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Part 1
(NAG3-1723)

MULT!-OBJECTIVE CONTROLLER DESIGN FOR LINEAR SYSTEMS VIA OPTIMAL
INTERPOLATION

SUMMARY

We propose a methodology for the design of a controller which satisfies a set of closed-loop
objectives simultaneously. The set of objectives consists of (i) pole placement, (ii) decoupled
command tracking of step inputs at steady-state, and (iii) minimization of step response
transients with respect to envelope specifications. We first obtain a characterization of all
controllers placing the closed-loop poles in a prescribed region of the complex plane. In this
characterization, the free parameter matrix Q(s) is to be determined to attain objectives (ii)
and (iii). Objective (ii) is expressed as determining a Pareto optimal solution to a vector
valued optimization problem. The solution of this problem is obtained by transforming it
to a scalar convex optimization problem. This solution determines Q(0) and the remaining
freedom in choosing Q(s) is used to satisfy objective (iii). We write Q(s) = (1 Jv(s))@(s) for
a prescribed polynomial u(s). Q(s) is a polynomial matrix which is arbitrary except that
$(0) and the order of Q(s) are fixed. Obeying these constraints Q(s) is now to be “shaped”
to minimize the step response characteristics of specific input/output pairs according to the
maximum envelope violations. This problem is expressed as a vector valued optimization
problem using the concept of Pareto optimality. We then investigate a scalar optimization
problem associated with this vector valued problem and show that it is convex.

The organization of the report is as follows. The next section includes some definitions
and preliminary lemmas. We then give the problem statement which is followed by a section
including a detailed development of the design procedure. We then consider an aircraft
control example. The last section gives some concluding remarks. The Appendix includes

the proofs of technical lemmas, printouts of computer programs, and figures.



PRELIMINARIES

We first give some definitions: R denotes the set of real numbers, R, denotes the set
of nonnegative real numbers, and H denotes the set of proper rational functions with real
coefficients. The transpose of a matrix F' is denoted by E'. If F is a m x n matrix with
entries over a set R, we sometimes denote this by £ € R™*" or simply by E € R, when
the size of E is irrelevant or clear from the context. For a matrix E over R, ||E|| denotes
the euclidean norm of E, i.e., ||E|| = \/tra—ce(ﬁ)-. I and 0 denote the identity and zero
matrices, respectively. For a given set R and matrices A = [a;;] € R™*" and B = [b;;] € RP*",
the product A ® B is called the Kronecker matriz product and is defined as the following

mp X nr matrix:
-

auB alﬂB
| amlB a,m.B
For a transfer matrix G(s) )
A B | mini
i Gis)
C D

denotes a minimal state-space realization of G(s) represented by the dynamical equations:
t = Az + Bu, y =Cz + Du. (1)

Conversely, for a dynamical system as in (1),

A B

R P

-

states that the transfer matrix G(s) satisfies G(s) = C(sI — A)"'B + D. For a,, a; positive
integers satisfying az > a), ‘e; : a3’ denotes the ordered set of integers ‘{a,...,a;}’. Let »
and v, be some ordered sets of integers contained in {1,...,m} and {1, ..., n}, respectively.
Consider A € R™*" for some set R. The notation A,z defines the submatrix of A
containing its rows and columns with indices contained in v; and v;, respectively. The
notation Ay, ) (resp. A..,)) defines the subset of A containing its rows and columns with
indices in v, (resp. ....,m}) and {1,...,n} (resp. v;). A function ¢ : R™*® — R is called
convez if for any A € [0,1] and a; € R™*", i = 1,2 the following inequality holds

d(Aay + (1 = Nag) < Ag(ay) + (1 = N)o(az)
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For i =1, ...,1, consider the (cost) function ¢(K); : R™*® — R. We say that K* € R™*" is

Pareto optimal with respect to the criterion
(¢(K)ly rery ¢(K)l) K € Rmx")

if there does not exist K° € R™*" satisfying

H(KN S (K1, oy H(K®) < ¢(K™)

where strict inequality holds for at least one i € {1, ..., {}.

We will now give three lemmas concerning the concept of Pareto optimality. Lemma 1
states that if the cost functions are the euclidean norms of some vector valued functions
the Pareto optimality is preserved when these cost functions are replaced by their second
powers. Lemma 2 is concerned with obtaining Pareto optimal solutions via scalarization.

Lemma 3 states that the notion of Pareto optimality is preserved under one-to-one and onto

mappings.

Lemma 1 Consider the functions f(K); : R™" — R**! i =1,..,h. K* is Pareto optimal

with respect to
(WFCEN o [ F (KOs K € R™ ™) (2)

if and only if it is Pareto optimal with respect to
(LFCEDN?P I FEORP K € R™R). (3)

Lemma 2 Consider the functions ¢(K); : R™"™ = Ry, i=1,..., h, and arbitrary nonneg-

ative numbers a;, i = 1,..., h. Any solution K* of

4
L ;w K): (4)

is Pareto optimal with respect to
($(K )1, s B(EOni K € R™). (5)

Lemma 3 Consider two sets X and Y and assume that there exists a one-to-one function

g from X onto Y. Consider a set of given functions ¢(K); : X =R, i=1,..,h and define



é(a),- Y —-R,i=1,..,has qs(a)g = ¢(97 (ar)): where g~!(.) denotes the inverse function
of g(.) from Y to X. Then, K* € X is Pareto optimal with respect to

(6K, - 0(K)n; K € &) (6)
if and only if so is g(K*) with respect to
($a, ... B(@)nix € V) (7)

We now give three additional lemmas. Lemma 4 expresses the zero-state unit-step re-
sponse of a scalar transfer function in terms explicitly of various time functions belonging
to different components of the transfer function. Lemmas 5 and 6 consider the convexity of

two particular cost functions.

Lemma 4 Consider A(s) € H, B(s) € H'*™, Q(s) € H™*", and C(s) € H**!. Assume
that there ezists a polynomsial v(s) of order [ such that the (i, j)-th entry of Q(s), denoted by

gij(8), can be written as

1 - . .
q.-,-(s) = v—(a.',,-,;s‘ + a.-‘,-‘,_ls' 1 + ...+ a,;,-,o), t=1,..,m,5=1,..,n. (8)

(s)
Then, there ezists & € RY*™(+1) g scalar time function a(t), and a set of scalar time

functions consisting of mn(l + 1) elements, namely

{fl.O(t)i ey fl.l(t)v f?.O(t)v veey f2.l(t)) erey fmn,O(t)’ veey fmn,l(t)}r

such that the zero-state unit step response associated with the transfer function A(s) +
B(3)Q(s)C(s) can be written as

a(t) + &(fr0(t) .. fra(t) fao(t) .. f2u(t) ... frnnio(t) ... frmmu(t)]'"

Lemma 5 Consider scalar time functions a(t), bi(t), ¢ = 1,...,n which are boundedint > 0.

