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Dr. Manuel Stein 
(1921-1991) 

This special publication contains the papers presented at the special sessions honoring Dr. 
Manuel Stein during the 38th AMAIASMEIASCE/AHS/ASC Structures, Structural Dy- 
namics, and Materials Conference held in Kissirnmee, Florida, April 7-10, 1997. This vol- 
ume, and the SDM special sessions, are dedicated to the memory of Dr. Manuel Stein, a ma- 
jor pioneer in structural mechanics, plate and shell buckling, and composite structures. 
Many of the papers presented are the work of Manny's colleagues and co-workers and either 
directly or indirectly, are a result of his influence on us. 

Dr. Stein earned his Ph. D. in Engineering Mechanics from Virginia Polytechnic Institute 
and State University in 1958. He worked in the Structural Mechanics Branch at the NASA 
Langley Research Center from 1943 until 1989. In 1982, Dr. Stein was presented the NASA 
Exceptional Scientific Achievement Medal in recognition of exceptional contributions to 
structural mechanics through the development of fundamental analyses for the buckling and 
postbuckling behaviors of structures. Following his retirement in 1989, Dr. Stein continued 
his involvement with NASA as a Distinguished Research Associate. 
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Abstract 

Manuel Stein went to work for NACA 
(National Advisory Committee for 
Aeronautics) in 1944 and left in 1988. His 
research contributions spanned five decades 
of extremely defining times for the aerospace 
industry. Problems arising from the analysis 
and design of efficient thin plate and shell 
aerospace structures have stimulated research 
over the past half century. The primary 
structural technology drivers during Dr. 
Stein's career included 1940's aluminum 
aircraft, 1950's jet aircraft, 1960's launch 
vehicles and advanced spacecraft, 1970's 
reusable launch vehicles and commercial 
aircraft, and 1980's composite aircraft. Dr. 
Stein's research was driven by these areas 
and he made lasting contributions for each. 
Dr. Stein's research can be characterized by a 
judicious mixture of physical insight into the 
problem, understanding of the basic 
mechanisms, mathematical modeling of the 
observed phenomena, and extraordinary 
analytical and numerical solution 
methodologies of the resulting mathematical 
models. This paper summarizes Dr. Stein's 
life and his contributions to the technical 
community. 

prosperity of America. He constantly 
encouraged his family, friends, students, and 
colleames to pursue advanced degrees. His 
basic philosophy of pursuing excellence at 
every opportunity not only affected people he 
interacted with, but also led to many of his 
own significant scientific achievements. 
These achievements led to both national and 
international recognition of Dr. Stein as an 
expert in the field of structural mechanics. 

Dr. Stein also understood the importance and 
interaction of good citizenship and 
professional ethics. He always conducted 
business in a calm and friendly manner, and 
radiated a feeling of professionalism. He is 
remembered by his family, friends, and 
colleagues for his warmth, compassion, 
humility, friendliness towards others, and 
especially his sense of humor. Dr. Stein 
genuinely enjoyed helping people, especially 
young people. As a result, he mentored 
many students and co-workers during his 
nearly fifty-year-long career. A scholarship 
in his name has been established at Virginia 
Tech, endowed by his family, friends, and 
colleagues worldwide which celebrates the 
exceptional achievements of Dr. Stein and the 
high ideals he practiced on a daily basis. 

Manual Stein's Life Manuel Stein (1921-1991) was born 
November 27, 1921 in Monaca, 

Dr. Manuel Stein, a Virginia Polytechnic Pennsylvania. He was the youngest of four 
Institute and State University PhD graduate, children of Charles and Lena Stein, who had 
understood the importance of higher emigrated to the United States from Russia. 
education to an individual's development and The family operated Stein's Department Store 
maturity, as well as its importance to the and the family lived in the rooms above the 
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store. After attending primary and secondary 
schools in the area, he enrolled at the 
University of Pittsburgh. In 1943, he 
graduated wih a Bachelor of Science in 
Mechanical Engineering. 

Manual Steing$ Career 

After graduating from college in 1943, Dr. 
Stein moved to Hampton, Virginia to begin 
employment with the National Advisory 
Committee for Aeronautics (NACA) at 
Langley field. The NACA was the 
predecessor of the well-hown National 
Aeronautics and Space Administration 
(NASA). The first 17 years of Dr. Stein's 
career (1944 - 1961) were spent working 

g from the masters of 
stslactd mechanics. These individuals 
included such names as, Batdorf, Budiansky, 
Reissner, Seide, Eibove, Houbolt, 
Hedgepeth, Sanders, Mayers, and others. 
Dr, Stein published 33 highly original 
technical papers during that time period with 
these individuals. The last 27 years of his 
career were spent with Dr. Stein pioneering 
new research areas, mentoring, and 
unselfishly transferring his immense 
knowledge to the next generations of 
structural mechanists. During this time 
period Dr. Stein published 38 technical 
papers, 20 of which were co-authored by 
next generation researchers. A complete list 
of his papers is given in the heference list at 
the end of this gaper. 

Dr. Stein's work during the early period of 
his career dealt with mathematical analysis 
and experimental investigation of the 
structural behavior of stiffened and 
unstiffened plates and shells. During this 
time, he contributed greatly to the 
development of a nondimensional parameter 
for characterizing buckling of curved plates 
and cylindrical shells. Another significant 
achievement during this period of his career 
was the ulation of a for stress 
analysis and buckling of sandwich plates and 
shells. Dr. Stein's theory became the basis 
for most of the analytical work performed in 
this area for the next thirty years, 

Qaduate study was highly encouraged by the 
management of the NACA. Thus, Dr. Stein 

completed an MS degree in Aeronautical 
Engineering from the University of Virginia 
in 1951. Mis thesis work dealt with the 
torsion and transverse bending behavior of 
cantilevered plates. This work was of great 
interest to the NACA in that it supported the 
national effort to develop swept-wing jet 
aircraft. A couple of years later, Dr. Stein 
became involved in analyzing low aspect ratio 
wing structures. He developed a method of 
analyzing these structures that led to his 
recognition as a national expert in the field of 
structural analysis. It was at this time that he 
met Bernice Malkin. They were married in 
1953 and raised four children. 

In 1958, President Dwight D. Eisenhower 
introduced the National Aeronautics and 
Space Act that created NASA to replace the 
NACA on a much grander scale. Also in 
1958, Dr. Stein received a PhD degree in 
Applied Mechanics from VPI. His 
dissertation dealt with the postbuckling 
behavior of rectangular isotropic plates. This 
effort and his subsequent work in this area, 
led to major advancements in the 
understanding of buckling and postbuckling 
behavior of plate structures. His publications 
written on this topic during this period of his 
career are still both widely referenced today 
and considered to be benchmark publications 
by the technical community. 

During the next several years, Dr. Stein 
developed a refined analysis for predicting 
buckling of pressurized unstiffened circular 
cylindrical shells loaded in compression. His 
work in this area supported the development 
of spacecraft launch vehicles such as the one 
used to put the first American astronaut, Alan 
Shepard, into space. His work focused 
attention on the effects of boundary 
conditions and prebuckling deformations on 
the collapse behavior of shell structures. Up 
until this time, these effects were thought to 
be unimportant. Dr. Stein's work, originally 
published in 1962, stimulated a great deal of 
interest and research in this area for nearly 25 
years. 

In the early 60's the state-of-the-art for 
predicting the buckling load andl natural 
frequencies of stiffened cylinders was highly 
empirical. This commonly led to sign%cant 



the b u c f i g  load of 
t h  m p w d n t e d  

geometry such as was common in the 
development of new and larger launch 
vehicles. For 
buckling loads for S 
were found to be in error by greater than a 
factor of two from thmretical predictions. 
Dr. Stein led a group of researchers during 
that time period in the development of a 
rational analytical procedure for predicting the 
buckling of cylinders with eccentric 
stiffeners. This stiffened shell research 
coupled with Dr. Stein's research on effects 
of boundary conditions and prebuckling 
deformations resulted in highly accurate 
prediction methods for the analysis and 
design of high performance stiffened shell 
structures. These analytical developments 
helped keep the Nation's Apollo program on 
schedule and paved the way for modern 
stiffened shell analysis. 

Although Dr. Stein's major contributions 
were in the field of structural stability of 
plates and shells, his basic mechanics 
knowledge resulted in original contributions 
to the fields of membrane mechanics, 
vibrations, flutter, and laminate mechanics. 
For example in the early 60's he and John 
Hedgepeth developed a theory for partly 
wrinkled membranes which for the first time 
permi membranes to be analyzed 
using approaches. This theory 
has been subsequently experimentally 
verified and has been used for the rational 
analysis and understanding of complex 
behavior of advanced m 
membranes over the past 
work supported the development of 
paragliders, parasails, ballutes, and other 
deceleration devices for recovery of orbital 
payloads. Dr. Stein also made significant 
contributions to the dynamic analysis of 
membrane structures. He obtained exact 
solutions for the arrest of a moving mass by a 
flat circular membrane, or a membrane strip, 
attached to the mass. This work contributed 
greatly to the design and evaluation of 
structural reinforcements for the radio 
tracking beacon installations on the Echo I3 
passive communications satellite. 

In the l a m  part of Dr* S t e s s  a: 
malyzec% the buckling and p s  

shells. His work in this 
development of nonhens i  
fop g the postbuc&g k h a d m  
of plates. In add;ihon, be 
f o m d a M  a t h e w  for the no&eap. 
behavior of thick composite plates and shells. 
Both of these achvities continue to support 
the development 
commercial trans- 
to be operating in the year 2000. 

Tbe breadth and depth of Dr. Skin's 
contributions led to his recognition as an 
international authority on buckling of plate 
and shell structures, and to him being 
a w a r a  the NASA medal for e x c e p ~ o d  
scientific achievement. Dr. Stein p~esented 
numerous t& and published 
50 technical papers during hi 

books and journal articles 
including the herrjican 

s and As~ronau~cs, the 
Mechanical Enaeers ,  
Book Cornparay. He 
for the hernational 

Journal of Solids and Structures and the 
Journal for Computers and Strucmes. Dr. 
Stein was often consulted by ~ s e u c h e r s  at 
NASA, at other g ent laboratofies, by 
members of the krces, by facdv 
members, at u ~ v e r s i ~ e s ,  and by many 
aerospace companies for ce on h e  
solu~on of a c d t  s m c  m m h ~ c s  
problems. 

He was inFriteB to p ~ s e n t  BmWs at 
universities uound the world. His large 
rexmoir of knowledge w d  e v ~ e n c e ,  
together with his dents as an mdyst, we= 
very valuable assets which contributed to his 
own resemh as well as to the output of 
others h u g h  his consdtation m d  advice. 
Recent pubEcations &om NASA refm to the 
IDomeH-Stein an8 B a t b ~ - S t e h  Equations, 
achowldging his hpac t  in these mas. 

fie Stein was a member of S i p a  243, S i ~ a  
an Assmiae Feuow of 

as a memkr of the Bosd 
of Exminen for h t o d  catac%i&ks at 
George ~ a s b h g o n  U ~ v e r s i q ,  Vk@a 



Pol-hnic Institute and State University, 
and the h&an Institute of Techology 

pw. He aught extension classes for 
George Was&gton University, Old 
aminion U ~ v e n i t y  and the University of 
Virginia at NASFa's facilities. 

The Dr. Manuel S ~ i n  Scholmhip established 
at VPI&SU is awarded annually to an 
outstanding student pursuing graduate studies 

of Engineering Science and 
the College of Engineering. 

Recipients of the Scholarship Award shall be 
selected annually by the Head of the 

t upon the recommendation of the 
nt's Scholarship and Awards 

Committee. The criteria to be used in the 
selection of the recipient of the Scholarship 
Award shall k those so well-reflected in Dr. 
Stein's own lifetime of service to his 
profession and commitment to his colleagues 
and students: the potential for scholarly 
achievement in teaching and research and a 
demonstrated dedication to the welfare and 
well-being of others. 

Gifts to the Dr. Manuel Stein Scholarship are 
placed in an endowed fund with only the 
annual earnings available for funding 
scholarship awards; earnings from the Fund 
qualify for such matching funds as may be 
provided by the Commonwealth of Virginia 
under the Virginia Graduate and 
Undergraduate Tuition Assistance Program. 

Gifts to The Dr. Manuel Stein Scholarship 
should be made payable to the "Virginia Tech 
Foundation, Inc." and sent to: 

Summary 

Although Dr. Stein made numerous 
outstanding technical advancements 
throughout his career, perhaps his most 
lasting legacy was the unselfish sharing of 
his immense technical knowledge and insight 
with numerous researchers at, and associated 
with the Langley research Center. Dr. 
Stein's contribution to the aerospace 
community is poorly measured by publication 
numbers, but must instead be evaluated by 
technical quality and significance and by the 
several generations of structural mechanists 
that he mentored, consulted with, or 
otherwise positively influenced. This paper 
commemorates the historical significance of 
the five decades of technical and mentoring 
contributions of Dr. Manuel Stein to the 
aerospace community. The paper includes a 
complete bibliography of Dr. Stein's research 
work for ready reference for future 
researchers. 

The Dr. Manuel Stein Fund 
Office of University Development 
201 Pack Building 
Blacksburg, Virginia 24061-0336 
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Both Avinoam and I knew Manny-perhaps me better 
than he-and I hope that my effbks wiil reflect an 

This review is divided into complaints and approach to shell theory that would have pleased that correctives. Complaints are directed at: sloppy referee- 
ing and editing; authors who fail to read or ack- generous and thoughtful soul. Manny didn't tolerate 

overly fancy theories or unnecessarily elaborate nowledge what others have done; the misnaming or mathematics and neither do I, but given his sweet mis-crediting of results; the misunderstanding and nature, he probably would not have voiced his misuse of the Kirchhoff hypothesis; inflated claims of plaints as blatantly as I shall. 
accuracy based on overly-simplified benchmark prob- 
lems; the failure to appreciate the inherent errors in 
various shell models; the failure to appreciate that the 
physical response and mathematical structure of shell 
theory are fundamentally different from 3-dimensional 
elasticity; and the irrelevance of Cosserat-type theories. 

Correctives include a simple, straight-forward 
derivation of a general nonlinear dynamic shell theory 
with the following features: (1) the equations of 
motion and kinematics (and those of thermodynamics, 
if desired) are exact consequences of their 3- 
dimensional counterparts; (2) there are no asymptotic 
or series expansions through the thickness; (3) all 
approximations (including the Kirchhoff Hypothesis) 
occur in the constitutive relations; (4) in static prob- 
lems, there is a mixed form of the governing equations 
involving a mixed-energy density and exhibiting rem- 
nants of the well-known static-geometric duality of 
linear theory which is numerically robust because the 
limiting cases of nonlinear membrane theory and inex- 
tensional bending theory fall out naturally. (These 
latter two special cases are known to produce numeri- 
cal nightmares unless treated with great care); (5) all 
equations may be expressed in coordinate-free form 
(although, sometimes, a hybrid form is shown to be 
superior). 

Introduction 

This paper summarizes many of the ideas in a new 
chapter of the 2nd edition of The Nonlinear Theory of 
Elastic Shells by Professor Avinoam Libai of the 
Technion, Israel, and myself. The book is to be 

Complaints 

(1) Sloppy refereeing and editing. I continue to see in 
"reputable" journals-journals that libraries pay good 
money for-papers that I cannot believe ever passed 
under the gaze of a referee or a technical editor, much 
less that of the editor(s): poor English, well-known 
names misspelled, missing references, etc., abound. To 
my colleagues I say, "If your going to agree to serve on 
an editorial board, then edit!" 

(2) Authors who fail to credit or rnis-credit others. 
Ignorance of old or obscure papers can be forgiven; 
simple laziness or hubris cannot. How many times 
have I seen an author of a paper on the statics of plates 
refer to Reissner-Mindlin theory? All workers in this 
field should know that Reissner's pioneering paper' on 
a static theory of plate bending accommodating 
Poisson's three boundary conditions (instead of 
Kirchhoff's two) appeared in 1945 in the J. Appl. 
Mech.. Mindlin's paper2, which extended Reissner's 
ideas (with full credit) to dynamic problems, appeared 
in the same journal six years later. Another example is 
the simultaneous and independent development of a 
consistent, linear, first-approximation theory of shells 
by ~ o i t e r ~  and sanders4 in 1959. Often, one sees 
Sanders' name dropped in references to this theory, 
especially on the other side of the Atlantic. This is 
ironic because the two men have been great friends for 
a long time, and both hold the other's work in high 
regard. (And I need hardly mention to this audience 
that Lye11 wrote his famous report when he was a 
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colleague of Manny's in the Structures Division at 
NASA, Langley.) 

(3) Misuse (and misunderstanding) of the Kirchhoff 
Hypothesis. I could cite hundreds of papers where this 
is introduced, a priori, as a kinematic hypothesis. 
Sometimes these papers will point out that the Kirchoff 
Hypothesis leads to an unacceptable physical conclu- 
sion, namely, that the transverse normal stresses in a 
thin shell are no longer small compared to the (usually) 
dominant in-plane stresses. I will argue later, as have 
many others, that the proper place for the Kirchhoff 
Hypothesis is in the constitutive relations. 

A similar but more elaborate a priori kinematic 
hypothesis is dubbed 

(4) Cosserat Theory. Who need it? I defy anyone to 
show me a physical phenomenon in shells which can- 
not be explained in a simpler, more straight-forward 
way by conventional shell theory (properly formulated 
and properly applied). 

(5) Inflated or unjustified claims of accuracy of so- 
-called "higher-order" shell theories. Very often, the 
accuracy of such theories-and I seem to see a new 
one each week-are checked against 3-dimensional 
elasticity solutions. But, almost invariably, these so- 
called "benchmark solutions" satisfy boundary condi- 
tions of simple support. What's wrong with this? 
Well, with conditions of simple support, there are no 
3-dimensional boundary layers-boundary layers of 
width proportional to the structure's thickness. Indeed, 
there is now a substantial body of work (which certain 
camps continue to ignore) based on both specific e x m -  
ples and general considerations that demonstrate that, 
except m exceptional circumstances, one cannot refine 
the classical, first-approximation theory of shells 
without simultaneously evoking the 3-dimensional 
theory of elasticity to refine the boundary conditions. 

(6) The intrinsic errors in plate and shell theories are 
often ignored in mathematical analyses. Three common 
instances: (a) many nonlinear theories assume a qua- 
dratic strain-energy density and thus, in effect, ignore 
strains compared to one in the constitutive relations. 
Yet, there have been analyses that have hinged on the 
presence of similar negligible terms in the final equa- 
tions; (b) the von Kirmsin equations have been used to 
analyze deflections much greater than a plate's thick- 
ness, and (c) spectral and control analyses have 

proceeded as if plate or shell models were accurate for 
any wavelength. 

(7) Solution techniques for 3-dimensional bodies are 
often ill-adapted to shells. Analysts, especially in the 
finite element literature, have often approached shell 
problems as they would 3-dimensional elasticity prob- 
lems, namely via a displacement formulation. But a 
thin-walled structure is a different animal-physically 
and mathematically-from a body all of whose dimen- 
sions are comparable. Thus, approximate methods 
developed for the latter may be inefficient or inap- 
propriate for the former. In the linear theory of shells, 
the well-known static-geometric duality yields a mixed 
formulation of the field equations--or of the associated 
variational principles-that is at once elegant and 
numerically robust. In the nonlinear theory, enough of 
this duality persists to suggest that one should work 
with the same dual pairs of variables that work so well 
in linear theory. Displacement formulations in shell 
theory must be treated carefully. 

(8) The cult of the material mid-surface. In rigid-body 
dynamics, who would not write the eauations of motion 
Gith respect to the center of gravity Lecause it was not 
a material point or because it did not coincide with the 
geometrical center of the body? So why distinguish the 
geometrical midsurface of a shell? In fact, I will argue 
shortly that there is a unique and much more natural 
surface to work with-the surface of mass as Libai and 
I call it, the analog of the center of mass in rigid body 
dynamics. 

Correctives 

(1) Notation. A good notation should be sufficient unto 
the topic and reveal the underlying physics in as an 
uncluttered way as possible. At the same time it should 
facilitate analytical or numerical approximations. 
These sometimes conflicting demands call for ajexible 
notation-"Flexible bodies call for a flexible 
approach," was one of Koiter's bons mots-not a 
fanatical insistence that there is but one path to enlight- 
enment. Thus, Libai and I freely mix direct, hybrid, 
and component notation. For example, in different 
places, we represent the membrane stress resultant ten- 
sor as N, Na, or N ~ P ,  as appropriate. 

(2) The del operator. Let y be the position of a point on 
a surface and let If be some function-scalar, vector, 
or tensor-of y: The definition of the differential of If 



Fig. 1. Geometry of a general shell. 

a t  y (when it exists) is analogous to the definition of the concepts from differential geometry. 
differential in elementary calculus; when the differen- In a motion of the shell, the particle with position 
tial is a linear function of the independent variable dx, moves to the defamed position 
we write df = ft(x)dx. In the more general case, we - 
may write x = % ( Y , ~ , ~ ) , Y E  i ,  6~ [-H-,H+I,O<t,  (3) 

d F = d y ~ V  F ,  (1) where t is time. 

which defines (implicitly) the del operator V. This 
operator allows us to write local (differential) equations 
in coordinate-free form. 

(3) Geometry. Why introduce surface or shell coordi- 
nates unnecessarily? The reference configuration of a 
general shell can be described simply as a 1-parameter 
family of smooth, non-intersecting surfaces, character- 
ized by a (thickness-like) parameter 6 (a foliation). 
Thus, we may visualize a shell in its reference 
configuration as looking like a curved cake, made of 
layers of different ingredients of variable thicknesses, 
as in Fig. 1. Moreover, we may write the position of 
any particle within the reference configuration in the 
form 

This representation can take us a long way before we 
must introduce surface coordinates and the associated 

(4) The integral-impulse form of the equations of 
motion of a shell are exact consequences of those 
for a 3-dimensional continuum. Why integral forms? 
Because (a) they admit rougher solutions (e.g., shocks) 
than the diflerential equations of motion and (b) we 
may incorporate concentrated loads in a simple, natural 
way without having to summons the heavy machinery 
of distribution theory. 

For a 3-dimensional continuum, we read off from 
Fig. 2 

and 



Fig. 2. Geometry of a 3-dimensional continuum. 

The exact equations of motion for a shell follow 
by specializing (5) and (6) to shell-like bodies, i.e., to 
any structure that can be represented as in (2). Writing where 
d ~ = p f R d r ,  as in Fig. 3, we obtain immediately from 
( 5 )  

$: ( j N ~ S  + j p d ~ ) d t  = j L ~ R  I is the mass per unit area of R,  and 

aR R R t l  ' 
(7) s = jT~pcut/m = S(Y, t) (13) 

V R c R ,  t l  < t z .  
is a weighted position. Being the center of mass at time 
t of the differential column swept out by dR, we call + H+ +- H+ - 

~ e r e , w i t h j - = j ~  - and\-=IH-. y(r, t) the vector parametric equation of the deformed 
sulfate of mass. All the equations to follow are 

N = ~ : S ~ ~ G = N ( ~ ,  t ; ~ )  (8) simplified if we now take the reference surface to be 
the surface of mass so that S(y, 0) = y. 

is the stress resultant, with v an outward unit normal to If we now introduce the deviation (from the sur- 
aR, face of mass) 

is the external force per unit area of R,  and then (13) implies the dynamic consistency condition, 

(10) j:i~pfc = 0 (15) 

is the translational momentum per unit area of R. and (6) applied to a shell-like body yields 

Because the time derivative in (10) can be taken 
outside the integral, we can further decompose L by 
setting 



Fig. 3. Detailed geometry of an arbitrary volume of a shell. 

(lo) is the rotational momentum per unit area of the refer- 
= ~ ( ~ X L + R ) ~ R / : : ,  V R E R ,  t l  < t 2 ,  ence surface R. Unlike what we found with (lo), we 

R cannot, in general, take the time derivative in (19) out- 
where side the integral sign. However, we may define a spin 

by setting 
M I ~ ~ Z X S ~ ~ ~ = M ( ~ , ~ ; V )  (17) 

R = lo, where Z E l+c2ppic - 
is the stress coude, 

(20) 
A - 

may be called the Kirchhoff inertia coeficient. 
~ ~ ; i x ~ ~ * ~ ~ + ~ l x f p i c = l ( y , t )  (18) 

(5) Local (differential) equations of motion for a shell. 
From 3-dimensional continuum mechanics, we have 

is the external C O ~ P ~  Per unit area of the reference S = pan, where P is the 1st Piola-Kirchhoff stress ten- 
surface Z(. , and sor, and from Fig. 3 (and a little calculation) we have 



Thus, from (8) and (17), 

N = N e v  and M = M e v ,  (22) 

where 

and (23) 

are stress resultant and couple tensors, respectively. 

Since (7) and (16) must hold for a11 subregions of 
the reference surface and for all time intervals, it fol- 
lows that if we insert (22) into these equations, assume 
sufficient smoothness in space and time, and apply the 
(surface) divergence theorem, we may conclude by a 
standard argument that the following local (differential) 
equations must hold at each point of % and at each time 
t : 

where v  = 3; is the shell velocity. 

(6) The work identity. If we take the dot product of 
(24)1 with v  and the dot product of (24)2 with 0, add 
the resulting expressions and integrate over an arbitrary 
subregion R of the reference surface, we obtain 

Removing spatial derivatives on N and M by using the 
divergence theorem, we obtain, with the aid of (22), the 
Mechanical Work Identity 

where dR : y = y(s) , 0 I s  I L denotes the edge(s) of the 
shell, parameteEzed by arc length s. 

incorrect to identify the tensors V v + V y x o  and V o  
in (26) as time derivatives of extensional and bending 
strains. To obtain proper expressions, let the spin o 
generate a rotator through the initial-value problem 

Now i y g i n e  the surface gradient VyT=Vy carried 
into V  y by a rigid body rotation, represented by Q, 
followed by a stretch, represented by the tensor l + e .  
That is, 

Following ogden5 (p.118), we call e the Euler strain 
tensor. According to ~ietraszkiewicz~, this strain 
measure was 1st introduced into shell theory by Alu- 
mae7. It can be shown-see Libai & simmonds8 for 
details-that 

Here, an asterisk (*) denotes the so-called local or 
objective time derivative, that is, the rate of change 
with respect to a reference frame that spins with angu- 
lar velocity o. 

A bending strain tensor K  can be introduced by 
setting 

V Q = K x Q .  (30) 

It turns out-I again defer to Libai & simmonds8 for 
details-that 

V o = K * + o x K .  (31) 

Thus, the integrand on the right side of (26)-the 
internal power (1P)--can be given the form 

where n=Q.NT, ~ = M . Q ~ ,  and krQeK. 
Perhaps it is time to introduce hybrid notation 

and components. This could have been done earlier or 
could be delayed virtually indefinitely-it boils down 
to a question of taste: what notation seems simplest and 
the most revealing of the underlying mechanical ideas. 
Thus, if we assume that our reference surface i has the 
parametric representation 

then, assuming i is smooth, we have the covariant 
base vectors and unit normal 

(7) Conjugate strains. It would be tempting but 



Here, cap are the contravariant components of the sur- 
face permutation tensor. At any point of Z(. where 

I yl x y2 I $0, the triad {y,, b} forms a basis. We call 

the spin basis. If we resolve the resultant, couple, and 
strain tensors, first in terms of dyadic components and 
then in terms of surface tensor and vector components 
we have 

Here, we have denoted the direct product of two vec- 
tors simply by ab instead of by the more cumbersome 
notation a 63 b (often favored in the literature). 

In terms of these hybrid and component 
representations, the internal power (32) takes the form 

(8) All approximations in shell theory are made in the 
1st Law of Thermodynamics (which is approximate 
anyway, in the sense that we can never account for all 
the forms of energy that flow into a shell-mechanical, 
thermal, chemical, electromagnetic, . . . ). Restricting 
myself to isothermal motions (which I do simply to 
save space-it is not at all necessary), I now assume 
that the left side of (26) represents the actual work done 
by the external environment on the piece of the shell 
represented by R. 

Furthermore, we define a shell to be elastic if 
there exists a strain-energy density @(e, k) such that 

the right side of (32) is equal to a'. Since the strain 
rates can be assigned arbitrarily at any given event 
(y*, t*), it follows from (32) or (38) that 

Often, the shell equations may be cast into a 
more robust form if we use a Legendre-Fenchel 
transformation to introduce the mixed-energy density 

Y(n, k) = inf {@(e, k) - n:el . 
e (41) 

If @(e, k) is differentiable in e and grows faster than 
O( I l  e l l  ) as Il  e l l  + m, then the stress-strain relations 
(39)1 hold at any point@) where the infimum in (41) is 
achieved. Furthermore, if (39)1 can be solved for e as 
a function of n and k or, equivalently, if (40), and 
(40 2 can be solved for E,p and E, as functions of d Na , Qa, K,p, and K,, then it follows that 

As is well known from the linear theory of shells, the 
use of a mixed-energy density together with\ the com- 
ponents of n and k (or yr) as unknowns leads, in gen- 
eral, to well-conditioned field equations in the sense 
that near inextensional bending ( I 1  e l l  = 0) or near 
membrane behavior (Il m l l  =O) does not lead to the 
cancellation of dominant terms. 

(9) Integral and differential forms of the compatibility 
conditions. Consider any piecewise smooth curve aR, 
enclosing a subregion R on 1 If aR is parameterized 
by arclengthssothata~:  y= i ( s ) ,  OIs IL , then  

If we introduce the unit tangent to aR, %=i'(s)=y,za, 
then (43) can be written 

We now assume that there are no jumps (disloca- 
tions) in y around any holes enclosed by aR. Thus, if 
the integrands in (44) are sufficiently smooth, we have, 
by Stokes' Theorem, 



Further, if we assume that the integrands are spatially 
continuous, then, since R is arbitrary, we arrive at the 
local conditions 

It can be shown that, in terms of the extensional and 
bending strains, (46) may be given the form 

The economy of the hybrid notation is remarkable. 
Component forms of these equations may be found in 
Libai & simmonds8. 

To obtain an additional strain compatibility con- 
dition, we note that, in analogy with (43), we also have 

Following steps similar to those that led from (43) to 
(46), we are led to the local compatibility conditions 

If we carry out the differentiations in (49), we obtain 
terms involving VQ or Q,p which we re-express in 
terms of Q and K or Kp. Thus, we obtain, after some 
further calculations, the following coordinate-free and 
hybrid form of our second strain compatibility condi- 
tion: 

Again, the apparent simplicity of hybrid notation is 
remarkable. Component forms of this equation may be 
found in Libai & simmonds8. In linear static theory, 
(50) is the kinematic dual of 

(10) The rational finite rotation vector. The action of 
the rotator Q, at any time and any position, is 
equivalent to a rotation through an angle P(y, t) about a 
unit vector e(y, t ) .  Of the several known representa- 
tions of Q in terms of such a vector, the following has 
the advantage that it is rational in the components of 
yy= 2tan (&'2)e: 

where 

The bending strain tensor K is defined implicitly 
in terms of VQ by (30). Inserting (51) into this equa- 
tion, we obtain from Libai & simmondsg or 
Pietraszkiewicz & ~ a d u r "  the following expressions 
for the bending strains in terms of yy: 

This expression, 1st given in component form by Sim- 
monds & ~anielson", represents the nonlinear exten- 
sion of the bending strain in the Sanders-Koiter linear 
theory which, as Budiansky & sanders12 have 
emphasized, involves angles of rotation only. With the 
use of (53), (50) becomes satisfied identically. The 
spin turns out to have the equally simple representation 

We note that in static theory, the dual of (53), 
which satisfies the homogeneous force equilibrium 
condition (24)1 @=;=o), is the stress function 
representation 

N ~ = - ~ x v F .  (55) 

(11) The Kirchhoff Hypothesis. Let us decompose n 
and k into symmetric and skew parts: 

Then the Kirchhoff Hypothesis is simply that the 
mixed-energy - density Y(n, k) depends only on W and 
k. In terms of components, this means that 

- a p -  -ap- 
Y =Y(N , K,p) , N - % ( N ~ ~ + N @ )  , etc . (58) 

(12) Boundary conditions under the Kirchhoff 
Hypothesis. Under the Kirchhoff Hypothesis, 6 = B 
and o is no longer independent of the deformed posi- 
tion y. This means that along the edge of the shell we 
can no longer prescribe six boundary conditions, as the 
first integral on the left of (26) implies in unrestricted 
shell theory. 

To deduce the proper contracted boundary con- 
ditions, we introduce t h ~ s h e l l  displacement u=y-y. 
Then a unit tangent to aR, the deformed image of the 



shell boundary aR, is given by 
- z = h(2 + u') , (59) 

where 

and z= y' denotes a unit tangent to aR, the prime (') 
denoting differentiation with respect to arc length s 
along aR. With 

we have at every point of aR an orthonormal basis 
{T, T, b}. 

As ~ietraszkiewicz'~ has pointed out, the spin G 
of this deformed edge triad is not equal to a. How- 
ever, it is obvious (since spins obey the ordinary rules 
of vector addition, unlike finite rotgion vectors) that G 
and o differ only by a spin about b. But the Kirchhoff 
Hypothesis implies that Mob = 0; hence, M = M l G. 

The basic problem is now this: for deformations 
involving both large strains and large rotations, we 
want to introduce a scalar 8 that we can call the rota- 
tion of the edge, but which can be expressed in terms of 
u and its derivatives $ and $' along and (outwardly) - 
normal to aR. The following procedure, inspired by the 
work of 1ura14, Makowski & ~ietraszkiewicz'~, and 
~ietraszkiewicz'~, accomplishes this goal. 

Let qi de_note the finite rotation vector that 
delivers {V, Z, b) from its undeformed pre-image 
{v, 2, b}. Then, in analogy with (54), 

so that 

where 

is an edge pseudo-stress couple. 

The idea is now to express \y in terms of T,T, and - - 
the scalar 8=qioz=yroz; in turn, T and 8 can be 
expressed in terms of the edge displacement and its 
derivatives along and normal to the edge. From the 
analog of (51), it follows that 

Taking dot and cross products, we obtain 

Thus, 
r , I 

We now express 3 and 8 in terms of the displace- 
ment u and its derivatives u' and u0 along and normal 
to the edge. From (59), 

To express 8 in terms of u' and uO, we use (66) 
and 

~ + ( q i ) q i = % ( z x Z + v x i i + b x 6 ) ,  (69) 

to write 

Thus, 

All terms on the right of (71) are obviously expressible 
in terms of u, u', and uO. 

With the aid of (67) and (68), we can now write 
the rate of work of the edge stress couples, (63), in the 
form 

where . 

and 
r 

if= Me - + 2 = x  ( I .  (74) 
h(l + 2.q J 

Finally, adding to the left side of the mechanical 
work identity (26) any external concentrated forces Fi 
acting at any corners s =si of aR, inserting (32) and 
(72), integrating by parts along aR to remove the 
derivative on 2, and neglecting the rotary inertia 
(which incurs errors of the same order of magnitude as 



those engendered by the Kirchhoff Hypothesis-see 
Timoshenko's now classic argument17 of 1921 for the 
case of beams) as well as the external surface couple 1, 
we obtain the reduced Kirchhoff mechanical work iden- 
tity 

where 

is an effective Kirchhoff edge stress resultant. 
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EXPE NTAL STUDIES 1[N SHELL B U C ~ ~ G *  

Josef singer** 

Abstract 
Recent developments in shell buckling 

experiments are reviewed and related to earlier 
investigations. The motivation for buckling 
experiments on shells in the era of the digital 
computer, analysed by the author in two previous 
reviews, is re-examined and evaluated. 

The historical development of shell buckling tests 
is briefly traced and the interaction of theory, 
experiments and numerical studies in developing 
better understanding of buckling and postbuckling 
phenomena is emphasized. 

Some significant measurement problems are 
briefly discussed. The role of initial imperfections 
and their measurement is outlined, as well as the 
effect of boundary conditions. Nondestructive test 
methods for shell buckling are briefly mentioned. 

Finally, areas of shell buckling experimentation 
that deserve attention in coming years are 
enumerated. 

Introduction 
In contrast to columns which have a neutral 

postbuckling path and plates which exhibit a stable 
postbuckling behavior, shells usually have a very 
unstable postbuckling behavior that strongly 
influences their buckling characteristics. Thin shells, 
however, are very efficient structures that can support 
very high buckling loads and hence their buckling 
and postbuckling have presented scientific and 
engineering challenges for decades. Extensive 
theoretical studies have clarified the phenomena, 
connected initial postbuckling behavior with 
imperfection sensitivity, have developed analysis 
procedures and established the imperfection 
sensitivity of some shelVload combinations. 
Unfortunately the impact of these modern methods of 
analysis on engineering practice has yet been very 
small, one reason being the scarcity of experimental 
investigations that were closely coordinated with 
theoretical studies, though thousands of shell 
buckling tests have been carried out. 

The purpose of this paper is to sketch some of the 
dominant characteristics of shell buckling experi- 
ments and to discuss some examples of special 
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interest. These examples are excerpts fi-om a two- 
volume book, Buckling Experiments - Experimental 
Methods in Buckling of Thin-Walled Structures, by J. 
Singer, J. Arbocz and T. Weller, to be published by 
John Wiley and Sons later this year, many chapters of 
which are devoted to the buckling of shells. 

Motivation for Experiments 
Before embarking on experimental shell buckling 

studies or on a review of their highlights, it may be 
worth the while to reflect on the purpose of buckling 
experiments today, as was done by the author in his 
1982 review l .  

With the rapid development in computers in the 
last decades the question of "why continue to do 
experiments?" has often been asked in many fields of 
applied mechanics. As the computational tools 
improved and expanded, the idea that computer 
simulations can replace the experiments has been 
voiced occasionally. For example, in the early sixties 
computer simulated experiments became popular and, 
in the excitement about their advantages and 
potential, their limitations were forgotten. For 
instance, Johnston in 1961 claimed2: "There are 
many advantages in simulated tests, carried out with 
the aid of a computer, in comparison with real tests in 
an actual testing machine. No machining is involved, 
no materials need be acquired, and there is no scatter 
in the test results! Moreover, the precision of results, 
although based on a simulated and idealized material, 
permits a study of details of behavior that is not 
possible in ordinary laboratory tests. It would be 
impossible to completely duplicate the observations 
that may be made on the basis of the simulated tests 
reported in this paper". It was forgotten that the 
simulation was so successful because the physical 
phenomena in this case were well known and had 
been extensively explored by very many real 
experiments. New phenomena have still to be found 
and properly understood in physical tests, before 
even the powerful computers of today can give a 
reliable simulation and then extend the range of 
parameters. 

Another example in a similar vein was the false 
1975 prediction for aerodynamics, on the wave of the 
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CFD achievements, that "Wind tunnels in 10 years 
will be used only to store computer print out". 

Hence a scrutiny of the purpose of experiments in 
the computer era may be of value. The question was 
examined for shell buckling in two reviews in the 

and is now re-examined fifteen years later. 
One can enumerate eight primary motives: 

a. Better Understanding of Buckling and 
Postbuckling Behavior and the Primary Factors 
Affecting It. 
In addition to the buckling loads, careful 

experiments in which the parameters are varied one at 
a time, yield the behavior of the structure just before, 
at and after buckling, and accentuate the main 
parameters affecting this behavior. Such a philosophy 
of "research type experimental programs" had been 
strongly advocated for shells by ~echlefl  for many 
years, and was implemented in some test programs, 
for example in Ref. 5. Based on these observed 
parameters numerical schemes can be developed, 
verified, and can also be employed for "experiments 
on the computer" to extend the range of the 
parameters tested. One should remember that 
computer methods can converge to non-realistic 
behavior, unless the physical phenomena are well 
understood, or at least well described by appropriate 
experimentation, to permit reliable modelling. 

b. to Find New Phenomena. 
This reason is a direct extension of the first one 

and has already been stressed by ~ r u c k e r ~ 3 ~ ,  ~echlefl  
and many others. In shell buckling and postbuckling 
experiments, the new phenomena are likely to be 
unexpected behavior patterns or mode interactions. 

c. To Obtain Better Inputs for Computations. 
The mathematical models employed in modem 

large multi-purpose computer programs can simulate 
real structures fairly closely for buckling, but the 
simulation depends very much on the input of correct 
boundary conditions, in particular joints or bonds, on 
material properties, imperfections, residual stresses 
and load applications. This has been emphasized by 
recent experience and definitely applies also to 
postbuckling. Often improved inputs can be obtained 
from appropriate nondestructive tests: for example, 
boundary conditions by vibration correlation 
techniques8, imperfection shapes and amplitudes by 
imperfection scansg, load transfer and eccentricities 
by strain measurements and vibration correlation 

techniques, residual stresses by X-ray techniques etc. 
Fully automated recording in experiments has begun 
and much closer interaction between test and 
computation is developing. 

d. To Obtain Correlation Factors Between Analysis 
and Test and for Material Effects. 
Even when large powerful programs are 

employed, test results may still differ considerably 
from predictions. These differences are partly due to 
inaccuracies of inputs and partly to variations in 
buckling and postbuckling behavior of the 
mathematical model and the structures tested. They 
can all be lumped for design purposes in a 
"correlation factor". The advantage of such a 
correlation factor is the overall correlation it provides 
for the designer, but its weakness is that it is 
completely reliable only for the structures tested. One 
can statistically evaluate a large number of tests to 
obtain overall lower bound correlation factors, called 
"knock-down" factors in the case of shells, but this 
results in very conservative design. Since many 
experiments are on laboratory scale shells, extensive 
studies comparing the results of laboratory scale and 
large scale tests are needed to reassure the 
experimenter and to guide the designer, in particular 
for dynamic loading. Correlation type experiments 
will therefore continue to be a major task of research 
and industrial laboratories for quite some time to 
come, as they provide the designer with essential 
correction factors which include the effects of new 
materials and manufacturing techniques and, to some 
extent, bridge the gap between the buckling and 
postbuckling behavior of the computation model and 
the realistic shell structures. 

e. To Build Confidence in Multipurpose Computer 
Programs. 
Extensive experimental verification is an essential 

element for confidence in a large computer program. 
This is therefore a primary motive for shell buckling 
and postbuckling experiments, which becomes more 
important, as the programs become more 
sophisticated and ambitious. Though some 
developers of programs have promoted and applied 
extensive experimental confirmation, as for example 
Bushnell in Ref. 10 for his BOSOR4 and 5 
programs11, or Almroth and ~ o l m e s l ~  for the 
STAGS program13, more correlations of the results 
obtained from computer programs with test results 
are required, as pointed out for instance in Ref. 14. 



J: To Test Novel Ideas of Construction or V e v  
Complicated Elements of a Structure. 
Exploratory tests of new concepts have been used 

extensively by aeronautical, civil, mechanical and 
ocean engineers, and will continue to be an important 
tool. Furthermore, if the shell structure is elaborate 
and has many openings with complicated stiffening 
and load diffusion elements, model testing may 
sometimes even be less expensive and faster than 
computation with a large multipurpose program. 

g. For Buckling Under Dynamic Loading and in 
Fluid-Structures Interaction Problems. 
These are areas where computation is 

cumbersome, expensive, and difficult to interpret 
reliably. Experiments may therefore be preferable at 
this stage, though they too present many difficulties. 
Theory and numerical computations should follow 
these experiments closely, to reinforce and broaden 
the partial understanding of the phenomena that the 
experiments will provide. 

h. For Certification Tests of Full Scale Shell 
Structures. 
This is the typical industrial task which will 

continue till model experiments are sufficiently 
advanced and integrated with computation to 
eliminate the necessity for them. Here 
computerization of data acquisition and reduction has 
made great strides, and has significantly advanced the 
accuracy of measurement and interpretation. 

Examination of these motives, originally 
proposed for shells at a Euromech Colloquium in 
1980 (and published in 1982~) and recent experience 
reinforces the conclusion that the computer does not 
replace the experiments. It may change their purpose 
somewhat, it modifies the techniques, it broadens the 
capability to acquire results and it can use the 
experimental results to improve the computations. 
The presence of the computer in the experimental 
scene enhances and develops new techniques and 
capabilities. As pointed out by Birkemoe of the 
University of Toronto in 199415: "High speed and 
high quality data acquisition, combined with on-line 
use of the data for control of the loading andlor 
response of a boundary condition, present a 
framework for improved experimental demonstration 
of stability limits in structures." Furthermore, 
"Improvements in user software for test environment 
continue to make ... computer control easier". 

The experiment remains an essential link in the 
analysis also in the computer era, and its scope and 
usefulness are even greater today. 

Historical Background 
The earliest shell buckling tests were probably 

carried out in 1845-1850 by Fairbairn and 
Hodgkinson in England on thin-walled tubes under 
axial compression and bending, in connection with 
the design of the Britannia and Conway Tubular 
~ r i d g e s l ~ .  A few years later, ~a i rba i rn l~9 l~  carried 
out extensive experimental studies on tubes under 
external pressure. The studies were undertaken "to 
determine the laws which govern the strength of 
cylindrical vessels exposed to uniform external force, 
and their immediate practical application in 
proportioning more accurately the flues of boilers ...". 
Fairbairn's reports were not only the first accounts of 
a comprehensive experimental program in shell 
stability (35 shells subjected to external pressure and 
7 to internal pressure), but they, in particular his 1858 
Royal Society paperls, present a well documented 
discussion of a systematic and carefully planned 
study, that provides enlightening reading even today. 

It is worth noting that for nearly half a century, 
Fairbairn's experiments, and the formula in which he 
summarized his results, were the basis of boiler 
design and the starting point for all the discussions on 
improved empirical formulae. There were vigorous 
debates in the 18601s, 70's and 801s, but very few and 
isolated experimental investigations till the beginning 
of the 20th century. The exception was an extensive 
series of tests of 18 circular wrought iron tubes, 
representing the geometries used in ship boilers, 
carried out at the German Navy Docks, Danzig in 
1887-1882, which were discussed in detail by C. 
Bach, one of the leading German researchers in 
strength of materials at the timelg. 

Bach began his paper on the Danzig experiments 
by pointing out that, though Fairbairn's test 
specimens were too small and weak to be relevant to 
practical designs in the 18801s, scientists and 
engineers in England, France, and in particular 
Germany, had been preoccupied for decades with 
mathematical processing of Fairbairn's results. This 
was also emphasized by the investigators at the 
beginning of the 20th century, especially Carman at 
the University of ~ l l i n o i s ~ ~ ,  and Stewart at the U.S. 
National Tube who carried out very 
extensive systematic experimental studies of tubes 
under external pressure. Both Carman and Steward 
noted with surprise that an important problem, "the 
solution of which has not only great scientific interest 



but also valuable technical applications, should 
remain for so many years with so little experimental 
work". (Both, however, overlooked the German Navy 
Danzig tests published more than a decade earlier.) 

Carman's and Stewart's experiments covered a 
broad range of geometries. Carman tested 132 tubes 
in 1905-6 and Steward tested 514 tubes in 1902-4. 
Two comprehensive test programs indeed. Stewart's 
1906 paper21 represents a well planned experimental 
study, defining at the outset the factors on which the 
resistance of tubes to external pressures were 
assumed to depend, and investigating the influence of 
these factors. For example, "since it was anticipated 
that the out-of-roundness of the tube would exert a 
controlling influence on its behavior", an 
Autographic Calipering Apparatus was constructed 
and used to automatically record the divergence from 
roundness of tubes, at many stations along their 
length. From his experimental results, Stewart 
developed empirical formulae, charts and curves for 
designers, but his careful experimental investigation 
was actually only a broader and more modem version 
of Fairbairn's work of 50 years ago, without any 
innovative concepts. 

carman20 on the other hand, tried to correlate his 
experimental results with "rational formulae", with 
the predictions of the theoreticians ~ a s s e t t ~ ~  
and others, who had attempted in the two preceding 
decades to treat this "difficult" problem of "the 
stability of an elastic system". Carman's tests at the 
turn of the century can therefore be considered as the 
first "research type experimental program" advocated 
by sechler4 seven decades later. 

A decade later, in 1918, another such a research 
program, combining experiment and theory, was 
carried out by von Mises (and reported a decade 
later24). He tested a series of large thin-walled mild 
steel shells, of (Rlt) = 400 (unusually thin for the 
period), loaded by hydrostatic pressure and found 
that the observed number of circumferential waves 
agreed very well with the predicted ones. 

It may be point out here, that since the motivation 
for the study of the collapse of cylindrical shells 
under external pressure in the 19th century came 
primarily from the designs of steam-boiler flues and 
of similar larger pipes and containers and early in the 
20th century from problems arising in the design of 
submarines or tunnel liners, nearly all the early 
experiments on shells were made on comparatively 
thick tubes and shells, which usually failed by plastic 
buckling, or due to yielding of the material, rather 
than by elastic instability. With the exception of the 
above mentioned 1918 von Mises test program, the 

experiments with very thin shells, where elastic 
buckling predominates, appeared only in the late 
twenties and thirties, with the widespread application 
of thin shells to airplane structures, in which buckling 
under axial compression gained prominence. 

However, before discussing axial compression, 
the extensive studies of collapse of cylindrical shells 
under external pressure in the late twenties and early 
thirties, motivated primarily by submarine design, 
warrant a closer look, since they contributed 
significantly to the understanding of shell buckling 
and postbuckling behavior, in particular that of 
stiffened shells. Many of these studies were carried 
out at the U.S. Navy Experimental Model Basin in 
Washington D.C. (later called the David Taylor 
Model Basin) under the auspices of the ASME 
Special Research Committee on the Strength of 
Vessels Under External ~ r e s s u r e ~ ~ - ~ ' .  

These experiments, carried out in 1929-1934, 
excel in their precision, care of execution and 
correlation and include 36 short and thin shells, in a 
wide range of geometries. For example, in Ref. 25 the 
importance of overall and local imperfections and the 
technique of their measurement is discussed, and the 
lack of recorded imperfection measurements is 
pointed out to be a primary weakness of previous 
experimental investigations. Also the essential 
requirements of geometrical and material similarity 
for reliable model tests are emphasized. Or Saunders 
and Windenburg's 1932 paper on the use of models26 
reports on what is probably the first systematic study 
of scaling problems and model manufacturing 
techniques for shells. This paper presents even today 
and outstanding account of the model approach with 
its associated problems. 

The excellent DTMB tests and the two concurrent 
test programs of ~ o k u g a w a ~ ~  and ~ t u r r n ~ ~  laid the 
foundations for design and analysis of cylindrical 
stiffened shells under external pressure for many 
decades, actually to this very day. 

Though thin-walled circular tubes under axial 
compression were tested already in 1846 by Fairbairn 
and ~ o d ~ k i n s o n l ~ ,  their buckling was first 
recognized in the beginning of this century by 
"wrinkling" or "secondary flexure" in columns. In 
1905-8 ~ i l l y ~ ~ y ~ ~  carried out an extensive series of 
experiments on mild steel tubes at Trinity College in 
Dublin, Ireland, accompanied by a theoretical study. 
He showed clearly the "remarkable wave 
phenomena" that occur "in connection with 
secondary flexure" and that the load producing failure 
becomes smaller the larger (Rtt), and stressed that 
"the true strength to compression of the tube is the 



load which produces the wave formation". Lilly's 
experiments represent the first systematic study of 
elastoplastic buckling and collapse of axially 
compressed circular cylindrical shells. 

Similar observations were made at the time also 
by other investigators. In the same period, the 
problem of wrinkling, buckling, or elastic instability, 
of circular cylindrical shells was also investigated 
theoretically by ~ o r e n z ~ ~  and others, yielding the 
main results of the classical linear theory. In practice, 
however, buckling of cylindrical shells under axial 
compression became important as their use in aircraft 
structures broadened, first as thin-walled columns and 
then in the stressed-skin construction of fuselages and 
wings, introduced in the late twenties and thirties (see 
Ref. 33). It soon became the central design problem 
of aerospace structures. 

The first comprehensive series of experiments 
correlated with theoretical predictions were those 
carried out by ~ o b e r t s o n ~ ~ , ~ ~ ,  at the Royal Aircraft 
Establishment in 1915 and later at Manchester, but 
reported only a decade later. Four sets of short tubes, 
with (R/t)=5-500, made of different materials, were 
tested. Robertson emphasized the difference between 
the collapse behavior of thick tubes, which is 
determined by the material behavior (the yield stress), 
and that of thin tubes which is determined by elastic 
instability (buckling), indicating the different collapse 
patterns as well as the different autographic (stress- 
strain) diagrams and showing the transition value of 
(t/R) for the various sets of tubes. 

The rapid growth of air transportation in the 
thirties and the associated development of semi- 
monoque aircraft shell structures motivated the 
careful experimental studies on cylindrical shells 
under compression of ~ u n d q u i s t ~ ~  at NACA Langley 
and of ~ o n n e l l ~ ~  at the California Institute of 
Technology. Concurrently, the increased employment 
of thin-walled columns in civil engineering structures 
prompted an extensive study by Wilson and 
Newmark at the University of Illinois Engineering 
Experiment Station (for example Ref. 38). At about 
the same time, Fliigge at the University of Gwingen, 
Germany, independently studied the stability of 
cylindrical shells and carried out experiments on 
shells under axial compression. 

These comprehensive tests by many investigators 
covered a large range of geometries (Rlt-35-1440 
and L/R=0.25-32) as well as of materials and could 
therefore serve as a data base for designers. 

Comparison of experimental buckling stresses 
with predictions by the then well known and accepted 

linear classical theory, which for a Poisson's ration of 
v=0.3 can be written as 

showed, however, great scatter, with experimental 
values being very much lower than the theoretical 
values, though failure in most of these relatively thin 
shells was due to elastic instability. The length of the 
cylinder was found to have very little effect on the 
buckling load, unless it was very short, and similarly 
the effect of end fixity was very small. The ratio of 
experimental to predicted buckling load or stress, 
later to be known as "knock down factor", 

p = (o,, 1 o,,) varied between 0.10-0.65, depended 

on the method of fabrication of the shells, and 
showed a definite tendency to decrease with 
increasing (R/t). This discrepancy between theory and 
experiment was too great to be accepted, it was a 
challenge to researchers and became the motivation 
for the development of large deflection theory for 
imperfect shells in the decades to come. 

The engineers, however, could not wait and 
embarked on further testing programs. As a matter of 
fact, from the mid thirties to the late fifties, most shell 
buckling tests were for design data only and their 
results usually exhibit wide scatter and 
nonrepeatability (see also Ref. 39). In the last four 
decades, however, more careful experiments, more 
closely accompanied by analysis, have been carried 
out, that not only helped the understanding of 
buckling and postbuckling behavior, but also have 
began to influence the designers. 

Buckling and Postbuckling Patterns 
The perplexing behavior of thin cylindrical shells 

in axial compression, a pivotal problem in shell 
stability, has been studied for decades40. It is now 
well known that the main cause for the large 
difference between the predicted buckling load for a 
perfect shell and that observed in a typical test is the 
unstable initial postbuckling behavior of the shell and 
the resulting imperfection sensitivity. Furthermore, 
the buckling pattern predicted by classical linear 
theory for a perfect shell is a chessboard pattern, 
which differs considerably from the two-tier 
postbuckling pattern observed in a typical test. The 
theoretical chessboard pattern (which is really for an 
infinitely long shell) represents the high unstable 
initial buckling pattern and has never been observed 
directly in this form in an actual experiment. But high 
speed photography of very carefully performed axial 
compression tests, high speed recording of changes in 



the photoelastic isoclinic patterns, and some 
experiments with mandrels inside the shells that 
restrict the buckle depth, have revealed traces of an 
unstable initial buckle pattern that (somewhat) 
resembles the chessboard pattern, predicted by 
classical theory, and have clearly shown the transition 
from an initial buckling pattern to another completely 
different postbuckling pattern. 

In the sixties, a number of experimental studies of 
the unstable deformation states by high speed 
photography were carried out (see Refs. 43-49). At 
the Institut fiir Strukturmechanik of the German 
Aerospace Research Establishment (DLR) in 
Braunschweig, Esslinger and Meyer-Piening studied 
the buckling process on a number of axially loaded 
polyester (Mylar) cylindrical shells with a Fastax 
camera, having a maximum speed of 5200 frames per 
second (Refs. 45, 47 and 48). The thin shells had a 
radius of 100 mm, an (R/t)=394, and (L/R)=1.41- 
3.30. 

The shells were tested in the rigid and precise 
deformation controlled test system RZ 100 of the 
DLR Braunschweig. For most of the high speed 
photography the slowest axial shortening of 0.039 
mmlsec was applied. For the photography 
experiments the shells were sprayed with a silver 
paint which gave them a mat silvery tone and were 
placed in the test rig between special cylindrical 
distance pieces, to provide space for many lamps 
needed. The high light intensity needed posed some 
heating problems that required special attention. 

Only about 0.3 seconds camera running time at 
sufficiently high speed was available for recording 
the buckling process. The starting of the control 
system, that operated the lamps and the film, had 
therefore to be fixed within less than 0.1 seconds. 
This emphasizes the camera timing problem in 
photographing the rapid elastic buckling process of a 
cylindrical shell, pointed out also by other 
investigators (for example in Ref. 42). Triggering the 
camera by the initiation of buckling is very difficult, 
since as the camera takes about half a second to reach 
its maximum speed, the buckling process (which, 
from initiation to the stable two-tier postbuckling 
pattern, takes about 5-30 ms, see Refs. 41, 43 or 49) 
would be completed long before that. If, however, the 
shell can be buckled several times at virtually the 
same axial load, (the automatic control of the RZ 100 
system ensured here repeated identical loading 
speed), i.e. repeatability can be assured, as was the 
case of these Mylar shells (on account of the ability 
of Mylar to remain elastic for large strains), the 

camera could be synchronized with the expected 
initiation of buckling. 

The buckling process for one of the longer Mylar 
shells, (L/R)=3.30, is shown in Fig. 1 (reproduced 
from Ref. 48) which presents selected frames from 
the high speed film covering the unstable initial post- 
buckling region, from just before buckling to the 
stable postbuckling equilibrium. Buckling 
commences here simultaneously at two points, at the 
bottom end and in the middle of the cylinder, as can 
be clearly seen in the second frame shown, 0.33 ms 
after the onset of buckling. Each of these buckles 
becomes the source of a growing unstable buckle 
pattern that spreads over the cylinder. The buckles in 
the middle region soon predominate in this shell, as 
can be seen from the 5th frame (0.83 ms) onwards, 
whereas the bottom buckles become weaker and 
eventually disappear. The buckles in this initial 
unstable postbuckling state are small rounded squares 
(see for example in the 3rd frame, 0.50 ms, or 5th 
frame, 0.83 ms) and can be considered to represent 
the chessboard pattern predicted by linear theory. As 
a matter of fact, with some imagination one can 
regard them as corresponding to a circumferential 
wave number n=18, as predicted from linear theory 
for "square" buckles. Many additional similar buckles 
appear around the initial ones till they cover a large 
part of the cylinder surface (as can be seen for 
example in the 9th frame, 1.5 ms, or the 10th one, 1.7 
ms). Their shape is still roughly square, but they have 
become larger than the initial buckles, and in the I lth 
frame, at 2.3 ms, they correspond to a circumferential 
wave number n=13. From this point the shape of the 
buckles begin to change. They become more 
elongated in the axial direction, until the usual stable 
two-tier diamond pattern has evolved in the 15th 
frame, at 24 ms. By comparing, say the third frame at 
0.50 ms with the 20th after 24 ms, one observes very 
clearly that the initial unstable buckling pattern 
dzfers very signiJicantly in shape and size @om the 
stable postbuckling pattern reached eventually, which 
is visible to the naked eye after the snap-through. 

Similar conclusions were reached earlier by 
Tennyson (Refs. 41 and 43), who studied the initial 
buckling modes of circular cylindrical photoelastic 
shells subjected to axial compression, by recording 
the change in the 45" isoclinic patterns with high 
speed cameras. The shells were manufactured by 
spin-casting a liquid photoelastic plastic in a rotating 
apparatus, and had (R/t)=100-400 and (L/R)z2/5-4. 
They behaved completely elastically, permitting 
repeatable tests (as required for camera 
synchronization) and yielded buckling loads within 



Fig. 1 : High Speed Photography of Buckling Process 

10-14% of the classical predicted values. The 
behavior he observed again emphasized the very 
significant difference between the unstable initial 
buckling pattern and the final stable postbuckling 
configuration, which one usually observes in tests. In 
additional studies46 Tennyson reconfumed these 
conclusions, that buckling initiation in an isotropic 
cylindrical shell under axial compression is a very 
localized phenomenon with an initial postbuckling 
pattern, which somewhat resembles the classical one 
and differs significantly from the large deflection 
postbuckling diamond shapes, into which the shell 
eventually deforms. 

A similar process was observed in another high 
speed photography study carried out by Almroth, 
Holmes and  rush^^ at the Lockheed Palo Alto 
Research Laboratory. They tested very thin electro- 
deposited nickel cylindrical shells, (R/t)=857 and 
(L/R)=1.67, under axial compression, and 
photographed the buckling process on two of their 
specimens with a Fastax camera, at a shutter speed of 
about 8000 frames per second. The camera was also 
synchronized in these tests with the expected 
initiation of buckling obtained from an earlier test, to 
be repeated in the photographed one. In all the filmed 
tests, buckling initiated with a small local buckle 

about midway between the end plates. A series of 
similar small rounded buckles then propagated from 
the initial one circumferentially in a wedge-shaped 
manner, growing to a pattern that could perhaps be 
considered as representing a chessboard pattern. Later 
a different stable pattern of diamonds developed, 
each about twice the size of the initial rounded 
buckles. 

In order to achieve repeatability of buckling tests 
on thin shells, a technique of restricting the inward 
buckle motion by a closely fitting internal mandrel 
was developed by  ort ton^^,^ at Stanford University 
and concurrently by Almroth, Holmes and  rush^^ at 
Lockheed Palo Alto. Electrodeposited nickel shells 
and thin-walled 7075-T6 aluminum alloy shells were 
used. In all these inward buckle restricted shells, a 
rounded buckle pattern appeared at buckling, which 
covered part of the shell, usually one or two rows of 
buckles extending around the circumference of the 
shell. When the load was increased after each 
buckling, as was done in the case of the nickel shells 
(see Ref. 50), the buckles spread row after row until 
the shell was entirely covered with a rounded pattern, 
that can be considered to somewhat resemble the 
theoretical chessboard pattern. 



The important conclusions from the high speed 
photography studies and experiments with restricted 
buckle depth, are therefore that buckling initiates in a 
local unstable rounded pattern, which somewhat 
resembles the classical chessboard pattern, but which 
- after propagating circumferentially - transforms into 
an entirely different stable postbuckling pattern of 
diamonds of about twice the size of the initial 
rounded buckles. These studies of the buckling 
behavior clarify the phenomena: The onset buckling 
in an isotropic cylindrical shell under axial 
compression is a local occurrence and the buckling 
loads are therefore independent of the length of the 
shell (except of very short and very long shells), 
whereas the minimum postbuckling loads, and the 
corresponding postbuckling patterns, are strongly 
length dependent. On the other hand, initial 
geometric imperfections and disturbances will 
significantly influence the onset of buckling, and 
hence the buckling load, but will hardly affect the 
minimum stable postbuckling load. 

The Influence of Initial Imperfections and 
Boundary Conditions 

There exists a vast amount of literature on the 
influence of initial imperfections on the buckling of 
shells (see for example Refs. 1, 3, 9,39,52-54). Here 
the importance of this effect is only briefly 
recapitulated and it is stressed that the correlation 
between theory, imperfection measurements and 
buckling load is still incomplete (see Ref. 9). As 
pointed out in Ref. 9 and other papers (for example 
Refs. 52, 53, 55 or 56), semi-automated measurement 
techniques are available and an International 
Imperfection Data Bank has been h ~ i t i a t e d ~ ~ , ~ ~ .  

This data bank has to be further developed and 
enhanced in order to permit the introduction of a new 
buckling design method for imperfect shells outlined 
in Ref. 9, that will yield more efficient shells. 

The effect of boundary conditions on the buckling 
of shells is also very significant, in particular for 
stiffened shells, where it may be as important as that 
of the imperfections (see for example Refs. 8 or 57). 
The definition of the actual effective boundary 
conditions, including load eccentricity, can be 
facilitated by application of vibration correlation 
methods57. 

This nondestructive vibration correlation 
t e ~ h n i q u e ~ ? ~ ~  (VCT), consists essentially of an 
experimental determination of the lower natural 
frequencies for a loaded shell, and evaluation of 
equivalent elastic restraints that represent the 
boundary conditions. It is based on the similarity of 

the strong influence of axial and rotational restraints 
on free vibrations of stiffened shells, in particular for 
the lower natural frequencies whose mode shapes 
resemble the buckling modes, to that observed for 
buckling loads. 

A coordinated international effort to collect 
additional imperfection data and correlate it with the 
relevant fabrication processes, with a concurrent 
effort to improve the definition of the actual effective 
boundary conditions, is essential to achieve 
significant improvements in the structural efficiency 
of shells (see Ref. 9). 

Areas of Shell Buckling Experiments Deserving 
Attention in Coming Years 

Due to the shortage of space and time, only few of 
the characteristics of shell buckling experiments have 
been reviewed. For a broader exposition one may 
turn to the surveys and references quoted. 

In conclusion, the author feels that the following 
areas deserve careful attention and extensive efforts 
in the coming years: 
a. Imperfection Data. The correlation between 
imperfection measurements, fabrication methods and 
buckling loads is still incomplete. The Imperfection 
Data Bank has to be further developed and enhanced 
in order to allow the introduction of new design 
methods based on it, that will result in more efficient 
shell structures. 
b. Effect of Boundary Conditions. The definition of 
the actual effective boundary conditions including 
load eccentricity should be improved, by further 
development and applications of vibration correlation 
and other nondestructive techniques. 
c. Material Imperfections and residual stresses 
should be given more attention to enlarge our 
knowledge of their effects. 
d. Composites. Some tests on composite shells have 
been carried out in the last decade, but extensive 
experiments are required to further clarify their 
buckling and in particular their postbuckling behavior 
under different loading conditions. The effects of 
damage, delaminations and repeated buckling warrant 
additional study. 
e. Load Distribution. More precise measurements 
are needed to assess the influence of load 
nonuniformities on shell buckling. 
f Load Interaction. New structural materials require 
re-evaluation of load interaction curves and how they 
are affected by boundary conditions. 
g. Mode Interaction. Many theoretical studies have 
shown this to be one of the dangers of structural 



optimization, but very few tests have been carried 
out. For stiffened shells this is of primary importance. 
h. Buckling Due to Impact and Dynamic Loading. 
More systematic experiments are needed to 
supplement the earlier ones, mainly aimed at energy 
absorption devices. 
i. Plastic and Elastic-Plastic Buckling. The 
extensive recent theoretical investigations should be 
evaluated, corroborated, and amplified by tests, to 
provide data for optimization studies. 
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ABSTRACT 

Today high-performance computing systems 
and new analytical and numerical techniques enable en- 
gineers to explore the use of advanced materials for 
shell design. This paper reviews some of the historical 
developments of shell buckling analysis and design. 
The paper concludes by identifying key research direc- 
tions for reliable and robust methods development in 
shell stability analysis and design. 

work include References [8-111. With the computer 
available, additional terms in the series solutions were 
retained and computed, and their influence on the re- 
sults was determined. The nonlinear partial differential 
equations for shell analysis were posed as discrete prob- 
lems using finite difference approximations and numer- 
ical solutions were calculated. Energy formulations 
were developed. The development of the finite element 
method began in the 1960's. Questions still remained 
about which shell theory to use and which strains to con- 

INTRODUCTION sider. 

Over the past four decades, much research has 
been focused on the buckling, collapse, and postbuck- 
ling behavior of cylindrical shells. This observation 
perhaps prompted Prof. Budiansky's statement in a re- 
view article that "Everybody loves a buckling prob- 
lem" [I]. It also may have prompted Dr. Stein's acro- 
nym GOOSE (Get Out Of Shells - Everybody! [2]) 
because of the extreme competition and intensity of the 
research work. 

The early work resolved several fundamental 
issues, especially the discrepancy between buckling 
loads computed with classical analysis methods and 
buckling loads observed experimentally for thin cylin- 
drical shells loaded in axial compression. Seminal con- 
tributions were made by Lundquist [3], Donne11 [4], von 
Karman and Tsien [5], and Koiter [6]. 

The 1940's through the 1960's were perhaps 
the heyday for classical shell stability research. Be- 
cause of World War 11, the distribution of many research 
contributions were restricted and often parallel efforts 
were being made in different countries. The work by 
Yoshimura [7] is one example of work that had limited 
distribution. The monumental work by Koiter [6] in his 
doctoral dissertation is another. 

With the advent of the digital computer, com- 
putational methods began to be developed to address is- 
sues associated with structural collapse and postbuck- 
ling behavior. Notable collections of papers on this 

The objectives of the present paper are to high- 
light selected aspects of cylindrical shell stability analy- 
sis that have developed over the past four decades, to 
identify the contributions of Dr. Manuel Stein to shell 
stability analysis, and to identify new directions and re- 
search thrusts for the coming years related to new aero- 
space vehicles as well as related to aircraft structural in- 
tegrity. The scope of this paper is limited to elastic 
circular cylindrical shells subjected to axial compres- 
sion. Much research has also been done in the areas of 
plastic buckling, thermal buckling, dynamic buckling, 
local instabilities, and non-conservative loading. Re- 
view of these areas is beyond the scope of this paper. 

PREVIOUS REVIEWS 

This paper takes extensive advantage of pre- 
vious reviews of the field of shell buckling given by oth- I 
ers. Some of the more notable reviews with extensive 
reference lists are briefly described herein. 

In 1966 Budiansky and Hutchinson 1121 pres- 
ented a survey of some buckling problems for different 
shell geometries and loading conditions. They de- 
scribed the imperfection sensitive nature of the buckling 
problem and also the postbuckling behavior. This sur- 
vey is primarily a survey of problems that Budiansky 
and Hutchinson had been involved with and limited 
analysis details are given. In 1979, Budiansky and 
Hutchinson [ l ]  presented an updated review of buckling 
analysis advancements. 
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In 1966 Hoff [ I  31 presented a focused paper on 
buckling of cylindrical shells subjected to axial com- 
pression. Classical analysis methods are presented and 
reviewed. Hoff discussed the role of boundary condi- 
tions and imperfections on shell buckling as they relate 
to resolving the discrepancy between experimental and 
analytical results. Over 100 references are cited. 

In 1968 Stein [ 141 presented a survey of differ- 
ent shell buckling problems. In this paper, Stein clearly 
demonstrated the need for using correct and consistent 
boundary conditions in the buckling calculations. The 
role of initial imperfections in shell buckling is again 
confirmed, and the equilibrium-bifurcation shell-buck- 
ling analysis approach is shown to be correct. Over 30 
references are cited. 

In 1970 Hutchinson and Koiter [15] reviewed 
postbuckling theory as related to elastic stability. 
Single-mode bifurcation behavior is described along 
with modal interaction. They reviewed the early post- 
buckling work and the influence of initial geometric 
imperfections. Over 200 references are cited. 

In 1974 Sechler [16] presented a historical 
overview of the developments in shell research and de- 
sign up to that time. Also in 1974, Babcock [17] pres- 
ented a summary of experimental results and procedures 
for cylinder buckling, citing over 150 references. 

In 1975 Tennyson [18] presented a review of 
"perfect" and imperfect composite cylinders. His re- 
view focused mainly on experimental results and cor- 
relation with analytical results. This review is perhaps 
the first for laminated composite cylinders and includes 
descriptions of experimental setups and results. Nearly 
50 references are cited. 

In 1983 Babcock [19] reviewed recent ad- 
vances in shell buckling research associated with elastic 
and plastic buckling, dynamic buckling, experiments, 
and computations. His review focussed on modal inter- 
action problems, localized buckling, contact buckling 
and buckle propagation. Over 70 references are cited. 

In 1985 Bushnell [20] published a book en- 
titled Computerized Buckling Analysis of Shells which 
described the fundamental shell equations and their nu- 
merical models for a wide range of shell problems. He 
also describes the structural behavior and characteris- 
tics of shell buckling, collapse and postbuckling re- 
sponse. Additional related information is available in 
several of his papers 121-231. 

In 1986 Simitses [24] presented a review of 
buckling and postbuckling analysis for imperfect cylin- 
drical shells. He described the work related to boundary 
conditions, prebuckling deflections, imperfections, 

load eccentricities, and material or constructional de- 
fects. Over 120 references are cited. 

In 1990 Noor [25] presented an exhaustive list 
of over 400 books, monographs, and survey papers on 
shells. Research on various aspects of shell analysis 
(linear and nonlinear stress analysis, stability analysis, 
dynamics) are included in his bibliography. Key ad- 
vances in analytical and computational models of shells 
are given by Noor, Belytschko, and Simo [26]. 

In 1996 Teng [27] presented a more recent re- 
view paper that primarily describes contributions in the 
past decade or so with a brief historical overview. He 
focuses on "real" structures with imperfections and 
nonuniform loading conditions. Localized effects 
caused by loads or geometric disturbances (e.g., dents) 
are described. This paper also has a rich listing of over 
300 citations. 

PROGRESS EV SHELL STABILITY 

Key shell stability issues have been resolved 
over the past several decades. This progress may be 
broadly grouped in terms of: initial imperfections; pre- 
buckling deformations; shell kinematics; composite 
shells; postbuckling behavior; modal interaction and 
mode jumping; finite element analysis; shell analysis 
codes; and modeling and simulation. Based on Sec- 
hler's equation for the production of papers relating to 
shells, it is estimated that approximately 1800 papers 
will appear in 1997 alone. An attempt has been made 
to be thorough but also concise, and apologies are ex- 
tend to those authors not included in this review. 

In 1941 von Karman and Tsien [5] presented 
insight into the behavior of thin-walled isotropic circu- 
lar cylinders subjected to axial compression. Their 
analysis indicated that a cylinder could jump from an 
unbuckled equilibrium configuration to an adjacent 
buckled equilibrium configuration at a load far below 
the classical buckling load and that any slight distur- 
bance would suffice to trigger such a jump. Koiter [6] 
also investigated the influence of small deviations in 
shell geometry as related to shell stability. Later, Don- 
nell and Wan [28] introduced initial imperfections into 
their analysis and concluded that initial imperfections 
were the principal reason for the discrepancy between 
buckling loads determined by classical analysis and 
those determined for test specimens. 

Experimental and theoretical investigations of 
the effects of measured general imperfections on the 
buckling of cylinders were carried out by Arbocz and 
Babcock [29-301. For global buckling, excellent cor- 
relation between the theoretical and experimental buck- 



ling loads is reported. These investigations and others range, physical strains, rather than tensorial strains, 
(e.g., Singer [3 1-33], Arbocz [34-351) provided a better should be used -large deflections are not an issue for the 
understanding of the buckling and postbuckling re- buckling case. The BUCLAP2 buckling analysis code 
sponse of cylinders loaded in axial compression. Com- described in Reference [52] is an example of his influ- 
pilations of simplified procedures (e.g., [36-371) empir- ence on the shell analysis community in the selection of 
ically account for the effects of initial imperfections. strain-displacement relations to be used in analyses. 
These procedures yield conservative estimates of the Extensions to shell theory to include nonlinear 
buckling loads for isotropic and orthotropic cylinders. terms and transverse shear effects have been made by 

Prebuckling Deformations 

The effect of different in-plane boundary 
conditions on the stability of cylindrical shells loaded by 
axial compression has been studied by many investiga- 
tors. The work of Hoff [38] and Nachbar and Hoff [39] 
demonstrated the influence of edge conditions, espe- 
cially the free edge condition, on the buckling process. 
Stein [40-41] worked the more realistic problem of ra- 
dially restrained edges in which the radial restraint is in- 
cluded from the onset of loading through the buckling 
process. This approach leads to nonuniform prebuck- 
ling deflections and stresses. Similar studies of finite 
length cylinders were performed by Alrnroth [42-43], 
and Sobel [44] who determined the importance of vari- 
ous edge conditions for the buckling of finite length cyl- 
inders. 

Prebuckling deformations are also influenced 
by stiffener configuration and placement. The effect of 
stiffener eccentricity relative to the centerline of the 
shell wall was first pointed out by van der Neut [45]. 
Tests performed by Card [46] demonstrated the large ef- 
fect stiffener eccentricity has on shell strength. The im- 
portance of this effect was then generally accepted. 
Block, Card, and Mikulas [47] were the first to show 
analytically that the eccentricity of stiffener placement 
strongly influences shell buckling behavior. Cylinders 
with external stiffeners exhibit significantly higher ax- 
ial buckling loads than those with internal stiffeners. 
This effect was further studied by Block [48]. The effect 
of load eccentricity was studied by Weller et al. [49]. 
Singer and Rosen [50] developed an experimental tech- 
nique to estimate the elastic support conditions for a 
shell buckling experiment. 

Shell Kinematics 

Shell theory was a topic of research in the past 
and continues to be pursued today. The popular Donnell 
theory [4, 511 is the most common theory even though 
it is not the most rigorous for general shell buckling 
problems. This theory gives accurate results for isotrop- 
ic cylinder6 whose buckling modal displacements vary 
rapidly in circumferential coordinate. Dr. Stein's phi- 
losophy was that since buckling is a real physical phe- 
nomenon which occurs within the small deflection 

Loo [53] for Donnell theory as well as for additional 
shell theories developed, for example, by Koiter [54], 
Sanders [55-571, Budiansky and Sanders [58], Budian- 
sky [59], Reissner [60], Naghdi [6 1-62], Simmonds 
[63-64], and Wempner [65-67] . In general, the nonlin- 
ear terms are not retained in the changes in curvature for 
small to moderate surface rotations [22]. 

Shell theory issues for stability and nonlinear 
analysis still remain. Researchers continue to review 
theoretical formulations and their computer imple- 
mentations. Results of these reflections are available in 
several references, including Wempner [65], Bushnell 
[20], Ambartsumyan [68], Yamaki [69], Niordson [70], 
Librescu [71], Arbocz [72], and Palazotto and Dennis 
[731. 

Composite Shells 

Composite materials are used extensively in 
the design of automotive, aircraft, and space structures. 
Perhaps the first book on anisotropic shells is the one by 
Ambartsumyan [68]. The general formulation for lami- 
nated anisotropic plates and shells follows from the ear- 
ly work of Hildebrand et al. [74], Reissner and Stavsky 
[75], and Dong, Pister and Taylor [76] where the cou- 
pling between extension and bending is considered. 
Since then, numerous books and papers have been writ- 
ten on laminated composite and sandwich structures. 
The literature on composite structural mechanics has 
been reviewed by Bert and Francis [77], Hashin [78] and 
Charnis [79]. In addition, computational models for 
composite laminated and sandwich structures have been 
reviewed by Noor and Burton [80-8 11, Reddy [82], and 
Noor, Burton, and Bert [83] -each having an extensive 
list of references. Leissa [84] summarizes some results 
for the buckling of laminated structures. 

In 1989 Kapania [85] presented a review of 
analysis methods and advances for laminated composite 
shells including finite element formulations. Assess- 
ment of various shell theories for linear stress analysis 
of cross-ply laminates is given in Reference [86] and for 
the buckling of cylindrical shells by Simitses et al. 
187-881. Because of the large number of parameters 
associated with laminated composite structures, it is 
often difficult to compare one design with another un- 
less some non-dimensional parameters are used to char- 



acterize the orthotropy and anisotropy of the laminate. 
Nemeth [89] has developed such parameters as exten- 
sions of the work of Batdorf [51] for isotropic cylinders 
and Stein [90] for orthotropic panels, and Nemeth refers 
to them as the Batdorf-Stein Z parameters. The effect 
of varying the laminate winding angle on the buckling 
load has been studied for various shell theories by Li et 
al. [91] and Jaunky and Knight [92]. Their findings con- 
firm the need for a shell theory that is more robust than 
Donne11 theory, since the lamination scheme definitely 
affects the shell buckling deflection pattern. 

Limited work has been done on the design of 
postbuckled composite structures using detailed finite 
element models. Analysis tools for specific configura- 
tions and loading conditions have been used to design 
composite structures because of the inherent computa- 
tional cost associated with performing a nonlinear finite 
element analysis within a design optimization proce- 
dure. Experimental studies of specific structural config- 
urations indicate that substantial weight savings and im- 
proved structural behavior can be accomplished by 
exploiting the nonlinear response characteristics of 
composite structures. This feature provides the impetus 
for the development of robust and efficient nonlinear 
analysis methods for designing composite panels. 

If the structure is designed to exploit its post- 
buckling stiffness, then effective design methods need 
to be developed and incorporated into the structural op- 
timization procedures. Within the design optimization 
procedure, the values of the design parameters may 
vary. In composite structures, the number of design pa- 
rameters may be large (e.g., Stroud [93]). Each change 
in a design variable requires a nonlinear analysis. The 
use of traditional nonlinear analysis methods within the 
design optimization procedure is unattractive, or more 
precisely, computationally uneconomical. From the de- 
signer's standpoint, performing nonlinear finite ele- 
ment analyses within the design optimization procedure 
limits the number of design configurations that can be 
assessed in a given amount of computer time. Prelimi- 
nary design, analysis, and sizing tools with extensions 
to the postbuckling regime such as POSTOP (Dickson 
et al. [94-951) and PANDA2 (Bushnell[96-991) provide 
effective ways to search the design space and find near- 
optimal structural design configurations. These tools 
are based on advanced analytical formulations and take 
advantage of engineering approximations for many lo- 
cal buckling, postbuckling, and failure modes. Once an 
optimum solution is obtained, a nonlinear finite element 
analysis of the optimum panel design can be performed 
as demonstrated by Bushnell and Bushnell [99]. 

Postbuckling Behavior 

Koiter's work [6] was the first application of 
initial postbuckling theory to cylinders subjected to ax- 
ial compression. His work focused on determining the 
maximum load which can be supported before buckling 
is triggered and relating this load to the magnitude and 
forms of geometric imperfections. This approach led to 
Koiter's general nonlinear theory of stability. Kempner 
[loo] extended the work of von Karman and Tsien [S] 
for cylinders by examining loading conditions based on 
dead weight versus a rigid testing machine. 

Koiter [ lo l l  also studied the initial postbuck- 
ling behavior of isotropic cylindrical panels subjected to 
axial compression, suggesting that the behavior of a nar- 
row curved panel in the advanced postbuckling stage 
approaches the behavior of a flat panel of equal width. 
His studies indicate that when the circumferential angle 
of a curved panel is sufficiently large, the postbuckling 
behavior is similar to that of a complete cylinder. Re- 
lated research was also performed by van der Neut 
[102]. 

Application of a Rayleigh-Ritz type analysis 
based on a finite deflection theory including the effect 
of initial imperfections was introduced by Almroth 
[I031 and Hoff, Madsen and Mayers [104] using trigo- 
nometric series for the displacement functions. Other 
studies of the buckling a id  postbuckling behavior of 
composite cylindrical panels and shells were extensions 
of the classical methods (e.g., Almroth [105], Khot 
[106], Budiansky [107], Seide [108], Koiter [109], 
Zhang and Matthews [110], Whitney [I l l ] ,  and Hui 
[112]). These studies considered the effects of stacking 
sequence, degree of anisotropy, and different material 
systems on the stability of cylindrical shells loaded by 
axial compression. 

Stein [90, 11 3-1 161 contributed significantly 
to the understanding of postbuckling behavior of plates 
subjected to compression and shear as well as combined 
loading. His analysis is based on a series solution in one 
direction and an adaptive finite-difference-based two- 
point boundary-value problem "solver" in the other 
direction. 

Traditionally the set of nonlinear algebraic equa- 
tions resulting from the spatial discretization of the shell 
equations is solved using Newton-Raphson iteration 
(e.g., Bushnell [23]). The Newton-Raphson method is 
a solution technique based on linearizing the nonlinear 
equations, retaining only the leading term in a Taylor- 
series expansion about the last converged solution. Var- 
ious forms of the Newton-Raphson algorithm are com- 
monly used. The two most common are the full 
Newton-Raphson method and the modified Newton- 



Raphson method. In the full Newton-Raphson method, 
the tangent stiffness matrix is formed and factored for 
every iteration and the residual force vector is formed 
for every iteration as part of the iterative procedure. 
Convergence is rapid but the computational cost is sig- 
nificant. For the modified Newton-Raphson method, 
only the residual force vector is formed for every itera- 
tion - the tangent stiffness matrix is not updated for ev- 
ery iteration. Instead, the tangent stiffness matrix is up- 
dated only at the beginning of each load step or perhaps 
only when convergence has not been attained after a 
specified maximum number of iterations. This method 
is very common, provides accurate solutions to many 
problems, and alleviates some of the computational cost 
of performing nonlinear finite element analysis without 
sacrificing accuracy or robustness for many structural 
mechanics problems. 

Generally, the load level is incremented for each 
load step but held constant during the iterative process 
at that load level. In the arc-length control procedure 
of Riks [117], the load level is considered a variable 
within each iteration. The solution follows some speci- 
fied path until convergence is attained. For a single de- 
gree of freedom system, this path may be in a plane nor- 
mal to the tangent line at the beginning of the load step 
or the path may be an arc of a circle of a given radius 
(i.e., constant arc length). Since the load level is now a 
variable, an additional equation is needed. This equa- 
tion is referred to as a constraint equation. To solve the 
original nonlinear system of equations with the 
constraint equation, both equations are linearized by 
considering the leading terms of the Taylor-series ex- 
pansions about the last converged solution. This ap- 
proach is robust and rigorous, and it avoids the root 
selection issue discussed by Crisfield [I181 that arises 
from solving the quadratic form of the constraint equa- 
tion. 

Examination of Newton's method for isolated 
bifurcation problems reveals an alternative to the tradi- 
tional incremental nonlinear analysis approach. New- 
ton's method differs from the Newton-Raphson method 
in one fundamental way. Newton's method is a method 
for solving nonlinear differential equations by solving 
a sequence of linear differential equations in an iterative 
manner. The Newton-Raphson method is a incremen- 
tal-iterative method for solving nonlinear algebraic 
equations by solving a sequence of linear algebraic 
equations in an iterative manner. These nonlinear alge- 
braic equations arise from the spatial discretization of 
nonlinear differential equations. The form of Newton's 
method called parameter differentiation was further de- 
veloped by Thurston [I191 to solve problems with iso- 
lated bifurcation points. In the change of variables sug- 
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Fig. 1. Typical softening behavior exhibiting 
isolated critical points. 

gested by Thurston, the linear static solution for the 
membrane prebuckling stress state is used in combina- 
tion with the first eigenpair associated with the linear bi- 
furcation buckling problem. A postbuckling solution 
for a particular load level can be obtained directly with- 
out recourse to an incremental-iterative procedure. For 
example, a solution can be obtained directly at a load 
level where the maximum transverse deflection is as 
much as twice the panel thickness by using Newton's 
method with a linear combination of the linear pre- 
buckling stress solution and the linear bifurcation buck- 
ling mode shape. Hence, Newton's method provides an 
effective procedure for these problems provided the en- 
tire postbuckling response curve is not desired. 

A softening structural behavior is related to a 
type of structural response which depends on the applied 
loading. This response, shown in Figure 1 for an axially 
compressed panel, is associated with buckling due to in- 
plane loads. Softening is generally related to a reduc- 
tion in stiffness in the postbuckling regime without the 
response exhibiting a limit point. Buckling is associated 
with transitioning from one deformation mode to anoth- 
er (or an adjacent equilibrium configuration) at a com- 
mon load level. That is, a perfect column loaded in com- 
pression will respond as a rod until the applied load 
reaches a critical value (the buckling load) at which time 
the lowest energy state becomes a beam bending mode. 
In this case, there exists a load level with two adjacent 
equilibrium configurations: one with a rod or mem- 
brane behavior and another with a beam or bending be- 
havior. These critical values correspond to the eigenva- 
lues of the structure based on a given stress state. Often 
these eigenvalues are isolated or spaced from one anoth- 
er. Such problems are not difficult to solve even though 



the load-deflection curve generally does not exhibit a 
horizontal tangent. However, the buckling load does 
correspond to a critical value or eigenvalue which corre- 
spond to a point where the determinant to the tangent 
stiffness matrix is zero. As such, the nonlinear terms 
must be triggered in order to jump from the prebuckling 
path onto the adjacent equilibrium path. This triggering 
is usually done by incorporating the actual imperfect ge- 
ometry of the structure (initial geometric imperfections) 
or by imposing a small lateral or eccentric load. In most 
practical nonlinear analyses of postbuckled panels, an 
initial imperfection in the form of a linear combination 
of one or more scaled local bifurcation buckling modes 
is used as a "trigger" in order to ease the transition from 
a prebuckled stable state to a post-locally-buckled 
stable state, that is, to enable the computed series of non- 
linear equilibrium states easily to "turn the corner" la- 
belled as "first eigenvalue" in Figure 1. The solution 
process usually continues smoothly in the postbuckled 
load range since the eigenvalues of the tangent stiffness 
matrix generally remain isolated rather than clustered 
together. 

Modal Interaction and Mode Jumping 

The buckling mode of a structure depends on 
a number of factors including geometric parameters 
such as shell thickness, shell radius, and shell length. 
Tvergaard [I201 determined that the transition from an 
axisymmetric buckling mode to a diamond-shaped 
buckling mode is attributed to geometric effects 
associated with the cylinder thickness. Such behavior 
should be represented by the analysis tools used for cyl- 
inder design as the design space is searched. 

The stability analysis of cylindrical shells in- 
volves an infinite number of repeated (or nearly identi- 
cal) eigenvalues at the critical load. The postbuckling 
behavior, as shown in Figure 2, exhibits significant re- 
duction in load carrying capability and many different 
unstable equilibriums paths are available before the 
lowest energy state is reached and stable equilibrium is 
re-established (e.g., Yoshimura [7]). Also in a design 
optimization procedure, a given panel structural design 
will generally evolve from one with an isolated bifurca- 
tion point to one with closely spaced eigenvalues. How- 
ever, the form of Newton's method described previously 
in Reference [I191 is for structures exhibiting isolated 
bifurcation points. 
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Fig. 2. Typical softening behavior exhibiting 
repeated eigenvalues and structural collapse. 

multiple repeated eigenvalues or closely spaced eigen- 
values cause difficulty in predicting the nonlinear struc- 
tural response. In most cases, the nonlinear solutions 
along the unstable equilibrium path are not observable 
in the laboratory since they represent a dynamic event. 
However, analytically tracing this unstable branch using 
static analysis procedures may provide insight into the 
overall failure process and provide information useful 
for improving the design. In this unstable region, struc- 
tural material failures often occur. The problem be- 
comes even more complex since the geometry changes 
due to large deflections and rotations and changes in the 
material constitutive law due to local failures and/or in- 
elastic behavior, or both. 

The postbuckling behavior of structures is 
often characterized in terms of the postbuckling de- 
formation pattern. In the postbuckling regime, two 
types of modal behavior occur as described by Bushnell 
[20] and Bushnell et al. [121]. One type is modal inter- 
action which is defined as the interaction of long wave- 
length (general instability) buckling modes with one or 
more short wavelength (local instability) buckling 
modes (e.g., see Koiter 161, Tvergaard [122], Budiansky 
[107], Koiter and Pignataro [123], and van der Neut 
[124]). The other type is mode jumping or mode switch- 
ing which is defined as the interaction between short 
wavelength buckling modes (e.g., Stein [125], Supple 
[126], and Riks et al. [127]). Mode jumping problems . - - -  

A softening structural behavior which exhibits are dynamic problems wherein the stable equilibrium 
a rapid reduction in load carrying capacity is generally paths may not be statically connected [121, 1271. 
associated with structural collapse and in shell struc- Associated with such a "jump" is an energy change 
tures occurs due to multiple or repeated eigenvalues. which may be sufficient to cause localized damage lead- 
One example is a circular cylindrical shell subjected to ing to further complications in predicting the nonlinear 
axial compression as shown in Figure 2. In this case, shell response. 



If a secondary critical point is reached (see Fig- books are available on the topic of finite element analy- 
ure l), then mode jumping may occur. At least one neg- sis, and space precludes any attempt to summarize these 
ative root is present in the tangent stiffness matrix. Such contributions within this paper. 
problems are generally referred to as "drop dead prob- 
lems" since the nonlinear static solution procedure 
stops dead in its tracks. In such cases, the most likely 
cause of the numerical difficulties is the "mode switch- 
ing" or "mode jumping" phenomenon that would lead 
to a new equilibrium configuration for the structure 
(e.g., see Riks et al. 11271). Further extensions to New- 
ton's method for such mode jumping problems have 
been presented by Thurston, Brogan, and Stehlin 11281. 
These extensions require substantial software modifica- 
tions to implement and user intervention to use. Howev- 
er for the case of isolated bifurcation points, Newton's 
method is readily adapted to existing finite element 
analysis systems. Alternatively, Riks et al. [I271 have 
suggested that, at such a critical point, a transient dy- 
namic analysis be initiated and continued until the iner- 
tia terms decay and a new stable equilibrium configura- 
tion is obtained. Examples are provided in Reference 
11211. From this point, the nonlinear static analysis may 
proceed. For the solution procedure to proceed past 
such critical points on the response curve numerically, 
a transient dynamic analysis may be needed in order to 
"jump" to the next "stable" equilibrium configuration. 
Alternatively a new component of the initial buckling 
modal imperfection can be introduced corresponding to 
the critical eigenvector at the secondary branching point 
in Figure 1 in order to ease the transition to the tertiary 
branch. 

Finite Element Analysis 

The finite element method continues to evolve 
and mature. In the development of shell finite elements, 
basic issues still remain. These issues include element 
distortion sensitivity, geometry modeling and idealiza- 
tion, adaptive refinement and quality control, incorpo- 
ration of interlaminar effects, and localized effects due 
to shell junctures and discrete changes in local stiffness 
(e.g., stiffener attachments, cutouts, variable thickness, 
local damage and delaminations). Gallagher [I291 
identified three formulation approaches that are still 
used in finite element codes. These approaches are the 
faceted shell approximation using flat elements, the iso- 
parametric solid element approach to curved surface 
modeling, and the approach based on the use of a shell 
theory directly. MacNeal [I301 has an excellent book 
on finite element design and element development. 
Other key references on shell elements for stability anal- 
ysis include Hinton et al. 11311, Hughes et al. [132], 
Stein et al. [133], Taylor [134], Noor et al. [26], Kratzig 
[135], Simo et al. [136], and Riks et al. [137]. Much re- 
search has been published in this area. Over 400 text 

Nonlinear finite element analysis procedures 
have been under development for more than three de- 
cades. Tremendous challenges are still being faced. 
Some of the fundamental work has been presented by 
Hartung 11381, Hughes, Pifko, and Jay [132], and Hin- 
ton, Owen, and Taylor [131]. For these nonlinear prob- 
lems, the interplay between various aspects of the prob- 
lem and the analysis can become entangled causing 
analysts great difficulties in obtaining and verifying ro- 
bust, accurate solutions. This interplay can include 
many contributors such as structural response, problem 
formulation, approximations, numerical solvers, itera- 
tion convergence, interpretation of results, boundary 
conditions, and loading. While many issues have been 
resolved, new issues have emerged as the computing 
technology and our understanding have evolved. 

Most current commercial finite element codes 
provide a nonlinear analysis capability for both statics 
and transient dynamic problems (e.g., Hibbitt 
1139-1401). In most cases, the Newton-Raphson proce- 
dure is available and used as the default solution algo- 
rithm. In addition, some codes use the full Newton- 
Raphson method as their default method in order to 
provide robustness for novice users. Nonlinear prob- 
lems are very difficult to solve. It is nearly impossible 
to anticipate all possible solution combinations that us- 
ers may attempt. Users of nonlinear codes need to be es- 
pecially cognizant of the structural problem being 
solved, options and defaults provided by the code devel- 
opers, and thoroughly interrogate the computed results 
of the simulation. 

Shell finite element development should con- 
tinue to be an active area of research. Anomalies and 
pathological problems associated with many shell ele- 
ments still remain. The intelligent use of the elements 
and thorough examination of the models and their pre- 
dictions continues to be a major contributor to a success- 
ful finite element analysis. 

Shell Analysis Codes 

During the mid 1960's, the development of 
several shell analysis computer codes began. Only a 
few remain and continue to be widely used. In some 
cases, the digital computer was simply viewed as a num- 
ber cruncher or electronic calculator for classical meth- 
ods. New results based on series solutions and asymp- 
totic methods became tractable for the first time (e.g., 
Stein [141]). Alternatively, numerical techniques based 
first on finite differences and then on finite elements be- 
gan to appear. Symbolic computational tools are also 



now available which remove some of the laborious [154-1551). New designs for the Space Shuttle external 
mathematical analysis steps and expedites analytical in- tank and other cryogenic fuel tanks for hypersonic ve- 
vestigations. hicles have also challenged the shell analysts (see KO 

Shell of revolution analysis codes are very 
popular tools and continue to provide a basis for many 
shell design studies. FASOR developed by Cohen 
[142-1431, BOSOR developed by Bushnell[144-1461, 
and several shell of revolution analysis tools developed 
at NASA Langley [147-1501 are the main general-pur- 
pose codes for shells of revolution. 

To address issues associated with asymmetric 
response, general two- and three-dimensional shell 
analysis codes were developed. This advancement in 
the technology led to the "shell shoot out problems" 
posed by Hartung [151]. These problems continue to be 
used to test the nonlinear shell analysis capabilities of 
codes and elements. Nonlinear finite element analyses 
are readily performed using any one of several commer- 
cially available finite element software systems such as 
MSCJNASTRAN and HKSIABAQUS. While stability 
and collapse analyses are available as analysis options, 
the more dominant sources of nonlinearity in mechani- 
cal component design problems are contact and local- 
ized material nonlinearities. 

STAGS is focused primarily on shell analysis 
and solution procedures for shell problems. The STAGS 
code [I521 has undergone continual development at 
Lockheed-Martin Palo Alto Research Center with 
sponsorship from NASA Langley, Wright-Patterson Air 
Force Base, and the Navy since the mid 1960's. Early 
versions, based on BOSOR experiences, are finite dif- 
ference based (i.e., STAGS-A and STAGS- B), while 
the later versions are finite element based (i.e., 
STAGS-C and STAGS-Cl). Today STAGS is perhaps 
the premier shell analysis code in the world. 

Modeling and Simulations 

Today analysts can easily model the spatial ge- 
ometry of large complex systems and generate finite 
element models which easily exceed one million active 
degrees of freedom. Coupling these two facts with the 
availability of high-performance computing systems 
provides simulation capabilities which far exceed the 
capabilities available less than a decade ago. 

Modeling and simulation of complex aero- 
space shell structures are perhaps the more challenging 
shell analysis tasks to date. Anderson [I531 gave an 
overview of several shell problems facing the aerospace 
community in 1980. Following the Space Shuttle Chal- 
lenger accident, the definition of large-scale nonlinear 
analysis changed as a result of the analyses performed 
on the solid rocket boosters (e.g., Knight et al. 

[156], Nemeth et al. [I571 and Young and Rankin 
[158]). Other examples are also available. 

Within the aircraft industry, composite fuse- 
lage shell analysis and aircraft structural integrity for 
metallic fuselage structures continues to challenge our 
ability to provide robust nonlinear analysis solutions. 
Examples of such work has been presented by Nagaswa- 
my et al. 11591, Starnes and Shuart 11601, Starnes et al. 
[161], Budiman et al. [162], and Charnis et al. [163]. 

