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Abstract-Two types of texturally and compositionally similar breccias that consist largely of fragmental

debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and

ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic

components derived from the early crust of the Moon and mafic impact-melt breccias produced during the

time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules,

indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained

regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that

the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the

two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt

breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic

"prebasin" components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of

the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and

there are differences in relative abundances of rare earth elements. The two breccia types also have different

provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the

Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations

suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of

North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The

average compositions of the prebasin components of the two types of fragmental breccia are generally

similar to the composition of the feldspathic lunar meteorites. With 30-31°,5 AI203, however, they are

slightly richer in plagioclase than the most feldspathic lunar meteorites (-29% A1203) , implying that the

crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic

anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias,

as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the

Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a

high abundance (-30%) of mafic impact-melt breccias produced during the time of basin formation that is

absent from other regoliths.

INTRODUCTION

Fragmental breccias are common products of large meteorite

impacts on the Earth and Moon. They consist of clastic fragments of

various target lithologies that were lithified by the heat and shock of

impact. Also known as ctastic matrix breccias, fragmental breccias

occur in continuous cjecta deposits outside craters and as layers inside

craters (StOffler et aL, 1979). At the Apollo 16 landing site in the

lunar Central Highlands, the most common rock typc recovered from

the rim of North Ray crater (-I km diameter) is "feldspathic frag-

mental breccia," i.e., fragmental breccia that consists largely of plagio-

clase-rich fragments (St6fflcr et al., 1980; James, 1981 ).

Regolith breccias are known from airless bodies, i.e., the Moon

and meteorite parent bodies. Although also dominated by rock and

mineral fragments, regolith breccias contain components unique to

surface regolith, namely, glass spherules, agglutinates, and gases

derived from solar and galactic irradiation. Many regolith breccias

have a glassy matrix, but those that do not can be difficult to distin-

guish from fragmental brcccias. For example, Apollo 16 samples

63588 and 63595 have been classified as feldspathic fragmental

breccias by St0ffler et al. (1985) and as regolith breccias by McKay

et al. (1986).

A subset of regolith breccias from Apollo 16 is designated

"ancient" because the breccias are composed of regolith that existed

during the time of basin formation ~3.9 Ga ago (McKay et al., 1986;

Wentworth and McKay, 1988b). The ancient regolith breccias

(ARBs) and feldspathic fragmental breccias (FFBs) of Apollo 16 are

similar to each other texturally (Wentworth and McKay, 1988a) and

contain many of the same nominal clastic components, e.g., anortho-

sites, granulitic breccias, and impact-melt breccias. In particular, both

FFBs and ARBs contain clasts of marie (17-22% A1203), KREEP-

bearing impact-melt breccias that were produced during the time of

basin formation. Because they are more mafic than the present

highlands surface, these melt breccias are believed to be dominated

largely by material from the lower crust or upper mantle of the Moon

that was excavated and mixed by large impacts (e.g., Ryder and

Wood, 1977). However, a significant difference between the FFBs

and ARBs is that the ARBs contain glasses with a wide range of

compositions, including KREEP-rich and ultrahigh-Mg" varieties

(Wentworth and McKay, 1988b; Mg" = mol% Mg/[Mg + FeD. Such

glasses, which presumably are derived by impact mixing at the
surface, are absent from the FFBs. This observation led Takeda et aL

(I 990) to suggest that the FFBs might be precursors to the ARBs.
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The Apollo 16 FFBs and ARBs, as well as any relationship they

may have to each other, are important for understanding the
geologic history of the Central Highlands because they each repre-

sent a different stage, process, or provenance in that history. They

are also important for the purpose of interpreting the lunar meteor-

ites because all of the known feldspathic lunar meteorites are frag-

mental breccias or regolith breccias. In this paper, I argue that it is

unlikely that the Apollo 16 ARBs derive from the FFBs of North

Ray crater in any simple evolutionary sense because both the basin-

era components (the mafic impact-melt breccias) and the "prebasin"

(KREEP-poor, feldspathic) components differ in the two types of

breccia. I also show that the prebasin portions of the Apollo 16

ARBs and FFBs bear a compositional similarity to the feldspathic

lunar meteorites and that differences in Mg" between the prebasin

components of the ARBs and FFBs are similar in magnitude to

those observed among feldspathic lunar meteorites.

EXPERIMENTAL

Samples of ARB were coarsely crushed with an agate mortar and pestle
and fragments dominated by single clasts were extracted. Matrix from the
clast samples were trimmed using a stainless steel chisel. A total of 71
subsamples, each consisting of portions of single clasts (possibly with
minor adhering matrix), was obtained from six breccias (samples 60016,
60019, 61135, 65095, 66035, and 66075) and analyzed by instrumental
neutron activation analysis ([NAA; Korotev, 1991). The average mass of
the clast subsamples was 15 rag. Subsequent to INAA, thin sections were
prepared of some of the clasts. In addition to clasts, 15 subsamples dom-
inated by fine-grained matrix from these same six ARBs were analyzed; 4
subsamples of FFB sample 63578 (20-50 mg each); and 12 samples of fine
fines (unsieved or <1 ram) from station 1t at North Ray crater, including
some previously unstudied residual fines from collection bags accom-
panying rocks (see ]'able 6 of Ulrich, 1981).

RESULTS

Compositional comparisons and mixing relationships discussed

in this section are supported by mass-balance calculations that

include all major elements and all analyzed minor and trace

[ithophile elements. For purpose of illustration, however, only plots

of Smw'. Sc are presented because these two elements are

particularly effective for showing such relationships in Apollo 16

po[ymict materials (e.g., McKay et al., 1986; Korotev, 1991, 1994).

Scandium, which is carried primarily in pyroxenes, is a measure of

"maficness" and, consequently, Sc concentrations generally

correlate inversely with those of AI203 in polymict materials from

Apollo 16 (e.g., Korotev, 1994). Samarium is a representative

incompatible trace element (ITE) and, for convenience, 1 use "Sm-

rich" and "Sm-poor" as modifiers to indicate that a lithology or

component is rich or poor in all ITEs.

Ancient Regolith Breceias

Ancient regolith breccias are not as compositionaily uniform as

are mature soils (<l mm fines) from Apollo 16. Small subsamples

of any given ARB, even "matrix" subsamples selected to be free of

large clasts, are variable in composition (Fig. la) because of

variability in clast abundance and composition (averages for each

sample are presented in Table I). As noted by McKay et al. (1986),

there is a trend among matrix subsamples of increasing concentra-

tion of ITEs, such as Sm, with increasing concentrations of Sc and

other elements carried by mafic phases (Fig. l a). Subsamples of

some breccias (e.g., 66035 and 66075) span nearly the entire range

ot" compositions that are seen among all ARBs. Although the dif-

ferent breccias are petrographically diverse (McKay et al., 1986;

Simon et al., 1988), their matrix-rich subsamples all plot along the

same Sc-Sm trend. This suggests that all ARBs are composed of the

same kinds of components and that the trend represents two-compo-

nent mixing. But what are those components?

