, _ v,.
In this model the ions and electrons are coupled only via
Coulomb collisions and the electrons with temperature T,
are assumed to radiate their energy away via unsaturated
inverse-Compton cooling. In this case the two-temperature
condition T_>> T, is satisfied if

t,i > t,cc,, (3.1)

while in order for the ions and electrons to achieve their
respective Maxwellian distributions, we must have

t,cc, > t, > t,, (3.2)

where t,_, t,, and t, are the time scales for electron-ion,
electron-electron, and ion-ion Coulomb equilibration,
respectively, and t,c=, is the time scale for accretion onto the
black hole. We will use the viscosity prescription given by
equation (2.13), and we will assume that the coupling
between ions and electrons occurs exclusively via Coulomb
interactions. Hence we neglect the possibility that collective
plasma processes might result in an additional coupling
between the ions and electrons, over and above the usual
Coulomb coupling, which could in principle lead to a vio-
lation of the two-temperature condition. However,
Begelman & Chiueh (1988) considered this possibility, and
concluded that such collective processes are not likely to
strongly affect the thermal structure of the disk. Equations
(A1)-(A6) in Appendix A list the basic structure equations
for the two-temperature quasi-Keplerian disk model. Equa-
tions (A7)-(A9) in Appendix A constitute a list of the analyti-
cal solutions to these structure equations, which are derived
under the assumption that T_>> T,. These solutions have an
arbitrary ct parameter built into them, which in general can
be treated as a constant or allowed to vary with radius

using a specific model for the viscosity. In our case the
variation of ,, is obtained by substituting our expression for

_Uybinto equation (1.1).
In order to close the system of equations and obtain

solutions for the disk structure, we must also adopt a model
for the variation of the magnetic coherence length _._ou
which appears in the definition of the effective mean free
path 2 (eq. [2.1"1). We assume here that the field topology
varies in a serf-similar manner with the local height H, so
that

l_oh - _H, (3.3)

where _ is a free parameter which we set equal to a constant
for a given model.

3.1. A Two-Temperature Accretion Disk Model

In a cylindrically symmetric accretion disk, the relevant
component of the stress arising from the hybrid viscosity is
given by

rfhy b P _ -- I_hy b R d_kepl (3.4)
dR '

which is equivalent to equation (1.1). We use equation (3.4)
to derive rthyb from f]hyb"Equations (A7)-(A9) in Appendix A
and equation (3.4)jointly yield the following self-consistent
solutions for the model:

/M \2/3

_hyb_147.31_l13Sll/6S2/3t_8) _,-i1_. ' , (3.')

/M \1/3

Ti=3.38xlOii6-i/3Sl/_f_/3t_s) R. x'2 , (3.6,

1.40 x 109y

T, - %,(1 + T,,) ' (3.7)

/_r ks/6

., : 5.7o><1o"
(3.8)

/j_ \1/6

H 0.1756-x/tf.fs/x2 ¢1/6/'".1 pt/,*
"-_= .,2 k,Ms,] "'* ' (3.9)

where

1 ,
and

M*-IM oyr-_'

(3.10)

M R

M s--lO sMo, R,-GM/c 2.

(3.11)

The following two equations jointly define an implicit

algebraic equation for determining 6 as a function of R, for
given (_, y, M,/Ms)

_1/3 /'_f \2/3

're,̀ = 915.508_- 1 " £1/34"2/3| ''°*/ R. I1 - 6" ,,2 ttMs,] (3.12)

/2_1r \st9
7/3

r,, (1 + %,)= 57.8819 6x/gfz 7/18f2t/9f2313Y(M*-_\ s/ R*5/6 '

(3.13)
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We will restrict our attention to 1 > _ > 0, s/nee _ _ 1
implies that the field is strongly ordered over macroscopic
length scales, which violates our assumption that the field is
tangled. Once a root for 6 is determined for a given _, it is
used in equation (3.12), and the result obtained for %. is
then used in equations (3.5)-(3.9) to determine the disk
structure. For instance, ,_ ranges between 10-6 and 10-7 for
the model shown in this paper. The small value of 6 is
indicative of the fact that the mean free path is determined
primarily by 2_a, and not by 2,. In principle, one could
compute a disk model for a given y and any combination of
_., M., and Ms. We consider 0.001 < M/._/_ < 1, where
ME = Le/c" and L,_ -- 4rcGMmv C/OTis the Eddington lumi-
nosity and O.T is the Thomson cross section. Note that
M,_--0.22 M./Ms. Accretion rates that are close to the
Eddington value are more likely to be significant from the
point of view of observations.