CURRENT THRUSTS 

Current research thrusts are discussed briefly 
in this section as well as possible new directions in shell 
stability analysis. These thrusts are based on the au- 
thors' perception of the status of nonlinear shell stability 
and collapse analysis methods and the needs for future 
shell design tools. In addition, future directions and 
challenges in shell stability research are also identified 
by Arbocz [164]. 

Damage Tolerance and Structural Integrity 

Damage tolerance and structural integrity rep- 
resent recent and new research areas for shell analysts. 
Current simulations for metallic shells can incorporate 
elasto-plastic behavior and also allow for self-similar 
crack growth. Models which compute the crack growth 
path are only beginning to appear and need experimen- 
tal verification followed by implementation in the anal- 
ysis codes. Damage modeling and progression are also 
rich research areas for composite shells. The effects of 
localized damage caused by impact, manufacturing 
flaws, or local strength failures need to be assessed just 
as elasto-plastic behavior is for metallic shells. 

In addition to these topics, the need to be able 
to simulate blast containment in cargo holds and fuel 
compartments is becoming critical. Having such analy- 
sis tools available will perhaps enable designers to de- 
vise structural concepts which would prevent tragedies 
caused by unexpected events. 

Realistic Modeling and Loads Assessment 

Realistic loading conditions and actual shell 
geometry modeling represent other research thrusts for 
shell analysts. Combined mechanical and thermal loads 
that exhibit time-dependent characteristics must now 
be considered in order to design the next generation of 
aerospace vehicles. Incorporation of actual manufac- 
turing tolerances and thickness variations from a proba- 
bilistic sense needs to be addressed. Calladine [I651 is 
investigating the influence of "locked in" initial 



stresses due to the initial imperfection as well as 
imperfection associated with the "assumed-to-be- 
stress-free" case. These "locked in" stresses have a 
pronounced effect on the buckling performance unless 
precautions are taken to avoid them. Constitutive mod- 
els for composite manufacturing procedures need to be 
developed and implemented into analysis codes. 

Nonlinear Response Prediction 

Nonlinear response prediction will continue to 
be a focussed research topic in the coming years. Analy- 
sis procedures for isolated bifurcation problems and 
even many elastic shell collapse problems can be solved 
with today's methods. New methods are needed to pre- 
dict transient mode changes and discontinuous nonlin- 
earities caused by crack growth and contact problems. 
These types of nonlinear problems are ever present in 
assessing residual strength and structural integrity. 

Problem adaptive solution strategies and mod- 
eling procedures are needed and are generally only be- 
ginning to appear in the research literature (e.g., Lee and 
Belytschko [166]). Shell element formulations based 
on p-extensions will provide reliability and robustness 
to the numerical simulations. However, the interplay of 
shell geometry, imperfection modeling, discrete 
changes in stiffness, built-up structures, and so forth 
forms the basis for arich research area for years to come. 

Design Optimization 

Optimization of structures for minimum- 
weight design and postbuckling strength generally al- 
ways leads to a clustering of the eigenvalues. Sensitiv- 
ity analyses of composite shells including anisotropy, 
imperfections and design changes are needed. One ex- 
ample of such work is that of Cohen and Haftka [167]. 
The design of shell structures continues to pose nonlin- 
ear analysis challenges as the lowest energy state at dif- 
ferent load levels often leads to mode jumping (Bush- 
nell, Rankin, and Riks [121]). Intelligent computational 
algorithms are needed that recognize the onset of mode 
jumping and automatically adapt the solution sequence. 
Hybrid analysis and optimization procedures such as the 
one posed by Bushnell and Bushnell[99] need to be de- 
veloped further. These methods use advanced analyti- 
cal procedures to search the design space and identify 
near-optimum configurations which are then analyzed 
using detailed nonlinear finite element models to verify 
the design. Incorporation of probabilistic models of 
manufacturing effects and imperfection characteristics 
should be made. 

SUMMARY 

Recent advances in structural analysis meth- 
ods and computer technology have made it possible to 
solve structural stability and nonlinear shell analysis 
problems that were beyond the analysis state-of-the-art 
less than 5 to 10 years ago. Solution methods for modal 
interaction problems and transient response analyses 
coupled with nonlinear static analysis have made it pos- 
sible to address nonlinear stability problems for large- 
scale, practical structural models of thin shell structures. 
The ability to integrate past limit points and to deter- 
mine stable equilibrium solutions for nonlinear collapse 
problems have made it possible to analyze shell stability 
problems accurately. Large-scale finite element mod- 
els of practical shell structures can now be analyzed in 
a reasonable amount of time. Structural engineers now 
have significantly improved analysis and design tools. 
High-fidelity models and corresponding analyses accu- 
rately represent the nonlinear response of many practi- 
cal shell problems today, and improvements in solution 
algorithms and finite element modeling capabilities of- 
fer the potential for solving even more complicated 
structural response and failure problems in the future. 
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Abstract 

An answer is sought to the question how comes 
that today, in 1997, after so many years of 
concentrated research effort, when it comes to 
designing buckling critical thin walled shells, one 
cannot do any better than using the rather 
conservative Lower Bound Design Philosophy of 
the sixties. It will be shown that with the establish- 
ment of Initial lmperfection Data Banks and the 
introduction of Probabilistic Design Procedures one 
has, what appears to be, a viable alternative that 
when used judiciously may lead step by step to 
improved shell design recommendations. 

Introduction 

In the sixties the engineering community was 
facing the urgent problem of having to devise 
reliable design procedures for both the ballistic 
missile program of the U.S. Air Force and the 
launch vehicles of the NASA space program. In 
these weight critical applications the structural 
optimization schemes often lead to buckling-critical 
designs. Facing a multiplicity of very complicated 
problems the different governmental agencies 
started large research programs dealing with shell 
stability. 

Looking back at the results of each of these 
programs separately, one has to classify them as 
successful. The Lower Bound Design Philosophy 
[I], which was based on the results of the 
experimental programs, has provided generations 
of shell designers with a useful tool for successful 
shell designs. 
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The many publications dealing with different 
aspects of the lmperfection Sensitivity Theory [2,3] 
have improved our understanding of the different 
effects causing the sometimes wide scatter of 
buckling loads observed experimentally. With the 
introduction of ever faster workstations and 
supercomputers the current generation of the shell 
of revolution codes such as BOSORd [4] and the 
general shell codes such as STAGS2 [S] provide 
us with excellent tools needed for an accurate 
modelling of the collapse behavior of thin-walled 
shells. 

However, it is very disturbing that, when it comes 
to determining the load carrying capability of a 
thin-walled shell structure then, also in 1997 the 
accounting for the uncertainties involved in every 
design is usually done by the above mentioned 
Lower Bound Design Philosophy, a very 
conservative deterministic procedure that has 
already been in use 70 years ago. That is, the 
uncertainties are accounted for by using an 
empirical "knockdown factor", which is so chosen 
that when it is multiplied with the calculated perfect 
shell buckling load a "lower bound" to all existing 
experimental data is obtained (see Fig. 1). 

Deterministic vs 
Probabilistic Design Procedures 

In principle, the use of empirical knockdown factors 
to account for the damaging effect of as yet 
unknown causes was and is a good engineering 
solution to a pressing problem. However, the 
question that immediately comes to one's mind is, 
where has the scientific community failed? How 
comes that today, in 1997, after so many years of 
concentrated research effort one cannot do any 
better, and this despite the enormously increased 
computational facilities provided by todays high 
powered computers? In this paper, while tracing 



the developments related to the stability analysis of 
axially compressed cylindrical shells, special 
attention will be payed to the question whether it is 
possible to do better than the lower bound 
deterministic design philosophy and if yes, what 
does it take to achieve it? 

Clearly, if for each application one could quantify 
and understand the "problem uncertaintiesJ' and 
their influence on the design variables, one would 
obtain a better engineered, better designed and 
ultimately a safer product. The reliability based 
design approach basically provides the means to 
achieve this goal. The collapse problem of axially 
compressed stiffened cylinders, say, can best be 
formulated in terms of a response (or limit state) 
function 

where h is a suitably normalized load parameter 
(= PIP,, say), As is the random collapse load of 
the structure and the vector X represents the 
random variables of the problem, The components 
of the random vector Xi may be Fourier 
coefficients of the initial imperfections and other 
parameters quantifying the uncertainties in the 
specified boundary conditions, the constitutive 
equation used to describe the nonlinear material 
behavior, thickness distribution, residual stresses, 
etc. Notice that the evaluation of the response 
function thus involves the solution of a complicated 
nonlinear structural analysis problem, represented 
by a detailed and possibly large finite element 
model. However, with todays computational 
resources this, in itself, should not pose any 
unsurmountable difficulties. 

Clearly the response function g(X) = 0 separates 
the variable space into a "saf6region" where 
g(X) > 0, and a "failure regionJ' where g(X) L 0. 
~hbe l iab i l i t y  R(h) - or the probability of-failure 
Pf(h) can then be calculated as 

where 

Pf(X) = Prob{g(X) - LO} = s...s f~(x_)dx_ (3) 
s ( y L o  

- 
and fx(x) is the joint probability density function of 
the rand& variables involved 

The credibility of this approach depends on two 
factors, the accuracy of the mechanical model 
used to calculate the limit state function and the 
accuracy of the probabilistic techniques employed 
to evaluate the multi-dimensional integral. 

Comparing the two approaches in short, the 
Deterministic Design Procedure recommends the 
use of the following buckling formula 

Y Pa= L - PC 
F.S. 

where Pa = allowable applied load; PC = lowest 
buckling load of the perfect structure,y= 
"knockdown factor"; and F.S. = factor of safety. 
The empirical knockdown factor y is shown for 
axially compressed isotropic shells in Fig. 1 as the 
lower bound curve to all available experimental 
data. 

In the Probabilistic Design Procedure the 
improvements are sought in a more rational 
approach by the definition of the knockdown factor 
y. The proposed new shell design procedure can 
be represented by the following formula 

ha Pa I - 
F.S. PC 

where ha = . reliability-based improved (higher) 
knockdown factor, to be read from the appropriate 
reliability curve (see Fig. 2). If all the uncertainties 
involved in the problem such as initial 
imperfections, thickness variations etc. are covered 
by the random variables Xi, then the use of a 
factor of safety (F.S.) is unnecessary or one can 
use a factor of safety equal to one. 

In the following the steps involved in the derivation 
of such a reliability-based improved (higher) 
knockdown factor ha will be discussed. 

Characteristie imper%ec%ion Distributions 

In the beginning initial imperfection surveys were 
carried out on laboratory scale shells by the 
Caltech group [7,8] and others [9,10]. This was 
followed by complete imperfecti0.n surveys on large 
scale and full scale structures in different parts of 
the world [1 1,12,13]. Now-a-days practically in all 
shell buckling problems initial imperfections play an 
important role. However, when carrying out initial 
imperfection measurements one should always 
remember that Koiter's work [2,14] has shown that 



the degree of imperfection sensitivity depends not 
only on the magnitude but also on the shape of the 
initial imperfections. Thus it is not sufficient to spot 
check the shell surface for the maximum 
imperfection amplitude by carrying out selected 
circumferential andlor axial scans. One must 
always provide for sufficient cross-reference data, 
so that later the individual scans can be pieced 
together to a complete surface map of the 
measured structure via numerical data reduction 
programs. The need for providing cross-reference 
data sometimes poses added complications but as 
has been shown in Ref. [15] on several examples 
in most cases the difficulties can be overcome 
rather routinely. 

In all cases, where one attempts to measure the 
exact shape of a shell, before one can determine 
the initial imperfections one has to define the 
perfect cylinder. This is done by finding numerically 
the best-fit cylinder to the measured surface map 
assembled using the initial imperfection scans. 
Using the method of least-squares data reduction 
programs [7] can compute the eccentricitiesY1 
and Z1, the rigid body rotations ~1 and ~2 and 
the mean radius R (see Fig. 3) rather routinely. 
Finally, the measured radial displacements are 
recomputed with respect to the newly found 
"perfect" cylinder. These values are then used to 
prepare the 3-dimensional plots of the initial 
imperfections shown in Figures 4, 5 and 6. 

In all cases the measured initial imperfections can 
be represented by one of the following two double 
Fourier series 

referred to as the half-wave cosine representation, 
and 

called the half-wave sine representation. Here R, L 
and t are shell radius, length and wall thickness; x 
and y are axial and circumferential coordinates; k 
and P are integers denoting the number of axial 
half waves and the number of full waves in the 
circumferential direction, respectively. In all cases 
the measured imperfections are referred to the so- 

called "best fit" cylinders. 

The adoption of a standard representation for the 
measured initial imperfections is necessary in 
order to be able to compare the different 
imperfection distributions that are associated with 
the different fabrication processes. Notice that in all 
cases the Fourier coefficients are normalized by 
the corresponding wall thicknesses of the shell 
bodies. 

At the moment there are two Initial Imperfection 
Data Banks in existence, one at the Delft 
University of Technology [16] and one at the 
Technion in Haifa [9]. 

For a successful application of reliability based 
design methods the existence of data bases 
containing such experimentally measured initial 
imperfections, is very helpful, whereby the critical 
question is: 

Can one associate characteristic initial 
imperfection distributions with a specified 
manufacturing process? 

That the answer to this question is an 
unconditional yes has been demonstrated very 
clearly in References [15,17], where characteristic 
imperfection distributions for different fabrications 
processes are shown. 

Stochastic Stability Analvsis 

It has been demonstrated in References [15,17] 
that, indeed, one can associate characteristic initial 
imperfection distributions with the different 
fabrication processes. The question then arises: 

Given a characteristic initial imperfection, 
distribution how does one proceed to 
incorporate this knowledge into a 
systematic design procedure? 

Since initial imperfections are obviously random in 
nature, the Probabilistic Design Procedure, 
described earlier by Eqs. 1-3, is one way to 
introduce the results of the experimentally 
measured initial imperfections into the analysis. 

The proposed approach is based on the notion of 
a reliability function R(h) , where by definition 



R(h) =Prob (A>h) (8) the form given by Eq. (1) 

and h =  normalized load parameter (=PIPc) and 
A = normalized random buckling load. 

As can be seen from Fig. 2, the knowledge of the 
reliability function permits the evaluation of the 
allowable load, defined as the load level ha for 
which the specified reliability is achieved, for a 
whole ensemble of similar shells produced by a 
given manufacturing process. Notice that the 
allowable load level ha is identical to the improved 
(higher) knockdown factor introduced in Eq. (5). 

Turning now to the collapse problem of axially 
compressed cylinders with random initial 
imperfections one is faced with the evaluation of 
the multidimensional integral given by Eq. (3). 

Whereas with todays advanced nonlinear finite 
element codes such as STAGS [5] and ABAQUS 
[18] the limit state function g(X) (if so desired) can 
be determined with great acckacy, the evaluation 
of the multidimensional integral, where the domain 
of integration depends on the properties of the limit 
state function, is still subject of detailed 
investigations. Since an exact numerical evaluation 
of this multidimensional integral is considered 
impractical, in the following it will be shown that by 
using the First-Order, Second-Moment Method 
[19,20] it is possible to develop a simple but 
rational method for checking the reliability of axially 
compressed shells using some statistical measures 
of the imperfections involved, and to provide an 
estimate of the structural reliability, whereby also 
the specified boundary conditions are rigorously 
enforced. 

The use of the First-Order, Second-Moment 
Method involves linearization of the response 
function g(X) at the mean point and knowledge of 
the distri6ution of the random vector X. 
Calculations are relatively simple if X is normafly 
distributed. If X is not normally dktributed, an 
appropriate n6rmal distribution has to be 
substituted instead of the actual one. 

In the present case one is interested in knowing 
the reliability R(h) of the structure at any given 
load h; that is, one wants to obtain 

where As is the random buckling load and h is the 
applied nondimensional deterministic load. It is 
apparent that in the absence of a straightforward 
deterministic relation connecting As and the Xi's 
an analytical solution is unfeasible. However, the 
first-order, second-moment analysis can be done 
numerically, as has been reported in Ref. 20 for a 
different problem. 

To combine the use of numerical codes with the 
mean value first-order, second-moment method 
one needs to know the lower order probabilistic 
characteristics of Z. In the first approximation the 
mean value of Z is determined as follows: 

This corresponds to the use of the Laplace 
approximation of the moments of nonlinear 
functions. The value of 

is calculated numerically by STAGS [21], the code 
that was chosen for the numerical work. It 
corresponds to the deterministic buckling load of 
the structure possessing mean imperfection 
amplitudes. 

The variance of Z is given by 

where cov(X.,Xk) is the variance-covariance 
matrix. The calculation of the derivatives avBE,j (or 
av/aek) is performed numerically by using the 
following numerical differentiation formula at values 
of t j  =E(Xj) [or Ck=E(Xk)l: 

In this case the limit state or failure surface has 



Having obtained the quantities E(Z) -E(As) -h and 
Var(Z) one can estimate the probability of failure 
Pf(h) as 

0 

P~(x) =P~(z<o) =FZ(O) = J f ~ ( t )  dt (1 5) 
-OD 

where Fz(t) is the probability distribution function 
of Z and fz(t) is the probability density function of 
z. 

Assuming that the performance function Z is 
normally distributed, then 

1 f ~ ( t )  =---.---- 
1 t -a 2 

exp[--(-) I 
o Z G  Oz  

where a = E(Z) and q=Jm. Further 

where P=doz is the reliability index, $(P) is the 
standard normal probability distribution function, 
and the error function erf(p) is defined as 

Finally the reliability R(h) will be estimated as 

As can be seen from Eqs. 11 and 13, in order to 
be able to evaluate the mean value and the 
variance of the performance function Z, one must 
know the mean values and the variance- 
covariance matrix of the basic random variables 
Xi. Since in this case the basic random variables 
Xi represent the Fourier coefficients of the initial 
imperfections, the above statistical measures can 
only be evaluated if a sufficiently detailed initial 
imperfection data bank (see Refs. 16 and 22) is 
available. 

Numerical Results 

In the previous section the solution of the 
stochastic stability problem of Eq. (3) has been 
reduced to a series of n+l deterministic buckling 
load analysis, where n is the number of random 
variables used. 

To investigate the feasibility of using the first-order, 
second-moment method to make buckling load 
predictions, in Ref. [17] the integrally stringer 
stiffened aluminium alloy shells tested at Caltech in 
1969, the so-called AS-shells were used. Based on 
the results of earlier investigations of the buckling 
behavior of the AS-2 shell [23], it was decided to 
use the following initial imperfection model for the 
collapse load calculations: 

where fkp =d c:~ +D& and 0 =ylR 

The mean values and the variance-covariance 
matrix of the 7 random variables were evaluated 
by ensemble averaging. An advantage of this 
method is that the statistical parameters of the 
initial imperfections are estimated from the real 
measurements of the shell profiles. The only 
assumption made is that the Fourier coefficients 
have a multivariate normal distribution. 

In Ref. [17] the computation of the collapse loads 
with mean imperfections, needed to evaluate the 
derivatives ay.r/a<. numerically by using the formula 
given by Eq. (141, was done with a modified finite 
difference version of the well known code STAGS 
[21]. All numerical data used and the results of the 
numerical computations can be found in Ref. [17]. 

It has been shown in Ref. [24] that for stringer 
stiffened shells satisfactory correlation between 
theoretical predictions and experimental results 
requires the inclusion of both the initial 
imperfections and the appropriate elastic boundary 
conditions in the analysis. To illustrate this effect in 
Ref. [17] reliability functions were derived for SS-3 
(NX=v=W=Mx=O) a n d C-~ (U=V=W=W,~=O)  
boundary conditions. The results of these 
calculations are displayed in Figures 2 and 7, 



respectively. Notice that in Fig. 2 the buckling load 
h is normalized by - 223.079 Nlcm, the buckling 
load of the petfect AS-2 shell using nonlinear 
prebuckling and the SS-3 boundary conditions; 
whereas in Fig. 7 the normalizing factor used is 
-315.323 Nlcm, the buckling load of the perfect 
AS-2 shell using nonlinear prebuckling and the C-4 
boundary conditions. 

Comparing the buckling loads predicted by Figs. 2 
and 7 for a reliability of, say, 0.98 of 
N s s - ~  =-162.848 N/cm and N c - ~  = - 264.871 
N/cm with the experimental buckling load of 
Nexp= - 223.793 Nlcm, one notices that the 
calculated results seem to support the suggestion 
made in Ref. 24 that the experimental boundary 
conditions of the test setup used to buckle the AS- 
shells at Caltech [8] imposed some sort of elastic 
boundary conditions. 

Together with initial geometric imperfections 
general elastic supports [25] have been widely 
accepted as the explanation for the wide 
experimental scatter and the poor correlation 
between the predictions based on a linearized 
s m a l l  d e f l e c t i o n  t h e o r y  w i t h  S S - 3  
(nx=v=W=Mx-0) boundary conditions and the 
experimental values shown in Fig. 1. 

The effect of different combinations of in-plane 
boundary conditions on the stability of axially 
compressed perfect shells and shells with 
axisymmetric imperfections have been studied 
analytically and numerically by Hoff [25], Stein [26] 
and Almroth [27] among others. Recently Singer 
and his coworkers [28] have developed an 
experimental technique which makes it possible to 
estimate the degree of elastic support present in a 
particular test set-up. 

To investigate the effect of elastic boundary 
conditions on the buckling load of the stringer 
stiffened shell AS-2, in Ref. [29] a rigorous solution 
is presented for the case of axially compressed 
stiffened cylindrical shells with general 
imperfections, where the edge supports are 
provided by symmetrical or unsymmetrical elastic 
rings. For the shell analysis the Donnell type 
nonlinear shell equations from Ref. [30] are used, 
whereas the ring analysis is based on Cohen's ring 
equations [31]. The circumferential dependence is 
eliminated by a truncated Fourier series. The 

resulting 2-point boundary value problem is solved 
numerically via the "Shooting Method" [32]. 

Modelling the elastic boundary conditions on the 
petfect AS-2 shell by symmetrically placed 
symmetrical rings with square cross sections one 
obtains the results shown in Fig. 8. It is interesting 
that even for this symmetrical case the stiffness 
matrix of the ring does not reduce to a diagonal 
matrix. Thus using a diagonal matrix to model ring 
supported elastic boundary conditions may lead to 
serious inaccuracies in the predicted critical load 
and buckling mode as has been pointed out in Ref. 
[33]. Returning to the results plotted in Fig. 8 it is 
clear that there is a critical size of the end ring 
below which the ring strain energy controls the 
buckling and the buckling mode is inextensional 
with n=2 full waves in the circumferential direction. 

In a recent paper Arbocz et al [34] obtained a 
solution of the nonlinear anisotropic Donnell type 
imperfect shell equations, where the in-plane 
displacement boundary condition in the x-direction 
is varying in the circumferential direction, that is at 
x = 0 

u -ti&, cos n0 +tiio2cos2ne +tGo3sin n0 +tto4sin2ne 
(21 1 

and at x = L 

u =tGL1 cos n0 + tCL2cos2ne +tK3sin n0 +tuL4sin2n0 
(22) 

As can be seen from the results displayed in Fig. 9 
the buckling load of the perfect AS-2 shell is very 
sensitive to an axial support varying in the 
circumferential direction. 

Finally, it is interesting to look at the results shown 
in Fig. 10, where an a posteriori measurement of 
the flatness of the end-ring used to test the 
Caltech shells is displayed. In the authors opinion 
it is warranted to say that in the future we must 
pay more attention to provide an accurate 
definition of the boundary conditions at the shell 
edges if we want to achieve a better correlation 
between theoretical predictions and experimental 
results. 

Conclusions and Future Developments 

It has been demonstrated that if the collapse load 
of axially compressed stringer stiffened shells is 
calculated via a refined finite element model 



capable of reproducing all the different buckling 
modes, and if the statistical characteristics of the 
geometric parameters, the correct boundary 
conditions and shape imperfections are taken into 
account adequately, then the First-Order Second- 
Moment Method probably will lead to an accurate 
and conservative prediction of the reliability 
function. If so desired a measure of the accuracy 
of this approach can be obtained by repeating the 
analysis using one of the Advanced Monte Carlo 
Simulation techniques such as Importance 
Sampling [35]. Once the shape of the reliability 
function R(h) is known, one can determine 
routinely the reliability based improved "knockdown 
factor" ha for any specified reliability. 

For a successful application of reliability based 
design methods the existence of a data base 
containing, for instance, experimentally measured 
initial imperfections is very helpful. It can guide the 
users in choosing the appropriate probability 
density distributions for the input variables. If test 
data are not available, then the user must select 
probability density distributions based on his 
judgement. In such cases the availability of design 
software for calculating the parameter distribution 
sensitivities can be of great help in making the 
proper choice. 

Before a large scale acceptance of reliability based 
probabilistic design methods by the engineering 
community is to occur, true reliability must be 
demonstrated and not simply estimated from 
engineering analysis. Thus it is not surprising that 
the first successful integration of probabilistic 
design methods with existing design processes 
have been accomplished in applications like the 
design of specific components of aircraft engines, 
where failure and failure rate data bases are 
available. It is also interesting to note that in the 
cases reported by Fox [36], the probabilistic 
approach was built around the existing design 
methodology and it is part of an integrated process 
rather than requiring the designer to make specific 
"stress analysis" runs and then entering the data 
and running the "probabilistic code" in an iterative 
loop. The probabilistic output is printed in addition 
to the normal deterministic output and it contains 
information about the model accuracy, so that the 
designer can decide wether or not the results from 
the probabilistic analysis are acceptable. 

In all those applications where failure and failure 
rate data bases are as yet not available the 

probabilistic methods can best be utilized Po great 
advantage as a design tool to help identify the 
sensitivities of problem parameters. 

7'0 facilitate the use of probabilistic methods in the 
design process of buckling critical structures one 
can best employ a hierarchical approach as 
proposed in Ref. [37]. In a hierarchical approach 
initially simple mechanical and stochastic methods 
of known accuracy are used to carry out the 
necessary parameter studies. This phase includes 
the evaluation of the sensitivity derivatives needed 
to decide which are the important random 
variables that must be included in the refined 
reliability calculations. Once the principal 
dimensions and the lay-out of the structure have 
been fixed, then the structural reliability of the final 
design should be calculated by carrying out a 
detailed analysis employing a refined finite element 
model to describe the mechanical behavior and an 
accurate reliability method to complete the 
probabilistic calculations. 

The generation of reliability functions via the 
Advanced Monte Carlo Methods, which displays 
the degrading effect on the buckling load of the 
expected initial imperfection distribution 
characteristic of a given fabrication process, seems 
to offer the means of combining the Lower Bound 
Design Philosophy with the notion of Goodness 
Classes. Thus shells manufactured by a process, 
which produces inherently a less damaging initial 
imperfection distribution, will not be penalized 
because of the low experimental results obtained 
with shells produced by another process, which 
generates a more damaging characteristic initial 
imperfection distribution. The application of the 
Monte Carlo Method requires accurate and 
efficient deterministic buckling analysis capability 
especially for large initial imperfections. 

It is anticipated that for applications where the total 
weight of the structure is one of the critical 
parameters (i.e. aerospace structures) there will be 
a chance for definite improvement in the design 
process with the help of the proposed new 
probabilistic design procedure, which involves a 
more effective use of the currently available 
nonlinear analysis capabilities. It is felt that the 
small added cost involved in carrying out the 
required initial imperfection surveys will be fully 
justified by the overall cost-savings and by 
producing improved and more reliable shell 
structures. The conventional lower bound approach 



and the proposed new procedure will both be used 
until adequate experience has been developed by 
subsequent testing of shells designed by the new 
approach. It is not expected that the new approach 
would replace sound engineering judgement, only 
that this judgement would be guided by the rational 
use of the nonlinear shell analysis capability 
presently available. 

It is encouraging to see that the need for detailed 
initial imperfection surveys on full scale and 
laboratory scale shells and the establishment of 
Initial lmperfection Data Banks is being recognized 
by more and more investigators [38,39]. It is this 
authors opinion that the existence of extensive 
data on characteristic initial imperfection 
distributions classified according to fabrication 
processes, the availability of the present 
generation nonlinear structural analysis codes, the 
stochastic stability approach via the reliability 
functions and the increased computational speed 
offered by the so-called super-computers will finally 
result in a series of improved design 
recommendations which will incorporate the latest 
theoretical findings and make them routinely 
accessible to the designers. 
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Fig. 1 Test data for isotropic cylinders under axial compression [6] 

Fig. 2 Reliability curve calculated via the first-order, second-moment method 

(SS-3 boundary condition: N, =v =W =MX = 0) [17] 
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Fig. 3 Definition of the "perfect" cylinder [7] 

Fig. 4 Measured initial shape of aerospace shell X-1 [I61 

(Radius: 1212.1 mm, length: 6454.1 mm, wall thickness: 1.549 mm) 
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Fig. 5 Measured initial shape of aerospace shell X-2 1161 

(Radius 1527.4 mm, length: 6047.7 mm, mean wall thickness: 2.629 mm) 

Fig. 6 Measured initial shape of an ARIANE interstage IIIIII shell [16] 

(Radius: 1300.0 mm, length: 2730.0 mm, wall thickness: 1.2 mm) 
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Fig. 7 Reliability curve calculated via the first-order, second-moment method 

(C-4 boundary conditions: u =v =W =W,, = 0) [I 71 

Fig. 8 Critical loads for perfect shell AS-2 supported by elastic end rings [29] 
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Fig. 9 Boundary imperfection sensitivity of shell AS-2 [34] - 
(uol = u ~ 1  antisymmetrical buckling mode; E,2=10uo~/t) 
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Fig. 10 Measured flatness of the Caltech end-ring (in rnm) 
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Computational Tools for Stability Analysis 

E. Rikss and C. C. Rankinso 

Structural stability analysis with general finite element codes is an outgrowth of a theory that was 
established during the last 100 years. In this paper, we intend to give an overview of the present 
capabilities in this field and this from the perspective of the development of the theory as it took 
place in the recent past. 

In the first part of this century, the stability analysis 
of structural components such as bars, struts and 
shells was mainly centered on the determination of 
the first bifurcation point in the prebuckling state of 
the structure under load. This type of analysis was 
thought to provide the prediction of the load carrying 
capacity of the structure. 

It did not take long, however, before it was realized 
that the maximum load criterion developed on this 
basis was very unreliable because the actual load at 
which a given structure would fail could differ vastly 
from the computed value. This discrepancy between 
the theoretically determined failure load and the failure 
load of an actual structure was particularly large in 
the case of thin walled shell structures such as the 
thin walled cylindrical shell in compression. For ex- 
ample, the actual failure load of a thin walled cylin- 
drical shell in compression could be as low as 10% of 
the value predicted by the bifurcation point. On the 
other hand, stiffened plate structures could often be 
loaded in excess of the bifurcation load determined by 
the theory. 

Just at the end of the second world war, this perplex- 
ing behavior1 was explained in general terms by 
~ o i t e r ~ p ~ ,  who showed that the actual behavior of a 
structure at the bifurcation load can be related to the 
stability properties of the bifurcation point itself. If 
the bifurcation point encountered is unstable, the 
failure load of the actual structure can be expected to 
occur below, and sometimes far below the bifurcation 
load. On the other hand, when the bifurcation point is 
stable, the structure can in general be loaded above 
the bifurcation load without detrimental after effects. 
But Koiter's theory not only provided an explanation 
of these peculiar differences in behavior, it also gave 
way to a new technique by which given problems 

s~elf t  University of Technology, The Netherlands. 
ss~ockheed Martin, Palo Alto, California. 

could be analyzed. The latter corresponded to a 
perturbation method, whereby the initial post 
buckling behavior, the solutions of the bifurcation 
branches in the neighborhood of the bifurcation point 
could be determined. The theory also offered a means 
to predict the severity of the degradation of the failure 
load in the case the bifurcation point turned out to be 
unstable. The prediction took the form of a 
imperfection sensitivity relation, a lower bound, 
which expressed to what extent the actual failure load 
could drop in comparison to the theoretically 
detambed bifurcation load this in dependence of the 
size of the imperfections. 

The theory thus lead to the recognition that the sta- 
bility behavior of mechanical systems cannot be un- 
derstood properly without taking the essential non 
linearity of the problem into account. But it was 
specifically this nonlinear aspect, that made the prac- 
tical application of the theory a difficult undertaking 
with the analytical methods that were available at 
that time. This is illustrated by the relatively small 
number of practical problems that were actually 
solved in the first two decades which followed the 
first appearance of the theory. 

It was only after the emergence of the computer, that 
this situation gradually changed and it is this change 
that we intent to discuss in this paper. 

2. in retrospect . . 

2.1 Preliminaries 
Classical stability theory, such as Koiter's is often 
cast in the frame work of a continuum model 29394. 

In this paper we will take an alternative and easier 
road by assuming that the governing equations are 
provided in discrete form, i.e., they are associated 
with an appropriate finite element model. This model 
approximates reality in its own way using the idea 
that the structure or solid is build from crystals or 
particles that are here modeled by finite elements. 
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We assume that the structures to be considered m 
quasi conservative. This is to mean that the equations 
of equilibrium can be derived from a potential energy 
function but that, when transient phenomena come 
into play, we will introduce damping in order to 
make energy dissipation in terms of heat loss 
possible. 

In the discrete setting of the finite element method, 
the state of a structure is determined by an N- dimen- 
sional vector d. For the loading of the structure we 
will make the distinction between live loads (external 
forces) that can be derived from an potential, and 
loads that are induced by prescribed displacements. In 
the general case, both types of loading can be applied 
simultaneously and for the time being we will as- 
sume that such a load system is varied by one inten- 
sity parameter, here denoted by h. The potential en- 
ergy function can then be written as: 

The brackets (d, A) denote here that P is a function 
of d and h, so as to avoid confusion with the 
symbols ([{ }I) which will be used to group algebraic 
terms. With the notation Pd for partial differentiation 
with respect to d, the governing equations are derived 
from the requirement that the potential energy attains 
a stationary value at equilibrium: 

quantities A, Bdd, Cad& etc., are also vectors in 
the space R N. The contraction of these vectors with 
another vector in RN is written as bTB& = bTy 
where y = B d .  This is thus the same as the 
inproduct of two vectors a and b: aTb. 

2.2 Linearizations of the pre-buckling state 
The deformation vector d is defined in such a way 
that when h = 0 ; d = 0. The deformation state that 
develops when h is increased from zero is called the 
basic state or primary state and we will often label it 
by the subscript 1. We can write for this state: 

Struts and bars are three dimensional structures 
optimized to sustain loads that can be carried by axial 
stresses only. Shell and plate structures are three 
dimensional objects optimized to sustain loads that 
can be carried by in plane stresses only. Such 
optimization process leads usually to a deformation 
path (4) which can be approximated by 

where the solution vector 4 is independent of h. In 
this case the equations of equilibrium, which are still 
nonlinear, admit this linear solution, exactly or in 
good approximation: 

which yields the Ndimensional set of equations: 
in some range: 0 5 h < A*, where the bound h* is 
often determined by the requirement that the 
deformations, i.e. the -strains-, belonging to h* 

Please note that 6d stands for an arbitrary variation of should remain small. Satisfaction of equations (2b) 
d while Pd is a notation for differentiation with by ( 5 )  thus means that: 

respect to d, such that: PdSd = 5 6 d  = % ~ d i  (sum 
f(0,O) + {fd(O,O)& + fhg0,O) jh + 

over i = 1,2,3 ,..., N). The vector valued function f = 
(pdjT and the displacement vector d are thus + $ {fdd(0,0)&& + ~fdh(0,0)& + fh~(0,0) }h2 + 
members of a linear space R N. 0(h3 ) = 0 (7) 
Equations (2) are nonlinear and are produced by the 
finite element model that is employed. An example from which it can be deduced that in this particular 
of the possible structure of f(d, h) is given by: case: 

w~,o)& + fh(0,Ob = 0 (gal 

cgb) 
(3) etc., etc. Please note that the solution d;, of (8a) cor- 

responds to the solution of linearized-equations of 
where the notation: A, B& Cdddd, etc. stands for: elasticity. 
A = &ei; B d  = Biidjei , C a d d  = 3Cii@&ei, ., .2 ., ., 
etc.. (sum over i j  ,k : 1 ,... N) and where d = diei ; ei ted from an expression in terms of the coefficients 
(i = 1, .... M being the base of the Aij, Aijk etc. but that it is evaluated internally by the 

N in which and are described*. These code. Please note that the continuum analogue to 
equations (2b, 3) consists of a system of nonlinear 

* Equations can also be transcendental. It should be partial differential equations with boundary condi- 
realized that in general, the function f is not compu- tions. 

62 



Of course, not all problems that are encountered can The second approach to come to the prediction of the 
be treated in this way. When the solution (4) is truly failure load was through the energy criterion. This 
nonlinear, the linearization (ga) cannot longer be criterion states that the equilibrium state of a 
used. It is then necessary to replace the representation structure is stable, if and only if, the potential energy 
(5) by an expression that approximates (4) more of the structure in that state is a proper minimum. If 
adequately, for example, by a regular pertuxbation this minimum does not exist, the structure is in an 
(Taylor) expansion of (4): unstable state of equilibrium. 

When a point da = dl(h;3 of the nonlinear primary 
state (4) is known beforehand, linearization as an 
approximation device can still be used in the 
neighborhood of this particular point. The solution in 
a close neighborhood of d, can then be represented 
by: 

It now turns out that the potential energy function 
possess a minimum if the second variation of the 
energy function is positive definite. On the other 
hand, if the second variation is indefinite, no 
minimum exist. The search for the equilibrium state 
at which stability is lost can thus be based on the 
search for the point at which the second variation 
ceases becomes semi-positive definite. The transition 
point that divides the stable states of (4) from the 
unstable states is thus determined by a semi-positive 
definite second variation of the structure's potential 
energy. 

Superficially, the two approaches lead to the same 
The equations that determine di  ( h d  are: basic system of equations that defined this so called 

critical state dc = dl(hc) and this coincidence is 
d 
- If(dl(hd9 kd 1 = fd~dl~hd3.3ca3di + 

probably the reason that in elasticity, bifurcation and 
d3L loss of stability are often taken (erroneously) to be 

+ fh(dl(hd ,a = o (I&) identical concepts. 

d 
where ( )' = - These equations determine the so dh' 
called first "path derivative7' of (4). As can 
immediately be verified, equations (ga) are a special 
case of (10); i.e. for h, = 0. 

In some present day finite element procedures, the 
approximation (10) is often used as a first step in the 
prediction of the point of (4) at which stability is 
lost. But in the beginning of this century, it was not 
possible to deal with the general case of a nonlinear 
primary state (4). This explains why elastic stability 
theory was predominantly occupied with problems 
that are characterized by a linearized primary state (5). 

2.4 The condition for neutral equilbrium 
The search for a state that is in neutral equilbrium is 
equivalent to the search of an equilbrium state at 
which one or more equilibrium paths dl@), d;?(h), 
&(A), ... cross. Suppose that the crossing occurs at 
& = *Ac). It then follows that in the neighborhood 
of& fo rk :&-  E < h < & + E ,  E > O  at leasttwo 
solutions exist: dl(kc) and dA(hc) = dl :A,) +Ad@). 
Substitution in equations (zb) yields: 

2.3 Neutral equilibrium and loss of stability We assume when E is small, M E )  will also be 
To determine the point of (4) at whch loss of small so that when E + 0, Ad -+ 0. Expansion of 
stability is expected to occur, two criteria were used. the first equation yields: 
The first was based on the concept of neutral 
equilibrium5-lo. According to this concept, if, at $dl@), h) + fd(dl(h), h)Ad + WA&) = 0 
some specific value of the load h = &, next to the (12) 
solution d = dl&), also a neighboring solution $ = $dl(h), h) = 0 
dl(hc) + Ad existed, -where the difference M is 
vanishingly small-, the point dl(hc) was ,.died a Subtraction of these equations gives the equation for 

point of neutral equilibrium. A state of neutral Ad when & *  0v 

equilibrium was thus coupled to the loss of 
uniqueness (in the small) of the solution (4) and this fd(dl(h),h)Ad = 0 (13) 
implies that the criterion for neutral equilibrium 
corresponds to a criterion for bifurcation. It was which can be written in the form: 
assumed that a structure that reached a state of neutral 
equilibrium would become unstable upon further K(dl(h),h)a = 0 
loading so that at this state collapse would (14) 
automatically follow. K =fd(dl(h>,h); a = ddl 
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The equations of neutral equilibrium thus represent an 
eigenvalue problem, and the search for the state of 
neutral equilibrium is particular state (4, &) along 
(4) that admits a solution of (14) for the first time. 
Please note that in the case of a linear primary state 
(3 ,  equations (14) read: 

2.5 The energy criterion for loss of stability 
The energy criterion of stability dictates that an 
equilibrium state is stable if and only if the potential 
energy in that state is a proper minimum. This 
means that the state d l  = dl(h) is stable if it can be 
proved that: 

for any vanishingly small, but otherwise arbitrary 

tigate the sign of the quadratic form A2P provided 
that A2P # 0 for V Ay E RN ; Ay # 0. 
Stability of the equilibrium state (dl(h),h) is thus 
garanteed if: 

for all possible nonvanishing variations Ay. On the 
other hand, if the quadratic form A2P takes a negative' 
value for one or more choices of Ay , say Ay = Ab, 
the potential energy differential AP will become neg- 
ative for this perturbation taking IlAbll small enough. 
This means that P is not a minimum at d(h) and the 
equilibrium state is then unstable. 

There is, as one would expect, an intermediate case 
which occurs when the second variation is semi- 
positive definite, i.e., when &P = 0 for one, or pos- 
sibly more choices of Ay. In this situation, the sec- 
ond variation A2P does no longer determine the min- 
imum or absence of the minimum of P. The analysis 
must then be carried out on AP in (17) taking into 
account the terms that are of higher order than A2P. 

variations Ay in the space of degrees of freedom R N. 
The stability criterion which emerges on the basis of If this property cannot be established, the equilibrium is the A2P is amibuted to Treffiz 

state dl(h) is unstable. 
2, see also 2 .  Trefftz investigated the minimum of 

But the criterion as formulated above, is seldom used A2P by considering the problem: 

in this form. It is usually replaced by a weaker 
version which can be deduced from (16) if we expand o=MIN{ AP2(Ay) ) 
the first term of (16) in a Taylor series: ayTTay 

(20) 

VAy # 0; Ay ERN 

where T is a positive definite matrix so that the 
1 

+ - Q ~ ( ~ ~ ( ~ ; , L ) A ~ A ~  + c)(Ay3) - p ( d l ( h ) , ~  , 0 value of A2P is compared with that of a positive def- 
2 inite quadratic form A ~ ~ T A ~ .  This variational prob 

(I7) lem leads to the set of equations: 

Because dl is an equilibrium state (see (2)), the 
leading term is identically zero so that there remains: 

[P&j(dl(h),h)Ay-w~~~~]6~~=0 (21a) 

1 which, with a = Ay can be written as: 
AAAy) = I  Pa(dl(h),)r)AyAy + O ( A Y ~ )  > 0 

(18) K(dl(h),h)a - wTa = 0 (2 lb> 

The inequality must be proved for arbitrary pertur- Thus according to Trefftz, stability of the State d l  is 
bations Ay which may be vanishingly small. It can ensured if the solutions a(i) (i = 1, , N) of (21) 
now be shown that if yield: Wgi ) > 0 for all i: 1, .. N, while the 

equilibrium state d l  is unstable if one or more 
1 

AzP/Ay) = 5 Pa(dl(h).h)AyAy # 0 eigenvalues @i > c 0. 

Of particular interest is the case where the decision 
for all arbitrary non zero choices of Ay in W ly, the about stability is ice. when 
sign of AP will always be determined by the sign of 
A2P by taking the length of Ay, IlAyll small w(1; = 0; Wgi) > 0 ; i > 1 
enough. The notation I I  II stands here for any appro- 

P a )  

priate norm' Thus, to ascertain that a given in this the equations (21) admit a solution: 
equilibrium state is stable, it is permissible to inves- 



For simplicity, We will now assume that loss of Sta- and the higher order terms in (24) are then discarded. 
bility only occurs for positive values of the load. By with the substitution = - $, these equations then 
increasing the load slowly from zero the deformation as the linear eigenvalue problem: 
state of the structure will follow the path dl(h) that 
wedefined earlier. At first the equilibrium for 0 s h 
c & is stable, so that & is positive along this 
fmt stretch of (4). But at the first instance that (22) 
is satisfied, thus at the lowest value of h = & for 
which K becomes singular, the stability is no longer 
guaranteed by the second variation and the equi- 
librium state dl(hc) is said to be on the stability 
limit. In elastic stability theory this particular state 
dl(hc) is called a critical state. It signifies a 
boundary between states along dl@) that are 
definitely stable, (for 0 s h c &) and definitely 
unstable (for &chc& + E,  where E > 0). 
As can be seen by inspection, equations (22) are 
identical in appearance to (15). But equations (22) are 
derived on the basis of the side condition (22a) or 
(2F) which was absent in the derivation of (15). The 
equations that determine the critical equilibrium states 
are thus more restrictive than the equations that 
determine the states of neutral equilibrium. However, 
from the practical point of view this difference is not 
of great significance because it is the first state &Ac) 
along the path (4) satisfying (22) or (15) which is of 
interest and it is this state that turns out to be 
identical for both criteria. 

2.6 Linearization of the critical condition 
As was mentioned in the foregoing, in the beginning 
of this century the failure load of an elastic structure 
was defined on the basis of equations (22) or (15). In 
practical applications, these equations were almost 

The modes a(i) of (23) or (25), i = 1,2,3,.. are called 
the buckling modes. The mode a( 1) that belongs to 
the smallest eigenvalue of (23),(25) h l  = & is the 
mode that belongs to the critical state. We see that a 
necessary condition for this critical load value is 
given by in the case (23): 

Det {K( hdo, h) 1 = 0 (26) 

while in the linearized case (25) this condition reduces 
to: 

Det {K(O,O) - ~B'(o,o) }=0 (27) 

It is of interest to note, that both conditions (26 or 
27) can be seen to represent the condition for the 
intersection of a hyper surface in RN, -i.e. the 
stability boundary-, with the equilibrium curve d = 
dl(h). In the first case (26), the hyper surface is 
formulated in the exact form, in the second case (27) 
it is linearized (in the sense of (24)). The intersection 
points for the smallest value of h is the sought 
critical state o'f (43) or an approximation of this 
state. Even today, there seems to be some confusion 
about the proper formulation of the directional 
derivative B = - K' defind by (24b), as can be judged 
from a recent discussion about this subject in 

glways simplified by assuming that the pre-critical 
2.7 Stability of the critical states state dl(Q could be linearized- This was due to the 
The buckling criterion (23) or (14) determines a bifur- 

enormous difficulties that were connected with the cation point in the primary srats of the structure. As 
in the case' The was thus discussed earlier, the bifurcation point represents the 

only applicable for structures that possessed a linear 
pre-critical state. separation between the stable states of dl(h) (for h c 

kc) and the unstable states (for h > &). It was 
For the linearized primary state, the critical condition thought at first that the passage through this point 
is: would inevitably lead to failure so that there appeared 

to be no need to cany the analysis any further. But it 

K(hdg, h)a = 0 (23) soon transpired that there was a great discrepancy be- 
tween the point of failure as observed in practice, in 

which is still a nonlinear eigenvalue problem in experiments for example, and the point of failure as 

terms of h. Fortunately, optimized structures such as predicted by the theory. For example, the simply 

plates and shells aloow the use of a supported plate in compression1 591  6 9 1 7 . 1 8  could be 

simplification of (23). This is another linearization loaded beyond the buckling load into the 
which follows from the expansion: postbuckling range without danger and this 

possibility was in fact exploited in the design of 

K(O,O)a + ~ ' ( 0  ,0)ah + q h 2 )  =, some aircraft structures1 On the other hand, the 
(24a) thin walled cvlindrical shell in comoression always 

K' is here defined by: 
failed at loads-far below the critical ldad predicted Gy 
the criterion (23), and sometimes, the discrepancy 



amounted to a drop of nearly 90 %. The situation was 
clearly not very satisfactory and gave rise to efforts to 
come to grips with this anomaly. 

It was ~o i t e?  in the years leading up to 1945 who 
investigated this intriguing question in a general 
context. Be came to the insight that the traditional 
concept of loss of stability was far too restricted and 
needed revision. Koiter began his investigation with 
an analysis of the stability of the critical states 
themselves because he suspected that the mysterious 
divergence in behavior was in some way related to the 
question whether the critical state is stable or not. 

As we recall, at a critical state of equilibrium, the 
second variation (19) is semi-positive definite and in 
this case it fails to give a verdict about the existence 
or absence of a minimum of the potential energy in 
this state. The only way to get insight into this 
particular situation is then to go back to the strong 
form of the energy criterion (16). But before doing 
this we first write the energy increase bP as: 

For the time being, the load parameter can be dropped 
in this notation because we will consider the 
properties of l7 at a fixed value of the load, i.e. at h = 
hc. The expansion of (28) then gives: 

Because we are at the critical state, the second 
variation is zero in the direction of the critical 
buckling mode a, whilie it is positive in any other 
direction. It seems useful therefore to use this 
direction as a reference in the evaluation of (29). This 
can be accomplished by the introduction of a change 
of basis that uses the buckling mode a as the 
principal base vector. It is introduced by: 

where the complement v to pa in this decomposition 
satisfies the orthogonality condition: 

(see 20-21 for the meaning of T). 

With this proposition we can now proceed to deter- 
mine the minimum of the augmented function (for p, 
v ): 

where K is the Lagrange multiplier that is needed to 
introduce (30) as a constraint. The component v is 
thus in a subspace of R N  and, according to what 
transpired at (21), it has the property: 

Koiter argued that it is admissible to look first for the 
minimum of n* on the plane Q p: Ay = pa + v; 
aTTv = 0 where the value of p is considered fixed. If 
it can be established that this minimum exists and is 
given by n(p, V(p)) for v = V(p); 0 < lpl < E 

where E is a positive constant, no matter how small, 
it follows that: rI(p, V(p)) < n(p, v) for every v # 

V that satisfies aTTv = 0. Consequently, if the min- 
imum of l7 along the solution AY = pa + V(p) sat- 
isfies H(p, V(p)) > 0 for some range of p: 0 < Ipl< 
E it follows that n(Ay) is also positive for any 
vanishingly small variation of Ay around dl ( kc). 
The minimum is thus determined by taking the 
stationary value of (3 1) with respect to v and K. This 
yields the set of equations: 

in the (N+l) unknowns K and v .  

It can be shown that the system (33) is compatible in 
a small neighborhood of Ay = 0 on the basis of the 
property (32) so.that the solution for the function v = 
V(p) can indeed be given. 
The asymptotic solution of this problem for p + 0 
is carried out by setting: 

where Y, K is the shorthand for v(O), ~ ( 0 ) .  It turns 
out by inspection that KO = 0; v0 = V' = 0, SO that 
the leading terms in this expansion are given by: 

The minimum l7 !y,V(p)) is thus a function defined 
along a curve v = V(y) and is therefore only 
dependent on p. Expansion of l2 (p,V(p)) around p 
= 0 gives: 

where 

A3 = ~ ( 0 ) ' ~ '  = Pwaaa; Aq = II(O)(~)= 
aaaa - 12Pav "v " (34b) 



The displacement component Y" is here determined where the side condition on v is again introduced via 
by the (compatible) set of equations that follow from the Lagrange multiplier K. The stationary value of 
(33): AP* which determines the equilibrium is first sought 

for arbitrary variations of v while p is kept fixed. 
fd(0)y" + 2y'Ta = - f&O)m This variational process leads to the equations: 

(37) 
aTTy" = 0 ~ A P *  =O 

where a = the buckling mode given by (23). p(dl(h) + pa + v ,  h)&v - I ~ ~ ~ T G V  - G ~ T V  = 0 

It can now be concluded that if A3 = II(o)(~) f 0 in 
the expansion (3tja), the critical state is unstable, 
because in that case the lower bound of the energy 
variation (36) will always take a negative value by 
taking p small enough. A special case emerges when 
I I (o)(~)  = 0. In this situation, the lower bound of the 

(4) energy function is again negative when n(0) c 0. 

On the other hand if ~ I ( o ) ( ~ ) >  0 it is positive for lpl 
+ 0 and this means that in this particular case the 
potential energy is still a minimum at the critical 
state. The summary of this evaluation is listed 
below: 

If A3 # 0; the critical state is unstable 

1f ~3 = 0; Aq < 0; the critical state is unstable 

IfA3 =O;  Aq >0; the critical stateismbk 

The resulting system is (N+l) dimensional while the 
number of variables it contains is (N+3). Two of 
these can thus be chosen as independent variables and 
it turns out to be of advantage to choose the 
bucklingmode amplitude p and the load factor h for 
this purpose. 

The Jacobian of the system (41): 

is nonsingular at k and on the basis of continuity 
assumptions it is also nonsingular in a small 
neighborhood of the critical state p = 0, h = &. 
Consequently, according to the implicit function Please note that when A3 = Aq = 0, the analysis 
theorem, the system (40) is compatible in this must be continued to include the higher order coeffi- neighborhood. Suppose that the solution is given by: 

cient I'd5) etc.. but this particular case is seldom v = V( p, hpa = kc 1; K= K( p, a ) ,  then it 
encountered in elasticity. follows that the energy can be written as: 

With these results, we come to the conclusion that, 
- in a mathematical sense-, the critical states defined 
by (22) or (23) here are unstable in general. Only in 
the particular situation that A3 = 0, there is a chance 
that stability of this point is retained. In the 
engineering practice, however, the case A3 = 0 occurs 
very often which has to do with the presence of 
symmetry in the geometry of many structures, a 
property which is the result of attempts to reduce the 
weight of the structure as much as possible. 

2.8 Postbuckling solutions 
The preceding analysis is restricted to the intrinsic 
properties of the critical states themselves. To extent 
this analysis to the equilibrium branches that ate 
connected with & = dl(&). Koiter started again with 
the decomposition (30): 

AP* = ~gdl(hli +  la + vgp, a ) ,  ~1 - P ( ~ I W  h) 
- K(p, &)aTTv (43) 

so that there remains an expression in the variables h 
and p only, which in shorthand can be written as: 

AP* = n*t[p, a. (44) 

The equilibrium states in the neighborhood of dl(hc) 
are now described by the stationary value of lI*: 

n*(p, a ~ ~ s p  = 0 (45a) 

Koiter showed that for I&l 4 0; IpI 4 0 the 
stability of the branches determined by this equation 
is determined by the sign of: 

The potential energy increase from the pre-buckling 
state can then be written as: The transformation process that makes use of the de- 

composition (39) leading to (41) and finally (45) is 
called the ~ia~unov-sch&dt reduction of the govern- 

AP* = ~ d l ( h )  + p + v, h) - f l d l ~ h ) ,  h) + ing equations, see for exarnple20. ~ o i t e 9  found this 
- m T ~ v  (40) reduction independently, using the principle of the 



stationary value of the potential energy in more or 
less the same way it is described here, so that one 
could also call this method the Liapunov-Schmidt- 
Koiter reduction. The effectiveness of this method 
lies in the splitting of the governing equations in two 
parts. One part is large (41) and the other is small 
(45). The dimension of the latter corresponds to the 
multiplicity M of the the bifurcation point, which in 
the cases considered here is M = 1. The large system 
is compatible and can be linearized within some 
neighborhood of the critical state but the small sys- 
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I Limit point unstable 

Symmetric bifurcation unstable 
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tem is singular which means that it cannot be lin- 
earized. The difficulty of the singularity of the origi- 
nal N-dimensional set of nonlinear equations is thus 
reduced to the difficulty of having to deal with a 
single singular nonlinear equation. 

Lack of space prevents us to describe in what way the 
perturbation solution of (41), (43) and (45) is 
obtained. We only present the result. The asymptotic 
form of (43) turns out to be given by: 

A-symmetric bifurcation unstable 

unstable I 
stable 

_ - - _ - - I  I 

Symmetric bifurcation stable 

(iii) 

Figure 1 Classical results Koiter theory 

where: A2' = - aT(fd)'a = - a T ~ ( d l ( h c ) ,  h)a; This, now classical result contains the essential in- 
d formation about the behavior of the solutions in the 

(fa)'= K' = - -{fd(dl(h ), A) 1: ( 4 9 )  neighborhood of the critical states. The solutions are dh 
pictured in Figure 1, (i), (ii), and (iii). We refer to 2 9 3  

A3 = P w a a a ;  Aq = [P aaaa - 2 P a v  "v "1 (469 for further details. 
For simple bifurcation points, the solutions of (45) 
show that unstable defined by (38) have a de- The equations that determine the solutions in the scending branch measured with respect to h, while 

neighborhood of the bifurcation point dl(hc; are the stable bifurcation point (iii) has only ascending 
then given by: branches 2 for h. Thus, for simple bifurcation points, 



Koiter was able to show that stability of the bifurca- 
tion point meant only ascending branches (and the 
other way around) while unstable points always have 
at least one descending branch. This property be 
comes handy in interpreting numerical results as we 
will see in chapter 3. 

2.9 Imperfection sensitivity 
Structures are manufactured according to certain speci- 
fications but never meet these specifcations exactly. 
Before 1940 there was growing suspicion that these 
differences, even when they were very small and thus 
difficult to measure, could have a detrimental effect 
on the behavior of the structure near the buckling 
load. Koiter investigated the problem for shape 
(geometrical) imperfections and his analysis revealed 
that the most important influence (in an asymptotic 
sense) is to be expected from mode shapes that 
correspond to the buckling mode a. This follows, in 
part, from the structure of the energy function AP 
which is a quadratic form of the strain measures. The 
introduction of such an imperfection has the effect 
that the reduced form of the potential energy increase 
is changed to: 

where we present the influence of the imperfections 
in the case that the primary state of the structure is 
linearized: dl = A&. This new term EQ'(~L - &)p is 
then the leading term in the expansion of AP with r e  
spect to E, the amplitude of the imperfection wo = 
&a. As follows from analysis of this modification 
(48), the influence of this initial geometrical pertur- 
bation of the structure is dramatic when the bifurca- 
tion points are unstable. This means that when E # 0, 
structures fail at limit points rather than bifurcation 
points and this change of behavior takes place at 
loads far below the critical value that belongs to the 
original bifurcation point. In the case of a stable bi- 
furcation point, the behavior also changes because the 
equilibrium path of the imperfect structure will 
smooth out the change in mode shape while the load 
is increasing, while for the perfect structure, it takes 
place in an abrupt way. (see Figure 1 where the im- 
perfect paths are denoted by 1'). 

Among other examples, Koiter applied the theory in 
to a simply supported plate in compression and the 

thin walled cylindrical shell in compression. The 
results of these investigations showed that the plate 
is governed by a stable bifurcation point (iii) in 
Figure 1, and the cylindrical shell by an unstable 
compound bifurcation point which, because it is 
unstable is very imperfection sensitive. He thus 
provided the explanation of why plates can be loaded 
beyond the bifurcation load and cylindrical shells fail 
miserably at loads A* below ;iC. 

3.1. Computerized analysis 
Of the two publications2*3 that delivered this new 
theory, one was in Dutch and the other was so con- 
densed that it took quite a while before its message 
filtered through. This was the reason that only after 
many years, in the sixties and beginning of the sev- 
enties, Koiter's theory became better known, only af- 
ter it was reestablished, reformulated and further 
worked out by several scientist and engineers who 
were active in the field of solid mechanics. We can 
mention here for example the contributions of 
Sewell, Thompson and Hunt, and Budiansky 92294, 

These developments did not bring about any 
fundamental changes, but gave rise to alternative 
formulations and additional clarifications. On the 
level of practical applications some beautiful 
solutions appeared for a number of fundamental 
problems, see for example 23924, but the solution of 
real world problems remained a difficult undertaking. 
The difficulty had to do with the circumstance that 
the perturbation equations were formulated as partial 
differential equations that defied solution except in the 
simplest of cases. Moreover, there was an additional 
difficulty. Problems that are dominated by a limit 
point behavior (Figure 1- (0) could not be solved by 
the analytical methods that were available at that 
time. 

The advent of the computer brought considerable 
changes in this situation. It promoted the introduc- 
tion of the finite element method and the develop 
ment of numerical methods for the solution of ordi- 
nary nonlinear equations and ordinary differential 
equations that are produced by this approach. 

In elastic stability analysis, two directions emerged as 
a result of this development. The first is aimed at an 
adaptation of the perturbation method to the computer 
environment 25-31. This is thus a computerized 
analysis on the basis of the Koiter theory and 
corresponds to the solution of the governing 
equations of the type discussed in chapter 2. The 
second approach focuses on the global solution of the 
governing equations which is accomplished with the 
use of the so called continuation m e t h o d ~ ~ ~ - ~ ~ . w e  
will now sketch this second approach which, it 
should be emphasised, has not changed the 
fundamentals of the existing theory, but which makes 
it possible to solve practical problems on a scale that 
was unheard of some thirty years ago. 

3.2 The operational form of equilibrium equations 
The equations of equilibrium were defined at (2) and 
the solutions of these equations can be written in the 
parametric form (4). For the computations that we 
want to describe here it is customary to introduce a 
evolution parameter o which represents the progress 
of the deformation in a more general way: 



In the global computerized approach the solutions to 
the equations of equilibrium are obtained in a step by 
step fashion so that in terms of (49) the solutions to 
(2) are given as: d = d(oi); h = Uoi) ; (i = 
1,2,3, ... K). In this procedure, the definition of the 
general parameter o changes with each step along 
(49), because its choice is adapted to the geometrical 
properties of the solutions that lay ahead. 

The way this is accomplished in practice can be ex- 
plained as follows. Suppose the last point computed 
is (&, &) = ( d ( m ,  h = U W ) .  To compute the 

new step (dk+i, k + i )  = (@ok+AW, = Vok+ 
A W )  along (49), the numerical operations are con- 
ducted on an transformed set of equations that can be 
obtained by writing the new solution as: dk+l = & 
+ Aqnk + V; nkTv = 0; nkTnk = 1. In most Cases, 
the unit vector nk is here a direction vector that is an 
approximation to the tangent to the path at dk, but 
other choices are also possible. The equations of equi- 
librium for this new step along (49) can be formu- 
lated using the augmented (potential) energy function: 

Equilibrium is determined by the stationaryvalue of 
P* with respect to A*, v,  K, and this is enforced by: 

This system is completely equivalent to (2) and it 
consists of (N+2) equations that govern (N+3) vari- 
ables&. We can thus choose one of these variables as 
independent variable and it turns out to be of advan- 
tage to take A q  for this purpose. Writing v = dk+l 
- dk - Aqnk, and noting that the Lagrange multi- 
plier K = 0, equations (51) can be reduced to: 

Consequently, the computational step from (k) to 
(k+l) is formulated by this set of equations, whereby 
A q  and the choice of nk determines the distance 
between the two points along the path (49), see 
Figure 2. 
The procedure thus operates on a system of equations: 

where in this notation, the subscript k denotes the 
value of the solution of the previous step. In this 
way, equations (52) c.q. (53) present themselves as 
the operational form of the governing equations. 

3.3 Solution of the equilibrium paths 
A natural choice for the direction vector n is the 
tangent to the path at the previous step xk. It is 
detined by: 

But approximations to xk' are also quite suitable. 
The stepping procedure now employs a predictor- 
corrector scheme that in its simplest form is based on 
the following three operational parts: 

(i) Determine the step length AoK+l for the new 
step. 

(ii) Determine the prediction for the new solution 
xk+l on the basis of this choice. 

(iii) Compute the new point xk+l, with a suitable 
corrector scheme 

Once (iii) is successful, a new step can be undertaken. 

We skip the discussion of (i), and briefly comment 
on (ii) and (iii). Very popular is the simple linear 
prediction: 

to Is thus 'a first approximation to x(q+Ao)  and 
this starting value is then used in the corrector 
scheme (iii), the linear system of equations that are 
solved repeatedly: 

is here a suitable matrix operator which is 
usually derived in such a way that the method looks 
like Newton's method. In the case of Newton's 
method A' is given by: 

where ~ ~ ( e )  is the Jacobian of equations (52). 
Another popular choice is: 

& Please note the similarity of this formulation to 
equations (4 1)+(45a). 



Details of this and other issues that concern the pre- 
cise implementation of these choices can, for exam- 
ple, be found in 35-38 and 39. A graphic representa- 
tion of the way this procedure works is given in 
Figure 3. 

The stepping procedure wich makes use of the 
scheme sketched above with the choice: nk = x'k (or 
an approximation of x'k) is called (psuedo) arc-length 
continuation and it functions as a basic solution pro- 
cedure in the computations that we describe here. But 
for stability analysis it is also necessary to have to 
ones disposal various additional computational de- 
vices, such as the control of the algorithm, the 
switch procedures for bifurcation analysis etc. etc. It 
would take too much space to describe them here. For 
these details we refer to the literature mentioned 
above. 

3.4 Equations of motion 
In the classical theory of elastic stability the loads are 
always applied in a quasi static fashion, i.e. the loads 
are considered to vary in time but only very slowly 

fects come into play only after the structure becomes 
unstable. But when stability is lost the structure is 
supposed to fail and this process is then no longer of 
interest from the practical point of view. 
Consequently, the classical stability analysis is car- 
ried out without resort to the analysis of the transient 
response of the structure. 

In the philosophy of the present paper, this restric- 
tion to quasi static analysis is no longer necessary. 
We will therefore also consider the buckling process 
in terms of a transient response and this as a means 
to complete the analysis in a more satisfactory way. 
To introduce the transient aspect of the problem, we 
must also consider the solution of the equations of 
motion. 

The equations of equilibrium were here derived from 
the principle of the stationary value of the potential 
energy function P. In the dynamic case, the equations 
of motion follow from the stationary value of the so 
called Lagrangian L: 

path 

Figure 2 Principle path parameter 

where P is the potential energy and T2 is the kinetic 
energy of the system. The kinetic energy T2 is here 
given by the quadratic form: 

dd 
where d = - denotes the velocity of the generalized 

dt 
displacement d and M stands for the generalized mass 
matrix, which, in our case, will be considered to be 
symmetric and positive definite. Hamilton's principle 
states that the state of motion of the system is gov- 
erned by the stationary value of the time integral of 
(58a): 

where ti and t2 denote the beginning and the end of 
the time interval during which the motion is studied. 
The variational process leads to the equations: 

Figure 3 Continuation method 

so that for the initial response, the fundamental state 
for example, inertia effects are neglected. Transient ef- 

These equations hold for structural systems that are 
strictly conservative. However, for our applications it 
will be necessary to let the structural system dissipate 
energy during the snapping motions that we want to 
study. For this reason it is useful to introduce in the 
equations of motion the effect of some damping, by 

0 

adding the term C& C being the damping matrix 



(also considered to be symmetric here). Consequently, constant. The evolution of z(t)= Z(tk+2) can then be 
equations (60) are modified to: interpolated by a polynomial of the type: 

With this modification, the structural systems that 
we consider here, are conservative if we restrict the where n depends on how many past solutions we 
behavior to the static domain. They are not longer want to take into account. These polynomials are 
conservative if the motion comes into play. This is determined by requiring: 
the reason that we label this class of structures as 
quusi conservative. ~ ( ~ ) ( t k  - a t )  =Zk-i for i = 1,2 ,.,., n; 

3.5 Transient analysis x(n)(q, + At) = Zk+ 1 
In this paper, the transient integration procedure used 
is a implicit multi-step method due to ~ a r I & O . ~ l .  To this way Gear developed a second order and third 
sketch the idea behind Park's method we observe that order method which are based on the polynomials: 
the state of motion of the svtem under investigation 
can always be representedWby the 2N dime&ional 
vector: TC(2)(tk + 2) = Zk + 812 + a2'C2 

(66) 
(62) d3)(tk + 2) =zk + b i z  + b2z2 + b3z3 

Enforcement of the compatibiliy equations (65) leads 
With this formulation it is implied that we operate to expressions of the form: 
on the equations: 

(63b) All the points zi in these interpolations are known 
except the configuration zk+l for the step tk + 9( + 

The equations of motion in this form are of course At. This configuration can now be determined by the 
completely equivalent to (61). requirement that the equations of motion should be 

satisfied at + At, so that: 
The transient response of the structure under load can 
thus be represented by a space curve symbolized by n 
(62) in 8 2 ~ ~ 1 .  The task of the time integration pro- Zk+l = i(n)@k + At) = =g J@j(z k+l. Zk, z k-l W-I 

J-1 
calm! is to find this trajectory starting from some 

0 0 
(68) 

initial conditions &ti) = do, d(t 1) = do for a load 
should satisfy (63). The explicit expressions of these 

factor Mt) that is slowly varying- (The background equations and other details can be found in 4 1. 
to these initial conditions in our applications will be 
described later.) The imjectory is found by computing (ii) Park's 
solutions to (63) in a step by step using the P a s  relies on a linear of both 
time as path parameter. predictors (67) and this results in an expression for 

0 

Park's method can be seen as an averaging of two the velocity zk+lthat is given by: 
methods that are due to Gear 42943944 resulting in a 
modification that is in some respect superior t: both 0 

zk+l = [10zk+1 - 15zk + 6k-1 - ~ ~ - ~ ] ( 6 ~ t ) - l  (69) 
of the original methods. We first introduce the basic 
ideas behind the Gear methods. Substitution in 

(i) The second and third order methods of Gear o 

Multi-step methods make use of previously deter- Azk+l + Bzk+l + F(zk+l, h) = 0 
mined solutions zk, zk-1, zk-2, zk-3 etc. in order to 
compute the new solution zk+l ahead of zk. leads to the set of equations (in W 2 ~ ) :  
To keep the discussion simple we assume here that 
the time step At between these configurations is kept Dzk+l + r(zk,zk-1, zk-9 + F(zk+l, A,) = 0 



The new value zk+l is thus determined by this non- 
linear set of equations and it can be solved by a suit- 
able iteration method, Newton's method or the modi- 
fied Newton's method for example. 

The method looks very elaborate in view of the cir- 
cumstance that it is developed in R 2 ~ ,  but it turns 
out that the nonlinear system (70) can be reduced to 
an N- dimensional set in terms of the unknown dk+l 
from which all the other unknowns can be deter- 
mined. In the STAGS code 45 which we will be us- 
ing here, the method is equipped with a variable step 
size Atk+ 1. Park's method is just unconditionally 

~ t a b l e ~ O - ~ ~  (in the numerical sense) and has, as a re- 
sult of the use of past solutions in the construction 
of the next solution step, some measure of algorith- 
mic damping, in particular in the high frequencies, as 
an inherent feature. The method shows a robust per- 
formance that is well suited to the type of problems 
that we are discussing here. 

3.6 Global analysis 
So far we only considered equations that depend on 
one parameter and this was the intensity h of the load 
that is acting on the structure. In the practical situa- 
tion, the behavior of a certain design must also be 
studied under variation of other parameters that repre- 
sent among others, variable thicknesses, material 
constants, geometrical and material imperfections or 
also intensities of alternative load systems. This 
means that usually, for a specific design, many 
analyses must be carried out. 

Figure 4 Global analysis 
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If the number of parameters Ai is M, the solutions to 
the equilibrium equations under variation of these 
parameters can be seen to span a M - dimensional 
surf' in the space of the dependent and independent 
variables: R N+M. The evaluation of the behavior of 
the structure for a certain interval of these external 
parameters Ai corresponds to the determination of a 
patch of this equilibrium surface, the boundaries of 
which are determined by the range in which the 
parameters 4 are varied. 
The simplest example of such an analysis that still 
brings out the multi-dimensional nature of this con- 
cept is pictured in Figure 4. The equilibrium surface 
is here a projection of a two dimensional surface in 
the space R ~ + 2  to the space R 1+2 of the solution to 
the set of equations: 

The trace through the points (A), (B), (C), etc. repre- 
sents a path of points at which the structure becomes 
unstable. This path gives information about the ex- 
tent the collapse load of the structure is sensitive to 
variations in v. It can be computed by tracing out the 
equilibrium paths that are defined by (71) when keep 
ing v fued at v = 0, vl ,  v2, etc. and determining the 
limit points (B) , (C) etc.. It is also possible to com- 
pute this curve, the locus of limit points, directly by 
path following, starting from (A) using a special 
formulation that includes the critical condition that 
determines these special solutions 46*47. 

In general, a structure that is loaded up to its stability 
limit will fail by undergoing a transient change of 
state. This transient process may lead to irreparable 
damage or even complete destruction but it may also 
lead to a state at which the structure is still service 
able so that more load can be a ~ ~ l i e d .  As it is not 
always possible to predict befoiihand what the out- 

where d represents the deformation in then usual way, come of this process will be, the computational tools 
9 1 is the load Parameter and 1, a design that are presently available allow us also to investi- 

parameter or imperfection amplitude. TO simplify the gate the transient process 48,49.  hi^ can be done 
discussion, We will assume that V is an imperfection with a suitable time integration such as the 
parameter. one we described earlier. Examples of this possibility 

As the picture suggests, in this imaginary case, the 
solutions [d(o), h(o)] exhibit for v = 0, a behavior 
that is governed by a bifurcation point (A) on a linear 
pre-buckling state, which is the intersection of the 
two solution branches 1, 2. For values of v > 0, this 
behavior erodes into what is called imperfect bifurca- 
tion. In the imperfect case, the solution branch of in- 
terest becomes unstable in a limit point; in (B) or (C) 
for exampie. The analysis of the load carrying capac- 
ity of the structure will in general be concerned with 
the determination of the paths that are defined by 

[d;h]=[$oj, vi)] oj: O<ol <02< .. ; 
Vi: 0 <VI  < Q < .. . 

In the perfect case when v = 0, it is sufficient to 
compute the branch 1 up to and slightly beyond the 
bifurcation point A, and further to compute the 
branch 2 around A. This delivers information about 
the type of bifurcation. In the pictured situation, the 
bifurcation point is unstable and this feature tells us 
that the structure will collapse if it is loaded up to 
point A. It can also be deduced from the branches 1,2 
that the structure is imperfection sensitive. If v repre- 
sents the amplitude of the most dangerous imperfec- 
tion for the structure, the sensitivity of the collapse 
load can be evaluated by computing the structural r e  
sponse for the case v > 0. If v is not associated with 
this imperfection but is merely a design parameter, 
the collapse load of the structure may still be reduced 
when v > 0, but this may not be as drastic as in the 
case of imperfections that are chosen in the form of 
the buckling mode(s) that belong to the point (A). 

will be given in the sequel. 

3.7 Local vs. global analysis 
Iteration methods that are now the basic tools in the 
solution of the nonlinear governing equations thus 
enable us to obtain the solutions irrespective of the 
location of these solutions. The solutions have there- 
fore a global character; i.e. they can be extended 
through the domain in which they are defined, and 
this without recourse to their accuracy. In contrast, 
the solutions based on the perturbation method (as 
discussed in chapter 3), are confined to a sub domain 
which is determined by the properties of the equations 
at the particular point in space at which the method is 
developed. F'or example, the computerized version of 
the analysis in Chapter 3 furnishes a means to 
compute an approximation of the surface shown in 
Figure 4 which is developed around the bifurcation 
point. This approximation becomes more and more 
accurate the closer we stay near this point but it b e  
comes more and more inaccurate when we move 
away. Without further computation, it is not possible 
to assess the error; in other words the domain of va- 
lidity is never known a-priory. For this reason we 
could call the perturbation method a local approxima- 
tion method. 

A method which also produces approximations in the 
sense described above is the linearized buckling 
analysis discussed in section 2.6. This method 
provides estimates for the location of the critical 
equilibrium states that lie ahead of the point at which 
the method is used. 



Much has been said of perturbation methods in favor 
of continuation methods. The principal argument in 
favor is that perturbation methods are far less costly 
to use in terms of expenditure of computer resources, 
in particular, the computer time that is necessary to 
complete a certain well defined task in the analysis. 
Consequently, as the argument goes, perturbation 
methods are much more efficient. The question re- 
mains, however, whether this observation is really 
accurate, in particular, if also the cost of the analyst 
who is using these methods is taken into account. It 
is true that in general, continuation methods need 
more computation than perturbation methods but 
they also allow a much wider range of possibilities to 
be explored. For example, it remains to be seen 
whether the problem concerning the Engine Support 
of the Ariane V or the External Fuel Tank of the 
Space Shuttle could have been solved with these 
methods. The question of CPU time becomes simply 
irrelevant when the perturbation method fails to find 
the correct answer. A serious difficulty with the per- 
turbation solutions is that the error of the approxima- 
tion must always be assessed afterwards, while this is 
not an issue with the continuation method. 
Moreover, when the point at which the development 
must be carried out is nonlinear, recourse must be 
taken to a continuation procedure. We believe there- 
fore that in view of the nature of the problems that 
arise in practice, the perturbation method is too re- 

strictive in scope to be relied on as a single tool of 
analysis. The reduced volume of computations cannot 
really weigh against the advantages the flexibility of 
the continuation procedure offers, in particular, if the 
increasing power and diminishing costs of the com- 
puter are included in this evaluation. Nevertheless, 
the perturbation principle is of great importance in 
many instances because it can often be used as a fust 
approximation or as an tool in the continuation 
process. Very useful in this respect is the buckling 
prediction mentioned above. Another example of such 
application is the predictor in the predictor-correction 
process. 

4.l&mg&s and Conclusio~ 

4.1 Collapse behavior of a thin walled conical shell 
To show the power of the procedures that we sketched 
in the previous chapter, we will now consider an 
example. This example concerns the simulation of an 
ultimate load test on a conical shell structure that 
functions as a support of a satellite during launch, see 
Figure 5. The dimensions of the shell? and its 
physical properties are given in the figure. The load 
case to be considered in the test is pure axial 
compression. 

It is now observed that this loading can be introduced 
in two specific ways. 

Data ring stiffener: I,, = 1.68E-7 d; I, = 4.6388 xd; A = 5.34E-4 d 

Material: Youngs modulus, E = 7.~+10rn~ ; v = 0.33 

Base load Case A: & = 3.33 l d  Nlm; Case B : u = .605 10-3 m 

Figure 5 The conical shell 

The first, case A ,  is through a dead weight type of loading is applied by means of a prescribed (uniform) 
distributed load, which is applied along the generator displacement at the same edge of the shell. One real- 
at the top edge of the shell (this part of the shell is izes that these two options do not define the same 
reinforced by a ring stiffener). The second case B, the problem and so that they will show a small difference 



in the collapse load between, them but it is believed 
that the difference is so small that either option can 
be used for the certification of the shell. Another im- 
portant difference that is expected to exist between the 
two options in load application concerns the behavior 
of the shell after collapse takes place. Dead weight 
loading implies an substantial surplus in potential 
energy that is available for conversion into kinetic 
energy of the shell during the collapse motion. In 
contrast, in the case of prescribed edge displacement, 
the potential energy that is available for conversion 
into kinetic energy cannot exceed the elastic energy 
which is stored just before collapse. This means that 
for practical reasons, the second option is to be prs 
ferred because this option promises to lead to much 
less damage of the shell after the test is completed. In 
the following we will calculate some of the responses 
of this test article in either situation and in this way 
verify to what extent these qualitative predictions ring 
true. To keep the analysis reasonably compact we 
will focus our attention mainly on the behavior of 
the perfect structure although we will also have a 
brief look at the influence of imperfections. 

4.2 Branching diagram perfect shell 
For convenience we will consider only half of the 
shell by taking a 180 degree segment into account. 
The base of the shell is considered to be fmed to the 
base of the testing facility (all displacements 
suppressed but not the rotations) while the ring 
stiffened edge at the top is unsupported. The analysis 
starts with an inspection of the location of the critical 
point in the perfect shell for the two loading cases: 

A -  line load applied to the top edge in the vertical 
direction. Nominal load is given in the Figure. 

B- prescribed displacement in the vertical direction. 
Nominal load is given in the Figure. 

The way this is done is by computing the basic state, 
which is an axisymmetric state of deformation, up to 
a certain value of the load that we expect to be close 
to the critical point [dl(?@; ly] ly c (k is the 
step number) and then conducting the eigenvalue 
analysis described at (23-25). Using the outcome of 
this calculation, the computation of the basic state 
can be continued with a few additional steps k+l, 
k+2 etc. so that we can approach the critical state 
very closely and repeat here the eigenvalue analysis. 
Incidentally, this is a procedure which is not auto- 
mated in STAGS but which can be automated in a 
rather straight forward way32y35,52. The buckling 
modes that are computed at the point nearest to the 
critical state are stored to be used for the computation 
of the branch(es) of 1. Although the basic state is 
nonlinear and contains a limit point (not shown in 
the figure), the first critical state encountered is 1o- 
cated well before the limit point so that we conclude 

t The structure and dimensions are based on a real 
design. Source: Fokker Space B.V., The Netherlanas 

that this point is a bifurcation point. We should thus 
be prepared to determine the branch(es) of this point. 

The eigenvalue analysis, using the linearization (10) 
together with (21) at a point close to the bifurcation 
point, reveals that there at least three, -closely spaced- 

branches intersecting the basic equilibrium state 
x~(o).  For the present analysis we are satisfied with 
computing only the fwst branch using the switch pro- 
cedrne 52953 that is available in STAGS. The results 
of these computations are summarized in Figure 6. 
Figure 6a is the diagram for load case A and Figure 
6b for load case B. Please note that the load factor in 
case B corresponds to the end-shortening of the shell 
and not the actual load that is acting on the edge. 

It is clear that the bifurcation point xc in either case 
is unstable, because the branches are descending. 
Moreover, the calculations reveal that branch 2 
possess a bifurcation point at a very short distance 
from xc, followed by several others. This is an 
indication that the complete branching diagram in the 
neighborhood of xc is rather intricate. Although we 
could attempt to compute this diagram, we will omit 
this here. In this paper, we are content with the 
knowledge that the clustering of bifurcation's is a 
sign that the shell will be very sensitive to 
imperfections. 

Insight to the effect of the imperfection sensitivity on 
the buckling load can be gained, at least partially, by 
investigating how that branching diagram changes 
under the influence of geometrical imperfections. In 
STAGS, this can easily be done using some of the 
standard features of the code. We discuss this in the 
next section. 

4.3 Imperfections 
As a result of Koiters investigations, it is now well 

that initial geometrical imperfections 
have a strong detrimental effect on the buckling load 
of systems that are governed by an unstable bifurca 
tion point. If the bifurcation point is simple and well 
separated from the other points further away along the 
basic state x l(o), the assessment of this influence is 
relatively easy. But in the present case, the behavior 
of the shell is dominated by three bifurcation points 
along x 1Qo) that are very closely spaced, indicating 
that there will be interaction between the buckling 
modes that are associated with these points. In this 
situation, the determination of a lower bound for the 
degradation of the load carrying capacity is more diffi- 
cult. For a true compound bifurcation point, where 
many branches cross at xc, it is known that the 
branch of the steepest descent determines the most 
detrimental shape (again in an asymptotic sense, i.e., 
for a vanishing small amplitude of the imperfec- 
t i o n ~ ) ~ .  In the case studied here, the branches of x 1 
do not actually cross through one point, but we can 
compare it to a compound bifurcationpoint to some 
approximation. 



displacement x l  

rigure 6a Branching diagram case A Figure 6b Branching diagram case B 

V = imperfection arnplitudehhickness shell 

Figure 7 Load vs. Imperfection Amplitude 



The steepest descent rule would then suggest that we 
should compute the branching behavior of the conus 
in more detail then is presented in figures 6a+b so 
that we can get some idea which imperfections can be 
expected to be the most dangerous. 

We decided not the follow this avenue because an 
analysis of this type is laborious and it therefore falls 
outside the scope of this paper. Here it will suffice to 
show how an imperfection sensitivity analysis can be 
carried out with the STAGS code. For this demon- 
stration, we selected an initial imperfection which 
corresponds to the buckling mode associated with the 
first branch of xl(o).  The analysis is restricted to 
case A .  only. 

With STAGS, the buckling modes calculated earlier 
can be used to perturb the original perfect geometry 
of the shell. To determine the collapse loads of these 
perturbed shells we used the standard path following 
method. This was done for several (increasing) values 
of the amplitude y of the imperfection mode. The 
critical points in these cases y = yl < CL;? < ... are 
limit points and, as expected, the corresponding limit 
loads are below the critical load of the perfect shell. 
The results of these calculations are summarized in 
Figure 7. 

4.4 Collapse behavior perfect shells. 
Transient analysis can be used to verify how violent 
collapse will take place once the shell has become 
unstable. We can inspect this behavior with the 
transient integration procedure that we sketched in 
chapter 3. 

For the present discussion it suffices to restrict the 
analysis to the perfect shell in the two separate load 
cases that we considered before. The aim is to illus- 
trate how the collapse mechanism differs between 
these two different loading cases. 

We assume that the load is increased very slowly dur- 
ing the experiment. Because the equilibrium states of 
the structure are stable initially the response of the 

the unstable state x* = x l(oc + E) from which we 
start to compute the transient motion is first calcu- 
lated with the path following method, using a relaxed 
convergence criterion so that the solution t *  = {l(oc 
+ E) for this state is deliberately somewhat out of 
equilibrium. The time integration of the motion tx = 
Y(t) around or away from the equilibrium point x* 

is now started with Y(t=O) = t*, \ii(t=O) = 0 f .  

Because t *  is out of equilibrium, the motion will 
start and begin an oscillatory motion around x *. 
Because the apparent center of this motion, the equi- 
librium point x* is unstable, the motion will even- 
tually enter a state where the sum of the internal and 
external forces acting on the system pushes the sys- 
tem's configuration away from x*. The path the con- 
figuration Y Qt) is following thus leaves the neigh- 
borhood of the unstable equilibrium state x* and 
eventually ends at some new stable equilibrium state, 
or, which is also quite possible, to a state of total de- 
struction. The actual outcome depends simply on the 
problem at hand. 

According to our calculations, in the case of dead 
weight loading, case A ,  exceeding the critical load & 
results in the violent snapping motion that is 
pictured in Figure 8. In this case there is no doubt 
about the energy content of the motion. During the 
collapse process, the kinetic energy gain reaches 
about ten times the order of magnitude of the 
accumulated strain energy. On the other hand, in the 
case of prescribed end-shortening, case B, the snap 
that takes place is much milder, with a kinetic energy 
content of about one tenth of the accumulated strain 
energy. Also the change in deformation measured 
between state x* and the end state x~ (which is a 
stable equilibrium state, step 1347) is considerably 
smaller. These results confm the expectations about 
the collapse behavior of this shell expressed earlier: 
the case of dead weight loading is considerably more 
detrimental for the shell than the case of prescribed 
displacements when collapse occurs. 

structure to this load is also characterized by gradual Remnrk changes. This is what is called a quasi static behav- The transient analysis that we described in the forege ior. However, as soon as stability of the equilibrium ing is not really necessary for the assessment of the is lost, the transition of the deformation state of the load camling capacity of the cone problem. It wa 
structure that then takes place is not longer controled carried out here purely for the sake of demonstration. 

the in the intensiv of the load' The re- However, there are many practical problems, where suit is a very change of deformation that takes the solution cannot be obtained without transient place in such a short time span that the change in analysis. This is the case, for example, with so called load during this process can be neglected. mode jumping problems where structures suffer from n u s  we imagine that the transient motion starts at a sequence of trandent jumps in the deformation re- an unstable equilibrium point just past the critical sponse when the load is slowly increased from 
state xc along xl(o;l and that because of the ex- zero,see 17,187 5. 
tremely short duration of this process it can be per- 
cieved t' have laken 'lace under an load that 's f A better way to start the calculations is to make use of conatant. The precise indications of what initial con- the bucklin modes associated with the bifurcation point 
ditions we should use to compute this motion are 

X c, 
see 4 8 . 4  

discussed in 4 8 9 4 9 .  Here it suffices to mention that 



4.5 Conclusion 
The development of the computational methods for 
the analysis of the load carrying capacity of structural 
systems (which is determined by instability phenom- 
ena) can in our view be divided in three distinctive 
phases. The first phase took place in the period before 
WO 11, and was primarily concerned with the fonnu- 
lation of the bifurcation buckling theory for systems 
that are linear or quasi linear. This phase established 
the general equations that determine the critical state 
of an elastic structure under load and the buckling 
modes that belong to this state. 

In the second phase of the development, an initial 
post-buckling theory was established. With this im- 

portant addition to the theory, the true nonlinear be- 
havior of structural response in the neighborhood of 
buckling states could be analyzed as well as the effect 
that initial imperfections had on this behavior. 

In the third phase of the development, the fkontal so- 
lution (referred to as "brutal computerization" in 24) 
of the nonlinear equations took a central place. This 
method has now become an addition and extension to 
the more traditional ways of computation. With this 
approach, the solutions that can be obtained are not 
resmcted to a particular part of the solution domain, 
so that, together with that, it has turned into a very 
powerful tool for analysis for an amazingly wide 
range of structures that are encountered in practice. 
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The elastic stability analysis of complex structural 
models typically relies on finite element methods. 
The paper reviews the history of the development 
of finite elements for shell analysis from the earliest 
flat plate elements to current efforts, with emphasis 
on the gradual improvement of accuracy and 
robustness. The paper concludes with a 
discussion of design issues for higher order p 
elements. 

Finite elements are important tools for the analysis 
of structural stability, particularly as analysis models 
become larger and more detailed, approaching the 
complexity of actual structures. Thus it is that 
issues relating to finite elements-accuracy, 
robustness, performance, ease of use-take on 
significance for those who would analyze the 
elastic stability of structures. Also, since elastic 
stability primarily concerns itself with thin structures 
with plate-line and shell-like behavior, the issues of 
most concern are those relating to the 
corresponding plate and shell finite elements. 

The analysis of structural stability contains a linear 
part and a nonlinear part. The nonlinear part can 
be as simple as a first-order geometric stiffness 
term employed in the calculation of buckling 
modes or as complicated as a large strain 
formulation of the basic eauations. Here we will 
concern ourselves exclusiv'ely with the linear part. 
Paradoxically, experience has shown that the 
linear part is harder to get right and that it is 
responsible for the basic ills of finite elements- 
rigid body failure, patch test failure, spurious 
modes, and, above all, locking. 

Copyright Q 1997 by Richard H. MacNeal. Published by 
the American Institute of Aeronautics and Astronautics, 
Inc. with permission. 

In this paper we will review the histosy of the 
development of (linear) plate and shell finite 
elements with emphasis on the gradual 
improvement of their accuracy and robustness. 
While the first plate bending element was 
introduced in 1961 ,(I) elements which are 
adequate for general shell analysis only became 
available in the 1970s. Table 1 outlines the 
chronology of plate and shell element 
development. Needless to say, research on the 
design of plate and shell elements continues to 
this day. 

A simple shell problem which has become a 
standard for benchmarking shell elements is the 
Scordelis-Lo roof,(*) shown in Figure 1. Results 
for this example, with pre-1970 and post-1970 
elements, are plotted in Figure 2. The 
improvements with time are evident and indicate a 
growing understanding of accuracy issues. For 
example, a comparison of the Ahmad shell 
element with and without reduced integration 
indicates that an issue of profound importance is 
operative here. 

Coordinate directions and displacement 
definitions for a flat plate are shown in Figure 3. 
Finite elements for plates and shells employ the 
fundamental assumptions of first order plate theory 
which are that inplane displacements 

and the normal stress 

The membrane part of displacement (p, p) is 
separable, for flat plates, from the bending part, 
(w, s p). Finite elements to represent the 
membrane part have been available since 1956.(3) 
Credit for the earliest plate bending element goes 



to Adini and Clough who published in 1961 .(I) of w,, and w,,) along the common edges of 
Theirs was a rectangular element with four corner 
nodes and three degrees of freedom (w, a, 8)  per adjacent elements when Only w9 w , ~ *  wh! are 
node. tt employed the Kirchhoff hypothesis, 
namely that the transverse shear strains 

are null. 

Long before the invention of finite elements, 
analysts used the Kirchhoff hypothesis to reduce 
the plate bending equations to a single fourth 
order partial differential equation in the lateral 
displacement, w. The virtue of the Kirchhoff 
hypothesis for the design of plate elements is that 
the designer needs only to specify w as a function 
of position since a and B can be computed by 
Equation 4. 

In their element, Adini and Clough specified w as a 
twelve-term polynomial which allowed 
independent cubic variation of w on each edge. 
Specifically, 

where all distinct product terms have independent 
coefficients. The twelve independent coefficients 
were then specified in terms of the twelve corner 
displacements. The remaining work to make a 
finite element was to compute a stiffness matrix 
from the functional form of the strain energy 
implied by the assumed variation of w. See 
Reference 4, for example. 

Early finite element designers also tried to develop 
a corresponding three-node triangle with nine 
degrees of freedom. They were confronted by the 
fact that a complete cubic has ten terms 

2  2 3 2  2 3  (6) 1,KYIX , X Y I Y  I X  , x  Y,XY I Y  
so that they had to eliminate one term. 
Unfortunately they could find no combination of 
terms which retained constant bending (the 
quadratic terms) and retained isotropy with respect 
to the element's geometry. 

Developers of Kirchhoff elements also soon 
discovered that a completely satisfactory solution 
could not be achieved for any element with three 
degrees of freedom per node. Specifically, lrons 
and Draper,(5) 1965, discovered that an 
expression for w which assures uniqueness of the 
bending curvatures (x,,, xW, xxy) over the 

surface cannot assure slope continuity (continuity 

prescribed at nodes.+ Continuity of s ipe  is 
important because without it a field of elements 
cannot correctly represent a state of constant 
bending curvature. 

At this point three alternative courses presented 
themselves to the designers of Kirchhoff plate 
elements. They were: 

1. Accept the non-uniqueness of curvature 
within an element in order to assure slope 
continuity. 

2. Accept discontinuity of slope in order to 
assure uniqueness of curvature. 

3, Add higher order derivatives of w, such as 
w , ~  , as nodal degrees of freedom. 

All three courses of action have been used by 
element designers. tt is clear from its description 
that the Adini-Clough rectangle uses the second 
alternative. The Clough-Tocher triangle,(6) 1 965, 
which appeared in NASTRAN as the TRIA2 
element, uses the first alternative. R consists of 
three subtriangles (see Figure 4) with nine 
displacement terms each, and enough constraints 
to eliminate the degrees of freedom at the 
common center node and to ensure internal slope 
continuity. The Fraeijs de Veubeke 
quadrilateral,m 1968, which lrons called the 
prettiest such element, also uses the first 
alternative. It has four subtriangles and preserves 
slope continuity. 

The most interesting option is to add the second 
deriQatives of w as nodal degrees of freedom so as 
to assure slope continuity and uniqueness of 
bending curvature. A three-node bending triangle 
constructed according to this option will have six 
degrees of freedom (w, w,,, w,,, w,, w, , w ) Y YY 
per node for a total of eighteen. Since a complete 
quintic in x and y has twenty-one terms, we can 
design an element by deleting three terms from 
the complete quintic for w or by adding three 
degrees of freedom (such as normal slope at the 
midpoints of edges) to the element. 1968 and 
1969 saw the publication of seven independent 
papers which described either the first 
approach,(83) or the second,(10~11~12) or both.(l3*l4) 

Theoretically ,the element just described has a 
tremendous degree of accuracy but today it is 

+ ~ n  elementary proof will be found in Reference 4, 
pp 381-2. 



mainly a curiosity. The reason for its lack of 
acceptance is the use of the second derivatives of 
w as nodal variables. Since they physically 
correspond to curvatures, how are they to be 
loaded and how are boundary conditions to be 
applied to them? They also prevent discontinuities 
in bending curvature at element corners such as 
would result from applied moments or changes in 
material properties. 

Elements, s~p6;W as those just described, which 
apply the K~rchhoff hypothesis A priori in the 
selection of a displacement field have long since 
passed from favor. In discrete Kirchhoff elements, 
separate fields are assumed for a and fi and the 
Kirchhoff constraints (a = w,,, fi = wly) are 

applied at discrete points to eliminate nodal 
variables. Early successful elements of this type 
include both triangles(i5) and quadrilaterals('6) with 
minimum node counts and, most prominently, 
Irons1 semiloof element,(l7) 1976. 

While the designers of Kirchhoff elements were 
attempting to cope with fundamental limitations, 
progress was about to come from a different 
direction-which today we would call a paradigm 
shift-namely, extension of the isoparametric 
mapping concept to shell elements. Introduced 
with the Taig quadrilateral membrane element(18) in 
1961, isoparametric mapping maps the interior of 
an irregular element into a standard shape (e.g., a 
curved quadrilateral into a square) and 
automatically preserves interelement displacement 
continuity in the process.* In 1966 Irons(1g) 
extended the concept generally to elements of all 
dimensions and any number of edge nodes. 

An important three-dimensional element made 
possible by Irons1 work is the twenty-node solid 
brick which has nodes at the eight corners and at 
the midpoints of the twelve edges. In 1969 
~hmad(~O) published a "degenerate" eight-node 
isoparametric shell element which was derived 
from the twenty-node brick by the procedure 
illustrated in Figure 5. The essential step, which 
corresponds precisely to the assumptions of 
platelshell theory, is to replace the six translational 
degrees of freedom at corresponding points on 
the top and bottom surfaces of the solid by three 
translations (u, v, w) and two rotations (a, $) at 
their midpoint. Each of these five new 
displacement components is then interpolated 

*In isoparametric mapping, the same basis functions are 
used to interpolate positions and displacements from 
nodal values. 

from nodes to internal points by the same shape 
functions, expressed as functions of 5 q , the 
parametric coordinates of points on the 
midsurface. Membrane strains, transverse shear 
strains, and bending curvatures are then 
computed from the displacement shapes in a 
manner entirely analogous to that used in the 
earlier plate elements but rendered more 
complicated by the curvature. Transverse shear 
strains are not set to zero as in the Kirchhoff 
elements which occasioned the application of a 
new name--Mindtin or Reissner-Mindlin-to the 
theoretical basis of the new element. 

The new Ahmad element represented a giant step 
backward with respect to the representation of 
transverse displacement. Since a and fi are now 
independent of w, the spatial representation of w 
in the eight-node element contains only eight 
terms rather than twenty-four. Nevertheless, 
Ahmad's element has the very important 
advantage that it is not subject to the fundamental 
limitations of the Kirchhoff elements and the less 
important advantages that it can include transverse 
shear deformation and that it fits neatly within the 
isoparametric formalism. 

The new element dso has problems of its own 
which soon revealed themselves. Referring to 
Figure 1, we note that the Ahmad shell element 
produces results which are not much better than 
those for the lower order Clough-Tocher triangle 
described earlier. Figure 1 also shows a dramatic 
improvement in results when "reduced order 
integration" is added to the Ahmad shell element. 
This result for the Ahmad element was ublished 
by Zienkiewicz, Too, and Taylor in 1971 without 
a fundamental explanation, but it proved to be 
fundamentally important for the future 
development of plate and shell elements. 

One would not expect that changing the 
integration points for the Ahmad element from a 
3 x 3 mesh of Gauss points to a 2 x 2 mesh 
would make all that difference. The explanation of 
the efficacy of reduced integration for the Ahmad 
curved shell element is not easy4t had to wait 
until 1982(*2#23)--but reduced integration had 
already been understood and applied in 1969(24) 
to improve the accuracy of the isoparametric 
membrane quadrilateral. At bottom, the difficulty is 
that the element's shape or basis functions are 
unable to correctly interpolate higher order 
displacements states from nodal values. FOP 
example, the basis functions of the four node 
isoparametric quadrilateral, which are (1, % q, Sq), 
are unable to represent a pure inplane bending 
state, u = xy, v = - x2 1 2, even for a rectangular 



element where x = ac, y = bq. In fact, for this form because its basis set can model auadratic 
case v is represented by its alias, v = - a2 1 2, 
which has the correct value at nodes but not 
elsewhere. The only point at which the inplane 
shear strain, yXy - - Uy + vlx, is correct is at the 

center, = 7)  = 0. This point happens to be the 
reduced order Gauss integration point for the four 
node quadrilateral. The other two strain 
components, ex and ey , are measured at the 

2 x 2 Gauss points, giving rise to the term 
selective reduced-order integration. 