Clasts from ARBs are even more variable in composition but

most fall into one of two compositional suites, each of which

defines a compositional trend on the Sc-Sm plot (Fig. I b). The Sin-

rich suite is defined mainly by clasts with >8 _tg/g Sm All clasts of

this type are Sm-rich mafic impact-melt breccias of compositional

groups I and 2 (Korotev, 1994). They correspond to "crystalline/

melt matrix" breccias (McKay et al., 1986) and "poikilitic rocks"

and "impact melts" (Simon et al., 1988), which dominate lithic

clasts observed petrographically in ARBs. The mafic impact-melt

breccias are the principal carriers of incompatible elements, like Sm,

in the ARBs because no igneous-textured lithic clasts that are rich in

incompatible elements occur in the breccias. 1 refer to the mafic

impact-melt breccias as the "basin" component because they are

generally believed to be direct products of impact melting and

assimilation of KREEP that occurred during formation of basins or

large craters that formed contemporaneously (e.g., James et al.,

1984; Spudis, 1984; Taylor et al., 1991). indeed, the time of basin

formation, ~3.9 Ga ago, has been established mainly by the

crystallization age of mafic impact-melt breccias. On the Sc-Sm

plot, the extrapolation in the low-Sin direction of the trend of the

mafic melt-breccia clasts is nearly colinear with the mixing trend

defined by the matrix subsamples (Fig. Ib).

Of the 52 clasts of mafic impact-melt breccia, 66% are of group-

2 composition (nominally, 8-16 _tg/g Sin) and the remaining 34%

TABLE 1. Mass-weighted mean INAA results lbr "matrix" subsamples
of ancient regolith breccias (ARBs) and feldspathic fragmental breccia
(FFB) 63578.

ARBs FFB Unc.

60016 60019 61135 65095 66035 66075 63578 (%)

N 2 6 1 1 3 2 4 1
Na20 0.504 0.475 0.510 0.402 0.474 0_505 0.460 2
CaO 16.0 15.0 16.4 17.7 15.6 15.7 14.6 3

FeO t 4.13 5.33 4.10 1.92 4.69 4.17 4.65 2
Sc 6.59 8.70 5.96 3.16 7.25 6.14 6.40 2
Cr 542 771 468 260 673 498 780 2

Co 17.7 30.3 17.1 8.1 25_3 18.4 235 2

Ni 207 439 195 120 354 225 258 5

Sr 202 174 182 176 183 185 167 7
Zr 147 268 117 70 214 127 63 8
Ba 112 187 101 57 150 101 72 4

La 10.19 18.83 9.19 4.01 15.6 8.84 4.36 2

Ce 26.2 48.5 23.9 10.3 40.1 22A I 1.0 3
Sm 4.69 8.49 4.22 1.86 6.93 4.04 1.86 2

Eu 1.22 1.27 1.24 0.96 1.23 1.19 0.95 2
Tb 0.95 1.71 0.87 0.38 1.41 0.81 0.41 4

Yb 3.36 5.98 2.97 1.29 4.92 2.89 1.90 3
Lu 0.448 0.810 0.401 0.179 0.669 0.396 0.264 3

Hf 3.56 6.44 3.18 1.36 5.27 3.01 1.58 3

Ta 0.39 0.72 0.33 0.15 0.57 0.34 0.26 4
Ir 5.1 11.2 6.0 1.7 8.3 5.5 12.6 -20

Au 4.4 9.0 3.2 2.8 7,8 4.1 2.7 -20
Th 1.73 3.12 1.45 0,64 2,50 1.37 1.28 3

U 0.42 0.86 0.38 0.18 0.67 0.36 0.34 7
mass 94 181 64 45 101 56 228 --

Values in lag/g, except oxides in mass percent, Ir and Au in ng/g, and
total mass of analyzed subsamples in mg. N = number of subsample
analyses averaged. FeO t = total Fe as FeO. Unc. =onc standard
deviation estimate of analytical uncertainty tbr a single analysis
(percent of concentration value).
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FIG. 1. Variation of Sm and Sc concentrations in matrix subsamples (a) and clasts (b) from ancient regolith breccias. (a) The "matrix" subsamples are
those for which large clasts were avoided but which contain numerous unavoidable small clasts. These clasts account for the variation in composition
among subsamples of a single rock (eg, 66035). The solid line indicates the trend of the data and is defined by points (49, 2.34) and (8.7, 9.05). The
solid square represents the mean composition of the matrix subsamples (Table 3, column 1). The dashed line (in a and b) is a least-squares fit to the Sm-
poor clasts of (b) and is defined by points (0, 0.31) and (25, 3.37). The intersection of the extrapolation of the solid line (dotted) and the dashed line (at
4.0 ,ag/g Sc and 0.80 p_g/g Sin) provides one estimate of Sc and Sm concentrations of the prebasin regolith (Le, the composition of ancient regolith after
removal of the components of Sin-rich, mafic impact-melt breccia, MIMB). Based on the regression for the Sin-poor clasts, the average Sm concentration
of clasts with 4 p.g/g Sc is 0.80 • 0.24 pg/g (95% confidence limit). The X represents a different estimate of the composition of the prebasin regolith, that
from Table 3 (column 5), which is based on averages (Eq. I), not trends. The slight offset in the two estimates occurs because the extrapolation of the
trend of the matrix samples into the field of the MIMBs (b) does not exactly intersect the average composition of the MIMB clasts, which was used to
define the MIMB component of Table 3. Samples symbolized with an "E" are 61516, 63588, 63595, 65715, and 66036 (one subsample each). Plot (a) is
restricted to "ancient" samples for which 4°Ar/3('Ar > 12 (McKay et al., 1986), thus sample 60019 (4°Ar/36Ar = 9.7) is not included (60019 subsamples
tend to have slightly greater Sc concentrations, probably from a mare component, and plot somewhat off the trend). Data sources are W_nke et al (1974,
1975), McKay et al., (1986), Simon et al (1988), Jerde et al. (1987), and this work. In plot (b), most clasts from ARBs lie on one of two compositional
trends. The Sin-rich trend is defined by MIMBs similar to those found as large rocks about the site. Most of the clasts correspond to compositional group
2DB CVHA"); those with >16 p.g/g Sm correspond to groups IM and IF CI,KFM;" Korotev, 1994). The Sm-poor trend is defined by Sin-poor
lithologies, such as anorthosites, granulitic breccia.s, glasses, feldspathic melt rocks, and plutonic norites and troctolites. These lithologies are also
characteristic of the feldspathic hmar meteorites: the compositional range of bulk samples of feldspathic lunar meteorites is shown (Koeberl e/al, ]989;
lolliffet al, 1991; Korotev et al, 1995). Clasts symbolized with an "E" are all from 60019. The mean composition of the MIMB clasts and the Sin-poor
(<3 lag/g) clasts are shown by hollow squares (Table 2). Sources of clast data are this work and McKay et aL (1986; M. M. Lindstrom, analyst).

of group 1 composition (>16 gg/g Sm). Of the group-2 clasts, ~10

are indistinguishable from the melt phase associated with the Apollo

16 dimict breccias (group 2DB) and the others are similar.