3.2. Model Self-Consistency Constraints

For the models to be self-consistent, they have to fulfill
the following conditions.

(i) H/R < 1. This ensures that the disk remains geometri-
cally thin and is assumed in deriving the analytical solutions
listed in Appendix A.

(ii) 2/H < I. This condition ensures that the magnetic
field lines are confined within the disk. Since _ - 2/H is a
free parameter in our model and we restrict our attention to

< I, this condition is automatically satisfied.
(iii) 2/R < i. This assures us of the validity of applying

the fluid approximation to the plasma. Imposing
--- 2/H < 1 and ensuring H/R < I results in the satisfac-

tion of this criterion.

(iv) TdT, > 1. Satisfaction of the two-temperature condi-
tion is assumed in deriving the analytical solutions in
Appendix A.

3.3. Comparison with Other Kinds of Viscosity

Of the different kinds of viscosity that can possibly exist
in the accretion disk, we assume the hybrid viscosity we
have derived here to be the dominant form. We would like

to compute other possible forms of viscosity a posteriori,
and compare them with the hybrid viscosity. The hydrody-
namic turbulent viscosity used by Shakura & Sunyaev
(1973) is based on dimensional arguments, and, according
to Schramkowski & Torkelsson (1995), is probably less sig-
nificant than viscosity arising from MHD turbulence, in
which the magnetic field plays a significant role. For rela-
tively high accretion rates, one would expect rather high
luminosities. Consequently, the contribution of radiation
viscosity, which is characterized by an associated _,,a,
would be appreciable. Magnetic viscosity (characterized by
_m,_), which arises from the stresses associated with the
tangled magnetic field, is another important form of vis-
cosity with which we compare the hybrid viscosity obtained
from our calculations. Appendix B describes how ¢Zr,d is
calculated. We describe how _m,_ is calculated below. In
particular, it may be noted that we need to adopt a different
definition of the coherence length 2c.h, given by equation
(3.15), in order to quantify a_.

If we consider the magnetic stress to be equal to the
magnetic pressure PB = B2/(8n), the _ parameter arising out

of pure magnetic viscosity is defined by

B 2

_gP -= _-_, (3.1,

where P is the total pressure. It is customary to use tl:
following definition for ,,l_.n in discussions of magnetic vi:
eosity,

v,,
2_,h -- Qk.pi ' (3.1 :

where VA is the Alfv_n speed. This formula arises from
balance between amplification of the field by shear and di.,
sipation due to reconnection. Vertical hydrostatic equ:
librium can be expressed as

P : _.pt PH2 •

Combining equations (3.14), (3.15), and (3.16) gives

(3.1_

a*=,s = • (3.17

In our models, _ _ 2c.h/H is a free parameter, and equatior
(3.17) reduces to a_, K= Ca.

3.4. Results

Figure 1 shows a parameter space plot for a canonicall',
rotating Kerr black hole (a/M = 0.998). Each point in th_
parameter space spanned by _ and M/K4 E represents :
potential model. Each of these models assumes a constan
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FXG.l._The (_, 2f///_/e) parameterspaceforthe canonicalKerr metric
witha/M = 0.998. Eachpoint in the parameterspacerepresentsa poten-
tialmodel.Thedisk isassumedto occupythe rangeR,. < R. < 50,where
/_ is the radius of marginalstabilityin gravitationalradii.For this range
of radii,modelswith parameterslying below the solid line fulfill_u,b>
¢_,,; those with parameterslying above the dotted line fulfillH/R < 1:
those with parameterslying above the dashed llne fulfill%,b> _nn. The
conditionTt> T, is fulfilledthroughoutthe parameterspaceshown.The
shadedregionis theone in whichour modelsare self-consistentinsofar as
conditions(i)-(iv)describedin§ 3.2areconcerned.
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FIG.l--ResulU for :_,b, :m,, and =,_ for model a (see Fig. 1), with
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FIG. 4.--Results for %_,, am,, and ::a for model b (see Fig. l), wi[h
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value of _ -= ,_co_/H throughout the extent of the disk, which
we take to be R_ < R. < 50, where R.. is the radius of
marginal stability in gravitational radii. It turns out that the
condition TJT, > 1 is satisfied for models for the entire
parameter space shown in Figure 1. Models with param-
eters lying to the left of the dotted line are guaranteed to
satisfy H/R < l for all radii. It follows that such models
satisfy self-consistency constraints (i)-(iv) of § 3.2. Models

with parameters lying below the solid line satisfy _b,b > _-,.,
for all radii, while those with parameters lying above the
dashed line satisfy %,b > _,.e. The shaded region, therefore,

is the one in which our models will be fully self-consistent. It
may be emphasized that our calculations take only =h,b into
account; _., and 0_d are calculated a posteriori. Figure 1
therefore suggests the following:

(a) For sufficiently small _--,_a/H (approximately
< 0.1) hybrid viscosity dominates over magnetic viscosity.