For a € R'*™ define a cost function ¢(a) as follows:
#(a) = st'1>1‘1)){a(t) + afby(t)... 5. (8)]'}.

The function ¢(a) is conver in a.



Lemma 6 Consider scalar time functions a,(t), ax(t), bi(t), ci(t), i = 1,...,n which are

bounded in t > 0. For a € R'*"™ define the cost function ¢(a) as follows:
ola) = stlig max{a;(t) + a[bi(t) ... ba(t)]’, a2(t) + afci(2) ... ca(t)])', 0}.
The function ¢(a) is conver in a.

The proofs of the lemmas can be found in Appendix A.

PROBLEM STATEMENT

Consider the feedback system in Figure 1 where w;, w; are the disturbance inputs and z,,
z, are the regulated outputs. In general, we want to minimize the effect of the disturbances
on the regulated outputs in the closed-loop system. The output y is the measured output
and u is the control input. The plant G(s) and the controller K(s) are linear time-invariant
finite dimensional systems. The transfer matrix associated with the input/output pair (u, y)
is strictly proper. Let p;, p2, 71, and r; denote the dimensions of the vectors z;, z3, w,
and w,, respectively. For simplicity, we will be concerned with only those plants satisfying
p1 =1, =72 =1, p; = 2. Our discussion can be extended to more general classes of systems
in a straightforward way.

Let a subset P of the left half complex plane be given. This set prescribes the desired
closed-loop pole locations. P is arbitrary except that it satisfies several assumptions made
for technical reasons. First, P is symmetric, i.e., if a is contained in P then so is the complex
conjugate of a. Secondly, we assume that the unobservable and/or uncontrollable modes of
G(s) around the control channel (u, y) are all contained in P. Finally, the number of elements
of P is no less than the order (total number of poles with multiplicities) of the open-loop
plant G(s) and P contains at least one real element.

Let K denote the set of all controllers which satisfy that the closed-loop poles are con-
tained in P.

Some arbitrary time functions
st (t), sT(t), s51(2), shi(t), s33(2), sp(t) (9)

are given. These functions are defined for t > 0 and are continuous in their domain of

definition. It is assumed that they satisfy

sM(t) > sT(2), sM(t) > sTi(t), s2a(t) > spy(t), V¢ >0

5



and
Jim, o1"(t) = Jim, oT°(6) = Jim o31(8) = lim $53(¢) = lim o4(8) = Jim sFy(t) =0
The functions (9) are called the envelope functions. (See below.)

We seek for a controller K*(s) which satisfies the following set of design objectives:

I. Pole placement: We require
K*(s) e K.

II. Decoupled command tracking of step inputs at steady-state: Let C,[K(s)] and C;[K (s))
denote the closed-loop transfer functions associated with the input/output pairs (w, z;) and

(wa, 27), respectively, and define
ei(K) = Iim CiK(9)], ea(K) = i ColK(9)).
The controller K*(s) should be Pareto optimal with respect to the criterion

(lea (K ()1, [le2( K (s))Il; K (s) € K).

III. Minimization of step response transients with respect to envelope specifications: Let
z; be partitioned as z; = [29; zp;)'. Consider a fixed but otherwise arbitrary K € K. Assume

that the closed-loop system is initially at rest and apply the following input:
wy(t) =1, wy(t) =0, Vt > 0.
The corresponding response of z; is denoted by

a(t) ==z().

-

Now, again assume that the closed-loop system is initially at rest and apply the following
input:
wi(t) =0, wy(t) =1, V¢ > 0.

Denote the corresponding response of z;(t) by
ca1(t) = z1(t), caa(t) = 22a(t).

Note that the functions ¢;(t), c21(t) and cy;(t) are bounded in [0, 00), due to the fact that
they are the step responses of stable proper transfer functions. Also notice that ¢,(t), ca(t)

and cyy(t) are functions of K(s); we suppress this for notational simplicity.

6



We define the mazimum envelope violations as follows:

#(K ()1 = sup max{ey(t) - st (), sP(t) = ai(t), 0}, (10)
(K (8))n = sup max{ca1(t) — 531 (t), sy (t) = car(t), 0}, (11)
#(K (s))z2 = sup max{ean(t) - s22(t), s73(t) = cx(t), 0} (12)

The cost function in (10) equals the maximum of the deviation of the closed-loop step
response associated with (wy, z;) from the region upper and lower bounded by the corre-
sponding envelope functions. Similar interpretations can be given for the cost functions in
(11) and (12).

Let a subset K of K be given. This set is not arbitrary. We will give a more precise
description of K in the next section.

Our third objective can now be stated.

We require K*(s) € K and that K*(s) is Pareto optimal with respect to the criterion

(B(K ()1, B(K(5))a1, #(K(s))22; K(5) € K). (13)

AN OPTIMAL INTERPOLATION APPROACH

Let us first consider how to achieve the objectives I and II.

Let
A|lB B
Ci|Du D mmda(s)
_ | C{Dy O

such that B, and B, have r, and r; columns, respectively, and C; and C; have p, and p,
rows, respectively. Let F and H be matrices of suitable dimensions such that the eigenvalues
of Ap := A+ B3F and Ay := A + HC), are contained in P. Let

[ ar -ByF [ B
= 1, B:= : ,C = [ C+ DyuF —DyF ] . (14)
0 Ay B, + HDy,
Define the following transfer matrices

A By | A : N
R1(s) —_— B (:\Lliry) , Rz(s) —_— [ ) (r14liri4r2) } ’
(1:p1,:) Dll(l:p;,l:n) ] (P1+1:p1+p32,2) Dll(p1+l:m+pz,r1+1:r1+r3) )
(15



Ar B,
Ui(s) — , (16)
Citpry + Draipy ) F Dizipryy
A B
Us(s) +#— ] 2 . (17)
Cl(Pl+l:m+m.=) + Dl?(P1+l:px+pz.:)F Dl2(ﬂ+l+1:m+p2.:)
Vi(s) —s [ Ay Bl(:,l:rl) + HDzl(:.l:rl) ] , Va(s) — [ Ay Bl(:,rl+l:rl+r2) + HD?I(:.P1+1:r1+r2)
C, D21(:,1:r1) Gy D2l(:.rl+l:rl+r2)
(18)
Ay -B Ay -H
Tx(s) — | 7 "7 Ty(s)— | O , (19)
F I F 0
Ay B, Ay H
Tn(s) — y Tp(8) — 20
i [ C: 0 J u( G I (20)
A controller K(s) is an element of K if and only if
K(s) = (Tx(s) = Q(3)Tw(s)) " (Tv(s) — Q(s)T(s)) (21)

for some proper rational matrix Q(s) whose poles are contained in P. Moreover, the transfer
function associated with (21, w,) is equal to Ry(s) + U,(s)Q(s)Vi(s) and the transfer matrix
associated with (z7,w;) is equal to Ry(s) + Uz(s)Q(s)Va(s).