Significantly, none are unambiguously like the group-2 melt found

in FFBs (group 2NR, below). Although the small clast sizes and

coarse-grained texture make such assignments tentative, the 18

melt-breccia clasts of group- l composition are evenly split between

groups I M (Cr/Sc > 92) and 1F (Cr/Sc < 92), based on Cr/Sc ratios

(and, by inference, Mg'; see Figs. 7a and 11 of Korotev, 1994).

The Sin-poor suite of clasts consists of plutonic rocks

(anorthosite, norite, troctolite, i.e., the "ANT suite" clasts of McKay

et aL, 1986) and granulitic breccias, impact-melt breccias, and

glasses, which are derived ultimately from plutonic rocks. I refer to

the Sin-poor components as the "prebasin" components because

most represent (e.g., anorthosites) or derive by impact metamor-

phism from (e.g., granulitic brcccias) lithologies that occurred in the

upper crust prior to basin tbrmation. It is likely that some or all of

the "prebasin" clasts were modified during the basin-forming era.

However, the treatment presented here assumes that, except for

melting and physical mixing, any such metamorphism had little

effect on composition (i.e., no gross chemical fractionations occurred).

The prebasin clasts are lithologically and compositionally

diverse. Six of the analyzed clasts are anorthosites, consisting of

nearly pure plagioclase (<2 pg/g Sc; Fig. Ib). Twelve clasts

Cnoritic anorthosites" of Table 2) are more marie (2-5 gg/g Sc) and

generally similar to each other in composition. They are charac-

terized by low concentrations of Ni (<100 _g/g) and ITEs (<2 gg/g

Sm). From their composition, appearance, and a cursor), petro-

graphic examination of some of them, most of the clasts of noritic-

anorthosite composition are granulitic breccias or feldspathic im-

pact-melt breccias. Two clasts from 61135 are melt breccias of

troctolitic-anorthosite composition (low Ca and Na, high Cr; Table

2, column 3). Samarium-poor clasts more mafic than the noritic

anorthosites (>5 tag/g Sc) are dissimilar to each other, so no average

is presented in Table 2; this group includes granulitic breccias,

impact-melt breccias, and an unusually mafic glassy breccia (Table
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2, column 6). Clasts that plot between the fields of the Sm-rich,

mafic impact-melt breccias and the Sin-poor clasts of Fig. lb are

either impact-melt breccias o1" intermediate composition (groups 2M

and 2F of Korotev, 1994) or melt-breccia clasts with adhering

feldspathic matrix (Table 3, footnote). All such clasts arc rich in

siderophile elements (N i: 220-1200 lag/g).

The fine-grained matrix of the ARBs is presumably composed

of the same types of lithologies as the clasts, although not neces-

sarily in the same relative proportions. Because average concentra-

tions of ITEs in the clasts (Table 2, column 7) arc greater than those

of the matrix samples (Table 1), it is likely that the suite of clasts

analyzed here overrepresents the ITE-rich, mafic impact-melt

breccias. This sampling bias results in large part from the greater

coherency' of the melt-breccia clasts. Although the field of all clasts

outlines a distribution of points that is roughly triangular on plots

such as Fig. Ib matrix subsamples detqne a linear trend (Fig la).

Regolith breccias that consist, for example, of mixtures of marie

melt breccia and highly fe[dspathic anorthosite (clasts with <2 t-tg/g

Sc) or mafic melt breccia and norite (>15 lag/g Sc) do not occur.

Together, these observations indicate that the relative abundances of

the various lithologies of the Iow-Sm trcnd are similar in all ARBs

'FABLE 2. Mean INA,A-resul_s lot clasts from ancient regolith
breccias.

Trocto- Mafic

litic All <3 impact-
Noritic anorth, lag/g melt 60016, Wt'd.

Anorth. Anorth. melt Sm breccias c06 mean

1 2 3 4 5 6 7

N 6 12 2 28 52 1 85

NazO 0.422 0.518 0.205 0.447 0.523 0.397 0.481

CaO 18.9 17.4 8.5 16.5 12.4 I1.1 14.1

Sc 0.Tft_ ' 3.36 3.29 4.81 11.24 25.2 8.66

Cr 3"7 220 1200 394 1080 2130 802

Fee t 0.40 2.16 4.84 3.04 7.49 10.80 5.80

Co 0.92 5.37 23.6 13.8 48,0 20.3 35.6

Ni 7 28 181 156 767 70 539

Sr 187 216 83 186 178 160 176

Ba 14 28 23 31 333 84 214

La 0.52 1.38 2.21 1.85 34.1 452 21.6

Sm 0.22 0.61 1.02 090 15.4 2.81 9.73

Eu 0.91 1.18 0.44 1.01 1.58 1.19 1.34

Tb 0.039 0 120 O. 195 0.187 3 114 (I.67 1.93

Yb 0.126 0.45 /I.72 0.70 10.5 2.48 6.72

Lu 0.016 0.064 0. 100 0.098 1.45 0.36 0.92

Itf 0.11 0.4(I (!.75 0.65 11.9 2.41 7.47

Ta 0.009 0.050 0.080 (1083 129 I).26 083

Ir <2 12 50 83 16.7 2.1 13.4

Au <2 <2 1.2 25 17.0 09 I 1.6

Th 0042 0.155 1131 0.24 5.52 (I.55 3.50

U 0.014 0.043 0.090 0.066 1.48 (I.16 0.94

mass 81 164 42 426 803 7 t 276

Values in _.tg/g, except oxides in mass percent, Ir and Au in ngfg,
and total analyzed sample (clasll mass in nlg N- nt, mbcr of
clasts analyzed and averaged Fee t - total Fc as Fee. This tablc

summarizes data for 71 clasts analyzed for this work, plus 14
clasts for which data were presented previousl,, in Figure 12 of
McKay et al (1986: this lab. M_ M 15ndstrom, anal_sl).
1-simple mean of 6 anorthositc clasts (ie, all clasts with <1

gg/g So). 2- simple mean of 12 norilic anorthosite clasts (all
clasts with 2-5 _.tg/g So) 3 simple mean of 2 troctolitic-
anorthositic inch brcccias frmn 61135. 4: simple nlcan of all

clasts with <3 l.tg/g Sm ('Sul-pot_r clasts"). 5 - simple mean of
all clasts with >8 _Jg/g Y,m 6 unusually marie, glassy breccia
clast from 60016. 7 mass-_eighlcd ulean of all analyzed clasts

and that thesc lithologies had a fine grain-sizc distribution and were

mixed well prior to addition of the clasts of Sin-rich, marie melt

breccias. In other words, the intersection of the two trends repre-

sents the composition of a prebasin rcgolith somewhere in the

Apollo 16 region, and the trend of the matrix subsamples of Fig. la

results from mixing of fragments of Sin-rich, mafic melt breccia m

varying proportions (10-50%, below) with well-mixed old regolith,

consisting of a mixture of Sin-poor lithologies. This same mixing

effect was observed petrographically (Fig. 2 of McKay et al.. 1986).