(b) For sufficiently large accretion rates, the disk
becomes puffy (H/R > 1) and the luminosity becomes high
enough so that radiation viscosity dominates over hybrid
viscosity. However, our models turn out to be optically thin
to electron scattering in general. This means that the mean
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FIG. 5.--Results for H/R, _/R, and _,, for model b (see Fig. I), with
_I/Me = 0.0375and_ = 0.105.
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free path for photons in the vertical direction is greater than
the height H, and the radiation viscosity we calculate is
therefore an overestimate of the actual value. It may also be
noted that the breakdown of the thin disk condition implies
a breakdown of the entire quasi-Keplerian structure and the
radial velocity can no longer be ignored in comparison
with the azimuthal velocity.

These statements, however, can only be taken to be indic-
ative of general trends. It would require a self-consistent
inclusion of all the different forms of viscosity in order to
obtain more concrete conclusions in this regard. We are
concerned only with demonstrating the applicability of the
hybrid viscosity mechanism to accretion disks in this paper.

We next examine two specific models from the parameter
space shown in Figure 1, models a and b. They serve as
illustrations of a two-temperature accretion disk model that
employs hybrid viscosity. Figures 2 and 3 show some physi-
cal quantities associated with model a, with ?v/fl_/e--
0.0025 and _--0.03. Figure 2 shows that _hyb is around
0.0045 and is also well in excess of %,d and _'--I" Figure 3
shows that the disk is indeed thin and that 2/R _ 1. Figures
4 and 5 show quantities associated with model b, with
_//_/e -- 0.0375 and _ -- 0.105. Figure 4 shows that _/hybis
around 0.017, and it is well in excess ofamt. It exceeds 0_,a
in all but the innermost regions. Figures 3 and 5 also show
that both the models are optically thin to electron scat-
tering. We have verified that the radiation and magnetic
pressures are much smaller than the gas pressure for both
these models, thus justifying the assumption of gas pressure
dominance. The ion temperatures for both these models are
around 10 t2 K, while the electron temperatures are around
10 9 K.

4. DISCUSSION

We have derived a hybrid viscosity arising from momen-
tum deposition by ions in the presence of a tangled mag-
netic field. This viscosity is neither the usual Coulomb
viscosity which arises from Coulomb collisions between
ions, nor is it pure magnetic viscosity, which is due to mag-
netic stresses. The tangled magnetic field plays a role in
confining the ions, which makes the viscosity mechanism a
local process. The field also acts as an intermediary in the
momentum transfer between ions, in situations where the
coherence length of the field 2cob _f 2u, where 2u is the usual
Coulomb ion-ion mean free path. Upon application of this

form of viscosity to a specific disk model, we observe th:
the self-consistency requirements limit valid models to s-c.i
Eddington accretion rates. We also observe that the hybr_
viscosity dominates over magnetic viscosity for small valu¢
of _. The only restriction on the magnitude of the magnet
field in our calculations is that it be at least so large as t

warrant the assumption of nearly zero gyrorad// for tl-
ions.

We have entirely neglected any momentum transf_
arising out of short-wavelength plasma waves in the accr,
tion flow. Since the tangled magnetic field is taken to
arising from plasma turbulence, the presence of such waw
is quite plausible, and it is one aspect of the problem w
have neglected in our calculations. In fact, ion streamin
along magnetic field lines, which is considered to be tl_
primary means of momentum transfer in this paper, m/gt
very well be the source of such waves ff their speeds at
super-Alfv_nic. One could model an ensemble of such tur_
ulent plasma waves as a collection of plasmons, assign
number density and mass to these entities, and investigat
their role as intermediaries in momentum transfer. A sel
consistent calculation of the tangled magnetic fields arisin
as a consequence of the presence of plasma turbulenc
could also reveal magnetic flutter; temporal variations i,.
the local magnetic field (as distinct from the large-seal
evolution of the fields due to dynamo action) that we hay.

also neglected.
In the present work we have adopted a time-independen

treatment. There have been a number of investigations c
possible disk instabilities (Shakura & Sunyaev 1976; Pirm
1978, for instance) which consider the presence of therma
and viscous instabilities that could break up the disk an_
cause variations in the disk luminosity. The temperature
dependent nature of any viscosity in which ions play a par
(like the hybrid viscosity discussed in this paper) wouk
result in a coupling of viscous and thermal instabilities. W_
are currently in the process of undertaking an investigatio_
of these aspects. It may also be noted that advection effect
can assume importance and alter the disk structure near th,
inner edge.