Objective II can now be more explicitly stated as follows: Determine a proper rational
matrix Q(s) whose poles are contained in P and Q(0) is Pareto optimal with respect to the

criterion -
(I1R1(0) + U1 (0)Q(0)VA(0) (1, || R2(0) + U»(0)Q(0)V2(0)|1; Q(0) € R) (22)

We attack the problem of determining a Pareto optimal Q(0) by transforming that prob-
lem to a scalar minimization problem. Note from Lemma 1 that Q(0) is Pareto optimal with

respect to the criterion (22) if and only if it is Pareto optimal with respect to the criterion

(I1R1(0) + U1 (0)Q(0)VA(0) (1%, || R2(0) + U(0)Q(0)V2(0)]1%; Q(0) € R) (23)
We solve
min || R, (0) + Uy (0)SVA(0)II* + as[| R2(0) + U(0)SV4(0)|? (24)

8



for any nonnegative a; and oy satisfying a; + a; = 1, and let Q(0) = S* where S* is the
solution of the minimization problem in (24). Defined this way, Q(0) is a Pareto optimal
solution with respect to the criterion (23) via Lemma 2.

The reason for dealing with problem (23) rather than (22) is purely technical. The
removal of the square-root operation speeds up the computation.

The cost function to be minimized in (24) is convex in S. The solution of (24) can be ob-
tained via the fminu function of MATLAB. The constants a; and a3 in (24) let us give differ-
ent weightings to the cost functions [|R;(0)+U/,(0)Q(0)V1(0)|| and || R2(0)+U,(0)Q(0)V5(0)||.

We arrive at the following conclusion:

A controller K(s) satisfies objective II (together with objective I) if (21) is satisfied for
some proper rational matriz Q(s) such that the poles of Q(s) are contained in P and Q(0) =
S*.

It is seen that there is a considerable freedom in designing a controller K'(s) to satisfy
objectives I and II. We will now deal with objective III to make use of this freedom.

Let us define a subset K of K as promised in the previous section. Let v(s) be a polynomial

of order ! such that the roots of v(s) are all contained in P. Define

K ={K(s)| K(s)=(Tx(s) — Q(s)Tn(s))" Ty (s) = Q(s)Tm(s)), Q(s) is proper rational,
Q(s) = (1/v(s))Q(8) for some polynomial matriz Q(s), and Q(0) = S*}

The (¢, j)-th entry g,;(s) of Q(s) can be written as in (8). Note that

110 - Qa0

Q) = ﬁ

-

dm,10 -+ Omno

A bijective map between K and R!*™™,

We will now show the existence of a one-to-one function from K onto R!*™™. This
function will be used to find a Pareto optimal solution with respect to the criteria (13).

From K to Rixmni,
(al) For K(s) € K, define

Q(s) = (Tx()K(s) = Ty ())(Tw(s)K(s) = Tu(s))™" (25)



Each entry of Q(s) is in the form of (8) where ®ijo, t=1,...,m, j=1,.., n, satisfy

a310 - Qingo
=v(0)S* (26)
Xm,10 .- Amngo
(a2) Define @;;, i =1,...,mn, j =1,...,1 as in (38).
(a3) Define a € RI*™™ a5
a= [&1'1 Gy Qgy .Gy Gmn,1 - &m,,"]. (27)

From Rxmnd 45 K.

(bl) Represent o € R*™ a5 in (27).
(b2) Obtain ajjg,i=1,...,m, j =1,..,n to satisfy (26).

(b3) Definea; jk,i=1,...,m,j=1,..,n,k=1,..,lasin (38) in terms of &; ;,1 = 1,..., mn,

j=1,..,1

(b4) Construct Q(s) = {g:;;(s)] via (8). Q(s) is proper rational, Q(s) = (1/v(5))Q(s) for
some polynomial matrix Q(s), and Q(0) = S*.

(b5) Define K(s) as in (21), which is contained in K.

Let g(.) be the map from K to a € R'*™ defined via (al)-(a3). It is not difficult to
show that g(. ) is one-to-one and onto. The inverse map g=!(.) of g(.) is given by (b1)-(b5).

Let us now obtain equivalent representations of the cost functions in (10)-(12) in terms
of a parameter over R}*™H

Partition Ry(s) and Us(s) as Ry(s) = [Rai(s) Raa(s))' and Uy(s) = [Uky(s) Uka(s)]'. Then,
c1(t), cai(t), and cpa(t) are the zero-state unit-step responses associated with the transfer
functions Ry(s) + Ui(s)Q(s)Vi(s), Ra(s) + Un(s)Q(s)Va(s), and Ry(s) + Usa(3)Q(s)Va(s),
respectively.

Write the (7, j)-th entry ¢;;(s) of Q(s) as in (8). Define & as in (39). From Lemma 4,
it follows that there exists scalar valued time functions a,(t), i = 1,2,3, and vector valued

time functions f;(t), i = 1,2, 3, each of dimension 1 x mn(l + 1), such that
ci(t) = a(t) + afi(t), ca(t) = a(t) + afolt), caa(t) = as(t) + afa(t), t >0 (28)

10



From the constructive proof of Lemma 4, one can easily obtain the exact expressions of

the time functions &;(t), and fi(t), i = 1,2,3. Note that

C-21,0 &mn-m+1.0
Q(0) = (1/v(0))

&mlo “ee C-rmn‘o

That is, the elements &;p, ¢ € {1,...,mn} are fixed to satisfy Q(0) = S*. Define a vector a
in R'*™ according to (27). Observe that « is constructed from & by deleting its entries
corresponding to &, i € {1,..., mn}; « represents the free elements of Q(s).