If all three strain components in the last example 
are measured at the 2 x 2 Gauss points, the 
measured shear strains will be incorrect (they 
should be zero in the example). If the aspect ratio 
of the element is large, a >> b, the effect will be to 
greatly increase the strain energy, giving rise 
thereby to shear locking, a term which 
characterizes the greatly reduced displacements 
that will result. 

Shear locking also appeared when shell element 
developers tried to apply the isoparametric 
formulation pioneered by Ahmad to three-node 
and four-node plate bending elements. Locking 
occurs because the lowest order bending state, 
w = x2, is not representable by the bask set of 
the three-node element 1, x, y or by the basis set 
of the four-node element 1, E, q, Eq. The first 
paper which proposed a remedy, 1 977 for the 
quadrilateral case, used a single integration point 
for transverse shear strain. This unfortunately 
gave rise to spurious strain-free modes because 
the number of independent strain evaluations was 
insufficient to restrain these modes. 

It was also soon discovered that the only places 
where the transverse shear strains are correctly 
computed for three-node and four-node elements 
when w = $ are at the midpoints of the edges. 
This discovery led to a new wrinkle in finite element 
theory-the direct assumed strain method- 
whereby transverse shear strains were computed 
at the midpoints of edges and interpolated to 
integration oints. Between 1976 and 1982, 
Hughes(262g and MacNeaJ(2238) independently 
published three- and four-node elements based 
on the direct assumed strain method. These 
elements have become the workhorses of finite 
element plate and shell analysis. Figure 1 shows 
that these elements, TRIA3 and QUAD4, have 
respectable accuracy. 

The original Ahmad eight-node shell element 
avoids transverse shear locking in its most virulent 

terms. It suffers, however, from another' form of 
locking known as membrane locking (*3) because, 
when an element is curved, pure bending involves 
inplane displacements, measured in a Cartesian 
coordinate system, which are cubic functions of 
position. The remedy, reduced integration, works 
because the values of the membrane strains are 
correct at 2 x 2 Gauss integration points. 

Attempts to apply reduced integration to the nina- 
node shell element fail because the additional five 
degrees of freedom at the center produce 
spurious modes. The period 1 985-1 990 saw the 
development of several approaches toward the 
elimination of locking and spurious modes for the 
nine-node element. While the nine-node shell 
element has some minor advantages over the 
eight-node element,(29) the chief motivation was 
probably just the challenge of a difficult task. One 
successful approach was extension of the direct 
assumed strain method from four to nine nodes, 
Park,(m) 1986. Another was the development of 
the assumed strain hybrid method in which a strain 
field with carefully selected low order terms is 
assumed in addition to a displacement field. The 
two fields are correlated using mixed variational 
pr in~ ip les(~~1~~)  or constrained variational 
p r inc ip le~ . (~~*~~)  In another approach, mode 
stabilization,(35~~) high and low terms in the 
displacement field are separated and the low order 
terms are treated exactly while the high order terms 
are treated approximately. In its crudest form, 
mode stabilization gives just enough stiffness to 
the high order terms to avoid the appearance of 
spurious modes. Mode stabilization is a preferred 
method for nonlinear analysis because the 
restriction of accurate integration to the low order 
terms reduces comDuter time. 

The extension of conventional element 
technology beyond biquadratic displacement 
shapes has been rare. Rhiu, Russell, and 
Lee,(37138) 1989, 1990, have developed third- 
order degenerated shell elements with sixteen 
nodes which feature an assumed strain field to 
eliminate locking. The accuracy of these elements 
appears to be excellent. 

A more important recent development has been 
the extension of p technology to shell elements. 
With the p method,(3g) element displacements are 
designed to have a variable polynomial degree, p, 
which is selected at execution time. Conventional 
nodes with displacement degrees of freedom are 
placed at element corners. All higher degrees of 
freedom for p 2 2 are defined as non-nodal 



hierarchical variables along edges and in the 
element's interior. The designation hierarchical 
refers to the fact that such degrees of freedom can 
be added progressively without changing existing 
parts of the stiffness matrix. 

The chief virtue of p elements is that they allow 
easy implementation of adaptive mesh refinement 
by increasing the polynomial degree of elements 
rather than by increasing the number of elements. 
It then becomes possible for the user to specify a 
desired level of accuracy and to let the computer 
program set the p level for the whole mesh or 
selectively for individual elements. 

In perhaps the earliest paper on the application of 
p elements to shell analysis, Szabd and 
Sahrmanr~,(~O) 1988, employed solid elements 
with p = 1 in the thickness direction and 
prescribed a zero value for Poisson's ratio to avoid 
locking. Their analysis of the Scordelis-Lo roof 
(Figure I), demonstrated that reasonable 
convergence of displacements is achieved for a 
single element model with p = 6 in the direction of 
the midsurface. 

The appearance of shell p elements in the 
technical literature has been slow. Leino, 
PitMranta, and Hakula at the Helsinki University of 
Technology have published rep~r ts (~ l l~* )  which 
show, among other things, that reduced 
integration produces significantly higher accuracy 
out to p = 4. Shell p elements are known to exist 
in two commercial finite element programs, 
Mechanica and MSCINASTRAN. The 
development of practical shell p elements is labor 
intensive, which perhaps explains the slowness of 
their appearance in the open technical literature. 

It may be worthwhile to comment on some of the 
features of the shell p elements in 
MSCINASTRAN. There it is recognized that 
uniform accuracy does not require that all elements 
have the same p level, so that p is allowed to be 
different in every element and different in the 

and q directions of a quadrilateral element. 
Along any common edge, however, the p values 
must be the same in adjacent elements to 
preserve displacement continuity. 

The formulation of stiffness in p elements has 
generally followed the standard isoparametric 
formalism"ithout special treatment to avoid 
locking. It has, in effect, been argued that locking 
is only a problem for p = 1 and p = 2 and that 

'~ctually subparametric in MSCMASTWN because 
only cubic edge geometry is allowed for p 2 3. 

these low levels are unimportant and can be 
discarded. In MSCINASTRAN we have taken the 
opposing view that p = 1 and p = 2 are important 
because many examples exist where accuracy 
requirements can be easily satisfied with low order 
elements over large regions of the structure. We 
have, accordingly, included variations of ihe 
antilocking devices described earlier for p = 1 and 
p = 2. This becomes complicated when one 
realizes that p may be different on all four edges of 
an element. We also employ reduced integration 
for p 2 2 .  

One of the standard test problems for 
MSCINASTRAN elements is the square plate with 
a clamped boundary condition shown in Figure 6. 
The standard thickness-to-length ratio for this 
surprisingly difficult test problem is t I a = .OO 0 1 , 
chosen so small to emphasize any tendency 
toward transverse shear locking. Table 2 records 
the lateral deflection at the center for 
N, p = 1 , 2, 3, 4, normalized to the correct 
solution. The results are quite poor, indicating a 
strong presence of locking even though several 
antilocking devices are used. 

The results improve dramatically, as shown in 
Table 3, when the thickness-to-length ratio is 
increased. This is remarkable because, even at 
t I a = .01, the ratio of transverse shear flexibility 
to bending flexibility is exceedingly small. These 
results can be explained by noting that the 
Kirchhoff condition is effectively imposed at 
integration points by the small thickness, thereby 
imposing substantial distortion on higher modes 
which, because of aliasing, cannot satisfy the 
Kirchhoff condition. Relaxation of the Kirchhoff 
conqtraint, even to a slight degree, significantly 
relaxes distortion of the displacement shape. 

Another conclusion which can be drawn from this 
example is that a minimum amount of transverse 
shear flexibility should be included in the 
elements, even for higher p values, to combat 
transverse shear locking. The older 
MSCINASTRAN shell elements have, for a long 
time, included a minimum amount of transverse 
shear flexibility, called the residual bending 
flexibility,(*) which was originally introduced to 
reduce discretization error. The example shows, 
however, that residual bending flexibility is, and 
always has been, more valuable as an antilocking 
device. 

The long history of gradual improvements in the 
design of finite shell elements has been reviewed. 
Two major events have been noted: the change 



Two major events have been noted: the change structural analysis accessible to a wider user 
from Kirchhoff elements to Mindlin elements community through automation. 
occurring about 1970, and the introduction of p 
technology which is ongoing. The first event was 
occasioned by the discovery of fundamental 
limitations in Kirchhoff elements. The second is 
occurring in response to the need to make 

Along the way, progress has occurred by the 
process of detecting failure modes, discovering 
the reasons for failure, and devising fixes. Users of 
finite elements should be at least marginally aware 
of the failure modes in order to avoid 
disappointment. 

i Y 

Supported by Rigid 

Figure 1. Shell Roof Under Gravity Load (the Scordelis-Lo Roof). Poisson's Ratio = 0. t = 3 in. 

Uniform Gravity Load 

REE 

A NASTRAN TRIA2 (Clough) 
A MSCINASTRAN TRIA3 

NASTRAN QUAD2 
MSCINASTRAN QUAD4 

0 Ahmad Shell Element 
@ Ahrnad Shell Element With 

Reduced Order Integration 

Degrees of Freedom for 114 Model 

Figure 2. Scordelis-Lo Roof: Performance of Pre-1970 Elements (A, o, o) Versus Post-1 970 
~lements(~,  RJ, 0)  



Figure 3. Coordinate Definitions for a Plate 

Figure 4. The Clough-Tocher Triangle Figure 5. Degeneration of a Twenty-Node Brick 
Element into an Eight-Node Shell 
Element 



I N Elements I Table 2 

N Elements 

N x N field of elements on quadrant. t 1 a = .0001. 
a Normalized to correct value. 

Figure 6. Clamped Square Plate 
(Point Load at Center) 

Table 1 

Table 3 

Element Development 

First membrane element 

First plate bending element 

Kirchhoff plate elements 

Discrete Kirchhoff plate 
and shell elements 

First Mindlin shell element 
(eight-node quadrilateral) 

Reduced integration 

Four-node quadrilateral, 
three-node triangle 

Nine-node quadrilateral 

Higher order shell elements 

U h  Point l d l u u a H  
Normalized to Correct Value 

Date 

1956 

1961 

1961 -1 970 

1969- 

1969 

1971 

1976-1 982 

1985-1 990 

1988- 
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Abstract 
This paper gives a brief overview of some current issues 
and future challenges in finite element analysis of shells, 
with the emphasis on nonlinear effects. 
* It discusses problems related to shell buckling, if the 

buckling is accompanied by other nonlinearities such 
as inelastic material behavior and contact constraints. 

* It addresses the validity of traditional shell theory 
when applied to non-traditional materials, in 
particular short-fiber reinforced composites. 
It discusses shell element formulations and describes 
a non-traditional (though not exactly new) approach 
to formulation of shell elements, which may be 
relevant in the integration between CAD and FEA. 

Various examples are included to illustrate the points 
made in the paper. 

Introduction 
The demand continues to grow for robust and accurate 
simulations of shell-like structures subjected to loading 
which causes nonlinear deformation. Increased 
computational resources and improved equation solver 
technologies have made it possible to solve large 
analysis problems in a reasonable amount of time. 
Linear shell problems with one million degrees of 
freedom can now be solved routinely on workstations, 
and nonlinear shell problems of a similar size can be 
solved effectively with explicit dynamics solution 
techniques. Nonlinear problems of a somewhat smaller 
size (but still large by most standards) can be solved 
effectively with implicit methods. However, it is not 
only size that counts; analysts want to obtain reliable 
solutions to more complex problems with less effort. 

There is a growing need for the use of shell elements in 
applications that fall outside the scope of "classical" 
shell analysis, such as buckling instabilities induced by 
nonlinear material response (when elastic eigenvalue 
buckling predictions are inadequate) and contact 
constraints active prior to buckling or activated during 

the post-buckling phase. Such applich,~ns require 
sophisticated solution techniques capable of selecting 
the desired solution path near bifurcations and capable 
of handling discontinuities in the equilibrium path. 
Additional stabilizing forces may have to be added in 
such cases. 

With the increasing use of non-traditional materials for 
structural applications, such as short fiber reinforced 
plastics and paper laminates, more complex material 
behavior in fairly thick shell structures needs to be taken 
into account. To facilitate the use of more complex 
material models (which may include failure models due 
to interlaminar shear and debonding) and to obtain more 
accurate solutions, it is desirable to avoid the classical 
plane stress assumption traditionally used in shell 
theory. A three-dimensional stress state can be 
introduced in a number of ways, for instance through 
resultant-based shell formulations that incorporate a 
thickness change degree of freedom and couple the 
membrane, transverse shear, and pinching force, or 
through sophisticated kinematic models that add as 
many additional degrees of freedom in the thickness 
direction as the analyst requires. 

Finally, the growing sophistication of interactive 
modeling programs is likely to evolve traditional finite 
element programs into boundary value solvers, where 
the analyst does not interact directly with the finite 
element mesh. In such an environment, elements with 
non-traditional degrees of freedom (instead of the 
classical Cnode quadrilateral with 6 degrees of freedom 
per node) can be used, which may well re-invigorate 
interest in shell finite element technology. 

Ap~lications outside the scope of 
classical shell analvsis 

Classical applications of shell elements to aerospace 
problems typically involve linear static and dynamic 
analysis as well as eigenvalue buckling. In order to 
assess the load can-ying capacity of structures after 
initial buckling, as well as to assess the imperfection 
sensitivity of structures, post-buckling analysis is quite 
helpful. This requires the introduction of special 
solution techniques, where one no longer determines the 
response of the structure to a given load, but tries to 
determine the loading path (or paths) of the structure 
together with the response. The initial proposal for such 

a method was made by ~ i k s , '  and the method has been 
popularized by many other important  contribution^.^^^ 
The "traditional" Riks method works well for problems 
in which the "perfect" structure has been modified to 
change the bifurcation behavior into continuous "snap- 
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through" behavior and allows tracing of complex 
equilibrium paths. Many recent advances have been 
made that allow the method to deal with (local) 
bifurcations as well. 

Consider for instance the simple elastic frame structure 
shown below, loaded by a vertical point force at the 
comer of the frame. Small geometric imperfections are 
introduced based on the first twenty buckling modes of 
the frame. Depending on whether the frame buckles 
inward or outward, a straightforward snap-through 
solution or a sequence of equilibrium shapes of ever 
increasing complexity is obtained, as shown in the 
figure. Although this is a rather academic example, it 
demonstrates the power of the Riks method. 

Simple frame subjected to point load, two unstable 
deformed shapes and the x-y path of the corner. 

Since the Riks method has no concept of time or history 
(the solution advances forward by prescribed amounts in 
normalized displacement-load space), the method has 
obvious limitations when rate or history dependent 
material behavior is included. This limitation is 
particularly severe for rate dependent material behavior; 
"time" is in fact replaced by "arc length," which is a 
measure of the change in the solution, and hence the 
strain change per unit arc length is dimensionless. The 
situation is more subtle for history dependent behavior. 
Here, the material behavior is influenced by the solution 
path. The solution path is determined by the equilibrium 
equations but is not necessarily physically realistic 
because during part of the path the equilibrium will be 
unstable, and the actual physical behavior will be 
dynamic in nature. Nevertheless, it may be possible to 
obtain useful information from an elastic-plastic static 
post-buckling analysis. 

A class of post-buckling problems that presents 
considerable difficulties involves buckling with 
inequality constraints. Consider the simple example 
shown below: a shell roof pressed down by a rigid 
indenter. 

Shell roof with indenter. 

The initial phase of the loading process is 
straightforward: the contact condition is activated, and 
the indenter presses the roof down. The analysis 
progresses smoothly as the load increases, and with 
either an applied displacement condition on the indenter 
(or with use of an arc length method) progresses even as 
the load decreases. However, problems start to develop 
as the load decreases further and reaches zero. 

Contact lost at this point 

Deflection under load 

Load-displacement curve of shell roof with 
indenter. 

At that point, contact between the indenter and the roof 
is lost, and it is no longer possible to control the solution 
with the load or the prescribed displacement of the 
indenter. In load-displacement space, this represents a 
discontinuity in the solution path that can only be 
bridged by adding additional forces on the roof. For 
instance, one can add inertia forces (and analyze the 
problem dynamically) or viscous forces (transforming it 
into a "diffusion type" problem). With elastic material 
behavior, the final state is the same in either case (since 
there are no history effects), but with history effects in 
the material the final state might show considerable 
dependence on the method used. 

Another type of post-buckling problem that isn't readily 
solved with conventional methods is when the buckling 
mode is constrained by contact conditions. Consider for 
instance the simple Euler column shown below, which is 



sandwiched between two rigid walls. Small 
imperfections are introduced in the geometry based on 
the buckling modes of the structure. 

Euler Column , 

A Rigid Walls 

Geometry of Euler column and contact constraints. 

The initial phase of the problem is straightforward: the 
column buckles and hits the wall. As the load increases, 
the contact zone widens, the contact pressure at the 
center of the zone decreases, and eventually the center 
of the zone loses contact. The axial force increases 
further and the free zone grows, and at a certain load the 
center zone starts to buckle away from the wall. Initially, 
the standard Riks algorithm can control this by lowering 
the applied load, but at a given point the column snaps 
away from the wall and the solution cannot be 
controlled by the applied load. At this stage the 
algorithm fails. 

Buckled shape of Euler column just before static 
post-buckling analysis fails. 

Problems of this nature can be solved by adding inertia 
or viscous damping. For this problem, the solution was 
obtained by adding viscous damping for motions in the 
direction transverse to the beam. The damping 
coefficient was chosen very small, so that the viscous 
forces had no influence on the solution during stable 
parts of the solution path. As soon as an instability 
develops, however, the velocity of the structure grows 
rapidly and the viscous damping terms become 
dominant. In order to prevent the solution from 
diverging, the increment size must be decreased 
dramatically so that the displacement increments remain 
small enough to obtain convergence. 'Qpically, the 
increment size must be decreased by several orders of 
magnitude as long as the structure is in an unstable state. 
Obviously, a reliable automatic time stepping algorithm 
is essential for successful analysis. Hence, the load 
displacement curve typically shows certain "plateaus" 
where the applied force remains constant and the 
displacement changes, as shown below. 

Load-displacement curve of Euler column. 

After buckling in the first mode, the column 
subsequently buckles in the third mode, the fifth mode, 
and the seventh mode as shown below. 

Buckled shape of Euler column after analysis with 
viscous damping. 

Most of the examples shown here are simple beam 
problems. Similar difficulties occur with shells. In fact, 
in many cases shell problems will be harder than beam 
problems because even without contact constraints they 
are more prone to unstable post-buckling behavior. 

A special but significant class of shell problems 
involving unstable behavior and contact constraints are 
springback problems. If a curved shell structure is 
created with a forming operation, the shell will be 
severely constrained by dies at the end of the forming 
operation and will not be stress free. Often, the shell will 
undergo considerable elastic or even plastic deformation 
when it is released from the tools. 

An example of a simple forming problem, proposed as a 
benchmark problem at the 1993 Numisheet 

conference: with considerable springback is shown 
below. A flat plate is formed into a hat-shaped channel 
by pressing it between rigid dies. Subsequently, the dies 
are removed and the channels springs back significantly, 
as shown below. 



Forming and springback of hat-shaped profile. 

Typically, the analysis of the forming process is done 
with an explicit dynamics code. For a simple 2-D 
example as shown above the anzlysis can also be done 
with a statics code, but experience has shown that for 
large, 3D forming operations the explicit dynamics 
approach is much more effective.' There are several 
reasons for this. One is that the forming problem is 
dominated by complex contact conditions, which are 
handled much easier by an explicit dynamics approach 
than by an implicit static approach. Another factor is 
that, due to the presence of the contact constraints, the 
bending of the blank is driven by the tools, and at the 
end of the forming process the blank is almost 
completely constrained. 

The explicit dynamics method is much less suitable for 
the analysis of the springback process. In this phase of 
the process, the tools are removed and, after the initial 
part of the release, the deformation is no longer driven 
by tool motions. In particular, in the final stage of the 
release operation the blank is no longer constrained, and 
with an explicit dynamic method it will take many small 
time increments to damp out the vibrations and find the 
static solution. Hence, an implicit static analysis is more 
suitable for this phase of the process. 

However, if the static analysis procedure is applied 
directly, the same kind of contact problems are 
experienced that make it so difficult to do the forming 
operation, particularly in the initial phase. Moreover, if 
there are significant compressive residual stresses in the 
blank, unstable contact problems as described earlier are 
likely to occur. Hence, it is attractive to do the static 

analysis without having to worry about contact 
constraints. 

One possible way to create such a procedure would be 
to replace all nodal forces working on the blank due to 
contact and inertia effects by externally applied loads 
and to gradually decrease the external loads to zero. 
This procedure makes sure that the structure starts in 
static equilibrium at the beginning of the springback 
process. Unfortunately, there is no guarantee that the 
equilibrium is stable: in fact, we have seen in many 
practical examples that all or part of the blank has 
significant compressive stress after forming, and (local) 
buckling may occur after release of the contact 
constraints. In this situation, it is usually not possible to 
obtain solutions in a reliable manner without adding the 
same kind of viscous damping that was discussed 
earlier. 

A more elegant method is to add the external forces in a 
manner that restores both equilibrium and stability. This 
is readily accomplished by adding the external loads in 
the form of an applied stress, equal and opposite to the 
stress existing in the blank. The total stress of in the 
blank is then the sum of the actual "material" stress 
M E 

0 and the "externally" applied stress 0 : 

TOT M E  o = o +o 

which is obviously'zero to start. Hence, from a stability 
and equilibrium viewpoint, the initial state of the 
structure is stress-free and stable. Subsequently, the 
external stress is ramped down as part of the analysis 
step: 

where t ,  is the duration of the analysis step, so that at 

the end of the step no externally applied stress remains 
and the proper static equilibrium is obtained. Moreover, 
if instabilities develop during the removal of the 
externally applied stress, they develop gradually and 
equilibrium can be controlled for instance with the Riks 
method. This procedure is described in more detail in 
Mercer et al.6 

Of course, the path along which springback is obtained 
is not the exact path followed in the actual release 
process. This is particularly relevant if material 
nonlinearities such as plasticity occur during 
springback. Practical experience indicates, however, that 
active plasticity during springback is usually highly 
localized and driven by the state at the end of the 



forming step, with little influence of the exact path 
followed. Hence, the approximate method presented 
here provides valuable information for design purposes. 

As an example, consider the forming and springback of 
a gas turbine engine nozzle panel. The panel is made of 
Inconel 718, and is formed out of a flat plate in a single 
stamping operation. The forming analysis is carried out 
with A B ~ Q ~ ~ l ~ x ~ l i c i t ?  an explicit dynamics solver. 
The blank is modeled with a rectangular mesh of 18592 
4-node quadrilateral shell element with a total of 
113436 degrees of freedom. The shape of the plate is 
obtained by trimming the edges; this leads to edges that 
are rough, but this is not importbt since the precise 
solution near the edges is not relevant. The deformed 
finite element mesh is shown below. 

Mesh of gas turbine engine nozzle panel after 
stamping operation. 

The deformed mesh and the stress state in the shell 
model are then imported in AB~Q~SlS tanda rd ,~  a 
general purpose nonlinear finite element program. The 
springback process is analyzed with the procedure 
described above. Contours of the displacements due to 
springback perpendicular to the panel are shown below. 
The total distortion is about 5% of the width of the panel 
or about 20 times the thickness of the panel wall. Other 
significant quantities, such as residual-stresses, actual 
wall thickness, etc. are available from the analysis. 

Thick shells with complex material 
models 

Designers are demanding ever-increasing performance 
from shell-like structures. In applications where weight, 
material cost, manufacturing constraints, or aesthetics 
force mechanical parts to be thin, shell-like structures 
are more likely to be the primary load-bearers at the 
same time that the thickness of these structures is being 
reduced. The finite element analyst, in turn, requires 
ever greater accuracy in problems with nonlinear 
deformation and complex material response, 
applications not traditionally amenable to shell element 
analysis. Such applications are many and range from 
fiber-filled thermoplastics in the automotive industry to 
paper laminates in packaging to honeycomb-core 
composites in aerospace applications. 

Engineering thermoplastics design and manufacturing 
serves as an illustrative example of the high demands 
placed on finite element analysis of shell-like structures. 
The wide range of nonlinearities encountered in the 
material response, deformation level, and loading 
conditions and the importance of through the thickness 
variation and surface effects all contribute to the 
difficulty of the analysis. 

Engineering thermoplastics are experiencing a dramatic 
rise in stiffness and strength due to research efforts by 
plastic part manufacturers and plastic resin suppliers. As 
a result, engineering thermoplastics are replacing metals 
in many applications where light weight, high strength 
plastic parts can be manufactured much less expensively 
than cast or machined metal parts. In the automotive 
industry many such examples exist. The figure below 
shows a glass-filled nylon air intake manifold. 

Shell element model of glass-filled nylon air intake 
Springback displacements perpendicular to the manifold. 

panel after release. 



This part's operating environment is high temperature, After the resin-fiber mixture is injected into the mold 
so creep deformation is important; pressure cycling and the mixture solidifies, the part is ejected from the 
occurs between internal vacuum and zero gauge mold while at high temperature. Rapid cooling coupled 
pressure, so fatigue life is important; during backfire with through the thickness gradients in the temperature 
conditions the internal pressure exceeds one atmosphere and viscoelastic relaxation of residual stresses lead to 
gauge pressure, so ultimate failure strength is important. asymmetrical shrinking, overall warping, and local 

Other automotive applications include bumpers; radiator 
covers; (aesthetic) vertical side body panels; (structural) 
horizontal body panels; engine parts subjected to 
thermal and mechanical loading, such as cylinder head 
covers and cooling fans; suspension components; and 
complex assembly parts where hundreds of small metal 
features can be integrated into a single plastic part. In all 
of these applications injection-molded, fiber-filled 
engineering thermoplastic are being used for their high 
stiffness to weight ratio, low manufacturing costs, and 
good (yet complex) mechanical properties. 

The typical design cycle for an injection-molded plastic 
part requires shell finite element analysis at several 
stages. At each of these stages the limits of validity of 
shell theory are tested. 

In typical applications, the slender glass fibers imbedded 
in the resin have length to diameter ratio of 25, have 
overall length much less than the thickness of the part, 
and are used in volume fractions between 20 and 40 
percent. If these fibers were fully aligned in the plane of 
shell, the resulting instantaneous elastic response would 
be orthotropic. However, during the injection-molding 
process a complex three-dimensional flow field is 
established that orients the glass fibers in all three 
directions. The nonzero thickness direction component 
of the fibers, together with the gradient in fiber density 
and direction through the thickness, make traditional 
plane stress constitutive assumptions invalid. A typical 
fiber orientation distribution through the thickness 
includes skin layers of highly aligned fibers surrounding 
a core of fibers which are nearly randomly aligned in all 
three directions as shown below. 
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Fiber orientation distribution through the thickness 
of a glass-reinforced thermoplastic. High alignment 

near the surface, random orientation in the core. 

wrinkling of the part's surface. It is often the case that 
shrinkage and warpage is large enough to violate 
manufacturing tolerances or the surface imperfections 
are visible to the eye making the part unacceptable. In 
order to model such effects, a shell element analysis 
should include: 

three-dimensional state of stress allowing anisotropic 
material response with one direction of anisotropy in 
the thickness direction, 

0 high order kinematics to resolve gradients through 
the thickness, 
a nonlinear viscoelastic material description. 

Assuming that dimensional tolerances and surface 
quality of the parts can be met, the part must then be 
analyzed for service thermomechanical loading, creep 
response, buckling load prediction, fatigue life, ultimate 
strength, failure due to impact loading, surface crack 
propagation, etc. Each of these analyses can require 
complex material response, large deformations, and 
nonlinearities in the loading or boundary conditions. In 
many instances, such as surface cracking, the response 
is dominated by three-dimensional effects or through the 
thickness variation that can not be captured with 
traditional shell element formulations. Although many 
of these analyses questions are difficult for three- 
dimensional continuum elements, shell element theory 
is particularly challenged by: 

three-dimensional, large strain, inelastic time 
dependent response, 
buckling load predictions of flexible structures with 
nonlinear material response, 
fatigue life predictions due to cyclic bending stresses, 

0 impact loading and failure for materials with high 
strain rate sensitivity, - surface wrinkling and cracking. 

Over the past several years numerous researchers have 
addressed some, but by no means all, of the deficiencies 
of classical shell theory. Within nonlinear, resultant- 

based shell theory Simo et al? introduced a formulation 
which included the thickness change as a solution 
degree of freedom. This first order approximation 
allows the use of three-dimensional material response in 
resultant form for the membrane, transverse shear, and 
through-thickness stress resultants; however, the 
bending stress resultants remain an open question. The 
layerwise laminate theory of ~ e d d ~ "  allows an analyst- 



defined number of kinematic variables through the 
thickness of the shell allowing for piecewise continuous 
distribution of transverse shear strains through the 
thickness. Other works rely on three-dimensional 
equilibrium and constitutive relations through out the 
shell's thickness; see for example Roy et al.' ' Such 
methods can be computationa1ly expensive. A predictor- 
corrector approach is advocated by Noor et a1.12 
whereby first-order shear deformable theory is used to 
predict the gross overall deformation, and three- 
dimensional equilibrium equations and constitutive 
relations are used to correct the solution through the 
thickness of the shell. In these efforts one or more 
limitation of classical shell theory can be removed; 
however, no general purpose effort has successfully 
addressed all of these deficiencies together. 

Non-conventional shell element 
formulations and CAD 

Creation of effective elements for analysis of curved 
shells has always been one of the biggest challenges for 
developers of finite elements. Even to this day, there is a 
steady stream of papers describing new elements and 
(real or imagined) improvements to existing elements 
formulations. Over the years, the understanding of the 
important issues for shell finite element design has 
steadily improved. Issues such as shear locking for thin 
shells and membrane locking for (doubly-)curved thin 
shells are now well understood and are discussed in 
many textbooks (see, for instance, ~ u ~ h e s ' ~ ) .  The 
gradual emergence of a standard set of test problems for 
shell elements (such as the MacNeaYHarder set of linear 
problems'4 and the 'obstacle course' defined by 
Belytschko et a1.15) have helped developers to evaluate 
new elements. The nonlinear test are limited: essentially, 
they only test geometric nonlinear behavior, and do not 
concern themselves with material nonlinearity or finite 
strains. 

In the early days of finite elements, developers 
attempted to create elements based directly on classical 

shell theory; this required interpolation with c1 
continuous displacement fields, which turned out to be 
exceedingly difficult. Since the early days of finite 
elements, considerable progress in description of doubly 
curved surfaces has been made in the CAD world. The 
appearance and rapid increase in popularity of Non 
Uniform Rational B-Splines (NURBS) and NURBS 
based surfaces make it possible to define C' continuous 
surfaces with local It is however not clear 
that these same approaches can be used effectively in 

finite element analysis. Although the support is local, it 
is not as strictly local as traditional finite elements, 
where the value inside the domain of an element is 
completely determined by parameters on the boundary 
and in the interior of the element. For NURBS, points in 
the vicinity of a element (but not necessarily on the 
boundary) help determine the interpolation inside the 
domain (see below). 

Local support for a NURBS surface. 

There are certain CAD approaches, in particular Coons 
patches,'8 that have the strictly local support that is 
desirable in finite elements. However, such approaches, 
which were proposed in the early days of finite 
elements1' (actually before the emergence of the Coons 
patch), require complex quantities on the boundary of 
the domain (such as the twist of the surface) to describe 
the interpolation, as well as a regular quadrilateral grid 
topology. Heilce, it does not appear that the classical 
approach will make a comeback any time soon. 

In virtually all modem finite elements, a two field 
approach is used: the displacements of the shell mid- 
surface and the rotation of the shell "normal" are 

interpolated independently with CO continuous 
functions. This approach is analogous to (Mindlin) thick 
shell theory, and hence many elements are based 
directly on this theory. The same interpolation principle 
with a different perspective leads to the "Discrete 
Kirchhoff" formulation. This thin shell formulation tries 
to enforce the Kirchhoff constraint at a few carefully 
chosen discrete points (and often in specific directions). 
The DK formulation may enrich the rotation field in the 
interior of the elements such that the discrete Kirchhoff 
constraint is applied exactly or may rely on a penalty 
approach to enforce the constraint; in the latter case, the 
element formulation is akin to the thick shell approach. 

In either case, the rotation field is interpolated from the 
same nodal positions as the displacements. Most of the 
elements developed have actually 3 rotational degrees of 
freedom at each node, although there are some that have 
two rotation components around the tangents to the 



shell. The advantage of this is that the "twist" or "drill" 
degree of freedom (rotation about the shell normal, not 
to be confused with the surface twist mentioned in the 
context of CAD surfaces) does not need to be 
considered. The disadvantage is that special precautions 
need to be taken at fold lines and intersections, and also 
at nodes that have single- or multi-point rotational 
constraints applied to them. It is fairly straightforward to 
solve these problems for geometrically linear analysis; it 
is a whole lot more difficult to address them effectively 
for geometrically nonlinear analysis with finite 
rotations. 

In some formulations the drill degree of freedom has 

been put to good use to enrich the membrane field.20 
Quite a few publications have shown that the in-plane 
bending behavior of first order quadrilateral and 
triangular shells can be improved considerably with this 
enrichment, particularly if the elements are somewhat 
irregularly shaped. It appears, however, that an effective 
and robust formulation is only feasible for geometrically 
linear problems; for problems involving large rotations 
and certainly for problems involving large strains the 
approach appears to lose its robustness. 

An alternative approach was proposed many years ago 
by Irons; he used displacement degrees of freedom at 
the usual corner and mid-edge positions and a single 
rotational degree of freedom at Gaussian positions along 
the edges, as shown below. Irons published this in the 
context of a rather complicated second order element, 
the so-called semiloof2' element. The element uses 
discrete, analytically enforced Kirchhoff constraints and 
in that sense it belongs to the discrete Kirchhoff family 
of elements. 

Semiloof element. 

Although the element was implemented in a few 
commercial programs, particularly in the UK, it never 
attained worldwide popularity. 

The interesting part of the approach is that the rotational 
degrees of freedom consist of rotations around the 
element edges, which correspond nicely to the natural 

boundary conditions for the shell. Hence, application of 
boundary conditions and edge moments is 
straightforward, and fold lines are dealt with naturally. 
First order elements can also be developed along these 
lines. The oldest element of this family is probably 

Morley's constant curvature plate bending triangle:2 
which has a single constant rotation around each edge, 
for a total of 12 degrees of freedom per element. As with 
most lower order triangles, the convergence 
characteristics of the element are rather poor, certainly 
as far as membrane behavior is concerned. A first order 
quadrilateral finite strain shell element with corner 
displacement and edge rotations was developed by 
Nagtegaal et as shown below. Although the 
element did perform well and was quite efficient, it did 
not become very popular. Part of the reason may well be 
that the element is simply different from what is 
perceived as the industry standard. 

Four node element with edge rotations. 

Elements of this type have a shortcoming: it is not 
straightforward to combine them with standard two- 
node beam elements for the analysis of stiffened shells. 
Either special beam elements or special multi-point 
constraints must be developed for easy combination of 
beams and shell, which takes away some of the 
advantages. 

Nevertheless, it may well be worth reconsidering this 
kind of shell element. In particular with the ongoing 
integration of CAD and FEA, there is a trend to replace 
traditional finite element analysis with "push-button" 
automatic FEA analysis, particularly for traditional 
linear analysis. Typically, the analystldesign engineer 
will not deal with the finite element mesh but operate 
directly on the geometry. This integrated approach 
offers the possibility to define loads and constraints 
directly on the geometric model, and hence makes it 
possible to hide the details of the element formulation 
from the analystJdesign engineer running the CAD 
system. Therefore, the choice of degrees of freedom for 
the shell element becomes irrelevant. 



Closure 
Although finite element analysis of shell structures is a 
mature field, there are still many advances left to be 
made in the areas of element design and analysis 
procedures. The growing use of high performance shell 
structures with non-conventional materials and the need 
for the analysis of strongly nonlinear phenomena, such 
as those that occur during the analysis of manufacturing 
processes or after structural buckling and collapse, 
present considerable challenges to finite element 
developers and analysts alike. 
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ABSTRACT INTRODUCTION 

PANDA2 is a computer program for the minimum The PANDA2 code [I-31 is a fast interactive computer 
weight design of stiffened composite, flat or cylindrical, program that provides the user with the optimum design 
perfect or imperfect panels and shells subject to of stiffened panels of various shapes and materials 
multiple sets of combined in-plane loads, normal including composite fabrications. Because of the 
pressure, edge moments and temperature. STAGS is a particular nature of this code with its simplifying 
general nonlinear finite element code that is specifically assumptions and the inherent nonlinear behavior of 
designed to analyze especially difficult stability locally postbuckled panels, the results must be checked 
problems in shell structures. Weight optimization of thoroughly by either an experiment or by an analysis 
stiffened panels can be particularly troublesome when with an independent general-purpose finite element 
local buckling is allowed to occur in the pre-collapse code (or both). In PANDA2 it is easy to check the 
state. For these systems, designs may be affected by results with the robust finite element code STAGS 
interaction between local modes, a mechanism that because PANDA2 automatically translates its output 
manifests itself as mode jumping and is difficult to design into model input for STAGS [4,5] The STAGS 
characterize. In this paper we describe how in code can thus easily be used to check optimization 
PANDA2 mode jumping is detected and suppressed in designs that are produced by the PANDA2 user. 
optimized panels. Two axially compressed blade 
stiffened panels optimized by PANDA2 for service in Weight optimization of stiffened panels designed for 
the far pbstbuckling regime were numerically tested by service in the local postbuckling regime can lead to a 
STAGS. Mode jumping was permitted to occur below behavior dominated by mode interactions such as mode 
the design load in the first panel and suppressed in the jumping [6-121 whereby the deformation state of the 
second. Results obtained by STAGS are in reasonably panel jumps from one mode shape to another as the 
good agreement with predictions by PANDA2. The first load is increased. This phenomenon may or may not 
panel exhibits mode jumping well below the design have a detrimental effect on the integrity of a panel, 
load. Application of STAGS to this panel reveals that depending on the energy content of the jumps, on 
even though the mode jump involves little change in whether or not stresses oscillate significantly because of 
potential energy it generates large amplitude oscillating the jumps, and on the details of panel fabrication. For 
stresses with significant stress reversal that might well example, delamination in a composite panel can initiate 
cause fatigue and delamination. The oscillating stresses or propagate as a result of mode jumps that release 
are caused by postbuckling lobes moving to and fro energy or otherwise alter the response significantly. 
along the panel axis immediately after initiation of the Early fatigue failure might occur if the locations of 
mode jump. maximum stress oscillate during the mode jumping. 

Consequently, the designer might want to prevent 
@ 1997 by David Bushneil. F'ublished by the serious mode jumping from occurring in his design. TO 
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provide this option, PANDA2 was equipped with a 
"prevent mode jump" constraint. We describe results 
of tests of this constraint here. For a description of 
previous work done on mode jumping in axially 
compressed plates the reader is referred to the excellent 
papers by Stoll [lo, 111. 

Until recently it was very difficult to use STAGS to 
analyze panels in which mode jumping occurs before 
failure. This behavior, which is transient, cannot be 
analyzed with the traditional static path-following 
technique that the STAGS code employs [5]. This 
difficulty has recently been overcome by judicial 
combination of the path-following technique and 
transient integration methods. Now it is possible to 
check PANDA2 designs that exhibit mode jumping in 
their load-deformation response [8,9] A short 
description of the STAGS solution strategy is given 
here. 

The objectives of this paper are: 

1. To describe how the results from PANDA2 and 
STAGS compare for a stiffened panel optimized by 
PANDA2. The panel is designed to carry loads far in 
excess of the local buckling load of the panel skin. 

2. To describe and evaluate the constraint condition in 
PANDA2 that is supposed to prevent serious mode 
jumping before the design load is reached. 

3. To demonstrate the capability of STAGS to obtain 
the nonlinear collapse load of panels in which mode 
jumping occurs at loads below the design load. 

temperature-dependent. Local, inter-ring, and general 
buckling loads are calculated in PANDA2 with use of 
either closed-form expressions [3] or with use of 
discretized models [I] of panel cross sections. The 
discretized model is based on one-dimensional 
discretization similar to that used in the BOSOR4 
computer code 1161. An analysis branch exists in which 
local post buckling of the panel skin is accounted for 
[17]. In this branch a constraint condition that prevents 
stiffener pop-off is introduced into the optimization 
calculations [I]. The postbuckling theory incorporated 
into PANDA2 is similar to that formulated by Koiter 
for panels loaded into the far-postbuckling regime [18]. 

PANDA2 can be run in five modes: 

1. optimization, 

2. simple analysis of a fixed design, 

3. test simulation, 

4. design sensitivity, and 

5. load-interaction. 

Optimization in PANDA2 is performed with use of the 
constraint-gradient-based ADS routines created by 
Vanderplaats and his colleagues [19,21)]. There is a 
processor in the PANDA2 system called 
STAGSMODEL that automatically generates an input 
file for the STAGS computer program [21]. Thus, 
STAGS [4,5,22], which is a general purpose nonlinear 
finite element analyzer, can be used with reasonable 
ease to check the load-carrying capacity of stringer- 
stiffened panels optimized with PANDA2 [21,23]. 

MODE JUMPING 
THE PANDA2 PROGRAM 

PANDA2 [I], which supersedes PANDA [2] but which 
contains many of the buckling algorithms from 
PANDA [3] finds minimum weight designs of 
laminated composite flat or curved cylindrical panels or 
cylindrical shells with stiffeners in one or two 
directions. Stiffeners can be blades, tees, angles, or 
hats. Truss-core sandwich panels [12] and stiffened 
sandwich panels with honeycomb or foam core [13] can 
also be handled, as well as isogrid-stiffened panels with 
added rings [14]. The panels or shells may have initial 
imperfections of the form of general, inter-ring, and 
local buckling modes [15]. The panels or shells can be 
loaded by as many as five combinations of in-plane 
loads, edge moments, normal pressure, and 
temperature. The material properties can be 

It has long been known that the optimization of plates, 
stiffened panels and other thin-walled structural 
components designed to carry compressive loads may 
lead to a panel behavior that is governed by clustered 
bifurcation points or compound bifurcation points [24]. 
By clustered bifurcation points we mean that along the 
pre-buckling equilibrium curve of the panel under load, 
bifurcations occur at values of the load that are very 
close together, see Fig. 1. It is also well known that 
under such conditions the equilibrium branches of these 
bifurcation points are intertwined and display secondary 
bifurcations. Some of these branches have stable parts, 
but most of them are unstable. This may, in general, 
imply imperfection sensitivity because the bifurcations 
may have become unstable. Improperly formulated 
automated panel optimization may therefore lead to 



designs that fail long before the bifurcation load is 
reached, so that the computed design optimum does not 
in fact represent a feasible design [24]. 

With plates and stiffened panels that are only mildly 
curved in the transverse direction, the clustering 
sketched in Fig. 1 may still occur but it does not always 
lead to a direct lowering of the failure load. There are 
two subjects that have attracted attention in the 
literature which are associated with this clustering 
effect. 

The first subject is called "mode interaction", defined 
as an interaction between a buckling mode of a long 
wave length with one or more modes of a short 
wavelength. Structures that exhibit mode interactions 
may be imperfection sensitive. They have been studied 
extensively in the literature [25-271. 

The second subject is called "mode jumping", defined 
as interaction between mode shapes of short wave 
length and other so called "local modes" [6,7,10,11,28- 
321. Structures that exhibit mode jumping (Stein's [6,7] 
is a perfect example) can be loaded above the initial 
buckling load as shown in Fig. 2a, in which stable 
equilibrium exists along branch 2,This initial stable 
postbuckling phase is followed by a loss of stability as 
soon as a secondary bifurcation point is reached. 
Further loading will then result in a dynamic departure 
from branch 2 to a neighboring stable equilibrium 
branch 3. During this transient event the mode shape 
changes fiom its current postbuckling form into a 
different form that belongs to the new stable tertiary 
branch. This branch may or may not be (statically) 
connected to the previous branch from which the jump 
started. The precise situation will depend on the 
structural configuration and loading. Further loading 
along stable branch 3 may then end with another jump 
to yet another stable branch 4 and so on (see Fig. 2a). 

The above description of the jumping behavior pertains 
to a panel that exhibits true bifurcation points along the 
primary loading path because its geometry is perfectly 
symmetric. In reality, panels are slightly imperfect so 
that a modification of the behavior will be observed. 
First of all, the transition into the first stable buckling 
mode will occur gradually, such as shown in Fig. 6 of 
[17] ,When the load is further increased, a jump may 
occur but this will then most likely take place from a 
limit point rather than a bifurcation point [8],Even 
though bifurcations in the branching diagram of a panel 
will usually disappear when it is imperfect, the overall 
behavior most often resembles what occurs in the 

perfect panel. However, the jumps will not always 
correspond to the same mode changes and may occur at 
different values of the load from those of the perfect 
panel. 

The jumps that occur in the way just described may not 
have enough energy content to damage the panel 
severely if they occur infrequently during service. On 
the other hand, mode jumping always involves an 
abrupt change in postbuckling local mode shape. 
Therefore, the locations of the peak postbuckling 
bending stresses, which may be substantial, shift along 
the length of the panel. At a given material point the 
peak stresses may oscillate during a mode jump, not 
because the postbuckling deflection lobes oscillate in a 
manner analogous to a modal vibration (standing 
waves), but because the lobes translate to and fro in the 
axial direction, a type of motion that can occur with 
only very small corresponding oscillation of the end 
shortening and therefore little change in potential 
energy. This phenomenon is exhibited in the examples 
provided here. If this happens repeatedly during 
service, fatigue could be a problem even if the energy 
content of the mode jump is low. 

Experience with mode jumping indicates that the 
energy content of mode jumps increases with the jump 
number (with increasing load) to such a degree that 
irreparable dqnage may be sustained even on the first 
occurrence in service. Caution must be exercised when 
mode jumping is allowed in a design. 

The analysis of a structure that exhibits such behavior is 
very demanding. In the literature there have been 
attempts to come to grips with some relatively simple 
examples of mode jumping, such as in an axially 
compressed plate strip [lo, 1 1,28-321. Koiter' s solution 
[33] for an infinitely long plate strip in compression for 
loads far in excess of the first bifurcation load serves as 
a constructive approximation to the mode jumping 
problem of a long plate. The report [33] precedes the 
report [18]. The former is restricted to axial 
compression only. The latter represents an extension to 
the combination of axial compression and shear. 
Koiter's solution 1331 can be seen as the solution of the 
mode jumping problem of a plate strip of infinite length 
in which the changes in modeshape occur continuously 
with variation of the load. Koiter's work does not refer 
explicitly to the phenomenon of mode jumping. 
Koiter's method determines the stationary value of the 
potential energy from a response constructed with mode 
shapes that have continuously variable wavelengths in 
the axial direction (varying with load, not with axial 



coordinate) and variable shapes in the transverse 
direction. 

In PANDA2 the axial wavelength of the postbuckling 
pattern is also allowed to vary continuously with 
increasing load in a manner similar to that described by 
Koiter [33]. Variation of postbuckling deformation over 
the panel cross section is achieved in PANDA2 by 
expansion of the postbuckling displacement field in a 
power series of the critical local bifurcation buckling 
mode [17]. 

In the studies [11,28-321 a perturbation technique is 
applied to construct parts of the branching diagram in 
the neighborhood of the first two bifurcation points, by 
means of which the jumping phenomenon can be 
explored. The practical significance of this approach is 
rather restrictive, however, because it is very difficult to 
apply the technique to structures with a more complex 
geometry. Even if one considers brute-force 
computational techniques, such as path-following 
methods [34-361 for the solution of the nonlinear 
equations generated by finite element models, a 
complete solution of the branching diagrams of such 
cases seems to be out of the question. 

For the designer a knowledge of the complete 
branching diagram of a panel that exhibits mode 
jumping is fortunately not very useful because this 
diagram is extremely difficult to analyze, especially 
when the number of interacting modes is large. On the 
other hand, the possibility to compute the load- 
deformation path of a panel in space and time and thus 
to simulate both the static and dynamic behavior of the 
panel under slowly increasing load offers useful 
information because it provides the load vs. end 
shortening relation, a means to compute the energy 
content of the jumps, and the states of the structure for 
every load step of the static phases of the analysis and 
every time step of the transient phases of the analysis. 
This is now done in STAGS through use of a 
combination of static path-following techniques and 

stiffeners, local, inter-ring, and general buckling, 
maximum displacement under pressure, maximum 
tensile or compressive stress along the fibers and 
normal to the fibers in each lamina, and maximum 
in-plane shear stress in each lamina, with stresses 
computed including load-induced amplification of all of 
the components of the initial imperfection as well as 
significant local postbuckling deformation. 

A mode jump constraint with the identifying phrase 

""Mi-axial-wave post-post-buckling of 
panel skin" 

has been introduced into PANDA2. This constraint can 
be turned OFF or ON by the user. The purpose of the 
"mode jump" constraint, which is modeled as a static 
(bifurcation) event in PANDA2, is to prevent serious 
dynamic mode jumping from occurring in panels 
optimally designed for service in the far-local- 
postbuckling regime. By "serious" is meant mode 
jumping at loads well in excess of the initial local 
bifurcation buckling load but still below the design 
ultimate load. In PANDA2 the "mode jump" constraint, 
even when turned ON by the user, is activated only if 
the applied load is at least twice the initial local 
buckling load. 

The following computational steps are used in 
PANDA2 to generate the "mode jump" constraint for 
each design evaluation (see Fig. Al): 

1. The critical (lowest) local buckling load factor and 
mode shape are generated for the discretized skin- 
stringer panel module as described in [I]. The loading 
is uniform (N,, in Fig. Al). In Fig. A1 the initial local 
buckling mode is indicated by the large-wave pattern 
labelled (a). This pattern has 3 axial halfwaves. Initial 
local buckling may occur at a load factor of 0.1, for 
example. That is, initial local buckling may occur at 
one tenth of the design ultimate load. 

transient methods [8,9,37] described briefly;n the 2. The post-local-buckling equilibrium state of the 
section ''SIMULAT1oN OF -'ING panel is computed as described in detail in [17]. (See IN STAGS". For a stiffened panel that exhibits mode Figs. and for example). In this state the 3-lobed 
jumping the load vs. end-shortening diagram is similar pattern displayed in Fig. A1 would be extremely well 
to that plotted in Fig. 2b. developed. 

3. The new distributions of the membrane stress 
THE MODE JUMP CONSTRAINT IN PANDA2 resultants, N ,  N,  N ,  oversthe entire discretized cross 

section of the s&n-;tringer module are derived from the 
Constraints on the design generated via PANDA2 known post-local-buckled equilibrium state. The new 
include local buckling of stiffener segments, rolling of distribution of N, is qualitatively similar to that shown 



in Fig. 24 of [I]: Nx is greatly diminished midway to small perturbations of each of the decision variables 
between stringers and increased near and in the are computed, just as with all other "behavioral" 
stringers, as shown in Fig. Al,  in which the new constraints such as general buckling and stress. Then 
nonuniform distribution of axial load is labelled N,,. In Vanderplaats' ADS optimization routines [I91 are 
Fig. 2a the stresses, N, N,,, N, , belong to the branch 2. called to generate a new design. 

4. A "post-post" bifurcation buckling problem is set up 
and solved. This eigenvalue problem is entirely 
analogous to the initial local bifurcation buckling 
problem: Bifurcation buckling load factors are 
computed vs. number of axial halfwaves. However, in 
the "post-post" bifurcation buckling problem the new 
nonuniform distribution of Nx over the cross section of 
the panel module (called N,, in Fig. Al)  is used. Local 
postbuckling defomzations are ignored The new search 
over the number of axial halfwaves is conducted 
starting from M = 2m,,, where m,,, is the critical 

' number of halfwaves determined for initial local 
buckling. The "post-post" bifurcation buckling mode 

with number of axial halfwaves, m:~t  >> m,,, , in 

which rnzrit , the number of axial halfwaves 
corresponding to the critical (lowest) "post-post" 
(secondary ) bifurcation buckling eigenvalue, is 
assumed to be the mode that determines initiation of 
transfer to Branch 3 in Fig. 2a or Branch 2 in Fig. 2b. 
In Fig. A1 the critical secondary bifurcation buckling 
mode has nine axial halfwaves. Whereas the initial 
local buckling load factor corresponding to three axial 
halfwaves might be 0.1, the secondary bifurcation 
buckling load factor corresponding to nine axial 
halveaves might be 0.6, for example. The computation 
in PANDA2 corresponds to the determination of a 
bifurcation point in a fictitious prebuckling state of the 
panel in which the redistribution of Nx corresponding to 
the post buckling state at some point on Branch 2 in 
Fig. 2a is accounted for but buckling deflections are 
neglected. We hope that in this way we will obtain a 
good estimate of the load threshold beyond which a 
dynamic change in the number of axial halfwaves in the 
far post-locally-buckled state is likely. If this estimate is 
below the design load and significantly above the initial 
local buckling load we assume that "serious" mode 
jumping may take place, that is, the consequences for 
the structure may be dire. 

5. Given the secondary buckling load factor, the "mode 
jump" margin is computed from the formula: 

margin = (secondary buckling load 

As with all behavioral constraints in PAPIDA2, the 
"mode jump" constraint is evaluated (for each design 
iteration or pass through the optimizer ADS) at the 
current design and at K neighboring (perturbed) designs 
in which K equals the number of decision variables in 
the problem. (In the rather simple case discussed in the 
section entitled "EXAMPLE there are only three 
decision variables: height of the stringer, thickness of 
the panel skin, and thickness of the stringer.) The six 
steps outlined above (as well as any steps required to 
determine any other behavior, such as locally 
postbuckled state, general instability and stress) are 
traversed many, many times before a final optimum 
design is achieved. For each design iteration, constraint 
gradients are established from the difference in 
behavior (e.g. buckling load factor) at the perturbed 
design and at the current (unperturbed) design. The 
amount by which each decision variable is perturbed 
depends on the maximum sensitivity of behavior to that 
perturbation. 

PANDA2 uses certain short-cuts to obtain perturbed 
behavior corresponding to each perturbed design. For 
example, PANDA2 uses buckling modes corresponding 
to the unperturbed design as starting vectors for 
iterations to extract the critical eigenvalues and mode 
shapes for the perturbed designs. 

One can appreciate that for more complex panels, such 
as a laminated composite panel with both stringers and 
rings and with possibly multiple load sets, one must 
resort to all sorts of approximations, short-cuts, and 
"tricks" to obtain reasonably accurate predictions with 
as few calculations as possible. It is admitted that the 
"mode jump" predictor used in PANDA2 is a crude one 
(especially since only the redistribution of N, N,, N, in 
the post-local-buckling regime is accounted for, with 
the effect of local normal deflections ignored). Its 
effectiveness should be tested through extensive 
application of PANDA2 and STAGS. 

THE STAGS PROGRAM 

factor)/(factor of safety) - 1 .d STAGS (Structural Analysis of General Shells), is a 
shell finite element program with a strong bias towards 

6. Gradients of the "mode jump" constraint with respect stability analysis capabilities [4,5,22]. Apart from 



having a good nonlinear shell modeling capability 
(small strain but arbitrarily large displacements and 
rotations), STAGS is also equipped with path-following 
techniques that make it possible to solve stability 
problems such as bifurcation buckling and collapse. 
The modeling capabilities include many design features 
that are frequently encountered in lightweight structures 
in the field of aero- and astronautics: a whole range of 
stiffener models, shell wall materials including 
composites, etc. In addition to the solution techniques 
for computing the static equilibrium branches of these 
models, STAGS also possesses robust transient time 
stepping methods. It is the unique availability of a 
combination of advanced static and transient solution 
strategies that proves most effective in the cases where 
mode jumping plays a role. We will discuss these 
particular types of calculations in the following section. 

SIMULATION OF MODE JUMPING IN STAGS 

As follows from the discussion in the section entitled 
"MODE JUMPING, the phenomenon of mode 
jumping is simply a collapse or snap buckling event as 
described by the theory of elastic stability: a transient 
change of deformation that occurs at a value of the load 
equal to or slightly in excess of the critical load that 
belongs to the bifurcation point or limit point. The only 
difference with the classical notion of collapse is that 
such a jump is not necessarily detrimental to the 
integrity of the structure. Damage depends on the 
frequency of occurrence during service of the structure, 
on the number and amplitude of stress oscillations 
precipitated by the jump and whether or not these 
oscillations involve stress reversal, and on the energy 
release associated with the jump, that is, the difference 
between the potential energy of the structure before and 
after the jump. In some plate structures for example the 
energy release can be so small that a series of 
successive jumps can perhaps be tolerated as the load 
increases up to and beyond a specified maximum (the 
design load). 

According to the theory of elastic stability, collapse 
takes place at an unstable critical state of equilibrium 
[9,38,39] Unstable critical points in general are either a 
proper limit point (A) or unstable bifurcation points 
(B,C) in Fig. 3. Before such a point is reached (when 
the load is still below the critical value) the equilibrium 
is stable. At such a state a small externally applied 
perturbation will be counteracted by the structure in 
such a way as to restore the perturbed state to the 
original equilibrium state. A stable equilibrium point is 

therefore called a point of attraction. 

When an unstable critical state is exceeded the property 
of restorative reaction forces is impaired. At this point 
there may be one or more particular perturbations from 
the equilibrium state that will induce a repellent 
reaction in the structure. The repellent force works in 
the direction of these special perturbations and thus 
initiates a motion that is divergent. The motion that 
develops in this way will gain momentum at a rate that 
depends on the amount of potential energy freed and 
converted into kinetic energy. In the actual situation 
and also in our simulations this motion is resisted by 
damping. Therefore, if a stable post-jump static 
equilibrium state exists at the load level corresponding 
to mode jumping, the kinetic energy will eventually 
decay. The motion will subside at another attractor, a 
stable equilibrium state that acts as a new focus for the 
orbit that the motion follows, such as Branch 3 in Fig. 
2a.. 

The special direction of the perturbation that will best 
initiate the transient motion from the unstable critical 
state turns out to be given by the buckling mode 
associated with this state in the following sense: the 
perturbation should point to the unstable branch 1 of 
the limit point (Fig. 3A) or the unstable branch 2 that 
goes through the bifurcation point [8,9] (Figs. 3B,C). 
Please note that this figure, as well as Figs. 1 and 2, 
represents aprojection of the general solution in an 
N + l  dimensional space of displacement variables N 
and the load intensity factor h, to a 1+1 dimensional 
space of one displacement component and the load 
factor h. In Fig. 3 the direction of the displacement 
component is the buckling mode, the amplitude of 
which is denoted p. 

To make use of these findings, we adopted in [8,9] the 
following computational strategy. We first compute the 
fundamental state of the panel previously optimized by 
PANDA2 using the standard path-following technique 
available in STAGS [35]. In Fig. 3 this computation is 
symbolically indicated by the small open circles along 

the primary paths denoted by 1 (an open circle is a 
solution point). Critical points that are part of these 
paths betray themselves in various ways, for example 
through sign changes of the determinant of the stiffness 
matrix or changes in the number of negative entries on 
the main diagonal of the factored stiffness matrix. It is 
possible with a simple technique to determine the 
critical states with some accuracy [34-361, but this is 
not always required in the type of analysis that we 
consider here. The identification of the type of critical 



point, limit or bifurcation and stable or unstable, is 
more important. 

In the case of a limit point the identification is trivial 
because in that case the load will reach and pass a 
maximum during the solution, an event that is easily 
monitored. In the case of a bifurcation point, the matter 
is slightly more complicated because a bifurcation point 
is a critical point that cannot in general be detected by 
observing the load factor. What usually happens is a 
change of sign in one or more of the diagonal terms of 
the factored stiffness matrix without a reversal of the 
sign of the path derivative of the load k, However, to 
identify what type of bifurcation is encountered, we are 
required to conduct a calculation of the branch at the 
bifurcation point. This is possible in STAGS with the 
aid of a branch switch procedure [22]. Once small parts 
of the branches 2 in Fig. 3 are computed, we also know 
whether we have an unstable skew symmetric point (B) 
or an unstable symmetric point (C) or a stable 
symmetric point D. 

After these preparations, we continue the analysis by 
computing the path that the actual structure follows. In 
the case of a stable symmetric point (D) the structure 
will follow one of the stable branches 2. The switch 
procedure mentioned earlier acts to initiate such a 
computation. In this case we continue with the static 
path-following procedure because the structure does not 
jump at such a state but instead follows a different 
stable equilibrium branch. There is a gradual change of 
the deformation with increasing load. This happens in 
one of the cases explored here (Fig. 18a,b). 

More interesting are the unstable states B and C. To 
conduct a simulation of the transient buckling process 
that starts from these points, we use an implicit 
transient time stepping procedure called Park's method 
[40]. To start the computations in a way that is in 
agreement with what we know about the properties of 
the unstable points, we assume initial conditions as 
indicated in Fig. 3 by the solid points with arrows: 

1. In the case of the limit point (Fig. 3A), we start the 
time integration from an equilibrium point beyond the 
limit point by setting the load parameter to a value just 
above the limit load. 

2. In the case of the unstable bifurcation points B and 
C, we take a point computed earlier on the unstable 
(descending) branch as the initial condition with the 
load again adjusted to a value that slightly exceeds the 
critical load. This type of initialization will insure that 

the structure will enter the post-jump orbit [8,9] if a 
stable post-jump equilibrium state exists at that load 
level. 

In most simulations of this sort the limit point is the 
most frequently encountered point of loss of stability. 
This means that we can set up the initialization with 
almost no effort. In the case of a bifurcation point the 
procedure described above is appropriate but it 
sometimes needs branch switching [22] in order to find 
the descending branch 2. 

Often we can avoid the branch-switching calculations 
after crossing a critical point by taking advantage of 
slight numerical round-off errors in solutions computed 
with standard path-following methods. These tiny 
errors represent perturbations from the actual 
equilibrium state that usually contain enough of the 
critical bifurcation buckling modal component to turn a 
transient solution toward the unstable buckling modal 
direction. This means that we can also try, with some 
confidence, to start from the unstable points on the 
primary branch 1 just above the critical load, with the 
expectation that the system will gain momentum as 
energy is released. Experience has shown that this 
approach almost always works, although it may take 
more time for the system to gain momentum as 
compared with the procedure sketched earlier. It may 
also be very useful to add a small initial velocity 
proportional to the unstable mode, an option that is 
available in STAGS. 

EXAMPLE 

We present here a relatively simple example of a 
uniformly axially compressed, flat, blade-stiffened, 
steel panel that is optimized with PANDA2 Two 
alternative optimum designs are produced: PANEL I 
with the mode jump constraint OFF and PANEL I1 with 
the mode jump constraint ON. 

The two optimum panel configurations thus obtained 
are then analyzed with STAGS to verify the reliability 
of the PANDA2 predictions. 

The PANDA2 Optimization and analysis 

Tables 1 and 2 provide the problem parameters and 
Figs. 4 - 14 display results from optimization and 
analysis of the optimized panel with PANDA2. The 



following boundary conditions are used: the panel is 
clamped at the two axially loaded ends. Wide-column 
behavior [I] is assumed, that is, the behavior of the 
entire stiffened panel is modeled with use of a single 
skin-stringer module [ l ]  with symmetry conditions 
applied midway between stringers. See Fig. 22(c) in [I] 
for example. In PANDA2 local buckling of the single 
module model is generated by forcing the normal 
displacement along one longitudinal edge to have the 
opposite sign from that along the opposite longitudinal 
edge (See Fig. 10). 

Fig. 4 shows the evolution of the objective function 
(total panel weight) as a function of design iteration. 
For the first 15 design iterations the "mode jump" 
constraint, "Hi-axial-wave post-post-buckling of panel 
skin", was turned OFF. That is, the panel was optimized 
without regard to the probability of mode jumping 
occumng at some load between the initial buckling load 
and the design load. At Iteration No. 15 the local 
buckling load factor is very close to A, = 0.1 (buckling 
load = 0.1 x 5000 = 500 lblin). The optimum design at 
this point is called "PANEL I". 

At Iteration No. 15 the "mode jump" constraint was 
turned ON, and design iterations were continued with 
"mode jump" turned on until convergence to a 
somewhat heavier optimum design was achieved at 
Iteration No. 29. This second optimum design is called 
'PANEL U',. Note that the weight of the panel 

increases significantly after the "mode jump" constraint 
is turned ON. The optimum weight with the "mode 
jump" constraint ON, 152 lbs., is about 20% higher 
than the optimum weight, 126 lbs., with the "mode 
jump" constraint turned OFF. Since this represents a 
considerable sacrifice, one must prove the necessity of 
turning ON the "mode jump" constraint. This is 
accomplished later by demonstrating via STAGS that at 
a load considerably less than the design ultimate load 
significant oscillations of peak stresses , with stress 
reversals, occur during a mode jump in the optimized 
panel with the "mode jump" constraint turned OFF 
(PANEL I). 

Figure 5 displays the evolution of all margins less than 
unity during all design iterations. (NOTE: margin = 
design constraint - 1 .) At Iteration No. 15 the design 
margins presented in Table 3 are critical or close to 
critical. No "mode jump" constraint is listed there 
because it is still turned OFF. The "mode jump" 
constraint appears in Fig. 5 only between Iterations 15 - 
29, after it has been turned ON by the user of 
PANDA2. For those iterations the "mode jump" 

constraint is critical and therefore affects the evolution 
of the design. 

In Table 3 are listed three margins that all represent 
models of general instability, Margins 6, 10, and 14. 
Margin 6 is computed from a single discretized module 
model analogous to that shown in Fig. 22(b) of [I]. The 
wide column buckling mode resembles that shown in 
Fig. 22(c) of [I], that is, the skin-stringer cross section 
is permitted to deform in this representation of general 
buckling. (In Fig. 22 of [ l ]  the panel is TEE-stiffened; 
here the panel is blade-stiffened.). Margin 10 is 
computed from a wide column model in which the 
stringers are smeared out and Donnell's theory is used 
to compute the general buckling load factor from the 
theory set forth in [3]. Margin 14 is computed from the 
same model as Margin 10 except that Sanders' theory is 
used [14] rather than Donnell's theory. 

Figures 6 and 7 show the evolution of the design.The 
primary effect of turning ON of the "mode jump" 
constraint at Iteration No. 15 is to cause the thickness of 
the panel skin to increase.This results in the initial local 
bifurcation buckling load being increased to such a 
degree that the panel as loaded by the design load, Nx = 
-5000 lblin, is no longer far enough into its locally 
postbuckled state for the redistribution of Nx over the 
module cross section, as shown schematically in Fig. 
Al,  to give rise to secondary bifurcation buckling 
(mode jumping) at a load below the design load. 

Figures 8 - 14 show results obtained from PANDA2 
used with the "test simulation" option, that is, an option 
in which the panel design is fixed and the applied axial 
load Nx is increased in steps. These results correspond 
to the optimized design at Iteration No. 15 (PANEL I: 
panel skin thickness = 0.057075 in.; stringer thickness 
= 0.16871 in.; stringer height = 1.6074 in.). 

Figure 8 shows PANDA2's prediction of how the 
number of axial halfwaves in the local postbuckled 
pattern increases with N,. PANDA2's treatment of 
number of axial halfwaves is similar to Koiter's 
[18,33]: the number of axial halfwaves computed in the 
postbuckling regime is permitted to vary continuously 
with load as if the panel were infinitely long. Details of 
how this is done in PANDA2 are given in [17]. The 
change in number of axial halfwaves from that at the 
bifurcation load (7 halfwaves in this case) to that at the 
design load, Nx = -5000 lblin, (about 9.2 halfwaves in 
this case) is, of course, accounted for by PANDA2 
during its computation of the stresses in the locally 
postbuckled panel. This predicted change in the number 



of axial halfwaves is in reasonably good agreement 
with STAGS results, as will be shown later. 

Figure 9 shows how the membrane tangent stiffness 

components, C::, C g  , C g  , in the panel skin 
decrease in the local postbuckling regime. This 
decrease in skin tangent stiffness is, of course, 
accounted for in the computation of the 6 x 6 integrated 
constitutive matrix Cij that governs overall buckling of 
the locally postbuckled panel. In this way the 
interaction of long and short wavelength buckling 
modes of the type discussed in [25-271 is accounted for 
in PANDA2. 

NOTE: PANDA2 uses the postbuckled state only at the 
MIDLENGTH of the panel in the computation of the 

' tangent stiffness components, C,? , C.7 ,  Cg,  C g  . 
This limitation has significant consequences in the case 
of PANEL I, as will be discussed later in connection 
with Fig. 32. It is emphasized that PANDA2 is based on 
a theory in which it is assumed that all local behavior, 
such as the postbuckled state, varies trigonometrically 
along the entire length of the panel with no axial 
modulation of the short wavelength postbuckled lobes 
as they interact with overall axial bowing of the panel. 

Figure 10 displays the deformed PANEL I module 
cross section for five values of axial compression. The 
deflection is amplified by a factor of eight. In a test the 
actual deformed panel skin would probably not exhibit 
the reversals in transverse curvature near the two 
longitudinal edges (midway between stringers: at 
abscissa coordinates 0 and 10 in Fig. 10) shown here 
for abs(NJ greater than 2000 lblin. These reversals are 
doubtless a consequence of the limited expansion in 
PANDA2 of local postbuckling deflection in terms of 
local bifurcation buckling mode shape [17]. As written 
in Eq. (24) of [17] only two terms are used in this 
expansion, the linear and the cubic term. The 
consequence for design is not serious, it is thought, 
because the region of panel skin near the longitudinal 
planes of symmetry (midway between stringers) are 
under much less axial load in the far postbuckling 
regime than are the stringer and skin near the root of the 
stringer. Hence, critical stresses and strains are unlikely 
to occur in the region of panel skin where PANDA2's 
estimates of local postbuckling deflection are the least 
accurate. 

pattern. 

Figures 12 - 14 display axial, hoop (transverse to axial 
direction and in the plane of the panel skin), and 
in-plane shear strain components at the extreme fibers. 
The extremes of these values are later plotted in Figs. 
26-28, which contain predictions from STAGS for 
PANEL I. 

Note that up to Iteration No. 15 the "mode jump" 
constraint is turned OFF. Therefore, it is not included in 
the list of margins in Table 3 and of course does not 
affect the evolution of the optimum design up to 
Iteration No. 15. The design at Iteration No. 15 is 
judged by PANDA2 to be-FEASIBLE because there are 
no significantly negative margins. (In PANDA2, 
designs are called FEASIBLE if all margins are greater 
than -0.01; designs are called ALMOST FEASIBLE if 
all margins are greater than -0.05; otherwise designs are 
called INFEASIBLE.) 

After optimization with the "mode jump" constraint 
turned OFF, the PANDA2 user turns the "mode jump" 
constraint ON. At the zeroth iteration with the "mode 
jump" constraint ON (still at Iteration No. 15 in Figs. 4 
- 7) the following margin is added to those just listed: 

5 -3.19E-01 Hi-axial-wave post-post-buckling of panel 
skin -1; M=17.; FS=1.0 

The "mode jump" constraint is significantly negative. 
PANDA2 now rejects this design as INFEASIBLE 
because of the presence of this significantly negative 
margin. This margin is plotted in Fig. 5 starting at 
Iteration No. 15. Immediately after "mode jump" has 
been turned ON, PANDA2 finds that "post-post" 
bifurcation buckling occurs with M = 17 axial 
halfwaves and at a load factor of 1.0 - 0.319 = 0.681. 
Bifurcation buckling with use of the nonuniform N, 
computed from the "Koiter branch [17] of PANDA2 
occurs at a load factor of about two thirds of the design 
ultimate load and with a mode shape that is analogous 
to that indicated by "(b)" in Fig. A1 (with 17 axial 
halfwaves rather than the 9 axial halfwaves shown 
schematically in Fig. Al). Design iterations are 
continued from Iteration 15 through Iteration 29 with 
the "mode jump" constraint turned ON, leading to a 
new, considerably heavier optimum design at Iteration 
No. 29 with the margins listed in Table 4. 

Figure 11 shows a three-dimensional view of the local ms new, heavier design has a local buckling load 
postbuckling deflection for a length of panel that spans factor of approximately A, = 0.19 (axial load = 0.19 x 
one full axial wave of the post-local-buckling deflection 5000 = 950 lb/in), almost twice that of the optimum 



design obtained at Iteration No. 15 with "mode jump" 
turned OFF. 

The STAGS analysis 

In this section results from two STAGS analyses are 
reported: 

1. a STAGS analysis of PANEL I, that is, the panel 
corresponding to the optimum design obtained with the 
mode jump constraint OFF (See Iteration No. 15 in 
Figs. 4,6,7). The values of the three decision variables 
at Iteration No. 15 are: 

panel skin thickness T(1) = 0.057075 in. 
stringer thickness T(2) = 0.16871 in. 
stringer height h = 1.6074 in. 

2. a STAGS analysis of PANEL 11, that is, the panel 
corresponding to the optimum design obtained with the 
mode jump constraint ON (See Iteration No. 29 in Figs. 
4,6,7). The values of the three decision variables at 
Iteration No. 29 are: 

panel skin thickness T(l) = 0.075452 in. 
stringer thickness T(2) = 0.16256 in. 
stringer height h = 1.5896 in. 

The STAGS finite element models are automatically 
generated with use of the PANDA2 data base via the 
PANDA2 processor called STAGSMODEL [2 11. 
During execution of STAGSMODEL the user is 
prompted interactively for certain data. Among these 
prompts are the following two: 

"Number of modules in the STAGS finite element 
model, NSTIF" 

and 

"Edges normal to screen (0) in-plane deformable; (1) 
rigid" 

In the cases explored here the STAGSMODEL user's 
response to the "Number of modules ..." prompt was 
"1". There is no anisotropy and no applied or Poisson- 
ratio-induced hoop resultant Ny nor in-plane shear 
resultant Nv . The wide-column model is used to 
represent general instability. Therefore, a STAGS 

model with only a single module (one stringer with 
panel skin of width b/2 on each side of the stringer, 
where b = stringer spacing) is sufficient to predict with 
reasonable accuracy what happens when the panel of 
axial length 50 inches and transverse length 100 inches 
is uniformly axially compressed. 

NOTE: In both the PANDA2 and the STAGS models it 
is assumed that the two axially loaded "clamped" ends 
of the panel are free to undergo Poisson-ratio transverse 
expansion under the axial compression. Therefore, no 
membrane hoop compression, Ny, builds up in the 
neighborhoods of the ends of the panel as the axial load 
is applied. 

In all cases explored here except one the 
STAGSMODEL user's response to the "Edges normal 
to the screen ..." prompt was "0". All of the results in 
this paper except those corresponding to Fig. 33 were 
obtained with the "in-plane deformable" option, which 
is felt to be the more conservative (leading to earlier 
failure of the panel according to STAGS). Fig. 47 of 
[21] shows a comparison of deformations, with use of 
both "1" (Fig. 47a) and "0" (Fig. 47b) in response to the 
"Edges no rmal..." prompt, for a panel with three 
modules under combined axial compression and 
in-plane shear. For an axially compressed panel with 
use of only a single module in the STAGS model, the 
"(0) in-plane deformable" option might lead to 
significantly larger maximum normal displacements in 
the panel skin in the far post buckling regime predicted 
by STAGS than those predicted by PANDA2, seen 
during a test of a multi-module specimen, or seen in the 
internal bays of a multi-module STAGS model, 
especially if the panel skin has a large Poisson ratio 
such as would be the case for a panel skin with an 
angle-ply laminate with layup angle, 6 = [&45], . A 
multi-module STAGS finite element model would 
require much, much more computer time because there 
would be far more finite elements in the model and the 
bandwidth of the stiffness matrix would be far greater 
than it is in the single-module model. 

The following sequence of STAGS runs is performed 
for the analysis of each structure, such as PANEL I and 
PANEL 11: 

1. The critical local bifurcation buckling mode and 
eigenvalue is frst determined from linear theory. This 
is done in order to obtain an imperfection shape for the 
static nonlinear STAGS run to follow and to provide a 
comparison with PANDA2 predictions of local 
bifurcation buckling. 



2. A STAGS nonlinear static run or a series of runs is 
executed in order to load the panel as far as possible 
without having to conduct any special transient runs to 
follow dynamic mode jumping behavior. A typical 
series of such STAGS runs is listed in Table 2 of [21]. 

3. A series of STAGS nonlinear dynamic runs is 
executed in order to follow mode jumping and possibly 
to achieve post-jump static equilibrium. Damping 
constants are used in these runs so that convergence 
will be achieved to a stable post-jump state if any such 
state exists. The load factor is held constant during this 
series of transient runs at a level two per cent higher 
than the highest load factor for which STAGS obtained 
a converged solution in the previous series of nonlinear 
static runs. 

4. A STAGS nonlinear static run or series of runs is 
executed from the post-jump stable state up to the 
collapse load, or to the next mode jump if there is one. 

The "410" finite element was used throughout the 
STAGS analyses reported here. 

STAGS results for PANEL I 

Figures 15 - 32 pertain to this subsection. Fig. 15 shows 
the local critical buckling mode of two single-module 
STAGS models: Model 1 has finite elements fairly 
uniform in size throughout. Model 2 has very narrow 
finite elements in the panel skin near the stringer and a 
more refined mesh on one side of the stringer than on 
the other. The purpose of Model 2 is primarily to 
capture with more accuracy the extreme fiber post- 
local-buckling hoop stresses in the panel skin adjacent 
to the blade. These high hoop bending stresses result 
from the large change in hoop curvature under the 
blade, especially evident in Fig. 10. As will be seen 
later (Fig. 30) these high hoop bending stresses oscillate 
immediately after the mode jump. 

PANDA2 predicts local buckling with seven axial 
halfwaves at a load factor close to 0.1. In the PANDA2 
local buckling model the panel skin is assumed to be 
simply supported at the axially loaded ends even though 
the entire panel module (skin plus stringer) is clamped 
there. In the STAGS model the skin is clamped, except 
for transverse in-plane displacment v which allows 
Poisson-ratio expansion as mentioned previously. 
In-plane rotation of the stringer web is prevented. 
Allowing for these differences in boundary conditions 

in the PANDA2 and STAGS models, one sees that 
there is very good agreement between PANDA2 and 
STAGS for the buckling mode and load factor. (Also 
see Fig. 18a). 

Figures 16 and 17 show the results of the first STAGS 
nonlinear static run on PANEL I with finite element 
Model 1. For this run a buckling modal imperfection 
amplitude of 0.005 inch was used. With use of 
nonlinear statics STAGS is unable to explore the region 
with load factor PA greater than 0.648 (Load Step 62). 
It appears that at a load factor of slightly more than 0.3 
(Load Step 22) the panel experiences a gentle mode 
jump, that is, gentle enough that the Riks static 
path-following strategy can find equilibrium states for 
higher loads than the local peak at Load Step 22. The 
static solutions determined by STAGS beyond Load 
Step 62 appear to be on the same equilibrium curve as 
those covered between Load Step 42 and Load Step 62. 
It is therefore necessary to use the dynamic mode 
jumping strategy in order to determine the behavior of 
PANEL I for load factor, PA > 0.648. 

The finite element Model 1 (Fig. 15a) was used to 
generate Fig. 18. Figure 18 displays edge-on views of 
the locally postbuckled PANEL I corresponding to five 
load steps during the initial static loading phase (a-e) 
and to the first static load step following the transient 
run and complete load relaxation (f). (Step 955 is the 
first static load step after the transient run for which the 
panel is in a state of static equilibrium. The load factor, 
PA = 0.6605 at Step 955). In Fig. 18 the amplitudes of 
the postbuckled normal displacements in the panel skin 
are the same in all six frames even though these frames 
correspond to different levels of applied load: a default 
option for deformation scaling, zero, was used in the 
input data required for the STAGS postprocessor, 
STAPL. This default causes the maximum 
displacement to be scaled to a certain fraction of the 
length of the undeformed structure. The purpose of this 
figure is not to demonstrate the growth or diminuation 
in the amplitude of the postbuckling deflection with 
changing applied load but rather to show how the 
number and position of axial halfwaves changes during 
loading. 

Figure 18 contains several significant results: 

1. Figure 18a demonstrates that the post-local-buckling 
mode from STAGS agrees well with that from 
PANDA2. While there are only six axial halfwaves 
along the length of the panel in the STAGS model 
rather than seven as predicted by PANDA2, the axial 



wavelength of each of the halfwaves is close to one 
seventh of the panel length. There are regions near the 
clamped ends in the STAGS model where there is small 
deflection because in the STAGS model the panel skin 
cannot rotate about a normal to the plane of the paper. 
This rotation constraint is absent in the PANDA2 model 
of local buckling and postbuckling of the panel skin, as 
mentioned previously. 

2. From Fig. 18b we see that there are seven axial 
halfwaves along the length of the panel rather than six, 
as displayed in Fig. 18a. Hence there has been a mode 
"jump" (transition from one equilibrium branch to 
another) in the sense that the postbuckling state has 
changed in a non-proportional way between Load Step 
No. 10 and Load Step No. 22. The number of axial 
halfwaves has increased in spite of the fact that the 
applied load increases monotonically between Load 
Step No. 10 and Load Step No. 22, as shown in Fig. 17. 
This "gentle" transition is the stable type shown in Fig. 
3D. 

3. In Figs. 18(a-c) the postbuckling lobes on either side 
of the stringer are in phase with respect to axial 
variation. These states are in agreement with the 
PANDA2 model, which, being based on a "strip" 
method, requires in the absence of in-plane shear 
loading and anisotropy of the panel skin, that the 
postbuckling lobes on either side of the stringer always 
be in phase with eachother with respect to the axial 
coordinate because discretized deflections of the type 
shown in Fig. 10 are assumed to vary trigonometrically 
in the axial direction and the nodal lines of the 
postbuckling lobes have zero slope [17]. Note that in 
Figs. 18(d-f) the postbuckling lobes are out of phase in 
the STAGS model even though the panel skin is 
isotropic and there is no applied in-plane shear loading 
N,. This difference in the PANDA2 and STAGS 
predictions affects the predictions of stress and strain 
distributions and locations and values of maximum 
stresses and strains. 

4. From Figs. 18b and 18c we see that as the panel 
unloads between Load Step No. 22 and Load Step No. 
42 (Fig. 17), there appears one additional axial half 
wave in the postbuckled state. In an experiment on this 
panel a gentle dynamic "mode jump" would probably 
occur near the load factor corresponding to Load Step 
22. We did not have to resort to a special transient 
STAGS run in this case because the static path- 
following technique was capable of tracking the 
changes in state of the panel during this presumably 
mild mode jump. 

5. From Figs. 18(d,e) we see that the phase discrepancy 
between postbuckled lobes on either side of the stringer 
increases as the applied load increases. The number of 
axial halfwaves remains the same. 

6. From Figs. 18(e,f) we see that during the many- 
stepped transient phase the number of axial halfwaves 
jumps from 8 to 10. The postbuckled lobes on either 
side of the stringer remain out of phase. (More details 
about the change in pattern of postbuckling lobes 
during the transient phase will be given later for 
PANEL I in connection with the finite element Model 
2). 

7. Fair agreement is obtained between PANDA2 and 
STAGS for prediction of the increase in the number of 
axial halfwaves as the panel is loaded into its far 
postbuckled state. (Compare Figs. 8 and 18). 

Figure 19 displays results from a series of STAGS 
dynamic runs. The initial load at Load Step 63 is set at 
1.02 x 0.648 = 0.6605, slightly above the equilibrium 
branching, as shown schematically in Fig. 3. At Load 
Step 950 the dynamic behavior is judged to have 
decayed enough to permit resumption of static loading. 

In this case a single post-transient nonlinear static run 
was required to bring the applied load to within 99 per 
cent of the design load (PA = 0.99). At this point 
STAGS was unable to continue in a static mode. From 
results obtained via the STAGS postprocessor STAPL, 
we were able to determine that the panel was in the 
process of collapsing. Hence, no additional STAGS 
runs were made for this case. 

Figure 20 shows the complete load-end-shortening 
curve for Model 1 of PANEL I. The transient phase 
occurs at a single load factor, PA = 0.6605. This load 
level agrees reasonably well with PANDA2's prediction 
of "post-post" bifurcation: "post-post" bifurcation 
buckling load factor = -0.3 19 + 1=0.68 1. (See Fig. 5, 
the curve labeled "Hi-axial-wave post-post buckling of 
skin"; at Iteration No. 15 the "mode jump" margin is 
equal to -0.319). For PANEL I, PANDA2 predicts 
collapse at a load factor of 1.1 rather than the 0.99 from 
STAGS. Later an explanation is offered for this 
discrepancy. 

Figure 21 shows the growth of postbuckling deflections 
before the mode jump, and Fig. 22 shows the same after 
the mode jump. Comparison of Fig. 21(d) with Fig. 
22(a) reveals that during the mode jump one additional 
full wave appears in the locally buckled panel. Figure 



22b shows that the panel is collapsing in an overall 
bowing mode in which the stringer is on the convex 
side. 

Figures 16-22 all correspond to PANEL I with use of 
the finite element Model 1 displayed in Figs. 15a, 21 
and 22. Since Fig. 10 exhibits a rather concentrated 
hoop (transverse) bending of the panel skin in the 
immediate neighborhood of the stringer, we decided to 
use a more refined finite element model, especially for 
the panel skin segment under and near the stringer. This 
more refined finite element model of PANEL I, called 
Model 2, is depicted in Fig. 15b and in Fig. 23. 

As can be seen from Fig. 23 the maximum effective 
stress at the load factor, PA = 0.6875, is predicted by 
the STAGS Model 2 of PANEL I to be about 140 ksi. 
This very high effective stress is concentrated in 
extremely small regions in the panel skin very near the 
stringer. With Model 1 the maximum effective stress 
depicted in an analogous plot is about 110 ksi. The 
reduction in the peak effective stress is mostly caused 
by an averaging of results over each element required 
by the STAGS postprocessor STAPL to generate fringe 
plots and partly caused by Model 1's inability to capture 
the steep change in postbuckling hoop curvature change 
of the panel skin in the immediate neighborhood of the 
stringer. 

Note that the maximum effective stress in Model 2 of 
PAMEL I at load factor PA = 0.6875 is very, very high 
(140 ksi). As listed in Table 1, the allowable effective 
stress was set in this case to a very high number: 1000 
ksi. Therefore, the examples explored here are 
impractical in a strict engineering sense. The allowable 
effective stress was set very high in order to avoid 
active stress constraints from forcing the panel skin 
thickness to increase so that the "mode jump" constraint 
does not become active, or only becomes active very 
near the design load. Early attempts at setting up a good 
example for use in this study of mode jumping ran into 
this problem. We wanted a panel optimized by 
PANDA2 with the "stop modejump" constraint turned 
OFF to exhibit serious mode jumping at a load 
considerably less than the design load. In order for this 
to happen the panel has to be optimized for service in 
the deep postbuckling regime. Very high local bending 
stresses are likely to occur in such panels. We therefore 
used the simple expedient of setting the allowable 
effective stress very high. We can, of course, still 
compare maximum stresses and strains obtained from 
PANDA2 and STAGS for this fictitious material. In 
future work on mode jumping, many, many examples, 

especially involving composite laminated panels, 
should be explored with use of realistic allowables for 
stress. Such a broad study is beyond the scope of this 
paper, which we regard as an introduction to 
optimization of panels in which mode jumping plays a 
significant role. 

Figures 24 and 25 show the histories of the upper 
surface PANEL I skin hoop stress at the midlength of 
Model 1 (Fig. 24) and Model 2 (Fig. 25) in the finite 
element adjacent to the stringer where the maximum 
hoop stress occurs anywhere in the panel just before the 
transient phase of the analysis is initiated. With Model 
1 the transient phase is conducted at a load factor, PA = 
0.6605, and with Model 2 the transient phase is 
conducted at a load factor, PA = 0.7013. Both of these 
values of PA are two per cent above the maximum load 
factor for which STAGS was able to obtain a static 
solution. After correcting for the fact that the transient 
response phases of the STAGS analyses occur at 
slightly different load levels, we see from Figs. 24 and 
25 that Model 2 predicts maximum hoop stress during 
the transient phase that is about 22 per cent higher than 
that that would be predicted with Model 1 at the same 
load level. Hence, the refinement in the finite element 
model is worthwhile. 

It should be mentioned that in the initial static phase of 
the analysis the static path-following technique behaved 
quite differently for Models 1 and 2. With Model 1 a 
single static run was able to follow the the curve shown 
in Fig. 17 up to the maximum load factor, PA = 0.648, 
with use of only a single buckling modal initial 
imperfection, that shown in Fig. 15a. With Model 2 and 
use of the buckling modal initial imperfection shown in 
Fig. 15b, STAGS failed to obtain any static solution 
above a load factor of about 0.29. Before quitting at PA 
= 0.29, STAGS computed a buckling eigenvalue and 
eigenvector corresponding to the postbuckled state of 
the panel. The eigenvector, with an amplitude of 0.002 
in., was used in addition to the original linear buckling 
mode shown in Fig. 15b as a new combined initial 
imperfection. Another static run was made starting from 
zero load. This time STAGS failed to find any static 
solution above a load factor of about 0.4. STAGS again 
computed a buckling mode at PA about 0.4, and this 
mode, with an amplitude of 0.0015, was added to the 
two previously determined buckling modes as a new 
combined initial imperfection. A final static run was 
then made from zero load. This time STAGS was able 
to follow the static equilibrium path, in 39 load steps, 
up to a load factor of 0.6875, at which point the 
transient phase of the analysis of Model 2 was initiated. 



The technique of using mul~ple static nonlinear runs, 
accumulating with each failed run a new imperfection 
component or components and then starting over again 
at zero load, is described in Table 2, p 584 of [21]. This 
was the only way to entice STAGS to cover a complete 
load range in severely nonlinear and nearly singular 
systems before recent improvements [8,9]. 

Figures 26 - 28 show maximum strain components 
predicted from STAGS and PANDA2 for Model 2 of 
PANEL I. The PANDA2 points are read from Figs. 
12-14. PANDA2 and STAGS agree well for maximum 
axial strain. For hoop strain and in-plane shear strain 
PANDA2 yields reasonably good agreement for load 
factors less than that for which the mode jump occurs. 
Beyond that STAGS predicts much more steeply 
increasing stresses with increasing load factor PA than 
does PANDA;?. Most of the discrepancy is doubtless 
related to the fact that STAGS predicts a collapse load 
factor very close to 1.0 (Fig. 20), whereas PANDA2 
predicts wide column buckling at a load factor very 
close to 1.1 (Margin No. 6 in Table 3). This 
discrepancy is explained later. 

Fig. 29 is analogous to Fig. 18, except that Fig. 29 is 
based on finite element Model 2 rather than Model 1, 
and details of the change in postbuckling pattern are 
obtained only for the transient phase of computation. 
The six "snapshots" in Fig. 29 correspond to the six 
points indicated (a-f) in Fig. 30. 

Each "snapshot" corresponds to a time for which the 
hoop stress plotted in Fig. 30 is at or near an extreme of 
its oscillation range. Careful inspection of the patterns 
in Fig. 29 reveals that what causes the oscillation of 
hoop stress plotted in Fig 30 are fairly small axial shifts 
in the buckling lobes. A given point anywhere along the 
panel length (except in the neighborhoods of the two 
ends) will "see" axial waves pass to and fro during the 
mode jump. The extreme fibers in the panel skin in the 
immediate neighborhood of the stringer will therefore 
experience alternate tension and compression in the 
hoop direction as the panel wall flexes during these 
repeated axial translations of the postbuckling lobes. 

This type of behavior might very well cause 
delaminations in a composite panel or fatigue in any 
panel. Because of this oscillating behavior of stress, 
with significant repeated stress reversals, we strongly 
recommend that optimum designs be obtained from 
PANDA2 with the "prevent mode jump" switch always 
turned ON. 

Figure 3 1 displays the end shortening of Model 2 of 
PANEL I during the transient phase. Note that the 
transient behavior is associated with very little change 
in energy: there is very little transient axial motion at 
the end of the panel and hence very little dynamic work 
done by the applied axial load N,, particularly for times 
greater than about 50 milliseconds. In spite of this, 
there are significant oscillations of maximum hoop 
stress throughout the time spanning the transient phase 
of the analysis (Fig. 30). Hence, it is felt that panels 
designed for service in the post-local-buckling regime 
should ALWAYS be optimized with the "stop 
modejump" switch turned ON in PANDA2. 

For PANEL I, PANDA2 predicts collapse (wide 
column buckling: Margin No. 6 in Table 3) at a load 
factor of 1.1 [NOTE: (buckling load factor) = 
(FS)*(Margin+l) in which FS means "factor of 
safety"]. STAGS predicts collapse of PANEL I at a 
load factor very close to unity. It is felt that the 10 
percent discrepancy is caused by the fact that PANDA2 
uses the postbuckled state only at the MIDLENGTH of 
the panel to generate the distribution of effective axial 
stiffness over the cross section of the discretized panel 
module. This distribution of postbuckled axial stiffness 
is used for computation of the wide column buckling 
load factor. Figure 22b shows the deformation pattern 
in PANEL I predicted by STAGS very near collapse. A 
plan view of this deformation pattern appears as an 
insert in Fig. 32. Note that there is considerable 
sidesway of the blade near the clamped ends. This 
sidesway leads to a loss of effective axial stiffness of 
the blade, especially near the tip of the blade. The loss 
of effective axial stiffness in the blade leads to 
considerable reduction in the effective overall "EI" of 
the wide column near the clamped ends. This local loss 
of overall "EI" is of course "seen" by the STAGS 
model whereas it is not "seen" by the PANDA2 model. 
At the midlength of the panel the amplitude of blade 
sidesway is greatly reduced because the panel bows in a 
direction such that the tip of the blade is under less 
axial compression than the root of the blade. Since 
PANDA2 uses the blade sidesway at the midlength of 
the panel in its computation of postbuckled effective 
axial stiffness, it yields a higher wide column buckling 
load factor than does STAGS. 

Figure 32 shows axial bowing as predicted by 
PANDA2 and STAGS. The theory used by PANDA2 is 
explained in ITEM 82 of [41]. Axial bowing as 
predicted by STAGS increases very steeply for load 
factor, PA > 0.85, presumably because of the reduction 
in effective overall "EI" near the panel ends as 



discussed in the previous paragraph. This difference in 
prediction of overall behavior of PANEL I for loads 
approaching the design load, PA = 1 .O, doubtless 
accounts for the differing steepnesses of the curves 
from PANDA2 and STAGS for hoop and in-plane shear 
strain with increasing axial load plotted in Figs. 27 and 
28, respectively. Fortunately, this type of discrepancy 
seems to occur only for panels loaded very far into the 
postbuckling regime. As will be seen later, a similar 
discrepancy in results between PANDA2 and STAGS 
does not exist for the panel optimized with the "prevent 
mode jump" constraint turned ON. 

PANEL I was investigated again with use of STAGS. 
This time Lagrange constraints were introduced into the 
STAGS model that force the in-plane transverse 
displacement component v to vary linearly from one 
end of the panel to the other along the two unloaded 
(longitudinal) edges. This "straight-edges" model 
requires much more computer time than the model in 
which in-plane warping of the longitudinal edges is 
permitted because the bandwidth of the stiffness matrix 
increases from 144 to 364 for finite element Model 2. 
The load-end-shortening curve displayed in Fig. 33 
requires about 20 hours on a DEC-ALPHA, half of that 
time spent for execution of about 700 time steps during 
the transient phase of computations. STAGS was able 
to track the static equilibrium curve up to a load factor, 
PA = 0.934 in a single run. The collapse load predicted 
with the "straight-edges" STAGS model is within one 
per cent of that predicted with the the earlier models in 
which in-plane edge warping was permitted. 

STAGS Results for PANEL II 

Figures 34 - 40 pertain to this section. PANEL I1 has 
dimensions corresponding to Iteration No. 29 in Figs. 6 
and 7. This is the optimum design derived by PANDA2 
with the "stop modejump" switch turned ON: panel 
skin thickness = 0.075452 in.; stringer thickness = 
0.16256 in.; stringer height = 1.5896 in. 

Figure 34 is analogous to Fig. 20. PANDA2 predicts 
mode jumping to occur at the design load, PA = 1.0 
(Table 4, Margin No. 3). In the STAGS model an initial 
buckling modal imperfection amplitude of 0.007 in. 
was used. The imperfection shape is similar to those 
shown for PANEL I in Figs. 15a,b, except there is one 
less axial halfwave. Both PANDA2 and STAGS yield a 
linear bifurcation buckling load factor, PA = 0.19, for 
local buckling. In the initial nonlinear static run, 

STAGS was able to track the equilibrium curve to a 
load factor, PA = 1.094, well above the design load, PA 
= 1.0. Both PANDA2 and STAGS predict collapse of 
the panel at load factors close to 1.1, with PANDA2's 
prediction being the more conservative. 

Figures 35 - 39 are analogous to Figs. 26 - 28. Two 
figures for each of hoop strain and in-plane shear strain 
are given because the location of maximum strain shifts 
along the length of the panel during the initial nonlinear 
calculations of static equilibrium. There is a "phase 
shift" of postbuckled lobes on either side of the 
stiffener as observed with PANEL I (Fig.l8(a-e)). This 
"phase shift" is especially noticeable in Fig. 40. 

Figure 40(a) depicts a distribution of upper surface 
hoop stress that very much resembles what one might 
expect from the postbuckling panel module deformation 
depicted in Fig. 10. for an isotropic panel with no 
in-plane shear loading. Because of the discontinuity in 
hoop curvature on either side of the stringer, which 
applies a line moment to the panel skin, there are equal 
and opposite hoop surface stresses in the panel skin on 
either side of the root of the stringer. These stress 
concentrations show up clearly along the midwidth of 
the STAGS model depicted in Fig. 40a. At the highest 
load attained in the nonlinear static analysis the 
postbuckled lobes on either side of the stringer have 
shifted in the axial direction relative to eachother so 
that the maximum compressive hoop stress now 
appears at the midlength of the panel. This maximum 
compressive hoop stress occurs on both sides of the 
stringer: there appears to be little discontinuity there, in 
sharp contrast to the state depicted in Fig. 40a. As 
mentioned previously, it is beyond the ability of 
PANDA2 to predict this kind of axial "phase shifting" 
behavior of the postbuckled lobes on either side of the 
stringer in the absence of anisotropy or applied in-plane 
shear loading. 

From Figs. 40(c,d) it is seen that the distribution of 
in-plane shear stress in the panel skin, originally 
symmetric with respect to the midwidth of the panel 
module (Fig. 40c: the extreme fiber shear stress is 
symmetric because the normal displacements are 
antisymmetric, as shown in Fig. lo), becomes skewed 
as the load is increased (Fig. 40d). The maximum 
in-plane shear stress becomes much more concentrated 
in the far postbuckling regime. One can appreciate 
especially from Fig. 40d that, if mode jumps cause 
oscillatory axial shifting of the postbuckled lobes, 
significant cyclic extreme fiber stresses will occur at 
given material points in the structure. Again it is 



emphasized that panels should therefore be designed to 
avoid mode jumping, that is, with the "stop modejump" 
switch turned ON in PANDA2. 

CONCLUSIONS 

In the foregoing we discussed a new feature in 
PANDA2 that makes it possible to prevent serious 
mode jumping from occurring in panels that are 
designed to function in the locally post-buckled state. 
Because PANDA2 uses a mode jump constraint that is 
based on a heuristic argument, it remains necessary to 
check optimum designs generated by PANDA2 with an 
analysis that is based on a more refined computational 
model such as provided by the finite element code 
STAGS. The method of conducting such an analysis is 
described in this paper. 