We would like to thank Dr. Ethan Vishniac and th_

anonymous referee for several useful criticisms and sugges-
tions. P.S. also acknowledges useful discussions with Dr
Ulf Torkelsson.

APPENDIX A

CONSTITUTIVE EQUATIONS FOR TWO-TEMPERATURE, COMPTONIZED MODEL

The basic disk structure equations are the same as those used in the disk structure calculations ofEilek & Kafatos (1983).
which neglect radiation pressure:

P = GMm_ N, H'fl (A1,
R 3

_p _ (GMR)t/2Mf2 (A2!
4nR2H '

3 GMifl
8n Rail ./'3= 3.75 x lOZlmtlnAN_k

(T, - T.)
T_/2

(A3)
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P = N, k(Tj + T,), (A4)

m e c2y 1 (AS)
T,-- 4k ¢,.g(_'

• ,_ ffi Nl O'TH, (A6)

where aT is the Thomson scattering cross section. The Coulomb logarithm In A is taken to be 15 in our numerical calculations
and the function g(z,) - I + 3,,. It may be noted that this is different from the form for 0(z_) used by Eflek & Kafatos (1983).
The factorsfi,f2 and f3 are the relativistic correction factors appropriate to the metric under consideration. These factors for a
Kerr black hole with aim = 0.998 are used in Eilek & Kafatos (1983). Eilek (1980) gives plots offl,f,, and f3 for a Kerr black
hole. The relativistic correction factors appropriate to a Schwarzschild metric can be obtained by setting a/M -- 0 in the
expressions for f_, f;, and f3. In keeping with the convention used in Eilek & Kafatos (1983), we make the definitions
Ms - M/10 s M e, M. - _1/1 M e yr- 1 and R, - R/(GM/c2). If we assume Ti >_ T,, equations (A1)-(A6) yield the following
analytical solutions:

Tt = 4.99 x 10la fi;/* et-lR_ a/2 (A7)
_-'_8 f2 ::a t

T,-- 1.40 × 109)rt_l[_/(t®J] -1 , (AS)

/_ \,/2

Nj = 4.70 x 101o____) _/, tf_/2fZ x/2 ,_2 otX/2R; a/4. (A9)

It may be emphasized that a is a free parameter in the above solutions.

APPENDIX B

DEFINITION OF RADIATION VISCOSITY

We use a,,a, the 0_parameter obtained from radiation viscosity, as a diagnostic in this paper. We now proceed to define the
manner in which we compute _,.d. We follow Shapiro et al. (1976) in defining the radiation energy density using

U,,d = (F/c)g(_J . (B 1)

If the y pai'ameter is taken to be equal to unity, eliminating g(T,) between equations (AS) and (B1), using equation (A6) yields

F (4kT_2_N, aTCU,.d, (B2)
H \m. c /

where F is the dissipated energy density. Equation (A3) is another way of defining F/H; in fact, F has to be equal to
(3/8n)GMIVI/R 3 for the disk to be quasi-Keplerian. Equating the right-hand side of equation (A3) to that of equation (A8) and
assuming Tl >> T. yields

U,_ ffi 9.565 x 10SNl T_T_ "s/2 . (B3)

We next adopt the definition of radiation viscosity _/,.d given by Loeb & Laor (1992),

8 U,,d (B4)
q,_d = 27 Nt aT C

We calculate %,_ by adopting the usual definition for %akin to equation (3.4),

a,,d P = --Rt/,,d _ (B5)
dR

It may be noted that we assume the disk to be gas-pressure dominated; although we do calculate _',,e as a diagnostic tool, P in
equation (B4), which represents total pressure, does not include radiation pressure in our calculations.

This yields

a,,...__d= _,,d _ 6.45 x 1033 6 - t In A T_73/2 T," s/2 , (B6)
(_hyb _hyb

where 6 is defined in equation (3.10).
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