We then rewrite (28) as
Cl(t) = al(t) + C!fl(t), Czl(t) = az(t) + afz(t), sz(t) = as(t) + af:;(t), t Z 0 (29)

for some scalar time functions a;(t), ¢ = 1,2,3 and vector valued time functions f;(t). The
explicit expressions for a;(t) and fi(t), ¢ = 1,2,3 are omitted. They can be obtained from
a;(t), and fi(t), i = 1,2, 3 using the definition of a.

We define the following cost functionals mapping R}*™ to R,

é(a)1 = ¢(g7 ()1, d(@)n = ¢(g7 (a))a1, B(@)22 = &g~ (@))22-
For K(s) € K,
(K (s)1 = d(g(K ()1, d(K(8))n = $(g(K(5)))21, H(K(3))22 = S(9(K(5)))22

and, via Lemma 3, a controller K(s) is Pareto optimal with respect to (13) if and only if

g9(K(s)) is Pareto optima.l;rith respect to
(#(a)1, d(a)a, d(@) i @ € RM*™™) (30)

This transforms the problem of finding a Pareto optimal controller with respect to (13) to
that of finding a Pareto optimal vector in R*™™ with respect to (30). By Lemma 6, each of
the cost functionals ¢(a);, ¢(a)a1, and ¢(a)s; is convex in a. Since the linear combination of
convex functionals is also convex, for any positive numbers Ay, Aj, A3, satisfying Ay + A2+ A3 =

1, the cost functional
¢(a) := \d(a)y + Aad(a)a + Asd(a)n (31)

11



is convex in a. The numerical issues concerning how to find a* minimizing (31) are not
considered in this report. Assuming a numerical procedure is available to obtain such an a*,
we summarize the design procedure as follows:

Step 1. Determine the matrices F" and H such that the eigenvalues of A+ B, F and A+ HC,
are contained in P. Determine 4, B, C, Ry(s), Ru(s), Ui(s), Ua(s), Vi(s), Va(s), Tx(s),
Ty(s), Tn(s), Tm(s) according to (14)-(20).

Step 2. Determine the weighting elements @; and a; according to the design requirements,
e.g., desired trade-offs between the channels and solve the scalar optimization problem (24)
for S*.

Step 3. Obtain the time functions a;(t), fi(t), i = 1,2, 3. Determine the weighting elements
Ai, £ =1,2,3. Using the result of scalar optimization problem (31) obtain a Pareto optimal
a with respect to (30). Let a be represented as in (27).

Step 4. Obtain ay 9, ¢ =1,...,m, j = 1,...,n, from (26) and @ijet=1,..,m j=1,..,n,
k=1,..,1, from (38), in terms of &, i = 1,...,mn, j =1, .., 1.

Step 5. Using a;,;x construct a stable proper matrix Q(s) = [¢;(s)] according to (8).
Step 6. Finally, let

K*(s) = (Tx(s) = Q()Tw(s)) ™ (Ty (s) = Q(s)Twm(3)).

I*(s) satisfies objectives I-III simultaneously.

DESIGN EXAMPLE

Consider Figure 2. TheSystem represents the simplified lateral/directional dynamics of a
very large four-engined passenger aircraft at a particular operating point at high altitude and
high longitudinal speed. (See Chapter 10.6.5 of McLean, Automatic Flight Control Systems,
1990). w, and w, are the reference inputs for the yaw rate and bank angle commands,

respectively. z, is the yaw rate error, i.e.,
z1 = wy — yaw rate,
21 is the bank angle error, i.e.,
291 = wp — bank angle,

12



and zj; is the slip angle. We denote the yaw rate, bank angle, and slip angle by r, ¢, and
v, respectively. The control input u is composed of the aileron and rudder angles (6, and
8., respectively) and the measured output vector y is composed of r, ¢ and the roll rate p.
(p = ¢.) The states of the linear system are r, ¢, p, and 7.

[t is desired to design a controller which yields asymptotic yaw rate command tracking
and bank angle command tracking for step inputs while the slip angle is isolated from the
bank angle command at steady state. That is, letting € denote a very small number, the

transfer matrix from [wy w)’' to [z; z21 222 should be equal to

€ X
X £
X €

as s — 0 where we do not care the entries marked by x. Expressing this design objective
in terms of standard H., or H; control problems is difficult because only the (block) main
diagonal elements of the closed-loop transfer matrix are being minimized.

We design a controller to achieve objectives I and II. We have developed a computer
program implementing steps 1 and 2 above (Appendix B). The set of desired closed-loop

poles is chosen as
P={-08,-19,-1.5+27;,-13,-1,-1.7+ 2.75}.

The controller minimizes the magnitudes of the transfer functions associated with the pairs
(wy, 21), (wq, 221), and (wo, 233) at 8o = 0, 8, = 27/5jrad/s(= 1.256j rad/s), and s; =
2w /3jrad/s(= 2.093j rad/s).

We are looking for Q(so), Q(s1), and Q(s;), satisfying that Q(se) is Pareto optimal with

respect to

(I1R1(30) + U1(50)Q(s0)Vi(0)ll, [| R2(30) + U2(s0)Q(s0)Va(s0)ll; Q(0) € R),  (32)
Q(s1) is Pareto optimal with respect to

(1R1(51) + Ur(s1)Q(st)Vi(s1)ll, l| Ra(1) + Ua(1)Q(s1)Va(s)l|; @(s1) € R),  (33)
and Q(s) is Pareto optimal with respect to

(I|R1(82) + Ur(52)Q(s2)Va(s2)ll, || Ra(s2) + Un(52)Q(s2)Va(2)I: Q(s2) € R).  (34)

13



We define the scalar optimization problems in (35), (36), (37) associated with (32), (33),
and (34), respectively:

min_(on[|R1(s0) + U1(5)Q(s0)Vi(s0)[] + 2l Ra(s0) + Un(30)Q(s0) Va(s0)|]), (35)

Q(s0)ER
leli)gR(QIHRl(sl) + Ui(s1)Q(s1)Vi(s1)l] + aal|Ra(s1) + Ua(81)Q(81)Va(s1)|]) (36)
Q&i)le],k(al“Rl(sz) + Ui(s2)Q(s2)Vi(s2)I] + 2|l Ra(82) + Ua(32)Q(s2)Va(s2)]) (37)

After obtaining minimizing solutions Q*(so), Q*(s1), and Q*(s;) to (35), (36), (37), respec-
tively (these are Pareto optimal solutions of (32), (33), (34) via Lemma 2), we determine
a stable rational matrix Q(s) which satisfies Q(s;) = Q*(s;), i = 0,1,2, and obtain the
conroller K(s) = (Tx(s) — Q(s)Tw(s)) " (Ty (s) — Q(s)Tu(s)).