The following conclusions are drawn from the results 
presented here, which are all obtained for a uniformly 
axially compressed, blade-stiffened steel panel with 
maximum stress constraints neglected: 

1. PANDA2's model for the initiation of mode jumping 
is reasonably well confiied by STAGS results for 
panels optimized by PANDA2 

a. with the 'prevent mode jump" switch turned 
OFF, that is, with mode jumping ignored during 
optimization, and 

b. with the "prevent mode jump" switch turned ON, 
that is, with a constraint condition that prevents 
mode jumping from occurring at a load below 
the design load. 

2. Mode jumps, even if associated with very small 
changes in potential energy, can generate high- 
amplitude oscillations of stress components with 
significant stress reversals, especially the extreme fiber 
hoop stresses in the panel skin adjacent to the stringer. 
This oscillation might well cause fatigue failures and 
delaminations. Therefore, it is strongly recommended 
that the "prevent mode jump" switch always be turned 
ON during optimization with PANDA2. 

3. The agreement between PANDA2 and STAGS for 
maximum extreme fiber strain in the far postbuckling 
range is acceptable for the purpose of preliminary 
descgn. PANDA2's predictions appear to be 

conservative provided that the load factor is not too 
close to the collapse load. We expect this will almost 
always be the case provided that the user turns the 
"prevent mode jump" switch ON before optimizing a 
panel. 

4. Changes in the number of axial halfwaves in the 
locally postbuckled state can take place under 
monotonically increasing axial load. 

5. The postbuckled lobes can shift by different amounts 
on either side of the stiffener even if the panel is 
isotropic and not subjected to any applied in-plane 
shear load. This phenomenon cannot be predicted by 
PANDA2. The differential axial shifting of course 
affects the locations of maximum stress and strain and 
probably their values. 

6. Prevention of in-plane warping of the two 
longitudinal (unloaded) edges of the panel greatly 
increases the computer time required to explore a case 
but has little influence on the collapse load of the panel 
in the one case explored here. 

7. A very refined finite element mesh is required in the 
panel skin in the neighborhood of the root of the 
stringer in order to capture steeply varying extreme 
fiber hoop stresses there. 

8. Optimization with the "prevent mode jump" switch 
turned ON leads to panels that are approximately 20 
percent heavier than those optimized ignoring mode 
jumping. The collapse loads of the heavier, safer panels 
as computed from STAGS and PANDA2 are in very 
good agreement. 

SUGGESTIONS FOR FURTHER WORK 

1. Additional results of a similar kind should be 
obtained for laminated composite panels. Realistic 
stress allowables should be used. 

2. Cylindrical panels should be investigated. 

3. Cases should be explored with initial buckling modal 
imperfections included in the PANDA2 models. 
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F i g .  A1 Diagram f o r  exp lanat ion  o f  mode jumping c o n s t r a i n t  i n  PANDAZ. 

Pa t te rn  (a)  represents  the  i n i t i a l  buck l i ng  mode, obta ined from 

a Linear b i f u r c a t i o n  buck l i ng  a n a l y s i s  i n  which the  a x i a l  loading 

i s  un i fo rm (Nx = Nxo). Pa t te rn  (b)  represents  secondary buck l ing ,  

ob ta ined from a l i n e a r  b i f u r c a t i o n  buck l i ng  ana l ys i s  i n  which the  

a x i a l  Loading, computed from the  K O I T E R  branch o f  PANDAZ, i s  

nonuniform (Nx = N x l ) .  
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Table 1 
SIONS, MATE PROPERTIES, LOADING 

Axial length of panel 
Transverse length of panel 
stiffener spacing, 
Initial height of stiffener, 
Initial thickness of panel skin 
Initial thickness of blade 
Young's modulus 
Poisson's ratio 
Allowable effective stress 
Weight density of material 
Applied axial load (the design load) 

L = 50.0 in. 
B = 100.0 in. 
b = 10.0 in. (fixed in this example) 
h = 2.0 in. (decision variable) 
t, = 0.1 in. (decision variable) 
t, = 0.2 in. (decision variable) 
E = 30x106 psi 
v = 0.3 
1x10~ psi (set high to avoid active stress constraint) 
p = 0.3 lb/in3 
N, =-5000.0 lblin (ultimate load) 

Table 2 
MARGINS OF SAFETY FOR PANEL DESIGN 

Local buckling F.S. = 0.1 (local buckling permitted) 
Wide column and general buckling F.S. = 1.1 
Effective stress F.S. = 1.0 

Table 3 
MARGINS FOR OPTIMUM DESIGN AT ITERATION NO. 15 ("mode jump" turned OFF) 

NO VALUE DEFINITION 
1 1.58E-02 Local buckling from discrete model-l., M = 7 axial halfwaves; FS = 0.1 

2 - 1.30E-04 Local buckling from Koiter theory, M = 7 axial halfwaves; FS = 0.1 
6 4.90E-03 (Wide column panel buckling load fact0r)Ip.S.) - 1; FS = 1.1 

7 - 1.56E-03 (m=l lateral-torsional buckling load factor)/(F.S.) - 1 ; FS=l. 1 

10 1.80E-01 buck.(DONL); clamped general buck; M = l;N = 1; slope=O.; FS = 1.1 
14 1.80E-01 buck.(SANDERS); clamped general buck; M = l;N = l;slope=O.;FS = 1.1 

Table 4 
MARGINS FOR OPTIMUM DESIGN AT ITERATION NO. 29 ("mode jump" turned ON) 

MAR. MARGIN 
NO. VALUE DEFINITION 

1 9.13E-01 ~ o c a l  buckling from discrete model-l., M=6 axial halfwaves; FS = 0.1 
2 8.95E-01 Local buckling from Koiter theory, M=6 axial halfwaves; FS = 0.1 
3 -2.70E-03 Hi-axial-wave post-post-buckling of panel skin -1; M=12 ; FS = 1.0 
4 5.24E-03 (Wide column panel buckling load fact0r)Ip.S.) - 1 ; FS = 1.1 

5 2.68E-01 (m=1 lateral-torsional buckling load factor)/(F.S.)-'1; FS = 1.1 

7 1.31E-01 buck.(DONL); clamped general buck; M=l; N=l; slope=O.; FS = 1.1 

9 1.31E-01 buck.(SAND); clamped general buck; M=l; N=l; slope=O.; FS = 1.1 





WEIGHT OF THE ENTIRE PANEL (/dl 
0 

riks. SEE FILES riks.OPM AND riks.OPP 
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Design Iterations 
Fig. 4 Optimization in PANDA2 with "stop modejump" 

first turned OFF (Iterations 1 - 15), then 
turned ON (Iterations 15 - 29) 

1 .1.1 Local buckling: discrete model 
2 .1.1 Local buckling: Koiter theory. 
3 .1 .I m=l lateral-torsional buckling 
4 .1 . l  0.3333 *(Str. spacing, b)/(Str. base width, b2) 
5 .1.1 Wide column panel buckling 
6.1.1 buck(D0NL) clamped general buck; MIDLENGTH 
7 .1.1 buckling: stringer seg.3 . MIDLENGTH 
8 .1.1 buck(D0NL)rolling only of stringers; MIDLENGTH 
9 .1.1 buck(SAND) clamped general buck; MIDLENGTH 
10.1 . I  buck(SAND)rolling only of stringers; MIDLENGTH 
1 1.1.1 Hi-axial-wave post-post-buckling of skin 

Design lterations 

Fig. 5 Design margins during optimization with 
"stop modejump" first OFF, then ON 



4 T(l )(STR):thickness for layer index no.(l ): STR seg=l , layer=l 
0 5 T(2 )(STR):thickness for layer index no.(2 ): STR seg=3 , layer=l 

riks. SEE FILES riks.OPM AND riks.OPP 

H(STR):height of stiffener (type H for sketch), h: STR seg=3 

riks. SEE FILES riks.OPM AND riks.OPP 

Fig. 6 Evolution of thicknesses with the "stop" Fig. 7 Evolution of stringer height with the 
modejump" constraint first turned OFF "stop modejump" constraint first turned 
(Iterations 1-15), then ON (Iter. 15-29) OFF, then ON. The designs labelled 

PANEL I and PANEL I1 are analyzed with STAGS 



Fig. 8 Theory in PANDA2 [IS] accounts for change 
in the number of axial halfwaves in the 
locally postbuckled loading regime 

7 .1.1 Normalizes average axial skin stiff: Ctanl1 /C0(1,1) 

Fig. 9 Theory in PANDA2 [I91 for wide column and 
general instability accounts for the change 
in effective membrane stiffness of a locally 
postbuckled panel. This is the "classical" 
long wave and short wave interaction effect. 



0 .1.1 Undeformed panel module. Deflection scale factor=7.9915 
0 5 .1.1 Panel module deformed by loads in step no. 5 
A 10.1.1 Panel module deformed by loads in step no. 10 
+ 15.1.1 Panel module deformed by loads in step no. 15 
x 20.1.1 Panel rnodi.de deformed by loads in step no. 20 
0 25.1.1 Panel module deformed by loads in step no. 25 riks; Nx=-5.60E+03, Ny= 0.00E+00, Nxy= l.OOE+OO, p= 0.00E+00 

In 

A A I A A A I A I A 
1 2 3 4 5 6 7 8 9 10 

skin-stringer module cross section 

Fig. 10 PANDA2 prediction of locally postbuckled 
single discretized skin-stringer PANEL I 

skin-stringer module cross section 

Fig. 11 PANDA2 prediction of locally postbuckled 
portion of PANEL I of length equal to one 
full axial wave of the deflection pattern module 



1 .1.1 Layer 1 Extreme fiber AXlAL strains at seg. 1 ,  node 1 
0 1 .1 .I Layer n Extreme fiber AXIAL strains at seg. 1, node 1 1 .1 .I Layer 1 Extreme fiber HOOP strains at seg. 1, node 1 
A 6 .I .1 Layer 1 Extreme fiber AXIAL strains at seg. 1, node 11 0 1 .I .1 Layer n Extreme fiber HOOP strains at seg. 1, node 1 
+ 6 .1.1 Layer n Extreme fiber AXIAL strains at seg. 1, node 11 A 6 .I .I Layer 1 Extreme fiber HOOP strains at seg. 1, node 11 
X 8 .I .I Layer 1 Extreme fiber AXIAL strains at seg. 2 ,  node 6 + 6 .I .1 Layer n Extreme fiber HOOP strains at seg. 1 ,  node 11 
0 8 .1.1 Layer n Extreme fiber AXIAL strains at seg. 2 ,  node 6 x 8 .1.1 Layer 1 Extreme fiber HOOP strains at seg. 2 ,  node 6 
V 12.1.1 Layer 1 Extreme fiber AXIAL strains at seg. 3 ,  node 1 1 o 8 .I .1 Layer n Extreme fiber HOOP strains at seg. 2, node 6 
[X1 12.1.1 Layer n Extreme fiber AXIAL strains at seg. 3, node 1 1 v 12.1.1 Layer 1 Extreme fiber HOOP strains at seg. 3 ,  node 11 

C 
0 

Axial Load, Nx 6 b/ i a) 

Fig. 12 PANDA2 prediction of axial strain in the Fig. 13 PANDA2 prediction of hoop strain in the 
surface fibers of the single PANEL I module surface fibers of the single PANEL I module 



1 .1.1 Layer 1 Extreme fiber SHEAR strains at seg. 1, node 1 
0 1 .1.1 Layer n Extreme fiber SHEAR strains at seg. 1, node 1 
A 6 .I .I Layer 1 Extreme fiber SHEAR strains at seg. 1, node 11 
+ 6 .1 .I Layer n Extreme fiber SHEAR strains at seg. 1, node 1 1 
X 8 .1.1 Layer 1 Extreme fiber SHEAR strains at seg. 2, node 6 
0 8.1 .I Layer n Extreme fiber SHEAR strains at seg. 2, node 6 
V 12.1.1 Layer 1 Extreme fiber SHEAR strains at seg. 3, node 1 1  
Ixl 12.1 .I Layer n Extreme fiber SHEAR strains at seg. 3, node 1 1  

b-4 

2 

9 
C? 

9 C 
P -6.0 -5.0 -4.0 -3.0 -2.0 -1 .O 0.0 

Axial Load, Nx ti b/ b a) XI o3 

Fig. 14 PANDA2 prediction of in-plane shear strain Fig. 15 Linear bifurcation buckling modes and load 
in the surface fibers of the single PANEL I factors, lambda, for a single-module STAGS 

module finite element model of the axially compressed 
PANEL I optimized with "stop modejumpm OFF: 
(a) Model 1; (b) Model 2 



Fig. 16 Load-end-shortening curve for initial STAGS Fig. 17 Loading history showing successful static 
nonlinear static run of PANEL I. STAGS cannot path-following during initial unloading and 
obtain a static solution for a load factor unsuccessful "Riks reversal" following 
higher than PA = 0.648. attainment of maximum load factor at Step 62 



Fig. 18 Edge-on view of locally postbuckled PANEL I showing how 
the number of axial halfwaves changes during the initial 
static loading (a)-(e) and after the transient phase (f). 
The scale factors for deflection are different in each 
frame so that the maximum amplitudes are the same. 
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Fig. 21 View of postbuckling deformation of PANEL I during the 
initial static phase of loading. The same scale factor 
is used for all frames. 



Fig. 22 View of postbuckling deformation of PANEL I at the start and 
end of the second static phase of loading: 0.660 < PA < 0.991 

4.875E+04 

solution scale = 0.21 53E+02 
p s i, 3.961 E+04 

3.046E+04 
PA= 6.87540E-01 PB= 0.00000E+00 PX= 0.00000E+00 

2.132E+04 

Fig. 23 Effective stress in PANEL I at the skin bottom surface at 
the load factor, PA = 0.6875, at end of initial static 
phase for STAGS Finite Element Model 2. 



load factor PA vs. Total syy(801 ,O,T,F,I) 
0 load factor PA vs; Total syy(801 ,O,T,F,2) 
A load factor PA vs. Total syy(801 ,O,T,F,3) 
+ load factor PA vs. Total syy(801 ,O,T,F,4) 

J load factor PA vs. Total syy(1002,O,T,F,I) 
0 load factor PA vs. Total syy(1002,O,T,F,2) 
A load factor PA vs. Total syy(1002,O,T,F,3) 
+ load factor PA vs. Total syy(1002,O,T,F,4) 

~ i g .  24  ist tory of hoop stress in PANEL I at the Fig. 25 History of hoop stress in PANEL I at the 
top surface of the panel skin next to the blade top surface of the panel skin next to the blade 
for the "unrefined" finite element Model 1 for the "refined" finite element ~ o d e l  2 



load factor PA vs. Total exx(1002,O,B,F,1) 
0 load factor PA vs. Total exx(1 002,0,B,F12) 
A load factor PA vs. Total exx(1002,O,B,F,3) 
+ load factor PA vs. Total exx(1 002,OlB,F,4) 
X load factor PA vs. Total exx(1002,O,T,F,1) 
0 load factor PA vs. Total exx(1002,O,T,F,2) 
V load factor PA vs. Total exx(1002,O,T,F,3) 
Isl load factor PA vs. Total exx(1002,O,T,F,4) 

load factor PA vs. Total eyy(1002,0,B,F11) 
0 load factor PA vs. Total eyy(1002,O,B,F,2) 
A load factor PA vs. Total eyy(1002,O,B,F,3) 
+ load factor PA vs. Total eyy(1002,O,B,F,4) 
x load factor PA vs. Total eyy(1002,O,T,F,1) 
0 load factor PA vs. Total eyy(1002,0,T,F,2) 
V load factor PA vs. Total eyy(1002,O,T,F,3) 
rsr load factor PA vs. Total eyy(1002,O,T,F,4) 

Load Factor, PA Load Factor, PA 

Fig. 2 6  History of axial strain in PANEL I at the Fig. 27 History of hoop strain in PANEL I at the 
top and bottom surfaces of the panel skin top and bottom surfaces of the panel skin 
next to the blade. (Compare with Fig. 12) next to the blade. (Compare with Fig. 13) 



load factor PA vs. Total exy(1044,0,B,F,1) 
0 load factor PA vs. Total exy(1044,O,B,F,2) 
A load factor PA vs. Total exy(1044,O,B,F,3) 
+ load factor PA vs. Total exy(1044,O,B,F,4) 
X load factor PA vs. Total exy(1044,O,T,F,I) 
0 load factor PA vs. Total exy(1044,O,T,F,2) 
V load factor PA vs. Total exy(1044,O,T,F,3) 
rxl load factor PA vs. Total exy(1044,O,T,F,4) 
STAGS F.E. Model 2, panel optimized with "stop modejump" OFF 
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Fig. 28 History of shear strain in PANEL I at the 
top and bottom surfaces of the panel skin 
next to the blade. (Compare with Fig. 14) 

Fig. 29 Edge-on view of postbuckled PANEL I during 
transient phase at constant load factor 
PA = 0.7013. Each frame corresponds to a 
peak .ralue of hoop stress in the next Fig. 



time vs. Total syy(1002,0,TtF,1) 
0 time vs. Total syy(1002,O,TtFt2) 
A time vs. Total syy(1 002,OtT,F,3) 
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Fig. 30  Oscillations of maximum hoop stress during Fig. 3 1  End shortening during transient phase of 
transient phase (dynamic mode jump). The PANEL I, Model 2. Although there are only 
callouts (a-f) refer to "snapshotst' in the very small changes in end shortening in the 
previous figure. range 0 . 0 4  < Time < 0 .23 ,  there are large 

oscillations of the maximum hoop stress 



PANDA2 prediction of axial bowing of the panel under load 
0 STAGS prediction of axial bowing of the panel under load 

x10-A 
STAGS F.E. Model 1, panel optimized with "stop modejump" OFF 

h i t  

Load Factor, PA 

Fig. 32 Axial bowing at midlength of PANEL I 
predicted by STAGS and PANDA2. In this case 
PANDA2 does not include the effect of 
stringer sidesway near the clamped ends 
in the computation of wide column buckling. 

2 
Load Factor, PA 

Fig. 33 Load-end-shortening curve for PANEL I. In 
the STAGS model the two longitudinal edges 
are prevented from in-plane warping in this 
case: displacement component v is restrained 
to vary linearly from one end of the panel 
to the other. 



Load factor, PA 

Fig. 34 Load-end-shortening curve for PANEL 11, 
finite element Model 1. PANDA2 predicts 
mode jumping to occur at the design load. 

XI 0" 
STAGS F.E. Model 2, panel optimized with "stop modejump" ON 
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Load Factor, PA 

Fig. 35 History of axial strain in PANEL I1 at the 
top and bottom surfaces of the panel skin 
next to the blade. 



, STAGS F.E. Model 2, panel optimized with "stop modejump" ON 

Load Factor, PA 

Fig. 36 History of hoop strain in PANEL I1 at the 
top and bottom surfaces of the panel skin 
next to the blade at the location on the 
axis of the panel where the maximum hoop 
strain occurs for load factor, PA < 0.6 

STAGS F.E. Model 2, panel optimized with "stop modejump" ON 

load factor PA vs. Total eyy(1002,O,B,F,1) 
0 load factor PA vs. Total eyy(1002,0,B,F12) 
A load factor PA vs. Total eyy(1 002,01B,F,3) 
+ load factor PA vs. Total eyy(1 002,01B,F,4) 
X load factor PA vs. Total eyy(1 002,0,T1F11) 
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Fig. 37 History of hoop strain in PANEL I1 at the 
top and bottom surfaces of the panel skin 
next to the blade at the location on the 
axis of the panel where the maximum hoop 
strain occurs for load factor, PA > 0.9 



XI o - ~  STAGS F.E. Model 2, panel optimized witla "stop modejump" ON 
: 

Load Factor, PA 

STAGS F.E. Model 2, panel optimized with "stop modejump" ON 

Load Factor, PA 

Fig. 38 History of shear strain in PANEL I1 at the Fig. 39 History of shear strain in PANEL I1 at the 
top and bottom surfaces of the panel skin top and bottom surfaces of the panel skin 
at the location nearest the panel midlength at the location nearest the panel midlength 
where the maximum shear strain occurs for where the maximum shear strain occurs for 
load factor, PA < 0.6 load factor, PA > 0.9 



Fig. 40 Fringe plots of (arb) hoop and (c,d) shear stress at the 
upper surface in the skin of PANEL 11 for two load factors. 
PANDA2 always predicts "in-phase" patterns of the types 
exhibited in (a) and (c). For load factors near and above 
the design load (PA=1.0), STAGS predicts relative shifting 
of the postbuckled lobes on either side of the stringer. 
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ABSTRACT 

PANDA2 has been extended to handle panels with 
sandwich wall construction by inclusion of the 
following failure modes in addition to those previously 
accounted for: (1) face wrinkling, (2) face dimpling, (3) 
core shear crimping, (4) core transverse shear stress 
failure, (5) core crushing and tension failure, and (6) 
facesheet pull-off. Transverse shear deformation effects 
are included both for overall panel buckling and for 
local face sheet dimpling and face sheet wrinkling. The 
new PANDA2 code will optimize stiffened sandwich 
panels in which the stiffener segments as well as the 
panel skin may have sandwich wall constructions. The 
effects of panel buckling modal initial imperfections as 
well as initial face sheet waviness are accounted for 
during optimization cycles. The updated PANDA2 code 
will also handle optimization of a panel supported by an 
elastic Winkler foundation. Examples are presented for 
a uniformly axially compressed perfect and imperfect 
unstiffened panel without and with a uniform 
temperature gradient through the panel wall thickness. 
Initial face sheet waviness and initial overall buckling 
modal imperfections both have major influence on 
optimum designs of sandwich panels with honeycomb 
cores. 

INTRODUCTION 

Brief Review Of The Literature 

Hetenyi [lo], and Bitzer and his colleagues at Hexcell 
Corporation [ 1 1- 131. The PANDA2 computer program 
for minimum weight design of unstiffened and stiffened 
flat and cylindrical panels and shells [14-201 is 
modified as described here. PANDA2 supercedes an 
earlier code PANDA [21] and contains algorithms 
adapted from BOSOR4 [22] in which the equations 
valid for branched shells of revolution are transformed 
to those valid for prismatic structures. PANDA2 will 
handle optimum designs of panels for which the panel 
skin stiffener module (module = one stiffener plus 
stiffener base plus panel skin on either side of the 
stiffener of total width equal to the stiffener spacing, as 
shown in Fig. 1) is in its locally postbuckled state (local 
buckling of the panel between adjacent stiffeners and of 
the stiffeners). The postbuckling theory in PANDA2 
represents an extension of a theory first set forth by 
Koiter in 1946 [23]. Optimization is performed with use 
of the ADS software developed several years ago by 
Vanderplaats and his colleagues [24-251. Although the 
examples presented here are for "classical" (non- 
composite) materials, PANDA2 will handle both 
regular and sandwich panels composed of laminated 
segments of advanced composite material [18,19]. 
PANDA2 consists of a "bundle" of executable 
processors, the most significant of which are: 

BEGIN (user supplies starting design, 
material properties, boundary 
conditions) 

Noor, Burton, and Bert [I] provide a recent survey of DECIDE 
the state-of-the-art with regard to sandwich panels. 
Stein and his colleagues [2-41 have contributed several 
papers. The work reported here is based on earlier work 
by Vinson [5-71, Hoff and Mautner [8], Plantema [9], IW'JNSETUP 

Fellow, AIAA 
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National Aeronautics and Space Administration with 

(user chooses decision variables 
and lower and upper bounds for 
optimization) 

(user supplies loads, strategy 
parameters, type of analysis to be 
performed, etc.) 

(mainprocessor execution is 
launched) 

permission. 
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CHOOSEPLOT (user chooses what to plot.) 

DIPLOT (plots are generated) 

CHANGE (user changes selected quantities) 

SUPEROPT (like PANDAOPT, except it 
attempts to find a global 
minimum-weight design [20]) 

STAGSMODEL (a finite element model to be 
used in an execution of STAGS 
[17,26,27] is generated from an 
optimum design by PANDA2) 

The purpose of the work on which this paper is based 
was to enhance PANDA2's capability to generate 
practical optimum designs of sandwich panels by 
inclusion of several new '6sandwich-related" constraint 
conditions: face wrinkling, face dimpling, core shear 
crimping, core crushing, core normal tensile failure, 
face sheet pull-off, and core transverse shear stress 
failure. The very significant effects of initial face sheet 
wrinkling and initial buckling modal imperfections are 
included. This paper represents an abridged version of 
ITEM 27 1 in the file ... /panda2/doc/panda2.news [29]. 

Meaning Of The Phrase, "Panel Module", And Other 
PANDA2 Jargon 

In the following discussion, the terms "module 
segment" and "nodal point" are used. Also the 
terminology, "Iseg" and "Dseg", occurs. "Iseg" and 
"Dseg" represent two panel module segment numbering 
schemes: "Iseg" used primarily with input (Fig. la) and 
"Dseg" referring to segment numbering in a discretized 
single skin-stringer panel module (Fig. lb). 

As described in previous papers, a stiffened panel is 
considered by PANDA2 to be built up of a series of 
identical modules, each of which is divided into 
segments, as depicted in Figs. l(a) and (b) for a 
hat-stiffened panel. Any or all of the module segments 
can be of sandwich wall construction. Different 
materials can be used in different segments of the 
module. 

this paper "2" is the local through-thickness coordinate 
normal to the plane of each panel module segment. 

NEW SANDWICH-RELATED BEHAVIORAL 
CONSTRAINT CONDITIONS INTRODUCED INTO 

PANDA2 

Face Wrinkling 

Face wrinkling is defined in the literature on sandwich 
shells as buckling of a face sheet supported on a 
continuous elastic foundation with a foundation 
modulus K (e.g. lb/in3). See Eqs.(2,3) for Kq which 
represents the effective stiffness of the sandwich core 
plus effective stiffness of the glue layer between the 
core and the face sheet. The elastic foundation modulus 
K relates normal displacement w of the face sheet to 
the pressure on that face sheet exerted by the core+glue 
material. The elastic foundation modulus depends on: 1. 
the thickness of the sandwich core, 2. the effective 
"normal-displacement" stiffness of the glue "layer" 
between a face sheet and the sandwich core, and, if the 
core is of honeycomb construction, on 3. the diameter 
of the honeycomb cell and 4. the thickness of the 
honeycomb cell wall. Three alternate formulas for face 
wrinkling are used in PANDA2: 

(1) a formula based on Eq. (57) of [21] with the elastic 
foundation term added to a, (Eq.(55f) of [21]; see 
Eq.(37) below) 

(2) a formula presented by Vinson [5], Eq.(4) 

(3) a formula first derived by Hoff and Mautner [8] and 
presented by Plantema [9], Eqs.(5,6). 

PANDA2 uses (1) and the minimum face wrinkling 
load factor computed from either (2) or (3). There is no 
post-face-wrinkling analysis included in PANDA2. 

Face Dimpling 

Face dimpling is defined in the literature on sandwich 
shells as buckling of the face sheet over the diameter of 
a single cell of a honey comb core. There is no post- 
face-dimpling analysis included in PANDA2 

In the PANDA2 literature "x" is the axial coordinate Core Shear Crimping 
(normal to the plane of the paper), "y" is the coordinate 

to "x" and lying in the plane the pane' skin, Core shear crimping is defined as buckling of 
and "s" is a coordinate similar to "y": normal to "x" and the sandwich wall in a short-wavelength mode in which 
lying in the plane of each segment of the pane' transverse shearing of the core predominates, as shown 
cross section, as shown in Fig. 9 on p 492 of [14]. In 
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in Fig. 3, p 1692 of Vinson's paper [5], Eqs.(9-11). Face Sheet Pull-off And Core Normal Tension Failure 

Core Transverse Shear Stress Failure 

Core transverse shear stress failure under transverse 
shear forces. Qx and Qy (e.g. lblin) can occur when 

there is local bending of the panel, as is the case with 
axially compressed imperfect panels and panels 
subjected to normal pressure. This is not the same type 
of failure as "core shear crimping", a buckling 
phenomenon that can occur in a perfect, uniformly 
axially compressed flat panel for which the transverse 
shear forces Qx and Qy are zero. Rather, the new 

constraints for core failure under transverse shear forces 
Qx and Qy are analogous to stress constraints. New 

calculations for the transverse shear forces ex and Qy 

are performed in PANDA2. It is assumed that the Qx 

and Qy are carried entirely by the sandwich core. The 

maximum values of Qx and Qy in each skin-stringer 

module segment, ex,, and Qy -, are computed, and 

the corresponding maximum transverse shear stress 
components in the sandwich core, OI3 = ex,, / t,,, 
and 023 = Qy max / tcore, in which tmre is the thickness 

of the sandwich core, are compared to allowables that 
are now provided by the PANDA2 user as input data in 
"look-up" tables of experimentally determined core 
shear failure stress as a function of core density 
obtained from sandwich core manufacturers such as the 
Hexcel Corporation [13]. Initial facesheet waviness 
often has a dramatic influence on the sandwich core 
transverse shear stress margins. 

Core Crushing 

Core crushing pressures are computed from the 
combined effects of axial and hoop curvature changes 
in each segment of the skin-stringer module which has 
a sandwich wall construction, applied normal pressure, 
amplification of initial facesheet waviness under load, 
and bending of initially imperfect stringer webs, 
especially stringer web bending along the lines of 
intersection of the stringer web with other parts of the 
skin-stringer panel module. The computed core 
crushing pressures are compared with allowables 
obtained, as in the case of sandwich core transverse 
shear stress allowables, from user-provided "look-up" 
tables. As is the case with core transverse shear stress, 
initial facesheet waviness has a dramatic influence on 
the sandwich core crushing margins. 

Face sheet pull-off and core tension failure (tension in 
the core normal to the plane of the sandwich panel 
module segment) are computed with use of formulas 
from Plantema [9] and from Hetenyi [lo]. Initial 
facesheet waviness, stiffener web root bending, and 
hoop bending of initially imperfect cylindrical 
sandwich panels play major roles. 

Summary Of New Sandwich-related Design Margins 

New design margins for a single segment of a panel 
module now appear in the PANDA2 output. These new 
"sandwich-related" margins are listed in Table. 1. The 
margins with the string, "(VINSON)", are computed 
from Vinson's theory [5-71 The margins with the string 
"(HOFF)" are computed from a formula in Plantema's 
book [9]. PANDA2 uses only the minimum of the face 
wrinkling margins from "VTNSON and "HOFF". 
Therefore, both "VINSON" and "HOFF" face 
wrinkling margins never appear together for the same 
face sheet. 

If more than one segment in a stiffened panel module 
consists of sandwich wall construction there can be 
many, many "sandwich-type" constraint conditions 
generated in a case. An example is presented in [29]. 

THEORY 

Some details on the theories on which the "sandwich- 
related" constraint conditions just listed are based 
follow. 

Overall Buckling Of The Sandwich Wall 

The margin: 

localbuck (VINSON) strng Isegl .... 

is referred to by Vinson [5] as "Overall Instability" (of 
an unstiffened sandwich panel). Equations (2-6) in [5] 
govern. This mode of failure is called "localbuck" in 
PANDA2 because it represents buckling of a single 
segment of a skin-stringer module (panel skin or 
stringer web or under hat or hat crown) treated as a flat 
panel simply supported along all four edges. PANDA2 
reserves the term "overall instability" or "general 
instability" to signify buckling in which the lines of 
intersection of stiffeners and panel skin displace normal 
to the panel skin in the buckling mode. 



The "localbuck(VINS0N)" margin provides a parallel 
prediction of what PANDA2 has always computed with 
analysis type IQUICK=l, that is, local buckling 
analysis of the panel module segments with use of 
Eq.(57) in [21] with subsequent "knockdowr," as 
described in Section 8.2 of [14] to account for the effect 
of transverse shear deformation. For local buckling of 
the panel skin, the previously (and still) available 
PANDA2 margins that represent the same phenomenon 
as "localbuck(VINSON)" read: 

buck.(DONL) simp-support local buck.. . . 

buck.(SAND) simp-support local buck .... 

in which the string "DONL" means "Donne11 theory" 
and "SAND means "Sanders theory". 

For local buckling of various segments of the panel 
module other than the panel skin, the previously (and 
still) available PANDA2 margins that are analogous to 
the "localbuck(VINS0N)" margin read: 

buckling margin for stringer Iseg.3 

in the case of the web of a T, 3, or Hat stiffened panel, 
or 

buckling margin for stringer Iseg.4 

in the case of crown buckling in a Hat-stiffened panel. 
PANDA2's original local buckling constraints and 
Vinson's "localbuck(VINS0N)" constraint are all still 
retained in the PANDA2 analysis because the effect of 
transverse shear deformation is handled differently in 
the two theories: in the original PANDA2 formulation 
the transverse shear deformation (t.s.d.) effect is applied 
as a "knockdown" factor as described in Section 8.2, 
pp495-496 in [14], whereas in Vinson's equations the 
effect of transverse shear deformation appears as 
quantities and Vy in Eq.(3) of [5]. It is important that 
designs generated by PANDA2 survive the most 
conservative approximation of the buckling load factor 
obtained from various theories. 

With use of analysis type IQUICK = 0 in PANDA2 
(discretized single module model, see Figs. 3 - 5 on 
p.46 of [15]) the same local buckling phenomenon is 
identified by the phrase, 

Local buckling from discrete model .... 

The "localbuck(VINS0NY' margin is computed with 

the assumption that the module segment is flat and is 
simply supported along all four edges. Vinson uses 
certain coefficients in Eqs.(7) of [5] that depend on the 
number of axial halfwaves which he calls n. (In 
PANDA2 jargon this axial halfwavenumber is called 
m). If one assumes that there is only one-half wave 
across the width of the panel segment, then an explicit 
value for number of axial halfwaves m, 

results from minimization of the buckling load factor 
with respect to the number of axial halfwaves in the 
buckling mode. In Eq.(l) The quantity a is the axial 
length of the panel module segment (length between 
adjacent rings if the module represents a stringer), b is 
the "hoop" width of the panel module segment (for 
examples: stringer spacing, or width (height) of a 
stiffener web between the panel skin and outstanding 
flange, or width of the base or the crown of a hat), CS5 
is the "hoop" (y or s) bending stiffness of the sandwich 
(Dz in the usual laminated composite plate 
nomenclature), and Cd4 is the axial (x) bending 
stiffness of the sandwich (D,, in the usual 
nomenclature). 

Strictly speaking the "localbuck(WNSON)" margin is 
valid only for uniaxial compression. However, in 
PANDA2 the application of Vinson's Eq.(2) in [5] is 
broadened to handle combined axial compression and 
in-plane shear in a panel skin because the 
"1ocalbuck(VINS0N)" buckling load factor (for the 
panel skin only) is "knocked down" by the same factor, 
FKNOCK(Z), that accounts for in-plane shear and 
anisotropy in the computation of the local buckling 
margin obtained from the discretized single panel 
module model: "Local buckling from discrete model ". 

Face Wrinkling 

There are three margins for face wrinkling computed in 
PANDA2, 

wrinkling; strng Iseg 1.. . . 

wrinkling (VINS0N);strng Iseg 1 .. . . 

wrinkling ( H O P  );strng Iseg 1 .... 

The first, "wrinkling strng", is computed from Eq.(57) 
of [21] (knocked down as described above to account 
for t.s.d.), with a term added to a,, in Eq.(55f) of [21] 



to account for the effect of the elastic foundation 
represented by the sandwich core [see Eq.(37) in the 
"BUCPAN2" entry in the section, 
IMPLEMENTATION ...I , which is treated as a Winkler 
elastic foundation with stiffness EFOUND (e.g. lb/in3): 

EFOUND = K ,  = 
1 

(2) 
(1 1 Kglue  + 1 1 ~ c o r ~ )  

in which the elastic foundation modulus of the 
sandwich core, Kcore, is assumed by PANDA2 to be 

The VINSON (Eq. 4) and HOFF (Eqs. 5-7) models for 
face sheet wrinkling are based on completely different 
assumptions as to how the sandwich core behaves. In 
the VINSON model the core is similar to a Winkler 
elastic foundation. Face wrinkling is governed by the 
"spring" stiffness of the core normal to the face sheets 
(elastic modulus divided by the core thickness) and is 
independent of the transverse shear moduli of the core. 
In the HOFF model face wrinkling is regarded as a very 
local phenomenon that disturbs the core only in the 
neighborhood of the core-facesheet interface, decaying 
in the z-direction (normal to the face sheet) well before 
there is any interaction with the opposite face sheet. 

where ';Ee is the effective elastic modulus of the This local phenomenon is heavily influenced by the 
transverse shear moduli of the sandwich core. As 

sandwich core for displacements normal to the face mentioned previously, PANDA2 computes face 
sheets and tco, is the thickness of the sandwich core. wrinkling. from both the VINSION and HOW models. " 
The "wrinkling strng" margin is valid for arbitrary but bases the face wrinkling constraint only on that 
combinations of in-plane face sheet loads: N?, model which yields the smaller of the VINSION and 
 face   face HOFF face wrinkling load factors. The more critical of 

Y x y '  the two models is appropriately labelled in the list of 

The second face wrinkling margin, "wrinkling 
(VINSON)", is computed from Eq.(15) in Vinson's 
paper [5] or Eq.(60) in Vinson's paper [6] (same 
right-hand-sides in both Vinson equations). In 
PANDA2 the equation is written in terms of face sheet 

resultants (e.g. N?) and coefficients C, of the 6 x 6 
integrated constitutive law for each face sheet, which 
are available in SUBROUTINE BUCPAN, rather than 
in terms of stress and moduli, as is the case in Vinson's 
papers [5] and [6]. That is, in PANDA2 the critical face 
sheet resultants are given by: 
N: face,crit) - N (  face.crit) -. (face,crit) - - - N x y  

- 
Y 

in which CP and ~2fy are the axial and hoop 

design margins, as given, for examples, as Margins 8 
and 12 in PART 3 of Table 3 and as Margins 9 and 14 
in PART 4 of Table 17. 

For combined in-plane loads, N? , NY , N? , the 

face wrinkling load factor (Eigenvalue) in PANDA2 
corresponding to "wrinkling (VINSON)" is computed 
from 

Eigenvalue = 1 I[(N? I N ~ ~ ~ ~ ~ * ~ ~ ~ ~ '  r 
face N; face,crit))2 + (NF 1 N (  face ,cd)  

(8) 

+(NY xy S I " ~  
 face is the largest negative axial resultant in the face 

sheet of the current module segment, NY is the 

largest negative hoop resultant in the face sheet of the 

current module segment, and N? is the largest -, 
integrated stiffness coefficients for a face sheet, tco, is 

absolute value of N? in the segment. (See Table 14 
the thickness of the sandwich core, and tface is the 

for an example in which the face sheet resultants vary 
thickness of a face sheet. across the width of the panel module segment). 

The third face wrinkling margin, "wrinkling ( HOFF )", F~~~ sheet ~ i ~ ~ l i ~ ~  
is computed from a modified form of Eq.(lO), p 43 of 
Plantema' s book [9] : The face sheet dimpling load factor is governed by 

113 buckling of a simply-supported flat, square plate in 
N:face'cnt) =  face[('? l t f a c e ) E c o r e ~ f ~ ]  (5) which the hexagonal cell boundary is INSCRIBED. The 

113 length of one side of the square flat plate is 2*s, in 
N;face'crit' = 0 . 5 f f a c e [ ( c E  ' f f a c e ) ' c o r e ~ ~ ]  (6) which "s" is the width of one side of the regular 

N (  face.crit) - hexagon of the honeycomb core. Equation [57] of [21], - ~ ; f a c e . c r i t )  
xy (7) with subsequent "knockdown" to account for t.s.d., is 

used to compute the buckling load factor. Since the 2"s 



x 2"s simply supported square plate is larger than the hexagonal honeycomb cell and 1.732*s is the flat-to- 
actual hexagonal plate that dimples, This procedure flat diameter of the hexagonal honeycomb cell. 
should yield a conservative estimate for dimpling, (1.732*s is called "cell size" in Hexcel Corporation's 
provided that the local transverse shear deformation in literature [ll-131). According to Plantema [9], the axial 
the face sheet is properly accounted for. PANDA2's halfwavelength of the face wrinkles in an axially 
dimpling margins are valid for any combination, compressed sandwich plate is given by (face sheet 
IVface IVfaCe , N? , of in-plane loading in 

X ' Y  
wrinkling halfwavelength), L: 

composite, anisotropic face sheets. 

Core Shear Crimping 

116 
L = 1.26x[(cge)1 I(G,""E~)] (12) 

in which CE is the axial bending stiffness of the face 

Core shear crimping is computed from Vinson's sheet (Dl 1 in the usual composite material 

Eq.(12) in [5] which, for axial compression, can be nomenclature), 6;: is the effective x-z transverse 
expressed in the form: shear modulus of the sandwich core, and E,CO" is the 

effective modulus of the sandwich core for stretching of 
(') the core normal to the facesheet (z-direction). 

and for hoop compression or in-plane shear can be The configuration constraint, 
expressed in the analogous forms: 

~ ( t o t a l ~ c r i t )  = Gcoret  
Y 23 core 

N(total.crit) - core ' I 2  
-9' - ( 2 3  ) tcore 

in which the subscript "total" denotes the sum of the 
corresponding resultants in the two facesheets. The 

other variables, G:y, G r ,  and tcore , represent the 
x-z and y-z transverse shear moduli and the core 
thickness, respectively. For combined loads an equation 
analogous to Eq.(8) is used. 

New Configuration Constraints For Hexagonal 
Honeycomb Sandwich Core 

For each panel module segment that is of hexagonal 
honeycomb core sandwich wall construction, two new 
constraint conditions of the following type have been 
added: 

Face 1 wavelength/celldiam;STR;Iseg= 1.. . 

Face2 wavelength/celldiam;STR;Iseg= 1.. . 

For each face sheet, the ratio 

(face sheet wrinkling halfwavelength)l(l.732*s) 

in which L is the halfwavelength of the face sheet 
wrinkling mode of failure, was introduced into 
PANDA2 in order to force the honeycomb cell size to 
be small enough so that Planternays equations for the 
effect of initial face sheet waviness, to be discussed in 
the next subsection, become valid for honeycomb core 
sandwich panels. If constraints of the type (13) are 
imposed, then in the analysis of the effect of initial face 
sheet waviness (an effect that is significant if the 
characteristic wavelength of this initial waviness is the 
same as that of the face wrinkling mode of instability, 
which is the assumption used in PANDA2) the 
honeycomb core can be "smeared out", that is, treated 
as a homogeneous continuum in the computation of 
certain "sandwich-related" stress constraints to be 
discussed later in the subsection entitled "Additional 
New Sandwich-Related Stress Constraints". 

Often imposition of the configuration constraint (13) . 
does not significantly increase the optimum weight of a 
panel because the honeycomb cell wall thickness 
decreases in proportion to the honeycomb cell diameter. 
Also, small honeycomb cells are generally better than 
large cells because there are more surfaces for the 
facesheet-core adhesive to stick to, increasing the 
facesheet-core interface stress required to pull the 
facesheet from the core. 

must be greater than or equal to 2.0 if the PANDA2 
user indicates in "BEGIN that helshe wants these Effect Of Initial Face Sheet Waviness 
constraints to be activated. In the expression above, the 
quantity "s" is the width of one side of the regular 

For normal (z-direction) stress and x-z and y-z 



transverse shear stress at the facesheet-core interface, web, identified in Fig. 9 on p 492 of [14]. 
Plantema (p 43, Eqs.(3) in [9]) gives the following 
equations as valid for a semi-infinite core: If the stringer base is of sandwich construction, the line 

in which wo represents the amplitude of the initial face 
sheet waviness and L, the halfwavelength of the face 
wrinkling mode, is given above in Eq. (12). Plantema 
[9] writes that typical sandwich panels of good quality 
have wo 1 L = 0.001. In Eqs (14,15) 4 represents the 
load factor for face sheet wrinkling with all facesheet 

moment M0 gives rise to a normal displacement 
distribution w(y) in the face sheet of the stringer base 
adjacent to the stringer web. This W(Y) is 
antisymmetric with respect to the line of intersection of 
the stringer web and the stringer base. This face sheet is 
supported by an elastic foundation with stiffness K. 
Hetenyi in his article on beams on elastic foundations 
[lo] gives for the normal stress at the beam facesheet- 
foundation interface. 

in which 

resultants, N? , N? , and N? , present. In 

Eq.(16) 4 represents the load factor for face sheet 
A = [ K  /(4@)r4 

- 

wrinkling with only the facesheet "hoop" resultant, Note that Hetenyi's formulas for a beam on an elastic 
N$"', present. The factors, [ 1 /(ai - I), i=1,21, result foundation with a concentrated moment can be applied 
from amplification of the initial face sheet waviness as directly to the problem of a face sheet on an elastic 
the sandwich face sheets are subjected to destabilizing f~undation with a uniform applied line moment. Where 
loads. Hetenyi uses EI for the bending stiffness of the 

facesheet of the beam, we can use CP for the b6hoop" 
The stresses, q l ,  Z ~ i ,  and T y ~ i  play a significant bending stiffness of the top face sheet of the stringer 
in the stress constraints to be discussed later in the base. 
subsection entitled "Additional New Sandwich-Related 
Stress Constraints". The maximum normal stress, O,, , occurs at a distance 

Effect Of Web Root And Tip Bending 

If the IQUICK=O model option (discretized single 
skin-stringer panel module model [14]) is used in the 
PANDA2 processors, MAINSETUP and PANDAOPT, 
and if a stringer-stiffened sandwich panel has an initial 
imperfection in the form of its local buckling mode, 
significant local face sheet pull-off stresses can develop 
in the top face sheet of the stringer base due to growth 
of the initial buckling modal imperfection as the panel 
is loaded. See, for example, the local buckling mode of 
the tee-stiffened panel shown in Fig. 4(b) on p. 46 of 
[15]. There can be significant bending in the imperfect 
web at its root where it intersects the top face sheet of 
the stringer base. (This web root bending is what gives 
rise to stringer popoff, as displayed in Figs. 5 and 6 on 
p 477 of 1141). A concentrated line moment, 

-- 
y = 7~ /(4a) from the line of intersection of the web 
root with with the top facesheet of the stringer base. 
The quantity Oz2 in Eq.(18), with substitution of 

y = n 1(41), must be added to Ozl generated fiom 
amplification of the the initial face sheet waviness, 
Eq.(14). These normal stresses contribute to the total 
normal stress tending to crush the core or tending to 
cause normal tensile failure in the core or tending to 
pull the facesheet fiom the core. 

An analogous line moment occurs at the tip of a stringer 
web where it intersects the outstanding flange of a 
TEE-shaped stringer. 

The formulas above are valid for a semi-infinite elastic 
foundation. PANDA2 accounts for the finiteness of the 
depth of the elastic foundation in the case of a sandwich 

wall by "knocking down" the sum, OZ1 plus Oz2 by a 
(I7) factor that depends on the ratio (Z 1 a) 1 f,, , in which 

is therefore applied to the top face sheet of the stringer tco, is the thickness of the sandwich core. If the ratio, 

base. In Eq.(l7) s is the width-wise coordinate in the (n 1 a) 1 tcore , is less than unity the "knockdown" 



factor is unity; if the ratio, (n / a) / tco,, is greater than Additional New Sandwich-related Stress Constraints 

3.0 the "knockdown" factor is zero; and the 
"knockdown" factor is assumed to vary linearly Additional new sandwich-related stress constraints are 

between these two limits. also computed in SUBROUTINE BUCPAN of 
PANDA2. The new margins corresponding to these five 

What if the stringer web is a rather thick sandwich additional "stress" constraints are identified in the 

wall? Then, rather than a single applied line moment PANDM Output as listed in 2. 

M o ,  PANDA2 assumes that there are equal and 

opposite line loads 4 = NybfaCe1 and 
The "Iseg" number and the "Matl" number can be 
different from those listed in Table 2, of course, and 

p2 = ~ y b f a c e 2  , applied to the top face sheet of the "STR", which stands for "stringer", can just as well be 

stringer base where the two local web face sheet "RNG, which stands for "ring"; and "MIDLENGTH", 
webfacel and ~ w e b f a c e 2  which corresponds to load Subcase 1, can just as well 

resultants, Ny 
Y 

, OCCUT. be "AT RINGS" or "PANEL END, which correspond 
webfacel < = - 4 = P =  k N y  because there is zero net to load Subcase 2 [17]. 

totalweb total hoop load Ny in the stringer web. Hetenyi 
Sandwich core transverse shear stress constraints: 

[lo] gives for the normal stress at the beam-foundation 
interface when the beam is subjected to a concentrated ~ - d i ~ .  sandwich core shear... 
load: 

W-dir. sandwich core she ar... 
uz2 = KW = O.SP/Z~- '~  [cos(aY) + sin(ay)] (20) 

"L-dir" and "W-dir" are Hexcel Corporation jargon 
in which a is given above by Eq. (19). Rather than [ll-131 denoting the major and minor sandwich core 
compute the value of y for which the maximum transverse shear stiffnesses, denoted in PANDA2 Gcxz 
absolute value of Oz2 occurs, in this case PANDA2 and Gcyz, respectively. In "L-dir" always 
simply assumes the worst: that the two equal and coincides with the x-z transverse shearing plane and 
opposite line loads, PI and P,, applied by the two web "W-dir" always coincides with the y-z or s-z transverse 
face sheets to the top facesheet of the stringer base are shearing planes of each module segment, in which the 
far enough apart so that the maximum tensile or coordinate "y" or "s" is in the plane of the panel 
compressive normal stress, O z 2 ,  can with reasonable module segment and normal to the x (axial) direction, 
accuracy be given by as displayed in Fig. 9 on p. 492 of [14]. 

(21) In order to compute the new sandwich core transverse 
shear stress constraints, transverse shear resultants, ex 

In order to generate conservative results, PANDA2 uses and Qy (e.g. lblin), must first be obtained at every 
the following value for the line load P: nodal point in the panel skin-stringer discretized single 

module. These transverse shear resultants, Qx and Qy , P = f max abs ~ " ' ~ f ~ " ' '  [ ( Y )'abs(N~waCe2 )I (22) are now computed in SUBROUTINE STRMID of the 

in which the superscripts "web face 1" and "web face KOITER library in PANDA2 [15]. ex and Q, are 

2" denote the maximum values anywhere in the stringer computed from the following equations for each 
web face sheets rather than at the web face sheet roots segment: 
only. This strategy also serves to smooth the Qx = CMW,, + 3C4w,, 
optimization somewhat because very small changes in (23) 
the dimensions of the stringer segments can sometimes +('4s + 2C66)w,, + c56w,, 

lead to dramatic changes in the local buckling mode 
shape. An example of this behavior is displayed in Fig. Qy = C4w,, 4- 3CS6w,, 
13 on p. 539 of [28]. The load factor for local buckling (24) 
h d  the shape of the local buckling mode in the stringer + ( ~ 4 5  + 2 ~ 6 6 ) ~ ~ ~  + Cssw,, 
web are the most significant determinants of o Z 2 .  in which CdA, C45, C4, CS5, C56, 666 are the integrated 

elastic constants for the module sandwich segment 



(elements of the 3x3 D matrix in the usual 
nomenclature for laminated composite walls) and w is 
the normal displacement field obtained from the 
KOITER branch of PANDA2 as described in [15]. The 
"triple derivatives", w,, , w,,, , etc.,were not 
previously computed anywhere in PANDA2. Now the 
WXXX , Ww, Wq, Ww correponding to the local 

buckling mode W (Note: uppercase W!) used in the 
KOITER branch are computed in SUBROUTINE 
MODE (MODE library) by backward differencing of 
W;, and W ,  . The quantity W (cap w) denotes 
"normal local buckling modal displacement". The 
relation between w (lower case) and W (cap) is 

in which f is the amplitude quantity obtained by 
solution of the nonlinear equations for the four 
unknowns,$ "a", M, N, in the KOITER branch of 
PANDA2 [15]. frepresents the amplitude of the 
postbuckling normal displacement field, "a" represents 
a postbuckling modal flattening parameter, " M  
represents the slope of the postbuckling nodal lines, and 
"N" is an axial wavelength parameter). Details about 
how the four unknowns, f, "a", M, and N, are 
determined in the KOITER branch are given in [15]. 
This postbuckling section in PANDA2 was very 
difficult to develop. It has been adjusted over a period 
of many years to increase its reliability. 

PANDA2 computes (in SUBROUTINE STRMID) the 
maximum absolute values of the transverse shear stress 
components, Q, / t and Qy 1 t , where t is the total wall 

thickness of the module sandwich segment, for each 
skin-stringer module segment which has sandwich wall 
construction, then compares these two components of 
transverse shear stress with two user-provided 
allowable values for each sandwich core material used 
in the panel, as follows: 

(sandwich core x-transverse shear stress constraint) = 

(sandwich core y-transverse shear stress constraint) = 

in which Z,,, and ZyZ1 are obtained from the analysis 

that accounts for initial face sheet waviness, Eqs. 
(15,16). 

allowable allowable The Z,,,, and Zy,,o, are obtained from 

user-provided "look-up" tables of values of core shear 
strength: 

allowable Z,,,,, vs core density 

and 

allowable Zyzc0, vs core density 

and 

"knockdown factor for tau-allowable(core) vs core 
thickness" (30) 

which originate in some published document such as 
Hexcel Corporation's [13]. An example of these 
user-provided "look-up" tables appears in Table 27 1.3 
of ITEM 27 1 of [29]. 

Because the KOITER branch in PANDA2 does not 
handle transverse shear deformation effects in a 
rigorous manner but via "knockdown" factors for 
effective bending stiffnesses of panel skin and stringer 
web(s) based on Timonshenko beam factors computed 
as described in Section 8.2 of [14] and via a "knockup" 
factor for the amplitude f based on different values 
obtained for the local buckling load factor computed in 
the KOITER branch vs that computed from BOSOR4- 
type theory (See panda2.news ITEM 298 [29]), the 
values of the maximum transverse shear stresses, Q, / t 
and Qy / t ,  obtained in the KOITER branch may be 

unconservative. Therefore, alternative values of ex / t 
and Qy / t are computed in SUBROUTINE STRCON 

as described in panda2.news ITEM 294 [29]. PANDA2 
uses the maxima of the values of Q, / t and Qy / t as 

computed in SUBROUTINE STRMID and as 
computed in SUBROUTINE STRCON. 

Sandwich core crushing/tensile failure: 

Core crushing margin .... 

sandwichcore tension margin.. . . 

Core crushing or tensile failure can occur from the 
combination of sandwich core normal stresses 
generated from the following phenomena: 

1. Initial face sheet waviness: inward or outward initial 



face sheet waviness is amplified by the applied loading 

and tends to crush or pull apart the core locally [Ozl in 
Eq. (1411. 

2. Bending at the root and tip of a stringer web in a 
panel with a finite local buckling modal initial 
imperfection: amplification of the initial local buckling 
modal imperfection may be associated with significant 
concentrated line loads where the stringer web 
intersects other parts of the structure that may have 
sandwich wall construction. These line loads give rise 
to local normal stresses at the facesheet core interface 

3. Applied normal pressure to the panel skin: this 
pressure must be added to the other normal stress 
components tending to crush the core. 

4. Deformation-induced core crushing or normal 
tension: Changes in curvature of initially flat panel 
segments always tend to crush the core. In the case of 
imperfect sandwich cylindrical panels and shells, 
curvature changes that increase the local hoop radius of 
curvature give rise to tension in the core normal to the 
face sheets. 

The contributions of Items 1 and 2 to core 
crushingltensile failure have already been discussed. 
Item 3 requires no discussion. Next, we will address the 
question of deformation-induced core crushingltensile 
failure. 

Part of the core crushing/tensile pressure is induced by 
the development of changes in axial and hoop curvature 
as an imperfect, thermally and mechanically loaded 
panel deforms. The deformation-induced core crushing 
or tensile pressure is assumed in PANDA2 to be given 
by 

in which  face is the axial resultant in the top face 
sheet caused by pure bending of the sandwich module 
segment about its neutral plane for axial bending; Rj is 
the change in axial radius of curvature due to the pure 
bending (e.g. w,, = l /R1 in which w is the normal 

displacement resulting from pure bending)); N y  is 

the hoop resultant in the top face sheet caused by pure 
bending of the sandwich module segment about its 
neutral plane for hoop bending; and R2 is the change in 
hoop radius of curvature due to the pure bending (e.g. 
W,,, = 11%~). For orthotropic face sheets with no "B" 

terms in the 6 x 6 integrated constitutive matrix, IVY 
and NF can be expressed in terms of the two normal 

strain components, EfaCe and &? , at the top face 
sheet generated by pure axial and hoop bending, as: 

and the strain components, &face and E,"" , for pure 
bending can be written in the form: 

in which t is the total thickness of the sandwich; tface is 

the thickness of the top face sheet; and crl are 

elements of the integrated constitutive makx for the 
total 1 ~rl entire sandwich wall. The ratio -cl, 

represents the eccentricity of the neutral plane for axial 
(x) bending from the middle surface of the sandwich 

wall; - c . '  I CF' represents the same for "hoop" (y 
or "s") bending. 

Equations (33) can be inserted into Eqs.(32), and the 
result can be inserted into Eq.(31) to yield the 
deformation-induced crushing pressure pcrush in terms 
of the axial and hoop curvature changes I/!!? and 1123, 
(andptemile in the case of initially curved sandwich 
panels with locally reduced curvature l/;R2). 

In PANDA2 the maximum deformation-induced core 
crushing (tensile) pressure in each segment of the 
discretized skin-stringer single module is computed in 
SUBROUTINE GETEPS, which is called from 
SUBROUTINE STRTHK. In SUBROUTINE GETEPS 
the curvature changes, lBl and ]I%, , are known. 
These curvature changes are associated with the local 
deformations normal to the module segment surface 
computed in the KOITER branch of PANDA2 [15] plus 
the local (prismatic) deformation that arises when a 
stringer-stiffened plate under normal pressure locally 
"wraps around" the line of intersection of the stringer 
web with the panel skin in the prebuckling phase (Figs. 
56-58 in [14]). 

As is true in the case of transverse shear stress 
components, Q, 1 t and Q,, 1 t , discussed above, the 



deformation-induced sandwich core crushing1 tensile 
pressure computed in SUBROUTINE GETEPS may be 
unconservative because this crushingltensile pressure is 
derived from a displacement field determined from the 
KOITER branch in PANDA2, in which the effect of 
transverse shear deformation is accounted for in an 
approximate, possibly unconservative, manner. 
Therefore, an alternative value of the deformation- 
induced crushingltensile pressure is also computed in 
SUBROUTINE STRCON as described in panda2.news 
ITEM 294 [29]. PANDA2 uses the maximum of the 
values of deformation induced crushingltensile pressure 
calculated from the two alternative methods, as 
demonstrated in Parts 5a and 5b of Table 271.17 of 
ITEM 271 of [29]. 

the user simply as a layer of the wall, just like any other 
layer in that wall. Then the user provides properties for 
the various materials in the structure just as previously. 
Up to this point the input data required for the BEGIN 
processor are the same as previously. 

After the user has provided all the material properties, 
PANDA2 automatically searches through the layers of 
each module segment in order to identify possible 
candidates as sandwich cores or "external" elastic 
foundations. This search is performed in 
SUBROUTINE PANEL of the BEGIN library. The 
criterion for candidacy of a module segment layer to be 
treated as an elastic foundation or as a sandwich core 
material appears in the following code fragment in the 
"BEGIN processor: 

Face Sheet Pull-Off 
ENORM =SQRT(ElL(J)**2 + E2L(J)**2) 

The constraints for face sheet pull-off are generated as 
described in the previous section. If PANDA2 perceives 
that the facesheet-core adhesive fails before the core, it 
identifies the corresponding normal tensile stress failure 
as "face sheet pull-off margin ...." rather than as 
"sandwichcore tension margin....". 

IMPLEMENTATION OF "SANDWICH 
CAPABILITY IN PANDA2 

PANDA2 permits analyses of sandwich walls with 
dissimilar face sheets and sandwich walls in which the 
in-plane loading in each face sheet may be different. 
Different loading in each of the two face sheets occurs 
in imperfect panels, thermally loaded panels with a 
temperature gradient through the sandwich wall, panels 
with applied external bending moments M, and My, 
panels wlth applied normal pressure, and panels that are 
in their locally postbuckled states. 

In each module segment (see Figs. l(a,b) for definition 
of a "module segment") there may be only one "core": 
the user cannot "stack" sandwich walls. If there is a 
"core" there cannot also be an "external" elastic 
foundation. By "external" is meant a core-like 
(relatively soft) material as the extreme layer of a 
segment. If there is an "external" elastic foundation 
there cannot also be a sandwich "core". There can only 
be a single "external" elastic foundation; the user may 
not embed a segment wall between two elastic 
foundations. 

The user provides input data for each segment laminate 
as previously. The "external" elastic foundation or the 
sandwich "core" layer in each segment is provided by 

.AND.TL(J).GT.O.5*TWALL) THEN 

(ask user for elastic foundation 
modulus or core properties) 

in which J is the Jth layer in a module segment; E1L 
and E2L are the lamina elastic moduli for deformation 
parallel and normal to the Jth lamina fibers, 
respectively; EMAX is the maximum value of ENORM 
for the segment laminate; TL is the thickness of an 
individual segment layer; and TWALL is the total 
segment laminate thickness. If the user wants a certain 
segment layer to be treated as an "external" elastic 
foundation or as a sandwich core, then helshe must: 

1. supply a thickness for that layer which is at least half 
the thickness of the entire wall and 

2. the square root of the sum of the squares of the 
moduli for axial and hoop stretching of the core must be 
smaller than 0.001 times EMAX, where EMAX is the 
square root of the sum of the squares of the moduli of 
the material of that layer which has the maximum value 
of ENORM for any of the layers in that segment 
laminate. 

If the soft candidate material corresponds to an extreme 
layer of a module segment (that is, this layer actually 
represents an external elastic foundation), then the 
previously user-provided thickness of that layer is 



automatically reset to zero by PANDA2 so that in 
further PANDA2 processing that ("fake") layer does 
not contribute to the in-plane or bending stiffness of the 
segment laminate. NOTE: the weight of the elastic 
foundation is not included in PANDA2's computation 
of panel weight. 

In order to implement the "sandwich/elastic 
foundation" capability into PANDA2, it was necessary 
to modify the PANDA2 prompt file, PROMPT.DAT, as 
listed in Table 27 1.1 of ITEM 271 of [29] and to 
modify the PANDA2 source code libraries, ARRAYS, 
BEGIN, BOSPAN, BUCKLE, ... as described next. 

ARRAYS 

Introduce a new subroutine FOUNDA (taken from 
BOSOR4) which computes the contribution of the 
elastic foundation to the local finite element stiffness 
matrix. SUBROUTINE STABIL was modified. 

BEGIN 

Introduce new input data for sandwich core or external 

compressed plates on elastic foundations typically 
buckle into many, many axial halfwaves. 
SUBROUTINE LOCAL was modified. Also, include in 
SUBROUTINE CRIPPL (CRIPPL is called from 
SUBROUTINE STFEIG and performs local buckling 
of stiffener segments) the effect of an external elastic 
foundation, EFOUND=X. New quantities that govern 
the buckling load factors for stiffener segments are 
given for an "internal" stiffener segment by the 
following expressions. (An "internal" segment is a 
segment that is supported along both longitudinal edges 
by other stiffener segments or by the panel skin): 

The new expression for the critical number of axial 
halfwaves mi in the ith locally buckled stiffener 
segment is given by: 

NOTE: mi in Eq.(34) (a wavenumber) is equal to the 
value of what is called "mit' in Eq.(69) of [21] 
mu.ltiplied by ! / n. The first term in the numerator on 
the right-hand side of Eq. (71) in [21] becomes 

elastic foundation as called for in the modified 2 
In Eqs.(34-35) the quantity F is given by (R 1 bi )  , 

PROMPT.DAT file (Table 27 1.1 of [29]). Reset 
previously user-supplied thickness for any layer where bi is the width of the ith module segment. The 

representing an external elastic foundation to zero so quantify is the length between stiffeners. It was also 

that that "fake" layer will not affect in-plane or bending necessary to modify SUBROUTINE WEBBUK (see 

stiffness of the segment laminate. SUBROUTINE panda2.news ITEM 121 [29]) to account for an elastic 

PANEL was modified. foundation. The simple modification is: 

BOSPAN 

This simple modification holds because the elastic 
foundation modulus, Ki, called "EFOUND in 
SUBROUTINE WEBBUK, contributes a "w-type" 

4 
Introduce the elastic foundation modulus K into the term to the strain energy analogous to the term c;mi 
BOSOR4 model of the panel generated via the that represents the strain energy for axial bending. (See 
PANDA2 processor, PANEL. SUBROUTINE the similar kind of addition of EFOUND to the 
SEGMNT was modified. coefficient a,, in SUBROUTINE EIGREG). 

Also, in the case of hat stiffeners and truss-core 
sandwich panels, any elastic foundation that occurs as 
the first layer under the hat or as the first layer in the 

BUCKLE lower face sheet of a truss-core sandwich configuration 
is handled as if the elastic foundation material (called 

Allow for a higher maximum allowable number of axial "FOAM in the revised SUBROUTINE OBJECT) fills 
halfwaves in the local buckling model based on the the hat or, in the case of a truss-core panel, fills the 
discretized module. This is required because axially space between the lower and upper face sheets. The 
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contribution of this "FOAM is included in the 
computation of panel weight in SUBROUTINE 
OBJECT. GETCIJ 

In addition, because of the extreme sensitivity of the 
sandwich core maximum transverse shear stress 
constraints to the local buckling mode shape predicted 
for the skin-stringer discretized module, it was 
necessary to introduce some iterative refinement in 
SUBROUTINE LOCAL, as described in panda2.news 
ITEM 301 [29]. 

BUCPANl 

Compute buckling load factors corresponding to the 
new "sandwich-related" constraints listed above in the 
section entitled "SUMMARY OF NEW SANDWICH- 
RELATED MARGINS". A list of the new code is 
included in Table 27 1.2 of ITEM 27 1 of [29]. Most of 
the modifications in PANDA2 required for 
implementation of the "sandwich" capability occur in 
SUBROUTINE BUCPAN. 

Introduce the elastic foundation modulus term, 
EFOUND=K', into the coefficient aj3 (see Eq. 55f, p. 
553 of [21]). This term accounts for both the face 
wrinkling phenomenon in a sandwich wall as well as 
local buckling of the module segment with an 
"external" elastic foundation. SUBROUTINE EIGREG 
was modified as follows: 

A33 = C22*2.*FCUR/R**2 + 
2.*C24*MSUM*FCUR/R 
+2.*C25*NSUM*FCUR/R +C44*(M14+M24) 
+C55* (N14+N24) 
+(2.*C45+4.*C66)*(N12*M12+M22*N22) + 
PREB + 2.*EFOUND/CllSVE (37) 

in which the FORTRAN variables, FCUR, MSUM, 
NSUM, M14 ,... PREB, etc., are defined in 
SUBROUTINE EIGREG. NOTE: The elastic 
foundation modulus, EFOUND, is divided by C11SVE 
because the coefficients of the integrated constitutive 
law for the sandwich wall, [Cij, i,j=1,6], are normalized 
by CllSVE. 

Compute integrated 6x6 constitutive matrices, C Y ,  

C F 2  corresponding to the local segment laminates 
'J 

that comprise face sheet 1 and face sheet 2 of each 
skin-stringer module segment judged by PANDA2 to 
be a sandwich wall. Compute face sheet laminate 
thicknesses, tfacel, tface2 Compute effective transverse 

shear stiffnesses, GY, GF', Gif3Pce2, G E 2 ,  of the 
two face sheets. Modifications were made to 
SUBROUTINES GETCIJ and OUTCIJ. 

KOITER 

Introduce the elastic foundation contribution to the 
strain energy in a manner analogous to that done in 
ARRAYS and in BUCPAN2. The new terms associated 
with the elastic foundation contribution might well 
appear (for ease of implementation into PANDA2) in 
association with Eqs. (3) and (4), pp. 50 and 51, of [15], 
for the panel skin and the stringers, respectively. The 
strain energy of the elastic (Winkler) foundation is 
given by: 

which, for the panel skin, will cause to be added a term 
analogous to that in the first line of Eq.(45), p 62,1151, 

in which the coefficent, ~N~D:, is replaced by 
0.25K.. For the stringer the new contribution is 
analogous to the first term in Eq.(47), p. 62, [15], with 

the coefficient, 4iV2C&, replaced by 0.25K. 
SUBROUTINES EPSAVE, EIGKOI, GETBK, 
ENERGY were modified. 

Also, SUBROUTINE KOIT2 was modified as 
described in panda2.news ITEM 298 [29] in order to 
compensate for the lack of a rigorous theory in the 
KOITER branch for the transverse shear deformation 
effect. 

SUBROUTINE STRMID was modified to compute 
transverse shear forces, Qx and Qy (e.g. lblin), at every 

nodal point in the discretized single panel skin-stringer 
module where the stresses are calculated. [See Eqs. 
(23-25)l. The maximum transverse shear stresses in 



each module segment, ex, and Qy - , are also 

computed. Later Qx,, and Qy ,, are used, along 
PANCOM 

with the user-provided "look-up" tables for allowable 
values, to generate constraint conditions for transverse Face wrinkling and dimpling mode shapes had to be 
shear stress failure of sandwich cores. [See Eqs.(26) - initialized and new constraint phrases for "localbuck.", 
(3011. face wrinkling, face dimpling, and core shear crimping 

had to be introduced. SUBROUTDIES PANCOM and 
RECORD were modified. New margins are recorded, 
as listed above in the section entitled ''SUMMARY OF 
NEW SANDWICH-RELATED MARGINS" and in 

MODE Part 3 of Table 6, for example. 

It was necessary to modify SUBROUTINE MODE to 
compute the "triple" derivatives of W ( wm ; wq ; 
wpx ; wm) needed for computation of transverse 

shear forcess, Q, and Qy , and maximum transverse SETUF'C 

shear stresses* Qx- I t  and QY - t y  cOnesponding Previously, the properties of materials used in the panel 
to the growth of buckling modal initial imperfections. segment layers were assumed to be fixed. Because the 
The ex, / t  and Qy ,, / t  are required for building length "s" of one side of the hexagonal cell of me 
the constraint conditions involving the maximum honeycomb core and the thickness "tc" of the 
allowable x-z and y-z transverse shear stress honeycomb cell wall can now be decision variables, the 

components in the sandwich core in each panel module properties, G[r, G:?, PC,,, Ec0, derived from 
segment. 

It was necessary to modify SUBROUTINE OUTPRS in 
order to compute the "triple" derivatives, WXXXGL 
and WYYYGL ("GL" for "global), which are required 
for inclusion of the maximum x-z and y-z transverse 
shear stress components in the sandwich core of an 
unstiffened flat sandwich panel subjected to normal 
pressure. 

The absolute values of the transverse shear stress 
components from growth of the buckling modal 
imperfections are added to those from normal pressure 
before the '%"-direction (x-z) and "W-direction (y-z) 
sandwich core transverse shear stress constraints are 
calculated. 

In addition, it was necessary to modify SUBROUTINE 
MODE to compute buckling modal derivatives for the 
"long-wavelength bending-torsion" mode, in order to 
compute the "triple" derivative (W,,) required for 
computation of sandwich core transverse shear stress, in 
case the "long-wavelength bending-torsion" mode 
generates values of QXXMAXlt, QYYMAXIt that are 
greater in absolute value than the previously computed 
ex,, / t  and Qy , / t  . (See panda2.news ITEM 302 

[29] for more 
details). 

these dimensions must now be recomputed every time 
the design is changed. Also, the effective elastic 
foundation modulus, EFOUND, of a sandwich core 
now depends upon the thickness of the core as well as 
on the dimensions "s" and "tc" of a honeycomb cell. 
For these reasons, SUBROUTINE SETUPC of the 
CONMAN library had to be extensively modified. 
(SUBROUTINE SETUF'C takes the current values of 
the decision variables and design parameters and inserts 
them into their proper places in labelled common 
blocks). 

The prebuckling in-plane resultants in the two face 
sheets of each module segment are computed from the 
already-computed stresses in the particular lamina of 
which the face sheets are composed. These face sheet 

resultants, N y ,  NY, N? , are called (FNXFI, 

FNxF2), ( m l ,  FNyF2), (FNXYF1, -21, 
respectively, in which "Fl" and "F2" signify "face 
sheet 1" and "face sheet 2", respectively. A rather gross 
approximation is used in this part of PANDA2: Within 
any one face sheet of a given module segment, the 



minimum N? and minimum N$E' (maximum computation of transverse shear forces, e, and G2, in 

compressive values) for that face sheet and segment are SUBROUTINE STRCON of the STRAIN library. In 
SUBROUTINE SKIN the axisymmetric prebuckling 

combined with the maximum absolute value of NE transverse shear deformation, w , , is computed 
9- 

in that face sheet and segment. This extreme set corresponding to the "hungry horse" [19] inter-ring 
[ N? , N$E' , NF 1 (from the point of view of deformations. 
stability) is assumed to be uniform over the entire 
segment. See Table 14 and associated discussion for an 
example. This "worst" approximation will always be 
conservative and may perhaps be too conservative in 
cases for which there is significant local bending caused EXAMPLE: UNIFORMLY AXIAL,LY 
by post-local buckling deformations or prebuckling COMPRESSED, SIMPLY-SUPPORTED SANDWICH 
bending in the neighborhoods of stiffeners, such as the PLATE WITH TITANIUM FACESHEETS AND 
"hungry horse" phenomenon described on p. 495 of ALUMINUM HONEYCOMB CORE 
[19]. PANDA2 will handle cases in which the 

[ N? , N$E' , NF ] are different in each of the two summary 

face sheets of a segment. 

SUBROUTINES STRTHK and GETEPS in the 
STRAIN library were also modified to compute the 
deformation-induced sandwich core crushing pressure. 
(See discussion above associated with Eqs.(3 1) - (33)). 

SUBROUTINE STRCON was modified to compute x-z 
and y-z transverse shear deformation stresses 
corresponding to deformations: w,, , w,, , w,, , 

w , ~ ,  which are now calculated for imperfect panels in 
SUBROUTINE CURIMP of the STRUCT library. 

STOGET 

Tables 3 - 18 and Figs. 2- 12 pertain to this section. The 
case is named "vinson" in honor of Professor Jack 
Vinson of the Department of Mechanical and 
Aerospace Engineering at the University of Delaware. 
The sandwich plate is unstiffened. The IQUICK = 0 
(discretized) analysis [14,15] is used to obtain the 
results. In all of the examples the panel is subjected to 
uniform axial compression, Nx = -5000 lblin. First a 
perfect sandwich panel is optimized; then a sandwich 
panel with only initial face sheet waviness is optimized; 
then a sandwich panel with both initial face sheet 
waviness and a buckling modal initial imperfection is 
optimized; finally an imperfect (face sheet waviness 
plus initial buckling modal imperfection) sandwich 
panel with a uniform through-thickness temperature 
gradient in addition to the uniform axial compression is 
optimized. 

Introduce new labelled common blocks as listed and Input Data 

defined in Table 27 1.2 of ITEM 27 1 of [29]. 
Table 271.3 of ITEM 27 1 in [29] lists the input data 
file, vinson.BEG, for the PANDA2 ''BEGIN" 
processor. This input corresponds to an unstiffened, 
simply-supported, sandwich plate 100 inches long and 

STRUCT 20 inches wide, with titanium face sheets and aluminum 
honeycomb core. The following material properties 

Certain quantities are initialized and new output is were used: 

provided for the in-plane resultant set ( Nx , Ny , Nv ) in 
titanium face sheets: 

each face sheet of each module segment judged by . - .  

PANDA2 to be of sandwich wall construction. E =17.4*106 psi; V =0.3; a! =9.0*10-~1de~. 
SUBROUTINE CURIMP, which predicts curvature 
changes and twist, w,,, w , ~ ,  w , ~ ,  in loaded p = 0.16 lb/in3, oef allowable - - 120 ksi 
panels, was modified to calculate also the deformations, 
w , ~ 3  W,xxy~ W,yyx, W,w, required for later aluminum honeycomb core material: 



E=10.0*106 psi; v =0.3; a = 0; repeated here in order to save space. 

allowable - p = 0.10 lb/in3 , beg. - 40 ksi 

Facesheet pull-off allowable= 40 lblin. 

The decision variables in the optimization are as 
follows: 

T(l) = thickness of top face sheet 

T(2) = thickness of honeycomb core 

T(3) = thickness of bottom face sheet (Can be different 
from T(l) 

s(2) = length of one side of regular hexagonal 
honeycomb core cell 

tc(2)= thickness of wall of honeycomb cell wall 

The decision variables "s" and "tc" have subscript "2" 
rather than "1" because these variables are associated 
with a material type and the the sandwich core is 
designated as "material type 2" in Table 271.3 of ITEM 
271 of [29]. 

The lower bound of decision variable no. 4: 

s(2): Length of one side of the hexagon 

is set equal to 0.03608 in. because this corresponds to 
the smallest diameter honeycomb cell (1.732% = 1116th 
in.) fabricated in aluminum by the Hexcel Corporation, 
according to Table 13 in [13]. The lower bound of 
decision variable no. 5: 

tc(2 ): Thickness of honeycomb cell wall 

is likewise set equal to 0.0007 in. 

In thestarting design, the thickness of each face sheet is 
0.03 inch and the thickness of the core is 0.5 inch. The 
initial values for the dimensions of a honeycomb cell 
are s = 0.5 inch and tc = 0.002 inch. Material No. 1 
represents the material of the face sheets and Material 
No. 2 represents the material of the sandwich core. 
Table 271.3 of ITEM 271 of [29] contains a table of 
core crushing and L-direction and W-direction 

The "INPUT DATA section of ITEM 27 1 of [29] 
provides detail about how the PANDA2 user should 
provide initial values corresponding to the material type 
for the sandwich core, how PANDA2 uses these data to 
elicit further responses from the user concerning other 
properties of the sandwich core, and how PANDA2 
converts the "sandwich-related" input data to data 
presented to the user in the output files. This 
information is deleted here to save space. 

Results For Perfect Panel 

Note that initially the honeycomb core configuration 
constraint, Eq.(13), is turned OFF and the initial face 
sheet waviness ratio wo / L is set equal to zero. This is 
NOT recommended procedure for designing sandwich 
panels, but is done here for demonstration purposes. 
These factors have a major influence on the size of the 
cells of the optimized honeycomb core and therefore on 
the values of the "dimpling" and "wrinkling" margins. 

In order to obtain an optimum design with PANDA2, 
the PANDA2 mainprocessor, invoked via the command 
"PANDAOPT", is first executed five times in 
succession in this particular case. This series of five 
executions generates a file called vinson.OPP, the end 
portion of which appears as Parts 1 and 2 of Table 3. 

Part 3 of Table 3 lists the design margins that 
correspond to the optimum design listed in PART 2. 
Margins for buckling, wrinkling, dimpling, and core 
shear crimping are computed from equations of the 
type: 

Buckling margin = (buckling load factor)/(f.s.) - 1.0 
(39) 

in which "f.s." denotes "factor of safety". Margins for 
stress are computed from equations of the type: 

Stress margin = (allowablestress)/(stress*f.s.) - 1.0 (40) 

Critical margins, that is, margins near zero, affect the 
evolution of the design in the neighborhood of the 
optimum. Note that at the optimum design the margin 
associated with sandwich core shear crimping (margin 
no. 9 in this case) is not critical. 

transverse shear stress allowables as functions of core 
density from [13], as well as other "look-up" tables for Because the panel is perfect and there is no prebuckling 

sandwich-related phenomena. These tables are not bending, the top and bottom face sheets behave 

I42 



identically; therefore the wrinkling and dimpling 
margins for face sheet 1 are essentially the same as 
those for face sheet 2. 

Margins 7 and 11 are obtained from the theory of [21] 
with the core represented as an elastic foundation as 
described in the discussion associated with Eq.(37), and 
with the effect of local transverse shear deforniation in 
each facesheet included as described in Section 8.2 of 
[14]. Margins 8 and 12 are obtained from the Hoff- 
Mautner theory [8] as presented by Plantema [Eq.(5- 
7)]. No margins are listed in this case corresponding to 
the Vinson theory for face wrinkling because PANDA2 
only chooses the most critical of the margins from 
EITHER the Hoff-Mautner [8] or the Vinson [5] 
theories. 

Margins 10 and 13 are obtained from the theory of [21] 
for a simply supported square facesheet (no elastic 
foundation) with sides of length 2"s and with the local 
facesheet transverse shear deformation effect included 
as described in Section 8.2 of [14]. 

The design is deemed FEASIBLE even if there are 
some negative margins, provided that the absolute 
values of each negative margin is less than 0.01. If all 
negative margins are between -0.01 and -0.05, then the 
design is deemed ALMOST FEASIBLE. Designs with 
one or more negative margins less than -0.05 are 
deemed NOT FEASIBLE. 

Note that margins 1,2,5,6,  and 14 in this case 
represent five predictions for the same phenomenon: 
overall buckling of the unstiffened panel. These 
margins are listed in Table 4. The three margins, 1,2, 
and 6, are termed "local buckling" in PANDA2 because 
only the panel skin buckles. Phrases such as "overall 
buckling" or "general buckling" are reserved for 
buckling in which the lines of intersection of stiffener 
webs with the panel skin deflect in the buckling mode. 
Since there are no stiffeners in this example "local" 
buckling and "general" buckling point to the same 
phenomenon. The two margins, 1 and 2, are computed 
from the theories presented in [14] and [15]. The two 
margins, 5 and 14, are termed "general buckling" 
because the entire panel buckles. These two margins are 
computed with use of the theories presented in [21] and 
[20] (Donne11 theory and Sanders theory, respectively), 
modified to account for transverse shear deformation as 
described in Section 8.2 of [14]. 

Ideally the five margins listed in Table 4 should all 
have the same value because they represent the same 

phenomenon. There is a significant discrepancy 
between the three margins, 1,2, and 6, because the 
effect of transverse shear deformations (t.s.d.) is 
significant in this case and because the t.s.d. effect is 
handled differently in each of the three theories 
included in PANDA2 that lead to Margins 1 ,2  and 6. 
Margin No. 1 is computed from a theory in which the 
transverse shear deformation effect is accounted for in 
the computation of the "Local buckling from discrete 
model" margin via a "knockdown" factor based on 
Timoshenko beam theory adjusted for a multiaxial 
stress field, as described in Sections 8.2 and 19.4 of 
[14], which most likely leads to conservative designs 
(see Fig. 25 in [14]). Margin No. 2 is computed from a 
theory implemented in the K O m R  branch of 
PANDA2 in which the transverse shear deformation 
effect is accounted for by knocking down the bending 
stiffnesses by the Timoshenko factor. This is generally 
an unconservative method when the "knockdown" 
factor to compensate for transverse shear deformation 
effects is signficantly less than unity. However, note 
that the local deformations of imperfect panels with 
local buckling modal imperfections are computed 
including a strategy described in panda2.news ITEM 
298 1291 which is intended to compensate for the lack 
of a rigorous transverse shear deformation theory in the 
KOITER branch of PANDA2. Margin No. 6 is 
computed from Vinson's theory as set forth in Eqs(2-6) 
of [5]. 

As will be seen from results to be presented later, the 
discrepancy between the buckling load factors from the 
various t.s.d. approximations diminishes for the more 
realistic cases in which the honeycomb core cell 
configuration constraint, Eq.(13), is active and there is 
initial face sheet waviness. 

The two stress margins, Margin No. 3 and Margin No. 
4, are calculated in two different subroutines of 
PANDA2, the first in SUBROUTINE STRTHK, which 
computes stresses corresponding to deformations 
obtained from the KOITER branch 1151 of PAPJDA2, 
and the second in SUBROUTINE STRCON, which 
computes stresses from a much simplified theory in 
which it is assumed that initial buckling modal 
imperfections grow hyperbolically, as described in [19]. 

The results displayed in Figs. 2-12 for Design Iterations 
0-20 show how the panel weight (the Objective) (Fig. 
2), the Design Margins (Figs. 3-8), and the Design 
Parameters (Figs. 9-12) evolve during design iterations 
performed while the cell size constraint, Eq.(13), is 
turned OFF, there is no initial face sheet waviness 



( w,, / 6. = O), and there is no initial buckling modal 13 7.84E-01 dimpling of face 2 

imperfection (wimp = 0). The results plotted at Iteration 

No. 20 correspond to those listed in Table 3. It is emphasized that for a design to be optimum all the 
margins need not be critical. 

The writer has found through exercise of PANDA2 for 
Vinson computes "optimum" design dimensions, "hc" sandwich panels that very often the optimum design is 

not unique. Even in this very simple case of a perfect, (core thickness), "d" (inscribed diameter of hexagonal 

unstiffened, uniformly axially compressed sandwich honeycomb cell), "tc" (thickness of cell wall), and "tf" 

panel the optimum design is not unique. Different (thickness of face sheet) from Eqs.(34 - 37) in [5] .  For 
the panel with dimensions "a" x "b" = 100 x 20 in. and combinations of honeycomb cell size and cell wall 

thicknesses, "s" and "tc", affect the panel weight only with titanium face sheets and aluminum core the 

slightly but have a major effect on the "dimpling" "optimum" design from Vinson's Eqs.(34-37) is listed 

margins. Parts 4 - 7 in Table 3 demonstrate. in Part 1 of Table 5. Corresponding to Vinson's 
"optimum" design PANDA2 obtains panel weight and 
design margins as listed in Parts 2 and 3 of Table 5. The 

Following the initiai op~irmzation, the PANDA2 word, optimum, is enclosed in quotation marks in this 
processor "CHANGE was used to generate a new section because Vinson's "optimum" weight is 
starting design with smaller values for hexagonal cell considerably heavier than PANDA2's optimum: 
side width "s" and cell wall thickness "tc". The new PANDA2 optimum = 14.37 lb; Vinson "optimum" = 
starting values for "s" and "tc7' are listed in Part 4 of 20.75 lb. At the Vinson 660ptimum,, the core crimping 
Table 3. All other dimensions remain as listed in Part 2 constraint is critical and the effective stress constraint is 
of Table 3. not (PART 3 of Table 5). In contrast, at the PANDA2 

optimum the opposite holds (Part 3 of Table 3). 
Part 5 of Table 27 1.9 in lTEM 27 1 of [29] lists the 
optimization cycles resulting from four successive Note that the following three margins computed from 
executions of PANDAOPT. Part 6 of Table 3 lists the Vinson,s theory Ninson,s design): 
new optimum design and panel weight. Note that 
although the panel weights from the two optimizations, 
1.437E+01 in Part 2 and 1.440E+01 in Part 6, are the 6 -4.08E-02 localbuck (VZNSON) .... 
same to three significant figures, the two corresponding 
sets of "s" and "tc" are quite different: $a-5.06E-04 wrinkling (VINSON) .... 

After the first optimization (Part 2): 

After the second optimization (Part 6): 

9 -2.94E-03 corecrimp (VINSON) .... 

are critical and that the margin 

10 2.07E-01 dimpling of face 1 

is somewhat higher than that computed by Vinson's 
Eq.(17). Vinson's Eq. (17) is not used in PANDA2 

All margins remain essentially the same after the because it yields predictions for face sheet dimpling 

se~ond'o~timization (Parts 3 and 7) except the two face that are inconsistant with the classical Timoshenko 

dimpling margins, equation for buckling of a square simply-supported 
plate of width and length b: 

After the first optimization (Part 3): 

10 -6.34E-04 dimpling of face 1 

13 -6.34E-04 dimpling of face 2 

After the second optimization (Part 7): 

10 7.84E-01 dimpling of face 1 

N: = 4n2 Et3 /[I 2(1- v2)b2] (Timoshenko) (41) 

For an isotropic material, Vinson's Eq.(17) is: 

N? = 2 ~ t ~  /[(I - V2)d2] (Vinson) (42) 

Forb = d, the Timoshenko formula predicts a 
dimpling load more than 50 per cent higher than that 



obtained from Vinson's formula. If we set b in the 
Timoshenko formula equal to 2*s, where s is the length 
of one side of the regular hexagonal honeycomb cell, 
then we are assuming that the dimpling load iactor is 
governed by buckling of a simply-supported flat, square 
plate in which the hexagonal cell boundary is 
INSCRIBED. Since this 2*s x 2"s simply supported 
square plate is larger than the actual hexagonal plate 
that dimples, it seems that such a procedure should 
yield a conservative estimate for dimpling, provided 
that transverse shear deformation effects arc accounted 
for in a conservative manner. 

Insertion of Vinson's "optimum" dimensions, 2"s = 
2*0.40144 = b and face sheet thickness t = 0.03 1617 
(PART 1 of Table 5) and elastic modulus E = 17.4 x 
10**6 psi and Poisson ratio V = 0.3 into the 

Timoshenko formula leads to N,C"' = 3084 lblin. Since 

the total applied axial compression, N, = 5000 lblin, is 
shared equally in this particular example by the two 
equal face sheets, a dimpling margin of 308412500 - 1 = 
0.233 is indicated for each face sheet if the effect of 
transverse shear deformation is neglected. Since the 
widthlthickness ratio of the titanium face sheet over the 
dimple diameter in the Vinson "optimum" is about 25, 
transverse shear deformation effects are not significant 
for dimpling in this example. 

Note that according to PANDA;?, Vinson's "optimum" 
design is not feasible, since several margins are 
significantly negative, as follows: 

8b-2.82E-01 wrinkling ( HOFF ).... 

12b-2.82E-01 wrinkling ( HOFF ).... 

Table 6 was generated after optimization with the 
"switch" for enforcement of the honeycomb core 
configuration constraint, Eq.(13), changed from "OFF 
to "ON. As is to be expected, the effect of this 
constraint is to make the cell diameter, 1.732*s, and the 
depth of the sandwich core, T(2), significantly smaller. 
The optimum panel weight increases from 14.37 lbs to 
15.33 lbs, about 6.7 per cent. In the case of a perfect 
panel without any initial face sheet waviness this 
increase in weight is unnecessary. However, once we 
allow for initial face sheet waviness, then the 
" (facewrinkle halfwavelength)lcelldiam > 2" constraint 
should always be turned on in order to ensure that the 
Plantema and Hetenyi theories described above are 
valid. That is, it is valid to represent the honeycomb 
core as an elastic continuum when computing the 
maximum facesheet-core interface normal and shear 

The actual margin computed by PANDA2 is stresses generated by amplification of the initial face 
0.207, as listed above and in Part 3 of Table 5. sheet waviness as load is applied to the panel. 
Therefore, PANDA2's dimpling computations are 
consistent with the ~imoshenko formila for uniform 
axial compression, with a slightly lower margin than 
that just computed from the Timonshenko formula 
because there is a very small but finite effect of 
transverse shear deformation in the dimpling face sheet. 

PANDA2's dimpling margins are valid for any 
combination, N, , N,, N,  , of in-plane loading in 

composite, anisotropic face sheets because Eq.(57) on 
p. 553 of [21] is used for the computation. 

If the same dimensions and properties are plugged into 
Vinson's Eq.(17), a dimpling margin very close to zero 
is obtained. This is to be expected, of course, because 
the "optimum" dimensions listed in PART 1 of Table 5 
were derived from Vinson's equations, (34-37 of [5]), 
that require all four margins, localbuck (VINSON), 
wrinkling (VINSON), corecrimp (VINSON), and 
dimpling (VINSON), to be zero. Note that what Vinson 
calls "Overall Instability" on p. 1691 of [5] is called by 
PANDA2 "localbuck (VINSON) ...". 

Note that with the6'(facewrinkle 
halfwavelength)/celldiam > 2" constraint turned on, the 
five margins that all represent overall buckling of this 
unstiffened panel are in reasonably close agreement, as 
demonstrated in Table 7. This is because the effect of 
transverse shear deformation is much smaller: the 
honeycomb core of the optimized panel is much stiffer 
under transverse shearing loads because the 
"(facewrinkle halfwavelength)lcelldiam > 2" constraint 
was turned on before optimization, thereby forcing the 
cell size, 1.732*s, and the core depth, T(2), to become 
significantly smaller in this example. 

The results displayed in Figs. 2- 12 for Design Iterations 
21-44 show the evolution of the design and margins of 
!he perfect panel (wo / L = 0, wimp=O) with Eq.(13) 

turned ON. One can see from Fig. 3 that forcing the 
honeycomb cells to become smaller (see Fig. 11) results 
in a decrease in the discrepancy among the five models 
of overall panel buckling. The honeycomb core 
becomes thinner and has a higher transverse shear 



stiffness. Hence, transverse shear deformation effects 
are less dramatic than for the design at Iteration No. 20. 
Figures 7 and 8 show the large effect on wrinkling and 
dimpling margins: at the new optimum design at 
Iteration No. 44 the wrinkling, dimpling, and core shear 
crimping margins are not at all critical (Margins 
7,9,10,11,12, 14, and 15 listed in Part 3 of Table 6). 

Initial Face Sheet Waviness, wo / L = 0.001; Panel 
Otherwise Perfect 

Table 8 presents a list of margins for the design at 
Interation No. 44 (Part 2 of Table 6): 

but with the initial face sheet waviness, wo / L, 
increased from zero to 0.001, a value that Plantema [9] 
writes is typical for "smooth wings". Most of the 
margins remain essentially the same. Those that are 
significantly affected by the introduction of finite initial 
face sheet waviness, wo / L = 0.001, are the core 
crushing margin, the x-z ("L-direction") core transverse 
shear stress margin, and the core tensile stress margin. 
(Compare Margins 16 and 17 in Table 6 with Margins 
16 and 17 in Table 8 and note the new margin, Margin 
No. 19, in Table 8). With wo / L = 0.0 there are 
essentially zero core crushing and tensile stresses and 
x-z transverse shear stresses in the perfect panel. With 
wo / L = 0.001 there is significant core crushing stress 
and core tension stress as predicted from the Plantema 
equation, Eq.(14), and significant x-z ("L-direction") 
sandwich core transverse shear stress as predicted from 
the Plantema equation, Eq.(15). 

With the print index, NPRINT = 2, in the vinson.OPT 
file (see Table 27 1.6 in ITEM 27 1 of [29]), PANDA2 
lists the facesheet-core interface z-normal and x-z and 
y-z transverse shear stresses in the panel with initially 
wavy facesheets: 

Action of web tending to crush the core or pull off the 
facesheet of Seg. 1: SIGWEB = Oz2 = 0.0000E+00 (no 
stringer in this case) 

Stress from web and initial waviness, matl= 2: 

SIGTOT=SIGWEB+ O,, =247.12 psi; 2,, =108.53 psi; 

2,,= 0.0294 psi 

SIGWEB is generated from bending at the root of an 
initially imperfect stringer web (the imperfection has 
the shape of the local buckling mode, such as shown in 
Fig. 4b of [15]), as identified in the discussion 
associated with the Hetenyi equations, Eqs.(l8 or 21). 
SIGWEB is zero in this case, of course, because there 

are no stringers. SIGTOT is equal to SIGWEB + OZ1, 

in which Ozl is obtained from the Plantema equation, 

Eq.(14). Z,, and Zyz, are obtained from the Plantema 

Eqs.(15,16). CT,,, Z,,, and Z,, arise from 

amplification of the initial facesheet waviness as the 
panel is compressed. 

Table 9 lists the optimization cycles (Part I), the 
optimum design (Part 2), and the corresponding 
margins (Part 3) for the panel with initial face sheet 
waviness, wo / L = 0.001, and with the constraint, 
(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 
turned ON. From Table 10 it is seen that with this more 
realistic case, at the optimum design the five margins, 
all of which represent the same phenomenon (overall 
buckling of this unstiffened sandwich panel), are now 
within a few per cent of eachother. 

Also note that Margin No. 19 from Table 8, 

19 1.7 1E+00 sandwichcore tension ... 

has been replaced by a differently worded margin in 
Table 9: 

19 2.55E+00 face sheet pull-o ff... 

This happened because PANDA2 tests for both tensile 
failure in the adhesive as well as tensile failure in the 
sandwich core material, using whichever yields the 
smaller margin. (In this case neither is critical). 

Note that the face sheet wrinkling, face sheet dimpling, 
and core shear crimping margins are far from being 
critical at the optimum design. 

The results displayed in Figs. 2-12 for Design Iterations 
45-52 show the evolution of the design and margins of 
the panel with initial face sheet waviness, wo / L = 



0.001, with Eq. (13) turned ON, and with no buckling Imperfect Panel (Face Sheet Waviness + Initial 
modal initial imperfection ( wimp=O). Inclusion of a Buckling Modal Imperfection) 

finite (small) value for wo / L results in a slight 
increase in panel weight (Fig. 2), a further decrease in 
the discrepancy among the five "overall panel 
buckling" margins (Fig. 3), a new critical margin: core 
crushing (Fig. 5), a somewhat thinner honeycomb core 
(Fig. lo), and a somewhat thicker honeycomb cell wall 
(Fig. 12). 

In order to see what happens when initial face sheet 
waviness is present, but the constraint condition, (face 
sheet wrinkling halfwavelength)/(l.732*~) > 2.0 is 
turned OW, the PANDA2 "CHANGE processor was 
first used to set the sandwich hexagonal honeycomb 
core dimensions "s" and " t," to about four times their 
optimum values given in Part 2 of Table 9 and then the 
panel was re-optimized. The motivation behind this 

In the simple example above, the sandwich panel is not 
loaded into its postbuckled state. Since the panel is 
"perfect" in the overall sense ("perfect" in quotes 
means there is initial face sheet waviness, wo / L, but 
that there is no initial overall buckling modal initial 
imperfection) and since the axial loading is uniform 
axial compression at the neutral plane, there is no 
overall bending of the panel under the axial 
compression and therefore the resultants in the two face 
sheets are equal to eachother and uniform. In a more 
elaborate case it may happen that, for one reason or 
another, a panel skin that is of sandwich construction 
will experience, in addition to initial face sheet 
waviness, considerable bending between stiffeners. In 
such a case the face sheet resultants, N? , NY , 

exploration was primarily to see how much influence NF (called simply "Nx, Ny, Nxyyy.' for lack of enough 
on panel weight the presence of the width in Table 14) may vary considerably over the 
"wrinkling/celldiameter" constraint has for a case in width of the panel skin between stringers and may be 
which a reasonable level of initial facesheet waviness is very different on the bottom face sheet ("facesheet 2") 
present. than they are on the top facesheet ("facesheet 1"). 

The results for the final optimum design are listed in 
Table 1 1. Note that the panel weight is essentially 
unaffected. The difference between 16.12 lbs (Part 2, 
Table 9) and 16.16 lbs (Part 1, Table 11) is in the 
optimization "noise" level. At the two optimum 
designs, the second with much bigger honeycomb cells, 
the ratio slt, is about the same. Hence, margins 
governing overall stress and buckling of the unstiffened 
panel, core crushing, core shear crimping, face sheet 
wrinkling, and sandwich core transverse shear stress are 
essentially unaffected by the more than threefold 
increase in the size of the honeycomb cells. The 
margins for face sheet dimpling and face sheet pull-off 
are dramatically affected by the change, the face 
dimpling margin because of the much larger diameter 
of the honeycomb cells and the face sheet pull-off 
margin because there is much less core surface area for 
the facesheet-core interface adhesive to bond to. Table 
12 highlights the quantities that are dramatically 
different at the two different optima listed in Tables 9 
and 11. 