Thus, by extrapolation of thc trend of the matrix subsamplcs in Fig.

l a to low Sm concentrations typical of the prebasin components (<3

lag/g Sin), the component of mafic impact-melt breccia is effectively

"removed," providing an estimate of lhc average Sc and Sm concen-

trations of thc prebasin components (i.e., 4.0/ag/g Sc and 0.80 lag/g

Sin Fig. 1 ).

TABi F. 3 Compositions of ancient regolith brcccias from the Cayley plains
(ARB) and fcldspathic fragmental breccias from the Descartes Formation at

North Ray crater (FFB), with estimates of the composition of thcir marie

impact-melt breccia and prebasin components and comparison to the two
most ti_ldspathic lunar meteorites.

Mafic impact-
Means melt breccia

ARB FFB ARB
I 2 3

Tie 2 (I.51 0.44 1.05 t.0 0.30

AI203 28.4 29.1 20.7 21.2 31.4

Fee t 4.21 3.78 8.35 7.69 2.64

MgO 5.49 4.26 11.15 11.10 3.34

CaO 16.1 16.4 12.29 12.65 17.6

Na20 0.49 (I.54 0.523 0.486 0.48

Sc 6.61 6.98 12.1 12.2 4.5

Cr 524 444 1200 1190 270

Co 21.8 9.8 61.2 44.1 6.8

Ni 296 94 990 650 32

Ba 118 63 345 277 32

l.a 11.2 4.20 35.9 27.6 1.89

Sm 5.10 1.90 16.4 12.7 08(I

Eu 1.21 1.18 165 1.51 IO5

Yb 3.49 163 11.1 8.86 0.60

I_u 0.49 0.23 1.5(I 1.20 0.107

Th 1.76 067 5.7 4.4 0.26

Mg' 70 67 70.4 72.0 69.3

I.unar

Estimated pre- meteorites

basin comp. Yam- QllI"
FFB ARBs FFBs 86032 93069

4 5 6 7 8

0.39 0. I 8 0.25

29.9 28.4 28.9

3.39 4.28 444

3.57 5.26 4.53

16.8 16.4 16.5

0.54 0 44 0.35

6.5 8.3 7.75

370 680 603

6.4 14.5 22.0

37 134 295

42 26 41

1.83 1.26 3.35

080 062 1.62

1.14 093 0.83

090 0,60 121

0.129 0.09 017

0.29 (/.21 (I.52

65.3 68.7 645

:'fig'-hulk rnol% Mg/(Mg+Fc). I Mean of 10 hulk samples of ARt-I
(McKay et al, 1986; Simon et aL, 1988- Wanke et al. t074, 19751

2-Mean of FFB samples 67015, 67016, 67035, and 67915 (l.aul and
Schmilt, 1973: Wankc et al, 1975, 1976; Wasson et al. 1977: Marvin and

l.indstrom, 1983: I,indstrom and Salpas, 19811. 3- f{stinlatcd mean com-

position of the MIMB (mafic impact-melt breccia) component of tile ARBs.
based on the observed distribution of MIMB clasls (Fig t b). lhc composi-

tion is a mixture of 66% group 2I)B, 17% group 1F, and 17% croup IM,
(compositions from Korotev, 1994). This mixture, when mixcdt with the

prebasin rcgolith of column 5 and an FeNi racial component in the propel
tions 93:7.3:-0.3, approximates well the avcragc composition of the MIMB

clasts {Table 2, column 5) This implies thal thc MIMB "clast" samples
contain _7% fcldspalhic matrix, on average. 4 - t!stimated avcrage compo-

sition of the M IMB componcnt of the FFBs (group 2NR of Korotev, 1994).
5 Composition of the prebasin conlponcnts of the ARBs estimated li-om
mass balance: ('_ (('_ f(_O/(l-f), _llere (" equals concentration, the

subscript is the column ntunbcr, and./is the li'action of MIMII. For this
calculation,/- 0275, _hich is thc value required to yield a Sm concentra-

tion of 0.80 ,ag/g; see text. 6 = Composition o1"the prcbasin components of
the FFBs estimated t'ronl mass balance: (',,- (('2 fC4)/(1@) For this cal-
culation.f 0.092, 'ahich is the value required to ",icld a Sill concentrati_m
of 0.80 lag/g; see text. 7 : lulmr meteorite Yamato-86032: ulci/ll based m_

data of Kocberl el a/ ( ! 989, 1990), Warren and Kallemcvn ( 1901 ). and this

lab. 8 l.t,nar meteorite QLIE93069 (Korotcv ctal, 1995, _md updaled data).
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If we assume that the ARBs are simple binary mixtures of

components rcpresenting (1) a well-mixed prebasin regolith (PBR)

and (2) clasts of mafic impact-melt breccias (MIMBs), we can

estimate the average conccntrations of other elements in the pre-

basin regolith by' simple mass balance. For any element,

('ARB or CFVB fCMIMB + (l-f)CvB R Eq. (I)

where (7 is the average concentration of the element in the three

components andfis the average mass fraction of M1MB component.

Average concentrations of some key maior and trace clements in

ARBs (CARB) are given in column 1 of Table 3 and estimates of

CMIMB arc given in column 3. The CMIMB values were obtained by

assuming that a single mafic-melt breccia component is appropriate

and that its composition is represented by linearly combining the

compositions of groups 21)B, 1M, and IF (from Korotev. 1994) in

the proportions observed for the analyzed clast samples (i.e., 66%

2DB. 17% 1M, and 17% 1F).

14

bulk or matrix samples of / X13
• • • fflafic

feldspath,c fragmental breccia, /,//g::t-me,
12 from North Ray crater / ,"/breccias

11 / - / _r_ North

/.-. 9

_ 8

t&O trendof ancient/ ,'"
,_ 7 regoli

6 thT....,,,,, """5
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FIG. 2. Sc and Sm concentrations in "bulk" or "matrix" subsamples of feldspathic
fragmental breccias (FFBs, large circles) and soils (<1 mm fines; small circles) from
station I1 at North Ray crater. Solid large circles are subsamples of FFBs of
intermediate Mg" (sample means of 65 68) from which the mean composition of Table
3 was calculated (solid square); open circles are from FFBs of more extreme Mg'. As
with Apollo 16 granulitic breccias, there is a tendency for Sc concentrations to increase
with decreasing Mg" (Lindstrom and Lindstrom, 1986). For the four samples with >10
p.g/g Sc, Mg" is <58 (67455 and subsamples of 67513). The field of"mafic impact-melt
breccias from North Ray crater" is defined by samples of Fig. 3 Cgroup-2NR melt
breccias") and the melt breccias from North Ray crater of Fig. 17 of Korotev (1994).
The dashed line, which is thc same as that of Fig. 3, illustrates the mixing trend between
the bulk samples and thc mafic impact-melt breccias. This trend is similar to that of the
ARBs (solid line, from Fig. 1) but runs parallel to it, at higher Sc concentration, because
both the Sin-poor and Srn-rich componcnts of the FFBs have greater Sc concentrations
than the corresponding components of the ARBs. The X represents the estimated
average composition of the residual prebasin components of the FFBs (Table 3, column
6) after removal of the melt breccia component from the mean composition of the
typical FFBs (solid square). The two open circles with _10 Hg/g Sm are subsamples of
67435, which is classificd as an FFB (St0ffler et al., 1985) but is an unusually mafic
sample that contains a large melt-breccia component (Warner et al, 1976). See Fig. 3
for other sources of data.

