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Introduction

The development of a Boundary Integral Equation Method (BEM) for the prediction of
ducted fan engine noise is discussed. The method is motivated by the need for an efficient and
versatile computational tool to assist in parametric noise reduction studies. In this research, the
work in reference 1 was extended to include passive noise control treatment on the duct interior.

The BEM considers the scattering of incident sound generated by spinning point thrust
dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a
superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by
term.

The BEM theoretical framework is based on Helmholtz potential theory. A boundary value
problem is converted to a boundary integral equation formulation with unknown single and double
layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily
calculated.

The main feature of the BIEM is the ability to compute any portion of the sound field without
the need to compute the entire field. Other noise prediction methods such as CFD and Finite
Element methods lack this property. Additional BIEM attributes include versatility, ease of use,
rapid noise predictions, coupling of propagation and radiation both forward and aft,

implementable on midrange personal computers, and valid over a wide range of frequencies.






Accomplishments

Given a localiy reacting, segmented liner model on the duct interior, a system of boundary
integro-differential equations for the scattered acoustic pressure field was derived (references 2
and 3). The equations are hypersingular and require special analytical and computational
techniques to solve. These methods are near completion.

For small inflow Mach numbers (M<0.4), the complexity of the integra equations can be
significantly reduced. The small Mach number BIEM has been determined to be valid at takeoff
and approach. Mathematical details of the derivation and solution techniques will in reference 2.

BIEM methodology and several passive and active noise control studies were presented at
the NASA AST Engine/Nacelle Noise Workshop (reference 3). In this presentation, the accuracy,
versatility and simplicity of the BEM were demonstrated.

A computer program for predicting ducted fan engine noise (TBEM3D) and user manual
(reference 4) has been written. The TBEM3D code was designed for general use by the
aeroacoustics community and is available electronically.

BIEM methods were applied to sound radiation and propagation in two dimensions. The
resulting methodology is valid for the shielding of sound by thin strips (wings) and the radiation
and propagation of sound in a finite length channel. The 2-D channel configuration is an excellent
tool for studying the effects of a scarfed inlet on noise directivity (see reference 5). A general use

2D noise prediction computer program (TBIEM2D) and user manual are near completion.






Conclusions
The effectiveness of BIEM as a tool for active and passive noise control has been clearly
demonstrated. Due to the simplicity, speed, accuracy, and versatility of BIEM, TBEM3D is far
superior to wave envelope and CFD codes for conducting parametric noise reduction studies.
The implicit coupling of sound radiation and propagation both forward and aft are unique
features of BIEM. In addition, the far field radiation condition is satisfied implicitly.
Consequently, special boundary conditions at an artificial far field boundary and at the duct's inlet
and exhaust planes are not required. These theoretical niceties further enhance the simplicity of

BEM.
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Abstract

A computationally efficient Boundary Integrai
Equation Method (BIEM) for the prediction of ducted
fan engine noise is presented. The key features of the
BIEM are its versatility and the ability to compute rap-
idly any portion of the sound field without the need to
compute the entire field. Governing equations for the
BIEM are based on the assumptions that all acoustic
processes are linear, generate spinning modes, and oc-
cur in a uniform flow field. An exterior boundary value
problem (BVP) is defined that describes the scattering
of incident sound by an engine duct with arbitrary pro-
file. Boundary conditions on the duct walls are derived
that allow for passive noise control treatment. The BVP
is recast as a system of hypersingular boundary integral
equations for the unknown duct surface quantities.
BIEM solution methodology is demonstrated for the
scattering of incident sound by a thin cylindrical duct
with hard walls. Numerical studies are conducted {or
various engine parameters and continuous portions of
the total pressure field are computed. Radiation and
duct propagation results obtained are in agreement with
the classical results of spinning mode theory for infinite
ducts.
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~ denotes that a quantity is dimensional
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axial coordinate of duct trailing edge in
stretched, moving frame
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axial coordinate of duct leading edge in

stretched, moving frame

Ly ratio of duct length to duct diameter

m circumferential mode number

k =mM, characteristic wave number of
m-th circumferential mode

k axial wave number for first radial mode
and m-th circumferential mode

K =k/B modified wave number

D, Eulerian description of total acoustic
pressure field

P, Eulerian description of scartered acoustic
pressure field

pi Eulerian description of incident acoustic
pressure field

u Eulerian description of normal component

a1

of acoustic velocity field

dfén normal derivative operator in stationary
frame (with respect to outward facing
normal to duct surface)

3/oN normal derivative operator in stretched,
moving frame (with respect to outward
facing normal to stretched duct surface)

- surface acoustic impedance for duct

exterior (interior)



[ntroduction

Ducted fan engine noise is dominated by the fan
component at takeotf and approach. Community expo-
sure to the high levels of radiated fan noise at these
conditions is significant. The reduction of tonal noise
oroduced by the rotaring components of high bypass
turbofan engines is theretore of primary concern to the
aeroacoustician. The design of active and passive noise
abatement technology can be facilitated by advanced
analytical tools for predicting the radiated sound from
engine ducts. To be useful in design studies, prediction
tools should be fast, versatile, accurate, and imple-
mentable on mainstream computer systems. The ability
to compute only a portion of the sound field without the
need to calculate the entire field is an important attrib-
ute in conducting rapid noise predictions. Computa-
tional approaches such as Finite Element Methods
(FEM) and Computational Aeroacoustics (CAA) meth-
ods lack this property. For this reason, farfield noise
calculations using FEM or CAA require vast amounts of
computational time and computer storage. Therefore,
the use of FEM and CAA for parametric studies in noise
abatement research is limited.

[n this paper, a Boundary Integral Equation Method
for the prediction of ducted fan engine noise is pre-
sented. The method is based on the equations of line-
arized acoustics with uniform inflow. A scattering ap-
proach is adopted in which the acoustic pressure field is
split into known incident and unknown scattered com-
nonents. The source process is assumed to generate an
incident pressure field that can be represented by a su-
perposition of spinning modes. In a frame of reference
moving with the engine duct and in regions of space not
occupied by acoustic sources or scattering surtaces, the
components of acoustic pressure are zoverned by
Helmholtz’ =quation. An exterior boundary value
problem is obtained by the inclusion of boundary con-
ditions on the duct surfaces. The most general form of
the boundary conditions allows for a spatially varying,
locally reacting liner modet on the duct surface.

By considering special values of the specific
acoustic impedance in the boundary conditions, the
classical Dirichlet and Neumann boundary values are
obtained. The boundary value problem is then solved
by expressing the scattered pressure field in terms of
double and single layer Helmhoitz potentials with un-
known densities that are related to surface pressure and
the normal derivative of surface pressure, respectively.
Application of the boundary conditions to the layer rep-
resentation vields a system of one-dimensionai, hypers-
ingular boundarvy integral equations for the unknown
fayer deasides.  Tne source terms {or e system are
related 1o the known incident pressure and its normal
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derivative. This system of boundary integral equations
and method of solution comprise the BIEM.

The system of boundary integral equations is valid
for engine ducts with arbitrary profile. If, however, the
duct is approximated by an infinitesimally thin cvlindri-
cal tube, the complexity of the integral equarion kernels
is substantially reduced.

Analytical results will be presented that separate
the singular and logarithmic portions of the integral
equation kernels from the bounded parts. This analysis
is significant because calculations involving singular
and logarithmic integrals are available in closed form.
thus avoiding time consuming, customized numerical
integration techniques.

To demonstrate the BIEM, the solution procedure
for a thin pipe geometry with hard wall boundary con-
ditions is presented. A collection of spinning potnt di-
poles located inside the duct are used to simulate the
loading component of the fan noise and generate the
incident pressure field. Several sets of engine operating
parameters are considered in this study. Various re-
searchers'” have employed boundary integral tech-
niques to solve this problem. Differences in the present
work reiative to the referenced works appear in the
conclusions section of this paper.

Boundary Vaiue Problem Denvation
In the analysis that follows, all quantities have been

nondimensionalized; length by f__, mass by p, 7).,

and time by Q™'

We consider an engine fan surrounded by an axi-
symmetric, nondeformable duct of arbitary proiile
translaung in the +z (axial) direction with uaniform
speed V. (see tigure 1). The fan is composed of N4
equally spaced biades and rotates with shaft speed ).
The incident acoustic pressure field generated by the ran
is known. Linear conditions are assumed to apply and
the inflow 1s uniform.

max’?

|
i 5 (2)
Ba b,

Figure 1: Duct Geometry
(Cvlindrical. Stationarv Coordinates)
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o
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overning Differentia ti

The total acoustic pressure in the sound field is
written as a sum of incident and scattered parts.

pirow,z.)=p/(r,w,z.t)+pi(r,u,z,t) (1)

In regions of space that contain no scattering surtaces,
p! is governed by the homogeneous wave equation.

1 8% 1a8( a3y 1 2 & |, .
e sr el Rl e s st ol | MU )
¢ ot rar\ orj r° oy az°

Total acoustic pressure and acoustic velocity are
related through the normal component of the acoustic
momentum equation.

cu_{r,wv,z,t op/lr,w,z,t
NERY )+cp(( W,z )=0 )

~ -~

ot cn

In a frame of reference moving with the duct, all
dependent acoustic variables can be expressed as linear
superpositions of spinning modes. For example, the
scattered pressure has the form

p;(r,xy,Z,t): iP,"‘(r,Z)e"“(m'"‘) (4a)

mNga-a

and the acoustic velocity is written

u (rw.Z,0)= SUn(r,Z)e™>" ()

m{Nys-o

where the stretched, moving axial coordinate Z is given
by

7 = Z—BVFt- )

The BIEM calculates modal amplitudes in (4) term by
term. For notational convenience, the superscript m on
the modal coetficients is dropped hereafter.