PART 2 of Table 9 lists thicknesses and honeycomb 
core dimensions "s" and " t," for the optimized panel 

with face sheet waviness, wo / L = 0.001, but 
otherwise perfect (zero overall buckling modal initial 
imperfection). Suppose the same optimized "perfect" 
panel with the same applied axid compression, Nx = 
-5000 lblin, now has a buckling modal initial 
imperfection with amplitude wimp= 0.1 in. Reference 

[I91 describes how the effects of initial buckling modal 
imperfections are handled in PANDA2 

Table 13 lists the margins for the imperfect panel 
(initial face sheet waviness + overall initial buckling 
modal imperfection) with the same dimensions as the 
"perfect" panel (see Part 2 of Table 9, no further 
optimization yet). Several margins are now 
significantly negative because there is now considerable 
overall bending in the imperfect panel, with a result that 
the face sheets are no longer optimally loaded, each by 

a uniform axial compression,  face = -2500 lblin. 
Because of the overall bending of the panel as the initial 

Note from Part 2 of Table 11 that PANDA2 prints out a bucLling modal imperfection is ampwled by the 
warning message in the *.OPM file if the half applied axial compression, the face sheets experience 
wavelength of the face wrinkling instability mode is 
smaller than the diameter of the hexagonal honeycomb considerably more local axial compression than N? - 
cell. = -2500 lblin. Also present now in the face sheets are 

significant local hoop compression NY and in-plane 



shear N?. Hence, the face sheets now experience 

combined in-plane loads, N? , N? , N? , with 

the maximum local compressive NxfaM now 
considerably exceeding -2500 lblin. These "extra" local 
membrane loads in the face sheets of the imperfect 
sandwich panel cause several of the margins to become 
significantly negative. The design listed in Table 9 is no 
longer feasible because of the added overall initial 
buckling modal imperfection. 

Table 14 shows a schematic of the unstiffened 
sandwich panel with segment and nodal point 
numbering (PART 1) and the actual distributions across 
the width of the panel and "worst" values of facesheet 
resultants, sandwich core transverse shear stress 
components, and deformation-induced core crushing 
pressures for the "PERFECT' (PARTs 2 and 3) and the 
IMPERFECT (PARTs 4 and 5) panel. The face sheet 

resultants, NxfaM , N? , and N? are called here 

"Nx, Ny, Nxy" for lack of sufficient width. In this 
table,"x9' is the axial coordinate and "y" is the "hoop" 
coordinate or (for stringer segments, if any) the "s" 
coordinate called out in Fig. 9 on p. 492 of [14]. 

In PANDA2 an unstiffened panel is modelled as shown 
in Fig. 6, p. 48 of [15]. The unstiffened panel is 
modelled in a manner analogous to that for a single 
discretized module of a blade-stiffened panel: 
symmetry conditions are imposed along the two 
longitudinal (unloaded) edges which are located 
midway between adjacent stringers, and constraint 
conditions are introduced to force the local buckling 
pattern to be approximately antisymmetric about the 
line of intersection of the stringer root with the panel 
skin. The buckling modal displacements of the 
unstiffened panel are artificially constrained to be 
antisymmetric at the midwidth (except for the axial 
displacement u), as shown in Fig. 6 of [15]. To repeat: 
the pattern of normal displacements w in an axially 
compressed panel with a buckling modal initial 
imperfection resembles that shown in Fig. 6 of 1151: 
symmetry conditions are applied along the two 
longitudinal (unloaded) edges of the panel and 
antisymmetry (classical simple support) conditions are 
applied at the panel midwidth. Admittedly, this is an 
unusual way to model a simply supported unstiffened 
flat plate. It is done this way in PANDA2 so that the 
same program code can be applied to both unstiffened 
and stringer-stiffened panels. 

PART 2a of Table 14 lists face sheet resultants across 

the width of the "PERFECT' panel, and PART 2b lists 
the "worst" resultants from the point of view of 
stability. The "worst" resultants in a given panel 
module segment are assumed by PANDA2 to be 
uniform over that entire module segment for the 
purpose of calculation of face wrinkling, face dimpling, 
and core shear crimping load factors. In the case of the 
"PERFECT" panel the actual and assumed values are 
practically the same because the actual distributions are 
essentially uniform. (PANDA2 introduces a tiny 
imperfection amplitude when the user specifies no 
imperfection; that is why there is a small nonuniforrnity 

of N y ,  NfaCe, and N? across the width of the Y 
panel as listed in PART 2a). 

Parts 3a and 3b give the width-wise distributions of x-z 
and y-z sandwich core transverse shear stresses and the 
"worst" values for the "PERFECT" panel. (The values 
are nonzero because of the tiny imperfection amplitude 
automatically supplied by PANDA2 in this case). 

PART 4a of Table 14 lists face sheet resultants across 
the width of the IMPERFECT panel, and PART 4b lists 
the "worst" resultants. Note that in this case the "worst" 
axial resultant Nx and hoop resultant Ny occur at the 
same points, but that the "worst" in-plane shear 
resultant Nxy occurs at different locations. Even so, 
PANDA2 assumes that all "worst" resultants in each 
module segment occur over that entire module segment. 
This is a conservative approximation. In this case the 
relatively small initial imperfection (amplitude = 0.1 
in., which is about 16 per cent of the total panel 
thickness) has a huge effect because the panel 
dimensions correspond to the optimized "PERFECT" 
panel, for which buckling is almost critical as can be 
seen from the first margin listed in Part 3 of Table 9. 
Therefore, the initial buckling modal imperfection is 
greatly amplified by the applied load, with the result 
that very large additional face sheet resultants are 
generated in this particular case. 

PARTs 5a and 5b of Table 14 list the actual 
distributions of sandwich core transverse shear stresses 
in the x-z and y-z planes for the imperfect panel. Again, 
the "worst" values are very large because of the 
extreme amplification of the buckling modal initial 
imperfection. 

Because of the almost perfect antisymmetry of the 
buckling modal imperfection in this case, the top and 
bottom face sheets experience essentially the same 
"worst" face sheet resultants. That is why in the 
optimum design (Table 15) the top and bottom face 



sheets have the same thickness even though these two imperfection wiw is amplified by a different amount, 
thicknesses are allowed to be independent decision giving rise to different stresses tending to crush the core 
variables. or cause the core to fail in transverse shear. 

Table 15 lists the final optimum design of the panel 
with initial face sheet waviness, wo / L = 0.001, and 
with initial buckling modal imperfection amplitude, 
wiV = 0.1 in. Of course the re-optimized panel is 

somewhat heavier than that optimized without any 
initial buckling modal imperfection (Part 2 of Table 9). 
Note that the two face sheet thicknesses of the 
optimized imperfect panel are still equal. This is 
because both bottom and top face sheets "see" the same 
''worst'' ("worst" = most destablizing) local membrane 

load combination, N? , NY, N? . 

PANDA2 uses the "worst" face sheet prestress state in 
the computation of face wrinkling, face dimpling, and 
core crimping because these are all very local 
phenomena. It turns out that at the optimum design, 
face wrinkling, face dimpling, and core shear crimping 
are no longer critical in this case, as can be seen from 
the margins listed in PART 4 of Table 15. The 
optimized imperfect panel is about 19 per cent heavier 
than the optimized "perfect" panel (panel with initial 
face sheet waviness, wo / L = 0.001, but with zero 
overall initial buckling modal initial imperfection. 

The results displayed in Figs. 2-12 for Design Iterations 
53-69 show the evolution of the design and margins of 
the panel with initial face sheet waviness, wo / L = 
0.001, with Eq. (13) turned ON, and with a buckling 
modal initial imperfection, wimp = 0.1 in. Inclusion of 

the buckling modal initial imperfection causes the panel 
to become significantly heavier (Fig. 2), the five 
"overall panel buckling" constraints to become 
non-critical (Fig. 3), both estimates of effective stress 
(Margins 3 and 4) to become critical (Fig. 4), the added 
presence of 'Z-direction" and "W-direction" sandwich 
core transverse shear stress margins that are not too far 
above critical values (Fig. 5), a significant increase in 
face sheet thickness (Fig. 9), a significant increase in 
honeycomb core thickness (Fig. lo), and an increase in 
thickness of the honeycomb cell wall (Fig. 12). Also, 
note that the evolution of several of the margins is 
much more "jumpy" than was the case for earlier 
design iterations performed with wimp = 0 (Figs. 3, 

5,lO). This "jumpiness" is caused primarily by the high 
sensitivity of imperfect panel tangent stiffness 

components, C:?, C:a;", C g  , with a result that with 
each design iteration the buckling modal initial 

Imperfect Panel With Through-thickness Temperature 
Gradient 

Tables 16 - 18 list results for which there exist an initial 
face sheet waviness, wo / L = 0/001, an initial 

buckling modal imperfection with amplitude wimp = 
0.1 in., and a temperature gradient through the 
thickness of the sandwich that is uniform over the entire 
simply supported panel. The overall dimensions and 
properties of the panel are the same as listed in the 
previous tables. 

These results represent a case in which the optimum 
design has different thicknesses in the top and bottom 
facesheets of the sandwich panel. This case is the same 
as that for the imperfect panel (the panel with both 
initial face sheet waviness, wo / L = 0.001, and initial 

overall buckling modal imperfection, wimp = 0.1 in.), 
except that now a uniform through-thickness thermal 
gradient has been added to the axial loading. The 
material properties are assumed to be independent of 
the temperature. The simply supported panel has 
nonzero thermal stresses in the facesheets because it is 
much longer than it is wide. If the bottom face sheet 
("surface opposite stringer" in PANDA;? jargon even 
though there is no stringer in this case) is heated more 
than the top face sheet, which is the case corresponding 
to Tables 16 and 17, then before any axial load is 
applied to the sandwich plate, the bottom face sheet will 
be in axial compression and the top face sheet will be in 
axial tension due to the through-thickness thennal 
gradient. There are also smaller Poisson-ratio-induced 
hoop thermal stresses in the face sheets. This "thermal 
prestress" will cause the bottom face sheet to become 
thicker than the top face sheet during optimization 
cycles. 

Note that in this example the thermal loading is 
considered to be part of "Load Set A", that is, the 
thermal loading is treated in the same way as the axial 
compression: thermal stresses, like the stresses from 
axial compression, are multiplied by the buckling 
eigenvalue (load factor) in the formulation of the 
bifurcation buckling problem. 

Table 16 corresponds to the previously optimized 
imperfect panel, that is, the panel without any through- 
thickness thermal gradient (dimensions listed in the 



heading: the same panel as that identified in PART 4 of 
Table 15). Listed in Table 16 are the face sheet 
resultants of the imperfect panel with the applied axial 
load of -5000 lblin and WITHOUT the thermal gradient 
(PART I), the face sheet resultants of the imperfect 
panel with both the applied axial load of -5000 lblin 
plus the thermal gradient (PART 2), and the margins 
when both the applied axial load and thru-thickness 
thermal gradient are present (PART 3). Note that the 
presence of the thru-thickness thermal gradient causes 
the effective stress margin of the bottom face sheet 
(layer 3) and the core crushing margin to become 
significantly negative: the optimum design obtained 
previously for the imperfect panel without the thru- 
thickness thermal gradient is no longer feasible if a 
through-thickness temperature gradient is present. 

Table 17 lists results after optimization with the 
through-thickness thermal gradient present and with the 
bottom face sheet hotter than the top face sheet. As is to 
be expected from the results listed in Part 2 of Table 16 
(bottom facesheet has higher destabilizing resultants 
than top facesheet), the bottom facesheet in the 
optimized design is much thicker than the top facesheet. 

Global optima can be sought via the PANDA2 
processor SUPEROPT [20]. This was done for this case 
with two thermal gradient options: 

1. bottom face sheet hotter than top face sheet and 

2. top face sheet hotter than bottom face sheet. 

The results are listed in Table 18. It is seen that the 
optimum weights for the two cases are about the same 
as that listed in Table 17 and are practically the same 
for each of the two loading cases, as they should be. 
Presumably these are both very near the global 
optimum design. 

Note that the optimum designs in PARTS 1 and 2 of 
Table 18 are not perfectly "symmetrical" with respect 
to which of the face sheets is the hotter. That is, all 
dimensions of the optimized designs should be the same 
except that the upper and lower face sheets should be 
exchanged. However, the lack of "symmetry" of the 
globally optimized designs with respect to which of the 
two face sheets is hotter is small, essentially in the 
"noise level" within which different designs display 
essentially the same weight and feasibility. 

CONCLUSIONS 

Several new "sandwich-related" constraints have been 
added to the PANDA2 program. PANDA2 has been 
exercised for an axially compressed unstiffened 
sandwich panel which has initial face sheet waviness as 
well as a buckling modal initial imperfection. The face 
sheets of the sandwich panel need not be the same. A 
case involving optimization of an imperfect axially 
compressed panel with a uniform through-thickness 
temperature gradient, for which the optimum design has 
face sheets of unequal thickness, displays appropriate 
behavior. 

If a buckling modal imperfection is present, overall 
buckling of the unstiffened panel is no longer critical 
(Fig. 3, Iterations 53-69). Rather, core crushing 
becomes critical and L-direction and W-direction core 
transverse shear stresses become nearly critical (Fig. 5, 
Iterations 53-69). 

Face sheet dimpling and face sheet wrinkling become 
critical at optimized designs only if the honeycomb cell 
size constraint, Eq. (13), is turned OFF (Figs. 6 and 7, 
Iterations 2 1-44). 

If initial face sheet waviness, w&, is nonzero, the 
weight of optimum designs is hardly affected by the 
presence or absence of the honeycomb cell size 
constraint, Eq. (13). Therefore, it is best always to 
obtain optimum designs with Eq. (13) turned ON and 
with a non-zero value for w& (Tables 9 and 11). 

Optimization of sandwich panels with realistic 
assumptions, that is, with the honeycomb cell size 
constraint, Eq. (13) turned ON and with use of nonzero 
initial face sheet waviness, w&, leads to minimum- 
weight designs for which the various approximations 
used in PANDA2 for including the effect of transverse 
shear deformations (t.s.d.) are in reasonably good 
agreement (Fig. 3, Iterations 40-50). 

ADDITIONAL WORK NEEDED 

PANDA2 should be exercised for a wide variety of 
stiffened composite panels in which the various 
segments have sandwich wall construction. 

Optimum designs obtained via PANDA2 should be 
checked by using STAGS to find collapse loads. The 
STAGS models should include, if possible, segments in 
which face sheet wrinkling, core crushing, core 
crimping, and core transverse stress failure as well as 



the effects of initial face sheet waviness, are 
predictable. As of this writing it is not possible to use 
STAGS to check "sandwich" designs generated via 
PANDA2. 

More work needs to be done in PANDA2 on the effect 
of transverse shear deformation., especially in the 
routines that deal with the discretized panel module 
model and the routines that deal with stiffener rolling. 
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New margins computed by PANDA2 especially for sandwich walls 
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FOR FACE SHEET NO. 1 (top or leftmost face sheet): 
wrinkling; strng Isegl ; M1D;face 1; M=313;N=2:slope=O.;Fs=l. 
wrinkling (VINS0N);stmg Isegl ; M1D;face 1; M=309;FS=1. 
wrinkling ( HOFF );stmg Isegl ; M1D;face 1; M-309;FS=l. 
dimpling; strng Isegl ; M1D;face 1; M=l;N=l;slope=O.;FS=l. 
Face1 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=L. 

FOR FACE SHEET NO. 2 lbottom or riahtmost face sheet): 
wr~nkling; strng Isegl ; M1D;face 2; M-313:N=2;slope=O.;FS-1. 
wr~nklinq lV1~SON1;strnq Iseql : M1D:face 2: M=309:FS=l. 
wrinkling i HOFF j ;strng 1seg1 ; M1~)face 2; ~ = 3 0 9 : ~ ~ = 1 .  
dimpling; strng Isegl ; M1D;face 2; M=l;N=l;slope=O.;FS=l. 
Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 

FOR ENTIRE SANDWICH WALL OR SANDWICH CORE OR BOTH FACESHEETS 
localbuck (VINS0N);stmg ISegl ;MID; local buck.: M-5;FS-1.1 
corecrimp (VINS0N);strng ISegl ;MID: core crimping;FS=l. 
core crushina mars in:^^^: ~seu-1 :Mat1 2 :MIDLENGTH: F S = ~ .  - - . . - .  
sandwichcore tension margin;STR;Iseg-1 ;natl 2 ;MIDLENGTH;FS-1. 
L-dir. sandwich core shear;STR;Iseg-1 ;Mat1 2 ;MIDLENGTH;FS=l. 
W-dir. sandwich core shear;STR;Iseg-1 ;Mat1 2 ;MIDLENGTH:FS=l. 
face sheet pull-off marg5n;STR:Iseg-1 ;Mat1 2 :MIDLENGTH;FS=l. 

Additional new sandwich-related stress margins 
............................................................... 

L-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS-1. 
W-dir. sandwich core shear:STR:Iseq=l :Mat1 2 :MIDLENGTH:FS=l. 

CI core crushing margin;STR; ~seg-1 ;nit1 2 ;MIDLENGTH; FS-1. 

4 sandwichcore tension margin;STB;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
face sheet pull-off margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. u =====-====-= ==== == =_== == === = ====== === ===== == === == == = == ===== == = ========== 

INITIAL OPTIMIZATION OF PERFECT PANEL: 
1. No initial face sheet waviness; 
2. "(face sheet wrinkling halfwavelength)/(l.732*s) > 2.0" 

constraint condition turned OFF 
NO?E: 1. and 2. are NOT recommended practice but are done 

here for the purposes of demonstration. 

PART 1: Original optimization 

ITERA WEIGHT 
TION OF 
NO. PANEL 

OF STATE OF THE DESIGN WITH EACH ITERATION 
FOR EACH LOAD SET.... 

(IQUICK; NO. OF CRITICAL MARGINS) 
LOAD SET NO.-> 1 2 3 4 5 
DESIGN IS... ....................................... PANDAOPT 
FEASIBLE (0; 0) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 2) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 5) (0; 0) (0; 0) (0; 0) (0; 0) ....................................... PANDAOPT 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0: 4) (0; 0) (0; 0) (0: 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
FEASIBLE (0; 4) (0; 0) (0: 0) (0; 0) (0; 0) 
FEASIBLE (0; 5) (0; 0) (0; 0) (0; 0) (0; 0) ....................................... PANDAOPT 

13 1.5973E+Ol FEASIBLE (0; 4) (0; 0) (0; 0) (0; 0) (0; 0) 
14 1.5078EtOl FEASIBLE 10: 6) (0; 0) (0: 0) 10: 0) 10: 0) 
15 1.4445E+01 FEASIBLE ioj 6j (0) oj ioj oj ioj oj (0) oj 
16 1.44043+01 FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; 0) 
17 1.43733+01 FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; O)<-optimum 
18 1.4395E+01 FEASIBLE (0; 9) (0; 0) (0; 0) (0; 0) (0; 0) ...................................................... PANDAOPT 
19 1.4395E+01 FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PANDAOPT 
20 1.4395E+Ol FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; 0) 

PART 2: Optimum design of perfect panel, no initial facesheet waviness; 
(face sheet wrinkling halfwavelenqth)/(l.732ts) > 2.0 constraint 
condition turned OFF; Started from design with s(2)=0.5, tc(2)=0.002 

VALUES OF DESIGN VARIABLES CORRESPONDING TO MINIMUU-WEIGHT DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 2.0873-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 8.2183-01 T(2 7(SKN):thickness for layer index no.(2) 
3 SKN 1 3 2.087E-02 T(3 )(Sm):thickness for layer index no.(3) 
4 SKN 1 0 2.3613-01 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 9.508E-04 tc(2 )(SKN):thickness of honeycomb cell wall 

CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 

0 0 1.437E+01 WEIGHT OF THE ENTIRE PANEL 

PART 3: Margins after original optimization; no initial facesheet waviness; 
(face sheet wrinkling halfwavelength)/(l.732ts) > 2.0 constraint 
condition turned OFF; 

BUCKLING LOAD FACTORS FOR LOCAL BUCKLING FROM KOITER v. BOSOR4 THEORY: 
Local buckling load factor from KOITER theory = 1.43763+00 
Local buckling load factor from BOSOR4 theory - 1.0998E+OO 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 -1.763-04 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 3.07E-01 Local bucklinq from Koiter the0rv.M-6 axial halfwaves:FS=l.l 

6 1.75E-01 local.&ck ~ v I N s ~ N ) ; & ~ ~  hegl :MID; local buck.;-~=5;i'S=l.l 
7 1.473-01 wrinkling ;strng Isegl ; M1D;face 1; M-313;N-2;slope=O.;Fs-1. 
8 2.083-03 wrinkling ( HOFF );strng Isegl ; H1D;face 1; M-310:FS-1. 
9 9.573-01 corecrimp (VINS0N);strng Isegl ;MID; core crimping;FS=l. 

10 -6.34E-04 dimpling ;strng Isegl ; M1D;face 1; W-l;N=l;slope-O.;FS=l. 
11 1.47E-01 wrinkling ;strng Isegl ; N1D;face 2; ~-313;N-2;slope-O.;FS=l, 
12 2.063-03 wrinkling ( HOFF );strug Isegl ; M1D;face 2; N-31O;FS-1. 
13 -6.343-04 dimpling ;strng Isegl ; M1D;face 2; M-1;N=l;slope=O.;FS=l. 
14 1.763-03 buck.(SAND);simp-support general buck;N=5iN=l;slope-O.;FS=l.l 

PART 4: "CHANGE" processor used to restart from different values of 
hex cell side width "6" and hex cell thickness "tc"; vinson.CHG 

11 $ Do you want a tutorial session and tutorial output? 
Y $ Do you want to change any values in Parameter Set No. l? 

4 $ Number of parameter to change (1, 2, 3, . .) 
0.8000000E-01 $ New value of the parameter(restart hex side width, s) 

Y $ Want to change any other parameters in this set? 
5 $ Number of parameter to change (1, 2, 3, . .) 

0.7000000E-03 $ New value of the parameter(restarthex cell thickness, tc) 
n $ Want to change any other parameters in this set? 
n $ Do you want to change values of "fixed" parameters? 
n $ Do you want to change values of allowables? 



v&T 5: Another optimization of perfect panel with "s" and "tc" reset via 
the PANDA2 processor called "CBANGE" to "s" = 0.08, "tc"=0.007 in.; 
1. no initial face sheet waviness; 
2. (face sheet wrinklins halfwavelensth)/(l.732*s) > 2.0 constraint - .. . 

'condition turned OF$; 
(Results from optimization cycles are omitted here to save space. 
see Part 5 of ~ i b l e  271.9 in-ITEM 271 of [291 ) 

PART 6: New optimum design; no initial face sheet waviness; 
(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 
condition turned OFF; 
SUMMARY OF INFORMATION FROM OPTIMIZATION ANALYSIS 

VAR. DEC. ESCAPE LINK. LINKED LINKING LOWER CURRENT 
NO. VAR. VAR. VAR. TO CONSTANT BOUND VALUE 
1 Y  Y N 0 0.00E+00 1.00E-03 2.09103-02 
2 Y  Y N 0 0.00E+00 1.00E-01 8.28623-01 
3 Y  Y N 0 0.00E+00 1.00E-03 2.09103-02 
4 Y  N N 0 0.00E+00 3.61E-02 1.75683-01 
5 Y  Y N 0 0.00E+00 7.00E-04 7.0000E-04 

CURRENT VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 

0 0 1.440E+Ol WEIGHT OF THE ENTIRE PANEL 

constraint 

UPPER DEFINITION 
BOUND0 
5.00E-01 T(1) 
4.00E+00 T(2) 
5.00E-01 T(3) 
3.00E+00 S(2) 
1.00E-01 tc(2) 

PART 7: Margins after second optimization; no initial facesheet waviness; 
(face sheet wrinkling halfwavelength)/(l.732*s) > 2.0 constraint 
condition turned OFF; 

BUCKLING LOAD FACTORS FOR LOCAL BUCKLING FROM KOITER v. BOSOR4 THEORY: 
b.r Local buckling load factor from KOITER theory = 1.4389E+00 
4 Local buckling load factor from BOSOR4 theory = 1.0991E+OO 
A 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 -8.10E-04 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 3.08E-01 Local buckling from Koiter theory,M=6 axial halfwaves;FS=l.l 
3 2.12E-03 eff.stress:matl=1,SKN,Dseg=2,node=lld1ayer=3,z=0.4352; MID.;FS=l. 
4 3.663-03 eff.stress:matl=1.SKN,Iseg=l,allnode,layer=3,z=0.4352;-MID.;FS=l. 
5 1.12E-03 buck.(DONL);simp-support general buck;M=5;N=l;slope-O.;FS=l.l 
6 1.75E-01 localbuck (VINS0N);strng Isegl ;MID; local buck.; M=5;FS=1.1 
7 1.44E-01 wrinkling ;stmg Isegl ; M1D;face 1; M=313;N=2;slope=O.;FS=l. 
8 -5.243-04 wrinkling ( HOFF );strng Isegl ; M1D;face 1; M-309;FS-1. 
9 9.50E-01 corecrimp (VINS0N);stmg Isegl ;MID; core crimping;FS=l. 

10 7.84E-01 dimpling ;stmg Isegl ; M1D;face 1; M=l;N=l;slope=O.;FS=1. 
11 1.44E-01 wrinkling ;strng Isegl ; M1D;face 2; M=313;N=2;slope=O.;FS=l. 
12 -5.36E-04 wrinkling ( HOFF );stmg Isegl ; M1D;face 2; M=309;FS=l. 
13 7.84E-01 dimpling ;strng Isegl ; M1D;face 2; M=l;N=l;slope=O,;FS=1. 
14 1.12E-03 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
.......................................................................... 

Five margins computed in PANDA2 which, for the special case of the 
ened flat panel, denote the same phenomenon: Overall panel bunkling. 

Perfect panel, no initial waviness, Eq. (13) constraint turned OFF. 
............................................................................... 

1 -1.763-04 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 3.07E-01 Local buckling from Koiter the0ry.M-6 axial ha1fwaves;FS-1.1 
5 1.76E-03 buck.(DONL);simp-support general buck;M=5;N=l;slope-O.:FS=l.l 
6 1.75E-Ol localbuck (VINS0N);Stmg Isegl ;MID; local buck.; M-5;PS-1.1 

14 1.763-03 buck.(SAND);simp-support general buck;M-5;N=l;slope-O.;FS=l.l 
............................................................................... 

Results from PANDA2 for the optimum design obtained via 
Vinson's Eqs (34 - 37), pp1694-5, AIAA J., Vol. 24, 1986 151 

-----------===- ----------- ............................................................... 

PART 1: 
VINSON'S OPTIMUM DESIGN DERIVED FROM EQS(34-37) in 151 

LOWER CURRENT UPPER DEFINITION 
BOUND VALUE BOUND 
1.00E-03 3.16173-02 5.00E-01 T(1 )(SKN):thickness for layer index no.(l) 
1.00E-01 1.29463+00 4.00E+00 T(2 )(S~~):thickness for layer index no.(2) 
1.00E-03 3.16173-02 5.00E-01 T(3 )(SKN):thickness for layer index no.(3) 
3.613-02 4.0144E-01 3.00E+00 s(2 )(SKN):Length of one side of the hexagon 
2.00E-04 5.2367E-04 1.00E-01 tc(2 )(SKN):Thickness of honeycomb cell wall 
-------------.--------------------------------------------------------------- 

PART 2 
**t++trt*tt*ttt*+ttt DESIGN OBJECTIVE * X * f * * f * t * * * * * " ' * *  

CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITIOV 

0 0 2.0753+01 WEIGHT OF THE ENTIRE PANEL (Vinson's Optimum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PART 3: 
MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 3.883-01 Local buckling from discrete model-l.,M=5 axial ha1fwaves;FS-1.1 
2 1.70E+00 Local buckling from Koiter theory,M=8 axial halfwaves;FS=l.l 
3 5.14E-01 eff.stress:matl=1,SKN,Dseg=2,node=lle1ayer=3z=O.6789; MID.;FS=l. 
4 5.18E-01 eff.stressrmatl=1,SKN,Iseg=l,a11node,layer=3,~=0.6789;-MID.;FS=l. 
5 -3.15E-01 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
6 -4.083-02 localbuck (VINS0N);strng Isegl ;MID; local buck.; M=5;FSx1.1 
7 -1.393-02 wrinkling ;stmg Isegl ; M1D;face 1; M=153;N=l;slope=O.;FS=l. 
8a-5.06E-04 wrinkling (VINSON) strng Isegl ; M1D;face 1; M=141;FS=l. 
8b-2.82E-01 wrinkling ( HOFF );strng Isegl ; M1D;face 1; M=141;FS=l. 
9 -2.943-03 corecrimp (VINS0N);strng Isegl ;MID; core crimping;FS=l. 
10 2.07E-01 dimpling ;stmg Isegl ; M1D;face 1; M=l;N=l;slope=O.;FS=l. 
11 -1.393-02 wrinkling ;strug Isegl : M1D;face 2; M=153;N=l;sl0pe~O.;FS=l. 
12a-5.08E-04 wrinkling (VINSON) strng Isegl ; M1D;face 2; M=l4l;FS=1. 
12h-2.82E-01 wrinkling ( HOFF );strng Isegl ; M1D;face 2; M=141;FS=1. 
13 2.07E-01 dimpling ;stmg Isegl ; M1D;face 2; M-1;N=l;Sl0pe=O.;FS=l. 
14 5.903+04 Core crushing margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
15 4.12E+00 L-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
16 4.10E+00 W-dir. sandwich core sbear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
17 2.193+02 (Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS-1. 
18 -3.15E-01 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=1.1 
............................................................................... 

MORE OPTIMIZATION OF PERFECT PANEL: EQ.(13) CONSTRAINT TURNED ON 
1. NO initial face sheet waviness; 
2. (face sheet wrinkling halfwavelength)/(l.732*s) > 2.0 

constraint condition turned ON 
.............................................................................. 

PART 1: Optimization (omitted here to save space. See Table 271.9 in 
ITEM 271 of [29]) ............................................................................... 

PART 2: Optimum design of perfect panel, no initial facesheet waviness; 
(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 constraint 
condition turned ON. 

VALUES OF DESIGN VARIABLES CORRESPONDING TO MINIMUM-WEIGHT DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 2.0873-02 T(l )(SKN):thickness for layer index no.(1) 
2 SKN 1 2 6.1373-01 T(2 )(SKN)rthiclmess for layer index no.(2) 
3 SKN 1 3 2.0873-02 T(3 )(SKN):thickness for layer index no.(3) 
4 SKN 1 0 6.7663-02 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 7.000E-04 tc(2 )(SKN)rthichess of honeycocnb cell wall 

CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION: 



VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 

0 0 1.531E+01 WEIGHT OF THE ENTIRE PANEL 
---------.---------------------------------------------------------------------- 

PART 3: Margins after optimization; no initial facesheet waviness: 
(face sheet wrGkling halfwavelength)/(l.732*s) > 2.0 constraint 
condition turned ON; 
vinson.OPM (abridged) 

BUCKLING LOAD FACTORS FOR LOCAL BUCKLING FROM KOITER v. BOSOR4 THEORY: 
Local buckling load factor from KOITER theory = 1.2219~+00 
Local buckling load factor from BOSOR4 theory = 1.1000~+00 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 -4.653-06 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 l.llE-01 Local buckling from Koiter theory.M=5 axial halfwaves;FS=l.l 
3 2.26E-03 eff.stress:matl=l,SKN,Dseg=2,node=ll,layer=3,~=0.3283; MID.;FS=~. 
4 2.81E-03 eff.stress:matl=l,SKN,Iseg=l,allnode,layer=3,z=0.3283;-MI~.;~S=l. 
5 2.973-03 buck.(DONL);simp-support general buck;M=5;N=l;slope-O.;FS=l.l 
6 6.393-02 localbuck (VINS0N);stmg ISegl ;MID; local buck.; M=5;FS=1.1 
7 1.09E+00 wrinkling ;strng Isegl ; M1D;face 1; M=445;N=l;slope-O.;FS=l. 
8 2.12E-03 Facel wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
9 8.90E-01 wrinkling ( HOFF );strng Isegl ; M1D;face 1; M=426;FS=l. 
10 2.77E+00 corecrimp (VINS0N);Stmg Isegl :MID; core crimping;FS=l. 
11 8.88E+00 dimpling ;stag Isegl ; M1D;face 1; M-1;N-1;slope-O.;FS=l. 
12 1.09E+00 wrinkling ;strng Isegl ; M1D;face 2; M=445;N=l;slope=O.;FS=1. 
13 2.12E-03 Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTB;FS=l. 
14 8.90E-01 wrinkling ( HOFF );stmg ISegl ; M1D;face 2; M=426;FS=l. 
15 8.88Ef00 dimpling ;strng Isegl ; M1D;face 2; M-1;N-1;slope-O.;FS=l. 
16 1.21E+06 Core crushing margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
17 2.353+02 L-air. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 

4 18 1.40E+02 W-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH:FS=l. 
01 19 1.443+02 (Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS=1. 

20 2.97E-03 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 

ive margins computed in PANDA2 which, for the special case of the 
ned flat panel, denote the same phenomenon: Overall panel buckling. 

This table is analogous to Table 4. 
.............................................................................. 

1 -4.653-06 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 l.llE-01 Local buckling from Koiter theory,M=5 axial ha1fwaves;~S-1.1 
5 2.973-03 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=1.1 
6 6.39E-02 localbuck (VINS0N);strng Isegl ;MID; local buck.; M=5;FS=1.1 
20 2.973-03 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=L.l 
=s===-===s=======~==-=======s==========================================s===s=== 

ins before optimization; Initial facesheet waviness, wO/L = 0.001; 
(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 constraint 
condition turned ON; 
vinson.0PM file (abridged) corresponding to the optimum design found 
for no initial facesheet waviness: 
T(1)=0.02087; T(2)=0.6137; T(3)-0.02087; s(2)=0.06766; tc(2)=0.0007 

.............................................................................. 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN -- - 
NO. VALUE DEFINITION 
1 -4.273-03 Local buckling from discrete model-l.,n=5 axial halfwaves;FS=l.l 
2 1.06E-01 Local buckling from Koiter theory,M-5 axial halfwaves;FS=l.l 
3 1.18E-03 eff.stress:matl=1,SKN,Dseg=2,node=ll,layer-3,~=0.3277; MID.;FS=l. 

eff.stress:matl-l,SKN,Iseg=l,allnode,layer=3,z=0.3277;-MID.;FS=l. 
buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
localbuck (VINS0N);strng Isegl ;MID; local buck.; M=5;FS=l.l 
wrinkling ;strng Isegl ; M1D;face 1; M=445;N=l;slope=O,;FS=l. 
Facel wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=~. 
wrinkling ( HOFF );strng Isegl ; M1D;face 1; M=426;FS-1. 
corecrimp (V1NSON);strng Isegl ;HID; core crimping;FS=l. 
dimpling ;stmg Isegl ; M1D;face 1; ~=1;N=l;slope=O,;~s-1. 
wrinkling ;strng Isegl ; M1D;face 2; M=445;N=l;s10pe=O.;FS=l. 
Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=~. 
wrinkling ( HOFF );strng Isegl ; M1D;face 2; Me426;FS=1. 
dimpling ;strng Isegl ; M1D:face 2; M=l;N=l:slo~e=O.;FS=1. 
Core crushing margin j STR; Iseg=1 ;Mat1 2 ;MIDLENGTH; FS=1. 
L-dir. sandwich core shear;STR;Iseg-1 ;Mat1 2 ;MIDLENGTH;FS=l. 
W-air. sandwich core shear;STR;~seg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
sandwichcore tension margin;sTR;Iseg=l ;Mat1 2 ;MIDLENGTn;FS=l. 
(Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS=l. 
buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 

............................. .................................... 

Table 9 OPTIMIZATION OF PANEL WITH SOME INITIAL FACE SHEET WAVINESS: I 3  1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavelength)/(l,732*~) > 2.0 

constraint. condition turned ON 
===============I===_P====-=======~=m~====~==-~========-========sa==========m=== 

PART 1: Optimization, starting from optimized panel obtained with the 
initial face sheet waviness, wO/L = 0.0 and with the constraint: 
(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 

turned ON. Starting design: 
T(1)=0.02087; T(2)=0.6137; T(3)-0.02087; s(2)=0.06766; tc(2)=0.0007 
In this case the initial face sheet waviness, wO/L = 0.001. 

SUMMARY OF STATE OF THE DESIGN WITH EACE ITERATION 
ITERA WEIGHT FOR EACH LOAD SET.... 
TION OF (IQUICK; NO. OF CRITICAL MARGINS) 
NO. PANEL LOAD SET NO. - >  1 2 3 4 5 

DESIGN IS... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PANDAOPT 
1 1.53123+01 NOT FEASIBLE (0; 7) (0; 0) (0; 0) (0; 0) (0; 0) 
2 1.7321E+01 NOT FEASIBLE (0; 1) (0; 0) (0; 0) (0; 0) (0; 0) 
3 1.72203+01 FEASIBLE (0; 1) (0; 0) (0; 0) (0; 0) (0; 0) 
4 1.62823+01 FEASIBLE (0; 5) (0; 0) (0; 0) (0; 0) (0; 0) 
5 1.6118E+01 ALMOST FEASIBLE(0; 8) (0; 0) (0; 0) (0; 0) (0; 0) 
6 1.6130E+01 ALMOST FEASIBLE(0; 9) (0; 0) (0; 0) (0; 0) (0; 0) ...................................................... PANDAOPT 
7 1.6130E+01 ALMOST FEASIBLE(0; 8) (0; 0) (0; 0) (0; 0) (0; 0) 
8 1.6191E+01 FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; 0) ...................................................... PANDAOPT 
9 1.6191E+01 FEASIBLE (0; 8) (0; 0) (0; 0) (0; 0) (0; O)<-optimum 

Initial face sheet waviness, wO/L = 0.001 and with the constraint: 
(face sheet wrinkling halfwavelength)/(l.732*s) > 2.0 turned ON ............................................................................... 

PART 2: Optimum design of panel, Initial facesheet waviness, wO/L=0.001; 
(face sheet wrinkling halfwavelength)/(l.732*s) > 2.0 constraint 
condition turned ON. 

VALUES OF DESIGN VARIABLES CORRESPONDING TO ALMOST FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 2.0843-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 5.7743-01 T(2 )(SKN):thickness for layer index no.(2) 
3 SKN 1 3 2.0843-02 T(3 )(SKN):thickness for layer index no.(3) 
4 SKN 1 0 5.7093-02 s(2 )(SKN)rLength of one side of the hexagon 
5 SKN 1 0 8.9203-04 tc(2 )(SKN)athickness of honeycomb cell wall 

CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITIOE, 



0 0 1.612E+01 WEIGHT OF THE ENTIRE PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PART 3: Margins after optimization; Initial facesheet waviness, wO/L=0.001; 

(face sheet wrinkling halfwavelength)/(l.732*~) > 2.0 constraint 
condition turned ON; 

BUCKLING LOAD FACTORS FOR LOCAL BUCKLING FROM KOITER v. BOSOR4 THEORY: 
Local buckling load factor from KOITER theory - 1.1814E+00 
Local buckling load factor from BOSOR4 theory = 1.1065E+00 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 5.90E-03 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=L.l 
2 7.40E-02 Local buckling from Koiter theoryrM=5 axial halfwaves;FS=l.l 
3 2.31~-03 eff.stress:matl=1,S~,Dseg=2,node=ll,layer=3,~=0.3096; MID.;FS=l. 
4 2.773-03 eff.stress:matl=1,SKN,Iseg=l,allnode,layer=3,z=O.3096;-MID.;FS=l. 
5 9.263-03 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
6 4.813-02 localbuck (V1NSON);strng Isegl ;MID; local buck.; M=5;FS=l.1 
7 1.64E+00 wrinkling ;strng Isegl ; M1D;face 1; M=490;N=l;slope=O.;FS=l. 
8 2.393-03 Facel wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
9 1.5lE+OO wrinkling ( HOFF );strng Isegl ; M1D;face 1; M=491;FS=l. 
10 4.42E+OO corecrimp (V1NSON);strng Isegl ;MID; core crimping;FS=l. 
11 1.13E+01 dimpling ;strng Isegl ; M1D;face 1; M=l;N=l;slope=O.;FS=l. 
12 1.64E+00 wrinkling ;strng Isegl ; M1D;face 2; M=490;N=l;slope=O.;FS=l. 
13 2.41~-03 Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
14 1.51E+00 wrinkling ( HOFF );stmg Isegl ; M1D;face 2; M=491;FS=1. 
15 1.13E+Ol dimpling ;strug Isegl ; M1D;face 2; M=l;N=l;slope=O.;FS=l. 
16 6.703-04 Core crushing margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
17 1.81E+00 L-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
18 3.093+02 W-air. sandwich core shear;STR;Iseg=L ;Mat1 2 ;MIDLENGTB;FS=l. 
19 2.55E+00 face sheet pull-off margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
20 1.443+02 (Max.allowable ave-axial strain)/(ave.axial strain) -1; FS=l. 
21 9.263-03 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS-l.l 
.............................................................. ==========s 

ive margins computed in PANDA2 which, for the special case of the 
ed flat panel, denote the same phenomenon: Overall panel buckling. 

This table is analogous to Tables 4 and 7. 
............................................................................... - - - - - - - - - 
1 5.903-03 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 7.403-02 Local buckling from Koiter the0ry.M-5 axial halfwaves;FS=l.l 
5 9.26E-03 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
6 4.813-02 localbuck (VINS0N);strng ISegl ;MID; local buck.; M=5;FS=1.1 . 
21 9.263-03 buck.(SA?TD);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
............................................................................... 

PTIMIZATION OF PANEL WITH wO/L = 0.001 AND EQ.(13) TURNED OFF: 
1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavel~&ngth)/(l.732*s) > 2.0 

constraint condition turned OFF 

PART 1: Optimum design of panel, Initial facesheet waviness, wO/L=0.001; 
(face sheet wrinkling halfwavelength)/(1.732*~) > 2.0 constraint 
condition turned OFF; 

%UPS OF DESIGN VARIABLES CORRESPONDING TO FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 2.084~-02 ~ ( 1  )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 5.760~-01 T(2 )(SKN):thickness for layer index no.(2) 
3 SKN 1 3 2.084~-02 T(3 )(SKN):thickness for layer index no.(3) 
4 SKN 1 0 2.069E-01 s(2 )(SKN)rLength of one side of the hexagon 
5 SKN 1 0 3.289E-03 tc(2 )(SKN):thickness of honeycomb cell wall 

CURRENT VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 

0 0 1.616E+01 WEIGET OF TEE ENTIRE PANEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PART 2: Warning issued by PANDA2 when the constraint 

(face sheet wrinkling halfwavelength)/(1.732*~) > 2.0 
is badly violated. 

***** WARNING Iseg= 1, Iloop= 1: ***+** 
Facel wrinkle halfwavelength is less than the honeycomb cell diameter. 
(face1 wrinkle halfwavelength)/(cell diameter)- 5.67233-01 
***** WARNING Iseg= 1, Iloop- 1: ****** 
Face2 wrinkle halfwavelength is less thar. the honeycomb cell diameter. 
(face2 wrinkle halfwavelength)/(cell diamete+)= 5.67253-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PART 3: Margins after optimization; Initial facesheet waviness, wO/L=0.001; 
(face sheet wrinkling halfwavelength)/(1.732*~) > 2.0 constraint 
condition turned OFF. 

MARGINS FOR CURRENT DESIGN* LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 -5.273-05 Local buckling from discrete model-l.,M=5 axial ha1fwaves;FS-1.1 
2 6.723-02 Local buckling from Koiter theory,M=5 axial ha1fwaves;FS-1.1 
3 -1.973-04 eff.stress:matl=l,SKN,Dseg=2,node=ll,layer=3,~=0.3088; MID.;FS=l. 
4 2.91E-04 eff.stress:matl=l,SKN,Iseg=l,allnode,layer=3,z=0.3088;-MID.;FS=1. 
5 3.30E-03 buck.(DONL);simp-support general buck;M=5;N=l;slope-O.;FS=l.l 
6 4.163-02 localbuck (V1NSON);strng Isegl ;MID; local buck.; M=5;FS=1.1 
7 1.62E+00 wrinkling ;strug Isegl ; M1D;face 1; M=490;N=l;slope=O.;FS-1. 
8 1.50E+00 wrinkling ( HOFF );stmg Isegl ; M1D;face 1; M=492;FS=l. 
9 4.423+00 corecrimp (V1NSON);strng Isegl ;MID; core crimping;FS=l. 
10 2.9LE-01 dimpling ;strng Isegl ; M1D;face 1; M=l;N=l;~l0pe=O.;FS=l. 
11 1.62E+00 wrinkling ;strug Isegl ; M1D;face 2; H=490;N=l;~l0pe=O.;FS;;1. 
12 1.50E+00 wrinkling ( BOFF );strng Isegl ; M1D;face 2; M-492;FS-1. 
13 2.91E-01 dimpling ;stmg Isegl ; M1D;face 2; M=l;N=l;slope-O.;FS=l. 
14 6.253-04 Core crushina marain:STR:Isea=l :Mat1 2 xM1DLENGTH:FS-1. - < . . < .  
15 1.79E+00 L-dir. sandwich core shear;STR;Iseg=l ; ~ i t l  2 ;MIDLENGTK;FS=~. 
16 2.93E+02 W-dir. sandwich core shear:STR:Iseq=l :Mat1 2 :MIDLENGTH:FS=l. 
17 -1.633-04 face sheet pull-of f margin)s~~~lseg=l )~atl 2 ;MIDLENGTH)FS=~. 
18 1.443+02 (Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS-1. 
19 3.30E-03 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=1.1 
.............................................................................. 

Comparison of certain results from Tables 9 and 11, which correspond 
to two different o~timum desiuns found with PANDA2. The two different 
optima are essenti>lly the same design except for "s", the hexagonal 
cell side width, and "tc" the cell wall thickness. The ratio, s/tc, 
is approximately the same for both optima. 

From Table 9 (Eq.(13) turned ON): optimized "s" and "tc" and certain margins: 
4 SKN 1 0 5.709E-02 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 8.920E-04 tc(2 )(SKN):thickness of honeycomb cell wall 

11 1.13E+01 dimpling ;strng Isegl ; M1D;face 1; M=l;N=l;slope=O.;FS=l. 
15 1.13E+Ol dimpling ;strng Isegl ; M1D;face 2; M=l;N=l;slope=O.;FS=l. 
19 2.553+00 face sheet pull-off margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 

From Table 11 (Eq.(13) turned OFF): optimized "s" and "tc" and certain margins: 
4 SKN 1 0 2.0693-01 s(2 )(Sm):Length of one side of the hexagon 
5 SKN 1 0 3.2893-03 tc(2)(SKN):thicknessofhoneycombcellwall 

10 2.9116-01 dimpling ;stmg Isegl ; M1D;face 1; M-1;N-1;slope-O.;FS-1. 
13 2.91E-01 dimpling ;stmg Isegl ; M1D;face 2; M=l;N-l;slope=O.;FS=l. 
17 -1.633-04 face sheet pull-off margin;STR;ISeg=l ;Mat1 2 ;MIDLENGTH;FS-1. 
.............................................................................. 





PART 5b: "worst" values; used by PANDA2 to build x-z ("L"-direction) and 
y-z ("W"-direction) sandwich core transverse shear constraints 
and deformation-induced core crushing constraint 

DEFORMATION-INDUCED PRESSURE TENDING TO 
CRUSH THE CORE (COMPUTED IN SUB. STRTHK) AND MAXIMUM 
TRANSVERSE SHEAR STRESSES (COMPUTED IN SUB. STRMID) 
ON THE "X" AND "Y" SIDES OF THE SANDWICH CORE 
Segment Crushing X-transverse Y-transverse 
Iseg pressure shear stress shear stress 

SKN 1 9.39203+01 6.30173+02 6.6856E+02 
.............................................................................. 

Optimization of IMPERFECT Titanium/Aluminum Sandwich Panel 
Amplitude of the buckling modal imperfection, WO = 0.1 in. 
1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavelength)/(l.732ts) > 2.0 

constraint condition turned ON 
3. Buckling modal imperfection amplitude. WO = 0.1 in. 

....................................................... .......................... 

PART 1: Optimization (omitted here to save space. See Table 271.15 in 
ITEM 271 of [29]) ............................................................................... 

PART 2 Optimum design, IMPERFECT panel 
VALUES OF DESIGN VARIABLES CORRESPONDING TO ALMOST FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. BNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 2.379E-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 7.4533-01 T(2 )(SKN):thickness for layer index no.(2) 
3 SKN 1 3 2.3793-02 T(3 )(SKN):thickness for layer index no.(3) 
4 SKN 1 0 6.4643-02 s(2 )(Sm)sLength of one side of the hexagon 
5 SKN 1 0 1.133E-03 tc(2 )(SKN)ithickness of honeycomb cell wall ........................................................................... 

PART 3 Objective, IMPERFECT panel 
CORRESPONDING VALUE OF THE OBJECTIVE PUNCTIONz 

VAR. STB/ SEG. LAYER CURRENT 
NO. BNG NO. NO. VALUE DEFINITION 

0 0 1.925E+Ol WEIGHT OF THE ENTIRE PANEL ............................................................................ 
PART 4 Margins at the optimum design, MPEWECT panel 
MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 

1 8.483-01 Local buckling from discrete model-l.,M=5 axial halfwaves;FS=l.l 
2 1.02E+00 Local buckling from Koiter theory,M=5 axial halfwaves;FS=l.l 
3 1.773-02 eff.stress:matl=1,SKN,Dseg=2,node=ll,layer=3,~=0.4078; MID.;FS=l. 
4 -3.60E-03 eff.stress:matl=l,SKN,Iseg=l,allnode,layer=1,z=-0.4078;-MID.;FS=l. 
5 8.54E-01 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
6 9.62E-01 localbuck (VINS0N):strns Isesl :MID: local buck.: M=5:FS=1.1 
3 1.34EtOO wrinkling ;strng iiegl I ~ 1 ~ J f a c e  1; M-417;~=2;slope-0. 132;FS=1. 
8 6.19E-04 Facel wavelength/celldiam:STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
9 1.39E+00 wrinkling ( HOFF ) ;strug Isegl ; ~ 1 ~ ; f a c e  1; M=450;FS=l. 
10 4.90E+00 corecrimp (V1NSON);strng Isegl ;MID; core crimping;FS=l. 
11 9.37E+00 dimpling ;strug Isegl ; M1D;face 1; M=l;N=l;slope=O.O5;FS=l. 
12 1.34E+00 wrinkling ;strng Isegl ; M1D;face 2; M=417;N=2;slope=O.l32;FS=l. 
13 6.19E-04 Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTIi;FS=l. 
14 1.39E+00 wrinkling ( HOFF );strug Isegl ; M1D;face 2; M=450;FS=l. 
15 9.373+00 dimpling ;strng Isegl ; M1D;face 2; M=1;N=l;slope=O,OS;FS=l. 
16 -1.333-02 Core crushing margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=~. 
17 1.78E-01 L-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
18 3.773-01 W-dir. sandwich core shear;STR;Iseg=l ;Hat1 2 ;MIDLENGTH;FS=l. 
19 1.58E+00 face sheet pull-off margin;STR;Iseg=L ;&tl 2 ;MIDLENG~;FS=~. 
20 1.61E+02 (Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS-1. 
21 8.54E-01 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
.............................................................................. 

Table 16 Effect of temperature gradient through the thickness: 
1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavelength)/(1.732*~) > 2.0 

constraint condition turned ON 
3. Amplitude of the buckling modal imperfection, WO = 0.1 in. 
t(face)=0.02379, t(core)=0.7453, s-0.06464. tc-0.001133 in. 
is the optimum found with zero temperature gradient. 
y $ Is there any thermal "loading" in this load set? 

bottom face--> 400 $ Temperature rise, panel skin, surface opposite stringer 
top face--> 000 $ Temperature rise, panel skin, upper surface 

n $ Is the thermal loading part of Load Set B? 
.............................................................................. 

PART 1 
FORCE RESULTANTS IN SANDWICH FACESHEETS AFTER CALL TO SUB. STRCON 
(IMPERFECT PANEL, NO THERMAL GRADIENT THROUGH PANEL THICKNESS) 

Segment Top (or leftmost) facesheet 1 Bottom (or rightmost) facesheet 2 
Iseg Axial, Nx Hoop, Ny Shear, ~ x y  Axial, Nx Hoop, Ny Shear, Nxy 

SKN 1 -3.1111E+03 -5.98083+02 3.37983+02 -3.1111E+03 -5.98083+02 3.3798E.t.02 

PART 2 
FORCE RESULTANTS IN SANDWICH FACESHEETS AFTER CALL TO SUB. STRCON 
(IMPERFECT PANEL, INCLUDING THE= GRADIENT THROUGH PANEL THICKNESS) 

Segment Top (or leftmost) facesheet 1 Bottom (or rightmost) facesheet 2 
ISeg Axial, Nx Hoop, Ny Shear, Nxy Axial, Nx Hoop. Ny Shear, Nxy 
SKN 1 -2.40783+03 -3.69083+02 3.3798E+02 -3.81443+03 -8.27073+02 3.37983+02 

PART 3 Margins INCLUDING thermal gradient. Design is the optimum design 
found with no thermal gradient, imperfect panel: PART 2, Table 271.15 
t(face)=0.02379, t(core)=0.7453, s=0.06464, tc=0.001133 in. 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. =GIN 
NO. VALUE DEFINITION 
1 7.643-01 Local buckling from discrete model-1.,M-5 axial ha1fwaves;FS-1.1 
2 9.25E-01 Local buckling from Koiter theory,H=5 axial ha1fwaves;FS-1.1 
3 -1.70E-01 eff.stress:matl=l,SKN,Dseg-2,node-ll,layer-3,~-0.3964; MID.;FS=l. 
4 -1.86E-01 eff.stress:matl-1,SKN,Iseg=l,allnode,layel-3,~=0.3964;-HID.;FS-1. 
5 7.70E-01 buck.(DONL):simp-support general buck;M-5;N-1;slope-O.;FS-1.1 
6 8.71E-01 localbuck (V1NSON);stmg Isegl ;MID; local buck.; M-5;FS-1.1 
7 2.02E+OO wrinkling jstrng Isegl ; M1D;face 1; M-4l8;N=2;slope-0.1757;FS-l. 
8 1.15E-03 Facel wavelength/celldiam;STR;Iseg-1 ;Matl-2 ;MIDLENGTH;FS-1. 
9 2.06E+00 wrinkling ( HOFF );stmg Isegl ; M1D:face 1; M-446;FS-1. 

10 4.54E+OO corecrimp (VINS0N);stmg Isegl ;HID; core crimping;FS=l. 
11 1.25E+01 dimpling ;strng Isegl ; M1D;face 1; M-1;N-1;slope-0.06:F.S-1. 



12 9.29E-01 wrinkling ;strug Isegl ; M1D;face 2; M=417;N=2;slope=O,11;FS=l. 
13 1.15E-03 Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
14 9.10E-01 wrinkling ( HOFF );strug Isegl ; M1D;face 2; M-446;FS=1. 
15 7.18E+00 dimpling ;strug Isegl ; M1D;face 2; M=l;N=l;slope=O.O4;FS=l. 
16 -3.486-01 Core crushins marsin:STR:Ises=l :Mat1 2 :MIDLENGTH:FS=l. 
17 -6.611-02 L-dir. sandwich core.sheer;~T~;~se~=l ;Mat1 2 ;MIDLENGTE;FS-1. 
18 2.49E-01 W-dir. sandwich core shear;STR;Iseq=l :Mat1 2 :MIDLENGTH;FS=l. 
19 7.53E-01 face sheet pull-off margin;~TR;~se~=l ;~atl 2 ;MIDLENGTB;FS=~. 
20 1.623+02 (Max.allowahle ave.axia1 strain)/(ave.axial strain) -1; FS-1. 
21 7.70E-01 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
............................................................................... 

Optimization of IMPERFECT Titanium/Aluminum Sandwich Panel 
WITH through-thickness temperature gradient as specified 
in the heading of Table 271.16. 
1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavelength)/(1.732*~) > 2.0 

constraint condition turned ON 
3. Amplitude of the buckling modal imperfection, WO = 0.1 in. 
Starting design: 
t(face)=0.02379, t(core)=0.7453, s-0.06464, tc=0.001133 in. 
is the optimum found with zero temperature gradient. 
Bottom face sheet HOT. 

............................................................................... 

PART I: Optimization (omitted here to save space. See Table 271.17 in 
ITEM 271 of [29]) 

PART 2 Optimum design with buckling modal imperfection (WO=0.1 in.) plus 
thermal gradient as specified in the heading of Table 16: 
bottom face sheet HOT. 

VALUES OF DESIGN VARIABLES CORRESPONDING TO FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 

~1 NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 1.4853-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 7.7783-01 T(2 )(SXN):thickness for layer index no.(2) 
3 SKN 1 3 3.7803-02 T(3 )(SKN):thickness for layer index n0.(3) 
4 SKN 1 0 4.0613-02 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 7.000E-04 tc(2 )(SKN):thickness of honeycomb cell wall .............................................................................. 

PART 3 Objective, IMPERFECT panel WITH thermal gradient 
CORRESPONDING VALUE OF THE OBJECTIVE FUNCTION: 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 

0 0 2.0983+01 WEIGHT OF THE ENTIRE PANEL ............................................................................... 
PART 4 Margins at the optimum design, IMPERFECT panel WITH thermal gradient 

Bottom face sheet HOT 

BUCKLING LOAD FACTORS FOR LOCAL BUCKLING FROM KOITER v. BOSOR4 THEORY: 
Local buckling load factor from KOITER theory = 2.09473+00 
Local buckling load factor from BOSOR4 theory = 1.9288Et00 

MARGINS FOR CURRENT DESIGN: LOAD CASE NO. 1, SUBCASE NO. 1 
MAR. MARGIN 
NO. VALUE DEFINITION 
1 7.533-01 Local buckling from discrete model-1.,M=5 axial halfwaves;FS=l.l 
2 9.04E-01 Local buckling from Koiter the0ry.M-5 axial halfwaves;FS=l.l 
3 2.13E-02 eff.stressrmatl=1,SKN,Dseg=2,node=lle1ayer=3,z=0.2457; HID.;FS=l. 
4 -6.423-04 eff.stressrmatl=l,SKN,Iseg=l,allnode,layer=3,z-0.2457;-MID.;FS=1. 
5 7.593-01 buck.(DONL);simp-support general buck;M=5;N=l;slope=O.;FS=l.l 
6 8.523-01 localbuck (VINS0N);strng Isegl ;MID; local buck.; M=5;FS=1.1 
7 1.48E+00 wrinkling ;strng Isegl ; M1D;face 1; M=595;N=l;slope=0.2737;FS=l. 
8 -1.453-04 Face1 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTH;FS=l. 
9 1.61E+00 wrinkling (VINS0N);strng Isegl ; M1D;face 1; M=711;FS=l. 
10 4.79Ef00 corecrimp (VINS0N);strng IsegL ;MID; core crimping;FS=l. 
11 1.24E+01 dimpling ;strng Isegl ; M1D;face 1; M=l;N=l;slope=O.O917;FS=l. 
12 1.96E+00 wrinkling ;Strug Isegl ; M1D;face 2; M=304;N=3;slope=0.0817;FS=1. 

13 1.55Et00 Face2 wavelength/celldiam;STR;Iseg=l ;Matl=2 ;MIDLENGTB;FS=l. 
14 1.44E+00 wrinkling ( HOFF );strug Isegl ; M1D;face 2; M=279;FS-1. 
15 2.36E+01 dimpling ;stmg Isegl ; M1D;face 2; M=l;N=l;slope=O.O3;FS=l. 
16 -2.453-03 Core crushing margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
17 1.75E-01 L-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
18 3.00E-01 W-dir. sandwich core shear;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l. 
19 3.39E+00 sandwichcore tension margin;STR;Iseg=l ;Mat1 2 ;MIDLENGTH;FS=l 
20 1.80E+02 (Max.allowable ave.axia1 strain)/(ave.axial strain) -1; FS-1. 
21 7.59E-01 buck.(SAND);simp-support general buck;M=5;N=l;slope=O.;FS=l.1 
........................................................................ 

Optimized designs for IMPERFECT panel WITH thermal gradient 
obtained from SUPEROPT 
(See 1201 and panda2.news ITEMS 151,152,194, 1291 for SUPEROPT) 
Thermal gradient: temperature rise in one facesheet = 400 deg. 
temperature rise in the other facesheet = 0.0 deg. 
1. Initial face sheet waviness, wO/L = 0.001; 
2. (face sheet wrinkling halfwavelength)/(l.732*s) > 2.0 

constraint condition turned ON 
3. Amplitude of the buckling modal imperfection, WO = 0.1 in. 
Starting design: 
t(face)=0.02379, t(core)=0.7453, s=0.06464, tc=0.001133 in. 
is the optimum found with zero temperature gradient. 

================= .............................................................. 

PART 1 Optimum design obtained from SUPEROPT for bottom facesheet 
temperature rise = 400 deg., top facesheet = 0 deg. 

VALUES OF DESIGN VARIABLES CORRESPOND. TO ALMOST FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 1.4893-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 7.782E-01 T(2 )(SKN):thickness for layer index no.(2) 
3 SKN 1 3 3.7493-02 T(3 )(SKN):thiclmess for layer index no.(3) 
4 SKN 1 0 4.0753-02 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 7.000E-04 tc(2 )(SKN):thickness of honeycomb cell wall 

0 0 2.0883+01 WEIGHT OF THE ENTIRE PANEL 

PART 2 Optimum design obtained from SUPEROPT for bottom facesheet 
temperature rise = 0 deg.. top facesheet = 400 deg. 

VALUES OF DESIGN VARIABLES CORRESPOND. TO ALMOST FEASIBLE DESIGN 
VAR. STR/ SEG. LAYER CURRENT 
NO. RNG NO. NO. VALUE DEFINITION 
1 SKN 1 1 3.8023-02 T(l )(SKN):thickness for layer index no.(l) 
2 SKN 1 2 7.431E-01 T(2)(SKN):thicknessforlayerindexno.(2) 
3 SKN 1 3 1.4803-02 T(3 )(SKN):thickness for layer index no.(3) 
4 SKN 1 0 4.0233-02 s(2 )(SKN):Length of one side of the hexagon 
5 SKN 1 0 7.000E-04 tc(2 )(SKN):thickness of honeycomb cell wall 

0 0 2.0893+01 WEIGHT OF TEE ENTIRE PANEL 
................................................................................ 



Seg. 2 

Module width = stiffener spacing, b\-------q 

Segment numbering for single module model, "lseg" numbering 

Layer 1 
(Segment, Node) 

-(4,1) 4 (4,1 1) 

4 

f - 
Layer k 

Laver 1 (5,1 1) 

Layer 1 

Layer 1 

(1,111 (231) t (2,111 

Layer m Layer n Layer m 

Segment numbering for single module model, "Dseg" numbering 

Fig. 1 Single module model of panel: (a) Numbering of module 
segments for input data and PMDA type 1211 models, 
(b) Segment numbering fox discretized single module 
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WEIGHT OF THE ENTIRE PANEL 

0 
vinson. SEE FUBS vinsor..OPM AND vinson.OPP 

0 

h 
\ 

Design Iterations 

Fig. 2 Panel weight during optimization cycles 

1 . 1 . I  Local buckling: discrete model 
0 2 .1 . I  Local buckling: Koiter theory. 
A 5.1 . I  buck(D0NL)simp-support general buck; MIDLENGTH 
+ 6 .l . l  localbuck (VtNS0N);strng Isegl local, buck.; MIDLENGTH 
X 12.1.1 buck(SAND)simp-support general buck; MIDLENGTH 

vinson: IAOAIISE1'= 1, SUHSE'T- 1 

; 
Design lterations 

pig. 3 The five margins that predict overall 
buckling of the unstiffened panel 
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15.1.1 Face1 wavelength/celldiam;STR;lseg= 1 ;Matla2 
0 16.1 . I  Face2 wavelength/celldiam;STR;lseg=1 ;Matl=2 

vinson: LOADSET= 1, SUBSET= I 
P 

~ N ~ T E !  Design Iterations 

O 10.1 -1 wrinkling ( HOFF );strng Isegl ; MID;face 1 ; MIDLENGTH 
0 11.1.1 wrinkling ( HOFF );strng Isegl ; MID;face 2; MIDLENGTH 
A 13.1.1 wrinkling (I3USHNL);strng Isegl ; MID;face 1 ; MIDLENGTH 
+ 14.1.1 wrinkling (I3USHNL);strng lsegl ; MID;face 2; MIDLENGTH 
9 -k-• u ~ . / L  = a o ,-q 

Design lterations 

rig. 6 Margins for honeycomb cell size constraint: Fig* Margins for face sheet wrinkling 
(face sheet wrinkling halfwavelength)/(l.732*s) > 2 
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2 T(2 )(SKN):thickness for layer index no.(2 ): STR seg=l , layer=2 

vinwn. SEE FILES vinson.OPM AND vinson.OPP 

s(2 )(SKN):Length of one side of the hexagon, s(2 ): STR seg= 1 

vinson. SEE FILES vinson.OPM AND vi~aon.OPP 'r 
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2 A A A A A 
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Design Iterations 

Fig. 10 Evolution of honeycomb core thickness Fig. 11 Evolution of width of one side of 
hexagonal honeycomb cell 



te(2 )(SKN):thickness of honeycomb call wall, tc(2 ): SPR seg=I 

vinson. SEE FILES vimn.OPM AND vinson.OPP 

Design Iterations 

Fig. 12 Evolution of thickness of honeycomb 
cell wall 



A MULTI-MODE RANDOM IMPERFECTION MODEL IN SHELL STABILITY 
ANALYSIS 

A.R. STAM 

MARCH, 1997 

It is generally accepted that the load carrying ca- 
pacity of cylindrical shells is highly dependent on 
the presence of initial imperfections, amongst other 
factors, such as boundary conditions and plastic- 
ity effects. In order to be able to design reliable 
cylindrical shells a so called 'knock down' factor is 
used. This 'knock down' factor is in this context 
only theoretically dependent on geometry parame- 
ters. Therefore, in order to be able to explain the 
empirical buckling load scatter, one needs to incor- 
porate this scatter into the parameters of the shell 
model. Then the quantified scatter of the parame- 
ters allows a probabilistic approach. 

LIST OF SYMBOLS 

A - Random buckling load. 
4 (5) - Probability density function 

of random variable 2. 
@A(X) - Cumulative distribution function 

of random variable A. 

In the past quite a number of empirical results of 
buckling tests have been collected. When display- 
ing these normalized buckling loads against the ge- 
ometry factor f one obtains Fig. l .  The lower 

1 I I I 

Knockdown factor - 1 

R - Radius. 
L 

Y Unsafe 
- Length. 

t - Thickness. 
u - Poisson ratio. 
ES - Modulus of elasticity stringers 
4 - Stringer pitch. I I I 

e s  - Stringer eccentricity. 
O 

0 500 1000 1500 2000 
R - 

As - Stringer area. t 

1.9 - Moment of inertia stringer. Figure 1: Emipical results and 'knock down' factor. 
JS - Torsional constant. 
G - Shear modulus. bound curve to  'all' experimentallly determined 

9(2) - Limit state function. normalized buckling loads guarantees that failure 

P f - Probability of failure. will not occur when a design is based on a normal- 

J - Jacobian function for ized buckling load below this line. 

transformation. The conservativeness of this curve can be ex- 

RA - Reliability function of A. plained by the omission of any information about 

X - Normalized buckling load. design uncertainties of the shell other than the ex- 

rl - Path parameter. perimentally obtained buckling load. 
- 

- Axisymmetric imperfection amplitude One of the main causes of decreasing buckling 
[ax, 

of wave number i. loads can be ascribed by the presence of initial 
- 

- Asymmetric imperfection amplitude shape imperfections. In general one does not know 
[as, anything about the modes or amplitudes of the ini- of wave number 3. 

tial imperfections when presented in a Fourier se- 
ries. For any f the 'form' of the imperfection pat- 
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With respect to this statement one could argue to 
introduce a so called improved 'knock down' factor 
when extra information on the shell is available, for 
a particular series of shells. Then the extra avail- 
able information must be included in the analysis. 
This information is about the uncertainties in the 
parameters in the analysis. The uncertainties will 
be represented by statistical properties. 

Considering this reliability approach, one is able 
to 'raise' the conventional 'knock down' curve such 
that it is suitable for design for that particular se- 
ries of shells. This improved 'knock down' factor 
can be calibrated by the old one by assuming that 
for a particular $ a buckling load distribution is 
available. Then the lower bound curve specifies a 
currently accepted reliability level. 

In order to arrive at the improved 'knock down' 
factor, the following steps must be set. First, one 
has to identify the geometric imperfection pattern 
with respect to the 'perfect' shell geometry. Sec- 
ond, distributions, when one uses a Fourier series 
expansion, of the coefficients have to be determined. 
Third a distribution of the buckling load has to be 
determined, either theoretical or empirical. 

By assuming (experimental) or knowing (theoret- 
ical) the type of buckling load distribution, one can 
position the improved 'knock down' factor curve un- 
der the constraint that the probability of failure is 
the same as in the conventional 'knock down' curve. 
The interpretation of the probability of failure here 
is formally not correct. It should be interpreted 
here as the required stiffness of the shell expressed 
in terms of axial loading that should at least have a 
level above the 'knock down' curve. Shells that do 
not satisfy this requirement will fail at  a load level 
lower than the required ones. 

The transformation of the conventional 'knock 
down' curve into levels of acceptable probability of 
failure results in Fig. 2, under the assumption that 
the buckling load distribution, per level of +, is 
normal. Then the integration of this probability 
density function from minus infinity to the 'knock 
down' curve is the currently accepted measure of 
safety under the assumptions made here, Fig. 2, for 
a selected $. In order to determine the 'improved 
knock down factor' for a shell with a typical $ one 
must use the statistical information of the parame- 
ters under consideration to obtain a new probability 
density function based on this specific information. 
Then the location A of the 'raised' 'knock down' fac- 
tor can be found by integration of this 'new' prob- 
ability density function from minus infinity to the 
level of pf previously accepted. 

where the : refers to the 'new' set of statistical prop- 
erties. It has to be noticed that the assumption of 
normality substitutes the notion of non-failure in 
the case of application of the knock down factor 
with that of a probability of failure, without chang- 
ing the state of the model. It has to be proven from 
experimental data whether or not the assumption 
of the distribution being normal is valid. Possibly 
a bounded probability function is necessary. 

It can be argued that the assumption of an un- 
bounded probability density function is valid since 
the likeliness of occurrence of an experimental buck- 
ling load level under the knock down curve is very 
small, but present. However this approach, the as- 
sumption of normality of the probability density 
function, will be persued in this paper. Wether 
one should better use a bounded probability density 
function must await further experimental evidence. 

0.16 b 8 I 1 1 .  1 I 8 

0.14 Failure probability . 

Figure 2: Accepted levels of probability of failure 
based on experimental data and lower bound curve. 

The mean values and standard deviations of the 
obtained distributions per level of $ are given in 
Fig. 3 and Fig 4. From Fig. 3 it can be seen 

Figure 3: Calculated mean value of normal proba- 
bility density function per level of q. 
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that the expected value of the assumed probabil- 
ity density function decreases with increasing level 

I I I t I 1 I 8 

- ' Mean points * - 
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Figure 4: Calculated variance of normal probability 
density function per level of T. 

Variance points 
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"G.005 

0.004 

0.003 

of f ,  whereas the standard deviation is tluctuating 
strongly within certain bounds. The probability of 
failure displayed in Fig. 2 is also rather constant 
within certain bounds. If these results are repre- 
sentative for the complete shell population being 
tested, it can be concluded that under the presence 
of the same deviations in the shell, for an increasing 
level of T,  the the shell becomes more responsive 
for the same level of the normalized applied load. 

When using the reliability approach the main ob- 
jective is to find, the allowable load level for a spec- 
ified probability of failure. This means solving the 
equation 

in the input space. The limit-state function can be 
typed as 

with 

0.0°20 100 200 300 400~560 - 660 700 800 900 

- 

- 

- 

Where J(A, 6 is the Jacobian function for the trans- 
formation of the random variables from the input 
space 2 to the output space A. The formulation of 
the original problem described by Eq. 2 is in general 
very difficult and mostly not solvable. This equa- 
tion enforces an iterative solution procedure on top 
of the evaluation of a multi dimensional integral 
in order to obtain a continuous solution of X(pf ) .  
Therefore the problem is often formulated as 

since the loading is not necessarily random. 
Direct integration is not an alternative since gen- 

erally the design space is large dimensional and the 
integration domain is difficult to describe in the de- 
sign space. Therefore approximations will be used 
to obtain the reliability level of a defined structure. 

The function g(A, 2) is the limit state function, 
which separates the failure and non-failure region, 

2 MULTI-MODE SHELL STABILITY ANALYSIS 

The problems encountered in the field of stability 
of continuous systems are complicated. This phe- 
nomenon was already studied by PoincarB. Later, 
static stability of shell structures was investigated 
successfully by many schools. 

The stability of an equilibrium state can be eval- 
uated with the Trefftz criterion 

Equilibrium: bV = 0 

Stability: b2v 2 0 

where V represents the potential energy functional 
of the system under consideration. If this last equa- 
tion is not satisfied, higher order variations will have 
to be evaluated. The failure of the shell in the case 
of a perfect cylinder will be bifurcation. In general, 
the presence of asymmetric imperfections enforces 
the failure to be collapse. However, axisymmetric 
imperfections only do not necessarily reduce a bi- 
furcation point into a limit point (collapse). 

It was Koiter in 1945 who studied the structural 
stability for a continuous system in an axisymmet- 
ric configuration. Koiter was the first to recognize 
the sensitivity of the buckling load with respect to 
the initial imperfections. First, his general theory of 
small Gaussian curvature or theory of quasi-shallow 
shells showed the reduction of buckling load for 
small initial imperfections. Second, the special the- 
ory of small finite deflections or theory of shallow 
shells provided an estimate for the buckling load 
as a function of the imperfection amplitude, which 
was even more significant [2]. 

Later the effect of more than one imperfection 
mode was investigated, and also the significance of 
higher order theories has been discussed and devel- 
oped. 

The behavior of the cylindrical shell with a com- 
bination of a series of axisymmetric and asymmetric 
imperfection modes can best be explained as a re- 
sult of the nonlinear interaction of specific modes. 
This interaction of modes, which occurs at  cer- 
tain wave number combinations, is more harmful 
than the contribution of the individual modes act- 
ing alone. 



In shell stability analysis the simplest case to con- 
sider is the cylindrical shells with one imperfection 
mode. However, as already suggested the possible 
coupling of modes needs to be incorporated into the 
analysis in order to obtain a better model for the 
behavior of the shell. 

The nonlinear approach is based on the KArmAn- 
Donne11 equations with a stress-free imperfection 
shape W . ~ h i s  set of equations is derived, start- 
ing from the potential energy of the system. Then 
the first variation of the potential energy leads to 
the equilibrium equations. By introducing an Airy 
stress function F the in-plane equilibrium equations 
are satisfied identically. In order to solve for the 
unknown stress field F and the unknown displace- 
ment field in the radial direction W one needs be- 
sides the out-of-plane equilibrium equation a second 
equation, the so-called compatibility equation. 

The equilibrium and compatibility equations are 
respectively 

LA* (F) - LB* (W) = 
1 1 

- W,xx - - LNL (W, W + 2W) (7) 
2 

LB* (F) + LD* (W) = 

where W and W are positive inward. The linear 
differential operators LA*(), Lb*(), L p ( )  and the 
nonlinear operator LNL (S, T) are defined in [3]. 

Applying Galerkin's method and satisfying the 
natural boundary conditions, the solution of the al- 
gebraic equations for the buckling load will be an 
upper bound. 

The partial differential equation will be reduced 
to a set of non-linear algebraic equations via 
Galerkin's method. In order to formulate the 
residues to be minimized the two fields functions for 
the stresses F(x, y) and the displacements W(x, y) 
will be substituted, together with the field function 
of the initial imperfection amplitude. 

Here the initial radial imperfection amplitude is 
given by 

Nas m j r x  lj + t x fasj sin - 
L 

cos - (y - TKX) (9) 
j=1 R 

where ni is the integer describing the number of 
axial half waves, m j  the integer describing the the 

number of axial half waves in the asymmetric mode 
and lj the integer describing the number of circum- 
ferential full waves. 

For the response radial displacement function the 
following form is assumed 

Nas m j ~ x  l .  
+t  <asj sin - 

L 
COS (y - TKX) (lo) 

j=1 R 

where Elhot's skewedness parameter TK allows for 
buckling mode shapes of anisotropic laminated 
shells. The parameter 50 describes the uniform ra- 
dial extension of the shell due to the axial load. The 
assumed displacement satisfies approximately SS-3 
boundary conditions. 

The approach as mentioned above yields the fol- 
lowing set of nonlinear algebraic equations in terms 
of the unknown amplitudes taxi and Sasi referring 
to the axisymmetric and asymmetric imperfection 
amplitude respectively. 

lctNax 
+ ,, C a f h i  x %, (Eas, + 2Sas,) 6ijr 

i= 1 [": I 
And from the equilibrium equations 

R -* &i2) = 2- (~, ,af  + 1) Fi + D;la%iEm 
t 

- 2 1  (<ax, + Cax, ) 
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Figure 5: Response curve of axially loaded AS-2 
shell. 

where the coupling conditions are given by 

{ : for nj = nk, 
6; = 

otherwise (15) 

And finally 

This set of equations, Eqs.(ll,l2) and (13,14), will 
-, - 2  

be written as f (<, J, A). Notice that for the sake 
-, 

of simplicity the row vectors < = [&, . . . , <N] and 
+ - - < = El, . . . , JN] have been introduced. 

In the set of algebraic equations the F-functions 
-, 

contain the terms and X [4]. Since multiple so- 
lutions are available for selected values of faxi and - 
JaSj the path following method is a useful tool for 
the response analysis. In Fig. 5 the trace of a typi- 
cal response curve for the AS-2 shell is given. The 

Table 1: Imperfection mode properties of AS-2 
shell. 

imperfection properties of the AS-2 shell are listed 
in Table 1. And the geometric properties are given 
in Table 2. 

The response curve has been obtained by apply- 
ing a continuation procedure to the set of nonlinear 
algebraic equation given in Eqs.(ll); (14). By intro- 
ducing a path parameter via an auxiliary equation 
the response curve can be described in the solution 
space as 

The shape of the response surface can be de- 
scribed in an exact manner only by solving the orig- 
inal deterministic set of equations. In order to be 
able to follow traces on the response surface the 
original set of non-linear algebraic equations has to 
be extended by a constraint that enforces to trace 
of solutions to be on the response surface. Since the 
domain of interest consists of limit points only, the 
set of equations can be reformulated as 

Where r(?, f,X) = 0 enforces the determinant of 
the stiffness matrix to be zero, yielding a limit- 
point. I' can also be interpreted as an eigenvalue 
problem with the lowest eigenvalue being zero. For 
larger problem this last formulation is easier to solve 
in combination with the Newton corrections. This 
set of equation can be solved with the path fol- 
lowing method, [5], [6]. The solution of traces on 
the response surface for several limit load levels is 
given in Fig. 6. The traces on the response surface 
of both an axisymmetric and an asymmetric imper- 
fection mode in the multidimensional design space 
is shown in Fig. 7. 

It might become clear that the response surface 
contains quite a lot of symmetry. For a general re- 
sponse analysis this property can be interpreted as 



Figure 6: Trace on response surface for two asym- 
metric modes for several limit load levels of an AS-2 
shell. 

Figure 7: n a c e  on response surface for both an 
axisymmetrix and an asymmetric mode for several 
limit load levels of an AS-2 shell. 

an indifference of the sign of the imperfection ampli- 
tude. However, with respect to reliability analysis, 
this multiple symmetry hampers the development 
of an 'easy to use' algorithm. 

4 RESPONSE SURFACE METHODOLOGY 

In order to be able to estimate the probability 
of failure in practical problem one has in general 
to rely on simulation methods. However, the 'ex- 
act' response surface is not practical in employing 
this simulation procedure. Therefore approximate 
response surfaces will have to be used. Quite a num- 
ber of methods of fitting an approximate response 
surface to the 'exact' response surface are available, 
a few are useful. 

First of all one has to realize that the response 
surface will be used for simulation purposes. Al- 
though, in general, approximate response surfaces 
are not global fits, the selection of the design points 
is dictated by moments of the distributions of the 
random variables. This is to avoid incorrect re- 
sponse outside the domain of validity. 

192 

Second the effort of obtaining the approximate 
response surface has to be taken into consideration 
also. When the number of random design variables 
is increased, not only the number of evaluations of 
the deterministic buckling load increases, but also 
the effort of obtaining a limit point from the deter- 
ministic analysis increases dramatically. 

A solution to efficiently determining an approxi- 
mate response surface will be done via a so called 
multi-factor design [7]. It turned out that vary- 
ing only one factor at the time might lead to a 
completely wrong approximate response surface. In 
this way some coefficients of approximation might 
not be determined at  all. Therefore it became clear 
that it was necessary to use 'blocked' designs. 

In order to reduce the number of experiments or 
function evaluations for generating a response sur- 
face, generally incomplete factorial designs are em- 
ployed. As will become clear, there are many types 
of incomplete factorial designs. The concepts of an 
incomplete factorial-type design are applicable to 
general polynomials. In most of the cases one is 
considering a factorial-type design with a p-level of 
evaluation points. 

A full or complete factorial design, or a polyno- 
mial approximation in the most complete form usu- 
ally requires 

(i + r)! 
i!r! 

coefficients to be estimated, where i is the number 
of design dimensions, and r the design order (order 
of approximating polynomial). 

When one uses a incomplete factorial-type de- 
sign, the highest degree of polynomial that may be 
fitted to the observations from a p-level factorial is 
p - 1. Thus generally, a pk factorial design is a de- 
sign of order p - 1, with k the number of factors 
or in other words the design dimensions. In this 
way one can calculate the redundancy factor with 
respect to the complete factorial as 

It can be shown that via the use of an incomplete 
factorial design a large reduction of the number of 
observations can be achieved. 

In situations where the experimental error vari- 
ance is not so large as to require large numbers of 
observations to obtain the necessary precision, de- 
signs having small redundancy factors are desirable. 
However, in practice small redundancy design are 
not frequently employed because they do not pro- 
vide residual degrees of freedom necessary in order 
to do adequate testing of the obtained response sur- 
face. 



Table 2: Geometric properties of AS-2 shell. 

The overall analyses can be done in standardized 
levels. These levels can be obtained by the following 
scaling, as defined previously 

where i refers to the design number, and 

For the standardization the following identities hold 

and 

Thus the level at which one wants to evaluate the 
function to be fitted can easily be obtained from 

Si can be seen as sort scaling factor for the 'spread' 
of the design points in the design space. The general 
idea about the incomplete factorial designs is that 
one reduces to variance in the design with respect to 
the response parameter. The least one wants is, as 
mentioned, a constant variance, i.e. the error in the 
approximate response is independent of the position 
on the response surface. The maximum reduction 
of variance can be obtained when one creates a sit- 
uation in which the matrix [xIT[X] becomes an di- 
agonal form. Then the design is orthogonal. This 
orthogonality can be obtained quite easily for a first 
order polynomial design, by standardizing the de- 
sign. Then the coefficients are functionally indepen- 
dent, and the smallest variance design is obtained. 

Deriving a second order orthogonal design is a bit 
more elaborate. First one has to transform the sec- 
and order polynomial of the independent variables 
to a set of orthogonal polynomials. This transfor- 
mation provides a set of conditions which the coeffi- 
cients of the second order polynomial has to satisfy, 
such that the transformed design matrix is orthog- 
onalized [8] and [9]. 

It has to be noticed that orthogonality is referred 
to as orthogonality in a particular direction of the 
design. It can be shown that the uncorrelatedness 
of the coefficients can not be maintained in general 
when the design is being rotated in the design space. 
Therefore one can only assure that the variance of 
the first order terms is constant, whereas the vari- 
ance of the higher order and coupling terms varies 
with the rotation of the origin [8]. 

An example of response surface designs that is 
orthogonal and has low redundancy is the so called 
Box-Behnken design. The designs are characterized 
by the property of blocked orthogonality, and uses 
the properties of incomplete blocked design. This 
property is very admirable in a response surface de- 
sign method. The 3-level Box-Behnken design ma- 
trices are generated via a certain combination of 2- 
level factorial designs with incomplete blocks [lo], 
[ill. 

The quality of the response surface via the Box- 
Behnken design procedure will be demonstrated by 
the application to the above mentioned AS-2 shell 
with 4 initial geometric imperfections. The center 
point of the design will be at the average of the 
design variables and the variation in levels will be 
3 times the standard deviation. 

For a 4 dimensional design the Box-Behnken de- 
sign matrix takes the form 

Here the f 1 requires all combinations of levels of 
the design variables to be evaluated, meaning 4 de- 
signs per row. Design matrices for higher dimen- 
sions are given in [12]. With this design matrix 
one needs to evaluate 27 deterministic responses in 
order to determine 15 coefficients. 
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Figure 8: Approximate response surface for an ax- Figure 9: Approximate response surface for two 
isymmetric and an asymmetric imperfection mode. asymmetric imperfection modes. 

5 AppRoXlMATIoN OF THE RESPONSE SURFACE not be constant for the selected region. Contrary 

The previously stated technique of determining to that, there will be a large dispersion in the er- 

an approximate response surface will be demon- ror level over the response surface in the selected 

strated with a 4 mode imperfection model defined domain. 

according to table 1, for an AS-2 shell. It might, however, be considered that a small 

This approach of using approximate response sur- mean value of a design variable would in general 

faces allows the determination of the probability mean that the variance of that random variable will 

of failure per A-level based on the mean values of be small also. The argument with respect to pro- 

the amplitudes. With or without correlation be- duction processes is quite reasonable because there 

tween the random variables, one needs to evaluate will in general be some sort of quality control, that 

in advance the region in the multi dimensional de- do not allow these 'strange' occurrences to happen. 

sign space that would contribute significantly to the 
probability of failure. 7 MONTE CARLO SIMULATION 

Based on the variance of the individual random 
variables and their correlation one could initially The determination of the probability of failure 

guess which part of the design space could con- Can be done in several ways. One can try to solve 

tribute most at a specific buckling load level. the partial differential equations given by Eqs. 7 
and 8 with stochastic coefficients. The difficulty 

6 DISCONTINUITIES then is that this randomness reduces to possible 
solutions to this set of equations drastically. 

One of the main restrictions with respect to the An alternative is to solve the deterministic prob- 
application of the Box-Behnken response surface lem and apply a transformation of the random prop- 
methodology with respect to stability analysis is erties of the input space to the random properties of 
the presence of 'ridges' in the design space. These the output space. Also this procedure is only feasi- 
ridges are introduced by the presence of the axisym- ble for one or two random variables in the physical 
metric imperfection modes. problem, when one considers only the exact statis- 

It can easily be seen that for small amplitudes tical transformation. Of course approximate meth- 
of the asymmetric imperfection modes the 'spread' ods such as the First Order Second Moment method 
of the design points is dictated by the 'distance' could be used. 
available to the Z j  = 0 line. For general applications and especially for multi 

A solution to this problem might be the used of dimensional problems Monte Carlo simulation is 
selected scale factors per design dimension. This most efficient. One can use either 'brute force' 
alternative, however, would undermine the concept Monte Carlo simulation, i.e. that the complete do- 
of the Box-Behnken approach, i.e. the approxima- main of the random variables will be sampled. How- 
tion error distributed over the design space would ever, more efficient methods are available, such as 
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Figure 10: Reliability curves obtained via the dif- Figure 11: The effect of correlation between two of 
ferent methods. the asymmetric random variables. 

importance sampling, or directional simulation [13]. labeled 30 suggests that the plus and minus lev- 
The efficiency of importance sampling comes from els of the design points are situated at  respectively 
the fact that the simulation will be concentrated plus and minus three times the standard deviation. 
near the most probable point, or when evaluated The curve labeled 20 deviates due to the fact that 
in the slxmdard normal space, the @-point, i.e- the the insecure selection of the design points enforces 
shortest distance from the limit-state function to a large amount of samples to extrapolate the ap- . 
the origin in this standard normal space. proximate response. 

The importance sampling procedure is available 
via ISPUD (Importance Sampling Procedure Using 
Design points). First a Lagrange type optimization 8 CORRELATION 

procedure in the standard normal space will be em- 
ployed, and then importance sampling will be used From deterministic stability analysis it is known 

to evaluate the probability of failure. It is impor- that the response of cylindrical shells including mul- 

tant to consider the extra variable that is available, tiple geometric modes is quite differ- 

the shape of the weight function used during the ent from that if each of the modes is taken indi- 

sampling procedure [14]. vidually. This nonlinear coupling in the mechani- 

The advantage of the 'brute force' Monte Carlo cal model ensures the quite unpredictable behavior 

approach is that one is able to sample throughout of the shells. In the context of reliability analy- 

the complete domain of the random variable. The sis the effect of coupling can be demonstrated in 

disadvantage of using the approximate response terms of the probability of failure variation, with 

surface method or ISPUD, is again the desired the variation of the linear statistical dependence of 

knowledge of the largest failure volume. Since IS- the random variables incorporated in the reliability 

PUD also uses an approxiamte response surface de- analysis. In Fig. 11 the effect of correlation of 

scription for importance sampling the results are and ?a3a3, indicated as el3 On the global of 

expected to be quite similar. When one evalutes the the is shown. 

probability of failure for a load level of X = 1.0 as 
described above ISPUD provides pf = 0.16. This is 9 CONCLUSIONS 
close to the estimate with an approximate response 
surface with the design points situated at plus and These preliminary result of the reliability evalua- 
minus 20. tion with approximate response surfaces appear to 

In order to danonstrate the performance of the be quite useful. The main variables that influence 
approximate response surface described by the BOX- the analysis significantly are a combination of 
Behnken design procedure, the probability of failure . The quality of the response surface. ~ ~ t h  the 
will be calculated via Monte Carlo simulation. In approximation function and the mechanical 
order to justify the quality of the obtained results model used for the evaluation of the design 
also 'brute force' Monte Carlo simulation will be points, are important. 
used. 

From Fig. 10 it can be seen that the selection of s The effect of correlation. Identification of the 
the design points has quite a significant influence principle contributor the the probability of fail- 
on the eventual probability of failure. The curve ure is possible. 
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e Spurious design points. Design points that are 
automatically evaluated but do not have a 
meaning in the context of reliability evalua- 
tion. The effect of axisymmetric imperfection 
modes do introduce these typical 'ridges' in the 
response surface. 
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NONLINEAR RESPONSE OF THIN CYLINDRICAL SHELLS WITH LONGITUDINAL CRACKS AND 
SUBJECTED TO INTERNAL PRESSURE AND AXW, COMPRESSION LOADS 
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Abstract 

The results of an analytical study of the nonlinear re- 
sponse of a thin unstiffened aluminum cylindrical shell 
with a longitudinal crack are presented. The shell is ana- 
lyzed with a nonlinear shell analysis code that maintains 
the shell in a nonlinear equilibrium state while the crack is 
grown. The analysis accurately accounts for global and 
local structural response phenomena. Results are present- 
ed for internal pressure, axial compression, and combined 
internai pressure and axial compression loads. The effects 
of varying crack length on the nonlinear response of the 
shell subjected to internal pressure are described. The ef- 
fects of varying crack length on the prebuckling, buckling 
and postbuckling responses of the shell subjected to axial 
compression, and subjected to combined internal pressure 
and axial compression are also described. The results in- 
dicate that the nonlinear interaction between the in-plane 
stress resultants and the out-of-plane displacements near a 
crack can significantly affect the structural response of the 
shell. The results also indicate that crack growth instabil- 
ities and shell buckling instabilities can both affect the re- 
sponse of the shell as the crack length is increased. 

Introduction 

Transport fuselage shell structures are designed to 
support combinations of internal pressure and mechanical 
flight loads which can cause the structure to have a geo- 
metrically nonlinear structural response. These shell 
structures are required to have adequate structural integri- 
ty so that they do not fail if cracks occur in service. The 
structural response of a shell structure with a local crack 
is influenced by the local stress and displacement gradi- 
ents near the crack and by the internal load distribution in 
the shell. Local fuselage skin displacements near a crack 
can be large compared to the fuselage skin thickness, and 
these displacements can couple with the internal stress re- 
sultants in the shell to amplify the magnitudes of the local 
stresses and displacements near the crack. This nonlinear 
response must be understood and accurately predicted in 
order to determine the structural integrity and residual 
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strength of a fuselage structure with damage. Recent 
studies (e.g., Refs. 1-4) have shown that the stiffness and 
internal load distributions in a shell will change as a 
crack grows in the shell, and these changes will affect the 
local stress and displacement gradients near the crack. 
These studies show that the structural response and 
structural integrity of a shell with a crack can be studied 
analytically by the use of a nonlinear structural analysis 
procedure that can model crack growth in the shell. 

Typical nonlinear analysis results presented in Ref. 
3 indicate that different combinations of applied loads 
can cause different responses for a stiffened shell with a 
long crack. The magnitudes of the stress-intensity fac- 
tors associated with a long crack in a stiffened fuselage 
shell are affected significantly by different combinations 
of internal pressure and bending loads. The results ih 
Ref. 3 indicate that the magnitude of the crack-opening 
stress-intensity factor for a shell subjected to internal 
pressure and an axial tension load is less than the magni- 
tude of the corresponding stress-intensity factor for inter- 
nal pressure only. The results also indicate that the 
magnitude of the crack-opening stress-intensity factor 
for a shell subjected to internal pressure and an axial 
compression load is greater than the magnitude of the 
corresponding stress-intensity factor for internal pres- 
sure only. The magnitude of this stress-intensity factor 
for an axial compression load and internal pressure is 
greater than the corresponding magnitudes of the other 
two loading conditions because the nonlinear coupling 
between the axial compression stresses and the out-of- 
plane displacements near the crack amplifies the magni- 
tudes of the local stresses and displacements. 

The magnitudes of the mechanical loads used in the 
studies described in Refs. 3 and 4 are representative of 
loads that do not buckle the skin of the fuselage. Fuse- 
lage shells are usually designed to allow the fuselage 
skin to buckle above a specified design load that is less 
than the design limit load for the shell. During the design 
of the fuselage, it is assumed that the design limit load 
can occur anytime during the service life of the aircraft. 
As a result, a long crack could exist in the fuselage shell 
after a considerable amount of flight service, and loading 
conditions could occur that cause the shell with the long 
crack to buckle. Most nonlinear response and residual 
strength analyses that have been conducted to date for fu- 
selage shells with long cracks have been limited to an un- 
buckled fuselage shell response. 



The present paper describes the results of a nonlin- 
ear analytical study of the effects of internal pressure 
loading, axial compression loading and combined pres- 
sure and axial compression loading on the prebuckling, 
buckling and postbuckling responses of a typical thin, 
unstiffened aluminum cylindrical shell with a longitudi- 
nal crack. Predicted prebuckling and initial postbuck- 
ling deformation patterns and stress resultant 
distributions are presented for the different loading con- 
ditions and crack lengths. The effect of crack length on 
the initiation of stable tearing and unstable crack growth 
is discussed. The nonlinear analysis procedure used in 
the study is also described. 

Shell Model and Analvsis Procedure 

Shell Model 

The geometry of the shell analyzed in this study is 
described in figure la. The shell has a 9.0-inch radius, a 
0.040-inch-thick wall, and is 36.0 inches long. A longi- 
tudinal crack is located at 8 = 0' and at the shell mid- 
length. The initial crack length ranges from 1.0 to 4.0 
inches. The shell is a typical laboratory-scale cylindrical 
shell and is made of 2024-T3 aluminum alloy. The 
Young's modulus, E, for the aluminum alloy is equal to 
10 msi and Poisson's ratio is equal to 0.3. The yield 
stress for the material is 50 ksi and the ultimate stress is 
72 ksi. 

The loading conditions considered in the study in- 
clude internal pressure, axial compression and combined 
internal pressure and axial compression. The maximum 
value of the applied internal pressure considered is 143 
psi. This pressure is the pressure required to cause the 
shell with a 1.0-inch-long crack to fail due to internal 
pressure loading only. Internal pressure values equal to 
25 psi and 50 psi are considered for the combined load- 
ing cases. The magnitudes of the axial compression 
loads are increased from zero to the maximum axial load 
that the shell can support with a longitudinal crack. 

Nonlinear Analvsis Procedure 

The nonlinear response of the shells was studied 
numerically using the STAGS (STructural Analysis of 
General Shells) nonlinear shell analysis code.5 STAGS 
is a finite element code for analyzing general shells and 
includes the effects of geometric and material nonlinear- 
ities in the analysis. The code uses both the modified and 
full Newton methods for its nonlinear solution algo- 
rithms, and accounts for large rotations in a shell by us- 
ing a co-rotational algorithm at the element level. 
STAGS has static and transient analysis capabilities that 
can be used to predict local instabilities and modal inter- 
actions that occur due to destabilizing mechanical loads, 
such as an applied compression or shear load. The Riks 
pseudo arc-length path following method6 is used to 
continue a solution past the limit points of a nonlinear re- 
sponse. 

STAGS can perform crack-propagation and residu- 

al-strength analyses, and can represent the effects of 
crack growth on nonlinear shell response. A node-re- 
lease method and a load-relaxation technique are used to 
extend the length of a crack while the shell is in a nonlin- 
ear equilibrium state.2 The forces necessary to hold the 
nodes together along the path of new crack growth are 
calculated with this method. These forces are relaxed as 
the crack is extended, and a new equilibrium state is cal- 
culated which corresponds to the longer crack. The 
changes in the stiffness matrix and the internal load dis- 
tribution that occur during crack growth are accounted 
for in the analysis, and the nonlinear coupling between 
internal forces and in-plane and out-of-plane displace- 
ment gradients that occurs in a shell are properly repre- 
sented. Results from STAGS calculations include strain- 
energy-release rates and stress-intensity factors ** * that 
can be used to calculate the residual strength of a dam- 
aged shell. The crack-tip-opening-angle (CTOA) 
criteriong is used to determine when elastic-plastic sta- 
ble-tearing crack growth will occur. 

Both geometric and material nonlinearities are in- 
cluded in the analysis for the pressure only condition. 
The plasticity theory used to represent the material non- 
linearities is the White-Besseling theory. The finite ele- ' 
ment model used in the analysis for this load case is 
shown in figure lb. Symmetry conditions are applied 
along the edges 0 = 0' and 8 = -180' and along the edge 
x = 18 inches. Internal pressure is simulated by applying 
a uniform lateral pressure to the shell wall and an axial 
tensile force to the ends of the shell, with multi-point 
constraints to enforce uniform end displacement. Initial 
crack lengths of 1.0-4.0 inches are defined in the model. 
A high level of mesh refinement is required around the 
crack tip to predict accurately yielding at the crack tip, 
and crack extension. Crack extension occurs when the 
crack-tip opening angle is equal to 4.9'. 

The finite element model used for the axial com- 
pression and combined internal pressure and axial com- 
pression loading conditions is shown in figure lc. The 
mesh is refined around the crack to represent the local 
stress and displacement gradients associated with the 
crack, and a slightly courser mesh is used for the rest of 
the shell to represent the deformation modes associated 
with the nonlinear response and buckling of the shell. 
For the combined load case, the axial compression and 
internal pressure loads are applied in STAGS using two 
independent load states. The internal pressure load is 
simulated in the same manner as for the pressure only 
case, and axial compression is applied to the ends of the 
shell by specifying an axial force, and a uniform end dis- 
placement. 