The value f can be obtained from Eq. (I) by' assuming that

CpBR,S, n is 0.80 lag/g, as estimated above from Fig. I. This leads to

a value of 27.5% for f, and using this value, Cpn R for other elements

can be calculated (Table 3, column 5). For example, the Sc

concentration calculated in this manner, 4.5 lag/g, is similar to that

estimated from Fig. I by extrapolation (4.0 gg/g) and to the average

of the Sm-poor clasts (4.8 btg/g, Table 2, column 4). For incompa-

tible elements, values of CpB R calculated from Eq. (I) are very

sensitive to the value selected for f The observed scatter in ITE

concentrations of the Sm-poor clasts, however, constrainsfto a rela-

tively narrow range. At CpBR,Sc = 4 lag/g, CpBR,Sm lies between

0.56 lag/g and 1.04 p.g/g (95% confidence limits, Fig. lay, limitingf

to lie between 26.3% and 28.6°/O. These are limits on the average

values. The range of compositions of the small matrix subsamples

of ARB in Fig. la corresponds to mixtures containing between

~ 10% and 50% mean MIMB component. Because the average com-

position of the estimated prebasin regolith is similar to the average

composition of the Sm-poor clasts, the distribution of Sm-poor

clasts in Fig. l b probably represents the distribution of

lithologies in the prebasin regolith, i.e., it consisted mainly,

of feldspathic components, <5 lag/g Sc, with a minor

abundance of mafic components, >10 _tg/g Sc.

Compositional Comparison of Ancient Regolith

Breceias and Feldspathic Fragmental Breccias

Subsamples of FFBs from North Ray crater described

as "bulk" or "matrix" are more variable in composition

than similar subsamples of ARBs, and the variability is not

as systematic as it is for the ARBs (Fig. 2). In addition to

variability in lYE concentrations, Mg" values are highly

variable in FFBs, ranging from _52 in 67513,7008 and

67513,7024 (Jolliff and Haskin, 1995) to _78 in 67915

and 67955 (Lindstrom and Salpas, 1981); this compares

with a narrower range of 66 to 72 among bulk samples of

ARBs (references of Fig. lay. For the FFBs, intermediate

values are most common, however, and the mean of Table

3 (column 2) is based on multiple subsamples of four

FFBs with Mg" between 65 and 68. This same composi-

tional variability, but to a lesser extent, is seen in fines

from station 11 at North Ray crater (Table 4; Fig. 2)

because the fines are primarily disaggregated and mixed

FFBs (mean Mg "= 67; Table 4).

To a first approximation, ARBs and FFBs are similar

in bulk composition (Table 3). Like the ARBs, the FFBs

contain both Sm-poor prebasin lithologies and Sm-rich,

mafic impact-melt breccias (Lindstrom and Salpas, 1981,

1983; Norman, 1981; Marvin and Lindstrom, 1983;

StOffler et al., 1985). Thus, clasts (and other subsamples)

from FFBs form two trends (Fig. 3) qualitatively, similar to

those of the clasts from the ARBs (Fig. lb). However,

some important compositional differences exist.

Samarium-rich eomponents-A significant distinction

is that the clasts of mafic impact-melt breccias in the

ARBs and FFBs are different. Clasts ofmafic melt breccia

in the ARBs correspond to compositional groups 2DB,

IM, and IF (Fig. 1), whereas those in the FFBs are

dominated by group 2NR, which has higher Sc and Cr

concentrations than otherwise similar group 2DB (Figs. 2

and 3). Compositional group 2DB is the melt-breccia

component of the Apollo 16 dimict breccias, a lithology
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TABLE4.AveragecompositionofsoilsandresidualfinessamplesfromstationI1atNorthRaycrater.
67011 67020 67031 67410 67450 67461 67481 67511 67601 67610 67701 67711 67941 67960 mean

SiO 2 (44.8) (44.1) (45.1) (43.2) (45.8) 45.2 44.7 (45.5) 45.1 (45.1) 44.3 44.7 45.8 (44.3) 44.8

TiO 2 (0.5) (0.5) (0.3) (0.35) (0.25) 0.38 0.47 (04) 0.45 (0.4) 0.55 0.26 0.54 0.51 0.42
AI203 (28.5) (27.9) (29.6) 27.6 (29.9) 29.2 28.5 28.6 28.3 (29.9) 28.6 29.8 26,2 26.8 28.5

FeO t 4.35 4.80 3.56 5.05 3.32 4,26 4.02 4.34 4.17 3.36 4.24 2.93 4.63 4.56 4.11
MgO (4.8) (6.0) (3.8) (8.15) (2.5) 4.02 4.11 4.0 4.63 (3.75) 4.76 4.12 6.48 6.9 4.86
CaO 16.2 15.9 16.8 14.9 17.7 17.1 16.2 16.5 16.1 16.6 15.9 16.5 15.4 16.1 16.3

Na20 0.51 0.50 0.54 0.52 0.35 0.43 0.49 0.42 0.54 0.60 0.52 0.73 0.53 0.53 0.51

K20 (0.11) (0.10) (0.05) (0.07) (0.04) 0.050 0.067 (0.06) 0.077 (0.07) 0.066 0.085 0.140 (0.11) 0.078
Sc 7.6 8.5 6.7 7.8 6.6 7.6 7.4 8.4 6.9 6.3 7.4 4.7 8.0 7.8 7.3
Cr 590 690 430 820 370 500 520 520 540 440 580 400 680 620 550

Co 17.1 23.3 7.8 30.8 5.0 11A 15.2 11.0 20.1 10.2 16.4 9.1 19.1 16.2 15.2
Ni 210 360 43 420 13 97 140 85 270 98 200 80 260 210 178

Sr 185 185 190 185 165 160 190 160 195 200 175 250 180 175 185

Zr 129 135 38 75 8 72 77 53 79 70 99 35 144 175 85
Cs 0.12 0.10 0.05 0.05 0.06 0.14 0.06 0.07 0.07 0.07 0.09 0.06 0.13 0.13 0.09

Ba 114 108 43 78 17 56 83 49 77 72 93 63 119 127 78
La 10.1 9.3 2.70 4.9 1.02 4.6 6,2 3.4 6.1 4,6 7.5 3.1 11.2 10.1 6.1

Ce 26.3 24.0 - 7.8 12.1 2.6 12.0 16.2 8.9 16.6 11.9 19.4 7.7 30.1 27.6 159
Sm 4.67 4.30 1.28 2.30 0.56 2.03 2.95 1.67 2.96 2.16 3.52 1.32 5.25 4.77 2.84