Define the dependent variables Q, and ® by

Q,(r,z)=P,(r,Z)e™* (6a)
and
& (r.Z)=Uy(r,Z)e™?, (6b)

with similar definitions for the total and incident pres-
sures. Combining (4-6) with (2) yields the two dimen-
sional Helmhoitz equation
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etk o

for the m-th coefficient. Using the definitions in (6),
the momentum equation (3) can be written as

=2

0, (r,2)= 2™ x

f el 8 20 NCY
(I Lot \1; '
Je [——MF N KM 1 thj]dZ

-=

where N is the axial component of the outward facing,
unit normail to the stretched duct surface. Equation (8)
is valid for M > 0. . If the duct is stationary (M, =0),
then (7) and (8) reduce to

ror or 522 r2
and
P (r,Z
U (r2) s’ ‘(f )0 (10)
ick dn

Equations (7-10) are valid for points not lying on the
surface of the stretched duct.

s oundary Conditi

To meet noise certification levels it is necessary to
treat the engine duct with passive noise suppression
technology. In this work, the duct treatment is modeled
by a locally reacting, axially varying liner.

Define the surface functions Q; and ®§ by

Q:(2)= lir:x(xz,Ql(r,Z) Ze[a,b] (1)
and
®:3(Z)= lim & (r,Z) Ze[a,b] (11b)

r=15(2)

with similar definitions for Q7, Q, normal velocity,
and all pressure components.

Myers® has shown that if (7(Z) represents the
specific acoustic surface impedance, then, in the
stretched, moving frame of reference, the medal coef-
ficients of velocity and pressure sausfy the boundary
equation




Equation (12) represents two boundary conditions, one
for the exterior surface and the other for the interior
surface. The boundary condiuons for the stationary
case reduce to

(z). P(2)

13
- (2) ()

=0 Ze<[a,b].

Lt

By considering special values for the tunctions {~
in (12) and (13), several boundary conditions of interest
are derivable. Total sound absorption is achieved if

{* =C " =constant - 0. (14)
Total sound reflection (hard walls}) arises for
£* =~ =constant - . (13

Of particular relevance to actual engine ducts, is the
case of a hard exterior surface ({* — =) and lined in-
terior. The boundary conditions for this situation are

®3(2)=0 Ze[a,b]
oMt Qi(2)
74

¢ (2)
We now evaluate the momentum equation on the
duct surface to obtain a relation between surface pres-
sure and surface velocity. Let

]?z):

with normal derivatives of other dependent acoustic
variables evaluated on the duct surfaces similarly de-
fined. Then from (8), (10), and (11) we get

LI
e Mr

(16a)
and

CD;(Z)+(1

=0 Ze[a,b]. (16b)

Q.

Q. (r.Z)
N ’

= an

lim

r—e3{2)

TN

x

~ .1
@3 (2) SLIR TR

o
B (X
M, | aN

~

j —iKMFNngle’ (18)

Ze[a,b] M, >0

[ (3P Y\, .,
‘ﬁ(_\ (z)

_cn

and

(19)
Zs[a.b] M, =0
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Classical boundary conditions are obtained for the
stationary case. Combining (13) and (19) yie:ds the
Robin’s boundary conditions

Pr{Z 1 (8P
(2) (c YA 20)

(z) Tk EH—J =0 Ze[a,b].

Dirichlet or Neumann conditions are obtained by appli-
cation of (14) or (15), respectively, to (20).

We complete the derivation of the boundary value
problem by requiring the dependent acoustic vanables
to satisfy the appropriate Sommerfeld radiation condi-
tion. Additional conditions may apply depending on the
smoothness of the duct walls. If there are points on the
duct that do not possess continuously turning rangent
planes, then edge conditions specifying the behavior of
the acoustic pressure at these points must be provided7_
Edge behavior is determined from the physics of the
problem together with an asymptotic analysis of the
governing equations in a neighborhood of the edge.
This problem occurs at the leading and trailing edges of
the thin pipe approximation, for example.

Summary

The above analysis describes a uniquely solvable
two dimensional boundary value problem for the scat-
tered acoustic pressure in the sound field. For the sta-
tionary case, the boundary value problem is defined by
(1), (9), (19), (20), the radiation condition, and the edge
conditions (if applicable). If the duct is in motion, then
(1), (6), (M), (12), (18), radiation and edge conditions
completely define the boundary value problem.

Boundarv Inteeral Equation Formulati

In this section, we reformulate the boundary value
problem by deriving one dimensional boundary integral
equations in which the boundary functions Q] and Qf
are unknown, where

6Q £
(@2 @)
Qlz)=| 5 ) (2)

Once the scattered boundary functions are determined,
the scattered pressure in the sound field is calculated
pointwise via a Helmholtz layer representation that sat-
isfies the Sommertfeld radiation condition implicrly.

2n

Helmholtz Laver Representation

The Green’s function for the rwo dimensional



Helmhoitz operator in (7) can be written

- e ~xR
J cosmy ——dy  (22)

G(r,r',2-2")= =

I\JI
3l

0
where

R =V[r: st =2mcosy+(Z2-2")

A

(23)

Using resuits rom Helmholtz potential theory® and
(21-23), the solution of (7) is expressed as the sum of
single and double layer Helmholtz potentials with den-

sities QF and QF, respectively. Thus,

Q.(r.2)=s"[Qs J(r,2)-a"[Qr [(r. 2)+
: . (24)

(
s [Q3](r,2)-a7[Q7 |(r.2)

Equation (24) is valid everywhere except for (r,Z) on
the stretched duct surface. The field operators s* and
d* are defined by

s*[f)(r.2) =

l g ’ t ' ’ (25)
oF f(z )[r'_l.xg(\z.) }J (z2')dz
and '
d*[f)(r.z) =
b
] “’ ' : 5G T ’ I (26)
27 fz )[r-_l.xrf;x(lz')éN'}J (z)az

i

where f is some sufficiently smooth function and
J=(Z')dZ’ are the elements of arclength along the
curves r = r2{Z').

If the boundary functions were known, then the
scattered acoustic field could be obtained from (24).

Sing 300 : Notati

In order to apply the boundary conditions to the
field equation (24), it is necessary to evaluate the 2-D
laver potentials and their derivatives on the stretched
duct surface. The resuiting 1-D boundary operators are
singular. For Z e{a.b], define the following singular
boundary operator - kernel pairs:

L
s*[f)(z)=]f(z")s*(Z,2")dz
L @7)
§7(z,2'y=—1%(2') lim G
=T o —ea{Z7)

ree{Z)

~J
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b4 , 1 b4 ’ 3 &G kzg)
D (Z,Z)—E;J (z r'_l‘lér(lz,)gﬂ‘,‘
r—3{2)
si(fl(z)=](z")si(z.2')az
< ' ! = ' 1 G (29)
s:(z,z )‘El (z ),.l‘f;?m?N—
t—15(2Z)
L
D3[f)(2) =] (203 (2. 2')aZ’
a 2 GO)
. ,__1__ i ] g°G
D;(2.2)=5207(27) lim ==
r—ei{2}
9
s;[11(z)=fe(z)s3(2.2')az
* ' 1 = 1 E'G (31)
SZ(Z,Z )=z;] (Z )r’llr?Z')T
r—e3{2)
b
b [f](2) =] {(2)D3(2.2')az
. N 75
x ’ __l_ * [ \ —QZ—G—
D3(2,2')=5717(2) lim ==

r—r3(2)

Note that operators are denoted by bold face type. The
kemels are singular for Z~Z’=0. The nature of the
singularities is examined below.

Singular Kernel lvsi
We list here, without proof, the asymptotic proper-

ties for |Z - Z'| << 1 of the above kemels. The singular

character of the kernels is obtained by local analyses,
the details of which will appear in a future publication:

-~

$*(z,2") =g:(Z)InZ-2'1+K,(Z,2) (33)

-7 (G4



g3 (2)
= o\ 232 -
S:(2.2') = 5 359
g3 (2)njz-2"1+K,(2.2)
v 2otz 2Lz
DQ(Z,Z')—- v-ﬂ( )“ ‘2( I)
(z-z') Z-2 (36)
25 (Z2)Injz-2'1+K,(Z,2')
z ' g:’(Z)
sz(z,z)_ﬁ* (37)
g3 (Z)nfz-21+K(Z2,2')
o (Z g: Z\’
D;'\Z.Z')= ’:’ul( ?~ 02( X
(z-z') 2-2 (38)
g5 (Z)m|z-2'|+K,(Z,2')
where g, and K, are known continuous functions.

S

The leading behavior for the single layer kernei
(33) is logarithmic. Therefore, the associated operator
is weakly singular. The leading terms for the kernels
(34,35,37) are of the Cauchy type. Whilst, the kernels
(36,38) are of the strongly singular Hadamard type.
Consequently, integrals involved with the kernels (34-
38) are divergent and must be interpreted in the finite
part sense'’.

All of the above kemnels have the logarithmic por-
tions exmacted. Integrations involving these terms are
defined but difficuit to achieve numerically. This
problem is mitigated by the deveiopment of analytical
results for the associated operators. Examples of this,
as well as analytical results for the Cauchy and
Hadamard terms, are presented in the results section.

Calculations involving the continuous portions of
the kerneis are performed by straightforward numerical
integration.

] Relation Potenti

Using the above operator notation, we state conti-
nuity properties for the single and double layers as a
field point approaches the surface from the exterior of
the duct. For sufficiently smooth f and ry (except pos-
sibly at Z =a,b), we have the foilowing results® for
Z =la.bj).

N

(29)

,._
.

w

"
—

bt
o
—
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J%}E%s-[f](r.zpif(z)+s;[f](z: (41)
lim ici=[f](r Z)=p3[f](2) 42
Jim =N . 3 (42)

unda

A system of integral equations for QF and Qj, is
derived by applying the boundary conditions (12) and
(18) to (24) and (39-42).