Figures 3-14 show the magnitude and phase plots of different controllers which were
obtained for different a;, a; values. Figures 3-5 correspond to a; = 0, ay = 1, figures 6-8
correspond to a; = 0.1, a3 = 0.9, figures 9-11 correspond to a; = 0.9, ag = 0.1, and figures
12-14 correspond to a; = 1, ap = 0. It is seen that when a; and a4 are both different than
zero, it is possible to achieve satisfactory tracking at steady state for both of the channels
(w1,21) and (w3, 23). If @y or a3 is zero, the corresponding channel has very poor tracking
performance, due to the fact that no optimization is made with regards to that channel. It is
also seen that a satisfactory tracking performance cannot be guaranteed for the frequencies
other than sq, s, and s,.

Since no optimization has been made concerning the transient characteristics, the tran-
sient behavior of the step responses are unsatisfactory. For example, Figure 15 shows the
step responses of the transfer functions associated with the input/output pairs (wy, z2,) and
(w3, 222). The overshoots a.:e extreme for both responses and necessitate the shaping of Q(s)

for good transient behavior.

CONCLUDING REMARKS

We have proposed a method for the design of a controller to achieve multiple closed-loop
objectives. With this method, it is possible to achieve pole placement and to minimize the
norms of particularly chosen closed-loop transfer functions at steady state. This method
offers an alternative to standard Hy, and H; controller design methods especially for those

problems where the steady-state decoupling of specific control loops is considered.

14



Although we have shown that the optimization problem (31) is convex, it is yet unclear
how to solve that problem numerically. One possibility is to use the generic optimization
programs of MATLAB. Another possibility is to develop a specific optimization algorithm
tailored to this problem. The computation time may be a possible difficulty. At each
iteration, the program should compute the value of the cost function. This amounts to
computing the maximum values of various step responses of the closed-loop system. As the
order of the Q(s) increases, the number of parameters to be determined will also increase.

Consequently, the computational difficulties may become more complex.
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APPENDIX A-PROOFS OF TECHNICAL LEMMAS

Proof of Lemma 1. We will prove only the (If] part. The [Only If] part can be proven
similarly.

Let K* be Pareto optimal with respect to (2). If K* is not Pareto optimal with respect
to (3) then there exists K such that [|f(K°);||* < [|F(K)i||? for i = 1,...,h where at least
one of the inequalitites, say [|f(K°)||* < [|f(K)a,||% is a strict inequality. This implies
that || f(K°)ll < JIf(K)ill for i = 1,..., h with ||f(K°)al| < [If(K)n,|| and contradicts the
fact that K* is Pareto optimal with respect to (2).0
Proof of Lemma 2. If K* is not Pareto optimal with respect to (5) then there exists K°
such that ¢(K°); < ¢(K*);, i = 1,..., h where at least one of the inequalitites is a strict
inequality. Since each «; is nonnegative, this implies that oy ¢(K°); < ai¢(K*);, i =1,..., Ak
where at least one of the inequalitites is a strict inequality. Consequently,

i a¢(K°) < il aid(K*)i,
which contradicts the fact that K* is a solution of (4).0
Proof of Lemma 3. We will prove only the [If] part. The [Only If] part can be proven
similarly.

Let K* be Pareto optimal with respect to (6). If g(K'*) is not Pareto optimal with respect
to (7) then there exists a® satisfying ¢(a®); < ¢(g(K*))i, i = 1,..., h where at least one of
the inequalities is strict inequality. By the definition, this implies ¢(g'(a®))i < ¢(K*);,
i =1,..., h where at least one of the inequalities is strict inequality. Consequently, there is a
contradiction.0

Proof of Lemma 4. Since B(3)Q(s)C(s) is a scalar, one can write
B(s)Q(s)C(s) = (C'(s) @ B(s)) vec(Q(s))

Let
[di(3) d2(3) ... dma(s)] := C'(s) ® B(s)

We will now define a collection of mn(l + 1) elements in R.

For k € {0, ...,{},
Gre = a1k - Gmk = Am,1ky Emalk = Q12,6 Eme2k = 0225 Gmad e = X32.k) -0 E2mk = Om 2.4+
vy Ampemelk = Ay nky -y Amnk = Qxm n k-

(38)
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It holds that
"d (8)

(C'(s) ® B(s)) vec(Q

-5

uma

Fori € {1,..,mn}, k € {0, ...}, we let

1 (jw)kdi(jw)ej”t
fialt) = 27 / v(jw) jw
We also define »
_ _1_ ® a(jw)el*
alt) = 27r/- W

Then, the zero-state unit step response associated with the transfer function A(s)+B(s)Q(s)C(s)

is equal to
mn |
a(t) + D) @isfik(t) = a(t) + &[fro(t) .. fra(t) fr0(t) .. fou(t) - Frmno(t) - frmna(t)]’
=1 k=0

where

&= [01'0 Qb g...G21..-Amng .. &mn.l]- (39)

This completes the proof.0
Proof of Lemma 6. For convenience, define b(t) = [b(¢)...b.(t)]’. For A € [0,1], oy €
R*" and a; € RY*"

¢(Aar + (1 = A)az) = supyzo{a(t) + (Aar + (1 = A)az)b(t)}
= supe>o{(A + (1 = A))a(t) + (Aay + (1 = A)az)b(t)}
= sup,yo{A(a(t) + a1b(t)) + (1 — A)(a(t) + a2b(2))}
< sup,o{Aa(t) + aib(t))} + supeyo{(1 — A)(a(t) + a2b(t))}
T Asupgsofa(t) + a1b(t)} + (1 = A) supyo{a(t) + azb(t)}
= Ad(ay) + (1 = A)o(aq)
This completes the proof.0

Proof of Lemma 6. For convenience, define b(t) = [b,(2) ... ba(t)}', c(t) = [c1(2) ... ca(t)]"

For any a,
¢(a) = max{stgg{ax(t) + ab(t)}, S.‘iop{“’(t) + ac(t)}, 0} (40)

Consider X € [0,1], & € R'*", and a, € R!*".
Case 1: Assume ¢(Aay + (1 — N)az) =0
In this case, it is trivial to see that ¢(Aay + (1 — A)ay) < Ad(a) + (1 — A)o(az).
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Case 2: Assume
#(Aay + (1 = A)ay) = Sé’op{a‘(t) + (Aay + (1 = A)ag)b(t)}.
In this case, Lemma 5 implies
(Ao + (1 = A)ag) < Ai‘;g’{‘“(t) +apb(t)} + (1 - A) S;lzlop{a.l(t) + azb(t)}
From (40) one can write
/\Stlzlop{ax(t) + a1b(t)} < Ad(ar), (1~ /\)S;gg{ax(t) +@b(t)} < (1 - A)g(as).
From (41) ar-xd (42),
d(Aar + (1 = Aaz) < Adan) + (1 = A)¢(ay).
Case 3: Assume
d(Aa; + (1 = Nay) = S:lzlg{ag(t) + (Aay + (1 = A)ag)e(t)}
In a similar way to Case 2, it can be shown that
¢(Aan + (1 = Aaz) < Ad(ar) + (1 — A)g(az).