Eu 1.25 1.19 1.12 1,12 0.77 0.99 1.14 1.00 1.24 1.31 1.19 1.67 1.23 1.25 1.18
Tb 0.96 0.90 0.26 0.52 0.13 0.43 0.59 0.36 0.63 0.46 0.70 0.25 0.99 1.04 0.59
Yb 3.4 3.2 1.14 2.00 0.50 1,61 2.11 1.33 2.30 1.63 2,56 1.10 3.7 3.5 2.1

Lu 0.46 0.45 0.186 0.286 0.074 0.217 0.277 0.186 0.35 0.227 0.35 0,147 0.52 0.52 0.30

Hf 3,5 3.1 1.01 1.80 0_37 1,42 195 1.21 2.19 1.63 2.37 088 3.7 3.8 2.1

Ta 0.41 0.39 0.13 0,24 0.04 0,22 0,28 0.17 0.29 0.25 0.30 0.13 0.44 0.53 0.27
Th 1.62 1.54 0.46 1.03 0.12 0.70 0.97 0.53 1.04 0.74 1.22 053 1.90 1.88 1,02
U 0.48 0.53 0.13 0.30 0.03 0.19 0.27 0.15 0.28 0.22 0.43 0.20 0.61 0.51 0.31

Mg" (66) (69) (65.5) (74) (57) 62.7 64.6 62.2 66.5 (66.5) 66.7 71.5 71.4 73.0 66.9

Values in _ag/g, except oxides and Mg' in mass percent. FeO t = total Fe as FcO; Mg'= bulk mol% Mg/(Mg+Fe). Samplc
numbers in italics are not true soils but residual fines samples from collection bags for rocks with the corresponding 67xx5
sample number, except that 67610 accompanied rake sample 67600 (Ulrich, 1981). No data are available lbr concentration
values in parentheses; the values are estimates based on the accompanying rock and other similar FFB samples: A1203 estimated
from anticorrelation with FeO; MgO calculated to give the same value of Mg'; TiO 2 estimated from A1203 and FeO; K20
estimated from weak correlation with ITEs; SiO 2 estimated from closure. Data compiled and averaged from LSPET (1973),
Duncan et al (1973), Haskin et al. (1973), Simkin et al. (1973), Taylor et aL (1973), Wanke et aL (1973), Fruchter et al (1974),
Rose et aL (1975), Rhodes et al. (1975), Boynton etaL (1975, 1976), l,aul and Papike (1980), Korotcv (1982), Jolliff and Ilaskin
(1995), and this work.

not found at North Ray crater (Jamcs et al., 1984; McKinley et al.,

1984). Compositional group I is characteristic of stations of the

Cayley plains and is rare to absent at station I 1 on the edge of North

Ray crater, although some samples were found at station 13, -1 km

from the crater. In contrast, most samples of compositional group

2NR were lbund at North Ray crater (Korotev, 1994).

As with the ARBs, we can estimate the average composition of

the prebasin components of the FFBs by subtracting the average

composition of group-2NR impact-melt breccias (Table 3, column

4) from the average composition of the FFBs (column 2) using Eq.

(I). Again, however, we are laced with the question of how much

to subtract, i.e., the magnitude off From the distribution of Sm-

poor points on Fig. 3, it is unlikely that the Sm concentration of the

prebasin portion of the FFBs is <0.2 p.g/g (i.e.,f < 13.5%) or >~1.2

p_g/g (f > 6%). Because, like the ITEs, siderophile elements are

carried in large part by the component of mafic melt breccia,

siderophile-element concentrations also help constrain the value of

f It is unlikely that the average Ni concentration of the prebasin

components is <20 I.tg/g (i.e., f< 12%) because this is the lowest

value observed among granulitic breccias from North Ray crater, a

principle component of the FFBs. It is also probably not >-70 _tg/g

(f > 4%), which is the mean for the soils with the lowest Sm

concentrations (Table 4). Thus, the FFBs probably contain between

6% and 12% MIMB component. For convenience in comparison, I

assume that the average Sm concentration of the prebasin compo-

nents of the FFBs (CI,_c) is 0.80 p.g/g, the same as that for the

ARBs. This leads to f= 9.2%; using this value, concentrations of

other elements in the average prebasin components of the FFBs can

be calculated from Eq. (1) (Table 3, column 6).

The FFBs contain a lower average abundance of mafic impact-

melt breccias (9.2%) than the ARBs (27.5%), but the variation

among different FFB samples is large, ranging from essentially zero

to _25% (and >80% for anomalous sample 67435; Fig. 2). This

observation is consistent with the petrographic data of St0ffier et al.

(1985), who noted that the average abundance of mafic melt

breccias (intergranu[ar, micropoikilitic, subophitic-ophitic-inter-

sertal) was ~5%, but ranged up to _20% among different samples of

FFB. Note that of thc first two samples of Table 7 of St6ffier et al.

(1985), the only two samples from station 13, are those classified as

ARBs by McKay et al. (1986).

Samarium-poor components-Several significant differences

also exist between the average compositions of the Sm-poor

components of the FFBs and ARBs (Table 3, columns 5 and 6).

First, the Sm-poor components of the FFBs are slightly more marie,

being richer in Fe, Mg, Sc, and Cr and poorer in AI20 3 and CaO.

Second, the ratio of concentrations of heavy rare earth elements



RelationshipbetweenApollo16regolithandfeldspathicfragmentalbreccias 409

(REEs)tolightREEsisslightlygreaterfortheprebasin
componentsoftheI:Fl_s(Fig.4),acharacteristiccon- 16

sistent with the greater abundance of marie minerals.

Third, the Sm-poor components of the FFBs have a lower 14

average value of Mg" (65 vs. 69). As noted above, FFBs

are highly variable in ?,_(t,,'; but tbr the average compo- 12

sition of Table 3, vcry-low-Mg" samples were excluded

(i.e., 67455 and subsamples from 67513; Lindstrom and "_ 10
Salpas, 1981; Jolliff and Ilaskin, 1995). Thus, this dif- "_

ference in averages probably indicates a fundamental dif- ,_ 8

fcrence between the suites of igneous precursors of the

two types of breccia. No reasonable component can be _ 6

added in small proportions to the mean composition of the
4

prebasin components of the FFBs to yield the mean

composition of the prebasin components of the ARBs.

The higher 3tg' of the ARBs is also not easily' attributable 2

to the high-Mg" glasses described by Wentworth and

McKay (1988b) because Mg concentrations are similar in 0

the prebasin components of the two breccia types and Fe

concentrations are lower in the ARBs. Finally, the pre-

basin components of the FFBs have greater concentrations

of Na and Eu than those of the ARBs, which indicates that

the plagioclase is more albitic, on average, in the FFBs.

The difference corresponds only to an ~0.8 mo[% albite

component in the plagioclase, but on the Moon, this is

significant. At the Apollo 16 site, anorthosite with plagio-

clase more sodic than thai typical of fcrroan anorthosite

appears to be restricted to some North Ray, crater FFBs

(Korotev, 1983; James et al., 1989; Norman et al., 1991).

DISCUSSION

Ancient Regnlith Breeeias from Feldspathie

Fragmental Breceias

The variot, s observations discussed above suggest that the

ARBs and FFBs represent two different populations of litho[ogies

(Table 5). I have experimented with the suggestion of Takeda et al.