We begin by deriving some preliminary resuits.
From (1), (6a), (!1a), (24), and (39-40) we write

Qi (2)=Q: (2)+s*[Q; |(z) 5

+(I—Dx)[Qf](Z) Ze[a,b] @
and

Q; aQ; A

?ZI(Z)=7(Z)+SZ[QN](Z) s

e

(2)-p3[Q: [(2) Ze[a,b]

gz

Combining (1), (6a), (17), (24), and (41-42) yieids
Q) ()
(WJ (Z)-(OT) (2)+
(1+53)[Qi (@) +D3[Q: [(2) Ze[ab]

. (45)

Define the unknown surface vector functionsq* by

a*(z)=(Q:(2),Q5(2))", (46)

Combining the boundary conditions (12) and (18) with
results (33-46) yields the system of integral equations

(47)

for the four unknown surface functions. The vector
function 4~ is known from the incident pressure {ield
and the integral operators K7 and K: have the generai
form



oz
[ 4 (2) Fqt ()
i (z qt(z
(z) — 4z’ +D(Z) dZ’ +,(48
(z-2') J -z (48)

-

B12)[47(2) iz -2z + K, [3[(2)

A

where A,...,E are matrices of known functions and K4
is an integral operator with continuous kerneis. The
matrix functions are determined from the coefficients in
(33-38) and depend on the surface impedances and the
duct curves r=ri(Z’). Explicit expressions are
lengthy and will not be presented here.

Examination of (48) indicates that (47) is a system
of one dimensional, hypersingular, integro-differential
equations of the second kind. As indicated previously,
(47) must be augmented by a set of edge conditions if
applicable. The authors are not aware of any theory that
describes the solvability of (47). This subject is a mat-
ter of ongoing research. However, for certain simple
cases, one of which is described in the next section, (47)
is greatly simplified and solvability theorems do exist.

The characterization of the integral equation ker-
nels by (48) greatly simplifies the numerical solution of
(47). Analytical results for the logarithmic, Cauchy,
and Hadamard kerneis are available in many cases'' and
the continuous portions of the kernel can be computed
by straightforward numerical integration.

Results

In this section, we consider the scattering of inci-
dent sound by an infinitesimally thin cylindrical duct of
unit radius. The duct can be stationary or in motion.
The interior and exterior wails of the duct are assumed
to be hard. For this case, the complexity of the bound-
ary integral equations is reduced significantly.

Boundary Integral Equation Formulation

From (12) and (18) the boundary conditions are

Z

-0

Differentiating (49) with respect to Z and using the re-
lationships between total, scattered, and incident pres-
sures yields the boundary equations
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- + - 4
GQt z GQ
_— = + — = S
( N Qu * p 0 Ze[a,b]. (50)
Since the incident pressure and its derivatives are con-
tinuous across the duct surface we add the exterior and
interior equations in (50) to get

QL +Qy =0 Ze[a,b] (51)

Equation (51) is used below to simplify the field equa-
tion (24).

Define the jump in scattered pressure across the
duct wail by

aQ,(2)=Q;(2)-Q;(2) Ze[ab]. (52
Referring to (25-26) observe that

d-[£)(r,2) = -d"[£)(r,2) (53)
and

s'{f](r,Z)=s’[f](r,Z). (54)

Thus, applying (51-34) to (24) produces the field equa-
tion

Q,(r,z)=-d[aQ,|(r.2). (55)

Therefore, the scattered acoustic pressure in the sound
field is written as a double layer with density given by
the scattered pressure jump. Since the interior and ex-
terior duct surfaces are the same, we have omitted the
superscript on the double layer operator.

A single integral equation for AQ, is obtained from
(49) as follows: Use (42) to evaluate the normal de-
rivative of (55) on the exterior wall, then combine this
result with the exterior boundary condition in {49}
give

<,
Je"mz D, [aQ, }(z)dz =

Je “z%k (z')dz' Z <[a,b]
r=l

It is advantageous to rewrite (56) as the system of
equations

D, [AQ, ](Z) =

and



g[aQ,]= (57b)
where the functional g is defined by
——
g[f]= | ¢ ™ D, [f)(z")dz’ (58)
and
' 7 —nLZ' S .
Cy =Je O (e 9)
cr (£]]

Equation (37a) is obtained by differentiating (36), and
(57b) by evaluating (56) at the trailing edge. No infor-
mation is lost by this reformulation. For the stationary
case, (57b) is satisfied trivially. By performing a local
analysis on the kemnel in (37a) it can be shown to have
the form

D (Z-2)= %J«
(z-2)

Bln|Z-Z'|+K4(Z-2")

: (60)

where A and B are known constants and the kernel K
is continuous and simple to evaiuate numerically.

To obtain a unique solution to (57a,b), the behavior
of the pressure jump at the duct leading and trailing
edges is required. It is known that the jump in pressure
has the following asymptotic behavior:

(o(vz=a) z-a-

. (6D
+Jb—-Z] Z—-b"

AQ, = O( My
vb-Z
Based on (61) we assume a solution of the form
’ fh-Z
L\Q‘(Z)‘(]L\/Z—a
e
Jb=-2z)(z-a)v(2)

(62)

where & is an unknown constant and v is an unknown
continuous function. Note that if the duct is stationary,
thena =0.

A method is now developed in which the determl-
naticn of v is separated from the caiculation of .
This vields an integral equation for v that is refatively

simbpie o solve. Use (62)1n (37b) to obtain
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azc _g(/z.%)m .
14} -
g 1]
where
g™ [r]= [(z a)"(b-2)° f}. (64)

The notation in (64) will be used with other integral
operators in the remainder of this analysis. Substituting
(62-62) in (57a) gives the first kind integral equation

K(y"%)[y](Z)=q(Z) Zefa,b], (65)
where
KAz =0y )2)-
(%-V][ ] (66)
/Vz T
AP ) z<la
and
q(Z)=3§—i (z)-
raf 67)
C, (}5-5)
———Dy"7[1)(Z2) Z<fa,b]
1)

The kemel for the operator in (66) has the same form as
(60). After solving (65) for 7, (63) is used to calculate
a. :

Numerical Solution
Due to the edge behavior associated with v, it is
natural to expand y in a series of Chebyshev polyno-
mials of the second kind. Thus, constants {7 : }ro are
il

sought such that

{63)

0o ()

where
sin[(j+l)cos" x]

Uj(x)=

(69)

sin(cos™" x|

Golberg9 has shown that if X is not an eigenfrequency
of K, then a unique convergent expansion such as (68)
exists for integral equations with kerneis of the type
ziven in {60).



To solve (65) numerically, we truncate the expan-
sion in (68) and apply the collocation method. Other
popular projection techniques, such as Galerkin's
method, require an additional numerical integration
relative to collocation. With proper choice of colloca-
tion points and numerical quadrature scheme for the
continuous portion of the kernel, Golbero has shown
that the accuracy obtained by Galerkin’s method and
collocation are equivalent for this problem. Thus, col-
location vields the same accuracy as Galerkin’s method,
but with substantially less computational work.

The numerical solution begins by choosing the
number of terms in the expansion (68), N, +1. This
number is a function of the modified wave number K.
If 7 denotes the approximate solution, then

[2Z-a3=-bH)

; k — J (70)

. . N+l .
The collocation points, {Zj} ., are given by the ze-

roes of the N, + I-th Chebyshev polynomial of the first
kind and the numerical integration scheme for the con-
tinuous kemnel is chosen as Gauss quadrature with
weights and nodes based on second kind Chebyshev
polynomials. Evaluating (65) at the collocation points
vields the linear system

g‘{.K(%‘%)[Ui](Z;)=Q(ZJ) )
j=1,..., Ny +1

for the unknown expansion coefficients. The invertibil-
ity of the linear system has been established by Goiberg.
To compute (71), integrals of the type

1

1—'\_(1 Uj(‘f,)dx’ x e(-w,1], (72)
(x=-x)°

H ’2U “)Inix - xtdx’ x &(-=,1], (73)
l+x’ dx’

J‘/hx’ L x e(~»,1] (’{4)

and
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i
(\r‘ Injx - xide’ xe(-w,1]

-1

(75)

are encountered. Anaiytical results are obtained tor
(72-75) by applying the Plemelj-Sokhotski theorem’ and
its logarithmic analog to the complex function

v i
R (w) =E-w——(wZ —I)A]

1

with branch cut

}Re(w)|<1 Im(w)=0.

A 4
The branch is defined such that (w' —1)" is real and

positive if w is real and greater than one. This analysis
vields the following results:

. N

A

J_'—’U

(T, T(x)

Ynjx - x'{dx’' =

0 j s[-1.1]

(x-}—\/;i—l)Pz (X+\,)X:-—l)“

(78)

A

j*2 J

x<=1 j>0




0 x=2[-1,1] ’ (79
Ttl 1 x < -1
L(1-x)VxF 1
and

IR lnjx - x’|dx* =

JVI—.‘(' Ix=

-1
{x+1n2 xe[-1,1] (30)
1

- X < -1

x+n2-vx* -1+

ln(—x- x? —l)

[n the above, T, is the j-th order Chebyshev polynomial
of the first kind

(81)

The anaiysis leading to the BIEM is independent of
‘he fan noise source description. For illustrative pur-
poses, it is expedient to assume simplified source
mechanisms with analytical expressions for the incident
tield. [n the results presented here, a coilection of N g
equally spaced point axial dipoles of unit strength lo-
cated inside the duct at a radial distance 0.9r, and
spinning with angular speed  are used to simulate the
loading noise produced by the fan (see figure 2). An
analytical description exists for the incident field in-
duced by this configuration'. The use of more sophisti-
cated source processes is considered in the conclusion
section.

To demonstrate the versatility of the BIEM, several
studies were conducted for the above problem. In each
study, continuous portions of the total acoustic pressure
field in the unswetched, moving frame were calculated.
The numerical methods described in (66-81) were im-
plemented on a Cray YMP computer at NASA Langley
Research Center. For each set of parameters considered
in the studies, the computational time tor both field and
integral 2quation calculations was 2-8 minutes. The
acoustic iields dispiaved are composed of 20.000-
2U.UUU voserver point caiculations.
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In the first sudy, Ny =20 point sources with tip
Mach number M., =1.2, were used to simulate the
fan noise. Four forward flight Mach numbers Mg =
0.0, 0.2, 0.4, and 0.6) were considered. Field calcula-
tions in a plane perpendicuiar to the fan plane and paral-
lel to the duct axis are presented in figure 3a-d.