This completes the proof.O
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APPENDIX B-SOFTWARE IMPLEMENTATION

We describe the software implementation of the steps 1 and 2 of the procedure.

The system is created in XMATH using SystemBuild. The mathematical model of
the state-space system is generated in XMATH using the script function parti7.ms. The
data needed for the optimization problems (35), (36), and (37) is transferred to MAT-
LAB via an executable program called conv. The source code of conv is a C program
called col.c. The MATLAB program cono3.m defines various variables to be used with the
MATLAB programs qigen.m, q2gen.m, and q3gen.m which solve the convex optimization
problems (35), (36), and (37), respectively. The MATLAB program interpol3.m deter-
mines a stable rational matrix Q(s) satisfying Q(s;) = Q*(s;), i = 0,1, 2, where Q*(sq),
Q*(s1), and Q*(s;) are the solutions of (35), (36), (37), respectively. It also converts the
Q(s) data to a XMATH readable format. The XMATH file oku.ms generates the con-
troller K(s) = (Tx(s) = Q(s)Twn(s)) " (Ty(s) — Q(s)Tr(s)) based on Q(s). Finally, this
controller is substituted in a simulation block in SystemBuild and the simulations are per-
formed. The following pages include the printouts of programs parti7.ms, col.c, cono3.m,

qlgen.m, g2gen.m, g3gen.m, interpol3.m, oku.ms and the MATLAB subroutines stac.m

and ogmen.m.
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cono3.m



qlgen.m



q2gen.m



q3gen.m
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Figure 3: Magnitude and phase plots of the transfer function from w; to z;. (a3 =0,a; = 1.)
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Figure 4: Magnitude and phase plots of the transfer function from w; to z3. (q =0,

Q = 1)



Gon [dB)

-40
200

Phose [deg)
o
1 |

-100

~208 7 . 0.1 —— — —o
Frequency [rod/sec)

Figure 5: Magnitude and phase plots of the transfer function from w; to z33. (a7 = 0,

Qi = 1)
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Figure 6: Magnitude and phase plots of the transfer function from w; to z;. (q = 0.1,

Q; = 09)
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Figure 7: Magnitude and phase plots of the transfer function from w; to z33. (a1 = 0.1,
Qp = 09)
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Figure 8: Magnitude and phase plots of the transfer function from w; to 233. (a; = 0.1,
Q = 09)
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Figure 9: Magnitude and phase plots of the transfer function from w; to z;. (ay = 0.9,
Qp = 01)



20

\

Gain [a8)
‘s
\

-20

-3

-40

p
-100

85 o.f ' x ]
Frequency (rod/sec)

Figure 10: Magnitude and phase plots of the transfer function from w; to z3;. (ay = 0.9,
Qz = 01)
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Figure 11: Magnitude and phase plots of the transfer function from w; to za2. (a1 = 0.9,

(0 4] =01)
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Figure 12: Magnitude and phase plots of the transfer function from w; to 2. (o = 1,
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Part 2
] (NAG3-1723)
Computational Methods for
Strongly Stabilizing H* Controllers

1 Introduction

In this report several research directions are described for developing computational methods
to obtain stable H* controllers for aircraft dynamics. The proposed techniques are based on
the results of the PI's research performed for the NASA grant no. NAG3-1723.

Recall that an important motivation behind stable (i.e. strongly stabilizing) controller
design is reliability against faults in the measurements. Also, from the implementation point
of view, it is practically impossible to test an unstable controller in open loop. A necessary and
sufficient condition for the existence of a strongly stabilizing controller is the parity interlacing
property (p.i.p.) (1, 2]. There are procedures for constructing stable controllers which stabilize
a given plant, (3, 1, 2]. But the problem of finding a (sub)optimal one, in the sense of H*,
is currently open. Some promising results appear in [4] (see also references therein) on the
H? version of this problem. The effects of weight selection on the stability of the optimal H*™
controller for SISO plants have been studied in (5].

The results of [6], [7] and [8] can be used in order to obtain a parametrization of all subop-
timal H* controllers. Most commercially available softwares (e.g. robust control modules of
MATLAB and MATRIX x) generate the so-called “central controller” of [7]. This research is
about finding a stable controller in the parametrization of all suboptimal H® controllers. For
a given admissible H*® suboptimal performance level the central controller may be unstable,
but there may be stable controllers in the set of all suboptimal controllers.

The rest of this report is organized as follows. In the next section stable H*® controller
design problem is defined and current research findings are summarized. Then, in Section 3 an
algorithm for interpolation with outer functions is described in connection with stable controller
design. Another approach, which uses genetic algorithms (GAs), is described in Section 4. The
search algorithms reported in Sections 3 and 4 are promising research directions determined in
the project NAG3-1723. This is an ongiong research with a continiuing support from NASA
Lewis Research Center (under a new grant no. NAG3-1826).
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2 Stable H™ controller design

2.1 Standard problem set-up

The so-called “standard H* control problem” deals with the system shown in Figure 1. The
system equations are assumed to be given by the following

Ht) = Az(t)+ Biw(t) + Bau(t) (1)
z(t) = Cyz(t) + Dnw(t) + Drau(t) (2)
y(t) = Cuz(t) + Dayw(t) + Daau(t) (3)

where r represents combined states (states of the plant and the weights) in the system, and com-
ponents of w are the exogenous signals (reference inputs, disturbances, measurement noises).
The optimal H* problem is to find a feedback controller K (whose input is y and output u) so
that closed loop system is stable, and the worst energy amplification from w to z is minimized.
This problem is equivalent to finding a stabilizing controller which minimizes ||T;y (|0, Where
T:w(8) is the closed loop transfer function from w to z. The suboptimal X control problem
is to find a stabilizing controller so that ||T;ulloe < 7, for a specified performance level v.