The prebuckling response of the shells for these 
two loading conditions was determined using the non- 
linear quasi-static analysis capability in STAGS. The 
initial, unstable, postbuckling response of the shells was 
predicted using the nonlinear transient analysis option of 



the code. The transient analysis was initiated from an 
unstable equilibrium state just beyond the buckling 
point, by incrementing the end displacement. The tran- 
sient analysis was continued until the kinetic energy in 
the system went to zero. A load relaxation analysis was 
conducted from the point of zero kinetic energy to estab- 
lish a stable equilibrium state. The stable postbuckling 
response of the shells was computed using the standard 
nonlinear, static analysis option. 

Results and Discussion 

The results of an analytical study of the nonlinear 
response of a thin unstiffened aluminum cylindrical shell 
with a longitudinal crack are presented in this section. 
Results have been generated for three loading conditions 
that include: internal pressure only; axial compression 
only; and combined internal pressure and axial compres- 
sion loads. Results have been generated for longitudinal 
cracks at shell mid-length with initial crack lengths of 
1.0,2.0,3.0 and 4.0 inches. Typical results are present- 
ed to illustrate the effects of crack length on shell re- 
sponse for the applied loading conditions studied. The 
effects of varying crack length on the prebuckling, buck- 
ling and postbuckling responses of the shell are dis- 
cussed. 

Internal Pressure Loads 

The effects of increasing the internal pressure in the 
shell on the total crack growth or crack extension is 
shown in figure 2a for shells with initial crack lengths of 
1.0, 2.0,3.0, and 4.0 inches. These results indicate that 
the internal pressure can be increased until yielding oc- 
curs in the material near the crack tips, and then stable 
tearing of the shell wall occurs that causes the total crack 
length to increase. Unstable crack growth or fracture of 
the shell wall occurs when the slope of the curve in figure 
2a becomes zero, which means that a small increase in 
pressure causes a very large crack extension to occur. 
The results for an initial crack length of 1.0 inch indicate 
that stable tearing initiates when the internal pressure is 
approximately 113 psi and unstable crack growth occurs 
when the internal pressure is approximately 143 psi. The 
difference between the internal pressure required to ini- 
tiate stable tearing and the internal pressure that causes 
unstable crack growth is approximately 30 psi for the 
1.0-inch initial crack length. The results for an initial 
crack length of 2.0 inches indicate that stable tearing ini- 
tiates when the internal pressure is approximately 5 1 psi 
and unstable crack growth occurs when the internal pres- 
sure is approximately 79 psi. The difference between the 
internal pressure required to initiate stable tearing and 
the internal pressure that causes unstable crack growth 
for this initial crack length is 28 psi. The difference be- 
tween the internal pressure required to initiate stable 
tearing and the internal pressure that causes unstable 
crack growth for the 3.0- and 4.0-inch initial crack 
lengths is approximately 24 psi and 21 psi, respectively. 

These results indicate that the difference in internal pres- 
sure between the initiation of stable tearing and unstable 
crack growth decreases as the initial crack length in- 
creases. The effect of increasing the initial crack length 
on the internal pressure required to initiate stable tearing 
of the shell wall and to cause unstable crack growth is 
shown in figure 2b. The lower curve represents initiation 
of stable tearing and the upper curve represents unstable 
crack growth. These results indicate that the internal 
pressure required to initiate stable tearing and unstable 
crack growth decreases as the initial crack length in- 
creases. 

Contour plots of the hoop stress resultants in the 
shell with the 3.0-inch initial crack length are shown on 
the corresponding deformed shapes of the shell in figure 
3. Figure 3a shows the entire finite element model used 
in the analysis and defines the magnified region shown in 
figures 3b-d. Results are shown in figure 3b for an inter- 
nal pressure of 21 psi which is less than the pressure re- 
quired to initiate stable tearing. The results in figure 3c 
are for an internal pressure of 44 psi after some stable 
tearing has occurred. The results in figure 3d are for an 
internal pressure of 54 psi which causes unstable crack 
growth to occur. The darker and lighter regions in the* 
figures correspond to higher and lower values of the 
hoop stress resultant, respectively. The increase in the 
size of the darker regions indicates the increase in the 
size of the local region with higher values of the hoop 
stress resultant. The axial and hoop stress resultants near 
the crack tip have high values, and these stress resultants 
increase in magnitude as the pressure increases until the 
material yields and stable tearing occurs. The modulus 
of the material is reduced as the material yields, and the 
effective stiffness of the shell is reduced locally in the 
plastic zone. The shell is stable until unstable crack 
growth occurs. 

The results in figure 3 also indicate that large out- 
ward radial displacements occur in the neighborhood of 
the crack because of internal pressure. The response as- 
sociated with these radial displacements is often referred 
to as "crack bulging" in the literature. The maximum 
values of the radial displacements near the crack increase 
as the initial crack length increases, when the magnitude 
of the internal pressure is slightly less than the internal 
pressure required to initiate stable crack growth. The 
values of this maximum radial displacement, w,,, nor- 
malized by the shell thickness, t, are w,,/t = 0.46, 1.58, 
2.29 and 2.69 for the 1.0-, 2.0- 3.0- and 4.0-inch-long 
cracks, respectively. These displacements are greater 
than or equal to the shell thickness for crack lengths 
greater than or equal to 2.0 inches, and represent large 
displacements in the context of nonlinear thin shell theo- 
ry. 

Axial Com~ression Loads 

A summary of the effects of axial compression 



loads on the load-shortening results of shells with initial 
crack lengths of 1.0,2.0,3.0 and 4.0 inches is shown in 
figure 4a. The symbols in the figure represent the initial 
buckling loads for the shells with different crack lengths. 
The applied load, P, and the resulting end-shortening dis- 
placement, u, in figure 4a are normalized by the classical 
values for the buckling load PC,, and the buckling end 
displacement ucr for a shell without a crack. These re- 
sults were obtained by increasing the axial compression 
load until the initial buckling load was determined using 
the nonlinear static analysis capability in STAGS. The 
effect of increasing the initial crack length on the initial 
buckling load of the shell is shown in figure 4b. The re- 
sponse of the shell is unstable for loads greater than or 
equal to the buckling load and, as a result, the axial load 
decreases after initial buckling occurs. The initial post- 
buckling response is determined by using the transient 
analysis capability in STAGS. The transient analysis is 
continued until the kinetic energy in the system is equal 
to zero. A time history of the change in the kinetic ener- 
gy for a typical analysis is shown in figure 5. Once a sta- 
ble equilibrium state is determined from the transient 
analysis, the nonlinear static analysis is resumed until an- 
other local buckling mode or the general or overall insta- 
bility mode occurs. The results shown in figure 4a 
indicate that the magnitude of the initial buckling loads 
for the shell deceases as the initial crack length increases. 
The values of the normalized initial buckling loads are PI 
P, = 0.88,0.59,0.49 and 0.43 for the 1.0-, 2.0- 3.0- and 
4.0-inch-long cracks, respectively. The axial compres- 
sion loads for the stable postbuckling equilibrium states 
are much lower in value than the initial buckling loads. 

The maximum values of the radial displacements 
near the crack increase as the initial crack length increas- 
es, for axial compression loads that are slightly less than 
the initial buckling load. The value of this maximum ra- 
dial displacement, w,,, normalized by the shell thick- 
ness, t, is w,,/t = 0.2, 1.2,2.1 and 3.0 for the 1.0-, 2.0- 
3.0- and 4.0-inch-long cracks, respectively. These preb- 
uckling displacements are greater than or equal to the 
shell thickness for crack lengths greater than or equal to 
2.0 inches, and represent large displacements in the con- 
text of nonlinear thin shell theory. 

The postbuckling deformation pattern for the cylin- 
der with a 2.0-inch-long crack is shown in figure 6. The 
hoop and axial stress resultant distributions near the 
crack are shown on the right of the figure. The darker re- 
gions on the figures represent higher values of the stress 
resultants and the lighter colors represent lower values of 
the stress resultants. These results show that the crack 
has a relatively small, but noticeable, effect on the dis- 
placement pattern and the stress resultants. For the long- 
er 3.0- and 4.0-inch-long cracks, the radial 
displacements near the crack are large relative to the 
shell thickness, and the initial buckling of the shell is a 
local buckling mode that is followed by a stable local 

postbuckling response before the shell buckles into its 
general instability mode. A typical example of the preb- 
uckling radial displacement pattern for the 3.0-inch-long 
crack is shown in figure 7a. The hoop and axial stress re- 
sultant distributions near the crack are shown on the right 
of the figure. The darker regions on the figure represent 
higher values of the stress resultants and the lighter re- 
gions represent lower values of the stress resultants. 
These results indicate that the crack has a significant and 
noticeable effect on the prebuckling displacement pat- 
tern and stress resultants. The stable postbuckling defor- 
mation shape is shown in figure 7b. The hoop and axial 
stress resultants near the crack are shown on the right of 
the figure. The deformation pattern in figure 7b indicates 
that the shell deforms into a local pattern with high cir- 
cumferential curvature that apparently stiffens the skin 
near the crack enough longitudinally to stabilize the shell 
and to increase the amount of axial compression load that 
can be supported by the shell after initial local buckling 
occurs. 

The results of the analysis indicate that the stress- 
intensity factors associated with the crack are affected by 
the load level and the shell equilibrium state. Typical re- a 

sults for the 4.0-in.-long initial crack length indicate that 
the stress-intensity factors KI and kI, which correspond 
to in-plane crack-opening mode and the crack-bending 
mode, respectively, are small in value for axial compres- 
sion loads up to approximately 75% of the initial buck- 
ling load. The stress-intensity factor KI begins to 
increase from a negligibly small value for the axial com- 
pression load that corresponds to u/u, = 0.30 to a value 
of 21.0 k s i f i  for an applied load that is slightly less 
than the initial buckling load. This stress-intensity factor 
then decreases to a value of 1 1.5 ksi f i  at the initial 
buckling load that corresponds to u/uc, = 0.44. This 
stress-intensity factor then increases up to a value of 
30.5 k s i h  in the postbuckling load range for an ap- 
plied load that corresponds to du,, = 0.62. The stress- 
intensity factor kI is very small up to initial buckling and 
then rapidly increases to a value of 105.4 ksi f i  when 
initial buckling occurs. This stress-intensity factor fur- 
ther increases up to a value of 107.4 ksi & in the post- 
buckling load range for an applied load that corresponds 
to du,, = 0.62. These results suggest that a significant 
amount of local bending occurs near the crack tip at 
buckling and this local bending continues to increase in 
the postbuckling load range. 

Combined Internal Pressure and Axial Com~ression 
Loads 

A summary of the effects of combined internal 
pressure and axial compression loads on the buckling 
loads for shells with initial crack lengths of 1.0, 2.0, 3.0 
and 4.0 inches is shown in figure 8 for 25 and 50 psi of 
internal pressure. These results indicate that the initial 



buckling load of the shell increases as the internal pres- 
sure increases for a given crack length. The initial buck- 
ling load increases because of the tensile hoop stress 
resultants near the crack which tend to stabilize the shell. 
The results also indicate that the buckling load decreases 
as the crack length increases for a given pressure. The 
values of the normalized initial buckling leads are PI P, 
=0.98,0.75,0.67 and0.63 for the 1.0-, 2.0- 3.0- and4.0- 
inch-long cracks, respectively, for 25 psi of internal pres- 
sure; and are PI PC, = 1.12,0.92, 0.83 and 0.77 for the 
1 .O-, 2.0- 3.0- and 4.0-inch-long cracks, respectively, for 
50 ~ s i  of internal Dressure. 

The maximum values of the radial displacements 
near the crack for axial compression loads slightly less 
than the corresponding initial buckling load increase as 
the crack length increases. The value of this maximum 
r~dial displacement, w,,, normalized by the shell thick- 
ness, t, is w,,/t = 1 .O, 2.7,4.6, and 6.5 for the 1 .O-, 2.0- 
3.0- and 4.0-inch-long cracks, respectively, for 25 psi of 
internal pressure; and is w,,lt = 1.3,3.6,5.8 and 7.9 for 
the 1 .O-, 2.0- 3.0- and 4.0-inch-long cracks, respectively, 
for 50 psi of internal pressure. A typical example of the 
prebuckling radial displacement pattern for the 4.0-inch- 
long crack is shown in figure 9 for 50 psi of internal pres- 
sure. These results indicate that increasing the internal 
pressure changes the prebuckling-deformation results 
significantly compared to the results for axial compres- 
sion with no internal pressure. 

Concluding Remarks 

The results of a11 analvtical study of the effects of a 
tongitudinal crack on the nonlinear response of a thin un- 
stiffened aluminum cylindrical shell subjected to internal 
pressure, axial compression, and combined internal pres- 
sure and axial compression loads are presented. The re- 
sults indicate that the nonlinear interaction between the 
in-plane stress resultants and the out-of-plane displace- 
ments near a crack in a thin shell can significantly affect 
the structural response of the shell. Large local stress 
and displacement gradients exist near a crack in the shell 
for all loading conditions considered in the study. The 
results indicate that the nonlinear response of the shell 
depends on the loading condition applied to the shell and 
the initial crack length. The magnitude of the internal 
pressure required to initiate stable tearing in a shell sub- 
jected to internal pressure decreases as the initial crack 
length increases. The magnitude of the internal pressure 
required to cause unstable crack growth in a shell also 
decreases as the initial crack length increases. The initial 
buckling load of a shell subjected to axial compression 
decreases as the initial crack length increases. Initial 
buckling causes general instability or collapse of the 
shell for shorter initial crack lengths. Initial buckling is a 
stable local response mode for longer initial crack 
lengths. This stable local buckling response is followed 
by a stable postbuckling response, which is followed by 

general or overall instability of the shell. The results for 
combined internal pressure and axial compression indi- 
cate that the initial buckling load of the shell increases as 
the magnitude of the internal pressure increases, but de- 
creases as the initial crack length increases. Increasing 
the internal pressure tends to increase the initial buckling 
load of a shell with a crack, but it also increases the local 
stresses near the crack and decreases the crack length 
that initiates stable tearing and unstable crack growth in 
the shell. 
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Figure 1. Shell geometry and finite element models. 
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Figure 2. Effect of increasing internal pressure on crack extension, initial stable tearing 
and unstable crack growth for different initial crack lengths. 



(a) Shell deformations, internal pressure = 44 psi (b) No stable tearing, internal pressure = 21 psi 
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(c) Stable tearing, internal pressure = 44 psi 

Figure 3. Deformed shell and hoop stress re 
subjected to internal pressure. 
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Figure 4. Effect of initial crack length on the response of a shell subjected to axial compression. 
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Figure 5. Kinetic energy time history for the unstable buckling reponse of a shell with a 3.0- 
inch-long crack and subjected to axial compression. 
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Figure 6. General instability deformation pattern for a shell with a 2.0-irich-long crack and subjected to axial 
compression. 
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(a) Prebuckling deformation pattern just before initial buckling 

Figure 7. Prebuckling and postbuckling deformation patterns for a shell with a 3.0-inch-long crack 
and subjected to axial compression. 
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Figure 8. Effect of internal pressure on initial buckling load. 



Figure 9. Prebuckling defornation pattern for a shell with a 4.0-inch-long crack 
and sujbected to axial compression and 50 psi internal pressure. 





University of Delaware 
m a r k ,  DE 19716 

The behavior of shell structures is 
dbcused and Wrated  by the consideration of 
a circular cylindriil shell subjected to axially 
symmetric loads, composed of specially 
orthotropic materials. The particular 
characteristii of shell behavior are discussed, 
including the fact that away from structural, 
material and bad discontinuities shells behave 
as membranes. OnJy in w e W i  areas close 
to structural, material and load discontinuities 
are bending stresses superimposed on the 
membrane stresses. For these bending 
boundary layers (BBL) stresses can exceed 
membrane values by factors of two or more. 

Also presented are equations for the 
same sheU in which the Wl wall materials are 
mid plane asymmetric. In this case the 
governing equations differ from the mid-plane 
symmetric case. However a perturbation 
solution is presented w h i i  utilizes the solutions 
of the symmetric case, and the bending 
boundary layer for the asymmetric material shell 
is also defined. 

Shell structures involve very 
complited, lengthy equations which are fwther 
lengthened when the shell is composed of an 
anisotropic material such as many fiber 
reinforced composite materials. Added to that is 
the fact that for many structures composed of 
composite materials in which the fibers are in the 
plane of the mid-surface, the effects of 
transverse shear deformation should be 
included, complicating and lengthening the 
equations compared to the classical theory. 
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However, fw  the simplest to the 
invoked fom, the equations for sheik i 
certain cheractefistics whiih distingua them 

of stress and deformation, wherein the 
deformation s d u t i  are the particular sou- 
of the partial differential governing eq 
usually easy to solve. In the case of 
behavior, the stresses are uniform across the 
shell wall thickness, and usually found by e 
judicious use of free body diagram. 

However, close to any structura! 
discontinuity, such as a simply supported, 
clamped or other restricted edge, adjacent to a 
hob, or an abrupt change in wall thickness w 
material, there exists a bending boundary layer 
(BBL). In thii BBL, the stresses can exceed the 
membrane stresses by factors of two, three or 
more, due to the superposition of the bending 
stresses on the membrane stresses that exist 
throughout the shell. Obviously in the region of 
the BBL, the deformations are "wavy", and tKe 
curvatures are proportional to the bending 
stresses. 

Thus, all of the complications, the 
m i m w n  stresses, the areas of interest, and the 
sources of bad design all reside in the bending 
boundary layer region of composite shell 
structures and shells in general. 

A. E. H. Love' wrote the first paper on 
shell theory in 1888, and as recently as January 
1997, an interesting if not quite accurate quote 
says that for shells "all you need is LOVE". 
Relatively little was done in advancing shell 
theory until the great emphasis in this area 
emanated from the needs of World War I I ,  and 
shortly afterwards the advent of the missile a d  
space ages. Many of this century's great 
researchers concentrated their efforts on shell 
structures during this period including 
Tirnoshenko3, ReissneP"n5, FIQgge6 e 7 ,  

GoMenveizeB, VlasovQ, Naghdil O, Hoffn, 
Novozhilovl2, Kraus'3, Leissal4, Qymi5, and the 
one we honor here, Manny Stem. In fact the 
golden era of shell theory was in the 1940's- 
1970's. More recently, nonlinear shell theory 
has been chromicled by Libai and Simmonds16 
and Palazotto and Dennis17. Most recently the 
increasing use of composite anisotropic 
materials and sandwich construction has 
resulted in continued sophisticated 
developments. 



Ce~ainly Manny Stein contributed 
significantly to this overaN area of thin walled 
plate a d  shell structures as referenced in 

In the limited space available, an 
aaewt will be made to ' 
of interest, which inc 

hing new...". 

Equations are given for analyzing and 
designing circular cylindrical specially orthotropic 
shells subjected to axially symmetric static 

sry useful for treating 
situation. m y  also 
ng boundary layer 

equations may also be 
used to ana~~ze'the same shells composed of 
sandwich construction. 

Next, the equations are generalized to 
handle the case of mid-plane asymmetry 
wherever bending-stretching coupling occurs 
through the I3 matrii terms. This coupling, often 
avoided, provides an opportunity to improve the 
structural behavior of shells. and may reduce the 
peel stress= andlor improve the shear stress 
distribution in adhesively bonded joints. By 
including the B matrix effect, the shell equations 
am dramaticaUy altered. 

Finally these mid plane asymmetric shell 
equations can be solved straightforwardly by 
using a perturbation technique. 

This perturbation technique allows one 
to exploit all of the more conventional shell 
solutions, w h i  RTM, SRlM and other advanced 
manufacturing techniques allow us to 
incorporate the B matrix effects into the 
manufacture of shell structures, either 
throughout the shell or at least in the bending 
boundary layer. The latter may reduce the 
overall maximum stress levels significantly. This 
is an area of current research by the author. 

For the simplest case, consider a 
circular cylindriical shell of length L, radius to the 
middle of the shell wall R, and wall thickness h, 
as shown in figure 1. Also, consider that Love's 
Fir& Approximation holds: 

The sqaratb d q u i l ~ m  in this caw are well 
b w n :  

where the N quantities are in-plane stress 
resultants, the Q quantities are transverse shear 
resultants the M quantities are stress couples, 
p (x,8) is the radially distributed load per unit 
surface area, the q and m quantities are the 
surface shear stresses and the moments caused 
by the surface shear stresses. 

For the simplest case of classical theory 
the admissible deflections are: 

where u, v and w are displacements in the axial, 
circumferential, and radial diredions 
respectively, uo and v, are mid-surface 

displacements, px and Po are rotations, and 5 
is the d i n c e  measured from the shell wall mid- 
surface. For the classical case of no transverse 
shear deformation, the relations between the 
rotations and displacement are p r e s c r i i  to be 

If the shell is composed of composite 
nraterimls, the constitutive equations can be 
written most succinctly as: 



where the $"Bg and Bg quantities are 
extensional stiffness, bending-stretching 
coupling diffness, and f k d  stiffness m t r k  

iwety. $by are defind as 
s: 

Equation (11) can be ussd whether the 
shell is a la-ts, a homog material, a 
sandwich, and whether t erials are 
'Wropic w anisot 

Again, for the simplest case, consider that 
the applied load p(x) is axially symmetric, and that 
its fourth derivation with respect to x is zero, that 

ially orthdropic and 
mid plane symmetric, is., ( )16 = 0% = Bij = 0, 
and here are no su resses. In 
that the weming be written 
as: 

d i s t m d  mdb9 W, P& ttss 
per unit circumference (a 

shtl by a f rw  
t b w d t h e s  

It is -n t b t  the laleml ddleeth m n  $cs 
sbtaind by &in (Is), and that the in-pbam 'b. axial &fieion can -d 

(1 5) is; 
ewe 
kfoarndtobs 

Mo W ( X )  = - %ql e-a (Sin EX - CQS EX) 
2E2  

In (18) if &p/cbr2 = 8, then = &(O) d 
ML= &(L). A h  in (17) if d3a/& = 0, t k  QO = 

sar- a d  Mg 
s and the Q and Qb are t b  

Otbwise, they are 
ants to be determid by 
repremnting the budar)r 

The ppticubr adwantage sf using the 
solution in the fom of (1 8) is 
take advantage of the uniwe behavior of &dl 

in ("8) each term in the 
us soiutbn mntains trigonomdie 
oscilhte between f 1, moltiplierd by 
ial term with a newtive I 

nentizrl decay. If one st@ t 
.MB or e"&(L-)o s O.W, that 
gible, then each term in t b  
lutisn is negligibb &never 

 re 01 1 is t b  flerxural st qmrntiv in the 
axial direction, p(x) the axiallly symmetric 



The significance of (19) is that (18) 
rduces to only the last term, i.e., the particular 
sdlrtbn, whmver one is 9 w(x) or any 
other dependent variable i ions specified 
by ( I  Q), i.e. outside the bending boundary layer. 
One can show that in general the particular 
solution is the membrane sdution wherein there 

Mx or Me or transverse 
., the shell is in a state of 

membrane stress and deformation. For long 
shells that region can be significantly large. 

It is only near the ends, i.e., near to 
structural discontinuities that the homogeneous 
part of the solution is significant, and in that 
case, bending stresses and shear stresses 
proportional to Mx and Qx are important. Thus, 
this region is called the bending boundary layer 
(BBL) whose distance away from constrained 
ends is given by: 

The implications are most important 
including: 

9.  bending and shear stresses only exist in 
the BBL, otherwise the shell is in a state 
of membrane stress. 

2. It can be shown that the BBL also exists 
around a load discontinuity be it a 
concentrated bad, a ring load, stringer 
load, etc. Beyond the BBL the shell is in 
a state 04 membrane stress. 

3. Outside of the BBL in a laminated shell 
wherein d2 p/dx*=O. All interlaminar 
shear stresses are zero. Here, the 
implications are significant due to the 
expense and effort spent in NDE 
investigations over entire shell surfaces. 

4. The length of the BBL is so small that 
even a "tuna fish can" is a long shell, 
i.e., h > (BBL). 

kwrger than the BBL, then at x = 0, one 
can ignore the ML and BL terms in (18), 
and at x=b one can ignore the Mo and 
Qo terms in satisfying the boundary 
conditions at that edge. That is to say 
that for many shells the boundary 
d i t i o n s  at each end are uncoupled 
from the boundary conditions at the 
dher end, with great savings in an effort 
to obtain boundary value constants and 
overall solutions. 

6. fhe (BBL) for an anisotropic shell is 
dependent upon the material properties. 
If the axial flexural stiffness D l  1 is 
greater than the circumferential flexwal 
siiffness 022, then the BBL is longer 
than for an isotropic material or a shell 
with a "hoop" wrap. 

This behavior is aknost unique to shells 
and does not exist in beams, plates or rings. 
Only in beams on an elastic foundation does this 
phenomenon exist. 

If the shell wall under consideration is 
made of one lamina or a unidirectional laminate 
the in-plane stresses are determined easily from 

which is the same form for plate and beam 
structures. 

However for any other laminated .shell, 
one must determine the inplane stresses lamina 
by lamina and the stress values must be 
compared to the material strength allowable. In 
this case 

5. In e shell strwturs co 
segments, whenever a segment is 



duo 
where E,O =-,E: = ~ / R , K ,  =-d2w/dx2,  

dr 

F i l l y  the above equations can also be 
used to obtain the solutions from a shell 
composed of a sandwich construction , where 
for a symmetric sandwich the face thickness is 
tf, the core depth is hc. In sandwich construction 
of honeycomb and foam core, it is usually 
assumed aU of the in-plane and bending bads 
are resisted by the faces alone. In that case the 
stresses are &en by 

In the governing equations (15) and 
(la), 01 1 for the sandwich is 

If the sandwich faces are laminates in 
which the stresses must be determined in each 
lamina, then the use of (14) can be made 
wherein one assigns a k number to each face 
lamina and also the core itself in a 
straightforward manner. 

WITH MID PI ANE ASYMMFTRY 

With composite material laminates the 
stacking sequences can be selected for the 
stiffness .matrix of (1 1) to be asymrnetrii with 
respect to the shell wall midsurface. In that case 
the Bij # 0. Moreover with resin transfer 
molding (RTM), SRlM and other new 
manufacturing techniques it is easy to introduce 
preforms which are asymrnetrii if there is an 
advantage in doing so. In such cases if the A, B 
and D matrix quantities are constant, the 
governing equations for the lateral deflection 
w(x) is found to be: 

All R 

It is seen that the coefficient of the fwd 
. term is the well h w n  red flexural stiffness, 

De, often used in analyzing asymmetric beams. 
To simplify (25) define 

Using these, (25) becomes 

where the numerator and denominator of the 
second term have been multiplied by the shell 
wall thickness h. 

The second term appears only because 
of the asymmetry resulting in a non-zero B 
matrix term Bid. Were the shell symmetric it 
would have the same form as (1 5). 

Consider the coefficient of the second 
term to be small, i.e., less than unity, such that a 
small parameter a can be defined as: 

As an illustration, even in a construdion 
in which two laminae of the same thickness ere 
bonded together, one of aluminum and one of 
steel, even then ad. 

Equation (27) is now written as: 



Upon subdituting this into (29), and colleGfing 
hke p w w s  o% tks pr r r tuh th  pramtsr  a, 1 L 
seen that 

3. 

Thus, a pertuhation solution of the 
can be in terms of known 5. 

solutions of the simpler mid plane symmttk 
shell. It is also seen that a bending boundary 
layer exists, analogous to that for the mid-plane 
symetfic shell, obtainable from (20). 

6. 
It can be sbwn that for ael, (31) is 

another form of the exact solution for (30) and 
(25). 

-9 

Slutions for the drcular cylindrical shell 8. 
orthotropic materials, including 
ndwich construction, subjected 

to axially symmtric states loads have been 
presented. In the case of mid-plane symmetty, 9. 
the solutions h w  that the shell behaves as a 
membrane except in regions close to any 
structural, material or load di 
those regions there exists a bending boundary 18. 
layer wherein bending stresses are 
superimposed upon the nembrane stresses, 
and the sum of the stresses may exceed the 
membrane stress values by factors of two to 
thrrsg or more. 11. 

The governing quation for the lateral 
deflection of the same shell having mid-plane 
asysnmetiy is also presented. This equation is 
different h form from the symmetrk shell. It is 
also s.hown that in the asymmeltric case, the 12. 
bending bundary layer qlaalities of the shell 
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DESIGN OF PANELS HAVING POSTBUCKLING STRENGTH 

M. S. ~nderson* 
Eagle Aeronautics, Newport News ,VA 

Abstract 

The VICONOPT computer program for 
analysis and design of prismatic plate assemblies based 
on initial buckling has been modified to allow buckling 
to occur at loads less than the design load while having 
residual strength based on an approximate estimate of 
the overall buckling load assuming reduced stiffnesses 
of the buckled plate elements. A nonlinear analysis by 
the finite element code STAGS of a panel designed in 
this manner is in reasonable agreement with the 
simplified approximate analysis. The paper gives the 
results of a design study comparing the mass of panels 
designed to buckle at different load levels less than the 
design load for both aluminum and composite 
construction. 

Introduction 

The VICONOPT computer code1 is capable 
of optimum design of panels that are formed from a 
prismatic assembly of flat plates. The analysis used 
guarantees that buckling will not occur at loads less 
than the design value. A simple extension to the code 
has been made that allows panel designs with initial 
buckling loads at some prescribed fraction of the design 
load with a choice of the plate elements that will initiate 
buckling. (For example the skin of a stringer stiffened 
panel.) In this paper, the basis of the method is 
described, the accuracy of the design load calculation is 
assessed by a nonlinear analysis of a particular final 
design, and the characteristics of panels designed at 
different buckling loads relative to the design load are 
presented. 

In reviewing the research accomplished by 
Manuel Stein over his long career, it centered on the 
different theoretical components that make the 
VICONOPT computer code possible. Thirty four 
papers on buckling alone and eighteen papers on 
postbuckling were found. The list includes five papers 
on the fundamental theory required for buckling 
analysis with emphasis on transverse shear deformation 
and four papers on the implication of buckling analysis 
on design. The transverse shear deformation theory 
used in VICONOPT~. is essentially that of ~tein3. In 
addition Manny worked with the Lockheed group in 
monitoring contractual efforts on buckling and 

postbuckling analysis contained in the BOSOR and 
STAGS computer codes.. He also made significant 
contributions to the Boeing group in deveiop~ng exact 
buckling analysis capability for plate assemblies that is 
closely related to the fundamental analysis contained in 
VICONOPT. 

Basis of the Method 

The analysis in VICONOPT is based on exact 
stiffness matrices for each plate element that is 
undergoing a sinusoidal deformation in the length 
direction of the panel. The plate stiffness matrix is a 
transendental function of the inplane loading and the 
axial wavelength of the deformation. The analysis is 
performed over a range of axial half-wavelengths that 
usually cover the range from a value less than the width 
of the smallest plate to a value equal to the length of the 
panel. The lowest load found is the critical buckling 
ioad for the panel. This discrete sinusoidal wavelength * 

solution which is the VIPASA option in the program is 
exact for orthotropic panels without shear loading. For 
anisotropic panels or any with shear loads, this 
procedure results in skewed nodal lines so that results 
are valid only for long panels relative to the critical 
wavelength. Finite length panels can be treated by the 
VICON option where several wavelengths are 
combined that satisfy desired constraints such as zero 
deflection at panel ends. For optimization, any plate 
width or layer thickness can be a design variable and 
will be changed by the program to minimize the mass 
while carrying the design load. For panels designed to 
have post-buckling strength, two modifications have 
been made to the basic method. First, for local buckling 
(considered to be all half-wavelengths less than the 
panel length), the inplane loads inany plate designated 
by the user to initiate buckling is reduced by the 
fraction of the desired buckling load to the design load. 
when calculating the stiffness matrix for that plate. 
Second, for general or overall buckling (considered to 
be the half-wavelength equal the panel length), the 
inplane stiffnesses of any plate designated by the user to 
initiate buckling is reduced by a fraction that is input by 
the user. This fraction as determined by analysis in the 
literature for single plates is of the order of .5 for metal 
plates. An innovative method of determining the 
reduced stiffness was developed by Dr. Stein in his 
doctoral dissertation and applied in a study4 of changes 
in buckle patterns in the postbuckling range . 

*~esearch Engineer, Associate Fellow AIPLA The longitudinal loads in each plate are 
Copyright @ 1997 AIAA - Reprinted by NASA with determined in VICONOPT as the Sum of a linear 

portion N1 and for local buckling, a nonlinear portion 
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Np due to pressure loads or imperfections. The linear 
portion is obtained by a simple stress analysis 
considering the entire panel cross-section as a beam 
subject to an axial load and end bending moments . 
This analysis is done twice, once with the full properties 
of all the plates and once for the reduced properties in 
the plates chosen to initiate buckling. The linear 
portion of the longitudinal load in each plate at the 
design loading is then taken as 

where rl is the fraction of the design load at which 
buckling is to occur. The additional subscript e 
indicates the result of the analysis with full stiffnesses 
and the additional subscript b indicates the result of the 
analysis using reduced stiffnesses for the buckled 
plates. Equation (1) is correct for axial loads only but is 
only approximate if bending is present. 

The nonlinear portion of the longitudinal 
loading is determined from the beam-column formula. 
Two values are again calculated, Npe based on full 
properties for all plates and Npb based on reduced 
properties of the buckled plates. A summary of the 
various conditions and the expression used for the axial 
loading N is as follows. 

Local buckling, buckled plate 

Local buckling, nonbuckling plates 

General buckling, all plates 

Equation (3) is the best estimate of the plate loading at 
the design load and therefore is used in any material 
strength design requirement. Equation (2) is the correct 
loading in the buckled plates at the load level buckling 
is specified to occur. However, plates not designated to 
buckle must sustain the full loading given by equation 
(3) which gives higher loadings than a complete elastic 
analysis. Because these loadings are higher than that 
which occurs at the load level that initiates buckling, the 
actual buckling load would be somewhat higher than 
that specified by the user. Since this is a secondary 
effect associated with the edge restraint between the 
buckled plates and the unbuckled plates, this difference 
is usually small. Finally it is assumed that the general 
overall mode with loadings given by equation(4) is a 
column mode that is not affected by bending moments 
so no nonlinear terms are added for this case. There is 
also an option to use the general buckling load in the 

beam column formula rather than the column load 
calculated from the moment of inertia of the cross- 
section when calculating Npe and Npb used in 
equations (2) and (3). 

The above changes to the code result in 
essentially no change in the time required to do a given 
optimization problem so no penalty is incurred for 
designing panels having postbuckling strength. 

Evaluation of the Method 

In the early stages of the development of the 
method, a zee-stiffened panel was designed to buckle at 
two thirds of the design load with the skin initiating the 
buckling. The dimensions of the panel, the design 
loading and material properties used are shown in 
figure 1. The design was based on a panel length of 30 
inches with simply supported ends and classical plate 
theory was used in all theoretical calculations. The 
plate elements forming the skin were the only ones 
chosen to initiate buckling at two thirds of the design 
load. It was assumed that the inplane stiffness of the 
skin after buckling was .5 of its initial value. At this 

a 

time, the stress analysis was based on the full properties 
of all the plate elements as equations (2-4) were not yet 
implemented in the code. The resulting design was 
analyzed in the postbuckling range with the STAGS~ 
nonlinear code. Prescribing boundary conditions that 
allow the ends to remain moment free during the 
nonlinear STAGS analysis is very difficult if not 
impossible. Therefore the panel was assumed to be 
twice as long and boundary conditions of uniform end 
displacement with no rotation of individual plates was 
imposed for this and all subsequent STAGS analysis. 
The collapse load was found to be about 90% of the 
design load. Examination of the deformation pattern 
showed that after initial buckling, the overall panel 
mode began to develop with appreciable deflection. 
This deformation pattern caused additional bending 
from the beam column effect of the axial load which 
caused premature collapse in the area of the stiffeners. 
A new design was made where an initial imperfection 
was introduced as a design requirement. This results in 
additional bending moments that the panel must sustain 
similar to those found in the STAGS analysis. The load 
shortening curve for this panel as determined with 
STAGS is shown in figure 2. Two cases are shown: 
one for an initially perfect panel and one for a panel 
with an imperfection the shape of the clamped column 
buckling mode. The amplitude was twice that used for 
the design with simply supported ends. This results in 
the same imperfection for the middle 30 inch length as 
was used in the design. The limit load for this latter 
case is 9% higher than the design load which indicated 
the proposed method had potential as being a 
reasonable approximation The analysis of this panel by 
the current version of the program where equations(2)- 



(4) have hccn implcmcntcd shows the critical load to be 
102% o f  thc design load. 

Effect of Initial Buckling Load and Post-buckling 
Stiffness on Panel Mass 

A parametric study was made of the effect on 
panel mass of varying the initial buckling load and post 
buckling stiffness for the configuration and design 
conditions shown in figure 1. The results for the 
aluminum design are shown in figure 3 where panel 
mass is shown as a function of the initial buckling load 
as given by rl and the postbuckling stiffness as given 
by r, (ratio of inplane stiffnesses after buckling to their 
original value)..No minimum gage'requirement was 
imposed and the thickness variables were allowed to be 
continuous. The value rl = 1 corresponds to a panel 
that buckles at the design load and its mass is not a 
function of rs. For values of rl less than one, the mass 
continues to be fairly insensitive to rs especially at the 
higher values of rl. This indicates that a conservative 
assumption could be made on rl without too great a 
mass penalty and there would be greater confidence that 
the panel capability would equal or exceed the design 
load. The results also show that significant mass 
savings can be obtained by allowing the panel to buckle 
at low loads which has been a result of several 
investigators working on this problem. A similar study 
was done on a composite panel with the design 
variables and material properties shown in figure 1. 
The results of this study are shown in figure 4. No 
requirement on minimum ply thickness was imposed. 
Also there was no requirement that there be an integer 
number of plies of a given thickness. The mass of the 
composite panel is about 60% of the mass of the 
aluminum panel for all initial buckling conditions. 

It was found that for panels designed to buckle 
at low loads relative to the design load, little or no 
margin existed for the overall buckling mode. Such a 
situation can make a panel very sensitive to 
imperfections because of the beam column effect. A 
study was made where the column buckling load used 
in the beam column formula was the actual overall 
buckling load. This forces the overall buckling load to 
be higher than the design load since the bending 
moment approaches infinity as the column buckling 
load is approached. This increased requirement 
increased the mass of the designs modestly. The results 
for a stiffness factor of .5 are shown in figure 5 where 
mass is plotted against the buckling load level for the 
composite panel using the two different assumptions on 
the beam column formula. A complete nonlinear 
analysis of designs from the two methods would be 
required to judge the adequacy of either approach. 

Coneludin~ Remarks 

A method of designing panels having 
prescribed postbuckling strength has been developed. 
The method is based on a modification of the design 
code VICONOPT that allows certain user selected 
component plates of a panel structure to buckle at some 
fraction of the design load and then have reduced 
stiffness for the overall panel buckling mode. The 
modifications to the code to accomplish this result have 
little impact on computer time so designs can be made 
rapidly with all the efficiency of the original 
VICONOPT program. Using the STAGS computer 
code for nonlinear response to analyze a panel 
designed to buckle at two thirds the ultimate load 
showed reasonable agreement with the simplifying 
assumptions of the analysis. A study of the effect of 
allowing buckling to occur at less than the ultimate load 
showed that mass savings of over one third are possible 
over a nonbuckling design for both metal and composite 
panels. Further work is required to evaluate the method 
for shear loaded panels or any other design condition 
requiring the use of the VICON analysis capability of 
the program. 
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Design Conditions: 

Simply Supported ends and Lateral Edges 
Axial Load 45000 lbs 
Amplitude of Sinusoidal Imperfection .03 in 
Plates forming skin with dimension b 1 designated to initiate buckling 

Dimensions: 
Length 30 in 
bl 5 in 

Design Variables 
Aluminum design: b2, bg, t 1, t2 = t3 
Graphite Epoxy Design: b2, b3, and all five ply thicknesses 

Wall Lay-up for Graphite Epoxy 
tl  45,-45,OlS (Two independent ply thicknesses) 
t2 45,-451s (One independent ply thickness) 
t3 45,-45.01s (Two independent ply thicknesses) 

Material Properties: 
Isotropic Aluminum 
E=10.5 x lo6 psi Poisonn's Ratio = .32 Density =.l lblin 3 

Graphite Epoxy 
E11=21.5 x lo6 psi, E2y1.35 x lo6 psi, E12=.75 x lo6 psi 

Major Poisson's Ratio = .3026, Density =.057 lblin 3 

Classical Plate Theory used in all theoretical calculations. 

Figure 1. Stiffened panel and design conditions. 
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Figure 2 STAGS load shortening curve for aluminum Z-Stiffened panel designed to buckle at two thirds design load. 
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Figure 3 Effect of buckling load and postbuckling stiffness on the mass of aluminum Z-stiffened panel. 
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I b 3 

Figure 4 Effect of buckling load and postbuckling stiffness on the mass of composite Z-stiffened panel 
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Figure 5 Effect of assumptions in beam-column formula on mass of composite panels. Calculated Euler load is used 
for m = 0 and the overall buckling mode from VICONOPT is s used for m =l.  
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sentations of the measured surface shapes of tbe cylinders. 

This paper summarizes the results of a numerical and 
experimental study of the collapse behavior of small-scale 
graphite-epoxy cylindrical shells subjected to overall bend- 
ing loads, and in one case, an initial internal pressure. 
Shells with quasi-isotropic and orthotropic inplane stifhess 
properties are studied Numerical results from geomeai- 
cally nonlinear finite element analyses and results from 
experiments using a specially-built apparatus indicate that 
extensive stable postbuckling responses occur. Oahotropy 
influences the buckling values and the extent to which the 
bending moment decreases after buckling. Material damage 
is 0 b ~ e ~ e d  to initiate in the vicinity of the nodal lines of tbe 
postbuckled deflection patterns. Numerical results indicate 
that the magnitudes of the shear stress resultants are great- 
est in these nodal regions. Failure of the internally pressur- 
ized cylinder is catastrophic. 

The response and failure characteristics of composite 
shell structures subjected to typical in-flight loads must be 
well understood before advanced composite materials can 
be used effectively for transport aircraft fuselage structures. 
The primary flight loads experienced by a typical transport 
fuselage structure are overall bending and internal pressure. 
Because the costs associated with full-scale fuselage exper- 
imentation and analysis are quite significant, a study of 
small-scale cylinders subjected to bending and pressure 
loads is justified. Previous paps1" present expanded die 
cussions of results of just such an investigation, and this 
paper summarizes thoe discussions, the emphasis here 
being on buckling, postbuckling, and collapse behavia. 

For the investigation a special fixture was designed to 
load small-scale cylinders into the ptbuckling range of 
response. The geometrically nonlinear responses of the cyl- 
inders were studied numerically with the use of the finite- 
element program STAGS~. Geomeaic imperfections were 
included in the STAGS analyses by using analytical repre- 

The present paper W b e s  the cylinder specimens, the 
loading apparatus, the finiteelement model, and the pre- 
dicted and measured responses, In addition, comments on 
failure of the cylinders are presented. 

A number of cylindrical shells with a nominal diameter 
of 12-in. were fabricated on an aluminum mandrel using 
unidirectional Hercules, Ioc. ~ ~ 4 4 3 5 0 2 ~  pre-impre 
graphite-epoxy tape. The spex5mens were eight-plies 
and had F45K)/90]s, [545/a21s, or F45/90& stacking 
sequences, 0 deg. being the axial direction. All but one of 
the test specimns were 12 in. long and had length-to-radius 
ratios of two and radius-to-thickness ratios equal to approx- 
imately 160. The one exception, not discussed here (see 
ref. 4), had a length-to-radius ratio of five. The cylinders 
tested were C-scanned for imperfections, and other than 
small ply overlaps and gaps, there were no major imperfec- 
tions in the cylinders discussed here. Internal and external 
fiberglass-epoxy tabs were attached to the ends of the spec- 
imens using a wet lay-up procedure. The tabs were c 
room temperature. The test specimen 
Isminntr? stacking sequences, average wall 
and radius- thickness ratios, WH, an 
Table 1. The average mechanical properties for tbe cy 
specimens am summarized in Table 2, where is should be 
mentioned that spechen QP1, the pressurized specimen, 
was made in a slightly different fashion and at a later date. 
Note in Table 1 that specimen A1 is stiffer inplane 
axial direction than in the circumferential, a hoop, 
tion, specimns A2 and A3 are stiffer inplane in the hoop 
direction than in the axial direction, and specimens Ql,Q2, 
and QP1 are quasi-isotropic with respect to inplane stia 
nesses. All spechem have anisotropic bending stifhess 
properties, is., have noouem values of Dlb and Dm 

The shell geometry and kinematics an de 
The midsurface radius, test length, a d  wall thickness of the 
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&ve1oped, andlor material 
dve1y. U d c  qumtieies uO,  vO, md w0 re ere unloaded. 
the hd, c b d e a e n e t d v  zund d d  &qlmmnps,  close to their 
tively, of a e  d & d ~ e ,  w h e ~ a s  jS,O, B:, and 8: r e p  original circular shape. ~n several cases the cylinders were 
sent the two inplme rowom, d the n o d  rotation, lo- multiple times. For the case of the additional inter- 
respeiwly, of the d & h m .  AppEed h n h g  and inper- nal pressure loading, a 100 psi internal pressure was &st 
nal pressure loads am W c a M  in fig.1b. The ends of the applied, then the jack load was increased to buckling, post- 
shells were constrained to remain c and circular. buckling, an& as will be seen, sudden failure of the cylin- 
Bending was induced by applying the rotation angle 8er. Though an 8 psi pressure would be representative of a 
R to the ends of the shell. The corresponding bending transport fuselage, the smaller diameter cylinders required a 
moment is represented by and the nominal strain on tbe higher pressure to simulate the same circumferential stress 
compressive side of the shell is represented by E. For tb resultant. 
internally pressurized case the ends of the shell we= 
dowed to expand freely in the axial direction by means of 
slotted pin supports. For the n*Pressure case the ends were For each shell tb measured initial shape of the outer sur- 
axially r e s a d  me shells we= p a i n u  white wit$. a face was assumed to represent the shape of the midsurface, 
black @d on the co~ngression s i b  to @rove visualization t b i c b s  of the wall was to be cons- 
of the observed &fledon patterns. Analytic representations of these shapes, based on Fourier 

. The bending series, wen used in the analyses. The Cnoded STAGS 410 
shell s p e b n  by element was chosen to model the shells, with 510 transition 

pins, where tbd elements being used when needed. Various mesh densities 
rotation of the monrent by the vertical were used, ranging &om 23,800 degrees of meedom to 

supplied to the 12300. The most efficient model had a finer mesh on tbe 
shell, compression side of the cylinder than on the tension side. 

was m a s d  by a load ce in The kinematic boundary conditions applied to the h t e  ele- 
shell was supplied by a high at was ment model for the bending-only case are shown in fig. 3. 
controlled by a regulator. Details of the shell specimen and ons enforced a clamped condition on 
the enattings are shown in fig. 2b. The intemal and exter- and rotated the plane containing the 
nal fiberglass tabs on the specimen ends and a low-tempera- e& of the s M  by the applied rotation angle $2. For the 
ture melting-pint alloy9 used as a potting compound, f additional internal pressure, a uniformly distributed 
provided the mans to attach the shells to aluminum end- load p was applied to the cylinder walls and the en& 
rings. The end-rings were then bolted to uhe test fix- shell were displaced axially = additional amount 
moment arm in order to apply the bending rotations to the 
shell. This arr 
ends of the she Y~ ' r$ pRL ( I  - 2vxe) , (1) 
cular. Internal gressm was 
the two end plates with O-ring seals. The pressure line was 
a#ach& to one end of Qhe s p e c h n  and an instrumentation 
plug was attashed to tbe 0 t h  end S where E, and Vxe are the laminate's effective axial inplane 

at a number of locations inside and th cylinder modulus sod effective inplane Poissm's ratio meacmiog 
contraction in the circumferential direction when loaded in 
the axial direction. 

With STAGS the buckling were calcu- 
lated us* the aPP as an incrementally- 

m o u n a  in the en&&@ und, kt applied loadiag panuneter. An =-length projection, or 
befose they were b o l a  to path-parametcr strategy, was used to compute the responses 

pnesm, the fixture b e y d  buckliag. With this strategy the incrementally 
tep is replaced with an increment of 

solution path, which is then used as an 
the end of the test whish in so- cases was the point of no mdependent loading parametea. The arc-length increments 

load akes u d o m g  tiom a pstsuckling codtioa. As tlse were automsaticay adjusted by STAGS as a function of the 
jack l o d  was incrred,  still md moving video wem used solution behavior. With this approach, the highly unstable 

Po record a t i o n a h  in on regwding shelp p e w s ,  of postucklling could be studied. 

p d c d a l y  the b f o m t i o n  of the black @d s ~ M  on the 
compression side of the shells. m e n  the cylin&m &veE 
oped. psthckahg respame, the jack pressm was held 
constant md the postbucEdjng deflection gatteans we= out- 
lined, by bmd, oa &@ 8M8m of the sheU. hakting was h n  
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pht. T b  Bucfig p i n t  is 1 h l d  as point A, the 

The respow of the cy are l h % &  as pohts C, E, G, and 

the momnt-meation ~spoetses of the sheus. fist., &Pails hl& as pohc  B, D, F, atxi H. 
ckling path features both a stable 

Of numrica'y Wctcd pstbvcHng resPQnses will bc 
(e.g., B-6, D-E, etc.1 a. unstable segment presented for the orthoaopic F45/Q2Js shell subjected to 

only end rotation in order to illlusme the fe (e.g., A-P), 6-D, etc.), as shown in the inset of the figure. 

complex predicted postbuckling equiliMum Point B pepresnrs the m pstbucung momnk The 

the predicted and measured moment-rotation responses for slope of each d j a a n t  s a b b  s e p n t  & m w s  somwhat 

this loading will be discussed ancl coqaaed for the shell as the posthcfig Rspnse develops, in8icahg a rduc- 

specimens representing the three levels of inplane orthot- tion in the effective bending stiffiness of the sheH, E 2 ,  due 

ropy. The predicted and mas& end rotation and to a change in the overall shape of the shell. As c m  be seen 

moment results are n o d z e d  by the classid values of tbe in the inset, the unstable s e w n &  of the p s t b u c f i g  paths 

buckling end rotation a,, and buckling moonent PA,,. gbe nmly coincide with the stabb s e w n &  of the 

classical buckling values are su in Tabb 3 for all p o s t k c f i g  path at b m points, i n d i a h g  that 

six shells. The! compressive buckling €,, sgain was in- nslcnbb equilibrim 

duced because it was often easier to m a s m  expaimw Befom g, it is ioopohtaplt to Ix s u e  fig. 5 is 
tally than the end rotations. These classical buckling p r O ~ ' y  . b this study h e  intea was PO conml 

quantities were computed from the relations end robtion Q Mh &is situation, rek&g to fig. 5, as the 
from zero, the momnt-roution 

M,, = nd~,, = Z X R J E ~  the origin to point A. ~t p in t  A 
and the solution would lose stability and, since $2 was bing 

controlled, the response shorald jump v e d d y  downwaacB 
G = L .  

'CF = 2 E g  2R eCF* (3) from the solution at point A to a solution oa path BC. With a 
a i n m ~  in h, the solutim should move up stabje 

where Dl is the axial bending sti&ss of the 1 E path B e  mwaPdls point C. At p in t  C the soludoe ag& 
is the laminate's effective circumferential inpl I-, would again lose sWGty, but sin@ n was king con@oll& 
and E g  is the effective bending stiffness of the shell. 1We the solution would jump vedcdy  downwaad to path Dl?. 
quantity N,, represents the axial force resultant associatsB 'Flhis dawnwand jumping would o c m  at subsequent peaks, 
with the axisymmettic buckling of a right circulw cylindai- E, G, etc. On the other h a d ,  if t % ~  momnt M was king 
cal shell subjected to axial compression. Equations 2 and 3 controlled, as the momno was inmasedi from Em, 
indicate that laminate orthotropy and shell geooneq affect solution would move from the origiin to p i n t  A. At point A, 
the classical buckling values. Continuing with the discus- since there would be a loss of sbbiliv, the soludoea wouM 
sion of results, typical observed move hopizontaluy to path FG. With a further increase in 
patterns will be described, and the momnt, the solution would move up pa& FG arndl upon 
age will be discussed The analysi reaching point 6 ,  would jump to path HI. Tb Merence in 
internally pressurized case will be discussed w h e ~  apgro- the actual path sd %o momaab 
priate. control is quite t h e f a t h a b  

jump from p i n t  A to BC9 for e x q b ,  would actually 
be a dwafnic event. 

T$e d e b t i o n  pattern cmspndiflg to the first h c t  
ling to p i a t  A posthc&g quabriurn 
solu C d I b f i g .  5 am shomirafig. &<to 
illusbrate the pmgres&osa of &fomdoa with hmasing 

is normalized by the w end rotation. The b u d n g  p e m  with poht A 
indicaes a shoft w a v e b ~ f i  bascgding m&, w k m  skewing 

60% of the wall thickness. As can be seen, a 
roundness coupled with local &vi&oas ch 
imperfection. 

stion paerras and have lag@ 
i n w d  l d  bucBdes on the na si& of sku.  

OD of new inward 
postbuckling quilibdum pa&, he m o m n t e d  rotation local bucMes coinci&s witla the d u c t i m  in the egative 
response and associated deflection pattern will be ds- p o s t b c m g  h d n  s as the response p r o p =  
cussed for the axially stiff M5/O2ls shell A l .  The momnt- s c d o ~ s  
rotation relation is shown in fig. 5. The extensive postbuck- tion EsPQnS. %t is inopomg to re& that these ~ f d c M  
ling response of this shell is indiated b the figm by sa shp%s we based on h ~ ~ e d o a s  ~ d B c  bs skus. 
number of scdlopshapeQ. branches kyond &e k c w g  S a a  q l w c a i l  sheik k t  wih & B e ~ n t  imp~ection 

c h w e i s d c s  would m s t  1 b % y  result in &Ee~nt 
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momnt -m~on  =lapions and different defomtion pa- 
terns. 

The iaedition of initial p m s m  had a substantial 
influenw on the pr&cted deformation response (see ref. 7). 
It is hypothesized hat the internal pressure eliminated 
much of the initial ovP;rall out-of-roundness, and even hav- 
ing an influence on the local deviations from the prefect 
case. 

As a summary of the buckling behavior, the predicted and 
measured buckling end mtatious and predicted and mea- 
sured buckhg moments are shown in Table 3. The quanti- 
ties q: and q:mp are the buckling end-rotatiom 
computed with a STAGS fidte-element analysis assuming 
perfect and imperfect geometry, respectively. The quantity 
QgP is the measured value. The nomenclature for the 
moments is similar. For cylinder QP1 columns 5,6, 9, and 
10 include the influence of the internal pressure. As can be 
seen from the table, for the unpressurized cases the ranking 
of the end rotations by laminate stacking arraugement was 
predicted correctly by the two finite-element analyses as 
well as the simple classic prediction, M t e  A1 requiring 
the least rotation to cause it to buckle. Also, imperfections 
almost always reduced the predicted end rotation. The addi- 
tion of the internal pressure for the quasi-isotropic case 
greatly increased the predicted end rotation in the presence 

tions, specifically about 40%. Finally, the ma- 
on was always less than any of the predic- 

tions. From Table be concluded that the ranking as 
de of buckling moment for the 

ly predicted by the finite ele- 
ment analyses, but not by the classical prediction. The axi- 
ally stiff cylinder had the lowest buckling moment 
predicted by the tiniteelement analyses, and the lowest 
observed, and the quasi-isotropic cylinder had tke highest, 
both predicted and observed. For the unpressurized cases 

was always less than pre- 
ctions accounted for, internal 

buckling moment about 
35% aod the measured buckling moment was greater than 
the predicted moment by about 5%. 

The predicted and measured moment-rotation responses 
cases are compared in figs. 7a and b, 

hich represent the thne 
ns 42, Al, and A3. 

these shells is identified 
gures and the values of 

at buckling are indicated in parenthe- 
predicted postbuck- 
ous section can be 

observed in fig. 7a for the case of the three representative 
specimens. The progression of the predicted postbuckling 
deflection patterns for the shell specimens Q2 and A 3  was 
similar to the progression shown in fig. 6 for specimen AI.  

nce among the predicted responses for 
11s is the relative difference between the 

value of the . m postbuckling moment and the com- 
g buckling moment. This relative difference is 
by the difference in the bending moments corre- 
g to points A and B in the moment-rotation response 

shown in fig. 5, and could represent a reduction in buckling 
capacity due to imperfections other than the included geo- 
metric imperfections. This reduction would be caused by 
the moment-rotation relation jumping to point B from the 
primary path as the loading increased from the origin 
toward A, the moment never reaching the predicted buck- 
ling value at A. The variation of this relative difference from 
cylinder to cylinder indicates the influence of laminate 
orthotropy, and to some extent, the effect of a particular 
measured shape imperfection on each shell. Table 4 sum- 
marizes the predicted reduction in bending moment for 
these cylinders, namely, the difference in the moments at 
points A and B. The implication in Table 4 is that in practice 
the axially stiff cylinder would be least influenced by 
imperfections not already included in the analysis. 

The measured moment-rotation responses are summa- 
rized in fig. 7b. The broken lines in this figure indicate a 
transition between the unstable buckling point, A, and a sta- 
ble postbuckling configuration. This transition is, as men- 
tioned before, a dynamic event and is accompanied by aa 
audible "popping" sound often interpreted as "buckling." 
The figure indicates that considerable postbuckling 
responses occurred in the experbmnts before the cylinders 
failed. It is important to note that the measured moment - 
rotation relations do not resemble the predicted moment - 
rotation relations, nor & they resemble the rotation-control 
vertical jumps or b moment-control horizontal jumps that 
were alluded to earlier. This is due to the difficulty of pro- 
ducing perfectly rigid fixtures, and producing loading sys- 
tems based on hydraulics or kinematics (screw-driven) that 
can respond instantaneously. So what actually occurs is that 
both the moment level and the degree of rotation change 
W a t e l y  after point A of fig. 5. 

Although for the reasons just discussed the measured and 
predicted moment-rotation responses do not, overall, com- 
pare well, it is apparent that similar trends are indicated. 
The prebuckling slopes coincide in both figs. 7a and b. 
Also, the ranking of the normalized buckling moments as a 
function of lamiaate orthotropy follows predictions, with 
the axially stiff cylinder having the largest normalized 
buckling Imment and the hoop stiff cylinder having the 
smallest mmalized buckling moment This would seem to 
indicate that the prediction of the inftuence of geometric 
impeMom is accurate. 

It was implied earlier that the reduction in buckling 
capacity in the experiments, relative to the finiteelement 
predictions, could possibly be identified with the moment- 
rotation relation moving from the origin in fig. 5 directly to 
point B instead of going to the buckling value at point A. 
Table 4 summarizes the percent difference in experimental 
vs. predicted buckling moment, and it is seen that the differ- 
ences & not cornlate well with the differences in moment 
between point A and point B. The difference between pre- 

ntal buckling moment is much less than 

S 



the difference between points A and B, leading to the con- 
clusion that the inclusion of the geometric imperfection 

accounting of cy 
all influences are not completely accounted for. 

The predicted and measured moment-rotation relations 
for the pressurized case are shown in fig. 8. The no 
tion is with respect to the definitions in eq. 2, the unpressur- 
ized case. As a result, buckling occurs when these 
parameters are greater than one, indicating that pressuriza- 
tion increases the buckling load relative to the no-pressure 
case. One of the no-pressure quasi-isotropic cases previ- 
ously discussed is indicated on the figure so the influence of 
internal pressure is better gaged. The predictions indicate 
that pressurization to 100 psi would increase the buckling 
moment by 35%. Observations indicate the increase was 
closer to 53%. 

The value of the reduction in moment after buckling is %a 

important parameter. For many designs, the buckling 
moment should be decreased by this value and the reduced 
value used as ultimate moment capacity. Interestingly, for 
these shells the reduction in moment appeared to be some- 
what a function of laminate orthotropy. Table 5 s u m  
the decrease in moment after buckling as measured from 
the experiments. It is seen that the axially stiff case, though 
having the lowest absolute buckling moment capacity, also 
had the lowest decrease in capacity after buckling. Interest- 
ingly, both the prediction and the observation indicate that 
the reduction in moment after buckling was considerable 
less if there was internal pressure. From the previous sec- 
tion the case of internal pressure was predicted to exhibit a 
12% drop, whereas experimentally the decrease was 2%. 

Two representative observed postbuckling deflection pat- 
terns are illustrated in fig. 9. The deflection patterns are 
presented in the form of outlines of the inward local bucklea 
on the compression side of the shells and are shown as a 
function of the coordinates x and 8. The symmbric and 
asymmebric patterns in this figure correspond to the 
F45/021s and [+45/90& shells, respectively. Thc 
F45/O2Is shell exhibited a symmetric deflection pattern and 
correlated well with the predicted postbuckling deflection 
pattern (see fig. 6). Tbe observed deflection patterns for the 
remaining shells correlated fairly well with the correspond- 
ing predicted deflection patterns. 

In most cases local material damage was not apparent 
immediately following the transition from buckling to post- 
buckling. However, as the applied rotation was incnased 
throughout the postbuckling range and the size of the 
inward local buckles grew larger and became more distinct, 
local material damage was observed in the vicinity of the 
nodal lines of the postbuckling deflection pattern. Ultimate 
failure of the shell specimens is attributed to an interlaminar 
shear failure mode which initiated along the nodal lines of 
the postbuckling de&ction pattern. This experimental 

observation is supported by tks STAGS andysis results. A 
magnified view of the 
in the vicinity of 
fig. 13. In this figure g the ma@bu& of 
the shear stress resul 

ure indicate that the magnitude of 
resultants is greatest in the regions o 
postbuckling deflection pattern, indicating likely interlaoei- 
nar shear failure locations. 

Regions of visible material damage, observed both before 
and after ultimate failure, are indicated in fig. 9. Matesial 
damage in the F45/O2Is shell A1 and w5/0/90]s shells QP 
and Q2 (notashown) shells was confined to regions in the 
vicinity of the aodal lines of the deflection pattern. Mate- 
rial damage in the two F45/9O2Is shells A2 and A 3  wars hi- 
tiated along the nodal lines of the deflection patterns and 
propagated along the circumferential direction during dti- 
mate failwe, as shown in fig. 9b. The severity of the 
observed material damage appeaas to be related to the rela- 
tive magnitude of the buckling rotation n,, (see Table 3). 
Equations (1) and (2) indicate that the buckling rotations 
an dependent on laminate orthotropy, thereby 
lamhate orthotropy to tbe severity of the observ 
damage. A secondary deflection pattern osc 
w5/o,]s shell, possibly due to the 1 
un indicated in fig. 9a The meas 
response for this shell, shown in fig. 7b, indicates thaO a 
reduction in bending stiffness is associated with the 
observed secondary deflection pattern. 

Failure of the pressurized cylinder was quite dramatic. 
After buckling, loading of the pressurized 
increased until the material damage occurred, The 
caused a leak in the cylinder and simultaneously the nitro- 
gen gas pressure was released in explosive fashion. Figure 
11 shows a sequence of events when applying inmasing 
moment to the pressurized cylinder. Careful examination of 
fig. 1 lb  revds a local buckle near the left end of the c o n  
pression side of the shell. The local bu 
the form of a single half-wave in the 
the &formations oriented radially inward. F i p  I lc  
shows the shell at the instant in time just after the failure! 
event initiated, the nitrogen gas venting rapidly. ;Figure I Id 
shows the failed cylinder. 

A numerical and experimental study was conducted to 
investigate the buckling and postbuckling behavior of %ply 
thin-walled gmphiteepoxy cylindrical shells loarded by end 
rotation, with and without internal pressure. The study indi- 
cated that the magnitude of the buckling end rotation 
depen&d on laminstc orthotropy, aml comp1cx multi- 
branched postbuckling equilibrium paths were W c M .  
Internal pressure significantly i the buckling end 

h on the postbuckling path n p ~ s e n M  
a unique deflection pattern &at was distincdy different &om 
the predicted b u c k g  patterns aad had large inward local 



Q e f o m ~ o n s  on ?he c o m p s s i o ~  sick of the sku.  

path a d  in pdcular, the ma@m 
bucfing mop%p&nt reldve to the 
shear stress ~ s u l m t s  were found to ke most severe in the 
regions of the nodal fines of mid locd defo 
the pslbucfding &flec~on pamms. 

Extensive pstbcfding responses o c c m d  in the tests. 
Large inward locd B e f o d o n  appeared on the compres- 
sion side of the shell specimns after buckling occurred, 
similar to those predicted by 
reduction in mornent in the ex 
dieted values did not c 
minimum postbuckling 
momno. The rduction in moment after buckling was 
observed to depend on cylinder orthobropy. Material 
age was evi&M in the p o s t h c w g  loading ranp. Ulti- 
mate failure appemd to initiate dong nodal lines of the 
local buckles of the postbuckling deflection patterns. The 
observed failure locations conelated well with typical pfe- 
died locations of high values of tlae shear slress resulmts, 
suggesting that I d  inbd ar shear saesses arre large 
enough to initi- fail=. With internal pressute, fail= 
was C ~ L ~ S @ O ~ ~ C .  
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'I$bk 3 - Chsicsll, Computed, and BucUng End 1Pgohtiom Momen& 

1 - no pressure, 2 - pressure, - not dete 

Table 4 - Reduction in Buckling Moment Table 5 - Redmaon in Moment afPes B u c m g  as 

- not determined 



(a) - Apparatus schematic (side view) 

low-temperature meltingpoint alloy 

(b) - Specimen and end fitting schematic 

Fig. 2 - Test apparatus and cylinder specimen 
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@ [i45/0/90]s, 42 W [T45/%ls, A l  A [F45Ws, A3 Note: Buckling valuu indicated in 
(Q/Qcr.  M/Mcr)  

1.5 - 1.5 - 

M M - 
Mcr [i:45/OIPO]s (0.88.0.85) 

(0.78.0.73) 
(0.84,O.U) 

x = ultimate failure 

0.0 1 .O 2.0 3.0 0.0 1 .0 2.0 3.0 

Q'Qcr 01% 

(a) - Predicted (b) - lkkaSmd 
Fig. 7 - Representative moment - rotation relations, no-pressure case 

(a) - Predicted (b) - Measured 
Fig. 8 - Moment - rotation relation, internal pressure case 

x = +6.0 in. - bucklea 

x=O.Oin. 

x = -6.0 in. 
90" 60" 30" W 330" UW)" 270" 90' 60" 30" W 330" 300" 270" 

(a) - SymeMc pattern forW5/O2ls specimen A1 (b) -UnsymmeMc pattern f0rF45/9%]~ spedmela A3 

Fig. 9 - q p M  observed p h c k l l n g  pa 
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ABSTRACT 

The previous review on stochastic buckling of 
structures was written by Amazigo in 1976. The 
present review summarizes some of the developments 
which took place in recent two decades. A brief 
overview is given of the effect on uncertainty in the 
initial geometric imperfections, elastic moduli, 
applied forces, and thickness variation. For the 
benefit of the thinking reader, the review has a 
critical nature. 

Present essay should be viewed as a direct 
continuation of our previous paper (1983) with the 
same title. In order not to repeat what was covered 
there, it appears instructive to read it although not 
necessarily prior to dwelling on this article. 
Accordingly the title is appended with the serial 
number. It is not promised that the third review will 
follow since the university science, both fortunately 
and unfortunately, stands on three things: relevance, 
interest, and grants. 

1. INTRODUCTION 

The general theory of buckling and 
postbuckling behavior of elastic structures and its 
principle essence-the imperfection-sensitivity theory 
was worked out by Koiter (1945, 1963). Further 
contributions were provided by Budiansky and 
Hutchinson (1964), Stein (1 968), Arbocz (1985) and 
other investigators. For a bibliography the reader 
may consult, for example, with the review articles by 

Budiansky and Hutchinson (1966), Hutchinson and 
Koiter (1970), Stein (1972), Budiansky (1974), 
Budiansky and Hutchinson (1979), Koiter (1976, 
1989, Arbocz (1990, 1997), and Knight and Starnes 
(1997). 

There are many other investigations dealing 
with the chism that exists between the theoretical 
analyses and the experimental results. Most 
unfortunately, the experimental results "misbehave" 
their way and do not match the theoretical 
predictions. In these circumstances it was not 
unnatural to look for the uncertainty as a responsible 
factor for the scatter in experimental results. One 
conceptually understands that there exist no two 
identical shells produced even by the same 
manufacturing procedure. Motivated by this idea, the 
investigators could ascribe the scatter in buckling 
loads to the scatter in initial imperfections. 

Next step made was to identify uncertainty 
with randomness and to utilize the probabilistic 
methods. We find the first hints of these thoughts in 
the paper by Hoff (1949): 

". ..% nature and the magnitude of the disturbance must be 
establishedfim a stahtical investigation of the conditions under 
which the structural element or p r t  of machinery will be used. 
% Snfety of the system m be  ofg guarded if it is & stable for 
aU distunbances which have a probability greater than a required 
minimum. " 

This idea, apparently independently, was 
pursued by Bolotin (1958). He postulated, in brief, 
that the buckling load X of a structure can be 

*copyright @ I. Elishakoff. 
Published by NASA by permission. 



expressed as a deterministic function of a finite specify a codified reliability r, i.e. the level of 
number of parameters Ti, representing the initial reliability below which the performance of the 
imperfections: structure is declared as an unacceptable one. The 

- - - probabilistic design criterion demands 

where N is the number of terms taken in expansions. 
we also assume that we are given the function p, as Combining Eqs. (3) and (4) results in 

well as the joint probability density ~ ( a )  = P ~ o ~ ( A  2 a)  2 r ( 5 )  

- - - 
fz(E11E21 YEN) = Inequality (5) leads to a possibility to solve some 

basic problems of stochastic buckling. If the left and 

(Ti i Ei 5 Ti + .Ti) right sides of Eq. (4) are known then one can check 
if the probabilistic design criterion (4) is met, or it is 
violated. If some probabilistic characteristic of the 

2 initial imperfection, say, its variance die, is 

of random initial imperfection vector, denoted by unspecified, one can calculate its maximum 
- - - admissible level max dio, such that the design 

X = (XI , X2, . . . , xN) i.e., the probability that 
criterion is satisfied. The value max dio 'is 

the random components Fi of the vector X will - - obtained by solving an equation 
belong to the interval (Ei, ti + dTi) where~z i  
is an increment. Due to assumed randomness of the R ( a )    rob ( h a  I maxdio) =r ( 6  9 
initial imperfection, the associated buckling load turns 
out to be also a random variable, denoted by A. Note 
that the random variables are denoted by capitals, 
whereas the possible values they can take on are 
identified by lower-case notation. Bolotin (1958) 
applied this method to a cylindrical panel under 
uniform compressive load along its curved edges, 
with the initial imperfections represented by a single 
normally distributed amplitude parameter. A single- 
term Galerkin approximation yielded an equation of 
type (1). Conceptually such an one-term analysis is 
quite straightforward. Once relation of type (1) is 
obtained, and the probability density of the initial 

Solution of this type of problems may then be 
introduced in the quality control process; if the 
variance of the initial imperfection exceedsmax dio 

the structure is declared unacceptable. The third 
prgblem consists in determining the design load a,, 
such that if a i a, then the reliability will not be 
less than r. 

The reliability of the symmetrically behaving 
structure at the nondimensional load level a! can be 
rewritten as 

imperfection Fi0 is specified or assumed (io is the 
R ( a )  =prob[-Tl ( a )  Gio<F1 ( a ) ]  ( 7  1 index of the governing initial imperfection parameter) 

one calculates the reliability of the structure. The 
reliability at preselected load level a! is defined as the 
probability that the structure will not buckle prior to where T1 ( a )  is the value at which the limit load 

a ,  or, in other words, it will live beyond "age" of a: equals a. This implies that Fl (a) satisfies an 
equation: 

Waving determined the reliability of the structure, one Hence 
proceeds with its design as follows. One should 



If, for example ji Zio is a random variable having 
a normal distribution with zero mean and mean- 
square deviation dio 

Then the reliability becomes: 

where ? ( x )  = initial imperfection, w ( x )  - 
additional deflection, P = axial load, kl  and k3 = 
nonlinear spring coefficients of the foundation. The 
buckling of the perfect column on a linear foundation 
is a textbook problem (e.g. Timoshenko and Gere, 
1961). The imperfect column on a nonlinear 
softening elastic foundation exhibits imperfection 
sensitivity in that the limit load the structure is able 
to support may turn out to be far less than the 
buckling load of perfect, linear, counterpart. 
Application of the Galerkin method for the column 
that is simply supported at its ends yields in a single- 
term approximation the following equation, derived 
by Fraser (1965) in his Ph.D. dissertation: 

This enables one to find the probabilistic design load 
a,, such that if a = a, than the least reliability of 
the structure equals r: 

r - 

Probability based knockdown factor (P.K.F.) is 
defined then as 

P . K . F .  = a, - 
PC P 

where PCP is the classical buckling load. 

In order to illustrate the stochastic imperfection 
sensitivity concept let us consider a simple structure, 
namely, a column on a nonlinear elastic foundation 

d 4 w  d% E I -  + P -  + k l w - k 3 w  3 

dx4 d x 2  
d 2ij; 

( 1 4 )  
- - -P- 

- 
where Ern = initial imperfection amplitude associated 
with m half-sine waves in axial direction, X = 
nondimensional limit load, s is a value depending on 
the physical parameters of the system. 

This type of analysis can also be 
demonstrated on t h ~  imperfection sensitivity of a shell 
with a non-axisymmetric periodic imperfections, 
studied by Koiter (1963): 

i c n x  
wo ( x )  = gh cos- I .  

where x = axial coordinate, y = circumferential 
coordinate, g = nondimensional initial imperfection 
amplitude, i , = the number of half-waves at which 
the associated perfect shell buckles, L =,shell length, 
h = shell thickness. Koiter (1963) arrived at the 
following equation relating the buckling load with the 
initial imperfection amplitude: 

when X = . Plim / P C ,  where Ppim is the limit load, PC 
= classical buckling load of the perfect shell, 

c =/-. 



The analysis which is based on a single-term 
approximation is quite similar in its general spirit but 
not in its particulars to the asymptotic analysis 
developed by Koiter (1945, 1963) and Budiansky and 
Hutchinson (1964). The asymptotic expressions or 
the equations based on a single-term Galerkin 
approximations can be utilized for understanding the 
disastrous influence of initial imperfections on the 
load-carrying capacity of the structure. 

As far as the probabilistic considerations are 
concerned, we are looking for highly reliable 
performance, associated with the probability of 
failure, say lo4 or even less. Realizing this, one 
immediately should cast a doubt on the possibility 
that the highly simplified expressions (which, 
however, are of extreme importance to capture the 
physical phenomenon itself) would accurately predict 
the required high reliability. In other words, 
simplified expressions may be unusable to calculate 
extremely small probabilities of failure. But this is 
exactly what the society demands, namely small, if 
not vanishing, unreliability. 

It was perfectly valid to utilize a single-term 
Galerkin approximation in Bolotin's (1958) early 
work. Analogously, application of Koiter's (1963) 
asymptotic expressions by Thompson (1967), Roorda 
(1972) and Hansen and Roorda (1973) served a 
purpose of illustrating the reliability approach in 
imperfection-sensitive structures (see also Augusti, 
1974). Yet it appears that an industrial designing 
firm, for example, cannot use such expressions in 
order to justify the reliability calculations with 
required extremely small probabilities of failure; 
taking into account additional terms in Galerkin 
expansion or additional terms in asymptotic 
expansions, may significantly alter the resulting 
probabilities of failure, and invalidate the designs 
proposed on the basis of single-term or asymptotic 
approximations. Yet, some very recent works still 
utilize the deterministic asymptotic expansions for 
reliability calculations (see, e.g., Cederbaum et al 
1996). 

We must assume that these fine points were 
perfectly understood by some investigators quite 
early, since they did not follow the deterministic 
single-term or asymptotic methodologies, in 
conjunction with treating the imperfection amplitude 

as a random variable. 

2. STUDIES BASED ON ERGODICITY 
ASSU ON 

In his review paper Amazigo (1976) stresses, 
relating to the equation (1) postulated by Bolotin 
(1958): 

"Zt is however a nonmmvial problem to obtain on (I) and perform 
the above analysis for N > 2, say. It is this dzflculty that limits 
the gectiveness of this method. " 

Instead of utilizing the concept of the random 
variable, as in works by Bolotin (1958) and 
Thompson (1967), the scholars of the Harvard group 
correctly decided to adopt the theory of random 
functions, identifying the initial imperfections as 
random fields with specified probabilistic 
characteristics, namely, the mean initial imperfection 
function and the autocorrelation function. Apparently 
first such studies dealing with imperfection 
sensitive structures were undertaken by Frazer (1965) 
and Frazer and Budiansky (1969). They studied the 
imperfect column on a nonlinear elastic foundation. 
The length of the column was taken to be infinity. 
The following assumptions were made about the 
initial imperfection field : (a) they were considered to 
form a weakly homogeneous random field, (b) the 
assumption of ergodicity of this field was also 
introduced. 

Weak homogeneity implies that the mean 
initial imperfection function is a constant, whereas 
the autocorrelation function depends only on the 
difference x2 - XI, where xl and x2 are spatial 
coordinates. Hence the mean square value of a 
homogeneous random function is constant too. The 
weak homogeneity, or insensitivity to the shift of 
initial cross-section of reference is possible for 
infinite domains. Therefore, possibly, the infinite 
length assumption was adopted. For solving the 
problem Fraser and Budiansky (1969) resorted to the 
classical method of stochastic linearization and the 
additional assumption, that the output random field, 
namely the additional deflection of the column, was 
ergodic too. The main conclusion derived in the 
paper was that each infinite column in the ensemble 
has the same, deterministic buckling load, which 
depends on the autocorrelation function of the initial 
imperfection alone, not on a particular realization of 



any of them. In his review Amazigo (1976) 
comments on the ergodicity assumption: 

"7he meth od... based on the ergodin'ty hypothesis leads to the 
conclusion that the structure will buckle statically or dynamically 
at the corresponding (deterministic- I. E.) load.. . with probability 
1. 7his result may appear paradoxical. However, to dispel the 
apparent contradiction we note that no matter how the origin of an 
in$nitely long column is de$ned the buckling load for such columns 

with impegections ( x ) = s in (X + @ ) is independent 
of + and hence independent of any probabilistic distribution we 
may assign to +. " 

Authors probably themselves did not 
anticipate the above surprising result. Thus, several 
other methods have been applied. Stochastic 
linearization was utilized in the paper by Amazigo et 
al (1971), method of truncated hierarchy was 
employed by Amazigo (1969), method of perturbation 
was used in the papers by Amazigo (1971, 1974), 
whereas in his review paper Amazigo (1976) 
employed an extension of Poincare's perturbation 
method in the context of the dynamic buckling load. 
Invariably, for infinite structures with ergodic initial 
imperfections the deterministic buckling load either 
static or dynami~~resulted. 

Later von Slooten and Soong (1972) (see also 
the discussion of it), and Fersht (1968) in Ph.D. 
dissertation again arrived at a deterministic buckling 
loads. As Fersht (1974) remarked: 

"This lergodicity-I. E.] assumption substantiates a considerable 
simplijication in the solution of the problem independently of the 
method of approximation used. " 

Not discussing the question of validity of the 
8ssumption or the final results, as well as their 
practicality, Fersht (1974) noted: "Qualitatively, the 
results obtained are as anticipated." It was also 
correctly concluded that, 

"...perhaps a more dijFcult task would be to justi5 the results 
obtained. " 

It appears to us that the source of the above 
paradoxal result stems from the fact that the authors 
assumed the ergodicity not only of the input field, but 
also of the output field. This assumption allowed to 
facilitate the analytical solutions that were derived. 
in order to check the validity of such an assumption 
Scheurkogel et a1 (1981) undertook an investigation 

of a model system, which allowed to obtain closed- 
form solution. Then the same problem was solved by 
invoking the ergodicity assumption. A control 
parameter k was introduced so that one could study 
the changing behavior of the system as the control 
parameter was varied. It turned out that, in general, 
the output of the system was inergodic. At some 
value of the parameter, namely, k = 2, the ergodicity 
assumption yielded a result coinciding with the 
response obtained exactly. This implies that 
sometimes the error may not affect the estimate of the 
system's response (the ergodicity assumption 
constituted a "good" error)! In two distinctive ranges 
of variation of parameter k the behavior turned out to 
be of different nature. For 0 I k < 2 the 
ergodicity assumption introduced a small error of the 
order of one percent. Yet, for 2 < k I 4 the 
ergodicity assumption led to large errors. In 
particular, when k tends to 4, the ergodicity-based 
solution is finite, whereas the exact solution is 
unbounded. As is seen, extreme caution must be 
exercised when invoking the ergodicity assum6tion: 
the differential equation itself, rather than an analyst, 
should be given a freedom to decide if the output is 
ergodic or not. 

Closely related conclusions were arrived at in 
another investigation (Scheurkogel et al, 1985) which 
investigated a specific applied mechanics problem, in 
which Bolotin (1971) also utilized an ergodicity 
assumption. 

3. MONTE CARLO METHOD 

Although the present writer was not a 
stranger to the stochastic buckling, through the works 
by Bolotin (1958), Makarov (1970) and Leizerakh 
(1969) the more deep interest into this subject was 
prompted rather incidentally. During the academic 
year 1977178, Professor B. Budiansky was supposed 
to spend a sabbatical year at the Department of 
Aerospace Engineering of the Technion-Israel 
Institute of Technology. Head of the Structures 
Group, Professor J. Singer recommended me to 
investigate some problems which may generate an 
interest of the distinguished sabbatical visitor. 
Without taking an obligation to do so I decided to 
study some of the works of Professor B. Budiansky 
in more detail. 



Amongst others, I read several elegant 
articles of Budiansky and Hutchinson devoted to the 
imperfection sensitivity of structures. When reading 
the article by Frazer and Budiansky (1969) about the 
buckling of a column with stochastic imperfections, 
their result struck me: the realizations of the 
columns are different, yet they all share the same, 
deterministic buckling load! Yes, this load did 
depend on the probabilistic characteristic of the 
im~erfection, yet it was shared by all other columns 
by unity probability. interestingly this load depended 
upon the single value of the spectral density of initial 
imperfections, and was independent, otherwise, on 
the spectral content of the field. 

To illustrate this point let us reproduce the 
formulas for deterministic buckling loads derived for 
shells. Amazigo (1969) obtained following 
expression for the static buckling load of a circular 
cylindrical shell: 

where S(1) is the power spectral density of the 
imperfection spectrum S(w) evaluated at the frequency 
corresponding to the classic asymmetric buckling 
mode, w = 1. Later on, Amazigo and Budiansky 
(1972) presented a modified formula 

According to the authors, this formula should provide 
a more accurate estimate for A,, the buckling load of 
the imperfect shell. Tennyson et al (1971) proposed 
to evaluate S(l) by utilizing the power spectral 
density corresponding to an exponentially cosine 
autocorrelation function 

with Eq. (19) taking a form 

Amazigo and Budiansky (1969) cautioned that the use 
of Eq. (19) will lead to incorrect results of the actual 
power spectral density does not peak near w = 1. 

Yet, it appeared to the present writer that the 
very constancy of the buckling load should have been 
questioned. It was decided that instead of 
pursuing some new, purely analytic approach, in 
addition to what was already undertaken at Harvard, 
it would be nice to perform an experiment. Yet, 
where should one get numerous realizations, a 
thought occurred, of the real columns on nonlinear 
elastic foundations? If not in a real laboratory, then 
may be in the virtual one, on the computer? Thus 
the idea occurred to study the Frazer-Budiansky 
problem by the Monte Carlo simulation. 

The idea did not seem to be very fancy or 
even new. Indeed, Frazer (1965) himself already has 
performed the Monte Carlo analysis of a column on 
a nonlinear foundation. Yet, most unfortunately, he 
limited himself with a single-term approximation. 
Such &I analysis leads, once this assumption is made, 
to a closed-form solution, given in Eq. 11, for the 
reliability. Naturally, one does not need the Monte 
Carlo solution if the exact solution is at hand, unless 
one wants to illustrate the validity of the Monte Carlo 
solution in the particular case that is capable of the 
exact solution. Once the confidence is gained 
through such a comparison, if it is favorable, one 
resorts to the multi-mode Monte Carlo solution where 
the exact solution is unavailable. The Monte Carlo 
method had to be combined with the multi-mode 
approximation, rather than with a single-term 
approximation performed by Frazer (1965). 

Multi-term Monte Carlo simulation was 
suggested by Hansen (1977) in his probabilistic 

where = mean square value of the imperfection. analysis of randomly imperfect shells. However, the 
By setting w = 1, f = 0.2 and y = 1, they obtained analysis performed could be characterized as an 

unbalanced one: a detailed analytical analysis was 



superimposed with somewhat naive probabilistic 
analysis. The assumption was made that all the 
Fourier coefficients used in the series expansion were 
identically distributed. Namely, each Fourier 
coefficient was taken as a normally distributed 
variable with the same variance. This assumption in 
essence corresponds to the "white-noise" 
autocorrelation function of the initial imperfections. 
Thus, the analysis did not allow the information on 
general autocovariance function. Indeed, there exists 
no compelling reason for initial imperfections to be 
a spatial "white noise." Some other investigators too, 
although in a dynamic context, essentially followed 
Hansen-type analysis. They neglected correlations 
between the various Fourier coefficients, although 
adopted the nonconstant variances (with a new term 
coined for such imperfections: "grey noise" 
(Lindberg, 1983). 

It was realized by this writer that the 
simulation analysis should start from the multi- 
dimensional probability densities; the correlation 
analysis must start from the mean function and the 
autocorrelation function, and end up with the 
variance-covariance matrix of initial imperfection's 
Fourier coefficients or of any other random variables, 
stemming for the suitable discretization. This matrix, 
in general case, must be a fully populated one: not a 
diagonal one with identical (Hansen, 1977) or 
different (Lindberg, 1993) elements. In order to 
study the Frazer-Budiansky model structure the 
present writer developed a general simulation 
procedure for solving the stochastic boundary value 
problems (Elishakoff, 1979). 

This simulation procedure was applied to 
several probabilistic problems; the impact buckling of 
a column (Elishakoff 1978), Hoffs problem of 
buckling of a column in a testing machine 
(Elishakoff, 1980) and to the Frazer-Budiansky 
problem (Elishakoff, 1979). In a latter paper a 
column offinite length was studied because of several 
reasons: (1) an assumption of infinite length may 
simplify the analytical analysis but may complicate 
the numerical one, (2) the structures utilized and 
analyzed by engineers (fortunately) do not posses 
with the infinite length, (3) the nonlinear column on 
nonlinear elastic foundation in previous studies was 
not analyzed in terms of the edge-effect method to 
justify for looking for interior solutions (as those 

associated with the infinite structure), and corrective 
edge effect solutions. Moreover, why should one 
make an assumption of infinite length if the Monte 
Carlo solution for realistic finite-length shells is 
easier? In the study Elishakoff (1979), for each 
realization buckling load was determined numerically 
by transforming the nonlinear algebraic equations to 
the numerically solved ordinary differential equations. 
The adopted method of Qiria (1951) and Bavidenko 
(1953) is similar to the arc-length method of Riks 
(1979 ), as was communicated to this writer by 
Professor W. T. Koiter. Reliability of the column 
was calculated. Following conclusions were drawn: 

(1) Monte Carlo solution yields results that are 
practically coincident with the exact solution, 
when the latter is obtainable for the single 
term approximate problem. This 
demonstrates that the Monte Carlo solution 
may exhibit a better performance than the 
various statistical tests may forecast. a 

(2) A single-term Galerkin approximation is not 
sufficient to accurately predict the structural 
reliability; depending on the system's 
parameters, various degrees of approximation 
but higher than one must be achieved in 
order the reliability estimates to be accurate. 

(3) Design buckling load associated with high 
reliability may significantly deviate from the 
average buckling load. 

(4) When the length of the column increases the 
variance of the buckling load decreases. 

The latter conclusion may represent a link with the 
result of Frazer and Budiansky (1969) who 
concluded that for an infinite column the buckling 
load was a deterministic quantity. However, for the 
realistic finite column the buckling load depends on 
the particular realization of the initial imperfection 
function, which in turn depends on the probabilistic 
measures (mean and autocorrelation function) of the 
initial imperfections. 

In a later analysis, Day (1980) showed that in 
some simple cases the ergodicity assumption may 
even be dispensed with for the evaluation of the mean 
buckling load. Yet the analyses yielding mean 
buckling load alone could hardly be considered 
practical. Each of us may remember various, 
sometimes entertaining, objections to average 



quantities, and they will not be recapitulated here. 
Anyway, the knowledge of the average buckling load 
is insufficient for probabilistic design of structures 
undergoing buckling. 

The development of a general simulation 
procedure for initial imperfections with given mean 
and autocorrelation functions pinpointed the way of 
introducing the initial imperfection sensitivity into 
design. It involves three main items: 

(a) Development of accurate deterministic 
(analytical or numerical) tools, for buckling 
load prediction. 

(b) Compiling extensive experimental 
information on imperfections, boundary 
conditions, elastic properties, scatter in loads 
etc., in view of deriving mean functions, and 
their autocorrelation functions of random 
fields, and assessing their distributions. 

(c) Utilization of the Monte Carlo analysis 
through simulating brothers and sisters (but 
not perfect clones!) of the experimentally 
measured structures. 

This writer was humbled to read in several 
publications of Arbocz (1981, 1982, 1987): 

"It was not until 1979, when El i s f i f f  published his reliability 
study.. . that a method has been proposed, which made it possible 
to introduce the results of impegection surveys into the analysis. " 

Clearly, the future of the shell buckling analysis is 
identified by Arbocz in his recent articles with the 
notion of stochasticity (see, e.g., 1997). 

In accordance with the recommendation of 
Professor W. T. Koiter, the early study (1979) was 
generalized to include both the quadratic and cubic 
nonlinearities of the elastic foundation (Elishakoff, 
1985). 

4. RELIABILITY OF SHELLS OR HOW THE 
BEAUTIFUL THEORIES HAVE TO 
COMPLY WITH UGLY FACTS 

In order to proceed further, it is instructive to 
review first some other deterministic developments. 
Fortunately, some investigators of thin shells were 
interested with experimental analyses. 

Arbocz (1968) devoted his Ph.D. dissertation 
to the careful experimental measurements of initial 
imperfections of shells designed and manufactured in 
the laboratory of the California Institute of 
Technology. In 1968 and 1969 Arbocz and Babcock 
reported their results on buckling experiments. They 
measured initial imperfections and the prebuckling 
growth of electroplated isotropic shells via automated 
scanning mechanisms. Singer et al (1971) reported 
results of analogous imperfection surveys on 
integrally machined ring-stiffened as well as stringer- 
stiffened shells. These studies provided a data for 
possible correlation of experimental buckling results 
with the theoretical or numerical prediction of the 
buckling loads. Such a correlation study would 
establish a feasibility of direct incorporation of the 
initial imperfection measurements into the 
(deterministic) theoretical procedure or the numerical 
code, with attendant direct comparison between the 
results. These results were reported by Babcock 
(1974) and Arbocz (1974) and other authors. . 

It was indicated by Arbocz (1974, p. 238), 
that 

"Results of initial correlation s t d e s  seem to indicate that it may 
be possible to predict the buckling load of the structure to within 
+lo% using a hvo-mode impegection &el with quadratic terms 
only, ifthe size of the measured harmonies is less than 20% of the 
wall thickness and the lowest classic eigenvalue is located within 
the region of the lower-order modes. " 

There were "better" results reported too, in 
the literature. Arbocz (1974, p. 236) in Table 5, 
reports the result by Hofmeister (1972) when both the 
experimental and the theoretical buckling loads of 
myler, normalized to the classical buckling load, 
constituted 0.52. Such a perfect coincidence is an 
exception, rather than an already achieved goal. 
Usually, when such a coincidence takes place one 
wonders if it was by pure chance, and if either 
experiment or the theory evaluation were properly 
conducted. For example, the following question 
arises: Were there myler shells analyzed as isotropic 
or orthotropic ones? (Singer, 1997). 

Experimental verification of Koiter's special 
theory has been given by Tennyson and Muggeridge 
(1969). They tested a series of photoelastic plastic 
circular shells containing an axisymmetric 
imperfection. The specimens were manufactured by 



the special spin-casting technique to produce near 
perfect cylinders. Experimental points all were 
within about 10% of Koiter's special theory; 
remarkably, in some cases the error was of order of 
2%. For a stringer-stiffened shell AS-2, Arbocz 
(1981) reported value produced by a computer code 
STAGS (30 node model) of 243.8 Nlcm, whereas the 
experimental value 226.3 N/cm was about 7% off. 
For shell AS, Arbocz (1981) reported a 
nondimensional experimental buckling load 0.66, 
whereas the theoretical prediction constituted 0.69. 
For shell designated AB-6, the experimental 
nondimensional buckling laad constituted 0.75 
whereas the theoretical estimate was 0.72 (Singer, 
1983, Table 27.5). In parallel, Makarov (1969) 
performed extensive measurements of the initial 
imperfections profiles at the Moscow Power 
Engineering Institute in view of studying their 
statistical characteristics. 

Being encouraged with the mere possibility of 
the relatively good correlation between the 
experimental and numerical results (and hopefully 
even a better one once the boundary conditions could 
be closely identified), it occurred to the present 
author that the probabilistic analysis must be tied with 
the numerical and experimental developments in a 
hybrid manner. The experimental developments in 
Caltech, Technion, University of Toronto, and the 
Moscow Power Engineering Institute influenced 
present writer's thinking in parallel to trying to 
investigate the effects of the ergodicity assumption 
suggested at Harvard. In 1975, Professor J. Arbocz, 
then a Senior von Humboldt Fellow of the DFVLR in 
Federal Republic of Germany, delivered a series of 
lectures in the Israel Institute of Technology's 
Aeronautical Department. The titles of the lectures 
were: 

(a) "Prediction of Buckling Loads Based on 
Experimental ly  Measured Initial  
Imperfections" (4.23.1975). 

(b) "Some problems Associated with Data 
Handling When Measuring Initial 
Imperfections" (4.28.1975). 

(c) "Accurate Numerical Methods for Computing 
the Buckling Load of Axially Compressed 
Imperfect Cylindrical Shells" (4.30.1975). 

Listening to these "deterministic" lectures 

carefully , this writer thought that time was ripe to 
apply probabilistic methods, but in a different setting 
than before. Following year, in 1976 at the IUTAM 
Congress in Delft I have informed Professor Arbocz 
that I had some ideas to impart a "soul of 
uncertainty" into the available deterministic numerical 
codes and experimental data. He requested that I 
communicate my ideas in writing, for their close 
inspection and possible cooperation. 

This was a time when Professor Budiansky's 
arrival to the Technion accelerated my interest in the 
imperfection-sensitivity concept. It was quite natural 
that I gave a preference to spending my fust 
sabbatical year ("Why should I refuse this 
'capitalistic' luxury?") at the Delft University of 
Technology, rather than elsewhere. A weekly 
seminar in the Department of Technical Mechanics, 
to which Professor W. T. Koiter lectured at least five 
times during that year, was extremely stimulating, 
along with the atmosphere of an unusual courtesy and 
good will, and the excellent technical support 
conditions. My host, Professor J. Arbocz met me 
with extreme encouragement and honesty: "I certainly 
do not believe a thing in probability theory, but you 
can try to convince me that it makes sense!" 

First thing of business became to analyze the 
initial data banks just compiled (Arbocz and 
Abramovich, 1979). Two group of shells, designated 
as A-shells and B-shells, respectively, were 
statistically analyzed (Elishakoff and Arbocz, 1982) 
from the compiled data bank. Estimated variances of 
the measured initial imperfections were plotted as 
functions of the axial coordinate for group of A-shells 
(see Fig. 7 in Elishakoff and Arbocz, 1981) and B- 
shells (see Fig. 10). These variances were not 
constant, implying that the experimental initial 
imperfections can not be treated as a weakly 
homogeneous random field, let alone an ergodic one. 
This demonstrated, that the works based on the 
ergodicity hypothesis could not be characterized as 
practical. The fact that in another collection of 
shells, measured at the Moscow Power Engineering 
Institute, the experimental data did not contradict to 
the assumption of the weak homogeneity of initial 
imperfections of circular cylindrical shells in the 
circumferential direction (Makarov, 1969, 1970) 
appears to be surprising, since the latter shells had a 
seam. 



The experimental results neither supported the 
assumption made by Hansen (1977), namely, that the 
Fourier coefficients of initial imperfections were 
statistically independent and distributed identically. 
Nor the imperfections constituted a "grey" noise as 
suggested by Lindberg (1993). Thus, statistical 
analysis of real shells vividly illustrated that none of 
specialized assumptions made in the literature about 
the probabilistic pattern of the initial imperfections 
were justified. It should be immediately noted, to 
"protect" authors of above studies, that these 
assumptions were made not arbitrarily: these 
assumptions either enabled the theoretical treatments 
of various kinds (work performed at Harvard 
university), or reduced the computational effort (work 
performed at Moscow Power Engineering Institute or 
university of Toronto). 

One may clearly recognize the 
appropriateness of the quotation, which, as Professor 
J. Arbocz informed me, was exhibited on the wall in 
the office of Professor E. Sechler, in Caltech: 

"The great tragedy of Science - the slaying of a beauh)kl 
hypothesis by an ugly fact" momas Henry Huxley, 1825-1895). 

Thus, the assumption of homogeneity in axial 
direction, employed in the West, as well as its 
counterpart on the homogeneity in the circumferential 
direction utilized in the East, did not prove to be 
viable hypotheses. In addition, dealing with infinitely 
long shells in conjunction with the hypothesis of 
ergodicity diverted an attention of the investigators 
from the main goal of the reliability of the structure, 
which can be utilized for design purposes. On the 
other hand, single-term Galerkin approximations, 
although did concentrate on the reliability, could not 
catch the reality properly, since too much was 
neglected. 

As this junction it appears instructive to 
recapitulate the assessment of an study by Miller and 
Hedgepeth (1979) from the review in buckling by 
Budiansky and Hutchinson (1979): 

"The intermediate situation, in which not a few but also not very 
many modes must be considered to have stochastic imperfections, 
has been addressed in [SO] (i.e. by Miller and Hedgepeth, 1979 - 
I.E.), when the problem of a lattice. column with random 
impetfections in the individual members is tackled. Through the 
use of effective approximations results for the means and variances 
of buckling loads are estimated, with accuracies confirmed by 

Monte Carlo calculations." 

Indeed, dealing with thefinite structure, on one hand, 
and the ability to determine both the mean values and 
variances of the buckling loads in the multimodal 
setting was a major step, yet the paper by Miller and 
Hedgepeth (1979) did not address the main issue of 
reliability determination; reliability, rather than first 
and second moments can be utilized in design. One 
may argue that the Gaussian assumption of buckling 
loads would yield the reliability once the first and 
second moments were calculated. Such an 
assumption would be incorrect, for the probability 
density is highly skewed (see, eg. Figs. 5.27 and 
11.9, Elishakoff 1983) as both the single-or multi- 
mode analyses would clearly demonstrate. 