An examination of the pressure fields inside the
duct reveals that the wavelengths of axial modes propa-
gating in the direction of motion decreases with increas-
ing M. A spectral analysis of the axial wave structure
is beyond the scope of this work. However, the number
of waves per unit length of the dominant axial mode
present can be approximated by visual inspection. In
table 1, these observations are compared to the axial
wave numbers for the first radial mode from classical
spinning mode theory for ducts of infinite length. If
v represents the smailest zero of the function J’ , then
the theoretical axial wave numbers are given by the

formula"
(2
K y

where J, is the m-th order Bessel function of the first
kind. Only propagating modes are considered. Note
that k, <0 corresponds to axial waves traveling trom
the fan face to the inlet. The computed resuits appear to
be in agreement with theory.

It is also noted that the angle berween the line of
peak noise and the duct axis decreases with increasing
Mach number. This agrees qualitatively with the results
of Rice, etal.”.

(82)

2

k =% ~M, £

M, K k,/2= k,/2w
(Theory) {Observed)
0.0 | 240 -1.44, +1.44 -1.5,+1.3
0.2 | 245 -2.47,+0.88 225
0.4 26.2 -4.23, +0.59 -4.0
0.6 300 -7.39, +0.43 -7.3,+0.3

10

Table 1: Propagation Properties for Figure 3 Results
(Mpp =12 Ly =10 m=Ny)

Using the same source configuration as above, the
effects of increasing tip Mach number for fixed flight
Mach number M, = 0.8 were examined (see figure 4a-
d and table 2). With regard to propagation and radiation
charactenistics, similar comments as in the previous
study apply for cases 4a and 4b.

In cases dc-d, the waves moving forward in the
duct are in agreement with the

theoretical resuits.




However, waves traveling toward the exit are present
that are not accounted for in the theory. The modified
frequencies for these two cases are relatively close to
some eigenfrequencies for the interior Dirichlet prob-
lem. That is, the eigenfrequencies are occwrring at the
zeroes ot J . There appear to be resonant radial modes
present. Condition numbers for the linear system (71)
at these frequencies increase significantly. The numen-
cal results are theretore questionable. This phenomenon
has been well studied in the literature and is usually
associated with ficticious interior eigenfrequencies
while solving exterior problems. The interested reader
is referred to the work of Kleinman and Roach' for a
comprehensive theoretical discussion on the removal of
the ficticious eigenfrequencies. [n the present work, the
interior is real and the eigenfrequencies are not neces-
zarily ficticious. Research into the subject is ongoing.
The authors believe that the ill conditioning can be
mitigated by the use of singular value decomposition
methods. We further contend that acoustic treatment of
the duct interior will eliminate the problem entirely.

Mg X k,/2a k,/2=
(Theory) (Observed)
0.5 16.7 none none
0.7 233 -3.06. -6.84 -6.5
0.9 30.0 -1.02,-11.71 -11.5, +3.0
1.1 36.7 -0.04, -15.32 -15.0, +6.0

Table 2: Propagation Properties for Figure 4 Resuits
(M; =08 L,=0.5 m=Ny)

The third example was chosen to demonstrate the
capability of the BIEM to computer higher harmonics
and different portions of the acoustic field (figure 5a-c).
in this case, Ny =16, M. =0.2, and My =1.7.
Sound pressure levels are plotted in an observer plane
two duct diameters beneath the duct. The kinematic
properties and the observer locations were selected to
correspond to those used for tests conducted with the
Langiey ducted propetler simuiator'”. Direct compari-
sons with the results in reference 15 are not possible
because of the simplified source model used for the
BIEM. The results do show, however, the ability of the
BIEM to comgpute the sound field in regions of interest.

Conclusions

The resuits presented here demonstrate that the
BIEM is a versatile and computationally efficient tool
for predicting ducted fan engine noise. Qualitative ra-
diation and duct propagation results can be obtained by
using simplified source models such as spinning point
or line sources. By tuning the strengths of the resulting
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monopoles and dipoles to account for fan loading and
thickness effects, it is believed that the BIEM can pro-
duce results that are useful for quantitative studies.

Other boundary integral techniques have been de-
veloped for the problem of scartering of incident sound
by a thin duct with hard walls'®. The BIEM developed
here is valid for many situations of interest and features
extensive mathematical analyses on the integral equa-
tion kernels. The analvses yield expressions for singu-
lar and logarithmic integral operators that can be evaiu-
ated in terms of known functions and continuous por-
tions that can be evaluated by simple numerical quadra-
ture schemes. This versatility and depth of analysis,
absent in the referenced works, simplify the calculations
considerably.

Realistic duct geomerry is included in the boundary
integral equation formulation. Implementation of an
arbitrary duct profile requires the solution of a system
of two hypersingular integral equations. The inclusion
of a duct centerbody produces another integral equation
with the same properties. Both the duct profile and
centerbody have interior regions that produce ficticious
eigenfrequencies for the Neumann or Dirichlet bound-
ary value problems. This difficulty can be alleviated in
several ways. The method of Burton and Miller'® ap-
pears to be adaptable to the BIEM presented here. Fic-
ticious eigenfrequencies are not present if the engine
components are acoustically lined.

The use of passive noise control techniques are
included in the BIEM. A spatially varying, locally re-
active liner model appears in the boundary conditions.
This property makes the BIEM attractive for active and
passive noise control design studies.
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Abstract

The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is
presented. Governing equations for the BIEM are based on the assumption that the duct is approximated
by a thin, finite length circular cylinder. Acoustic processes are assumed to be linear, generate spinning
modes, and occur in a uniform flow field. A mixed boundary value problem (BVP) is defined that
describes the scattering of incident sound by the cylinder. The boundary condition on the duct intertor
wall allows for an axially segmented locally reacting liner. Using potential theory, the BVP is recast as a
system of hypersingular boundary integral equations for the unknown single and double layer potential
densities. BIEM derivations and solution methodology are demonstrated for the scattering of incident
sound generated by simple sources in a low speed uniform flow field. The key features of the BIEM are
its computational speed and efficiency, versatility, validity over a wide range of frequencies, and the
ability to compute rapidly any portion of the sound field without the need to compute the entire field.
Propagation results obtained are in agreement with the classical results of spinning mode theory for
infinite ducts. Various calculations are presented to illustrate the utility of the BIEM as a tool for

conducting active and passive noise control studies.
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Notation
denotes that a quantity is dimensional when appearing over a variable
axial coordinate of duct trailing edge in stretched, moving frame
axial coordinate of duct leading edge in stretched, moving frame
ambient sound speed

=mM,,, characteristic wave number of m-th circumferential mode
ratio of duct length to duct diameter

circumferential mode number

=V, [¢ forward flight Mach number

= FDb/E tip Mach number

number of fan blades

Eulerian description of total acoustic presshre field
Eulerian description of incident acoustic pressure field
Eulerian description of scattered acoustic pressure field
cylindrical coordinates in stationary frame

duct radius

time

Eulerian description of acoustic velocity field

forward flight speed

axial coordinate in stretched, moving frame

specific surface acoustic admittance on duct exterior (interior)

=/1- M} stretching parameter

™~






K = k/B stretched characteristic wave number
2 ambient density
Q shaft speed (radians/second)

Introduction

The reduction of tonal noise radiated by turbofans is a subject of ongoing aeroacoustics research.
Advanced analytical tools for predicting the sound radiated from engine ducts can facilitate the design of
active and passive noise abatement technology. To be useful in design studies, prediction tools should be
fast, versatile, accurate, valid for a wide range of frequencies and engineering situations, and
implementable on mainstream computer systems. The ability to compute any portion of the sound field
without the need to calculate the entire field is an important attribute in this regard. Computational
approaches such as Finite Element Methods, CFD, and Computational Aeroacoustics lack this property.
Therefore, their usefulness for parametric noise reduction studies is limited.

In this paper, a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine
noise is presented. The work is an extension of the BIEM discussed in reference 1***. The method is
based on the equations of linearized acoustics with uniform inflow, and features analytical and
computational techniques that minimize the consumption of computer resources. We validate the BIEM
by reproducing qualitative propagation results from infinite duct theory. Various computational studies
are presented to demonstrate the effectiveness of the BIEM as a tool in the study of active and passive
noise control.

It is assumed that the engine duct is approximated by an infinitesimally thin, circular cylinder of finite
length. We adopt a scattering approach in which the acoustic pressure field is split into known incident
and unknown scattered components. The acoustic source processes are assumed to generate an incident

pressure field that can be represented by a superposition of spinning modes.
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In a frame of reference moving with the engine duct and in regions of space not occupied by

scattering surfaces, the modal components of scattered acoustic pressure satisfy Helmholtz' equation. An
exterior boundary value problem for the scattered pressure is obtained by including a far field radiation
condition and boundary conditions on the interior and exterior cylinder surfaces. The boundary
conditions allow for hard walls or a locally reacting liner that can be uniform or segmented.

We solve the boundary value problem by expressing the scattered pressure field as a sum of double
and single layer Helmholtz potentials with unknown densities. Application of the boundary conditions to
the layer representation yields a system of one-dimensional, singular boundary integral equations for the
layer densities. For uniqueness, conditions on the densities at the duct leading and trailing edges must be
imposed. The source terms for the system are related to the known incident pressure and its normal and
tangential derivatives. The system of boundary integral equations, edge conditions, and method of
solution comprise the BIEM.

***CITE DIFFERENCES WITH PREVIOUS WORK ON INTEGRAL EQUATION METHODS
FOR DUCTED FAN NOISE PREDICTION - MARTINEZ & THE FRENCH GUYS - NAMELY,

DEPTH OF KERNEL ANALYSIS, SOLVABILITY RESULTS, NOTATION, DESIGN TOOL.