2.2 Controller formulae

The formulae of [6, 7, 8] for H* controllers, which satisfy a certain specified performance level

~, is given by

T = AZe+ Biey + Bch
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Figure 2: Suboptimal H* controllers

¢t = CieZe+Dyy+ Diag
r = CZcIc+D21y

where A, Bic, Bae, Cies Cacy D11, D12, D2y are computed from two algebraic Riccati equations,
and ¢(t) is generated by a transfer matrix Q(s), whose input is r(t), with Q € H*™ (that is
Q must be stable) and ||Qllcc < 7. Obviously, there are infinitely many choices for Q(s) and
hence there are infinitely many suboptimal controllers. Implementation of this controller is

shown in Figure 2.

In particular, one can choose Q(s) = 0, this gives the “central” controller. Note that the
central controller is stable if and only if A is a stable matrix (i.e. all the eigenvalues of A,
have strictly negative real parts). Whereas, stability of a controller which is obtained from a
non-zero Q(s) depends on Zc, By, Cac and Q(s).

2.3 A BMI approach

Note that if a state space realization of Q is taken as

T, = AgTq+ Bgr

g = Cyzqg+ Dyr



then the overall H® controller is

{ Zc } = A+ B2chCZC B2ccq [ Ie J + [ Bie + Bchan
Zq B,Cy. Ag || 24 B,Dy
~ Afk >4 - BVK 4
) r
u = .Clc + DquCu f)lch] ;'c + SDH + DquDn)‘y
R = o | Zq >

The H* controller is stable if and only if

(i) Ag is stable, i.e. all eigenvalues of Ak are in the open left half plane, and

(ii) Q(s) parametrizing the controller is stable (i.e. A, is stable), and ||Q||oo < 7.
These conditions are equivalent to the following.
(i) A is stable if and only if there exists P such that P = PT > 0, and
ARP+PAg <0
(ii) Q is stable with ||Q|lcc < 7 if and only if there exists P, such that P, = PqT > 0, and
AgPy+ PyAq = (PyBy+ C]Dq)R™\(P;By + CTD,)T < 0, where R=DIDy ~~*I <0
or equivalently

ATP,+P,A, PB, CT
BTP, -1 DT |<o
C, D, -

Using these equivalent conditions the following bilinear matrix inequality (BMI) optimiza-
tion problem can be posed for finding stable %* coatrollers:



Initialize P, Pq (A

Search for Q

| Terminate Q

Search for P, Pq
A<0 D>—Y—»d Termi
? erminate Q
N
min A
subject to A}}P + PAg - AI'<0
0< P+ Al
ATP + PA, PBy CT
T T -

Bq P, o | Dq AI <0
0< P+ Al
0<A+1

If there exists A < 0 the problem is solved. An alternating optimization method is used
with the LMI (linear matrix inequality) toolbox of MATLAB to search for feasible solutions
to this optimization problem. Note that for P and P, fixed we have LMIs in the variable
Q; similarly when Q is fixed we have LMIs in the variables P and P,. A flowchart of the
proposed search is given above. This algorithm has been tested on numerical examples for
aircraft control problems (tracking and gust alleviation problems defined in [9]). Depending
on the realization of the central controller, the algorithm may or may not find a feasible stable
H* controller. Optimal P and P, found from this approach tend to be ill conditioned for the

numerical examples considered in this study.



The BMI optimization method described above tries to find a stable H> controller as
follows: first some arbitrary positive definite P and P, are chosen, then ) is minimized, and
the corresponding Q is determined, if A < 0 we have a solution. In the next step, for the Q
found before, we search for P and P, and check A < 0, if not, for this P and P, find a new
Q, and iterate until a feasible solution is found. Obviously, there is no guarantee that this
program will terminate with a feasible solution. A similar method which uses coupled LMIs is
also proposed in [12]. But their method is also conservative and fails to find a solution for the

aircarft control problems studied here.

Solutions to BMI optimization problems are currently investigated by several researchers
see e.g. [13] [14] and references therein. However, an efficient solution procedure has not been
found yet. In fact it has been shown that such problems are NP-hard [15], meaning that it
is rather unlikely to find a polynomial time solution. Hence one is restricted to conservative

search techniques like the one proposed above.

3 Interpolation with outer functions

The structure of Ak given above shows that the 7> controller is stable if and only if Q is a
stable “controller,” with ||QJlc < 7, stabilizing the “plant” G¢ := (A, Bz, Cac). Given Gg,
all stable controllers Q stabilizing G¢ can be parameterized by finding all outer (minimum
phase) functions satisfying certain interpolation conditions. See [10] and [11] for the details.
In this research a Matlab based program will be coded to generate this parameterization. Then,

an optimization will be performed on the free parameter to find a feasible Q, which satisfies
1Qlles < 7-

Key steps to be followet—l— are as below. For simplicity the SISO case is described here, the
MIMO case will be considered in the actual research. Let p;,...,pe be the right half plane
poles of G¢ and z,..., z; be the right half plane zeros of G¢. Then, G¢ = m,C,/mq where
My is inner with zeros z;'s, my is inner with zeros p;’s and C, is outer. When Q is stable and
Q stabilizes G¢ we have Sc := (1 + GcQ)~! = m4S, for some outer S, such that

So(z.-) = l/md(z.-) t= l,. .e ,k.



Once such S, is found, we can compute Q as

S;t-my
mnCo '

Q=

But for the solution of stable 7 countrol problem one also needs ||Q||co < 7. Therefore, the
problem is reduced to finding an outer function S, such that

(i) So(zi) =1/my(2z;) fori=1,...,k and
(ii)) 1C7HST! = malloo < 7.
In [10] and [11] the problem of finding S, satisfying (i) and having ||S,/lcc < p has been studied

and all solutions are parameterized by appropriately modifying the usual Nevanlinna-Pick
algorithm. Now, a solution to stable H control problem can be investigated by:

Task 1. implementing the above mentioned parameterization for a large p, and

Task 2. searching for an element which satisfies the condition (ii), from this parameterization.

4 Genetic algorithms for stable H* controller search

4.1 General description

Genetic algortihms (GAs) are a class of heuristic search methods, just like simulated annealing.

GAs borrow ideas from the mechanisms of evolution and natural genetics.