(1990) that addition of components to the FFBs might account for

the ARP, s. A reasonably, good fit to the mean composition of the

ARBs can be obtained, for example, by, mixing 45% average FFB,

28% group-2DB, 2.8% group-I impact-melt breccias, and 24%

plagioclase, such as that Ibund in ferroan anorthosite. This exercise

demonstrates that if FFBs such as those that occur at North Ray

crater are precursors to the ARBs, a large volume of other

components must have been added to the regolith in order to

account for the differences in composition. Thus, it is unlikely that

the glass components present in the ARBs but absent in the FFBs

can by' themselves account for the compositional differences.

The Apollo 16 site was selected in order that two landforms could

be sampled, the Cayley plains and the Descartes Formation (Muehl-

berger et al., 1980). The compositional difl'erences between the

prebasin components of the ARBs and the FFBs are almost certainly a

consequence of the Caylcy-l)cscartes dichotomy. The FFBs are the

most characteristic component of North Ray' crater ejecta (StOffier et

al., 1985), yet thcy are unusual on the Cayley plains stations (i.e., the

central and southern stations of the Apollo 16 site). Also, the few

samples that do occur (e._., 60075) may be, in fact, eiecta from North

Ray' crater, and several of the feldspathic "fragmental polymict

breccias" of Ryder and Norman (1980) are actually regolith breccias

(e.g., McKay et al., 1986). Most ARBs, on the other hand, were

found at central and southern stations; none were found at stations I l

subsamples of°
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/o / ° _:'Z_-_NR fragmental

_/_ dz o,_,b_ breccias
,_ from North Ray crater
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FIG. 3. Sc and Sm concentrations in svbsamples of FFBs and 1_- mm rcgolith particles
from North Ray crater. The particles (from samples 67513, 67703, 67712, and 67713)
have the same distribution as the FFB subsamplcs because nearly all of them arc
fragments of disaggregated FFBs. This plot is equivalent to Fig. Ib in showing the
compositional range of components of FFBs. The samples form two trends, similar to
those defined by the clasts from the ARBs (Fig. Ib). Most of the marie impact-melt
breccias from North Ray crater samples belong to compositional group 2NR, which has
greater Sc and Cr concentrations than does the otherwise similar group 2DB of the
Cayley plains (Korotev, 1994). The dashed line segment is a mixing line defined by' the
mean composition ofgroup-2NR melt breccias (Korotev, 1994) and the mean composition
of the FFBs (Table 3, column 2). Data sources are Laul and Schmitt (1973), Lindstrom
and Salpas (1981, 1983), Marvin and Lindstrom (1983), Marvin et aL (1987), Korotcv
(1983), W_inke et al. (1973, 1975, 1976), Warner et al. (1976), Warren and Wasson
(1978), Wasson et al (1977), Jolliffand Haskin (1995), and this work. For clarity, data
from the highly unusual FFB sample 67975 (Lindstrom, 1984) are not plotted.

on the edge of North Ray' crater and only two were found at nearby'

station 13 (McKay et al., 1986). Thus, the ARBs are not eiecta from

North Ray crater but are a component of the regolith of the Cayley

plains. The Cayley plains were probably produced by' the Imbrium

impact (Oberbeck, 1975; tlodges and Muehlberger, 1981; Spudis,

1984), and it is likely that at least some of the components of the

ancient regolith, which is represented by' the ARBs, have a prove-

nance, northwest of the site, toward the hnbrium basin. In contrast,

the Sin-poor components of the North Ray' crater eiecta arc thought to

derive from beneath the blanket of Cayley debris in the Descartes

Formation (Norman, 1981; StOffier et aL, 1985), which is probably'

Nectaris ejecta (StOffier et al., 1985). Thus, although it is reasonable

that the Apollo 16 ARBs had some type of fragmental breccia as a

precursor, it is unlikely that the FFBs of the Descartcs Formation, as

represented in the North Ray crater ejecta, are a significant component
of the ARBs.

The Prebasin Crust in the Central Highlands

In those regions of the highlands most distant from basins, remote

mineralogical and geochemical techniques show that the lunar surface

is feldspathic, i.e., concentrations of Fe and Mg are low and, by'

inference, concentrations of Al and Ca arc high (Bielefeld et aL, 1976;

Davis, 1980; Korotev et al.. 1980; Luccy et al., 1995: Fischer and

Picters, 1995). This observation is confirmed by the fcldspathic lunar

meteorites, which provide independent estimates of the composition of

the lunar crust (e.g., Palme et al., 1991). All of the hmar meteorites

that are relatively free of mare-derived and KREEP components arc

highly feldspathic (i.e., normative feldspar abundances range froth



410 R.L.Korotev

= 20
o 16 _ prebasin components

12 _, of ARBs and FFBs

8

8

6 /

4

"_,

2 , i i i i i i i | , i i

La Ce Sm Eu Tb Yb Lu

REE atomic number

FIG. 4. Chondrite-normalized concentrations of REEs (rare earth elements) in the
estimated prebasin portions of the Apollo t6 ARBs (ancient regolith breccias) and FFBs
(feldspathic fragmental breccias) of North Ray crater (from Table 3). The absolute
concentrations are highly sensitive to the assumed abundance of mafic impact-melt
breccias 0c in Eq. 1). For this illustration, Sm concentrations were assumed to be 0.80
_tg/g tbr both; see text. Compared to the prebasin portion of the ARBs, that of the FFBs
has a higher concentration of Eu and a greater ratio of heavy REE (Tb, Yb, Lu) to light
REE (La, Ce, Sin), and this difference is not affected by any assumptions about the
magnitude of f The difference for Ce probably reflects interlaboratory biases.
Chondrite values: 1.36× "mean C1 chondr." values of Anders and Grevesse (1989).

~7(_80% by mass). Compared to estimates of the composition of the

average or typical lunar highlands crust that are based on orbital data

and feldspathic lunar meteorites, the regolith presently at the surface of

the Apollo 16 site is not typical but is more rnafic (greater Fe and Mg)

and richer in ITEs (Korotev et al., 1980; Korotev and Haskin, 1988;

Warren and Kallemeyn, 1991; Lucey et al., 1995). These differences are

directly attributable to the high abundance (-30%) of KREEP-bearing,

mafic impact-melt breccias in the regolith of the Cayley plains (Morris

et al., 1986; Korotev, 1996), a component that is absent from the feld-

spathic lunar meteorites and, by definition, the "prebasin" components

of the Apollo 16 ARBs and FFBs.