Boundary Value Problem Derivation

We consider an engine fan surrounded by an infinitesimally thin, finite length circular cylinder
translating in the +Z (axial) direction with uniform speed /.. The fan is composed of N, equally
spaced blades and rotates with shaft speed Q. The incident acoustic pressure field generated by the fan
is given. Linear conditions are assumed to apply and the inflow is uniform.

In the analysis that follows, all quantities are nondimensional: length by 7,, mass by p,7,, and time

by 27






Governing Differential Equations

The total acoustic pressure in the sound field is split into known incident and unknown scattered parts
plrw.z0)=plr.w.z.0)+plrv.z1). (1)
In regions of space that contain no scattering surfaces, p. is governed by the homogeneous wave

equation

{;é‘;_lﬁ[,_ﬁ)_if_:_ ﬁJp;:o. (2)
: r 4

Acoustic pressure and velocity are related through the acoustic momentum equation

=77

i
—+Vp'=0. 3
> VP (3)

In a frame of reference moving with the duct, all dependent acoustic variables can be expressed as

linear superpositions of spinning modes. For example, the scattered pressure has the form

plrw.Zt)= 3 P(r.Z)e™ (da)

miNg=1

and the total acoustic velocity 1s written

@(ry.2.0)= S 0"(r.2)e" (4b)

miNg=1
where the stretched, moving axial coordinate Z is given by

V.t
z=2""F0 (5)
B

Incident and total acoustic pressures are written similarly.
Modal amplitudes in the BIEM are calculated term by term. For notational convenience, the
superscript m on the modal coefficients is dropped hereafter.

Define the dependent variables Q, Q,, 0, and V, by

xr.Z)= P(r,Z)e™"* (6a)






Q.(r.2)= B(r.Z)e™"" (6b)
0(r.Z)= P(r,Z)e™"* (6¢)
V(r,Z)=U/[r,Z)e"* (6d)

Combining (4-6) with (2) yields the two dimensional Helmholtz equation

[1 a(rﬁ}r & —mf+xz}Qs:0 (7)
pE

ror( er) oz

for the m-th scattered coefficient. Using (3-6a), the m-th radial component of the momentum equation

(3) can be written as

V4

e M V(r,z):LAAj”P e Mr %(r,z')th (8)

F

—0

If the duct is stationary, then (7) and (8) reduce to

100,01, 8 ™ ilp-g ©)
rér\ or) 8z ro
and
i OP
Ulr,z)=——I(r,z). 10
[(rz)=——-(rz) (10)

Equations (7-10) are valid for points not lying on the stretched duct.

Boundary Conditions

To meet FAA noise certification levels, it is necessary to treat the engine duct with noise suppression
devices. In this work, the duct treatment is modeled by a uniform or axially segmented locally reacting
liner. We consider the case of a hard exterior surface and lined (or hard) interior. To simulate actual
duct treatment, we impose hard wall conditions at and near the leading and trailing edges on the interior

wall.






Let f(r, Z) be an arbitrary field function. Define the surface function f°(Z) by

f(Z)=tlim f(r.Z) Ze(ab).

r—1*

(11)

In reference 2***Myers BC*** it is shown that if and a represents the piecewise constant specific

acoustic surface admittance on the interior, then in the stretched, moving frame of reference, the

boundary modal coefficients of velocity and pressure satisfy the boundary equations
Vi(Z)=0  Ze(ab)
and

iM;IISZ)gz_(e“'K%ZQ*J(Z):O Ze(ab) .

In the absence of flow, the boundary conditions reduce to
Uz)=0  ze(ab).

and
~U (2)+a(z)P (z)=0  ze(ad).

We use the acoustic momentum equation (8) to eliminate the normal velocity from the (12):

[EQ}(Z) 0 Ze(ah),

or
(30 Mia(Z) & [ 570 Loy
‘ [0”"] (2)+ B’ Mipx dZ° (e ¢ )(Z)—o zelal)

and

Je_'EZ X (1,7')dz' =0
ar

Note that (15) is satisfied trivially for M, — 0 and provides no information.

(12b)

(13a)

(13b)

(14a)

(14b)

(13)

The thin duct approximation produces a surface with discontinuous tangents at the duct leading and

trailing edges. Consequently, there are infinitely many solutions to (14-15). For uniqueness, we must

constrain the acoustic pressure at the duct edges. At the trailing edge we impose the Kutta condition
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lim[0"(2)-0 (2)]=0. (16)

For M, >0, the Kutta condition ensures infinite pressure at the leading edge. For physically reasonable

solutions to exist we require the acoustic pressure to be integrable in any region of space about the
leading edge.

The boundary value problem is finalized by specifying the behavior of the acoustic pressure in the

farfield. To ensure that the acoustic field consists only of outgoing waves at infinity we impose the

Sommerfeld radiation condition

p:\/r2+Zz -0

lim \/E(iQ-HKQ):o. (17)
p
Using (1) and assuming that the functions (), and its derivatives are known, satisfy (17), and are

continuous on the duct surface, we rewrite the boundary value problem in terms of the scattered pressure:

16( ¢ & m |, '
l:;—;‘r—[r';)'f' 6722 - r2 +K }Qs =0 (183)
(%rQ_s) (2)= --‘;%(1,2) Z <(a.b) (18b)

(2] () 0 iD]i £ 5 ) -

(18c)
iMia(Z) et & [ et ]‘
-————e"" —|e "r QO (.2 Zelab
ﬁjmrm oZ ) ( )
a 57 0y 7 '__a 7 2 () 7\az 18d
Je > (1,2')dz' = Je > (1,2)dZ (18d)
1im[0;(2)-0; (2)]=0 (18¢)






J

R

0O,

dR < R any region in r — Z plane (18f)

lim \/—p_(c;—%-FiKQxJ:O. (18g)

pz\{f"*Z’ —©
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Boundary Integral Equation Formulation

In this section, we convert the boundary value problem (18a-g) to a system of boundary integral

equations.

Helmholtz Potential Representation

The Green’s function for the two dimensional Helmholtz operator that satisfies the radiation condition

(18g) can be written as

T

1 e—lkR
Glror',Z-2")Y=— | cosmy——d 19
( ) Zﬂf v—dv (19)
0
where
R:Jr" +r'? =2rrcosy +(2-2') . (20)

For an arbitrary surface function f , we define the single and double layer operators, § and d, by the
equations
b
/)r.2)=£(Z)s(r.2-2")az’ (21)

and
df)r.2) = 1(2)d(r.Z -2z, 22)

where the kernels s and d are given by

(r.Z2-2")=G(r.1,Z-Z') (23)
and
drz-7)= —%GT(r,I,Z 7). (24)

The integrals in (21-22) are well defined for points (r,Z ) not on the stretched duct surface.

We define additional field operators by calculating radial and axial derivatives of § and d. Denote

by s, the operator

/X 2) = A1) 2) = [ £(2)s,(r.2 - 2" @25)

where
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-
[Z0)

&(nZ—ZQ. (26)

s(r.Z-2")=
Define the field operators 8,, s,,, d_, d,, d,, and associated kernels in a similar fashion.

Using results from Helmholtz potential theory (reference ***Courant & Hilbert***), the scattered

pressure can be written as a sum of single and double layer Helmholtz potentials.
0,(r.2) =80, )r.2) + d[Q,]r.2) (27)
Equations (18a) and (18g) are satisfied by (27). The layer densities O, and (), are unknown surface

functions. Once the densities are determined, (27) is used to obtain the scattered field at any desired

location. We will show later that (), is related to the jump in the normal derivative of scattered pressure

across the duct surface and Q, is related to the jump in scattered pressure.

Surface Operator Notation

In order to apply the boundary conditions (18b-c) to (27), it is necessary to evaluate directly the
single and double layer potentials and their derivatives on the stretched duct surface. The resulting one
dimensional surface operators have both singular and nonsingular parts.

For Z e[a,b] and sufficiently smooth f, we define the surface operators S and D by

SUX2) = £(2)8(z - 2z 28)
and
Df)2)=[/(2)D(z - 2')az". (29
where the kemnels S and D are given by
S(Z-2)=s(1,Z-2") (30)
and
DZ-2)=d(1,Z-7'). (31)

The operators S,, S,, S,,, D,, D,, D,, and associated kernels are similarly defined.






Singular Kernel Analysis

All of the above kernels are singular for Z-Z" = 0. We list without proof the asymptotic behavior
of the kernels for |Z -Z ’[ << {. The singular portions of the kernels are obtained by local analyses of the
Green’s function (19) and its derivatives. All kernels are written as sums of singular and bounded terms.

Bounded kernels are denoted by the superscript B .

S(z-2)= ——217;1n|2—2' +8%(z2-2) (32)
S(z-2)) :71;1;1|Z—Z'1+Sf(2—2') (33)
S,(Z2-2")= ﬁw;(z-z) (34)
] Hx?—m’)+1
$,.(Z-2")= 22} + = MNzZ-2'|+85,(2-7) (35)
D(z-27)-= -;1;1n|z-z'|+DB(z-z') (36)
D(Z-2")=- 2”(21_ 7 el 1_6:2) s Iz -2+ D?(Z-2') (37)
D,(z-7') :Wzi'—_z)wf(z'z') (38)
D,(Z-Z)= 4”(21_ 77 Gl _32:2) 7 InZ - 2'|+ D%(Z-Z) (39)

The leading behavior for the kernels (32), (33), and (36) is logarithmic. Therefore, the associated
operators are weakly singular. The leading terms for the kernels (34) and (38) are of the Cauchy type.
While the kernels (35), (37), and (39) are of the strongly singular Hadamard type. Integrals with Cauchy

and Hadamard kernels are divergent and must be interpreted in the finite part sense.
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All of the above kernels have the logarithmic portions extracted. Integrations involving these terms

are well defined theoretically but difficult to achieve numerically. This problem is mitigated by the
development of analytical results for the associated operators. Examples of this, as well as analytical
results for the Cauchy and Hadamard terms, are presented in a later section. Calculations involving the

continuous portions of the kernels are performed by straightforward numerical integration.