Special simulation procedure (Elishakoff, 
1979) was applied to shells with axisymmetric 
imperfections (Elishakoff and Arbocz 1982) as well 
as to shells with general nonaxisymmetric 
imperfections (Elishakoff and Arbocz 1985). * The 
assumption of uncorrelatedness of some of the 
Fourier coefficients adopted in the latter paper, was 
dispensed with in later study (Elishakoff, 1988). 

Next step in the analysis, following the 
Monte Catlo simulation of the "brothers" and 
"sisters" of experimentally measured shells, is the 
performance of the buckling calculations of each 
simulated shell by the special procedures. These 
procedures include special theory by Koiter (1963) 
for asymmetric shells, multimode analysis of Arbocz 
and Babcock (1976), the finite element method 
(Ernst, 1979) for the general non-axisymmetric 
shells, as well as other analytical studies or numerical 
codes, like STAGS, etc. 

Once large amount of realizations were at 
hand, the reliability of the shells was possible to 
compute as the fraction of shells that did not fail 
prior to predetermined load level. This "Assume As 
Little As Possible" approach, if not yet "Assume 
Nothing" method in dealing with the problem directly 
combined three major ingredients, which were 
previously unconnected: theoretical, numerical and 
experimental sides of the buckling research. 

Previous paper, under the same title as this 
one (1983), presented the following course of action 



for choosing the gap between the theosy and the 
practice: 

". .. introduction of the initial-impegection concept into design calls 
for: 
(1) Further development of combined analytical, numerical and 
experimental tools for predicting the buckling loads under 
deterministic impegections (the deterministic analysis being one of 
the cornerstones of the Monte Crrrlo method), with appropriate 
establishment of the accuracy so vital for the reliability prediction, 
(2) compilation of extensive experimental information on 
impegection-sensitive structures, classijed according to the 
manufacturing process, with a view to finding their mean and 
autocovariance fictions. 
With the above developments in analytical, numerical and 
experimetml tools and compilation of experimental information, the 
Monte Curlo method is a promising means for narrowing the 
present chasm between the theory and practice. " 

5. HOW TO CORROBORATE THE MONTE 
CARLO ANALYSIS? 

Monte Carlo method is applied by the 
investigators when the exact solution is not available. 
Yet, some other approximate methods may be 
available to tackle the stochastic boundary value 
problems in question. Once such an approximate 
solution is obtained, the investigators, almost 
invariably, check it versus the Monte Carlo 
simulation. But both methods are approximate in 
their nature. Which one is preferable in these 
circumstances? Usually investigators think that the 
non-Monte-Carlo method is the preferable one as a 
"cheaper" technique. Yet, such a premise calls for a 
reexamination. 

Two considerations are of importance in this 
respect. The Monte Carlo simulation technique is an 
universal tool, applicable, for example, for small or 
large deviations of random variable or functions 
involved. The other approximate techniques 
invariably have limited areas of application. They 
may be effective, for example, when coefficients of 
variations are small. When we perform both the 
Monte Carlo analysis and the other, approximate 
evaluation, which method checks the other then? 

Usually, researchers "promote" their own 
approximate technique; then, as they maintain, they 
compare it with the Monte Carlo method, since the 
exact solution is unavailable. Yet, they check the 
method of a restricted range of application with the 
one of a wider validity. It appears then reasonable to 

claim that in the general case the Monte Carlo 
method should be used, as an universal technique. 
Yet, since it is in essence a computerized 
experimental method, the other, approximate 
analytical techniques should be utilized to check it. 
Such a conclusion may appear to be paradoxal, at the 
first sight. Yet, for a specific set of parameters one 
approximate method may be of validity; for other sets 
of parameters other method may prove to be 
applicable. Both should be in vicinity of the results 
furnished by the Monte Carlo method, although in 
different ranges. It becomes obvious that the general 
method is being checked by methods of limited 
applicability. Analogous view is shared by Professor 
Shinozuka (1996). 

It appears to be a must to confront the results 
delivered by the Monte Carlo method by different 
analytical-numerical techniques which may be 
effective in specific ranges of variation of parameters. 
One such method is a second-order second moment 
method. For its detailed exposition the reader may 
consult with the paper by Hasofer and Lind (1974), 
and numerous later texts. This method has been 
extended by Elishakoff et al (1987) to include 
nonlinear buckling of shells with initial imperfections 
treated as random functions. 

The cornerstone of the method is the 
availability of a deterministic state equation 

where Z ( . . . ) is a peg?ormance function. Its 
nature depends on the type of the structure and the 
limit state considered. According to the definition 
the equation 

determines the failure boundary. The inequality 

implies failure, whereas the inequality 

indicates a successful performance. Zeroth-order 
second moment method requires linearization of the 



function Z at the mean points E&) and the 
knowledge of the distribution function of random 
vector X. Calculations are relatively straightforward 
if X is normally distributed. If X is not normally 
distributed, an appropriate transformation must be 
made. 

In the case under investigation, we are 
interested in knowing the reliability of the structure 
at any given load A, i.e. 

R ( h )  = Prob (A 1 h )  ( 2 7 )  

where A is the random buckling load. A function Z 
can then be defined as follows: 

where X is the applied deterministic load, 
cp (Xl , X2, . . . , XN) is the relationship whose 
knowledge was postulated by Bolotin (1958), as per 
Eq. 1. However, when such a relationship is not 
available analytically, we can visualize that the 
availability of the numerical code is equivalent to the 
knowledge of this function. To combine numerical 
codes developed for example, by Arbocz and 
Babcock (1980) with the zeroth order or fust-order 
second-moment method, we need to know the lower 
order probabilistic characteristics of Z. In the first 
approximation, for small variances and covariances if 
Xi, we have: 

The variance of Z is given: 

var ( 2 )  = var (A) 

where Cov (Xj , Xk) is a covariance of components 
5 and Xk of initial imperfections, determined through 
experimental measurements. Calculation of the 
derivatives (acp/aXj) at mean values of the 
arguments XjO = E (Xj) is performed numerically. 
Having estimated E(Z) and Var(Z) one obtains the 
estimate for the probability of failure at the load level 
A: 

Pf(h)  = P r o b ( Z < O )  = $  ( - 8 )  
1 (31) @ (x) = - + erf (x) 
2 

where 

P = E ( Z )  /a2 

where az is the mean square deviation of Z 

Numerical analysis for the unstiffened 
circular cylindrical shells were reported by Elishakoff 
et al (1987), and showed a good correlation with the 
Monte Carlo method. More accurate method is the 
first-order second moment method, or, as it is 
universally referred to the Level 2 method. In the 
buckling context it is performed as follows 
(Elishakoff, 1984): For simplicity we consider, a 
problem involving two initial imperfection parameters 
3 and Xk, forming a random vector X. Through the 
initial imperfection data banks one obtains the mean 
values E (Xj) , E (Xk) and the variance covariance 
matrix 



We denote the vector of basic variables by Y ,  they 
have zero means and unity variances. Then 

whence 

and C1I2 is the square root of a positivedefinite 
matrix C. For every realization of Y we find 
immediately the realization of X, and via the 
computer programs developed by Arbocz and 
Babcock (1980) we determine the buckling load. 
This allows one determine the failure boundary for 
fixed values of a 

How to find the failure boundary? This can be done 
as follows: One specifies the direction 

8 = (icosy + fsiny) t (381 

At the top of the vector we check if the boundary 
load exceeds a. If it does not, we enlarge the length 
of the vector and repeat the procedure. If the 
buckling load still does not exceed a, we continue the 
process. If the buckling load is in access of a ,  we 
multiply the length of the vector by a number less 
than unity and repeat the process till we reach the 
point at which buckling loads is nearly a, within 
demanded accuracy. Then we rotate the vector t ,  by 
changing the angle y, and repeat the process. This 
allows one to find the failure boundary. Then the 
smallest distance to the failure boundary, in case 
there are no multiple points with the same minimum 
distance, is determined from the origin of the 
coordinates to the failure boundary. The distance is 
denoted by as a Hasofer-Lind index. The 
probability of failure is given by Eq. (30), where j3 
is replaced by Dm. This procedure (Elishakoff, 
1984) awaits for its numerical implementation for 
buckling of structures. 

The zeroth-order second moment method has 
been applied by Arbocz and Hol (1991) and by 
Arbocz (1997) for integrally stringer- stiffened shells. 
Computationally it is much less expensive than the 
direct Monte Carlo method. Yet the latter is 
applicable for arbitrary coefficients of variation, 
whereas the former is valid only for small variation 
of the initial imperfection amplitudes. This basic 
premise may not hold true for many cases reported in 
the initial imperfection data banks. In addition, the 
reliability estimates furnished by the zeroth-order and 
first order second moment reliability estimates may 
be quite substantial. 

It appears that the methods developed in past 
two decades in collaboration with Professor J. Arbocz 
illustrate that the impeg5ection-sensitivity concept can 
be introduced into practice. This will allow the 
theoretical findings to be directly introduced into 
codes, instead of well known "knockdown factors." 

It should be stressed, that in the methods 
developed we do not try to match the known 
knockdown factors; if this were the case probabilistic 
methods would not have a predictive power, and 
would only constitute a "forecasting of the past." 
Yet, one must emphasize that the extremely 
intelligent effort are needed for probabilistic method 
to be implemented into practice: it needs 
sophisticated measurement devices to measure initial 
imperfection profiles. Fortunately, this is possible, 
as was shown in various laboratories in different 
parts of the world. Then the results of the 
measurement have to be statistically interpreted, in 
view of checking hypotheses on their distribution. If 
Fourier coefficients are involved, the joint probability 
distributions are needed rather than the marginal 
ones. The probabilistic analysis must be 
superimposed with the accurate deterministic analysis, 
based on either FEM or the multimode Galerkin 
approximations. If the mean square deviations of 
initial imperfections are small in comparison with 
their mean values, one can use the zeroth-order or 
the first- order second- moment method; if the 
coefficient of variation is moderate or large, it 
appears that one should use the Monte Carlo method. 
If the direct realization of this technique is employed, 
without variance reduction techniques, one may need 
the supercomputer environment or massively parallel 
computing facility, to perform sufficient amount of 



Monte Carlo simulations for determining sufficiently the buckling loads, more realistic conditions should be 
small probabilities of failure with acceptable incorporated in the analysis with anmdont probabilistic analysis. " 
accuracy. 

But let us try to contradict ourselves: May 
be we have neglected some important facets of the 
problem? For example, what about the boundary 
conditions? This problem is discussed in the 
following section. 

6. CORRECT MODELLING OF BOUNDARY 
CONDITIONS IN AN EXTREMELY NON- 
TRIVIAL TASK 

In order to be able to determine small 
probabilities of failure, one needs extremely accurate 
deterministic theories. Buckling load calculations 
naturally involve satisfaction of the boundary 
conditions. How to be able to model them 
sufficiently accurately? For beams, the determination 
of the boundary conditions appears to be a treatable 
task. Studies by Horton et al (1969) and by Sweet et 
al (1976, 1977) may support such a conclusion. For 
shells their determination appears to be an extremely 
complex task. When considering the effect of 
boundary conditions the existing studies predict 
relatively small influence of the boundary conditions 
for isotropic unstiffened shells (Almroth, 1966), if 
the movement of the edges in circumferential 
direction is restrained. However, the influence of 
these is significant for stiffened shells, as was 
demonstrated by Arbocz and Sechler (1976). 
Buckling loads for the specific integrally stiffened 
shell XS-1 with SS-3 and SS-4 boundary conditions, 
respectively, were 141.6 lblin and 184.5 lblin. Yet, 
for the same shell with C-3 and C-4 boundary 
conditions the buckling loads were, respectively 
161.6 lblin and 204.0 lblin. Experimental data on 
stiffened shell buckling were reported by Singer et al 
(1971). As authors mention (p. 72, right column) 

"The details of the end ring supports for the shell (Fig. 4) (not 
reproduced here - I.E.) were emmined to Pnd the effect of the 
elastic constraints. It was found that the experimental end 
conditions were rigid enough to consider the shell fully clamped 
(C-4). " 

Elishakoff et al (1992) write 

"...the boundary conditions on the experiment were neither 
')urelyW C-3 nor "purely" C-4. lkerefore, in order to 
meaningfully compare the experimental and analytical results on 

Recall that SS-3 boundary conditions stipulate that 

whereas SS-4 boundary conditions require 

where u, v and w are axial, circumferential and 
transverse displacements, respectively, N, = axial 
load, Mx = bending moment. It was suggested in the 
latter reference to consider following mixed boundary 
conditions, denoted SS-34: 

These generalized boundary conditions are reducible 
to the boundary conditions given in Eqs. (39) and 
(40). Specifically, for a = 0 and nonzero 8: the 
boundary condition reduces to Eq. ( a ) ,  whereas for 
8 = 0 and nonzero a we recover Eq. (39). For non- 
zero a, the boundary condition 40 is rewritten as 

In order to ac &modate the best 
resemblance with the exp ~ental realization of 
boundary conditions Kx in E,. -42) should be treated 
as a function of the circumferential coordinate 8. 
The following dependence was chosen 

K 1  , f o r  0 2 i  I 8  I OZ+l 
K x ( 8 )  = ( 4 3 )  , fo r  8 w i + l ~  8 I  BE+* 

where serial number i varies between zero to eight, 
O0 = 0°, 818=3600. In addition, K2 < < K l .  This 
implies that the shell is attached to the apparatus with 
nine relatively strong springs with stiffness K1 and 
nine relatively weak springs with stiffness K2. 

It should be stressed that the uniform axial 
springs have been considered in the shell buckling, in 
linear setting, by Singer (1 962). Nonuniform 
boundary conditions along the circumference, in the 
context of boundary imperfections, were first treated 
by Hoff and Soong (1967) wit? identical non- 



uniformity at both edges of the shell; if this 
nonuniformity can be characterized as a boundary 
imperfection, one can say that they considered 
"perfect imperfections. " This assumption has been 
abandoned by Stavsky et al (1988) and Sabag et al 
(1989) who considered realistic "imperfect 
imperfections," i.e. nonidentical imperfections on 
shell's two edges. 

Although the problem of nonuniform support 
conditions for nonlinear, imperfect shells was 
formulated by Elishakoff et al (1992), the numerical 
results yet have to be reported. This latter paper led 
to more appreciation of difficulties in modeling of 
"true" boundary conditions. Recently another close 
look at the realization of boundary conditions in 
experimental setting was undertaken (Arbocz, 1997). 
We hope that computer experts in Professor J. 
Arbocz's group, at the Delft University of 
Technology will enable a close correlation between 
experimental results reported by Singer et al (1971) 
and the numerical findings, based on nonuniform 
boundary conditions as suggested here. Once this is 
performed the nagging questions (of the pseudo- 
skeptics in ourselves) will still remain. Here is their 
partial list: 

(a) Is there a scatter in the values of the axial 
spring K'? 

(b) If the answer is yes, then how to model Kx as 
a random variable or as a one-dimensional 
random field? 

(c) If Kl and K2 may be treated as random 
variables, how to determine experimentally 
their probabilistic characteristics, like their 
mean values E (KI) , E (K2) , variances 
Var (K1) , Var (K2) and even more 
i m p o r t a n t l y ,  t h e i r  c o v a r i a n c e  
COV (HI, K2) ? 

(d) Moreover, how to find their joint probability 
distribution, for performing rigorous 
probabilistic analysis? 

(e) How to predict, on-line, the boundary 
conditions in the service environment, when 
possibly the connections between different 
parts of the system are changed or damaged? 

Probabilistic modeling does not appear to be 
the most suitable method to answer the last question. 
It was shown by Elishakoff and Fang (1995) that a 

non-probabilistic convex modeling may turn out to be 
a suitable method to provide partial answers due to 
partial information available. In particular, one can 
attempt to determine the convex sets to which the 
spring constants belong, rather than their exact 
deterministic values, or their probabilistic 
characteristics. 

A trivial conclusion of this section is that the 
rigorous modeling of boundary conditions is a highly 
non-trivial task. A less transparent conclusion lie? in 
recognition of the fact that special identijkation 
techniques are needed to be developed for direct 
incorporation of the boundary conditions in the 
analysis; for example in the deterministic setting it is 
important to closely approximate the axial spring 
coefficient K, as a function of the circumferential 
coordinate. In the probabilistic setting, one needs to 
identify the probabilistic characteristics of the random 
field K, ( 8 ) . In convex modeling one has only to 
determine the set to which Kx belongs. Effective 
deterministic codes are needed to be developed to 
incorporate variation of K, ( 8 )  in the numerical 
analysis. The problem is not resolved even then: In 
other shells, with different set of unknown boundary 
conditions, additional spring constants may be 
needed, enormously complicating the analysis . 

7. PROBABILITY IS NOT A MAGIC WANU 

As we see, in the probabilistic setting the 
imperfection sensitivity concept may appear to be 
nice and dandy. Yet does probabilistic methods solve 
the problem in its entirely? Do probabilistic methods 
have disadvantages, or they constitute a panacea for 
fully closing the chasm between the theory and 
practice? 

In order to provide a partial reply to this 
question, let us recapitulate that once the probability 
of failure is determined, we must design the ensemble 
of shells. This is done by requiring that the 
reliability should be not less than some preselected 
value r. Some investigators adopt, without providing 
a justification, a value of allowable probability of 
failure PAaN = 1 - r = 0 .02 .  Yet, it appears 
not easy to convince top management that, following 
frequency interpretation of probability, nearly 2 in 
every 100 realizations of the structure may fail. As 
Freudenthal (1956, p. 435) remarks, the problems is 



engineers." load, to be on the safe side. 

AS Grandori (1991) writes: 

" R e  concept of structural ssfety will not leave the "realm of 
metaphysics" unless we device a method for jush3ing the choice of 
risk acceptability level. " 

Initial imperfection data banks, even when 
compiled, still may contain insufzcient information 
for rigorous probabilistic processing of all the 
variables. In these circumstances researchers 
"randomize" the problem by assigning the probability 
distributions. By doing so they try to "make 
something our of nothing," and create the illusion of 
availability of information, while in actuality it is 
lacking. 

Is such a procedure a necessary evil, and 
should one just live with it? At least many 
investigations felt uncomfortable with this situation. 
Freudenthal (1956, p. 386) writes: 

"Ignorance of the cause of variation does not make such a 
variation random. " 

Although Freudenthal recognizes, as this 
quotation may demonstrate, that the probability must 
not be a single game in the town, he did not provide 
with any alternative to it. Yet, this noble 
selfcriticism, of the "own" methods, appears worthy 
of following. 

Such an analysis was performed by Ben-Haim 
and Elishakoff (1989). Initial imperfection vector X 
was represented as a sum of a nominal vector XO and 
the deviation vector 9". The deviation was postulated 
to fall in the following ellipsoidal set: 

where the size parameter x and the semi-axes 
wl 612 . e * I ON are based on experimental data, 
obtainable from the initial imperfection data banks. 
The lowest buckling load which can be obtained from 
any of the shells in the ensemble described by Eq. 
(44) is expressed formally as the minimum of 
expression (1) on the set Z 

Hence p (x ,  W)  is the buckling load of the 
"weakest" shell in the ensemble 2: which is 
constructed to represent a realistic range of shells. 
The limit load for an imperfection vector ISo + f , to 
the first order of S; is 

This and numerous other considerations led a d x o )  
Ben-Haim and Elishakoff (1989) to develop a method ~ ( % + f ) = V ( X o ) + z , ~ l ; '  ( 4 6 )  
which represents an alternative to the probabilistic i=l  

treatment of the problem. The method is referred to 
as a convex modeling. The name comes from the 
realization of the fact that the most inequalities, 

Thus the problem (45) is replaced by the following 
one: describing the range of variations of uncertain 

variables, constitute convex sets. Since the variables 
are defined by their ranges of variation only, rather P I X , Y ) = ~ ~ ~  + ( 4 7 )  

than by the probability densities, the following r€z (X ,W 
questions can be posed: where 

(a) What is the maximum buckling load the 
structure may experience when initial avl (Xo) 
imperfections vary in a convex set? 

(b) What is the minimum buckling load the -axN 
structure may attain in these circumstances? 
Once these questions are answered, it is ( 4 8  0 

prudent to use the minimum buckling load as a design 



where the superscript T stands for matrix 
transportation. The minimum buckling load is given 
by the formula @en-Haim and Elishdcoff, 1989): 

From this relation one recognizes that the significant 
reduction in the buckling load results from large 
sensitivity of the nominal buckling load to Fourier 
coefficients, whose semiaxes in the imperfection 
ellipsoid are large. We also recognize that the 
minimum buckling load depends linearly on the 
overall size x of the imperfection ellipsoid, and 
nonlinearly on its shape parameters 
w l  , w2 r . . , WN and on the partial derivatives 
ap (Xo) / axi. The values partial derivatives have 
been borrowed from the previous, probabilistic study 
by Elishakoff et al (1987). 

Whereas the formula (49) is a first-order 
approximation, the second order approximation has 
also been written explicitly in terms of the Hessian 

matrix with elements aZV (xo) / a  ria rj. The result 
is not recapitulated here. 

It also appeared interesting to define the 
variations of the imperfections in terms of a radial 
tolerance on the shape of the shell. Manipulations 
which are not reproduced here lead to the following 
expression of the buckling load in terms of the 
imperfection deviation 

where S (E , 8 )  is a combination of the 
trigonometric functions with coefficients that depend 
on the elements of the vector a$ (Xo) / a  r i ;  for 
details one may consult with Ben-Haim and 
Elishakoff (1989, 1990). Close examination of Eq. 
(50) reveals that the greatest reduction in the buckling 
load is obtained from the imperfection profile which 

a. 

switches between its extreme values t and -r, 

where is the radial tolerance. The  mum 
buckling load for the ensemble of shells with radial 
tolerance f reads: 

Suppose now that one wishes to construct a radial 
tolerance for which the minimum buckling load takes 
on value &. Then one chooses as follows 

This approach allows one to theoretically 
determine the knockdown factor within the convex 
modelling (C.K.F.). It is defined as the ratio of the 
minimum buckling load to the classical buckling load: 

1 C.K.F. =- 
P C P  

for ellipsoidal modelled initial imperfections, and 

for the shells with radial tolerance (compare with Eq. 
13 defining K.F. within the probabilistic modelling). 
This knockdown factor is anticipatd to be above the 
ones which' are provided by the NASA monographs 
(1969). This would imply that the existing NASA 



monographs may be providing too conservative 
estimates of K.F., and thus penalizing carefully 
designed shells. As we see a convex, non- 
probabilistic modeling of uncertainty, provides 
theoretical means of determining the K.F. 

For other applications of this method the 
reader may consult with papers by Elishakoff and 
Ben-Haim (1990), Lindberg (1992), Ben-Haim (1993) 
and Pantelides (1995). The critical contrast between 
the probafilistic and convex modeling was undertaken 
by Elishakoff, Cai and Starnes (1993). 

It was shown that in many realistic 
circumstances, convex modeling of uncertainty and 
the probabilistic analysis yield close results. This 
partially answers the following question: Which 
analysis is superior, probabilistic or convex 
modeling? Another facet of the problem is the fact 
that the convex modeling is both conceptually simpler 
and computationally less expensive than the 
probabilistic analysis. This may suggest, in 
accordance with the law of parsimony, or OcW2arn's 
razor that the convex modeling is advantageous over 
the probabilistic analysis. In words of columnist 
Charles Krauthammer (1997) Ockham's razor 

"...states, in essence, that when confronted with two or more 
expkanations for the phenomenon, we assume that the more 
compact, less complicated, simple one must be correct. " 

One cannot accept this assertion as a "totally" 
true one: why the correct analysis must be simpler 
too? On the other hand, why discard the simple 
analysis? Simple and complicated analyses usually 
have different ranges of applicability (the latter may 
include the former). Yet, it appears that the analysts 
should pursue the non-probabilistic, convex modeling 
of uncertainty with much more energy, especially 
when sufficient information is unavailable for 
substantiating probability densities used. If the past 
experience is of any guidance, this very situation is 
prevailing in most cases. Thus, we conjecture that 
the use of set-theoretical models will attract more and 
more investigators in the future. 

8. O P T I M I Z A T I O N  A N D  A N T I -  
OPTIMIZATION CAN BE COMBINED 

Non-probabilistic models of uncertainty in 
essence look for worst designs under uncertainty 

constraints. One determines the minimum buckling 
load that the structure may experience when uncertain 
parameters (initial imperfections, elastic moduli, or 
other properties) vary within some sets. The ranges 
within which uncertainties vary, are the only 
quantities that are known; the probability densities 
may be not known due to the lack of sufficient 
information, to construct an accurate probabilistic 
model. This situation is somewhat opposite to what 
we are looking in classical optimization of structures, 
which looks for the best designs. It appeared natural, 
therefore, to the present writer to coin a term anti- 
optimization for such an analysis under uncertainty 
(1991). It includes as particular cases convex 
modeling (including interval analysis or ellipsoidal 
modeling) as well as non-convex, set-theoretical 
modeling. 

Optimization and anti-optimization techniques 
can be meaningfully combined. Indeed, one is 
interested in maximizing the minimum buckling load 
the structure can carry due to uncertainty in the 
system. Such analyses were performed by Adali et 
al (1994) and Adali et al (1997). Zhu et al (1996) 
developed a novel technique to enclose 
experimentally available information into the ellipsoid 
of the minimum volume, in an N-dimensional space 
of initial imperfections. 

9. THE STARNES PROBLEMS 

When the new solutions ~f old problems 
appear at sight, the desire develops for solving other 
untoucned problems. Dr. 3. H. Stmes, Jr. of NASA 
has posed several pertinent problems in the buckling 
uncertainty context. Only some of these will be 
discussed here. 

First of all, the etiect of thickness variation 
and its influence on the buckling of thin cylindrical 
shells was posed. To the best of our knowledge, 
there were no studies in this field. The first naive 
thought that comes to the mind is as follows: since 
the worse imperfections are co-configurational to the 
buckling mode of the perfect shells, so too, the shell 
thickness variations in the form of this classical 
buckling mode must be of significance. Subsequent 
investigation showed that this anticipation was 
premature. Koiter et al (1994a) illustrated that the 
nondimensional classical buckling load varies as 



In the case p = po the equation for the 
1 X = f  -- v e -  8 3 2 + 4 6 4 v - 2 3 v 2 , 2  ( 5 5 )  critical load factor is governed by an equation 
2  5 1 2  

where v is Poisson's ratio, E = the amplitude of the 
deviation of the shell thickness from the uniformity 01 = initial imperfection parameter) whereas for the 

h =ho [ l  - e cos ( p @ / R )  ] (56)  case p = 2po  the critical load factor is found from 
the equation 

with R = radius, x = axial coordinate, 

po = [ 2 c R / h o ]  lR  is the wave number in the 
axisymmetric buckling node of a shell with uniform 

2  112 thickness h o f c  = [ 3 ( 1  - u ) ]  . The 
parameter E is taken to be positive in order to achieve 
a detrimental effect by a "thinning" of the wall 
thickness in the region around x = 0 where the 
flexural energy dominates. However, if the thickness 
variation is 

then the classical buckling load becomes 

A semi-analytical and semi-numerical technique was 
also developed by Koiter et al (1994b). It was 
constructed in such a manner that for the shells with 
initial imperfections, in absence of the thickness 
variations, Koiter's (1963) results of the shells with 
constant thickness are uncovered. The "perturbative" 
solution from Koiter's (1963) work is obtained 
numerically via the Godunov-Conte method 
(Elishakoff and Charmats, 1977). It is remarkable 
that some specially laminated composite shells exhibit 
the same behavior as the isotropic shells (Li et al, 
1995). 

2 5  €2  X = 1 - e - -  
3 2  ' (58) Second problem posed by Dr. J. Starnes is as 

follows: elastic moduli of homogeneous and 
composite structures my exhibit considerable scatter, 

i.e. reduction of the critical load factor below unity with attendant lack of sufficient volume of 
by e. The associated buckling nodes are the non- information to justify the probabilistic analysis. How 
symmetric mode to incorporate the uncertainty into the design criteria? 

mx nY This problem has been resolved within the non- 
W = C O S - C O s ~  

R  R 
( 59 )  probabilistic, convex modeling. Experimental data 

(Goggin, 1973) was first enclosed by the four- 
dimensional box 

in the case p = 2 p 0 ,  and the axisymmetric mode 
L Pi S E ~ S E ~ ,  ( i = 1 , 2 , 3 , 4 )  (63) 

Pdr  w ( x )  = C O S -  
R  

( 6 0 )  

where the superscript L denotes lower bound, while 
in the case p = 2 p O e  the superscript U indicates the upper bound. Then an 

ellipsoid of minimal volume was constructed that 
This situation is not unlike parametric contained the entire box of data. Semi-axis of the 

resonance in the time-dependent problems. Here, as ellipsoid were determined analytically using the 
it were, we have case of the space-wise parametric technique of Lagrange multipliers. Subsequently, 
resonance. The effect of both thickness variation and either the convex modeling (Elishakoff, Li and 
the initial imperfections was studied by Koiter et a1 Starnes, 1994) or the nonlinear programming 
(1994b). methods (Li et al, 1996) were employed to determine 

the minimum buckling load due to the uncertainty i? 



the elastic moduli. 

Addkionzcl set of problem of interest involve 
the phenomenon of localkation of the buckling modes 
due to small disorder. This may explain the %ocdized 
buckling pattern in the red structures (Pierre and 
Plaut, 1989; Nayfeh a d  H a w a  1994a; Li, 
Elishakoff and Stzu-nes, 1995; kiwawam and Xie, 
1996) or provide a mechanism for the passive control 
(Nayfeh and Hawwa 1994b; Elishakoff, Li and 
Starnes, 1997). The problem of mode localization is 

computationd side of stochastic mechanics, often, if 
not almost always, in full detachment from 
experimenM data or information. Such a situation, 
in actudity was advocated long ago, by Johnston 
(196%) quite early: 

advantages in simulated tests, carried out while 
with the Qid of a computer, in conp~rison with real tests in an 
achral testing machine. No machining is involved, no mteiials 
need be acquired, and there is no scatter in the test results! 
Moreover, the precision of results, although based on a simulated 
and idealized material, permits a study of details of behavior that 

often posed in a probabilistic setting (see, e.g., kin, is plot possible in ordinary laboratory tests. It would be impossible 

1996 and bibliography, in vibration problems) when to conp,Ietely duplicate the observations that may be made on the 

all the spans have a misplacement in the supports. basis of the simulated tests.. . " 

Theoretically one can visualize such a situation, To this claim Singer (1997) responds, arguing that it is never possible to place any of the referring to deterministic problems: supports exactly at a specific location. Yet, 
deterministic analysis of general multi-span structure "It was forgotten that the simulation was so successful because the 
with a single perturbation produces the localization physical phenomena in this case were well known and had been 
phenomenon (Li et al, 1996). Random extenslenslvely ezplored by very many real experiments. New 
misplacements with quite large variance ox = 0.1 in phenomena have still to be found and properly understqod in 

Fig. 9.3.6 and ax = 0.5 in Fig. 9.3.7 @in and Cai, physical test, before even the powerfirl computers of today can give 

1995) would pinpoint to a poor worlunanship; in the a reliable simulation and then extend the range of parameters. " 

latter circumGa&e one may not need a probabilistic 
analysis, but rather changing the manufacturing Indeed, as Arbocz (1991) mentions: 

process, or maybe the manufacturing organization "...if one is unable to reproduce numerically the ezperimentally 
itself. One should note that the experimental observed buckling process quite accurately, then it is of 

measurements to justify an assumption that d l  questiodle value to use the same deterministic computational 

supports are misplaced are presently unavailable. models repeatedly for statistical predictions. " 

Many more practical problems are awaiting 
for their solutions. Indeed, "everybody loves the 
buckling problems, " as Budiansky and Wutchinson 
(1980) maintain. May be, in the multiplicity of 
journals, there could be a new section introduced 
"Not Yet Solved BucHing Problems for Industry." 
This may make a contact between the 'buckling- 
lovers' and those who deal with variety of buckling 
problems in their everyday professional lives. 

We do not have a crystal ball to predict the 
future development which will take place in the shell 
buckling research. Yet some summarizing appears to 
be in order. 

Probabilistic methods did not escape making 
a fetish from the computer. There are numerous 
sessions at the conferences devoted to solely the 

Probabilistic methods require information about the 
probabilistic characteristics of modeled quantities. 
Hence one incorporate a probabilistically modeled 
uncertainty into design, if one is lacking experimental 
data. This statement appears to be quite innocent, yet 
there are many papers, including those regularly 
published in the Proceedings of the 
AllMIASkaJEIASCEI~SlASC Structural Dynamics 
conferences where far-going assumptions are made 
about the probability densities (for the general 
description of some of these problems see, e.g. 
Chamis, 1992). No explicit interest is expressed in 
the joint probability densities. Yet, as it was 
illustrated by Eiishakoff and Wasofer (1996) 
reliability estimates may change considerably 
depending on diflereizt joint distributions possessing 
the same marginal ones. This fact is still awaiting its 
recognition by the community of extremely energetic 
researchers in stochastic mechanics, especially in 
apparent absence of the experimental data. 



Without input experimental data one will need 
to make assumptions about the joint probability 
density of involved parameters. One can visualke a 
situation in which a data could be predicted from the 
theoretical considerations; if such a lucky situation is 
absent, the assumed data may be very far from the 
real data. An often quoted GIGO ("garbage in- 
garbage out") situation may prevail in such 
unfortunate circumstances. 

Some researchers maintain that the Monte 
Carlo technique must be viewed as a means of Iast 
resort. ']The fact that the second- moment method 
developed by Elishakoff et d (1987) yields results in 
close vicinity to the ones which were predicted by the 
Monte Carlo method, may suggest that the second 
moment method is superior to the Monte Car10 
technique. hbocz  (1991) writes 

"Initially we have used.. . the Monte Carlo procedure to derive the 
reliability function Rfi). What always disturbed me with this 
approach was the large number of deterministic buckling l d  
calculations that had to be done in order to dejine the shape of the 
reliability fiMction R fi) accurately. " 

Two comments appear to be instructive in this 
regard. First of all classical theorems maintain that 
the accuracy of the Monte Carlo predictions increase 

as l/fi where M is the number of simulations. 
Yet, when one compares the reliabilities in 
benchmark cases when exact solution is available, 
one clearly observes that the actual situations are 
much more optimistic, and good comparisons are 
obtainable with not excessively volume of the data. 
The main point however is that approximate, non- 
Monte-Carlo methods may be valid only for small 
coefficients of variation of variables involved. In 
case of the elastic moduli, for example, variations 
may be substantially large and the second moment 
analysis may turn out to be extremely inaccurate. 

It appears that the methodology developed by 
Elishakoff et al (1987) should not be oversold. 
Indeed, one still needs to perform the so called Level 
2 analysis for A- and B-shells. However, cautious 
reseazchers could anticipate some numerical 
difficulties. As Bouyssy and Rackwitz (1995 p. 
1047) write 

". . .for large models and high dimension of the uncertainty vectors 
these methods involve considerable numen'cal effort in the gradient- 

based search of the design point. Moreover, mIdpIe most likely 
failure points and highly nodnear failure sudace may be present. 
As arn akemtive, si on methods have been proposed. 
Amongst these conditionad sampling appears most suitable, because 
it does not require a pi-ion' knowledge on the important region(s) 
and can retartarn the advantages of FORM first-order reliability 
method- LE.]. " 

Conditional simulation technique was rntilkd by Li 
et al (1995) for studying the reliability of columns on 
nonlinear elastic foundation, in presence of the 
random initial imperfections and random axial load. 
Yet, As Bouyssy and RackwiQ (1995 p. 1053) 
mention: 

"lhe method of conditional expectation is suitable ifand only ifthe 
conditional fm'lure probability is not too sensitive with respect to 
generated variables.. . fie studied example as well as other simple 
ones and more complex ones clearly indicate that conditional 
sampling methods can be unreliable, especially if adaptive schemes 
are implemented. Their e$ciency depends strongly on the starting 
conditions for the simulah'ons if the dimension of the simulated 
vector is not high. That conditional sampling schemes with or 
without adaptive sampling densities can be unreliable. is most 
disturbing." 

Response surface methodology may appear to 
be attractive to reduce the computational cost of the 
direct Monte Carlo method, as is suggested by 
several investigators. Yet, as Bucher et al (1989, 
p. 12) stress: 

"Obviously, since the intepokating procedure must cover 
combinations of dti#erent variables to m u r e  the quality of the RS 
(response surface-I.E.), the number of basic random variables 
should not be too large. %is fact limits the method to cases with 
less than, say 20, random variables unless some mixed t e r n  can 
be neglected. Wthout or with few mired t e r n  the method is 
suitable for up to 100 variables. Sign@cant advantages over direct 
simulation techniques may be anticipated for cases with very 
complex system and rather low number of variables. " 

It appears that even if response surface 
methodology will1 enable to reduce the computational 
cost by the order of magnitude or less, still, to find 
extremely small probability of failure, one must 
perform substantial number of simulations. We 
should not be too pessimistic in this regard; the 
observers of the past progress c m o t  agree with 
GrarPs (1990) postulate: "Every compter is too 
small. " Indeed, as Rogers reports (1996), 

"Me-named Opton Red, it [the fastest computer in the world- 
I.E.] will $11 a locker size c~binets and 1,600 square feet at 
W i a  National Laboratories in Albuquerque, N. M. It has 600 



gigabytes of memory, two terabytes-that's 2 hillion bytes of disc 
space and a peak capacity of 1.8 trillion operarions per second. " 

Anyway, it appears that till the deterministic analysts 
will embrace the idea of uncertainty for the design, 
fastest computers will be uniformly available. The 
question is if the probabilistic methods are the must 
for uncertainty modeling? As we have seen above, 
the answer to this question is negative. In addition to 
probabilistic methods, there are other, viable, 
approaches. One such a method is a convex 
modeling. 

In this era of tendency towards the total (and, 
quite often, arbitrary) randomization of the 
engineering problems one feels relieved when reading 
the philosophy adopted at NASA Langley Research 
Center (Nemeth and Starnes, 1997): 

"The reliabiliry of shell design procedures can be improved by 
using these more accurate deterministic analysis tools so long as 
the dimensions and properties are known to an acceptable level of 
accuracy. I f  the di-'ons and properlies of the shell are not well 
known, then the design process can include the eflects of these 
uncertainties by coupling a probabilistic analysis with the 
deterministic analysis ... lhis hybrid approach will retain the 
accuracy of detenninistic analysis and include a probabilistic 
analysis for the uncertainties in the design problems. " 

We should bear in mind that if one does not know 
something, that quantity should not necessarily be 
modeled as a random one! (The notion of probability 
as a mental construct may yet turn out to be 
nonexistent). Hence we take a liberty of suggesting 
that the probabilistic analysis be utilized only for 
those variables for which suflcient experimental 
information will be available. Otherwise, in the 
presence of the scant data or lack of information, the 
convex modeling of uncertainty, and in general, 
antioptimization method will prove as more useful 
than the probabilistic one. It can be easier 
understood by both engineers, who should perform 
the job, and by the top management; it is also easier 
to implement than the probabilistic method. One 
thing is clear, to paraphrase Einstein's famous 
quotation, so far as the model of an engineering 
problem with scatter refers to reality, it is not certain; 
and so far as it is certain, it does not refer to reality. 

1 1. CONCLUSION 

We have highlighted some misconceptions, 

mistakes or misuses of probabilistic methods in 
buckling of structures as a learning experience. As 
an Chinese proverb maintains, "Through mistakes we 
can learn the truth." Thus, these mistakes and their 
critical analysis become a path which enables us to 
formulate more rigorously questions, and provide 
more insightful answers, than before (as G. K. 
Chesterton maintained, "It isn't that they can't see the 
solution. It is that they can't see the problem"). 
Additional reason of emphasizing the past errors in to 
(a) warn against repeating them by beginning 
researchers or engineers, (b) to allow researchers to 
learn from others' mistakes, rather than committing 
them themselves; (c) to demonstrate that even in 
modem non-judgmental society some decisions and 
judgements must be made, not to get lost in the 
available literature, on one hand, or not to be over- 
attracted by the computer's possibilities, on the other. 
The latter is especially unfortunate, since overzealous 
researchers are often declaring all variables (except, 
happily, universal constants) to be random; then by 
pushing the computer button one can choose any 
marginal distribution desired, from the list of the 
available ones; thus, the quick estimates of 
probabilistic parameters are furnished. This naive 
probabilistic research consumes minds and resources, 
which could be more usefully utilized. Links with 
the experimental data, hypotheses testing subroutines 
about joint probability density are not only absent, 
but not even dreamt about. 

This essay clearly shows that closing the 
chasm between theory and practice is not an 
impossible task. It can be dealt with several 
alternative avenues. The probabilistic methods do not 
seem to have a monopoly on the truth about 
uncertainty. Conceptually and computationally 
simpler approaches are possible, especially when the 
data is scarce. In some instances hybrid approaches 
may be of use. 

The problem is not declared as closed. 
Whereas knockdown factor disregards the available 
theoretical knowledge, its introduction was not a bad 
idea, since it provided with safe designs. Still, it 
somehow mixes "apples" and "oranges," i.e. 
structures produced by various manufacturing 
methods, with different degrees of workmanship, and 
produces universal criteria discarding the specific 
manufacturing process. 



It is time now to digerentiate the knockdown 
factors for different manufacturing methods, and 
produce new guidelines for NASA and other 
agencies. It appears to this writer that the research 
should concentrate on several directions: 

(1) Accumulation of data for statistical analysis 
to check the nature of the distribution of 
random initial imperfections, elastic moduli, 
thickness variations, load variations etc. 

(2) Development of techniques of the 
identification of boundary conditions, which 
may turn out to have a nonuniform nature. 
When limited data is provided, the problem 
of identification may be replaced by 
establishment of local modifications in 
boundary conditions, during the use of the 
structure, via convex modeling. 

(3) Development of finite element codes in 
stochastic setting, incorporating uncertain 
imperfections, elastic moduli, boundary 
conditions, thickness variation, and loading 
conditions development of buckling post 
processors to commercially available codes 
like NASTRAN, ADINA, ALGOR, DIANA, 
etc. 

Granting agencies generously supported the 
buckling research in the Sixties and Seventies. In 
this post-Sputnik- and post-Cold- War era buckling 
research cannot be abandoned. At least "small" group 
of researchers should be continuously supported to 
develop basic ideas for solving practical problems. 
The present writer, for example, envisions a single 
NASA Research Center which is assigned to carry 
out the buckling research in a concentrated manner 
through possibly, "NASA Buckling Institute. " This 
Institute would pose problems and challenges, of both 
practical and theoretical nature. Relatively small 
annual grants of $60K-$70K, or, if hopefully the 
university overheads will be totally eliminated or 
reduced to the unavoidable minimum of 5%, the 
grants of sue of $40K-$50K, but for several years 
without the constant fear of interruption, would 
provide a sound basis for both retaining knowledge 
and advancing it. Thus we could one day maintain 
that the imperfection sensitivity concept is finally 
introduced into the design practice, in a routine 
manner. 
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A number of issues involving the postbuckling of 
doubly-curved panels exposed to a non-uniform tem- 
perature field and subjected to a system of mechani- 
cal loads are considered in this paper. Effects played 
by transverse shear, initial geometric imperfections, 
membrane and thickness-wise temperature gradient, 
tangential edge constraints, linearlnon-liiear elastic 
foundation are incorporated and their implications 
on the non-linear response behavior of shells are dis- 
cussed. Issues related with the delay of the occur- 
rence of the snap-through buckling, alleviation of its 
intensity and even with its removal are addressed 
and remarks on conditions rendering a curved panel 
insensitive to initial geometric imperfections are in- 
cluded. Results on small vibration of shells about 
sub- and postcritical ranges are provided and struc- 
tural modeliig issues playing a non-negligeable role 
towards a reliable prediction of the postbuckling be- 
havior of shells under complex loading conditions are 
discussed. Results on non-linear response of flat re- 
inforced panels subjected to thermomechanical loads 
are also presented. Finally, problems not covered by 
this article are briefly indicated. 

Introduction, Scope and Contents - 
The static and dynamic behavior of mechanically 

and thermally loaded flat and curved panels is a 
problem of considerable relevance in the design and 
development of supersonic/hypersonic vehicles, of 
future reusable space transportation systems, launch 
vehicles and of advanced propulsion systems. 

During their missions, the structure of flight 
vehicles have to withstand severe aerodynamic, 
aeroacoustic and thermomechanical loads. The 
temperatures involved are likely to range from the 
extreme lows of cryogenic fuels and radiation to 
space, to the highs associated with aerodynamic 
heating, heat from propulsion unit and radiation 
from the sun. 

In spite of the increased flexibility which is likely 
to characterize the structure of next generation 
of advanced flight vehicles, they have to be able 
to fulfill a multitude of missions in complex 
environmental conditions and feature an expanded 
operational envelope. The same is valid with the 
reusable space vehicles, which, for evident reasons, 
require a prolongation of their operational life, 
without impairing upon the security of flight. 

A problem of evident importance towards the 
rational design of advanced supersonic/ hypersonic 
flight vehicles lies on the possibility to accurately 
determine the load carrying capability of their 
structure. Moreover, a better understanding of 
conditions yielding an enhancement of the load 
carrying capacity, can dramatically contribute to the 
increase in performance of these flight vehicles. 

For curved panels such an investigation has a 
special relevance. Indeed, in contrast to flat pan- 
els which experience a considerable amount of ad- 
ditional load-carrying capability in the postbuckling 
range, the curved panels exhibit a highly unstable 
postbuckling behavior, manifested by snap-through 
jumps toward a state of stable equilibrium. 

Such a snapping phenomenon is manifested in 
both the static case (i.e. in the case e.g. of 
the temperature/compressive load vs. transverse 
deflection behavior) and of the dynamic case (i.e. 
of eigenfrequency vs. temperature/compressive load 
interaction). In addition, the load carrying capacity 
of curved panels is imperfection sensitive. 

It appears evident that reduction of the intensity 
of the snapping phenomenon as well as of the 
sensitivity to initial geometric imperfection is 
a matter of considerable importance toward a 
prolonged use of curved panels in the postbuckling 
range, without impairing upon their structural 
integrity. 

One of the modern trends in the construction 
of advanced flight vehicles capable of operating in 
a high temperature environment, consists of the 
ongoing incorporation in their structure of advanced 
composite materials. 

However, as a result of this trend and for 
a reliable determination of their load carrying 
capacity, a careful assessment of the implications 
played by a number of non-classical effects is 
required. One of these is related with the transverse 
shear flexibility featured by advanced composites, 
and, in this connection, the problem of adequacy 
of Love-Kirchhoff shell model when dealiig with 
thermomechanical load carrying capacity has to be 
addressed. 

Another effect which was identified as the 
main cause of the large discrepancies between the 
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experimental and theoretical predictions of buckling 
loads, and which can affect dramatically the load 
carrying capabilities of curved structures exposed 
to thermomechanical loading is the initial geometric 
imperfection. 

The recent developments related with solid- 
propellant rocket motors, as well as the interest of 
specialists for developing further efficient thermal 
protection systems for space transportation vehicles 
have intensified the need for a better understanding 
of the postbuckling response of geometrically 
perfect/imperfect shells continuously supported 
by elastic media and subjected to combined 
thermomechanical loadings. This is an issue which 
will also be addressed in this paper. 

Determination of frequency-temperature interac- 
tion in the pre/postbuckling ranges of curved pan- 
els featuring transverse shear flexibility, initial ge- 
ometric imperfection and subjected to mechanical 
pre-loadings, is of prime importance towards a re- 
liable prediction of the aeroelastic behavior, ther- 
moacoustic fatigue as well as of the dynamic re- 
sponse under time dependent external excitation of 
supersonic/hypersonic flight vehicle structures. It 
should be pointed out that between structural be- 
haviors described in t . ~ r m ~  of frequency-temperatve 
and temperature-deflection interactions, there is a 
close correlation. Due to its heuristic importance, 
this correlation will be emphasized and its features 
discussed. 

Another factor which becomes relevant in the 
context of multilayered plates and shells composed 
of advanced composite materials is of a modeling 
nature. This is related with the non-fulfillment 
of the continuity requirement of transverse shear 
stresses at the layer interfaces. As was revealed 
in a number of recent papers, the violation of this 
requirement can result in unavoidable errors in the 
evaluation of the load carrying capacity of laminated 
composite structures. These errors can even be 
exacerbated when large jumps in transverse shear 
moduli from layer to layer are experienced. This 
issue will be also addressed in this paper. 

Having in view the permanent importance 
of stiffened panels in the construction of space 
vehicles, several results addressing the problem of 
thermomechanical load carrying capacity of fiat 
reinforced panels will be supplied. 

Finally, related issues, not covered by the present 
paper, but of current importance for the problem at 
hand will be briefly mentioned. 

In spite of the considerable practical importance 
of this problem, the literature devoted to the 
thermomechanical postbuckling of shells, in general, 
and of the ones previously mentioned, in particular, 
is very limited. The most comprehensive survey 
papers available to date, (see Refs. 1-5), fully reveal 
this reality. Part of the results presented in this 
paper have been obtained in different contexts by 
this author and his c+workers and reported in a 
number of papers published (see Refs. 6-11) or 
presented in different conferences (see Refs. 12-16). 
Appropriate references to these results are indicated. 
Other results included here have not appeared or 
been discussed previously in the literature. 

Shell Geometry. Governing Equations 

The answer to the previously mentioned prob- 
lems requires the development and solution of the 
nonlinear system of equations associated with the 
theory of shells incorporating the above mentioned 
non-classical effects. 

To this end, consider the case of doubly-curved 
shallow panels of uniform thickness h. Assume 
that the structure is symmetrically laminated 
of 2m + 1, (m = 1.2. ...), elastic layers whose 
materials exhibit transversely -isotropic properties, 
the surfaces of isotropy being parallel at  each point 
to the reference surface of the panel. Consideration 
of this particular anisotropy in our study is 
important in several respects: a) it enables one 
to emphasize in a more comprehensive way the 
effects played by the transverse shear flexibility, b) 
materials exhibiting this type of anisotropy, (such as 
the ones featured by the pyrolitic graphite and its 
alloys), play a great role in the thermal protection of 
aerospace vehicles and, as a result, they are used in 
the design of missile, reentry vehicle structures and 
engine nozzles (see e.g. Refs. 17 and 18), and finally, 
c) it provides a continuum model for the honeycomb 
type structures used as a filler in the sandwich type 
panels. 

It is supposed that the layers are in perfect bond 
so that no slip between two contiguous layers may 
occur. 

The points of the 3-D space of the panel are 
referred to a set of curvilinear normal system of 
coordinates, x" where xa(a = 1,2) denote the 
coordinates tangent to the reference surface, x3 
denotes the coordinate normal to the planes tangent 
to the mid-surface, where x3 = 0 defines the 
reference surface a (coinciding with the mid-surface 
of the mid-layer) . 



In the forthcoming developments, the conditions 
pertinent to the theory of shallow shells are invoked. 
As a result of their adoption (see e.g. Ref. 19) it 
results that: i) the normal base vectors gi tangent 
to the space coordinates coincide to q at the 
surface 23 = 0, ii) the metric tensors associated 
with the system of coordinates on a and with its 
projection on the plane P are the same and, iii) 
the curvature tensor of the reference surface behaves 
as a constant in the differentiation operation. In 
spite of mathematical simplifications implied by the 
adoption of the shallow shell theory, the obtained 
results are rather general, being applicable to large 
categories of aeronautical structures. Moreover, this 
theory enables one to cast the geometrically non- 
linear equations of shells in a form representing the 
generalized counterpart of the classical von-Kkmh- 
Mushtari-Marguerre large deflection theory. Such a 
form of the governing equations was proven to be 
of an exceptional importance in the related buckling 
and post-buckling studies. Towards obtaining the 
governing equations in such a form, the various steps 
indicated in a number of previous papers (see e.g. 
Refs. 6, 10-12 and 20-25) have to be followed. 

Without repeating these steps, we record here 
their final form which is: 

and 

C 95 - s$l: = 0. 

(14 
In Eqs. (1) u3(z u3(zW, t) and &(xu) 
denote the transversal deflection measured from the 
imperfect surface in the positive, inward direction, 
and the stress-free initial geometric imperfection, 
respectively, F ( r  F(xW, t)) denotes the Airy's 
potential function cap is the two-dimensional 
permutation symbol while in Eq. (lc), c$(r 95(xW, t)) 
denotes a potential function associated with the 
transverse shear rotations. In addition, D, B, 
C, R, A, 11, 6, and E denote stiffness quantities; 
M, S and d stand for the transverse shear 
stiffness quantities of the composite structure These 
quantities are recorded in Refs. 6, 24 and 25. In 
addition (-) 1: and (a) I$ denote the 2-D Laplace 
and biharmonic operators, respectively, while H(= 
(1/R1 + 1/R2)/2)), denotes the average curvature 
of the shell mid-surface, where R1 and Rz are 
the principal radii of curvature of a. In the 

same equations 

define the 
distributions, respectively, in whose terms the 3-0 
temperature field is expressed as 

0 1 
In turn, T and T are expressed in terms of the 
temperature distributions at x3 = f h/2, namely of 
Ti(=T(xw,x3=h/2)) and T.(=T (xw,x3=-hI2)) 
as: 

1 

$(xu) = (Ti + Te) 12, T(xW) = (Ti - Te) /h. 
(3) 

It can easily be shown that, depending on whether 
T, or Ti is held h e d  at a certain temperature 

I 

level (e.g. at 70°F), T(xW) can be expressed as 
1 0 1 

hT = 2(T -T') or hT = =(Ti - ?) respectively. 
These expressions are used in the generation of the 
numerical results. 

In addition to these notations, P3 (= P3 (xw , t)) 
entering Eq. (la) is defined as 

where p3 ( r  p3 (xW)) denotes the distributed lateral 
pressure while KI and K3 are the linear and cubic 
moduli of the Winkler's foundation respectively. 



The governing equations (1) include the effects 
of: i )  transverse shear deformation and transverse 
normal stress; ii) large deflection (in the sense of 
the von K h h  large deflection theory); iii) initial 
geometric imperfections, iv) fulfill the conditions 
of the absence of shear tractions on the external 
bounding surfaces of the shell, and, v) enables one 
to consider the case when the shell is supported by 
a linear/nonlinear elastic foundation. 

In the expressions of stifkess quantities E, G(E 
E/2(1+ v)), u, X denote the Young's modulus, shear 
modulus, Poisson's ratio and thermal compliance co- 
efficient characterizing the thermoelastic properties 
parallel to the surface of isotropy, while E', G', v' 
and A' are the counterpart properties perpendicular 
to the surface of isotropy. 

Specialization of governing equations for 6~ = 
0, and dH = 0 and replacement in the stiffness 
quantities S and M of transverse shear moduli Gik) 
by K2Gtk) (where K2  denotes a transverse shear 
correction factor), the first order transverse shear 
deformation (FSDT) counterpart of the present 
theory is obtained. The classical von KQmh- 
Mushtari-Marguerre shell theory can be easily 
obtained from the FSDT variant of the governing 
equations by considering G' + m. For the case "2 of a single layer shell, in t e stiffness quantities 
h(m+l) + h/2 and C (-) + 0 should be considered. 

~ = l  

The governing equation (lc) of the Helmholtz 
type defines the boundary layer effect. Its solution 
is characterized by a rapid decay when proceeding 
from the edges towards the interior of the shell. 
Although uncoupled in the governing equations, the 
unknown function 4 remains coupled with the other 
two functions, F and UQ, in the equations expressing 
the boundary conditions (in number of five at each 
edge). 

As was previously shown, (see e.g. Ref. 21), 

compressive edge loads and a lateral pressure. We 
will refer the points of a to a Cartesian orthogonal 
system of coordinates assumed to be parallel to the 
panel edges. 

Consideration related with the identical fulfill- 
ment of the out of plane boundary conditions and 
implementation of initial geometric imperfections 
yielding the most critical postbuckling behavior (see 
e.g. Ref. 26) suggest the following representations: 

~ ( ~ 1 ~ ~ 2 ; ~ ) )  = { wmn(t) } sin Am%l sin fin22, { & 3 ( ~ 1 , ~ 2 )  wmn 

(5a - c) 
where Am = mr/ll; p, = nrll2. 

The tangential boundary conditions are satis- 
fied on an average. To this end, the potential func- 
tion F is represented as: 

1 
F(xa,t) = F l ( ~ a , ~ )  - - ( ( ~ 2 ) ~ ~ 1 1 + ( ~ 1 ) ~ ~ 2 2 ) .  (6) 2 

Here F ~ ( E  Fl(x,, t)) is a particular solution of 
Eq. (lb) (determined in conjunction with Eqs. (5), 
while Nll and N22 denote the normal edge loads 
(considered positive in compression). 

In the case of the panel loaded in the direction 
of the xl-coordinate only,the remaining edges being 
unloaded and immovable, the condition for the 
immovable edges 2 2  = 0, e2 may be expressed in 
an average sense as (see, e.g. Refs. 20, 27), 

for the 4 can where u2 (= u2 (xl, x2, t) denotes the tangential 
be rendered decoupled in the boundary condition, displafement to the x2 -coordinate. This 
and as a the boundary layer equation (lC) in equation yields the fictitions edgeload N22 for which 
conjunction with these boundary conditions admits the edges x2 = 0, e2 remain immovable. 
the trivial solution d = 0. 

In addition to these extreme tangential edge 
'aherglomechanical Postbuckling of restraint conditions, the case of partially moveable 

Shallow Panels opposite unloaded edges x, = O,t ,  is considered. 
With Rectangular Planform Following Refs., 7, 10, 15 and 20, a measure of the 

The previously displayed equations are used partial moveability of edges x, = O,L, in terms 
to study the postbuckling of simply-supported of the stiffness parameter A, is defined. As was 
symmetrically laminated doubly curved panels shown in the indicated references, moveable and 
with rectangular planform, (el x t2) exposed to irnmoveable edges x, = 0,e,, (a = 1,2) correspond 
a temperature rise T (xw, x3) and subjected to to A, = 0 and A, = 1, respectively. 



Partially moveable edges at  x, = 071a are 
defined by 0 < A, < 1. As in the case of immoveable 
edges, also in this case, for a specific value of A,, 
the necessary edge load N,, rendering the edges 
x, = O,l, partially moveable has to be determined. 

In the case when the shell is supported on 
the inner surface by a W i e r  linear/nonlinear 
foundation, the governing equation (la) has to be 
considered in the sense of Eq. (4). 

Following the procedure developed in Refs. 6- 
10, the displacement expansions given by Eq. (5) 
are substituted into the Eq. (lb) and Fl (XI , 22) is 
obtained by solving the resulting linear nonhomo- 
geneous partial differential equation. The remain- 
ing governing equation, Eq. (la), is converted, via 
Galerkin's method, into a set of nonlinear ordinary 
differential equations. This procedure yields the fol- 
lowing set of M x N nonlinear ordinary differential 
equations governing the postbuckling behavior 

The symbol x,, indicates that there is no summa- 
tion over the indices, r and s, where 
r = 1,2 ,..., M and s = 1,2 ,... N. In Eqs. (8), 
PI , P2 and P3 are linear, quadratic, and cubic poly- 
nomials of the unknown modal amplitudes w,,, re- 
spectively, the coefficients A,,, B,,, and R,, are 
constants that depend on the material and geomet- 
ric properties of the shell, i l l  (G ~ l l l : / n ~ ~ )  and 
z 2 2  (G Nz2l;/n4D) is the normalized forms of tan- 
gential edge loads, #(=plll!(Dh)) the dimensionless 
lateral pressure amplitudes while Kl (= Kll$/n4 D) 
and K3 (G K3e:jn4 D) are the dimensionless moduli 
of the Winkler's foundation. 

Vibrational Behavior in the Pre- and 
Postbuckling Ranges 

- We will restrict our attention to small vibrations 
mmn(t) about the static equilibrium position am,. 
In this case the vibration amplitude can be 
represented as 

The dependence of the static part of Eqs. (9) 
(defining the mean equilibrium position of the shell) 
upon the compressive edge loads, lateral pressure 
and the thermal field can be determined from the 
governing equations, (Eqs. (8)), by discarding the 
inertia terms. The equation of motion for small 
vibrations of the composite shell with respect to this 
position can be obtained by substituting Eq. (9) into 
Eqs. (8), where the order of magnitude stipulated 
by Eqs. (10) should be enforced. 

In such a way, the equation of vibration about 
the equilibrium position is obtained as 

-2 -3 O where Dmn Dmn (mmn 7 wmn, wmn wmn 7 pmn 7 

, +rnnX17 X3) and the coefficient Am. contain 

all the information about the thermo-mechanical 
and geometrical properties of the structure. 

Employment in Eq. (11) of the representation a 

and keeping in mind that Em, is obtainable 
from the static counterpart of Eq. (8), Eq. 
(11) in conjunction with Eq. (12) provides the 
interaction between the vibration frequency and the 
compressive, lateral and thermal loads in the pre- 
and postbuckliig ranges (for the perfect panels) 
and in the pre- and post-limit ranges (for the 
geometrically imperfect ones). 

Numerical Illustrations 

A range of applications involving the postbuck- 
ling of simply supported curved panels exposed to 
thermomechanical loads is considered. The consid- 
ered panels exhibit a square planform projection of 
side length 41 = l 2  = l and consist of either a sin- 
gle or three layers in which the constituent materials 
feature transversely-isotropic thermoelastic proper- 
ties. 

For single layer panels, in all numerical 
results, the following input data characterizing the 
associated thermoelastic material properties have 
been considered 

wmn (t) = a m n  + Wmn (t) 7 (9) v = v' = 0.2, A/E = -1.15 x 10-~in/in/"F', 

A/A1 = 1.4286, and EIE' = 5. 
where the time-dependent part Em, is considered 
small as compared to Vmn and Gmn, in the sense of For the three-layer panels one assumes that the core 

4 

" 
layer is twice as thick as each of the face-layers. In 

W, (mmn7 wmn (10) addition, throughout these results it was assumed 



that the elastic moduli and thermal compliance obtained when, in contrast to the case in Figs. 1, 
coefficients are defined in terms of non-dimensional the temperature amplitude of the internal bounding 
ratios as: surface is held fixed (Ti = 70°F). The results 

reveal a reversal of trends as compared to those 
for the face-layers in the previous figures, in the sense that in this 

case, for K > 0, the increase of lzlR2 results in 
= 5; (E/G')f = lo (vXt) f  = a benign temperature-deflection behavior, whereas 

(X/E)f = -1.15 x 10-~in / in /"~  for K < 0, in the case of panels characterized 

and for the core-layer 
by (-0.3 5 12/R2 5 -0.1), the response 
evolves from a stable behavior characterized by 

(E/Et), = 2; (E/Gt), = 30 (XIX'), = 1.21413, a monotonous increase of the positive inward 
deflection followed, with the temperature rise, by an 

(X/E), = -4.8875 x 10-~in/in/"F. unstable response, characterized by the occurrence 

It was also postulated that Ef /Ec = 10. 
of the snapping phenomenon, until a benign one 
featurin~ a continuous increase of the negative 

In these expressions the indices f and c identify deflectioi with the temperature rise. In this-case, 
the affiliation of respective quantities to the face and for the panel characterized by 12/R2 = -0.23, 
core layer, respectively. The considered numerical a buckling bifurcation becomes apparent. The 
data reflect the fact that the core layer is more shear- frequency-temperature interaction corresponding to 
deformable than the face layers, a behavior which is this case and depicted in Fig. 2b, reveals that 
commonly valid in sandwich type constructions. the panels of K > 0 feature a larger fundamental 

The effect of the positive and negative Gaussian 
curvature K(= (R1R2)-l) upon the nonlinear 
behavior of doubly curved panels of fixed Zl/Rl = 
0.1, subjected to a thickness-wise temperature 
variation is shown in Figs. l a  and lb. One assumes 
that the temperature amplitude on the upper face of 
the panel is held fixed (T, = 70°F). For the panel 
featuring a negative Gaussian curvature (K < O), 
the temperature rise is associated with a continuous 
increase of the positive transverse deflection. In 
contrast to this behavior, for panels of positive 
Gaussian curvature, with the increase of 12/Rz, 
the non-linear behavior evolves from a critical one, 
characterized by a snap-through buckling until a 
benign one, characterized by a continuous upward 
increase of the transverse deflection. As Fig. l a  
reveals, for Z2/R2 = 0.026, the panel experiences 
a buckling bifurcation, followed, by the further 
increase of the temperature, by a snapping of 
high intensity. However, for Z2/R2 > 0.026, the 
pane: experiences a benign non-linear behavior. 
Associated with this case, Figure l b  depicting 
the associated frequency-temperature interaction 
reveals a similar trend. In other words, Fig. l b  
reveals that only for the cases 12/R2 = 0.026 and 
12/R2 = 0.01 one obtains a buckling bifurcation and 
a limit temperature, respectively. At the same time, 
Fig. l b  reveals that for the panels of K < 0, a 
steeper increase of the fundamental eigenfrequency 
is experienced as compared to the case of panels 
of a positive Gaussian curvature, characterized by 
12/R2 > 0.026. Figures 2a and 2b constitute 
the counterparts of Figs. l a  and lb, respectively, 

frequencies than their negative Gaussian curvature 
panel counterparts. 

An assessment of the effect of the immoveability 
of two opposite unloaded edges of a spherical cap 
subjected to the compressive pre-load Lll = 3 
and a non-uniform through thickness temperature 
rise, with T, = 70°F, can be inferred from 
Figs. 3 and 4. While in Figs. 3 the unloaded 
edges of the considered three-layer panel are freely 
moveable, in Fig. 4 these are immoveable. Figure 
3a shows that in these conditions, for the panel 
characterized by (0.03 > 1/R 2 0) a benign 
postbuckling behavior is experienced, followed in 
the curvature range (054 2 1/R 3 0.03) by the 
existence of a l i t  temperature and (for l/R = 
0.054)again, by a buckling bifurcation while in the 
range 1/R > 0.054, by a benign nonlinear behavior. 
The frequency-temperature interaction of the case 
considered in Fig. 3a is depicted in Fig. 3b. 
This plot reveals the existence of the buckling 
bifurcation and of the limit temperatures at the 
points where the frequencies become zero valued 
quantities. Moreover, it reflects the same features 
as its static counterpart, such as the existence of 
a strong snap-through dynamic jump for the panel 
characterized by 1/R = 0.054, when the temperature 
increases beyond the respective critical temperature, 
and also in the cases when limit-temperatures are 
featured. In the case of immoveable unloaded edges, 
(see Fig. 4a) in contrast to the trend in Figs. 
3, a significant decay in the buckling bifurcation 
temperature featured by this the very shallow panel 



is experienced. However, for curvatures 1/R larger 
than the critical one (i.e. 1/R > 0.025), the panel 
exhibits a benign non-linear behavior. Compared 
with the behavior emerging from Fig. 3a, in the 
present case it results that there is a larger range 
of curvature ratios for which a benign temperature 
- deflection dependence is reached. Fig. 4b reveals 
similar features as the ones occuring in the static 
case. 

The effect of a biaxial compressive preload LR(= 
i 2 2 / i 1 1  where LR = 0 when Lz2 = 0). and of a 
predetermined pressure on the non-linear behavior 
of a circular cylindrical panel subjected to a through 
the thickness temperature rise is shown in Figs. 5. 
The results reveal that, for the considered pressure 
amplitude @ = 2), and depending on the magnitude 
of LR, a large transition form a benign non-linear 
behavior (occurring in the range (0.05 2 LR 2 O), a 
limit temperature (in the range (0.9 > LR 1 0.5), a 
thermal buckling for LR = 0.9, followed finally, by 
a benign behavior for LR > 0.9 is experienced. The 
same feature results also from Fig. 5b. 

The effect of initial geometric imperfections is 
illustrated in Figs. 6. The results show that for 
the considered panel, in the considered range of 
the initial geometric imperfection amplitudes the 
panel features a large transition from a benign non- 
linear behavior (in the range 0.2 > So 2 0.6); to a 
behavior characterized by a limit temperature (for 
(-0.06 < So < 0.2)); a buckling bifurcation ( for 
So = -0.06) and finally, to a benign non-linear 
behavior for 60 < -0.06. The dynamic counterpart 
of this plot, i.e. Fig. 6b reflects the same trend. 

The non-linear response of a geometrically 
perfect three-layer spherical cape subjected to a non- 
uniform through thickness temperature rise, whose 
edges xl = 0,11 are perfectly moveable while the 
edges x2 = 0, 12 partially moveable is depicted in 
Figs. 7. 

This plot shows that the degree of edge restraints 
of two opposite edges can play a considerable role 
towards enhancement of the non-linear response of 
the panel. This implies that is possible to e l i n a t e  
the snap-through buckling at all, or at least to 
attenuate its intensity by properly selecting the 
degree of the edge restraint. Figure 7b reveals also 
that, in parallel with the enhancement of the load 
carrying capacity, the proper selection of the degree 
of the edge restraint results also in the possibility 
to improve the dynamic behavior by eliminating 
the possibility of occurrence of the dynamic snap- 
through and by ensuring that the fundamental 

eigenfrequencies feature a continuous increase with 
the temperature rise. 

Figure 8 depicts the non-linear behavior of 
a geometrically perfect three-layer spherical cape 
resting on a non-linear W i e r  foundation when 
subjected to lateral pressure rise and the fixed 
temperature amplitudes (Ti = 500°F and T, = 
70° F) . 

The results reveal that both the linear and 
non-linear foundation moduli can contribute to the 
enhancement of the load carrying capacity of the 
panel, specifically, in the case of a hardening type 
foundation (characterized by K3 > 0). 

Another factor playing a non-negligeable role on 
the load carrying capacity of laminated panels is 
related with that of the structural modelling. In 
this sense, it should be stressed that d l  previous 
results have been obtained on the basis of a higher 
order shear deformation theory (see Refs. 21,23,28 
and 29) of laminated shells fulfilling the condition 
of zero tractions on its external bounding surfaces.. 
Within that theory, while the kinematic continuity 
conditions are fulfilled, the static ones related with 
the continuity of transverse shear stresses across the 
laminae interfaces are violated. 

With the exception of a few results dealing 
with the implication of such a violation on the 
response quantities obtained within a linear theory 
of laminated plates/shells (see Ref. 30) or on their 
postbuckling under mechanical loads (see Ref. 16), 
no results on the topic of the present article can be 
found in the specialized literature. 

In the paper Refs. 16 and 30 it was shown 
that in the case of the fulfillment of both the 
kinematical and static continuity conditions at the 
layer interfaces, the form of governing equations 
remains similar to that obtained when the static 
continuity conditions are violated, (i.e. with Eqs. 
(1)). As it was shown in Refs. 16 and 30, the only 
diierence occurs in the stiffness quantities. 

The relationships between the stiffness quantities 
proper to the model based upon the non-fulfillment 
of static continuity conditions (Model I), and 
based upon their fulfillment (Model 11), have been 
indicated in the above mentioned papers. Figures 
9 depict the non-linear behavior of a three-layer 
slightly imperfect spherical cape of various 1/R, and 
as a special case, of its flat plate counterpart, when 
subjected to a fixed biaxial compressive preload 
(LR = 0.1 and Zl1 = 0.752~~),  the temperature 
amplitude at the upper bounding surface being 



fixed, (Te = 70°F). In addition to the combined 
effects of both the compressive edge loads and of 
the temperature rise on the non-linear behavior 
of the panel, the results show that the difference 
between the predictions provided by the two models 
is really insignificant. However this situation is 
not general, in the sense that in some instances, 
significant differences in the predictions based on the 
two models can occur. In the case where significative 
jumps in the transverse shear moduli, orland in the 
thickness of two contiguous layers are experienced, 
important differences in the predictions based on the 
two models can be expected to occur. In such a case, 
Model I can result in under/overestimations of the 
accurate predictions provided by the Model 11. 

Finally, Fig. 10 depicts the non-linear response 
of geometrically perfect/imperfect orthogonally 
reinforced fiat panels subjected to a membrane 
temperature rise and a lateral pre-load. The results 
show that even in the case of a geometrically perfect 
panel subjected only to a membrane temperature 
rise, the panel does not feature buckling bifurcation. 
This is a direct result of the inherent structural non- 
symmetry featured by reinforced panels [31]. Due to 
this structural non-symmetry, a bending-stretching 
coupling in the constitutive equations and further, 
in the governing equations is induced. The response 
behavior depicted in Fig. 10 reflects this reality. 

Conclusions 

A number of issues related with the thermo- 
mechanical postbuckling of shells have been ad- 
dressed. Moreover, due to the considerable practi- 
cal importance of this area of research, the mode 
interaction, initial imperfection in the geometry 
and property of constituent materials, enhancement 
of the thermomechanical load carrying capacity of 
curved panels via the tailoring technique, implie* 
Lions of temperature-dependent properties of con- 
stituent materials, reinforced shells under thermo- 
mechanical loading systems, effects of interfacial im- 
perfections on thermomechanical load carrying ca- 
pability of laminated composite shells are likely to 
constitute topics of intense research in the years to 
come. 
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obtained during a research sponsored by NASA 
Langley Research Center, Grant NAG-1-1300. The 
author expresses his deep appreciation to Drs. J.H. 
Starnes, Jr. and M.P. Nemeth. for stimulating 
technical discussions and encouragement throughout 
this work. 

Special thanks are also due to Drs. W. Lin and 
M.A. Souza for useful discussions on a number of 
topics contained in this article. 
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Fig. 2a Influence of the curvature parameter &/R2 on temperature-transverse deflection dependence of 
doubly curved three layer panels. Non-uniform through thickness temperature (Ti = 70'8'). In 
the remaining, the data are similar to the ones in Figs. 1. 
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Fig. 2b F'undamental frequency (squared)-temperature interaction for the case described in Fig. 2a. 
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Fig. 3a Temperaturetransverse deflection response in a threelayer geometrically-perfect spherical cape 

whose unloaded edges are freely moveable. Non-uniform through thickness temperature (T. = 
70°F),tl/h = SO, L11 = 3. 
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Fig. 3b Fundamental frequency-temperature interaction for the spherical cape described in Fig. 3a. 
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Fig. 4a Temperaturptransverse deflection response in a three-layer geometrically perfect spherical cape 
whose unloaded eges are immoveable. The remaining data are similar to the ones in Fig. 3a. 
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Fig. 4b F'undamental trequency (squared)-temperature interaction for the case described in Fig. 4a. 



Fig. 5a Effect of a compressive biaxial pre-load of ratio LR on tempera ture- t rvee  deflection response 
of a threelayer geometrically perfect circular cylindrical panel. Non-uniform through thidmas 
temperature Te = 70°F), t l / h  = 120,ll/R1 = 0,&/R2 = 0.08, ill = 2,@ = 2. 
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Fig. 6b Fundamental frequency (squared)-temperature interaction for the special case described in Fig. 
6a. 

Fig. 7a Effects of tangential edge constraints on temperaturetransverse response of a geometrically 
perfect very shallow three-layer spherical cape. Non-uniform through thickness temperature 
(T, = 70°F), l l l h  = 100, lllR1 = &/Rz = 0.05, XI = 0. 

Fig. 7b Fundamental frequency (squared)-temperature interaction for the panel described in Fig. %. 



Fig. 8 Influence of the linear and non-linear Winkler foundation moduli on pressure deflection response 
of a geometrically perfect three-layer spherical cape exposed to a predetermined non-uniform 
through thickness temperature field (T, = 70°F,Ti = 500°F). All edges are immoveable, 
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Fig. 9a Temperaturedeflection response based upon the two laminated shell models, Model I and Model 

11, for a threelayer spherical cape of various curvatures tfR. Non-uniform through thickness 
temperature variation (T. = 70°F), LR = 0.1; t l /h = 30, Lll = 0.75(ill); EI = Ec; Ef /Gj  = 
10; Ec/G: = 30, J0 = 0.05. 
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Fig. 9b Temperatureend shortening predictions based upon the two shell models as aescribed in Fig. 9a. 



Fig. 9c Fundamental frequency-temperature interaction for the case described in Figs. 9a and 9b. 
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Fig. 10 Typical temperature-deflection response for a geometrically perfect/imperfect rectangular bi- 
axially reinforced flate panel subjected to a membrane temperature rise and a lateral pre- 
load, l l / h  = 50. The various curves in the graph are characterized by selected values of the 
amplitudes of initial geometric imperfection 60 and lateral pressure 9, in the sequence (60;fi) 
as: -(0; 0); - - ~ ( 0 . 1 0 ;  0); - - - - -(0.0; 40); - . . ~ ( 0 . 1 0 ;  40) Herein 60 is the 
diiensionless amplitude of the initial geometric imperfection while 9 the dimensionless amplitude 
of the external lateral load. 
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Abstract called decay time. The decay time is extremely small, 
but in few cases, when repeated explosions take place 

This paper deals with the response of structures it is possible for the decay time to be large and decay 
subjected to time dependent loads. The primary rate to be small. One of the common representation of 
emphasis is on the stability and collapse of shell blast loads (ideal impulse) is the step function model. 
configurations of different construction materials. This model can be employed if the time of step load is 
Criteria of stability and approaches employed by much smaller than the period of free oscillations for 
various investigators for establishing critical the structural configuration under consideration. A 
conditions are reviewed and discussed. One of the comprehensive literature review and discussion of the 
goals of the paper is to review the literature for various dynamic stability phenomena can be found in 
dynamic buckling of shell configurations. Moreover, the review articles by simitsesl and ~ e r r m a n n ~  and 
since the term dynamic stability encompasses many in the book by simitses3. All structural 
classes of problems and many physical phenomena, configurations, when acted upon by quasi-static loads, 
the concentration in the present paper will be on respond in a certain manner. When these systems are 
suddenly loaded shell structures. In addition, the acted upon by sudden loads their response can be 
employed methodologies for such problems, including classified in one of the following groups: 
criteria for and estimates of critical conditions are Parametric resonance: the system tend to oscillate in 
presented. Finally, whenever applicable, important the mode in which it is excited and then passes on to 
effects and influences of various parameters are another distinctly different mode with increasing 
identified. amplitude. Examples are symmetric shallow arch 

loaded suddenly by a symmetric transverse load, and 
Introduction column loaded by an in-plane load. 

Nonlinear oscillation: a system simply oscillate about 
Stability of motion has concerned researchers for the near static equilibrium position under suddenly 

many years in many fields of engineering. Stability applied load. 
criteria are developed for structures under dynamic Escaping motion response: systems, when acted upon 
loads, controlled theory of motion, fluid-solid by sudden loads will experience extremely large 
interaction, and combustion. In structural mechanics, amplitude oscillations about a far static equilibrium 
dynamic stability has received considerable attention point or divergent motion. This type of behavior can 
in the past forty years. Several studies have been be found for structural configurations that exhibit 
conducted by many investigators on structural systems snap-through buckling when loaded quasi-statically. 
which are dynamically loaded. In these studies, The methodologies developed by various investigators 
several attempts have been made to define critical are for structural configurations that exhibit snap- 
conditions and to develop methodologies for through buckling and can be classified in the following 
estimating critical conditions. three graups: 

One particular class of dynamic loads consists of 1. Equation of motion approach ( ~ u d i a n s k ~ - ~ 0 t h ~ ) .  
constant ~~lagnitude loads applied suddenly over a The equations of motion are numerically solved for 
finite length of time, including extreme cases of ideal various load parameter values to obtain the system 
impulse loads and loads of constant magnitude and response. The load parameter value at which there 
finite duration. These types of loads can be exists a large change in the response is called critical. 
considered as idealization of blast loads in which 2. Total energy-phase plane approach (HSU~). 
pressure load is built up in a very short time. Then, Critical conditions are related to characteristics of the 
the pressure returns to ambient pressure during a time system's phase plane, and the emphasis is on 
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establishing sufficient conditions for stability (lower 
bounds) and sufficient conditions for instability (upper 
bounds). 
3. Total potential energy approach ( ~ o @ l ~ i m i t s e s ~ ) .  
Critical conditions are related to characteristics of the 
system's total potential. Through this approach the 
lower and upper bounds of critical conditions are 
established. This last approach is applicable to 
conservative systems only. 
The equation of motion approach is the most popular 
approach for dynamic buckling analysis since it is very 
easy to implement in numerical and finite element 
methods. This methodology can be applied to complex 
geometries if the finite element technique is employed 
in the analysis. Several commercial f~nite element 
codes available in the market have the capability to 
perform dynamic buckling analysis. These codes can 
be characterized in two categories, implicit and 
explicit codes. In general the Newton-Raphson and 
Newmark methods are used to solve equations of 
motion to obtain dynamic response for implicit codes 
like, ANASYS, ABAQUSI STANDARD, NASTRAN, 
etc. Explicit codes like DYNA3D, ABAQUSI 
EXPLICIT, etc., employ the finite difference method 
to descretize time in equations of motion to obtain 
dynamic response. Almost all commercial finite 
element codes that are capable of dynamic analysis 
can perform the analysis for systems made of isotropic 
as well as anisotropic materials. 

In the ensuing section a historical review is 
presented in a way that complements the presentation 
included in chapters 8 (The Shallow Spherical Cap) 
and 9 (Thin Cylindrical Shells) of the book by 
simitses3. 

Demonstration examples are presented in later 
sections as well as a discussion of several effects such 
as duration time, static preloading as well as of shell 
structural parameters. 

Historical Review 

In the case of shell configurations, the first studies 
reported in the western literature appeared in the early 
1960's. The two most commonly dealt with 
configurations are those of the shallow spherical shell 
(cap) and the cylindrical shell. Several studies are 
cited in Chapters 8 and 9 of Reference 3. In this 
section, some of the studies will be repeated but the 
effort will concentrate on discussing those that appear 
prior to 1990 but not reported in Reference 3 and 
those that appear in the literature since 1990. 

S~herical Caps and Domes 

The first reported studies dealing with spherical 
caps are those of suhara8, Budiansky and ~ 0 t h ~  and 
Humphreys and ~ o d n e r ~ .  Suhara treated the case of 
sudden pressure of infinite duration, Budiansky and 
Roth the case of uniform pressure applied suddenly for 
a finite time and Humphreys and Bodner the case of 
ideal impulse (uniform pressure but extremely small 
duration). In all of these studies, it was assumed that 
the response of the shallow cap is axisymmetric. This, 
of course, limited the applicability of the results to 
small shell rise parameter values. Moreover, it was 
assumed that the material of the caps is metallic 
(isotropic). Several studies, that followed, removed 
the assumption of axisymmetric response. In addition, 
a few experimental studies were reported also and both 
of these groups are discussed in chapter 8 of Reference 
3. 

From the late 1970's to date several studies have 
appeared which deal with dynamically loaded caps and 
domes (a) in the presence of holes, (b) of various 
shapes, (c) of different construction materials 
(orthotropic, anisotropic and stiffened) and (d) with 
various support conditions. 

Dumir et allo reported critical conditions for an 
orthotropic spherical cap with elastically restrained 
edges. The same authors1 l studied the effect of the 
presence of a circular hole on the critical conditions 
for an orthotropic shallow cap. In both studies they 
assumed axisymmetric shell response. Durnir and 
I&atri12 studied static and dynamic buckling of a 
cylindrically orthotropic truncated shallow conical cap 
with clamped edges. They also considered the effect 
of the presence of a free circular hole and a hole 
plugged by a rigid central mass. They assumed 
axisymmetric response and they computed static and 
dynamic critical load for both isotropic and 
orthotropic truncated shallow conical shells. Jain and 
~ a t h l ~  extended previous work (Refs. 10 and 1 1) and 
reported critical conditions for cylindrically 
orthotropic spherical caps with and without holes, 
supported by a Winkler-Pasternak elastic foundation. 
The edges are either clamped or simply supported and 
the loading is a sudden load of finite duration. Saigal 
et al.14 studied dynamic buckling of elastic shells in 
the presence of initial geometric imperfections by 
using a 48-degree-of-freedom doubly curved 
quadrilateral imperfect thin-shell finite element. They 
assessed the imperfection sensitivity of a spherical 
shell, a spherical cap and a hemispherical dome. 
Young and ~ i a w l ~  extended the previous work to 
include the effect of plasticity. They also studied the 
effect of viscous damping. Ross and ~ohns l6  reported 
on a theoretical and experimental investigation of the 
dynamic buckling and vibration of thin-walled plastic 



domes of various ellipsoidal shapes under extended 
water pressure. 

Fu and ~ i u l ~ s t u d i e d  the dynamic buckling of a 
shallow spherical shell by including transverse shear 
effects. They assumed axisymmetric response and 
they computed critical loads in the presence of a 
circular hole and for various elastically restrained edge 
conditions. Mu et a1.18 employed a finite difference 
scheme to study the response of shallow spherical caps 
to axisymmetric impact loads. They investigated the 
effect of change of the loading area on the dynamic 
critical load. They concluded that the critical impact 
load increases with increasing loading area. Lee et 
a1.19 employed a finite element scheme and reported 
critical conditions for clamped spherical caps under 
uniform step loading. Ganapathi and varadan20 
employed the Budiansky -Roth criterion and derived 
critical conditions for clamped laminated spherical 
caps, subjected to sudden loads. They performed 
parametric studies in order to assess the effect of shell 
geometry, material properties, number of layers, and 
stacking sequence on the dynamic critical load. 

Cylindrical Shells 

Dynamic buckling of cylindrical shells subjected to 
suddenly applied axial compression of constant 
magnitude and infinite duration was first studied by 
volmir21 where a two-degree-of-freedom system was 
modeled and the Galerkin method was employed. 
Roth and ~ l o s n e r ~ ~  applied the potential energy 
method and treated the problem as a four-degree-of- 
freedom system which they studied numerically. 
Several contributions of the early years are discussed 
in Chapter 9 and Ref. 3. In the last ten years or so, 
investigators dealt with dynamic stability of cylindrical 
shells by addressing questions of imperfection 
sensitivity, of non-linear material behavior, of 
orthotropic and laminated construction, of 
experimental validation, etc. In the remainder of this 
section, a discussion of these works is presented. 

Lindberg et a1.23 reported an experimental and 
theoretical investigation of dynamic buckling of thin 
cylindrical shells under oscillating stress waves 
following axial impact. ~ o ~ d a n o v i c h ~ ~  dealt with 
dynamic buckling of stiffened and unstiffened 
laminated orthotropic cylindrical shells. Stiffening 
was treated as smeared (for ribs plus struts and as 
discrete (for ribs only). Kirkpatrick and ~ o l m e s ~ ~  
investigated the effect of initial imperfections on the 
dynamic critical conditions (pulse) of a thin metallic 
cylindrical shell, subjected to an impulsive external 
load applied with explosives. ~ i n d b e r ~ ~ ~  reported on 
dynamic buckling of cylindrical shells with uncertain 

imperfections subjected to symmetric radial impulsive 
loads. 

Shaw et al.27 reported on the dynamic buckling of 
an imperfect, laminated, cylindrical shell under axial 
and torsional sudden loads, applied individually or in 
combination. The sudden load is modeled as a step 
function. They em loyed both the total potential 
energy approach6*B and the Budiansky-Roth 
approach4 and they concluded that the total potential 
energy approach yields conservative results (a lower 
bound is established through this approach). Mustafa 
et al.28 studied dynamic buckling of tubes submerged 
in water and subjected to an axisymmetric external 
pressure pulse. They assumed axisymmetric behavior 
and they employed the finite element method. They 
included material non-linearities in their solution 
scheme (FE Code ABAQUS). The dynamic collapse 
behavior of composite cylindrical shells and panels 
subjected to a transverse point load was addressed by 
Palazotto and his research collaborators in a series of 
papers29-32. The behavior of undamped cylindrical 
shells of varying radii are analyzed with a finite 
element formulation that incorporates all nonlinear " 
Green strain terms in the in-plane directions. 
Characterization of the chaotic nature of the post 
collapsed shells are explored. 

Gilat and ~ b o u d i ~ ~  reported on the dynamic 
buckling of viscoplastic plates and shells by 
employing a unified theory of plasticity. They 
included the effects of applied loading rate, material 
rate sensitivit and transverse shear deformation. The 
same authorsL dealt with application to metal matrix 
composites by using similar solution techniques and 
assessing the effect of the same parameters as in Ref. 
33. More recently, Schokker et a1.35 studied the 
dynamic buckling of ring stiffened (on the inside) 
laminated composite, cylindrical shells under sudden 
hydrostatic pressure. In addition Kounadis and 
~ o ~ h i a n o ~ o u l o s ~ ~  analyzed the dynamic buckling 
response of a spring-mass, geometrically imperfect, 
dissipative model with three-degrees-of-freedom to 
simulate a relatively deep cylindrical panel under step 
loading. 

Finally, there exist several  effort^^^-^^ reported in 
the literature that deal with dynamic buckling or 
collapse of cylindrical shell configurations, of various 
constructions but primarily metallic, subjected to 
seismic loads or under explosion conditions. The 
main interest in these studies is safety associated with 
structural configurations that house nuclear 
powerplants. 

In the next section, a few examples of dynamic 
stability under sudden loads are presented. These 
applications have been investigated by the senior 
author and his research collaborators. 



Effect of Static Preloadinq 

One can identify several systems that fall in the 
category of initially load-free or idealized as initially 
load-free structures, which are subjected to sudden 
dynamic loads. Examples of this category may 
include, buildings, storage bins, and surface vehicles 
which are subjected to blast loads. It is also realistic 
for one to identify several structural systems which are 
initially statically preloaded and subsequently 
subjected to sudden dynamic loads. Consider, for 
example, a submarine operating at some depth smaller 
than the maximum allowable (the one corresponding 
to the design pressure). This implies that the 
submarine is statically preloaded by a pressure smaller 
than the design pressure. Subsequently, the system is 
subjected to a sudden blast load. This additional 
loading is the dynamic load, which can be idealized as 
an ideal impulse or a sudden load of finite duration. 
Another example is an aircraft at a level unaccelerated 
flight (static preloading) subjected to a sudden blast or 
gust (dynamic load). 

To the best knowledge of the authors, no work has 
been reported on this topic in the literature for shells 
or shell-like structures. Several simple models have 
been presented in Ref. [3] for both "ideal impulsive" 
as well as "infinite duration" loads. In all cases, the 
response pattern is the same. If one considers the case 
of a statically preloaded structural system acted upon 
by a sudden load of infinite duration, then the critical 
dynamic load varies from the value corresponding to 
the case of no preloading down to zero when the 
amount of static preloading equals the static critical 
load. 

Results for three models, taken from Ref. [3], are 
presented both in tabular and graphical forms (see 
table 1. and figure 1.). The first two systems 
correspond to one-degree-of freedom models, while 
the third system corresponds to a two-degree-of 
freedom model. The numbers reported for systems I 
and I1 are theoretical predictions of the dynamic 
critical conditions of the models, while the numbers 
reported for system I11 represent lower bounds of the 
dynamic critical conditions. The numbers reported 
were arrived at by employing the Total Potential 
Energy approach (see Ref. 3). In the table, p, denotes 
the amount of static preloading, p,,, the value of the 
static critical load and p,,d denotes the level of the 
critical dynamic conditions1. In chapter 4 of Ref. 3, 
the interested reader can find results and discussion of 
the case of the ideal impulse load case. It is seen from 

for the case of constant load applied suddenly with 
infinite duration. 

table 1 and figure 1 that the critical dynamic load 
decreases in an almost linear manner with increasing 
static preloading. This observation is very significant 
in the design of dynamically loaded systems. Analysis 
with zero static preloading are much simpler in 
execution, especially when employing the Total 
Potential Energy approach, than analysis in the 
presence of static preloading. 

It is recommended that this observation be verified 
for shell-like configurations, especially for submarine 
configurations. 

Apdications to Cvlindrical Shells 

In all cases to be discussed in this section the 
equations of motions approach is employed. The 
simplicity of this method has made it a popular method 
in the recent years. The method consists of solving the 
equation of motion (stated below) by a transient 
dynamic analysis. 

MD" + CD + KD = R(t) 
where M is the mass matrix, C the damping matrix, K 
the stiffness matrix, R the load vector, and D", D', D 
are the nodal acceleration, velocity and displacement 
respectively. At any time these equations can be 
thought of as a set of static equilibrium equations that 
take into account inertia and damping forces. 

As demonstration examples (see Ref. 48) the 
A N S Y S ~ ~  computer code is employed to obtain the 
dynamic response of a metallic and a laminated shell 
subjected to suddenly applied axial compression, 
bending moment, and lateral pressure. The ~e&arkSO 
time integration scheme is employed to solve these 
equations at discrete time points. The time increment 
between successive time points is called the 
integration time step. Since the response can be 
thought of as a combination of modes, the time step 
should be able to resolve the highest mode that can 
contribute to the response. It has been found that using 
approximately twenty points per period of the highest 
frequency of interest results in a reasonably accurate 
solution. The natural frequencies and mode shapes can 
be determined by modal analysis using the finite 
element method. To obtain the dynamic critical load of 
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PLASTIC BUCKLING OF PLATES SHELLS 
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Theoretical predictions of plastic buckling loads 
admit an appreciable constitutive sensitivity which 
has centered on the controversy between the J, 
versions of flow and deformation theories (the plastic 
buckling paradox). A recent study on plastic buckling 
of annular plates in pure shear has shown that 
deformation theory predicts critical loads which are 
considerably below the predictions obtained with the 
flow theory. Comparison with experimental data for 
different metals shows a good agreement with the 
deformation theory results over a wide range of 
geometries. A different aspect of that constitutive 
sensitivity is provided by the case of plastic buckling 
of a rectangular plate under biaxial loads. the main 
finding of that study is the existence of an optimal 
loading path for the deformation theory model. 
Buckling loads attained along that loading path -- 
specified by particular compression/tension ratios -- 
are the highest possible over the entire space of 
loading histories . By contrast, no similar optimum 
has been found with the flow theory. The influence of 
boundary conditions on plastic buckling of axially 
compressed circular cylindrical shells is examined in 
detail along with a comparison with available test 
results. 

1. Introduction 

Studies of plastic buckling of plates and shells 
have been dominated for nearly half a century by the 
controversy about the appropriate model of material 
behaviour in the plastic range. The two competing J2 
theories. (though other models are now available) may 
predict buckling loads which differ by up to an order 
of magnitude: J2 flow theory gives critical loads that 
are higher than those obtained fiom the 
corresponding deformation theory, but the latter 
model usually agrees better with experimental data. A 

predictions, but are consistently below flow theory 
results. That controversy, known as the plastic 
buckling paradox, has been discussed (for an 
authoritative review see ~utchinson') in many papers 
and it is not the purpose of this report to repeat the 
usual arguments in favour or against each theory. We 
shall rather concentrate on recent research performed 
in the aerospace structures group, in the faculty of 
aerospace engineering at the ~echnion~.~,  on plastic 
buckling of plates and shells. Since only part of that 
work is available in ~ n ~ l i s h ~ , ~ , '  it is felt that a unified 
if condensed presentation of the essential results 
would be beneficial to researchers and engineers 
working on problems of plastic buckling. 

This paper summarizes investigations of three 
problems of buckling in the plastic range with a 
detailed comparison between critical loads predicted 
by the two competing J2 theories. In two of the 
problems (the annular plate in shear and the axially 
compressed circular cylindrical shell) the validity of 
theoretical predictions is assessed against available 
experimental data. 

2. Annular Plate in Pure Shear 

The first example to be considered here is that of 
an annular plate in pure shear (Fig. 1). In-plane 
torsion of annular plates is a common technique for 
determining the stress-strain characteristics of metal 
plates. However, the possibility of out-of-plane 
plastic buckling may impose a limit to the 
applicability of that test. 

The plate has an inner radius a, outer radius b, 
constant thickness h and is submitted to uniform 
shear stresses along the boundaries r=a,b. The only 
active stress component within the plate has the 
statically determined radial profile 

classical observation in this context is the plastic 
buckling of the cruciform column, examined where ?L is the load parameter and the factor of 24 is 

experimentally by Gerard and ~ecker' ,  where test introduced for convenience. 

results agree- quite well with deformation thkory 
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where the rates (increments) of change in curvature 
during buckling are related to the out-of-plane 
velocity w(r,0), at the onset of buckling, by 

K, =w,, K, = (W;e),r - Kee =-+- Wyr W~ee 
r r2  

(2.6) 

The boundary data which supplements the buckling 
equation (2.5) is either that of a clamped edge, 
namely 

w = O  w , ~  = O  (2.7a) 

or the simply supported edge conditions 

Fig. 1 (a) Notation for the annular plate, (b) the 
limiting problem of a long narrow panel. The 
thickness in both cases is h. 

The constitutive relations that govern the onset of 
buckling, within the framework of linear buckling 
analysis, are 

&, = Em€, (2.2) 

The instantaneous moduli in (2.2)-(2.4) depend on 
the particular constitutive model employed in the + 

analysis. Earlier work is available for the linear 
elastic isotropic8 and orthotropicg materials where the 
instantaneous moduli in (2.5) remain constant. In the 
elastoplastic range, however, the instantaneous 
moduli are stress dependent and the solution of the 
governing equation is more complicated. 

Here we shall use the two small strain versions of 
the elastoplastic J2 model. First we have the flow 
theory with 

where G, hE are the usual elastic Lame constants, Sij 
is the stress deviator, o, is the Mises effective stress 

(in our problem o, = & , ), and GT is the tangent 
shear modulus given by 

wnere the stress rates are denoted by 1 1  

(6,, id), the strain rates by (E,, Eee, E,) 
(2.9) 

GT 
and (E,, E,,, E,, G,) are the instantaneous 
moduli of the material. The superposed dot can be where E is the elastic modulus and ET is the tangent 

understood as a small increment in time or as modulus of the ~XIitXial streSS-straiIl curve (and a 

differentiation with respect to a time like parameter. known function of 03- The instmtaneous moduli 

Inserting relations (2.2)-(2.4) in the standard plate with (2.8) in Pure shear follow as 

buckling equation, results in the differential E, =Eee =- E E, =- vE 
1-v2 1 - v2 

4 1 
+ i ( ' ~ , ~ f i ) ~ , + T ( ~ f i ~ ,  +ECJ,KOO),W where 

r r 
h RT = 

-7K, = O  
r 

(2.5) 



and v stands for the elastic Poisson ratio. Inserting the 
moduli (2.10)-(2.11) in (2.5) and using definitions 
(2.6) gives the differential equation for buckling 

(2.12) 
where S is given by 

The second constitutive model employed in this 
study is the J, deformation theory with the 
appropriate rate version 

where (G s ,  h ) are the secant moduli defined by 

vs is the plastic Poisson ratio 

and Es is the secant modulus of the uniaxial stress- 
strain curve. The instantaneous moduli generated by 
the deformation theory (2.14) for the pure shear state 
of stress are 

Thus, by comparison with (2.10) we find that the 
instantaneous moduli of the deformation theory are 
smaller than those obtained from the flow theory 
(except G re which remains unchanged). Combining 
(2.17) with (2.5) gives the buckling equation 
according to the deformation theory in a form which 
is similar to but less elegant than (2.12). 

Turning to the numerics, we have to solve an 
eigenvalue system governed by a partial diffwential 
equation (2.12) -- or its deformation theory 
counterpart -- along with the associated boundary 
data, (2.7a) or (2.7b), imposed at r=a,b. The objective 
is to determine the smallest eigenvalue S (or h) for 
which a non-trivial solution becomes possible. 