Genetic Algorithms are inspired by the natural search and selection processes leading to
the survival of the fittest fidividual. They are stochastic search processes directed toward
increasing the fitness of an individual, and unlike some gradient search techniques which may
get stuck in local solutions, due to their stochastic nature GAs can locate the globally optimal
solutions. GAs borrow some terminology from biology to describe the elements of a GA.
Beginning from the most basic, the elements that make up the setting for GA are:

e GENE : A gene is a single digit number. Depending on the base in which the numbers
are described, it is either an element of the set {0,1,...,9} (Decimal representation), or

the set {0,1} (Binary representation).



e CHROMOSOME : A chromosome is a string of genes;

Ex : 1232378682, 3247866820012, etc. (Decimal rep.)
1001011010, 101101011011, etc. (Binary rep.)

Chromosomes are encoded forms of the parameters (matrices, vectors) that the GA is
searching for. Each single chromosome is a candidate parameter collection, which can

solve the optimal search problem.

e TRAIT : A trait is a decimal number. When chromosomes are decoded, each entry of
the parameter matrices is called a trait.

e« MEMBER : A member(individual) is the object that GA is trying to solve for. It is
represented by its chromosome. Chromosome determines a member’s traits, which in

turn determine the member.

e PARENT : A parent is a member which participates in the creation of a new member.
(The operations performed to get the new member will be discussed later.)

o POPULATION : A population is a set of members. During its operation GA works on
a set of candidates, which are the members of the population.

o FITNESS : Fitness is the measure of suitableness of the members. To find the optimal
solution to the search, the objective of GA is to maximize the fitness, i.e. optimal solution
of the search is the element which is found to have the largest fitness value.

Coding Scheme :(for decimal representation)

-'.‘592’&.‘5%0.00..00%..0.0...
v TS

trait : (+/-)0. B BB, R + 10 B2

Chromosome :

The fundamental mechanisms of GA are inspired from the theory of evolution. The three

fundamental mechanisms are:



o CROSSOVER : With a predetermined probability p. two members interchange digits
from their chromosomes, creating two new members. The idea is to carry the good
features of some members to the others, and create “fitter” members. Typically p. is a

large number like 0.85 or 0.9.

e MUTATION : With a predetermined probability p., the digits of resulting chromosomes
after crossover are arbitrarily altered. This operation allows creating members with
totally different characteristics, and is the main mechanism which prevents getting stuck
at local optimums. Typically pm is chosen to be a small number like 0.2 or 0.25, as we

don’t want to have a totally random search.

e ELITISM : This operation carries the fittest member from the previous generation to the
next generation. It prevents the fittest member from getting lost due to crossover and

mutation operations.

Genetic Algorithm Operation :

The algorithm starts with a population of candidate parameters, which can be totally
random, or some of which, if available, can be suboptimal previously found solutions to the
problem. The method requires a fitness function to be chosen, which is to be maximized
by the desired parameter vector. The members having higher fitnesses get a higher chance
in participating in the creation of the new generation. While choosing the parents the so
called “roulette wheel” is used, in which the probability of each member being a parent is
directly proportional to its fitness. Then evolution mechanisms like crossover and mutation
are performed on the parents to create new members to the population. If a prespecified fitness
value is reached, or if the fitness cannot be improved any more the algorithm is terminated;

otherwise it is repeated over and over by creating new generations.

4.2 Application of GA to the Strong Stabilization Problem with an H*™
Performance Constraint

In Section 2 is shown that the problem of strong stabilization of P with K which will also
satisfy the H™ performance constraint has been reduced to the strong stabilization problem of
C with Q in which Q will have to satisy an H° norm bound, see Figure 3. For this purpose
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Figure 3: Parametrization of the controller
GA is implemented.

1. Initialize the population; randomly pick Q = (Aq. Bg, Cq, Dg)’s.

N

. Make sure that all the Q's result in stable 4, matrices

Until achieved, create new Q's by using the current member (Q leading to the
unstable A;) and fittest element in the population as parents.

3. Assign fitnesses to all Q's (as a function of |Q}c, and Amaz {-4:(Q)})
If for any Q, |Qles <7, and Amaz{A4x(Q)} < 0 is achieved, then TERMINATE
4. Compute the new parents which will create the next generation (roulette wheel selection)
5. Construct the new generation using evolution mechanisms (crossover and mutation)
Propogate the fittest element directly to the new generation (elitism)

-

6. Go to Step 2.

A search for a constant Q was tried first, i.e. search for D, only. For small sized Q’s.
and for the tracking problem, this approach was observed to find a D, matrix, which solves
the problem. Since we were dealing with a constant Q, we did not need to worry about the
stability, but only the norm constraint in this approach.

A search for a dynamic compensator has also been coded, and tried for the same plant.
Yet, ensuring that .4, is stable with genetic operators is very time consuming. As inclusion of
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a dynamic compensator significantly enlarges the parameter space, the search becomes much
more time consuming (yet, it is believed that now the Q's with the desired properties are

denser in this space, and thus can be easier to find).

Recall from the previous section that the strong stabilization problem without the M
performance constraint can also be formulated as an interpolation problem with an outer
function. This approach may be utilized while initializing the population, or during the effort
of creating a stable compensator which makes Ax stable, this is Task 1 defined in the previous
section. A possible approach to accomplish Task 2 is to use the GA serch mechanism outlined

above.
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5 Conclusions and Further Research Directions

Currently there is no single computationally feasible algorithm to find “best” stable H* con-
troller. In this project the algorithms proposed above are identified as promising methods to
find such controllers. However, further research has to be performed in order to evaluate the
proposed algorithms, and make them numerically efficient. The following specific tasks are
proposed for further study.

Task 1. Interpolation with outer functions:

Write a Matlab based program for parameterizing all outer functions S, such that
So(z) = 1/my(z;), 1 =1,...,k and ||Ssllec < p for some fixed large p.

Task 2. Genetic algorithms for stable H* controller search:

Incorporate the parameterization implemented in Task 1 into the genetic algorithm which is
used for finding a stable Q with ||Q|lec < 7y, which stabilizes G¢. For an alternative solution,
write a separate GA code for searching a feasible outer S, satisfying

1CH(S;? = ma)lleo < 7.

Task 3. BMI optimization methods:
In Section 2 it was demonstrated that the problem of finding a stable H™ controller can be

formulated as a BMI optimization problem. But the BMI optimization problem is shown to
be NP-hard. Nevertheless, for the special form of the BMIs appearing in stable H* controller
design there may be an efficient solution. We also propose to study the structure of BMIs for
this problem, in particular the effect of different realizations of the central controller will be

investigated. -
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