Layer Continuity Properties

Using the above operator notation, we state well-known continuity properties for the single and
double layers and their derivatives as a field point approaches the stretched duct surface from the interior

or exterior of the duct. For sufficiently smooth f(Z) with Z €(a,b), we have the following results (see

reference ***Courant & Hilbert***):

tmslfYr.2)=S{/2) | (0
limdfYr.2) =% /(2)+Dls¥2) @n
tims, [fYr.2) = %3 £(2)+8.[/)2) (“2)

lnlr;d [fXr.2)=D.[F)2) (43)
lims,[4r.2) =S, [/X2 ()

rli’ln S,/ Xr.Z) =S4, [/)2) (43)

tim &, fYr.2) = % £l df L (2)+D,11)2) | (46)
limd [ f)r.2) =72 “’ f S (2)+D,[fX2) @7)

ro!t

By applying (40-43) to (27) we establish the previously mentioned relationships between the layer

densities and scattered pressure surface quantities.
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0:(2)-0:(2)=-0,(2) )
(Ogs)‘(z)_[cg)(z) =-0(2) (49)

Boundary Integral Equations

Equations (18a-c) and (18g) are replaced by an equivalent system of integral equations for (J, and
@,. Using the operator notation (28-29, etc.) and the continuity results (40-47), the boundary conditions

(18b-c) can be written as

(2148, Jo2)+D,[04D) = -2 (1.2) 2 <(at) (502

BiM,, dZ° BiM,, dZ
) ‘ (50b)
iMia(Z) & | -2
e\ e e
TP

where 1 is the identity operator.

To obtain a unique solution of the system (50a-b), we must establish requirements on the layer
densities at the duct leading and trailing edges. This information is provided by the as yet unsatisfied
BVP equations (18d-f). Applying the layer representation for the scattered pressure to (18d-f) yields

a
Q

je—ii—pZ'{sr[QI](LZ’)+dr[Q2](1’Zy)}dZi — _J‘e_'fl%zl %L(],Z')dZ' s (SSC)

—0

0.(a)=0 . (s0d)

and

le[Q,Kr,Z) +d[Q,{r.Z)|dR < R anyregioninr—Z plane . (50e)
R
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The boundary value problem (18a-g) is thus replaced by the equivalent boundary integral equation

formulation (50a-e). Equations (50a-b) comprise a system of strongly singular integro-differential
equations.

Elaborate techniques are required to solve (50). For clarity, we consider the solution of (50) under
simplified circumstances of practical interest. For a =0 (hard interior wall) in (50b), we obtain the

result Q,(Z) = 0. This yields the classical Neumann boundary integral equation

D [0,2)= —%Q—'(L Z) Ze(ab) (51a)

and auxiliary conditions

a
a I3

[ d [0 2z = —Je"“—rz' L2z . (s1b)
Q(a)=0 . (51c)
J“d[Qz](r,Z))d‘R <® R any region inr — Z plane . (51d)

Note that (51b) is satisfied trivially for M, =0.

The solution of (51) for cylindrical ducts has been studied in the literature recently (references ***-
**x)  The referenced works differ in their derivations, depth of kernel analyses, and solution techniques.
In reference ***AIAA paper***, the analyses and techniques similar to those presented here were
applied to (51). For the first time using boundary integral techniques, continuous portions of the acoustic
field were calculated quickly (several minutes on a PC) and accurately. This was made possible by
applying advanced analytical and numerical methods to the singular integrals in (51).

Also of interest are “small” inflow Mach number situations. Such conditions occur at take-off and

landing for example. Ignoring terms in (50) smaller than (1) forM,. > 0, yields the approximate

system
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(108, Jo)2)+,[e)2) =~ 2(12) 7 e(ad) (522)
{14 Dsl0 o) 42 LYo, - "80002)  zean) o2

***CHECK THIS ONE OUT FOR THE HARD WALL CASE***

S, [0 )ta)+d,[0,)1a")= —%(I.a) : (52c)
Qy(a)=0 . (52d)
J.,S[Q, [r.2)+ d[Qz](r.Z)‘d‘.R < R any region in r — Z plane . (52e)

In (52c) the notation @~ implies the limit as Z approaches a from the left.

In the next section, the solution of (52) will be examined in detail. The validity of the approximate
equations for 0 < M, <04 *** THIS RANGE MAY CHANGE - NEED SOME HARD WALL
' CALCULATIONS TO VERIFY*** is demonstrated in the results section, The solution of the full

equations (50) will be considered in future research by the authors.
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List of Symbols

a axial coordinate of duct trailing edge in moving frame

b axial coordinate of duct leading edge in moving frame

¢ ambient sound speed

k = mN ,M,, nondimensional characteristic wave number of m-th circumferential mode
L, ratio of duct length to diameter

m circumferential mode number

M =}"/c flight Mach number

M., =r,Q/c tip Mach number (based on duct radius)

N, number of fan blades

N, number of liner segments

N ops number of observers for TBIEM3D output

P total acoustic pressure

P m -th circumferential coefficient of total pressure

P incident acoustic pressure

P m -th circumferential coefficient of incident pressure

P scattered acoustic pressure

P" m -th circumferential coefficient of scattered pressure
(row.Z) cylindrical coordinates in frame of reference attached to duct
r, duct radius

r, radial coordinate of spinning point dipoles

t time

)



thrust from fan

duct speed

axial locations of liner segments

= p,)c[._f( Z)-io(Z )] segmented, specific acoustic admittance on interior duct wall

piecewise specific acoustic admittances

1 -

=+ I/- M- compressibility (stretching) parameter

= k/ B nondimensional stretched characteristic wave number
ambient density

segmented, acoustic susceptance on interior duct wall
segmented. acoustic conductance on interior duct wall

shaft speed (radians/second)



Introduction

This document describes the ducted fan noise prediction computer program TBIEM3D (Thin duct,
Boundary Integral Equation Method, 3 Dimensional). The scattering of fan generated noise by a finite
length, infinitesimally thin circular cylinder in a uniform flow field is considered. The program, based on a
boundary integral equation method (BIEM), calculates circumferential modal coefficients of the acoustic
pressure at user specified field locations. TBIEM3D features include versatility, rapid calculations, and
ease of use. Theoretical and computational details can be found in references 1-4.

In a frame of reference attached to the duct, the fan generates spinning acoustic modes. The thrust
component of fan loading noise is apbroximated by a collection of spinning point thrust dipoles. A
precise mathematical representation for the acoustic field due to this configuration has been implemented.
In many cases, TBIEM3D can be easily adapted to accommodate other source fields.

TBIEM3D employs cylindrical coordinates in a frame of reference attached to the engine (figures 1-
3). The coordinate origin is at the center of the fan disc. The fan and duct translate in the +Z (axial)
direction with uniform speed }. N, equally spaced blades comprise the fan. The shaft rotates with
speed Q (figure 2).

The total acoustic pressure in the sound field is split into known incident and unknown scattered
parts:
P'(r.w.Zt)=P(r.w.Z.t)+ P(ryZ1) . (h

Assuming linear conditions, all dependent acoustic variables can be expressed as superpositions of

spinning modes. For example, the scattered pressure has the form

Plry.20)= ¥ Pr(r2)em™ @)

m=—-x

Incident and total acoustic pressures are written similarly. Modal amplitudes are calculated term by term.

The TBIEM3D code must be run separately for each desired mode.



The duct exterior is hard and the interior may be hard or lined. Passive noise treatment is modeled by
an axisymmetric, locally reactive, segmented liner with user specified admittances. The definition of

specific acoustic admittance used by TBIEM3D

a(Z) = p,&(2) - io(Z)] 3)

—im gLl

is consistent with the time factor ¢ in (2). Regions of the duct interior near the leading and trailing
edges are assumed hard (figure 3). Any interior wall segment may also be rigid. These comments are
summarized by the equation

0 Z e[a,Z,]u[ZNl‘,,b]

(4)
a, 2€(2,.2,,) j=1..N,

a(Z)=

BIEM methodology is a three step process: Step 1) A Helmholtz boundary value problem (BVP) for
the modal coefficients in (2) is derived. Step 2) Using layered Helmholtz potentials, the BVP is
converted to a boundary integral equation formulation that features a set of hypersingular integral
equations for the unknown Helmholtz layers. Step 3) The integral equations are solved and the acoustic
field calculated from the Helmholtz potential representation.

The TBIEM3D code is written in the FORTRAN programming language and employs IMSL
mathematical library routines. TBIEM3D should be implementable on any computer that can
accommodate FORTRAN and IMSL. Some code modification may be required. For minimally adequate
computational performance, a Pentium 133 processor (or equivalent) with 32 megabytes of RAM is
recommended.

TBIEM3D input is relatively simple. Geometric, kinematic, and liner parameters are required. If a
source description other than the one described above is desired, then the user must supply FORTRAN
subroutines for the calculation of the incident field and its radial derivative. Output from TBIEM3D
consists of the modal coefficients of the complex pressure components [see equations (1-2)] at user

specified field points. Postprocessing of results is left to the user.
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The key feature of TBIEM3D is the ability to compute any portion of the sound field without the
need to calculate the entire field. Competing methods such as finite differences and finite elements lack
this property. Other positive attributes include reduced consumption of computational resources,
enhanced numerical accuracy, versatility, coupling of radiation and propagation both forward and aft, and
validity over a wide range of frequencies. Consequently, the TBIEM3D code is well suited for
parametric calculations. Many engineering studies of interest can be handled by TBIEM3D.

Questions, comments, and requests for discussions should be addressed to mhd314@aol.com



1)

2)

3)

4)

Limitations and Comments

At present. the TBIEM3D code can treat “small” Mach number inflow. Results obtained for
M > 0.4 may be questionable TBIEM3D with no inflow restrictions will be made available when

complete.

For large values of x, TBIEM3D computational time and storage requirements can increase
considerably. Therefore, at typical fan operating conditions, it is recommended that the user calculate
a maximum of three circumferential modes. Efforts are underway to improve TBIEM3D

performance for high frequencies.