Assuming that fragmental breccias represent a regolith or mega-

regolith with little or no surface exposure, the analysis presented

here shows that when the basin components are removed from the

regolith of the Descartes Formation and the ancient regolith of the

Caylcy plains source area, the residual regoliths are composi-

tionally similar to those represented by the feldspathic lunar meteor-

ites. The most signit]cant difference is that the prebasin regoliths

estimated for both the Cayley (ARB) and Descartes (FFB) Forma-

tions are compositionally more feldspathic (30-31% A1203, 4.5-6.5

_tg/g Sc) than even the most feldspathic meteorites (28-29% A1203,

-8 _tg/g Sc; Table 3, Fig. l b). The prebasin components are domi-

nated by feldspathic granulitic breccias (typically 24-33% A1203),

feldspathic impact-melt breccias (typically 26 33% A1203), and

cataclastic anorthosites (32-36% A1203) (e.g., Lindstrom and

Salpas, 1983; St0ffler et al., 1985; Simon et aL, 1988). Thus, the

high alumina concentrations estimated here for the Apollo 16 pre-

basin regoliths suggest that the abundance of highly feldspathic

anorthosite (A1203 > 32%) was greater in regoliths of the early

Central Highlands than it is in the source region of any of the lunar
meteorites.

"[ABLE 5. Comparison of ancient regolith breccias and
feldspathic fragmental breccias.

ARBs FFBs

ITE-rich, marie

impact-melt breccias
abundance

type

mean: 27.5% mean: 9%

groups 2DB, group 2NR
IM, and IF

Sm-poor, "prebasin"
components

AI203 mean: 31% mean: 30%
Mg" mean: 69% mean: 65%

plagioclase less sodic more sodic

provenance Cayley plains Descartes Formation

(North Ray crater)

The average Mg/Fe ratio of the early lunar crust is an

important, but unknown, petrologic parameter (e.g.,

Korotev et al., 1980; Korotev and Haskin, 1988; Warren,

1990). The difference in Mg" between the prebasin rego-

liths estimated here from the ARBs and FFBs (Table 3,

columns 5 and 6) is comparable to that between the two

most feldspathic lunar meteorites (columns 7 and 8).

Together, these differences (as well as the large range of

Mg" observed among different samples of Apollo 16

FFI3s) demonstrate that regional variation in Mg/Fe ratio

was an important feature of the early lunar crust.

SUMMARY AND CONCLUSIONS

The ancient regolith breccias (ARBs) of Apollo 16 (McKay et al.,

1986) are a component of the Cayley plains. In contrast, the feld-

spathic fragmental breccias (FFBs) that are prevalent in the eiecta of

North Ray crater are believed to represent the Descartes Formation

(e.g., Norman, 1981; St6ffier et al., 1985). The two types of breccia

are similar in that they are composed largely of rock and mineral

fragments. 11owever, the constituent rock types of the two types of

breccia differ, and these differences probably retlect the Cayley-

Descartes dichotomy. On average, ARBs contain 27.5% clasts of

mafic impact-melt breccia of compositional groups 2DB, I M, and IF;

this basin-era component probably originates mainly from beneath the

upper crust. The remaining material is a suite of rock types of the

early upper crust and their brecciated derivatives that is highly

feldspathic (31% A1203) and poor in incompatible trace elements. In

contrast, the FFBs of North Ray crater contain an average of ~9%

clasts of mafic impact-melt breccia, and these clasts are of a different

compositional group, group 2NR. The prebasin components of the

FFBs are also highly feldspathic and poor in incompatible trace

elements but differ from the prebasin components of the ARBs in that

they are more ferroan (Mg" = 65 vs. 69), slightly less feldspathic (30%

AI203), relatively richer in heavy rare earth elements, and somewhat

more albitic, on average. Together, these observations make it

unlikely that the ARBs of the Cayley plains were derived from the

FFBs of Descartes Formation by any simple evolutionary process, as

suggested by Takeda et al. (1990).

Compositions estimated here for the prebasin components of the

Apollo 16 ARBs and FFBs are similar to highlands regoliths from

parts of the Moon that are distant from major mare-filled basins, as

represented by the feldspathic lunar meteorites, in that they are highly

feldspathic and poor in incompatible trace elements. 1fowever, the



Relationship between Apollo 16 regolith and feldspathic fragmental brcccias 41 I

Apollo 16 prebasin materials are somewhat more feldspathic (30-31%

AI?O3) than any of the fcldspathic lunar meteorites (26-29% A1203),

implying that the early central nearside of the Moon may have been

atypically rich in plagioclasc. The difference in Mg" between the

prebasin portions of the ARP, s (69) and FFBs (65) represents lateral

variation in the Mg/Fe ratio of the feldspathic crust on a scale smaller

than the Central Highlands. The high abundance (-30%) of marie

impact-melt breccias in the present regolith of the Cayley plains

(compared to regoliths represented by the feldspathic lunar meteorites)

is the cause of the relatively high surface concentrations of elements

carried by marie minerals (Fe, Mg, Sc, Cr) as well as elements associ-

ated with KREEP (e.g., K, Sin, Th).

It is reasonable to ask how the composition of the feldspathic

prebasin portions of present regolith of the Cayley plains, as sam-

pled at the central and southern stations of the Apollo 16 site, com-

pares with those inferred here for the ARBs and FFBs. Addressing

this question is complicated because the present regolith contains a

number ot" syn- and postbasin components in addition to mafic

impact-melt brcccias, namely, meteoritic material accumulated since

basin tbrmation and glasses and crystalline basalts from the maria. I

defer a complete discussion of the components of the present rego-

lith to a subsequent paper, ltowcver, preliminary modeling indi-

cates that if the mafic impact-melt breccias, mare-derived compo-

nents, and post-basin meteoritic materials are "removed" tkom the

present regolith of the Caylcy plains, the composition of the residual

feldspathic material is more similar to that estimated here for the

prebasin portion of the ARBs than the prebasin portion of the FFBs

(Korotev, 1996). This observation is consistent with the paucity of

FFBs (and melt breccias o1 group-2NR composition) in the present

Cayley regolith.

If the materials excavated at North Ray crater are primarily of

the Descartes Formation, and if, as argued here, FFBs such as those

sampled at North Ray cratcr arc not a volumetrically important

component of the rcgolith of the Cayley plains (of the ancient

component, at least), then the Caylcy rcgolith in the vicinity of the

Apollo 16 site appears to contain little reworked material from the

underlying Descartes Formation. If the supposition could be con-

firmed, it would provide an important constraint on models of the

history of thc Apollo 16 site and distribution of basin cjecta, as

some models require that the Cayley plains contain a large fraction

of pre-lmbrium local substrate that was mixcd and redistributed by

Imbrium _jecta (Obcrbcck, 1975; Spudis, 1984). What, thcn, is thc

source of the fcldspathic matcrials if the Cayley regolith at the

Apollo 16 site actually contains little pre-lmbrium material local to

the site'? Alternativcly, if much of the fcldspathic material prescntly

in the Caylcy rcgolith of the Apollo 16 sitc is, in fact, of local

origin, then the ejecta of North Ray crater cannot be typical of the

pre-lmbrium substratc. IJnfortunately, there is little known of the

feldspathic components of the Cayley plains other than that such

materials include highly fcldspathic anorlhosites, such as samples

60015, 62275, and those associated with the dimict breccias (e.g.,

61015). Resolution of these questions could be addressed by a

systcmatic study of the fcldspathic materials in 1 I0 cm grain-size

fractions of regolith from the Cayley plains and comparison to the

well-studied fcldspathic materials of North Ray crater.
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