It is well known from the theory of wave propagation in an infinite, hard walled duct that resonance
occurs at certain discrete frequencies. At these eigenfrequencies, the infinite duct problem is
unsolvable. Theoretically, the finite, hard walled interior duct is solvable at all frequencies. [ll-
conditioning in the TBIEM3D numerical system, however, is experienced at and near the infinite duct
eigenfrequencies. TBIEM3D results at these eigenfrequencies show evidence of resonance but
appear plausible. The numerical correctness of TBIEM3D at resonance has not been established.
Therefore users should examine TBIEM3D results carefully when the hard wall interior option is

activated.

For some applications, it may be convenient to place the sources outside the duct. This is easily

achieved with TBIEM3D. The user must have either a >0, b <0, and/or r, >r,.

Since the duct is approximated by an infinitely thin cylinder, the acoustic pressure is discontinuous
across the duct surface. Consequently, evaluation of the acoustic pressure on the duct wall is
ambiguous. It is recommended that if the pressure on the interior duct surface is required, then the

user should place the observer a small distance off the duct toward the interior



Operating Instructions

TBIEM3D operating parameters consist of a one line identifier, output file name and path. and
physical parameters. The code generates one output file containing values of program parameters and the
complex modal coefficients of incident, scattered, and total pressure at user specified field points. The
output file is associated with logical unit 9. Access of unit 9 elsewhere in the calling program can lead to
errors and should be avoided COMMON statements in TBIEM3D should be examined to avoid

conflicts with the user program.

To activate TBIEM3D., the user’s calling program must have the FORTRAN statement

CALL TBIEM3D( ident , outfile, m, Ny, RPM , ry,a, b, r,, T, c, p,, V, (5
, Nyt N Noss — 7 Noss
* Noo {ZJ},=1 ’ {al},:1 + Noss . {rl},;q ’ {Zl},:t )

The notation {x }\ _in (5) denotes a one dimensional array of length N . Variables in the argument list

are described in table 1. SI units are required for dimensional variables.

The TBIEM3D output file contains the case identifier and program parameters followed by N
formatted lines containing the dimensional (pascals) complex modal coefficients of incident, scattered,
and total acoustic pressure. For each observer point, TBIEM3D writes the pressure components

according to the following FORTRAN statements:

WRITE(6,600) r, Z , R[P"]. In[ P"]. Re[ P[], Im P}, Re[P™]. In] P

600 FORMAT(SE11.4)

4



Examples

Three examples are presented in this section to demonstrate TBIEM3D features and usage.
Kinematic parameters were chosen to simulate actual ducted fan engine operating conditions
(M, =040, M,, =122, N,=20, L,=050) The examples differ in the acoustic treatment on
the duct interior. Admittances for the three cases are given below. All calculations were performed on a
Pentium 133 laptop computer with 32 megabytes of RAM. Graphical results displayed here are not part
of TBIEM3D.

For each of the three cases, two dimensional portions of the sound field are computed. Acoustic
pressure and sound pressure level contours for the first modal coefficient are plotted in figures 5-7. The
specific acoustic admittances used for the calculations do not necessarily correspond to actual conditions
but were chosen for demonstrative purposes. Figure 4 contains the FORTRAN calling program that
generated the results for figures 5-7.

Example | Hard inlet and hard exhaust. See figures 5a-b. Three minutes computational time required
for 15000 field points.

Admittance: a(Z)=0 Z €[a,b]

Example 2 Lined inlet (one segment) and hard exhaust. See figures 6a-b. Five minutes computational

time required for 15000 field points.

1-i Z€(0,0475)

Admittance: a(Z)=
0 elsewhere

Example 3 Lined inlet (one segment) and lined exhaust (one segment). See figures 7a-b. Five minutes

computational time required for 15000 field points.

I~i Z<(0,0475)
Admittance:  a(Z)=405 Z e(-0475.0)

0 elsewhere

10



In figures 8a-b. comparisons between the three cases in both the nearfield and farfield are displayed
Sound pressure levels for the first modal coefficient on an arc of 200 field points about the duct center
are calculated. The radius of the arc is ten meters for the farfield example (figure 8a) and one meter for
the nearfield example (figure 8b) and extends from the forward duct axis to the aft duct axis. The results
are plotted to show the effects of passive noise treatment. Calculations required approximately one

minute.
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Variable Description Comments
ident Character*80 variable; case identifier 80 ASCII characters maximum
outfile Character*80 variable; output file name 80 ASCII characters maximum; file path

may be included

m Integer; Circumferential mode number See (2) and limitation 2)
N, Integer; Number of fan blades See figures 1-3; N, >0
RPM Real; shaft speed (revolutions per minute) §| Q = (7 RPM) / 30
rs Real; duct radius (meters) See figures 1-3
a Real; axial coordinate of duct trailing{ See figures 1-2

edge (meters)
b Real; axial coordinate of duct leading{ See figures 1-2

edge (meters)
r, Real; radial location of spinning dipoles §| See figures 2-3

(meters)
T Real; thrust from fan (kilonewtons)
c Real, Ambient sound speed (meters per

second)
o Real, Ambient density (kilograms per

cubic meter)
o Real; Engine speed (meters per second) V/c< 1, see limitation 1)
N Integer; number of liner segments For hard wall interior set N, =0 in

which case limitation 3) may apply

o

Real; axial coordinates of liner segments
(meters)

See (3-4) and figure 3; if N, =0, then
omit,; a<Z <Z_,<b i=1..N,

fa ],

Complex, acoustic admittances (non

dimensional) for segmented liner

See (3-4) and figure 3; if N, =0, then
omit, some segments may be hard, ie.,
a, =0

N ops Integer, number of observers for output 0 <Ny <10°, Large values of N,
can lead to excessive computational time
{ r }‘\'m Real; radial coordinates of observer points | See limitation 3)
Co (meters)
{ 7 }\m Real; axial coordinates of observer points

(meters)

Table 1: TBIEM3D Input Parameters
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Figure 4: Calling Program for TBIEM3D Examples 1-3

C
CHt+++++++++++trrtt++drt bbbt bbb+
c TBIEM3D examples for user document
CH+++++++++++++++++tHt bbbt
c
program myBIEM
dimension Z0OBS(100000), rOBS(100000)
dimension 2liner(100)
complex admit (100}
character*80 ident,outfile
ident = 'TBIEM3D Example #1'
outfile = 'c:\myBIEM.txt'
pref = 2.*10.**(-5.)
nharm = 1
nblades = 20
rpm = 3500.
radiusd = 1.0
zte = -0.5
zle = 0.5
radius0 = 0.95
thrustc = 27.0
sposnd = 300.
density = 0.4
v = 120.

Define observer points for r-Z field
calculations

aa

nz = 150
nr = 100
NOBS = nz*nr
zin = -2.
zmax = 2.
dz = (zmax-zmin)/float(nz-1)
rmin = O.
rmax = 3.
dr = (rmax-rmin)/float(nr-1)
kount = 0
do i = 1,nz
z = zmin+(i-1.)*dz
do j = 1,nr
kount = kount+l
r = rmin+(j-1.)*dr
ZOBS (kount) z
rOBS {kount)
enddo
enddo

[
a

c Example 1: Hard Wall Interior

NL = 0

call TBIEM3D(ident,outfile,nharm,nblades, rpm,
1 radiusd,zte,zle,radius0,thrustc,sposnd,
2 density,V,NL,Zliner,admit,NOBS,ZOBS,rOBS)



Figure 4 (Continued): Calling Program for TBIEM3D Examples 1-3

c********************************************

¢ Begin postprocessing for user document
c graphics - NOT part of TBIEM3D
c*****i*i**i************i****i******t**i*****
open(unit=10,file="c:\fortl0.txt', status=
1l'unknown')
write(10,*)'zone t = "1", i = ",nr,', J = ',nz
rewind (9)
do j = 1,15
read (S, *)
enddo
do iobs = 1,NOBS
read(9,600)zz, rr, res,ais,rei,aii, ret,ait
pmag = sgrt(ret**2+ait**2+1l.e-12)
spl = 10.*aloglO(pmag/pref)
write(10,*)zz,rxr,spl, ret
enddo

c*******&*********i*************i******************

c End postprocessing
c*****************1\'*****i**************i***********

c
e m—— i —
c Example 2: Lined inlet with one segment
e m =
c

NL =1

Zliner (1) = 0

Zliner(2) = 0.475

admit (1) = cmplx(l.,-1.)

rewind(9)

call TBIEM3D(ident,outfile,nharm,nblades, rpm, radiusd,
1 zte, zle, radius0, thrustc, sposnd,density,V,NL,
2 Zliner,admit,NOBS, ZOBS, rOBS)
c**************************i***i********************
c Begin postprocessing for user document
c graphics - NOT part of TBIEM3D
c**t************************i*********i*********i*i*
write(10,*)'zone t = "1", i = ',nr,', j = ',nz
rewind(9)
do j = 1,15
read(9,*)
enddo
do iobs = 1,NOBS
read(9,600)zz,rr,res,ais, rei,aii, ret,ait
pmag = sqrt{ret**2+ait**2+1.e-12)
spl = 10.*alogl0 (pmag/pref)
write(10,*)zz,rr,spl, ret
enddo

C********************-&*****-)r-A-*i*&******&i&************

¢ End postprocessing
C******************s\-************i**t***&**************

c Example 3: Lined exhaust with one segment and



Figure 4 (Continued): Calling Program for TBIEM3D Examples 1-3

c lined inlet with one segment
Cm o e
c
NL = 2
Zliner(1l) = -0.475
Zliner(2) = 0.
Zliner(3) = 0.475
admit (1) = cmplx(.5,0.)
admit(2) = cmplx(l.,-1.)
rewind(9) '
call TBIEM3D{ident,outfile,nharm,nblades, rpm, radiusd,
1 zte,zle, radius0, thrustc, sposnd,density,V,NL,
2 2liner, admit,NOBS, ZOBS, rOBS)

c*i**************i*****************************i**ii***

c Begin postprocessing for user document
c graphics - NOT part of TBIEM3D
Ciii***************************************************
write(10,*)'zone t = "1", i = ',nr,', j = ',nz
rewind(9)
do j = 1,15
read(9,*)
enddo
do iobs = 1,NOBS
read(9,600)zz,rr,res,ais, rei,aii, ret,ait
pmag = sqrt(ret**2+ait**2+1l.e-12)
spl = 10.*aloglO(pmag/pref)
write(10,*)zz,rr,spl, ret
enddo

Cii—iv**i******i****i*************ﬁ****

¢ End postprocessing
c***v&*&************&i*i********&*i**

stop
600 format (8ell.4)
end
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A Study of Noise Radiation from a Two
Dimensional Scarf Inlet

M.H. Dunn and Richard St. John
Old Dominion University, Norfolk, Virginia

1.0 Introduction

The scarf inlet and exhaust have been recommended for the control of the
noise radiation directivity from a ducted fan engine. There has been some
experimental evidence that a scarf inlet does affect the directivity of the noise
radiation pattern from the inlet and therefore, it is a promising passive noise
control tool for aeroengines. Recently a computer code was developed at the
Old Dominion University based on the boundary integral equation method
(BIEM) for noise radiation from finite thin two dimensional ducts which
allows the study scarf inlets and exhausts. The noise source inside the duct is
taken as a point dipole source. We study the effect of the scarf inlet on noise
radiation pattern from the inlet and the exhaust of a short duct with a conven-
tional exhaust. The duct wall is assumed rigid and only one configuration of
scarf inlet is studied. It is shown that the directivity of noise radiation from
the inlet and exhaust is influenced by the presence of scarf inlet over a large
range of frequency. The main part of the present study is for a stationary duct.

However, we present some results at duct forward Mach number of M = 0.4
which indicate that the scarf inlet also influences the noise directivity even
when the duct is in motion.

2.0 The Scarf Inlet

Figure 1 shows the two dimensional scarf inlet used in this study. Note that
the upper wall is longer than the lower wall. Only one configuration of scarf
inlet with conventional exhaust was studied. The design is based on the long-
est and the shortest axial nacelle length of the Langley 12 inch ducted fan
model used in the scarf inlet test. This figure is to scale and the three circles
of radii 0.2, 2.0 and 6.0 (nondimensionalized with respect to the duct width)
indicate the arcs on which the acoustic pressure levels were calculated. The
dipole point source is at the center of these circles and is located at the axial
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position of the rotor center in the model test. The dipole source models the
thrust of the rotor with the dipole axis along the duct axis. The axial position
of the dipole corresponds to the rotor position in the Langley 12 inch ducted
fan model.

3.0 The Acoustic Code (TBIEM2D)

The acoustic code used in this study was developed at the Old Dominion Uni-
versity. It is called TBIEM2D (Thin-duct BIEM 2 Dimensional). The duct is
assumed finite in length, infinitely thin and can be in uniform forward
motion. The interior of the duct can be lined and the two duct walls do not
need to be of equal length. The liner can be segmented. In the examples given
here we have used rigid duct wall option.

The duct propagation and radiation problem is modeled as follows. The
acoustic pressure is written as the sum of the incident and scattered pressures.
The scattered acoustic pressure in the frame fixed to the moving duct satisfies
the convected wave equation which is Fourier transformed in time into a
Helmholtz partial differential equation. The boundary condition for this
equation is obtained from the incident wave and the locally reacting liner
property. The problem is then reformulated as a coupled system of one
dimensional hypersingular linear integral equations with single and double
layer sources of unknown strengths on the duct wall. The radiation condition
is automatically satisfied in the derivation of these equations but additional
conditions are imposed to insure uniqueness and physical validity of the solu-
tion.

The system of the integral equations are solved by the collocation method for
the unknown source strengths of the single and the double layer sources on
the duct wall. The scattered acoustic pressure is then calculated at any point
in the radiation field from integrals on the duct surface whose integrands
depend on the known strengths of the single and the double layer sources.
This is essentially equivalent to using the Kirchhoft formula for moving sur-
faces. The method of finding the scattered acoustic pressure is known as the
boundary integral equation method (BIEM). The scattered pressure is added
to the incident pressure to get the total acoustic pressure at the observer point,

One of the most important advantages of our approach is that the acoustic
pressure can be calculated at any point in the field without the need for calcu-

i
-
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lating the acoustic pressure elsewhere. This is in contrast to the finite differ-
ence and finite element methods which require the gridding of the space
between the duct and the observer position and calculating the acoustic pres-
sure at each grid point as well as at the observer position of interest. Thus the
boundary integral equation method results in a very efficient computation
tool for the acoustic pressure. The code TBIEM2D is run on a PC and has a
simple input for point source excitation. The entire acoustic radiation field
can be computed at a fixed observer time or at many observer times and then
animated to see the propagation of the acoustic waves in the medium as well
as the region of intense acoustic intensity and shadows.

4.0 Scarf Inlet Acoustic Results

We present our results below using nondimensional length and wave numbers
as follows. All lengths are nondimensionalized by the duct width

W = 0.30 m. The nondimensional wave number is defined as k = ®@W/c¢
where ® and ¢ are the radian frequency and the speed of sound taken as 340
m/s. In all the calculations presented. here, the source strength of the dipole
inside the duct is kept fixed. Therefore, the relative levels of the acoustic pres-
sure for the scarfed and conventional (unscarfed) inlet remain unchanged at
the same nondimensional distance from the duct.

Figure 2 presents the directivity of the acoustic pressure level at the distances
0.2, 2.0 and 6.0 from the source and at the wave numbers k = 18 for both the

scarf and conventional inlets at M = 0. Figures 3 and 4 show similar

results at k = 27 and 36, respectively. We first consider the results of Fig. 2 at
k = 18. The circle at the radius R = 0.2 is inside the duct and the directivity of
the acoustic pressure level is clearly very similar to an axial dipole in the free
field for both scarfed and unscarfed inlets. In the inlet radiation field, the scarf
inlet radiation pattern becomes asymmetric with respect to the duct axis with
a slight noise reduction in the upper and lower quadrants at angles of about
60° at radii R = 2 and R = 6. At R = 6, there is a slight increase in the acous-
tic pressure level of the noise radiated from the exhaust in the lower quadrant
from the duct in scarf inlet. At k = 27 and k = 36, there are more lobes in the
inlet and the exhaust radiation patterns of the two ducts. The asymmetry of
the radiation pattern of the scarf inlet, as compared to the conventional inlet,
is clearly visible in Figs. 3 and 4. In the inlet radiation field, there is a reduc-
tion of the noise levels in the upper quadrant and an increase in the lower
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quadrant for the scarf inlet as compared to the unscarfed inlet. This effect is
seen at large angles to the duct axis. There is some small changes in the
exhaust radiation field by the scarf inlet at large angles to the duct axis.

Figures 5 to 7 show the directivity of the acoustic pressure level at three
radial distances from the source and at three wave numbers for the scarf and

conventional inlets at M F= 0.4. The effect of the motion of the duct on the

radiation pattern inside the duct is now much more pronounced than at
M = 0. In the exterior of the duct and for the inlet radiation, there is a

reduction on of the noise level in the upper quadrant and an increase in the
noise level in the lower quadrant for the scarf inlet as compared to the con-
ventional inlet at large angles from the duct axis. More surprising is the
change in radiation pattern from the exhaust for the two inlet designs, partic-
ularly at k = 18. This may have important implication for the a real engine
noise radiation.

As suggested by Dr. Robert Dougherty of the Boeing Commercial Airplane
Group, a study of the relative acoustic power radiated in different quadrants
can be useful in assessing the effect of scarf inlet on the control of noise radi-
ation from ducted fans. We define an indicator of the acoustic power by the

following relation for M = 0:

)2
P (R, y)dy,

Yo+ /2
P =J

Yo

where y, is 0, ©/2, T and 31/ 2 for the first to fourth quadrants, respec-

tively. Note that the first and the fourth quadrants correspond to the upper and
lower inlet quadrants, respectively. In figures 8 to 11, we present

P

20 log [Fu} = Agp; for a large range of values of wave number k in the

s
four quadrants where subscripts u and s refer to the unscarfed and scarfed .
inlets. A positive value of this quantity indicates that the conventional inlet
radiates more acoustic power than the scarf inlet in that quadrant. From these
figures, it is seen that for the range of frequencies considered, the scarf inlet
radiates less acoustic power in the upper quadrant of the inlet and more
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power in the lower quadrant than the conventional inlet. This is clearly seen
in Fig. 12 where we have plotted Figs. 8 and 11 on the same plot. It is seen
that the radiated power in each of the inlet quadrants is a function of the wave
number. Also there is an interesting symmetry with respect to the 0 dB line in
this figure which indicates that the function of the scarf inlet is essentially to
redirect the acoustic power from the upper quadrant to the lower quadrant.
Figures 9 and 10 show the relative acoustic power radiation in the upper and
the lower quadrants of the exhaust. There are both an increase and a decrease
of acoustic power radiation of the duct with scarf inlet as compared to the
conventional inlet depending on the wave number. There is no clear trend
emerging from power radiated from the exhaust in our study.

In Figures 8 to 11, we have shown the condition number of the matrix of the
coefficients of a set of functions used in the boundary integral equation
method. Large condition numbers indicate sensitivity to errors of the inver-
sion of the matrix. except at isolated wave numbers, it appears that the condi-
tion numbers are generally small and the precision of our calculations can be
trusted.

5.0 Concluding Remarks

In this study, we have shown that the scarf inlet has the potential of redirect-
ing the acoustic power into the quadrant with shorter inlet length. This behav-
jor extends to a large range of wave numbers and appears to be also effective
at forward speed. There are also changes in the exhaust radiation pattern
which do not appear to follow a clear trend. These changes require further
studies. We have also shown the usefulness of the boundary integral equation
method code TBIEM2D used in our study. All calculations were performed
on a PC at a short execution time.
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