The method of solution assumes that the normal 
velocity (displacement increment) during buckling 
can be put in the form 

w = ~e($(r)e") m integer (2.18) 

where the eigenfunction $(r) is to be determined. The 
governing differential equation is now reduced to a 
fourth order ordinary differential equation for $(r) 
which can be solved, along with the proper boundary 
conditions, by available numerical schemes. Sample 
calculations were performed for three materials 
represented by the Ramberg-Osgood relation 

where n, K are material constants. The radial profile 
of the effective stress follows from (2.1) and (2.13) as 

Figures 2(a)-2(b) show the variation of the critical 
eigenvalue Scr with the thickness ratio h/(b-a) for 
three metals. The uniaxial tension curve is described 
by (2.19) with the following material constants: 

commercial Al: E=68700MPa v-0.3 K=1.27.10I0 
n=3.72 

AL 2014 T6: E=69000MPa v=0.33 ~=6.08.10~' 
n=15.62 

ST AISI 4340: E=201000MPa v-0.28 ~ = 7 . 6 1 . 1 0 ~ ~  
n=27.6 

Buckling loads were computed for the radii ratio 
b/a=4.18, with the two J2 theories, and for clamped 
and simply supported plates. Comparison is made 
also with purely elastic buckling where both theories 
coincide. 

Initially, for sufficiently thin plates, both theories 
predict the known linear elastic results: Sc,=88.3 for 
the clamped plates and Sc,=52.7 for the simply- 
supported plateg. For thicker plates, however, where 
buckling occurs in the elastoplastic range, there is a 
considerable deparhue of the S,, versus W(b-a) curves 
from the purely elastic values. The most striking 
finding that emerges from the curves displayed in 
Figs. 2(a)-2(b) is the increasing difference, as the 
plate is getting thicker, in the prediction of S,, 
obtained from the two J2 theories. As expected, the 
deformation theory gives lower eigenvalues than the 
flow theory, but the extent of the difference between 



the corresponding eigenvalues is not common in 
plastic buckling analysis. That difference appears to 
increase with the hardening parameter lln. Similar 
results were obtained3 for the two cases of mixed 
boundary conditions with one edge clamped and the 
other simply-supported. The critical loads for these 
cases fall between the corresponding results of Figs. 
2(a) and 2@), and are somewhat higher when the 
inner boundary is clamped in comparison with a 
clamped outer boundary. 

We proceed now with a comparison of the results 
of our theoretical analysis with the experimental data 
reported recently by ~auer '~" ' .  In these tests several 
annual plates, with clamped boundaries, were 
subjected to in-plane torsion. the onset of buckling 
was determined by tracing the torsion-twist history 
and observing the formation of a buckling waves 
pattern. Critical loads were measured for a few metals 
over a wide range of geometries. 
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Fig. 2(a) Critical eigenvalues for clamped annular 
plates, bla4.18. 
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Fig. 2b Critical eigenvalues for simply supported 
annular plates, bla4.18. 

Figures 3(a) -3(c) display the experimental values 
for the critical torsion moment M, along with the 
corresponding theoretical predictions obtained fiom 
the two J2 theories. Also shown in Figs. 3(a)-3(c) is 
the background curve for purely elastic buckling. The 
critical torsion moment is related to eigenvalue (2.13) 
by the expression 

The stress-strain curves of the tension test for the 
metals used in the experiments can be described by 
(2.19) with the following constants: 

It is clearly seen from Figs. 3(a)-3(c) that the 
deformation theory predictions are generally in good 
agreement with the measured values for Mcr. Flow 
theory, by contrast, predicts buckling loads which are 
considerably above the experimental results. The 
difference between the critical torsion moments 
obtained from the two theories is emphasized more in 
Fig. 4 which shows the ratio M,, (theoretical)/Mcr 
(experimental), for, all three metals on a common 
scale. 

It is certainly possible that unavoidable initial 
imperfections will reduce the maximum load 
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prediction obtained from the flow theory2. But from a 
purely practical point of view, the deformation theory 
analysis of the bifurcation loads appears to be of 
sufficient reliability. The extent of the difference in 
the critical eigenvalues predicted by the two theories - 
for thick plates the ratio between the critical moments 
can reach an order of magnitude (Fig. 4) - provides a 
strong example of the "plastic buckling paradox". 

When the annular plate (Fig. l(a)) becomes very 
nmow, with a+b, we may expect the critical load to 
approach that of a long strip (Fig. I@)) under 
uniform shear along the boundaries. The solution of 
the strip problem is fairly simple since, unlike the 
plate problem, the prebuckling field is homogeneous 
with T, E T . The buckling equation is simply 

where (E,, E,, E,, G,) are, with the usual 

notation, the instantaneous moduli of the material. 
These moduli are here exactly as in (2.10) for the 
flow theory, and as in (2.17) for the deformation 
theory, except for the transformation of the (r, 8) 
directions to the (y, x) directions. 

The boundary conditions at the edges y=+c are 
taken as either clamped or simply-supported and we 
write the solution of (2.22) in the form 

where y is an unknown parameter. The boundary 
conditions can now be written as 

f = 0 f ' = 0 at a clamped edge (2.24a) 
f = 0 f "  = 0 at a simply-supported edge (2.24b) 

where here (and throughout this section) the prime 
denotes differentiation with respect to y. Inserting 
(2.23) in (2.22) we get the ordinary differential 
equation 

where a, are the four roots of the characteristic 

equation 

(2.28) 
and A, are the four integration constants. 

Compliance with the boundary conditions (2.24a) or 
(2.24b) leads to a system of four algebraic equations 
for constants A, . The requirement for a nontrivial 

solution of that system gives the eigenvalue equation 
for the critical load at which the strip will buckle. 

Calculations were made with a few metals (the 
same as those of Figs. 2(a)-2@)) represented by 
relation (2.19). The solution procedure is essentially 
the same as for the annular plate problem, except that 
parameter y of (2.23) is here continuous. Results for 
the critical load parameter 

are shown in Figs. 5(a)-5@) for three different 

metals. The behavior of SZr with increasing thick- 
ness is similar to what we have seen for the annular 
plate in Figs. 2(a)-2@). In the elastic range, for thin 
panels, we r.ecover the results of Southwell and 

5 ~ a n ' ~ :  s:, = 22.18 for the clamped panel and 

SZr FS 13.21 for the simply-supported panel. In the 

plastic range s:, decreases with W2c and there is 
again a con-siderable difference in the eigenvalues 
predicted by the two theories. 

Comparison of the critical stresses for the 
clamped annular plate and the clamped long panel is 
shown in Fig. 6 for two different materials. The 
eigenvalues for the annular plate represent in Fig. 6 
the critical shear stress at the inner boundary through 
the parameter 

The curves for the shear panel show the variation of 

SZr from (2.29) with the thickness ratio W2c. In 

('9 * (:I4 calculating the annular plate curves we have assumed 
-i 7 f '  + - = O (2.25) that Wa is maintained constant so that TcI from (2.30) 

can be determined for every value of bla. The 
-xhere 

7 
variation of T,, with W@-a) is shown in Fig. 6 for 

h* = 24(:) T (2.26) decreasing values of bla. It can be clearly seen that 

T,, approaches asymptotically s:, as b/a+l 
Since the coeff~cients of (2.25) are homogeneous we (implying that b-a+2c for the same thickness). T,, is 
can put the solution for f(y) in the form 

always higher than s:, and the deformation theory 
curves are closer to the shear panel asymptotes in 
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comparison with the flow theory and purely elastic 
curves. 

It is worth noting that with the deformation theory ' 

and for the pure power law approximation of (2.19) it 
is possible to derive an asymptotic approximation for 

DIFOR'MATIOU 
the critical load parameter, viz. 
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Fig. 5(a) Critical eigenvalues for clamped panels. 
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Fig. 6 Comparison of critical eigenvalues for the clamped annular plate (T,) and the clamped long panel (s:) ; 
the curves of the annular plate are computed with h/a=0.002. 



where B depends on material properties and boundary 
data. Comparison of (2.31) with the exact solution 
shows an excellent agreement (Figs. 5(a)-5(b)) in the 
plastic range. It is interesting that essentially the same 
expression as (2.31) can be derived from the 
approximate analysis of Stowell who used a one term 
approximation for w in conjunction with a minimum 
principle and the deformation theory. stowell13 has 
compared his theoretical predictions with 
experimental measurements of ~ e r a r d f ~  on the 
buckling of 24s-0 aluminum alloy shear panels. the 
agreement of the test data with the deformation 
theory predictions, over the range of thickness ratio 
2ck=45+103, reveals essentially the same picture as 
in Fig. 4 of the present paper. 

3. Rectan~ular Plate Under Biaxial Loads 

Our second example is a rectangular plate of 
length a, width b, and uniform thickness h (see Fig. 7) 
which is subjected to axial compression a, = -P 

along with axial tension a, = {P where { is a fixed 
parameter. Thus, with 5=0 we have simple axial 
compression, while 5 = -I describes equibiaxial 
compression. 

With w denoting the out of plane velocity during 
buckling we have the plate buckling equation4*5 

where (E, , Ex, , E, , Gxy ) are the instantaneous 
moduli of the plane-stress constitutive relations (2.2)- 
(2.4) with the transformation (r,8) + (y, x) . 

Equation (3.1) is supplemented by eight boundary 
conditions - two on each side of the plate. Taking the 
boundaries x=O,a as an example, we have for simple 
supports 

w=O w,,=O (3.2a) 
while for clamped edges 

w=O w,, = O  (3.2b) 
Similar conditions are imposed along the 
perpendicular boundaries y=O,b. 

Specifying (2.8) and (2.14) for the present 
problem, with a, =a,, 0, =a, and a, = 0 ,  it is 

convenient to redefine the instantaneous moduli as 

Thus, with the flow theory we 

Pij = 

Fig. 7 Notation for rectangular plate. 

(3 -4) 
while for the deformation theory we find4.' 

X - 
Clij = 

(3.5) 
The effective stress is now given by 

and the normalized prebuckling stresses, 
C;=a: la, i=1,2, are 



5 1 When GT = G S  =G and hs = h  we recover from 
(3'7) both (3.10) and (3.1 1) the linear elastic buckling 

equation 

To sum up, for given plate geometry, boundary 

conditions, material properties (pC) and loading 

program (5), we seek the smallest value of P for 
which Eq. (3.1) admits a non trivial solution. That 
eigenvalue is identified with the critical load which 
causes buckling of the plate. Any uniaxial stress 
strain relation can be implemented in this analysis. 
The examples presented later were calculated with the 
Ramberg-Osgood elastoplastic formula (2.19). 

The simplest solution of (3.1) is obtained for 
simply supported boundaries, namely w = w,, = 0 

at x=O,a, and w=w,,=O at y=O,b. These 

constraints are met with the velocity field 

mnx 
w = A sin(T) sin(?) m,n=1,2 ,... (3.8) 

(I  - v2)p P2n2 + m2 - - (3.12) 
aE P2n2 -cm2 

Accordingly, we shall refer to the nondimensional 
buckling parameter (not to be confused with the 
Ramberg-Osgood constant in (2.19)) 

as a suitable measure of the critical loads. Notice that 
the smallest eigenvalues of (3.9)-(3.10) should be 
minimized with respect to the wave numbers (m,n). 

We turn now to the case where the boundaries 
x=O,a are simply supported, (3.2a), but the com- 
pressed sides are clamped. It is convenient here to 
locate the origin of the (x,y) axes at the center of the 
boundary x=O (see Fig. 8) so that the clamped 
boundary conditions read 

b 
where A is an arbitrary constant. Inserting (3.8) in w=O w,,=O at y = f -  (3.14) 
(3.1) we get the eigenvalue equations 

2 

2 2 2  
-2P m n G(Z, -z2 )'I] = 0 (3 -9) 

for the flow theory, and 

Fig. 8 Rectangular plate. S-simple support, C- 
for the deformation theory. The geometrical clampdboundary. 
parameters (gp)  are defmed by 

* * The buckling mode is now written in the form 



where f(y) is to be determined. The field (3.15) supported and the other edges clamped. Here we 
complies with the boundary data (3.2a), and when move the origin of the coordinates to the center of the 
substituted in (3.1) results in the ordinary differential side y=O, so that at y - ~ , b  w = w,, = 0 while at 
equation a 

a x = + -  w =  w,, = 0 .  A solution is now sought in 

d(-1 (3. 6)  and the eigenvalue equations follow as f + P f U = O  , (.)I=---- 
dv 

The solution of this equation has a symmetric part 

for symmetric modes, and 
f 1 ( y ) = D 2 ~ i n h ~ y 1 -  + D 4 ~ i n h n y 3 -  (3.17) 3 3 
and an antisymmetric part for antisymmetric modes. 

The characteristic roots +y, and +y3 are 
(3.18) determined by the transcendental equation 

where Di (i = 1,. . .4) are integration constants and 

(y l ,  y ,) are the characteristic roots of (3.10) as 

determined from the equation 

This equation has four roots labeled as +y and 

+y3. We skip here much of the algebra involved in 
the analysis, and for more details one should consult 
the original thesis4, or the forthcoming report1'. 

The standard technique of compliance with 
boundary conditions (3.14) and the requirement for a 
nontrivial solution leads to the eigenvalue equations. 
For symmetric buckling modes (3.17) we get 

y3 tanh -y3 -y1 tanh -y1 = O  (;P ) (;, 1 (3.20) 

while for antisymmetric modes (3.18) we have 

The solution of (3.20)-(3.2 1) provides the critical 
buckling parameter (3.13). Both modes have to be 
considered in the calculations along with a mini- 
mization procedure with respect to the wave number 
m. 

Proceeding along similar lines we can solve the 
problem when the compressed sides are simply 

Solution procedure parallels that of the previous 
problem including minimization with respect to wave 
numbers n. 

Critical stresses were evaluated numerically by 
solving the eigenvalue equations (3.9)-(3.1 O), (3.20)- 
(3.21) and (3.23)-(3.24) for the different boundary 
conditions. The solution is straightforward though 
care has to be exercised in handling the complex 
roots of (3.19) and (3.25). As we have said already, 
the numerical routine includes a searching technique 
to trace the smallest eigenvalue (3.13). 

Results for aluminum AL 7075-T6 are shown in 
Fig. 9 for simply supported plates with +a=0.001 and 
P=1. The Ramberg-Osgood parameters (2.19) for that 
metal are ~ = 3 . 9 4 . 1 0 ~ ~ ,  n=10.9, and the elastic 
constants are given by ~=7.24.10'O~a, v=0.32. 

Initially, for low values of 6 both theories are in 
agreement, but with increasing load ratio flow theory 
predicts increasingly higher values of K as compared 
to the deformation theory. Furthermore, the 
deformation theory predicts an optimal buckling load 
at a specific value of 5. That behavior is more 
emphasized in Figs. 10- 1 1 which display the gradual 
transition from the elastic range (with a=0.0001) to 
the deep plastic range (a=0.002) by increasing the 
plate's thickness. 

When the plate is more narrow (increasing P) 
optimal buckling is attained by biaxial compression 
(see Fig. 12). It is interesting therefore that there 
exists a critical value of plate aspect ratio (P) for 



Flow theory 

0 

Fig. 9 Variation of buckling parameter with load Fig. 1 1 Influence of plate thickness. Flow theory. 
ratio. 

. 
Oeforn~t ion  theory 

AL 7015  TG 1 

Fig. 10 Influence of plate thickness. Deformation Fig. 12 Influence of plate dimensions. Ueformation 
theory. theory. 
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Fig. 13 Buckling with two clamped boundaries. Fig. 14 Influence of plate thickness. Deformation 
theory. Two boundaries are clamped. 

Fig. 15 Geometry and notation ror circular cylindrical shells. 
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which the highest buckling load is obtained in purely 
uniaxial compression (5=0). This observation can be for the J2 deformation theory. Notice that all moduli 
helpful in optimal design of stiffraess spacing. are in fact known functions of the effective stress 

Results for the other boundary conditions reveal a 
similar picture. Of course, clamped plates buckle at oe = -oxo = -p E 
higher loads in comparison with simply supported g2 

(4.7) 

plates, but the contrast between flow and deformation 
theories remains very much the same (see Figs. 13 Denoting by (u,v,w) the nondimensionalized 
and 14). (with respect to R) mid-plane velocities (in directions 

x,B,z, respectively) during buckling, we have the 
4. Circular Cplindrical Shell in Axial Compression Donne11 type equations3'7 

The third problem considered in this paper has to 
do with plastic buckling of an axially compressed 
circular cylindrical shelfs7 with various end 
conditions. Thus, with the notation of Fig. 15 we 
consider a circular cylindrical shell subjected to 
uniform axial compression oxo . Denoting the length 
of the shell by L and its radius by R it is convenient 
to introduce a non-dimensionalized (with respect to 
R) axial coordinate x so that the loaded edges are 
defined by x = +L / 2R . The axial stress resultant is 
then given by 

where h is the shell's thickness, p the load parameter 
(eigenvalue) and 

where 

Equations (4.8) are supplemented by the conditions 
along the boundaries x = i L  /2R = +I  . For simply 
supported boundaries we have the four variants 

The instantaneous moduli of (2.2)-(2.4), with r SS~: w = $gx = NX = Nxe = 0 
replaced by x, are given here by SS2: w = M X  = u = N ~ ~  = O  

where 

where M ~ ,  N, , Nxe are the usual stress rate 
resultants. These conditions can be expressed directly 
in terms of the velocities, namely, 

for the J2 flow theory, and by SS3: w = w,, = uYx = v = 0 

4 A second set of boundary conditions which will be 
- (4.5) investigated here contains the four possibilities of 
qT + 2 ~ - 1  

Ex, = Hs Gxe = G s  clamped edges. These conditions, designated by CL 1 - 
2 CL4, are identical to these in Eqs. (4.1 1) except that 

where the requirement w,, = 0 is replaced by the obvious 
4E - E 

Hs = TIs =E, condition that w,, = 0 . 
(3Ts + 2 - 4v)rl.r - (1 - 2v12 



The homogeneous system of differential equations 
(4.8) and boundary conditions (4.11), or CL1-CL4, 
has a non-trivial solution only for discrete 
eigenvalues of the load parameter p. The smallest 
eigenvalue p,, determines the critical buckling load 
Erom Eq. (4.1). Note that the instantaneous moduli 
depend on p according to expressions (4.3) and (4.5). 

For sufficiently thick shells the buckling mode is 
axially symmetric. In that case there is no 0- 
dependence and the velocity v vanishes identically. 
Equations (4.8) take now the simplified form 

1 

p = (TT7is)-5 (deformation theory) (4.16) 

Parameters ijT, ijS depend on p according to the 
uniaxial stress-strain response function. In the deep 
plastic range, where it is permissible to neglect the 
plastic part of (2.19) we have the useful asymptotic 
power law approximations 

(flow theory) (4.17) 

Exxuyxx-Exewyx = 0 (4.12a) - 1 z(n-1) 

2 
p = (&) gy (deformation theory) (4.18) 

E xxxx 2 )  - ~ e e w )  1 
where g is given by (4.2) with v = 7 .  Better 

2 L +4E,g pw,,, = 0 (4.12b) approximations which account for the effect of v can 
be extracted from (4.14)-(4.15) by assuming that in 

The simply supported boundary conditions (4.1 1) are 
reduced to the plastic range TT >> 1 and Ts >> 1. This leads to 

the improved power law asymptotic approximations 

SS1, SS3: w = 0 w,, = 0 u,, = 0 (4.13a) 1 

(4.13b) SS2, SS4: w = 0 w,,, = 0 u = 0 g (flow theory) (4.1 9a) 

with similar expressions for the clamped boundaries 
(CL1, CL3) and (CL2, CL4) except that w,, = 0 is 1 

replaced by w,, = 0 . 
Available experimental data 16,17,18 indicates that 

plastic buckling of axially compressed circular 
cylindrical shells is dominated by the axially 
symmetric mode. It appears therefore worthwhile to 
present a separate analysis for these particular modes 
which are governed by Eqs. (4.12). The method of 
solution is fairly standard: For boundary conditions 
SS1, SS3 of (4.13a) we recover the known results, 
due to  att term an'^ , - 

(deformation theory) (4.15) 

provided that the shell parameter L/  JRh is 
sufficiently large. In the elastic range where - 
qT = Fs = 1 we get from (4.14)-(4.15) the classical 

1 
result p = 1 . For incompressible solids (v = -) , 

2 
relations (4.14)-(4.15) simplify to 

1 

(deformation theory) (4.19b) 

with g expressed by Eq. (4.2). 
Buckling stresses predicted by the flow theory are 

consistently higher than those obtained from the 
deformation theory. This is evident Erom Eqs. (4.14)- 
(4.15) since both ijT and Ts increase with p beyond 

their initial elastic value ijT = ijs = 1 . 
The buckling loads for boundary conditions SS2 

and SS4, and those for clamped boundaries CL1, CL3 
and CL2, CL4 are determined from the roots of 
transcendental eigenvalue equations. Similarly, the 
general solution of Eqs. (4.8) is reduced to specific 
eigenvalue equations, for each boundary condition, 
which take the form of transcendental algebraic 
equations for p. The numerical procedure for locating 
the smallest buckling load is detailed in377 and here 
we shall give only the final results. 

Sample calculations of the buckling loads were 
performed for three different materials and over a 
range of shell geometries. The metals considered here 
are characterized by the Ramberg-Osgood relation 
(2.19) with the same specifications as in Figs. 2(a)- 
2('J). 

-- 
P = T T  (flow theory) 



The length to thickness ratio has been kept 
constant at the value of L/h=200 while the radius to 
thickness ratio varied from R/h=2000 to ==lo. 

Figure 16 shows the dependence of the critical 
eigenvalues on h/R for all cases of simple supports. 
Initially, for sufficiently thin shells, we recover the 
known elastic values of p=0.5 for cases SS1-SS2, and 
p=l for cases SS3-SS4. For thicker shells, however, 
there is a considerable decrease in the values of p, 
with increasing h/R. There is no significant difference 
between the eigenvalues with boundary conditions 
SSI and SS2, and a similar agreement exists for 
conditions SS3 and SS4. Deformation theory predicts 
eigenvalues that are below those obtained with the 
flow theory. The differences in the critical 
eigenvalues evaluated from these two theories apepar 
to decrease with increasing n. The lowest values of p 
for cases SSl-SS2 were obtained with one 
circumferential wave, while in cases SS3-SS4 the 
dominant buckling mode is axially symmetric. 

0.6 
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I I I 
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THEORY 

0.5 --- - FLOW THEORY 

ST AlSl 4340 
0.4 - 

AL 2014 T6 

COMMERCIAL AL 

- DEFORMATION 
THEORY 

\\-4 
COMMERCIAL AL 

- - 
0.00 0.02 0.04 0.06 0.08 h,R 0.10 

Fig. 16 Critical eigenvalues for simply supported 
boundaries. 

Critical eigenvalues for clamped boundary conditions 
are practically identical for all four cases CLl-CL4 
(Fig. 17), and are virtually equal to the SS3-SS4 
results. Here again deformation theory predicts lower 
buckling loads than those obtained from the flow 
theory, but the difference decreases with increasing n. 
The eigenmodes are axially symmetric in the deep 
plastic range and with one circumferential wave in 
the initial plastic phase. 

---- FLOW THEORY I 

1.2 

, COMMERCIAL A L  1- 

PC, 

Fig. 17 Critical eigenvalues for clamped boundaries. 

I I I I 

CLI-CL4 - DEFORMATION THEORY 

An &eresting observation that emerges from our 
numerical study is the decreasing difference among 
the buckling loads, for the various boundary 
conditions, as the shell becomes thicker. This is 
illustrated in Fig. 18 where the dependence of the 
critical eigenvalues on h/R is shown for cases SS1- 
SS2, SS3-SS4 and CLl-CL4. These results are for 
AL 2014 T6 and with the deformation theory, but 
essentially the same picture is revealed with the flow 
theory. A similar observation is valid for commercial 
AL and ST AISI 4340 from the data of Figs. 16 and 
17. It is possible though that conditions SSl-SS2 will 
give about half the buckling load of conditions SS3- 
SS4 and CL1-CL4 in the early plastic phase as has 
been shown by the analysis of ~torakers'~ for semi- 
infinite shells with boundary conditions SS 1 and SS3. 

In the plastic range we have the SS3 asymptotic 
power law approximation (4.19b) which gives for the 

1 
AL 2014 T6, with v = - 

2 ' 

(4.20) 
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Fig. 19 Comparison with the experimental results of 
Lee. 

n=13.03. Buckling in the plastic range was axially 
1 symmetric. The small difference between the 

o,ol , , I , I , , , I theoretical results of the flow and deformation 
0.00 0.02 0.04 0.06 0.08 ~ I R  0.10 theories reflects the influence of the power law 

Fig. 18 Critical eigenvalues for simply supported and 
clamped boundaries according to the deformation 
theory. 

This relation agrees quite well with the exact 
numerical results in the ~lastic range (Fig. 18). 

A comparison of the present theoretical predic- 
tions with the experimental results of Lee is displayed 
in Fig. 19. The tests were performed with simply 
support (SS3) cylindrical shells, made of AL 3003-0 
with the material parameters E=70000 MPa, v=0.32, 
~ = 2 . 4 8 ~ 1 0 ' ~ ,  n=4.10. The dominant buckling mode 
was axially symmetric. Agreement with deformation 
theory appears to be quife good (Fig. 19), while flow 
theory considerably overestimates the buckling stress. 
The improved asymptotic approximations (4.19) are 
given here by (in psi) 

(i) -OJg2 (flow theory) o = 56572 - (4.21a) 

( R) 
o =22149 - (deformation theory) (4.21 b) 

exponent n. 
Experimental data on axially symmetric buckling 

is reported also by Sobel and ~ewman'' for four ST 
304 shells. The material arameters are E=221470 

- MPa, v=0.27, K 4 . 7 4 ~ 1 0  , n-8.64. The radius to 
thickness ratio was nearly constant (R/h=18.5), with 
different values of L/R, and the average measured 
buckling stress was o, = 46.1 kip. By comparison, 
for axially symmetric buckling with simply supported 
(SS3) boundaries, flow theory predicts an average 
critical load of a, =54.2 kip while deformation 

theory gives o, = 44.1 kip. For axially symmetric 
buckling with the CL3 conditions we have 
o, = 55.9 kip (flow theory) and o,, = 445 ,kip 
(deformation theory). 

It may be concluded that, in comparison with 
plastic buckling in shear, the plastic buckling paradox 
is less manifested for axially compressed circular 
cylindrical shells. The difference between the 
buckling loads predicted by the flow and deformation 
theories is appreciable only at low values of the 
power law exponent n. 

\ h /  
5. Concludin~ Remarks 

These formulae appear to be good approximations of 
the more accurate theoretical results (Fig. 19). Plastic buckling of thin walled structures is still a 

Comparison with the buckling tests by lively subject of t h e ~ r e t i c a l ~ ~ , ~ " ~  and experi- 
Battemm17 is shown in Fig. 20. The data here is for mentalu'" investigations. While the COntrOverSy SIX- 

simply supported A1 2024-T4 shells with the material rounding the plastic buckling paradox has not been 
parameters E=70000 MPa, v=0.32, ~=1.68x 
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Fig. 20. Comparison with the experimental results of 
Batterman. 

completely resolved, it may be safely argued that 
critical load predictions which are based on the J2 
deformation theory are in reasonably good agreement 
with test results, while J2 flow theory predictions 
consistently overestimate experimental data for 
buckling stresses. Thus, it may well be the case that if 
an agreed upon plastic theory will ever be found its 
final incarnation will resemble and in fact be close to 
the present day version of the J2 deformation theory. 
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ANALYSIS OF CURVED SANDWICH PANELS SUBJECTED TO COMBINED TEMPERATURE 
GRADIENT AND MECHANICAL LOADS 
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NASA Langley Research Center 

Hampton, Virginia 

Abstract 

The results of a detailed study of the nonlinear 
response of curved sandwich panels with 
composite face sheets and subjected to a 
temperature gradient through-the-thickness 
combined with mechanical loadings are presented. 
The analysis is based on a first-order shear- 
deformation Sanders-Budiansky type theory with 
the effects of large displacements, moderate 
rotations, transverse shear deformation and 
laminated anisotropic material behavior included. 
A mixed formulation is used with the fundamental 
unknowns consisting of the generalized 
displacements and the stress resultants of the panel. 
The nonlinear displacements, strain energy, 
principal strains, transverse shear stresses, 
transverse shear strain energy density, and their 
hierarchical sensitivity coefficients are evaluated. 
The hierarchical sensitivity coefficients measure 
the sensitivity of the nonlinear response to 
variations in the panel parameters, the effective 
properties of the face sheet layers and the core, and 
the micromechanical parameters. Numerical results 
are presented for cylindrical panels subjected to 
combined pressure loading, edge shortening or 
extension, edge shear and a temperature gradient 
through the thickness. The results show the effects 
of variations in the loading and the panel aspect 
ratio, on the nonlinear response and its sensitivity 
to changes in the various panel, effective layer and 
micromechanical parameters. 

Nomenclature 

[A],[B],[D],[A,] matrices of the extensional, 

bending-extensional coupling, 
bending and transverse shear 
stiffkesses of the panel, see Eqs. 
A.10 andA.11 -AppendixA 

av,  cik coefficients relating panel 
stiffnesses to effective 
properties of individual layers, 
a n d  mic romechan ica l  
(constituent) properties, 
respectively - see Eqs. 3 and 4 

Ec 

Elf J2f 

coefficients relating effective 
layer properties to the 
micromechanical properties - 
see Eq. 4 

effective elastic moduli of the 
individual face sheet layers in 
the direction of fibers and 
normal to it, respectively 

elastic modulus of the core 
material 
elastic moduli of the fibers in 

the longitudinal and transverse 
directions 

effective elastic moduli of tlie 
core in the xl and x2 directions 

elastic modulus of the matrix 

linear flexibility matrix of 
the panel, see Eqs. B.2 - 
Appendix B 

effective shear moduli of the 
individual face sheet layers in 
the plane of the fibers and 
normal to it, respectively 

shear modulus of the core 
material 

shear moduli of the fibers and 
matrix 

effective shear moduli of the 
core in the xl - x2, xl -x3and 
x2 -x3 planes 

vector of nonlinear terms of the 

panel, see Eqs. 1 

vector of stress-resultant 
parameters 

distances from the top and 
bottom surfaces of the !th layer 
to the middle surface 
total thickness of the sandwich 
panel 

core thickness 

global linear structural matrix, 
see Eqs. 1 

Copyright O 1997 by A. K. Noor 
Printed by NASA with permission. 



L1,4? side lengths of the panel in the 
xland x2 coordinate directions 

ed nonzero) edge displace- 
ments, q e  { X e }  

MI, M2, M12, M21 bending stress resultants temperature changes at the top 
and bottom surfaces 

{M(x' He )I5 } subvectors of nonlinear terms, 
{N(H, x ,  Xe )} total strain energy of the panel 

strain energy density (energy 
per unit surface area) of the 
panel 

Eqs. B.3 - Appendix B 

Nt 3 NS total axial force and total shear 
force on the curved edges of the 
panel transverse shear strain energy 

density (per unit surface area) of 
the panel N1, N2, N12 in-plane (extensional) stress 

resultants 
transverse shear strain energy 
density per unit volume 

NL total number of layers in the 
panel 

{N}, {MI vectors of in-plane and bending 
stress resultants, see Eqs. A.l - 
Appendix A 

{NT}, {MT} vectors of thermal forces and 

displacement components in the 
coordinate directions, see Fig. 1 

fiber volume fraction 

vector of free (unknown) nodal 
displacements moments in the panel, see Eqs. 

A. 1 - Appendix A normalized vector of 
intensity of uniform pressure 
loading 

constrained (prescribed 
nonzero) edge displacements 
orthogonal coordinate system 
(x3 is normal to the middle 
surface of the panel) 

response vector of the panel 

coefficient of thermal expansion 
of the core material 

coefficients of thermal 
expansion of the fibers in the 
longitudinal and transverse 
directions 
effective coefficients of thermal 
expansion of the individual 
layers of the face sheets in the 
direction of the fibers and 
normal to it, respectively 

coefficient of thermal expansion 
of the matrix material 
vector of coefficients of thermal 
expansion of the 4 thlayer of 
the panel (referred to the xl, 
x2, x3 coordinate system) 
vector of transverse shear strain 

components of the panel, see 
Eqs. A. 1 - Appendix A 

Q S Q  transverse shear stress resultants 

{Q} vector of transverse shear stress 
resultants 

{a'l)}, {Q'~'}, 

vectors of normalized 
{Q'~'} 

mechanical loads, mechanical 
strains and thermal strains, see 
Eas. 1 

[ ,  [ matrices of the extensional and 

transverse shear stiffnesses 
of the 4th layer of 
the panel (referred to the 
XI, x2 , x3 coordinate system) 

a m  

{a} ('1 

4 e  applied edge displacement 

thermal strain parameter 
associated with { ~ ( 3 ) }  

R radius of curvature of the 
middle surface of the panel 

iS1I, [s2 1 linear strain-displacement 
matrices associated with the free 
nodal displacements, {X} , and 
the constrained (prescrib- 



161 vector of extensional strain 
components of the panel, see 
Eqs. A. 1 - Appendix A 

{ET 1 thermal strain subvector, see 

Eqs. B.5 - Appendix B 
0 fiber orientation angles of the 

individual face sheet layers 

04 vector of bending strain 
components of the panel, see 
Eqs. A. 1 - Appendix A 

typical panel, effective layer or 
micromechanical parameter 

characteristic lengths, thickness 
and angle of a typical hexagonal 
honeycomb cell 

Poisson's ratios of the fibers 

effective major Poisson's ratio 
of the individual face sheet 
layers 

Poisson's ratio of the matrix 

Poisson's ratio of the core 
material 

effective Poisson's ratios of the 
core 

rotation components of the 
middle surface of the panel 

i, 7 = 1 to the total number of degrees of freedom 
(free nodal displacements and stress-resultant 
parameters) in the model 

I t =  1 to the total number of stress-resultant 
parameters in the model (components of the vector 
{HI 
I ,  J =  1 to the total number of free nodal 
displacement components in the model 
(components of the vector {X} ) 

L =direction of fibers 

1 = 1 to the total number of layers, NL 

i = 1 to the total number of panel parameters 

j = 1 to the total number of layer parameters 

k = 1 to the total number of micromechanical 
parameters 

f =fiber 

T =transverse direction 

T = thermal 

p = 1,2 

C denotes layer 
m denotes micromechanical property 
P denotes panel property 
t denotes transposition 

Introduction 

In recent years considerable work has been 
devoted to the study of thermomechanical 
nonlinear and postbuckling responses of composite 
and sandwich plates and shells. Attempts have 
been made to identify the differences between the 
isothermal and thermal responses. Reviews of 
recent contributions are contained in four survey 
papers (Refs. 1-4) and four monographs (Refs. 5- 
8). Only a few of the reported studies considered 
the nonlinear response of curved panels subjected a 

to temperature gradient through-the-thickness (see, 
for example, Refs. 9 and lo), and to the authors' 
knowledge, none considered sandwich panels with 
composite face sheets, or boundary conditions 
other than simple supports. Since curved sandwich 
panels have many applications in aircraft 
structures, including fuselage, wing and 
empennage components of high-speed aircraft, an 
understanding of their nonlinear response when 
subjected to a temperature gradient through-the- 
thickness combined with a mechanical loading is 
desirable. Moreover, a study of the sensitivity of 
the nonlinear response to variations in the material, 
lamination and geometric parameters of these 
panels is needed to provide an indication of the 
effects of changes in these parameters on the 
structural response. 

The present study focuses on understanding 
the detailed nonlinear response characteristics of 
cylindrical sandwich panels with composite face 
sheets subjected to a temperature gradient through- 
the-thickness combined with mechanical loadings. 
Sensitivity coefficients are evaluated which 
measure the sensitivity of the various response 
quantities to variations in the panel stiffnesses, the 
effective material properties of the individual face 
sheet layers and core, and the micromechanical 
parameters. 

The sandwich panels considered in the study 
consist of a number of perfectly bonded composite 
face sheet layers, and a honeycomb core. The 
layers of the top and bottom face sheets are 



symmetrically distributed with respect to the 
middle surface. The individual layers of the face 
sheets and the core are assumed to be 
homogeneous and anisotropic. A plane of 
thermoelastic symmetry exists at each point of the 
panel, parallel to the middle surface. The loading is 
selected to simulate that of a typical fuselage panel 
of a high-speed aircraft. 

Mathematical Formulatioq 

Finite Element Eauations Governing the Panel 
Jbax?me 

The analytical formulation is based on a first- 
order shear-deformation Sanders-Budiansky type 
shell theory with the effects of large displacements, 
moderate rotations, average transverse shear 
deformation through-the-thickness, and laminated 
anisotropic material behavior included. For 
simplicity, a linear Duhamel-Neumann type 
constitutive model is used and the material 
properties are assumed to be independent of 
temperature. The constitutive relations for the 
panel are given in Appendix A. A total Lagrangian 
formulation is used and the panel deformations, at 
different values of the applied loading, are referred 
to the original undeformed configuration. The 
panel is discretized by using two-field mixed finite 
element models. The fundamental unknowns 
consist of the nodal displacements and the stress 
resultant parameters. The stress resultants are 
allowed to be discontinuous at interelement 
boundaries in the model. The sign convention for 
the generalized displacements and the stress 
resultants for the model are shown in Fig. 1. The 
external loading consists of a uniform pressure 
loading p ; monotonically increasing edge 
displacement q,  (either normal or tangential to the 
edge); and a temperature gradient through-the- 
thickness qT (linear through-the-thickness 
tempkrature variation, qT = (T, - Tb ) 1 h, where T, 
andTb are the changes in the top and bottom 
surface temperatures, see Fig. 2). 

The governing finite element equations 
describing the nonlinear and postbuckling 
responses of the sandwich panel can be written in 
the following compact form: 

where [B] is the global linear structural matrix 
which includes the flexibility and the linear strain- ' 

displacement matrices; {Z} is the response vector 
which includes both unknown (free) 
nodal displacements and stress-resultant 
parameters; {G(z)) is the vector of nonlinear 
terms; p, q, and qr are the magnitudes of the 
internal pressure, applied edge displacement and 
temperature gradient through-the-thickness; 
{ ~ ( l ) ] ,  {Q(z)], ( ~ ( 3 ) ) )  are normalized vectors 

corresponding to unit values of p, q,  and qT . The 

form of the arrays [K],{G(z)}, and 

is given in Appendix B. 

The standard approach for the solution of Eqs. 
1 is to fur the value of two of the three parameters 
p, q, and q~ and to vary the third, or to choose a 
functional relationship between the three 
parameters which is dependent on a single 
parameter q .  In either case, the solution 
corresp6nding to the chosen combination of p, q, a 

and q~ (which is effectively dependent on a single 
parameter) constitutes a curve on the equilibrium 
surface of the panel. 

Governin? Eauations for the Sensitivity 
Coefficients 

The sensitivity coefficients are the derivatives 
of the various response quantities with respect to 
the different material, lamination and geometri- 
parameters of the panel. They can be used to study 
the sensitivity of the nonlinear and postbuckling 
responses to variations in the different parameters. 
The governing equations for the sensitivity 
coefficients are obtained by differentiating Eqs. 1 
with respect to a typical parameter 1. The resulting 
linear algebraic equations have the following form: 

where the range of the inalces and .f is 1 to the 
total number of degrees of freedom in the model; 
and { ~ ( l ) ]  and are assumed to be 

independent of 1. Note that the matrix on the left- 
hand-side of Eqs. 2 is identical to that used in the 
Newton-Raphson iterative process. Therefore, if 



the Newton-Raphson technique is used in 
generating the nonlinear response, the evaluation of 
the sensitivity coefficients requires the generation 
of the right-hand side of Eqs. 2, and a fonvard- 
reductionhack-substitution operation only (no 
decomposition of the left-hand-side matrix is 
required). 

Evaluation of the Transverse Shear Stresses 

The transverse shear stresses are evaluated by 
using piecewise integration, in the thickness 
direction, of the three-dimensional equilibrium 
equations. For optimum accuracy, the transverse 
shear stresses are computed at the numerical 
quadrature points and then interpolated to the 
center of the element. The same procedure is used 
for evaluating the thickness distributions of the 
sensitivity coefficients of the transverse shear 
stresses. 

Hierarchical Sensitivity Coefficients 

The nonlinear and postbuckling response 
characteristics of sandwich panels are dependent 
on a hierarchy of interrelated parameters including 
panel, effective layer and micromechanical 
parameters. A study of the sensitivity of the 
response to variations in each of these parameters 
provides insight into the importance of the 
parameters and helps in the development of 
materials to meet certain performance 
requirements. 

Three sets of sandwich parameters are 
considered herein; namely, panel, effective layer 
and micromechanical parameters. The panel 
parameters include the extensional, bending- 
extensional, bending and transverse shear 
stiffnesses (components of the matrices 
[A],[B],[D] and [A,]- see Eqs. A.10 and A.11, 

Appendix A); and the vectors of thermal effects 
 and{^^) - see Eq. A. 12, Appendix A. The 

layer parameters include the individual face sheet 
layer properties: elastic moduli EL, ET; shear 
moduli GLT, GTT ; major Poisson's ratio VLT; 
coefficients of thermal expansion a L ,  a T ;  fiber- 

orientation angle ~ ( ~ 1 ;  layer thickness h(l), where 
subscripts L and T refer to the longitudinal (fiber) 
and transverse directions, respectively. The 
parameters also include the effective core 
properties: elastic moduli El,, E2, ; shear moduli 
G12c,G13c,G23c ; Poisson's ratios ~12,,~13,, ~ 2 3 , ;  

coefficient of thermal expansion a, and core 

thickness h ( ~ ) .  The micromechanical parameters 
refer to the fiber, matrix and core material moduli 
Elf, 4 f ,  Em, E,, G12f, Gm, G,; Poisson's ratios 

v12 ,~23f  ,vm,vC; coefficients of thermal 

expansion ay , a2  ,am,a,  ; the fiber volume 

fraction vf of the face sheet layers; and the 

geometric parameters of the core tic, t2,,tC, 0. 
The subscripts f ,  m and c denote the fiber, matrix 
and core property, respectively. The three sets of 
parameters will henceforth be referred to as 

(PI (4 (m) hi ,hi , hk where superscripts p , t  and m 

refer to the panel, effective layer and 
micromechanical parameters, respectively; and the 
indices i, j and k range from 1 to the number of 
parameters in each category. 

The computational procedure consists of 
evaluating the sensitivity coefficients with respect 

to each of the panel parameters 

Eqs. 2. The sensitivity coefficients with respect to 
the effective layer and micromechanical parameters 
are then obtained by forming the following linear 
combinations: 

and 

where 

The aq coefficients relate the panel stiffhesses to 
the effective properties of the individual layers and 



are obtained from the lamination theory. The Djk 
coefficients relate the effective layer properties to 
the constituent properties and are obtained fiom the 
micromechanical and core models; and the cik 
coefficients relate the panel stiffnesses to the 
micromechanical properties (see Fig. 2). If the 
panel stiffkesses are uniform, and the constitutive 
relations of the panel, layer, and the constituents 
are linear, then the aij, bjk,cik coefficients are 
constants and need to be generated only once for 
each panel, even when the response is nonlinear. 

Numerical studies were performed to 
determine the effects of variations in the loading, 
the panel aspect ratio, and the stacking sequence of 
the face sheet layers on the nonlinear response and 
the sensitivity coefficients of cylindrical sandwich 
panels. The panels considered have composite, 
eight-layer quasi-isotropic face sheets and a 
titanium honeycomb core with hexagonal cells. 
The material properties and geometric 
characteristics for the panels considered in the 
present study are given in Fig. 1. The material 
properties, the fiber orientation and the stacking 
sequences selected are those typical of sandwich 
panels considered for high-speed aircraft 
applications. The loading on the panels consisted 
of a sequence of mechanical and thermal loadings: 
uniform pressure loading p = 6.894 x lo4 Pa., 
followed by monotonically increasing edge 
displacemen tq,, and then a temperature gradient 
through-the-thickness q~ (linear through-the- 
thickness temperature variation, q~ = (T, - G) / h , 
where T, and Tb are the changes in the top and 
bottom surface temperatures). The value of Tb was 
zero and T, was increased to 137.8"C. Three 
different types of edge displacements were applied, 
namely, edge shortening, edge extension and edge 
shear. The boundary conditions selected for the 
cases of edge shortening or extension and edge 
shear are shown in Fig. 2. In each loading case, the 
maximum value of q, was selected in such a way 
that the maximum principal strains on the surfaces 
do not exceed 0.005. Three different values of the 
panel aspect ratio are considered; namely, 
I-1 / L2 = 1,3 and 113. For each problem, 
hierarchical sensitivity coefficients are evaluated 
(see Fig. 3). The hierarchical sensitivity 
coefficients are the derivatives of the different 
response quantities with respect to panel 
stiffnesses, material parameters and fiber angles of 
the individual face sheet layers; effective and 

actual properties of the core; and micromechanical 
parameters of the face sheet layers. 

Mixed finite element models were used for the 
discretization of each panel. Biquadratic shape 
functions were used for approximating each of the 
generalized displacements, and bilinear shape 
functions were used for approximating each of the 
stress resultants. The characteristics of the finite 
element model are given in Ref. 11. For each 
panel, the multiple parameter reduction methods 
described in Refs. 12-14 were used in generating 
the nonlinear and postbuckling responses, and 
evaluating the sensitivity coefficients. Typical 
results are presented in Figs, 4-8 for the response 
studies and in Figs. -9-1 7 for the sensitivity studies, 
and are described subsequently. 

onse Studies 

The responses of the sandwich panels 
considered are shown in Figs. 4-8. Plots of the total 
axial force & versus the applied end shortening or a 

extension q, , the transverse displacement w, , and 
the total strain energy, U, are shown in Fig. 4 for 
panels with L1 / L2 = 1,3 and 1 / 3. Similar plots of 
the total edge shear force zs (atxl = 0, L1)  versus 
the applied edge shear q, , w, , and U are shown 
in Fig. 5. Normalized contour plots for the 
transverse displacement w , the total strain energy 
density and the transverse shear strain energy 
density at the end of the loading 
stage p + q, + q ~ ,  are shown in Figs. 6 and 7 for 
the panels with Ll / = 1,3 and 1 / 3. The effect 
of loading and aspect ratio on the distribution of 
the transverse shear strain energy density fish, at 
the location of maximum us,, , is shown in Fig. 8. 
The nonlinear response studies can be summarized 
as follows: 

1) The stacking sequence of the face sheet 
layers (i.e., the relative locations of the +45" and 
-45 " layers) has no noticeable effect on the global 
response characteristics of the panel. 

2) For all the panels considered, the pressure 
loadingp had the least effect on the global 
response characteristics, and the edge displacement 
q, had the most effect on the global response. By 
contrast, the edge shear q, had the least effect on 

the transverse shear strain energy density fish, at 
the location of maximum us,,. 

3) For all the panels considered, no mode 
change occurs from the first to the second and third 



loading stages (p, p + q,, p + q, + qT) . However, 

the distribution of the strain energy density c in 
the panel changes significantly from being 
nonuniform after application ofp  to nearly 
uniform after the application of p + q, and remains 
nearly uniform after the application of qT . 

4) For the case of edge shear, relaxing the 
constraint = 0 at xl = 0,  L1 has no noticeable 
effect on the in-plane shear stiffness or on the total 
strain energy of the panels. However, it results in 
increasing the center displacement w,, particularly 
forpanels with = I 1. 

5) For the case of edge shearq,, the location 
of the maximum strain energy density was 
different in each loading stage. By contrast, for the 
case of edge extension, the location of maximum 
0 was the same after the application p as after 
p + q,, but was different after p + q, + q.~. ; and for 
the case of edge compression, only the panels with 
L1 I 4! = 1 had the location of maximum 0 after 
p the same as that after p + qL+ qT but different 
from the location of maximum U after p + q, . 

Sensitivity studies were conducted to identify 
which of the panel parameters, effective face sheet 
and core properties, and micromechanical 
parameters most affect the nonlinear response. For 
the case of edge shortening or extension, typical 
results showing the sensitivity of the total strain 
energy U with respect to the extensional, bending, 
transverse shear stiffnesses, and the thermal forces 
and moments in the panel are presented in Fig. 9. 
Sensitivity coefficients of U with respect to 
effective material properties of individual face 
sheet layers are shown in Fig. 10; with respect to 
effective and actual core parameters are presented 
in Fig. 11; and with respect to micromechanical 
parameters of the face sheet layers are shown in 
Fig. 12. Corresponding results for the case of edge 
shear are shown in Figs. 13-16. For all the loading 
cases and the panels considered, the stacking 
sequence of the face sheet layers has no noticeable 
effect on the sensitivity coefficients. Normalized 
contour plots for the largest sensitivity coefficients 
of the total strain energy density 0 with respect to 
panel, core and face sheet parameters at the end of 
each loading stage ( p  only, p+q, and 
p + q, + qT) are shown in Fig. 17. An examination 
of Figs. 9-1 7 reveals: 

1) The total strain energy U is considerably 
more sensitive to variations in All than to 
variations in the other extensional stiffnesses. For 
the panels with L1 I & = 1, U is more sensitive to 
variations in Dll and D22 than to variations in the 
other bending stiffnesses. For the panels with 
L1 I = 3, U is more sensitive to variations in 
D22 than to variations in the other bending 
stiffnesses, and for panels with L1 I L;? = 1 / 3, U is 
more sensitive to variations in Dl l .  

2) The sensitivity of U to variations in All 
increases with an increase in q,. For the case of 
edge shortening, the addition of the temperature 
gradient does not change the sensitivity with 
respect to All, but increases the sensitivity with 
respect to Dll  (and with respect to D22 for the 
panels with L1 I L2 2 1). For the case of edge 
extension, the addition of temperature gradient 
does not change the sensitivity with respect to A1 
but decreases the sensitivity with respect to D l l ,  
(and with respect to for the panels with 
L1 I L2 2 1 ) .  

3) The total strain energy is considerably more 
sensitive to variations in the following parameters 
than to each of the other parameters in the same 
category: a) the effective elastic modulus of the 
face sheets EL ; b) the fiber angles +45" and -45"; c) 
effective core properties vl2,, El,, E2, ; d) the four 
core parameters B c , & l c ,  E, and t , ;  and e) 
micromechanical parameters of the face sheets 
vf, E l f ,  Em,vm and a,. The sensitivity of U to 

variations in each of the parameters listed increases 
with the increase in q,. For the edge shortening, 
the addition of q~ increases the sensitivity of U to 
variations in ~~2c,El~,E2c,ec,'lc,Ec,tc,Em, Vm 
and a,; slightly decreases the sensitivity to 
variations in EL, fiber angles +45", -49, Elf and 

vf. For the edge extension case, the addition of 
qT has an opposite effect to that described for edge 
shortening. 

4) The distribution of the sensitivity 
coefficients of the strain energy density 0 with 
respect to all the parameters considered becomes 
nearly uniform throughout the panel after the 
application of p +  q,. Exceptions to that are the 
sensitivity coefficients of with respect to Dl 
and the fiber angles +45" and -45". 



Case of E d ~ e  Shear: 

1) The total strain energy U is considerably 
more sensitive to variations in the following 
parameters than to each of the other parameters in 
the same category: a) extensional stiffkess As6, and 
bending stiffness Dll (for the panels with 
L1 / L2 I I); b) the effective modulus of the face 
sheets EL; C) fiber angles 0" and 9 6  (after the 
application of qT); d) effective core parameters 
v ~ ~ ~ ,  El,, 4, (after the application of qT); e) core 
parameters tc,ac,Ec,elc and 8,; and f )  
micromechanical parameters of the face sheets 
vf,Elf ,Em and am. 

2) The sensitivity of U to variations in 
As6, EL, t,, Q,, E,, .el,, v f ,  Elf and Em increases 

with the increase of q,. The sensitivity of U to 
variations in the other parameters listed in (1) does 
not change with changes in q,. The addition of q~ 
significantly changes the sensitivity of U to 
variations in 022, fiber angles 0°, 90" and the 
parameters ~1~~,E1~~&C,elC~tC,Ec,ac,Em and a,. 

3)  The distribution of the sensitivity 
coefficients of the strain energy density with 
respect to As6, EL and vf becomes nearly 
uniform after the application of p+q,, and 
remains uniform after the addition of q ~ .  

Concludin~ Remarks 

A study is made of the nonlinear response of 
curved sandwich panels with composite face sheets 
subjected to a temperature gradient through-the- 
thickness combined with mechanical loadings. The 
panels are composed of perfectly bonded layers 
(face sheet layers and core), and the core is 
replaced by an equivalent homogeneous 
anisotropic layer. The analysis is based on a first- 
order shear deformation Sanders-Budiansky type 
theory with the effects of large displacements, 
moderate rotations, average transverse shear 
deformation through the thickness, and laminated 
anisotropic material behavior included. A linear, 
~uhamel-~eumann type constitutive model is used 
and the material properties are assumed to be 

Both the nonlinear response of the panel as 
well as the hierarchical sensitivity coefficients are 
generated. The hierarchical sensitivity coefficients 
measure the sensitivity of the different response 
quantities to variations in three sets of interrelated 
parameters; namely, panel stiffnesses, effective 
properties of the face sheet layers and the core, and 
micromechanical parameters of the face sheet 
layers and the core. An efficient multiple- 
parameter reduction method is used for generating 
the nonlinear response and evaluating the 
sensitivity coefficients. 

The computational procedure for evaluating 
the hierarchical sensitivity coefficients consists of 
evaluating the sensitivity coefficients with respect 
to each of the panel stifhesses, and then generating 
the sensitivity coefficients with respect to the 
effective layer and micromechanical parameters as 
linear combinations of the sensitivity coefficients 
with respect to the panel parameters. Hierarchical 
sensitivity coefficients can be used to assess the 
effects of variations in the panel, face sheet layers, a 

core and micromechanical parameters on the 
nonlinear response. They can also help relate 
structural design and material development. 

Numerical studies are presented which show 
the effects of variations in the loading, the panel 
aspect ratio, and in the stacking sequence of the 
face sheet layers on the nonlinear response and the 
sensitivity coefficients of cylindrical sandwich 
panels with eight-layer quasi-isotropic face sheets 
A d  titanium honeycombcore with hexagonal cells. 
The loading on the panels consisted of a sequence 
of mechanical and thermal loadings: uniform 
pressure loading, monotonically increasing edge 
displacement, and then a temperature gradient 
through the thickness. Three types of edge 
displacements were considered; namely, edge 
shortening, edge extension, and edge shear. In all 
cases considered, the stacking sequence of the face 
sheet layers did not have a noticeable effect on 
either the nonlinear response or the sensitivity 
coefficients; and the edge displacement had the 
most pronounced effect on the response. 
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. . 
aendix A - Thermoelastic Consltuthve 

ons for the Panel 

The thermoelastic model used in the present 
study is based on the following assumptions: 

1) The panels are composed of a number of 
perfectly bonded layers (face sheet layers and 
core). 

2) A honeycomb core with hexagonal cells is 
used. 

3) The Aboudi cell method is used to evaluate 
the effective properties of the face sheet layers (see 
Ref. 15) and an upper-bound energy approach is 
used to evaluate the effective core properties (see 
Refs. 16 and 17). 

4) Every point of the panel is assumed to 
possess a single plane of thermoelastic symmetry 
parallel to the middle surface of the panel. 

5) The material properties are independent of 
temperature. 

6) The constitutive relations for the panel are 
described by the lamination theory, and can be 
written in the following compact form: 

where {N), {MI, {Q), {&I, {K), {Y}, {NT}, {MT} are 
the vectors of extensional, bending and transverse 
shear stress resultants, strain components and 
thermal effects of the panel and are given by: 

and 

{MT}' " [MTI M ~ 2  ~ ~ 1 2 1  (A.9) 

The matrices [A],[B],[D] and [A,] contain the 

extensional, coupling, bending and transverse shear 
stiffnesses of the panel which can be expressed in 
terms of the effective layer stifthesses as follows: 

[[AI[BI[DII = 
NL he - (A. 10) 
E 1 [Q(~)][[II x3 [I] ( ~ 3 ) ~ [ 1 1 ] 4  
!=lh,-, 

NL he - (') 
[A,] = Z I [QS] dr, (A. 1 1) 

e=1 he-, 

where [#')and [aS](')are the extensional and 
transverse shear stiffnesses of the Ith layer 
(referred to the xl , x2, x3 coordinate system); [I] 
is the identity matrix; he and he-1 are the 
distances from the top and bottom surfaces of the 
Ith layer to the middle surface; and NL is the total 

number of layers in the laminate. The expressions 
for the different coefficients of the matrices 

 and   in terms of the material and 

geometric properties of the constituents of the 
composite face sheets (fiber and matrix) are given 
in Refs. 18 and 19 and for the core are given in 
Refs. 16 and 17. 

The vectors of thermal effects, {NT} and 

{MT}, are given by: 

NL hc (A. 1 1) 

where {a}(') is the vector of coefficients of 
thermal expansion coefficients of the Ith layer 
(referred to the coordinates - xl , x2, x3; see, for 
example, Refs. 20 and 2 1). 

The governing discrete equations of the panel, 
Eqs. 1, consist of both the constitutive relations and 
the equilibrium equations. 

The response vector {Z) can be partitioned 
into subvectors of stress-resultant parameters {H), 
and fiee (unconstrained) nodal displacements {XI, 
as follows: 



The different arrays in Eqs. 1 and 2 can be 
partitioned as follows: 

M(X, if,) 
~G(z)} = {N(H, x, J 03.3) 

where [F] is the linear flexibility matrix; [sl] and 

[S2] are the linear strain-displacement matrices 

associated with the free nodal displacements {X) , 
and the constrained (prescribed nonzero) 
edge displacements q, I%,}; {M(x,~, )}  

and {N(R X, )} are the subvectors of nonlinear 

terms; {ET) is the subvector of normalized thermal 

strains; 0 is a null matrix or vector; and superscript 
t denotes transposition. The explicit form of { E ~ }  

is given in Ref. 22. 
For the purpose of obtaining analytic 

derivatives with respect to lamination parameters 
(e.g., fiber orientation angles of different layers), it 

is convenient to express - w1-' 
ah 

in terms of - 
ah 

as follows: 

a[Fl ~[FI-' - = -[F] ---- [F] 
ah ah 

(B.9) 

~[FI-' 
The explicit forms of - and {) are given 

ah 
in Ref. 22. 

Analytic expressions are given in Ref. 23 for 
the laminate stifiesses [A], [B], [Dl and [A, ] ; the 

vectors of thermal effects { N ~ }  and (MT}; and 

their derivatives with respect to each of the 
material .properties of the individual layers and 
fiber orientation angles. 



Micromechanical Properties 

honeycom 
core 

Fiber - Matrix - Core 
Elf = 226.5 GPa Em = 3.3 GPa L = 5.08 x 10-5 m ... " 
EZf = 21.35 GPa v, = .35 llc = 4 . 3 1 ~  104 m 
G12f = 20.37 GPa & = 3.5 x 10-51°C 12, = 6.99X 104 m 
V12f = ,303 9, = 45O 
v~~~ = -523 E; = 107.6 GPa 
ql = 6.94 x 1 o-~IOC 

12c 
G, = 41.1 GPa 

% = 17.2 X 10-6PC V, = .31 
Vf= .6 

Laver Properties 
Face Sheets - Core 
EL = 137.2 GPa E 1, = .433 MPa 
ET= 8.62 GPa EZc = .286 MPa 
GLT= 3.76 GPa GlZc = 7.92 MPa 
Gn= 2.89 GPa Gf3,= ,521 GPa 
VLT= .32 GZ3, = ,394 GPa 
UL = -3.42 X 10-71°C V1zc = 1.23 
a ~ =  27.9 x loal°C a, = 9.09 x 1 o-61°C 
NL=8 h(,) = ,0254 m 
Fiber Orientation [W5/0/90], 
Thickness of individual layers 

= 1 .397x10~m Thrwgh-th$hicknass, 

Panel Geometric Parameters 
L1 = .508 m 
R = 2.54 m 
L11L2 = 1, 3, 113 Lonntudinal, L 

Figure 1.  Panels considered in the present study and sign convention for generalized displacements and stress 
resultants. 



pressure loading temperature gradient 

edge shortening: edge shear: 

At XI = 0, Ll 
u, = f qJ2 (shortening) 

= m qJ2 (extension) 
U; !=W=+~ =4;!=0 

At x;! = 0, L2 
U ~ = W = + ~  =+;!=o 

Figure 2. Loadings and boundary conditions considered in the numerical studies. 
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Figure 3. Hierarchical sensitivity coefficients for sandwich panels with composite face sheets. 



Figure 4. Effect of loading and aspect ratio on the nonlinear response of cylindrical sandwich panels with 
honeycomb core and composite eight-layer face sheets subjected to combined pressure loading, edge 
shortening or extension and temperature gradient through the thickness. 



Figure 5. Effect of loading and aspect ratio on the nonlinear response of cylindrical sandwich panels, with 
honeycomb core and composite eight-layer face sheets, subjected to combined pressure loading, edge shear 
and temperature gradient through the thickness. 



Figure 6. Normalized contour plots depicting the effect of aspect ratio on the tranzerse displacement w , the total 
strain energy density and the transverse shear strain energy density Ush for cylindrical panels, with 
honeycomb core and composite eight-layer face sheets, subjected to combined pressure loading, edge 
shortening and temperature gradient through the thickness. Location of maximum values identified by a 
small solid circle. 



Figure 7. Normalized contour plots depicting the effect of aspect ratio on the transverse displacement w , the total 
strain energy density and the transverse shear strain energy density zsh for cylindrical panels, with 
honeycomb core and composite eight-layer face sheets, subjected to combined pressure loading, edge shear 
and temperature gradient through the thickness. Location of maximum values identified by a small solid 
circle. 
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Figure 8. Effect of loading and aspect ratio on the distribution of transverse shear strain energy density fish, through 
the thickness, at the point of maximum transverse shear strain energy density vsh (see Fig. 6). 
Cylindrical sandwich panels, with honeycomb core and composite eight-layer face sheets, subjected to 
combined pressure loading, prescribed edge displacement and temperature gradient through the thickness. 



Edge shortening 

b) Edge extension 

Figure 9. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to panel stiffnesses. Cylindrical sandwich panels, with honeycomb core and composite eight- 
layer face sheets, subjected to combined pressure loading, edge shortening and temperature gradient through 
the thickness. 



a) Edge shortening 

aUB9 L, I (E,h4) 
b) Edge extension 

Figure 10. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to effective face sheet layer properties. Cylindrical sandwich panels, with honeycomb core 
and composite eight-layer face sheets, subjected to combined pressure loading, edge shortening and 
temperature gradient through the thickness. 
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b) Edge extension 

Figure 11. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to core properties. Cylindrical sandwich panels, with honeycomb core and composite eight- 
layer face sheets, subjected to combined pressure loading, edge shortening and tempture gradient 
through the thickness. 



-1 

- 
N, L, 

4.5  
E ~ h  4.25 'a75v Aiy ,v 

x IOU x l o Y  x10 '  

0 
1.5 O 

h aulah L, I (E, h4) a aula  L, I (E, h4) auah L, I ( ~ , h @ )  
a) Edge shortening 

1 

- 

0.25 30~~~' o h aU@h L, I (ETh4) :v7 1.5 O !v;; 
h aumh L, I ( E , ~ ~ )  h aulah L, I ( ~ , h ~ )  

b) Edge extension 

Figure 12. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to micromechanical properties of the face sheet layers. Cylindrical sandwich panels, with 
honeycomb core and composite eight-layer face sheets, subjected to combined pressure loading, edge 
shortening and temperature gradient through the thickness. 



Figure 13. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to panel stiffnesses. Cylindrical sandwich panels, with honeycomb core and composite 
eight-layer face sheets, subjected to combined pressure loading, edge shear and tempemture gradient 
through the thickness. 
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Figure 14. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to effective face sheet layer properties. Cylindrical sandwich panels, with honeycomb core 
and composite eight-layer face sheets, subjected to combined pressure loading, edge shear and temperature 
gradient through the thickness. 



Figure 15. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to core properties. Cylindrical sandwich panels, with honeycomb core and composite eight- 
layer face sheets, subjected to combined pressure loading, edge shear and temperature gradient through the 
thickness. 



Figure 16. Effect of loading and aspect ratio on the normalized sensitivity coefficients of the total strain energy U 
with respect to micromechanical properties of the face sheet layers. Cylindrical sandwich panels, with 
honeycomb core and composite eight-layer face sheets, subjected to combined pressure loading, edge shear 
and temperature gradient through the thickness. 
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b) Edge shear 

Figure 17. Normalized contour plots depicting the effect of loading on the largest sensitivity coefficients of the total 
strain energy density v. Cylindrical sandwich panels, with honeycomb core and composite eight-layer 
face sheets, subjected to combined pressure loading, prescribed edge displacement and temperature gmdient 
through the thickness. Location of maximum values identified by a small solid circle. 
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Abstract 

The results of an experimental and numerical study 
of the buckling and postbuckling responses of selected 
unstiffened curved composite panels subjected to 
mechanical end shortening and a uniform temperature 
increase are presented. The uniform temperature 
increase induces thermal stresses in the panel when the 
axial displacement is constrained. An apparatus for test- 
ing curved panels at elevated temperature is described. 
Numerical results generated by using a geometrically 
r~onlinear finite element analysis code are presented. 
Several analytical modeling refinements that provide 
more accurate representation of the actual experimental 
conditions, and the relative contribution of each refine- 
ment, are discussed. Experimental results and numeri- 
cal predictions are presented and compared for three 
loading conditions including mechanical end shortening 
alone, heating the panels to 250°F followed by mechani- 
cal end shortening, and heating the panels to 400°F. 
Changes in the coefficients of thermal expansion were 
observed as temperature was increased above 330°F. 
The effects of these changes on the experimental results 
are discussed for temperatures up to 400°F. 

loads. Knight and ~tarnes,' for example, conducted 
room-temperature tests of curved composite panels sub- 
jected to mechanical axial compression loads, and com- 
pared the test results with numerical results from a 
nonlinear finite element code which included the effects 
of measured geometric imperfections. The response of 
curved composite panels to thermal loading conditions 
has been studied analytically by a number of 
investigators2-* for panels both with and without cut- 
outs, but these results were not correlated with experi- 
mental results. 

The present paper presents the results of an experi- 
mental and numerical study of curved composite panels 
subjected to a uniform temperature change and a 
mechanical axial compression load. The response of the 
panels due to the thermal stresses caused by boundary 
condition constraints are described. Comparisons of the 
results of panels loaded in axial compression and panels 
subjected to a uniform temperature change with 
restricted axial displacement are made to help explain 
their complex behavior. Numerical results were gener- 
ated using the geometrically nonlinear finite element 
code STAGS? which accounts for large rotations and 
allows solutions along an unstable postbuckling path. 

Introduction Exueriments 

The buckling and postbuckling responses of unstiff- Test sDecimen 
ened, curved composite panels subjected to thermal 
loading conditions are of interest for future high-speed Test specimens were fabricated from unidirectional 

aircraft which are expected to operate in an elevated layers of IM715260 graphite-bismaleimide preimpreg- 
nated tape using the resin manufacturer's recommended temperature environment. Although experimental and 

analytical studies have provided an understanding of the 
processing procedure. The resulting test panels are 

response of curved composite panels subjected to 
8-plies thick and have a [&45/0/90], quasi-isotropic lam- 
ination. The test panels are 10-in. long, 10-in. wide, and mechanical axial compression loads, only analytical 

results are available for panels subjected to thermal have a 60-in. radius. The mechanical properties of the 
material are given in Table 1. The laminate coefficients - 

*~raduate Research Assistant, Dept. of Engineering of thermal expansion are obtained from the properties in 

Science and Mechanics Table 1, and the values a, = a,, = 1.136~ ~O-~IOF indicate 

t~rofessor, Dept. of Engineering Science and that the thermal expansion in the axial and circurnferen- 

Mechanics, Associate Fellow AIAA tial directions are equal when the panel is subjected to 
$Head, Structural Mechanics Branch, Fellow AIAA temperatures. geomefry and 
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boundary conditions are shown in fig. 1. 
Initial geometric imperfections were measured on 

both the inner and outer surfaces of each panel. Mea- 
surements were taken every 0.125 in. along the axial 
and circumferential directions. The panel thickness was 
determined by taking the difference between the mea- 
surements for the inner and outer surfaces. The initial 
radial geometric imperfections were found by averaging 
the inner and outer surface measurements to obtain a 
contour of the midsurface geometric imperfections. 

Panels were instrumented with back-to-back pairs 
of strain gages and thermocouples. Eighteen thermo- 
couples were used to determine the uniformity of the 
applied temperature for each panel. Forty-two strain 
gages were used to measure of the strain in each panel. 
Two additional strain gages were attached to a piece of 
quartz with a near zero coefficient of thermal expansion 
and were used to compensate for the thermal expansion 
of the strain gages used for each test. The instrumented 
quartz was placed in the insulated heated enclosure 
along with the test panel, and the resulting strain gage 
readings indicated a measure of the gages' apparent 
strain. Strain gage readings from the panel were cor- 
rected for the thermal expansion of the strain gages so 
that the resulting values represented only the change in 
length of the panel per initial unit of length. 

Test Apparatus and Procedure 

Panels were supported with curved end fixtures 
along the curved ends to provide clamped boundary 
conditions, and with knifeedge supports along the 
straight edges to prevent radial displacements. All sup- 
port fixtures were fabricated from stainless steel. Panels 
tested at room temperature were painted white on one 
side to allow the use of the shadow moir6 technique to 
observe radial deformations. Room temperature testing 
was conducted with a 120-kip-capacity hydraulic testing 
machine. End shortening was measured by three direct- 
current differential transformers (DCDT's) located at 
three corners of the load-frame platens. 

The experimental study of the thermal response of 
the panels required both a load frame to restrict axial 
end shortening and an insulated, heated enclosure to 
provide a uniformly distributed temperature increase. 
The experimental apparatus for this study is shown in 
figs. 2 and 3. Primary heating is provided by coil resis- 
tance heaters with a fan (not shown) at the back of the 
enclosure to circulate the heated air. Additional heating 
of the curved end fixtures was provided by heated plat- 
ens that consist of eight cartridge heaters embedded in a 
0.75-in.-thick piece of stainless steel. By including the 
heated platens as an additional heat conduction source, 
the temperature increase of the curved end fixtures can 

be controlled to be the same as the air temperature 
increase, rather than lagging behind the air temperature 
increase due to the substantial mass of the stainless 
steel. Two layers of Mycroy/Mycalex Ceramics, grade 
500 Supra Mica insulation were used between the 
heated platens and the load-frame platens to provide 
thermal isolation. Because a single, large piece of 
ceramic insulation tends to warp out-of-plane when 
heated, the insulation was cut into small blocks measur- 
ing 2-in. long by 2.5-in. wide by 0.75-in. thick, with 
0.5-in. deep grooves cut in a 0.5-in. grid pattern. Mea- 
surement of the deflection of the ceramic insulation at 
elevated temperatures up to 450°F indicated that the 
ceramic insulation blocks deflect from their flat and par- 
allel shape by less than the machining tolerances of 
M.003 in. 

To accommodate the size of the heated enclosure 
within the load-frame platens, elevated temperature tests 
were conducted in a 300-kip-capacity hydraulic testing 
machine. End shortening was measured by using a 
combination of two linear variable differential trans- 
formers &WIT'S) located inside of the heated enclosure 

' 

and one DCDT outside of the enclosure. The LVDT's 
were not thermally compensated, and only provided a 
relative measure of end shortening after a constant ele- 
vated temperature had been established. 

Temperature was controlled using four separate 
control loops that controlled the temperature of the top 
heated platen, the bottom heated platen, the side car- 
tridge heaters, and the air, which was heated primarily 
by convection from the combination of the resistance 
heaters and the air circulating fan. Temperature was 
increased slowly to insure that the panel maintained a 
nearly uniform temperature distribution and to eliminate 
transient thermal effects. Heating a panel from room 
temperature to 400°F took approximately two hours. 
The resulting thermal gradients in the panel were well 
established when the temperature reached 150°F and 
remained relatively constant up to 400OF. 

Analvsis 

Numerical analyses were conducted using the 
STAGS geometrically nonlinear finite element analysis 
code.g The curved panels were modeled with 
eight-node quadrilateral faceted shell elements formu- 
lated according to the Kirchhoff-Love hypothesis with 
Lagrangian nonlinear strain-displacement relations. 
Each node is allowed six degrees of freedom, comprised 
of three translations and three rotations, as illustrated in 
fig. 1. 

The response of interest in the present study is the 
relationship between load and axial strain. The axial 



strain due to end shortening can be found by dividing 
the change in panel length by the original length, Ada.  
For thermal loading, the axial strain is given by the 
change in temperature multiplied by the negative of the 
axial coefficient of thermal expansion, -%AT. 

Preliminary nonlinear analyses were performed 
assuming an ideal geometry, a laminate thickness of 
0.04 in., and a completely uniform temperature distribu- 
tion. Boundary conditions were applied along the edges 
of the 10-in.-long by 10-in.-wide panels. The panels 
were loaded either by axial end shortening, Au, or by a 
uniform temperature change, AT. When a temperature 
change was applied, the end shortening of the panel was 
restrained by setting Au = 0. The nonlinear load-strain 
response for this ideal model are compared to results for 
more refined models in figs. 4-9 and in Table 2. As indi- 
cated in Table 2, the buckling load due to a uniform tem- 
perature change is p,~-1530 lbs. for the ideal model, 
which is approximately 13% greater than the buckling 
load of PC.=-1360 lbs. due to axial end shortening. 

Ex~erimental Boundary Conditions 

Since the curved end fixtures provide support over 
0.375 in. of the panel length at each end, and the knife 
edge supports are applied 0.125 in. in from the straight 
edges, the analytical boundary conditions required mod- 
ification from those used for the ideal model to represent 
the experimental boundary conditions. The constraint 
on the radial displacement, w = 0, was moved in 0.125 
in. from the straight edges, and a constraint on the radial 
displacement 0.375 in. from the curved ends was added 
to the clamped boundary conditions. The effect of these 
experimental boundary conditions on the analytical 
results are shown in fig. 4. The analytical buckling 
loads are 6% and 9% greater for end shortening and 
thermal loading, respectively, and the postbuckling stiff- 
nesses are similar. The postbuckling loads are higher 
for the experimental boundary conditions than for those 
of the ideal model. 

Measured Thickness 

Average measured panel thickness, determined 
from the inner and outer surface measurements, was cal- 
culated for each panel and analyses were conducted by 
assuming this average value as the constant panel thick- 
ness. The measured thickness is approximately 8% 
greater than the thickness assumed for the ideal model. 
The effects of measured thicknesses on the nonlinear 
response are shown in fig. 5. The prebuckling stiff- 
nesses and the buckling loads are substantially 
increased, but the postbuckling stiffness is relatively 
unaffected, compared to results for the thinner ideal 
model. Assuming that the buckling load is proportional 

to the thickness cubed, it is expected that an 8% increase 
in thickness would result in a 26% increase in the buck- 
ling load. The results in Table 2 suggest that this calcu- 
lation provides a good approximation for the buckling 
load. 

Initial Geometric Im~erfections 

The measurements for the initial geometric irnper- 
fections were sensitive to the surface irregularities of the 
panels. The panel outer-surface roughness was caused 
by a porous release cloth that was used during specimen 
fabrication. The resulting imperfection measurements 
required some smoothing to separate the midsurface 
variations in radial displacements from the surface 
irregularities associated with the outer surface layer. A 
Fourier series approximation of the midsurface radial 
imperfection data was calculated using a trapezoid rule 
for numerical integration of the form 

n = O m = O  
Due to the relatively large finite element size, 

approximately 0.45-in. square, used in the analysis com- 
pared to the 0.125-in. grid of measurement points, too 
much accuracy in the Fourier representation could result 
in a choppy or discontinuous finite element representa- 
tion. A series with n,, = 6 and m,, = 14 was found to 
give satisfactory results, based on an error calculation 
given by 

2 

error = C ( ~ r n e a s u r e d  

Wmeasured (2) 
where the summation is taken over the total number of 
measurement points. The error showed little improve- 
ment when additional terms were added to the Fourier 
approximation. 

The Fourier approximation for a typical initial geo- 
metric imperfection is shown in fig. 6, where the radial 
imperfection TO is normalized by the nominal layer 
thickness of 0.005 in. The magnitude of the maximum 
imperfection is on the order of two layer thicknesses, or 
25% of the total panel thickness. 

The nonlinear response presented in fig. 7 includes 
the measured initial geometric imperfections of fig. 6. 
Compared to the results for the ideal model, including 
the initial geometric imperfections has little effect on the 
panel stiffness. The bucking loads are decreased by 
12% and 5% for the mechanical loading and thermal 
loading cases, respectively, as shown in Table 2. 



Thermal Gradients 

Temperature was measured during testing using 
nine equally spaced thermocouples on each surface of 
the panel. The thermocouple data were approximated 
by a second-order-polynomial function which allows 
continuous temperature gradients to be calculated for 
the inner and outer surfaces. The temperature gradient 
over one surface is given by 

2 2 2 2 2 
T (x, 8 )  = Clx 8 + C2x 8 + C3x + C4x0 

2 
+C5xe+C6x+c78 +c*e+c, (3) 

where C1-C9 are constants determined by the nine ther- 
mocouple readings for that surface. This approximation 
is repeated for the other surface. 

A typical temperature gradient approximation is 
shown in fig. 8. The maximum temperature difference 
along one surface of the panel is approximately 20°F, 
while the maximum temperature difference between 
inner and outer surfaces is approximately 4OF. 

The nonlinear response shown in fig. 9 includes the 
temperature gradient represented in fig. 8. These tem- 
perature gradient appear to have little effect on the 
load-strain response. The buckling load is decreased 
about 4% compared to the buckling load of the ideal 
model as shown in Table 2. These results suggest that 
the level of temperature uniformity obtained with the 
experimental apparatus is sufficient for studies focusing 
on the effects of uniform elevated temperatures. 

Experimental Results and Discussion 

Au Loading 

Room-temperature tests were conducted with a test 
specimen to establish a baseline for comparison to ther- 
mal loading results. This specimen has the same panel 
geometry and [&45/0/90], lamination as the other speci- 
mens. The nonlinear response results from the experi- 
ment and from the numerical predictions with the 
STAGS finite element code are shown in fig. 11. The 
discontinuity in the experimental data points indicates 
that the panel collapses from a maximum or buckling 
load to a lower load, and that the stiffness associated 
with the postbuckling response is reduced. The finite 
element model incorporates the refinements discussed 
previously, namely experimental boundary conditions, 
measured thickness, and measured initial geometric 
imperfections. The value of the experimentally estab- 
lished bucking load is between the values of the buck- 
ling load predicted by the model incorporating initial 
imperfections and the buckling load predicted by the 
model without initial imperfections, as indicated in* 
Table 3. A possible explanation for this discrepancy is 
that a constant thickness was assumed along with a mid- 
surface geometric imperfection, while the actual mea- 
sured imperfections may have included both midsurface 
imperfections and local thickness variations. 

The deformation mode shape of the postbuckling 
response is indicated by the photograph of the shadow 

Fullv Refined Model 
moirt5 fringe pattern shown in fig. 12 along with the pre- 
dicted response from STAGS. The two deformation 

the effects cOndi- shapes qualitatively agree, with both indicating a single 
tions, measured thicknesses, initial geometric imperfec- buckle pattern in the center of the panel. 
tions, and thermal gradients are considered together, the 
nonlinear response varies significantly from the 
response of the ideal model, as shown in fig. 10. The 
effects of the modeling refinements on the end-shorten- 
ing response tend to cancel each other out as shown in 
Table 2, so that the overall difference between the 
results for the ideal model and the results for the refined 
model is small. However, the thermal loading response 
showed greater sensitivity to boundary condition and 
thickness refinements, which tend to increase the buck- 
ling load, and less sensitivity to initial imperfections, 
which tend to lower the buckling load. Including all of 
the modeling refinements causes a greater change in the 
ideal model results for a thermal load than for a mechan- 
ical load, as compared to the refined model results. 

AT to 250°F Followed bv Au Loading 

To determine the response of a [&45/0/90], panel at 
an elevated temperature of 250°F, the panel was slowly 
heated while data were collected from the strain gages, 
the thermocouples, the external DCDT, and the load 
cell. The original test plan was to hold the end shorten- 
ing constant during heating, but this was not possible 
due to two opposing factors. First, the 300-kip load 
frame was designed to apply end shortening by raising 
or lowering the lower load-frame platen. When an 
attempt was made to hold the end shortening at a con- 
stant value, a slow leak in a hydraulic valve caused the 
lower load-frame platen to drift slowly downward. This 
drift resulted in the axial expansion of the curved test 
panel. Secondly, the steel end fixtures and steel heated 
platens, which were heated along with the panel, 
expanded due to the elevated temperatures. Together, 
these steel components were 2.0-in. thick between the 
curved ends of the test panel and the load-frame platens. 



The steel expanded with a coefficient of thermal expan- 
sion of a = 6 . 0 ~ 1 0 ' ~ / " ~  and exerted a compressive axial 
displacement on the curved test panel. The superposi- 
tion of the lower-platen drift and the steel expansion 
resulted in a known net axial expansion of the panel dur- 
ing thermal loading. 

The known expansion of the panel as a function of 
temperature was included in the finite element model, so 
that the actual loading of the panel can be described as 
combined thermal and mechanical loading, followed by 
mechanical loading alone. The experimental and pre- 
dicted nonlinear responses for this loading sequence are 
shown in fig. 13. The portion of the response curve in 
the upper part of the figure indicates that a positive or 
expanding end shortening occurs during the application 
of the elevated temperature. This response corresponds 
to the portion of the response curve in the lower part of 
the figure with an increasing load and a compressive 
thermal strain. When the thermal strain reaches a con- 
stant level, -%AT=-0.0002, the loading is due to end 
shortening alone. The numerically predicted nonlinear 
response due to the combination of thermal and 
mechanical loads is not as accurate as the numerical pre- 
diction for mechanical loads alone, e.g., see fig. 11. The 
finite element model predicts a slight nonlinearity in the 
load-strain response before buckling, which was not 
observed experimentally. Also, the value of the buck- 
ling load obtained experimentally is greater than the val- 
ues of the predicted buckling loads obtained either by 
including or not including initial geometric imperfec- 
tions. 

'I'he value of the buckling load for a panel loaded by 
end shortening at 250°F is greater than the value of the 
buckling load obtained for the panel tested at room tem- 
perature, as indicated in Table 3. The experimental 
results indicate that there is an approximately 15% 
increase in value of the buckling load for the panel 
tested at 250°F compared to results for the panel tested 
at room temperature. The analytical results indicate the 
same trend, although the increase in the value of the 
buckling load is only 4 to 796, depending on whether or 
not initial geometric imperfections are included in the 
analyses. 

AT Loading 
The buckling response of the [+45/0/90], panel sub- 

jected to only thermal loading cannot be studied experi- 
mentally due to the thermal limitations of the material. 
However, interesting insight into the prebuckling 
response was obtained by heating a panel to 400°F 
while taking data from the strain gages, thermocouples, 
and external DCDT. Experimental results and numeri- 
cal predictions for this loading condition are shown in 

fig. 14. Again there was drift of the lower load platen 
and thermal expansion of the steel fixture and heated 
platen. Because the rate of drift of the lower load platen 
varied from test to test, the slope of the load-strain 
response curves also varied from test to test. At a tem- 
perature of 300°F, the panel experiences a compressive 
load of -590 lbs., equal to more than one third of the 
mechanical buckling load of the panel. At a temperature 
of approximately 330°F, the response of the panel 
changes, and the load does not increase with increasing 
temperature. The finite element numerical prediction 
did not indicate this behavior, suggesting that a change 
in material properties may have occurred above 330°F. 

Free Thermal Ex~ansion 

To examine the material properties above 330°F, 
the free thermal expansion of an IM715260 panel was 
studied by heating the panel to a temperature of 400°F. 
The only panel for which these data are available has a 
[&45/02], stacking sequence, however, the trends in 
properties are a function of the material and are inde- 
pendent of the particular stacking sequence. The rela- 
tionship between strains from axial and circumferential' 
strain gages located at the center of the panel and the 
temperature change is shown in fig. 15. The slopes dAT 
of the curves are the coefficients of thermal expansion. 
At temperatures below 330°F, an increase in tempera- 
ture produces a positive strain in the circumferential 
direction, indicating circumferential expansion, and a 
negative strain in the axial direction, indicating axial 
contraction or shrinking. The corresponding coeffi- 
cients of thermal expansion are positive in the circum- 
ferential direction and negative in the axial direction. 
Above a temperature of 330°F the panel begins to con- 
tract in the circumferential direction and to expand in 
the axial direction, as indicated by the changing slopes 
in fig. 15. This change in slope implies a change in the 
sign of the coefficients of thermal expansion. At 
approximately 330°F, the coefficient of thermal expan- 
sion in the circumferential direction changes from posi- 
tive to negative, while the coefficient of thermal 
expansion in the axial direction changes from negative 
to positive. 

These changes in the coefficients of thermal expan- 
sion, coupled with a likely change in the material stiff- 
ness properties, could be an explanation for the loss of 
stiffness of the [+45/0/90], panel when it was heated to 
400°F. Thus, the loss of stiffness that occurred at 330°F 
may be due to a change in material properties of the 
IM715260 material as opposed to a structural phenome- 
non. 



Concluding Remarks 

The results of an experimental and numerical study 
of the buckling and postbuckling responses of selected 
unstiffened curved graphite-bismaleimide composite 
panels subjected to mechanical end shortening and a 
uniform temperature increase are presented. The effect 
of various experimental conditions on the load-strain 
response of the panels was studied analytically using a 
geometrically nonlinear finite element analysis code, 
and the results of the study indicate which conditions 
affect the panel response. The magnitude of the panel 
thickness, initial geometric imperfections, and experi- 
mental boundary conditions affected the analytically 
predicted buckling load, but the small experimentally 
determined thermal gradients associated with the tests 
had little effect on the predicted results. 

The numerically predicted results for a panel sub- 
jected to a mechanical end-shortening load correlated 
well with the room-temperature test results. The 
numerically predicted results for panels subjected to ele- 
vated temperatures and a mechanical end-shortening 
load correlated well with the test results when the effects 
of displacements associated with the test apparatus were 
included in the analysis The results indicate that it is 
necessary to include the changes in the load platen dis- 
placements caused by a small leak in a test-rnachine 
hydraulic valve and the thermal expansion of the end 
fixtures and heated platen to obtain acceptable correla- 
tion of the test and analytical results. 

The results indicate that the coefficients of thermal 
expansion of the material were affected by tempera- 
ture. It was found that the coefficients of thermal expan- 
sion in the axial and circumferential directions change 
sign for temperatures above 330°F, and the resulting 
changes in properties affect the correlation between the 
experimental and analytical result. 
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Table 1. IM715260 Material Properties. 

El = 22.1 Msi 

E2 = 1.457 Msi 

~ 1 2  = 0.258 

G12 = 0.860 Msi 

al = 0.01 250 x 1 c6 1°F 

a2 = 14.91 x I O - ~ P F  



Table 2. BucEriling loads for refined analyGcal mocfe1s. ,Ceramic insulation 
,Heated   la ten 

Au loading AT loading 
Pmaxlpcr Pmaxfpcr 

PC,=-1360 Ibs. Pep-1 530 Ibs. 

Ideal model 1 .OO 1 .OO 

Experimental 1.06 1.09 
boundary conditions 

Measured 1.21 1.28 
thickness 

Initial geometric 0.88 0.95 
imperfections 

Temperature 
gradient 

All refinements 1.07 1.32 

Table 3. Buckling load, experiment and predictions. 

Au loading AT to 250°F, 
then Au 

Pmax, Ibs. 
Pmax, Ibs. 

end fixture 

Fig. 2 - Elevated temperature testing apparatus. 

- 

Experiment -1 670 -1 920 

Nonlinear analysis -1 460 -1 560 

Nonlinear analysis -1750 -1 820 
without imperfections 

Fig. 3 - Photograph of experimental set-up. 

H = Thickness 

0 -0.0004 -0.0008 -0.0012 
Aula or -%AT 

ldeal model 
- - - - - - - - -  Experimental boundary conditions 

Fig. X - Panel geometry and boundary conditions. 

Fig. 4 - Effect of experimental bonndary conditions. 



ldeal model, thickness = 0.04 in. 
- - - - - - - - -  I- Measured thickness = 0.0431 in. 1 
Fig. 5 - Effect of measured thickness. 

t = ldeal layer thickness = 0.005 in. 

Fig. 6 - Qpical initial geometric imperfection. 

ldeal model 
- - - - - - - - -  Initial geometric imperfections 

Fig. 8 - Typical temperature gradient. 

I AT loading, - 

ldeal model 
- - - - - - - - -  Measured temperature gradient 

Fig. 9 - Effect of measured temperature gradient. 

- - - - - - - - -  Refined model 

Fig. 7 - Effect of initial geometric imperfection. Fig. PO - Effect of all model refinements together. 
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Au, in. 
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Nonlinear analysis ------.-- Nonlinear analysis without imperfections 

Fig. 11 - Response for Au loadiing. 
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0 Experiment 
- Nonlinear analysis 
- - - - - - - . - Nonlinear analysis without imperfections 

Fig. 13 - Response due to AT loading to 250°F and 
then Au loading. 

Fig. 12 - Postbuckling deformations for Au loadiing. 
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Fig. 15 - Free thermal expansion for a [M5/02], 
laminate. 

Fig. 14 - Response due to AT loading to 400°E 
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Abstract 

The study reported herein includes assesment of im- 
perfection sensitivity of scaled down models. Under- 
standing the relationship between model and proto- 
type behavior is essential in designing scaled down 
models. This study investigates problems associated 
with establishing similarity among symmetric lami- 
nated cross-ply cylindrical shells subjected to axial 
compression and lateral pressure. Particular emphasis 
is placed on the imperfection sensitivity of scaled down 
models and prototypes. Such a study is important 
since it provides the necessary scaling laws and scale 
factors which affect the accuracy of the predicted re- 
sponse. The results presented herein indicate that, for 
elastic response of a cross-ply cylindrical shell, based 
on structural similitude, a set of scaling laws can be 
found to establish similarity among a large number of 
cylinders with different number of plies, stacking se- 
quence, and geometries. 

Nomenclature 

Ai, laminate extensional stiffnesses 

Bi j laminate coupling stiffnesses 

Dij laminate jiexural stiffnesses 

K,, non-dimensional load 

L cylinder length 

Nxx, P critical loads(1imit point) 

Nxxcr, PC, buckling load(bifurcation point) 

R cylinder radius 

t total laminate thickness 

Z curvature parameter L2/Rt  

Xi scale factors 

t imperfection amplitude coeficient 

*Assistant Professor and Professor respectively. Copyright 
1997 by A. Tabiei. Published by NASA with permission. 

Subscripts 

m model 

P prototype 

Pr. predicted 
th .  theoretical 

Introduction 

A scaled-down model, scale model, which can pre- 

dict the structural behavior of the full-scale system, 

protot?l~e, has been p r o ~ e n l . ~ ~ ~  to be an extremely 

beneficial tool. This possible development must be 

based on the existence of certain structural parame- 

ters that control the behavior of the structural system 

when acted upon by static and/or dynamic loads. Un- 

derstanding the relationship between model and pro- 

totype behavior is essential in designing scaled down 

models. In order to better understand the applicabil- 

ity of these models in designing laminated composite 

structures, an analytical investigation was undertaken 

to assess the feasibility of their use. Such a study is 

important since it provides the necessary scaling laws 

and scale factors which affect the accuracy of the pre- 

dicted response. 

However, scaled down models are not widely used 

because of the uncertainty associated with scaling 

down a laminated structure. Before scaled down mod- 

els can be used, the following technical barriers must 

be overcome: 1) the determination of the proper scale 

factors of the structural geometry parameters, 2) es- 

tablishing the necessary conditions which relate the 



response behavior of the scaled down model to the length(L), (b) distortion in radius(R), and (c) dis- 
original system, 3) the determination of the sensitiv- tortion in total thickness(t). 

ity of the scaled down models to initial imperfections, 

and 4) understanding the effect of scaling (scale effect) 

on accuracy of the models in replicating the prototype 

behavior. The last item has received much attention 

from researchers in recent years and was focused on 

initially, because most studies were experimental in 

nature. This issue is important especially for model 

testing which involves failure or inelastic b e h a v i ~ r ~ ~ ~ ~ ~ .  

In these studies, the variation of scale factors of pa- 

rameters are limited to the number of experiments. 

First and second items have been investigated in pre- 

vious p a p e r ~ l > ~ .  

In previous s t ~ d i e s l ~ ~ ~ ~ ,  it was assumed that the 

shells are perfect. However, laminated cylinders con- 

tain several imperfections and defects, namely initial 

geometric imperfections, and structural or material 

defects. It is assumed that the prototype and its mod- 

els are free of any defects in material or construction. 

The initial geometric imperfections can be classified 

as initial shape imperfections or load eccentricities7. 

In order to include the effects of these imperfections 

in the analysis, there is a need to have a complete 

knowledge of the imperfections, which is virtually im- 

possible. A practical way to consider these effects in 

scaled down model design, is to use the scaling laws 

which have been derived based on classical theory, by 

assuming that imperfections have the same effect on 

both the prototype and- its model. To do so, the de- 

signer has to have a good knowledge of imperfection 

sensitivity of the structures which are under investi- 

gation. This type of information is necessary for both 

complete simil~rity(ply-level scaling) and partial sim- 

ilarity. To design an accurate scaled down model, it is 

crucial to know exactly how imperfections affect the 

cylinder behavior, for the following cases: 

e Distortion in the number of plies: (a) ply-level 

scaling, (b) sublaminate-level scaling, and (c) gen- 

eral scaling. 

e Distortion in stacking sequences 

* Distortion in geometry: (a) distortion in 

Based on this information, the designer can choose 

models which have identical, or a t  least similar, im- 

perfection sensitivity with their prototype. 

The main objective of this study is to investigate the 

applicability of similitude theory in designing scaled 

down models with initial imperfections. Particular 

emphasis is placed on the imperfection sensitivity of 

symmetric laminated cross-ply cylindrical shells sub- 

jected to axial compression and lateral pressure. 

Scaling Laws for Perfect Cylinders 

Previous results2 indicated that, for elastic response 

of a cross-ply cylindrical shell, based on structural, 

similitude, a set of scaling laws can be found to estab- 

lish similarity among large number of cylinders with 

different number of plies, stacking sequence, and ge- 

ometries. Both models with partial and complete sim- 

ilarity were presented. Similitude theory is employed 

to develop the necessary similarity conditions(sca1ing 

laws) from the governing equations of symmetric lam- 

inated cylindrical shells( for detail see Ref. 2) .  



~ y y  L~ 
where Kyy = - Q~ and A, = Ar, and A, = - 

D117r2 ' a, 
denotes the scale factor of parameter a. 

Conditions depicted by Eqs.( 5)-( 9) and the con- 

ditions that relate structural geometries and mode 

shapes, Eqs.( I)-( 4)) are the necessary scaling laws for 

symmetric, cross-ply, laminated cylinders subjected to 

lateral pressure. For the case of axial compression the 

scaling laws are the same as in equations (1)-(9) if the 

non-dimensional load Kvy is replaced by K,,.The de- 

rived scaling laws, Eqs.( 5)-( 9), relate the response 

behavior of a scaled down model t o  that of the pro- 

totype. They can be used in designing scaled down 

models for a specific prototype or vice versa. As is 

apparent, the scaling laws are arranged in the form of 

different scale factor for buckling load (Kyy ) It  is nec- 

essary to state that,  the presented form of arranging 

2) Sublaminate-Level scaling5: by eliminating the re- 

peated group of plies [(SO/ - g),, , n = 1,2 ,3 ,  .. .]. 3) 

General scaling: by reducing the number of plies arbi- 

trary i.e. [(+On/ - en/ + en)]. 

the scaling laws is not unique. (+e2/ - @ Z ) Z ~  
Prototype 

So far, the necessary scaling laws for cross-ply cylin- 

ders subjected to axial compression and lateral pres- 

ply-~e-1 Scaling 
(+el - elzs 

\ General Scaling 
(+el - e /  + 6 )  

Sublaminate-Level 
Scaling 

(+ez/ - 8 ~ ) ~  

sure have been established. 

In designing the scaled down models the following Figure 1: Different possibilities for distortion o f  the 
number of plies. 

assumptions are made: 

e Model and prototype have classical simply sup- 

ported boundary conditions (SS-3). 

a Models have the same material properties a s  their 

prototype (AE,j = = AG,j = 1). The mate- 

rial of each ply is a high modulus Graphite/Epoxy 

(AS4/3502). 

r Two configurations are considered for prototype 

geometry (010/9010), and (0/90)10, with Lp = 
42in and R, = 14in. r 

a The thickness of each layer is assumed to be con- 

stant ( h  = 0.OO'iin) for all cylinders(mode1s and 

prototypes). 

Different possibilities of scaled down models, i.e. 

scaling of the number of plies and geometrical pa- 

rameters(L and R) are considered. There are three 

ways to scaled down the number of plies in a lami- 

nate (see Figure 1): 1) Ply-Level scaling: by elimi- 

nating the repeated plies [(+On/ -en), , n = l , 2 ,  3, . . .]. 

Models with Complete Similarity 

Using ply-level scaling, [(+On/  - B,),, n = 
1,2 ,3 ,  . . -1, all scaling laws are satisfied, providing ge- 

ometrical similitude between model and prototype. In 

other words model and prototype must have the same 

curvature parameter Z = LZ/Rt . Note that Az = 1 is 

a necessary but not a sufficient condition for complete 

similarity. This requires that the scale factors of ge- 

ometric parameters (length, radius, and thickness or 

number of plies) of both model and prototype be the 

same (this yield XL = AR = At = A N  or AP). 

Note that Az = 1 can also be achieved by choos- 

ing different scale factors for geometric parameters 

(AL # AR # AN). Prototype (010/9010), can be ply 
level scaled down, but prototype (0/90)10, cannot.. 

However, prototype (0/90)lo,, can have sublaminate 

level and/or general scaled down models. These type 

of ply reductions yield distorted models with partial 

similarity which is considered next. 



Distorted Models 

Complete similarity is very useful if there is freedom 

in designing scaled down models. In many cases it 

is impossible to satisfy complete similarity between 

model and prototype due to the size, shape, material 

properties, boundary conditions of prototype. When 

at  least one scaling law cannot be satisfied, distorted 

models with partial similarity are achieved. 

In the present studies, the material behavior is as- 

sumed to be linearly elastic. Therefore, scale effects 

are not present. Furthermore, it is assumed that the 

prototype and its scaled down models are free of im- 

perfections or imperfections have the same effect on 

bozh the prototype and its small scale model. Since 

imperfection sensitivity of cylindrical shells varies with 

structural geometry parameters, models might be 

more sensitive to geometric imperfections than the 

prototype. 

Imperfection Sensitivity of Models 

In the previous section, it was assumed that the 

shells are perfect. However, thin laminated cylinders 

contain initial geometric imperfections. In order to in- 

clude the effects of these imperfections in the analysis, 

there is a need to have a complete knowledge of the 

effect of initial imperfections on buckling behavior of 

both scaled down models and prototypes. 

Numerical results are generated by employing the 

ABAQUS8 finite element software. Mesh convergence 

study for (0/90)10, (the largest cylinder) and (0/90), 

(the smallest cy1inder)indicates that using 80-100 el- 

ements in circumferential by 20-30 elements in lon- 

gitudinal direction yields an acceptable convergent 

state. The ABAQUS four nodded shell element (SR4) 

is used for this investigation. Using ABAQUS, first 

three eigenvalues and corresponding eigenvectors are 

obtained for each cylinder. The lowest eigenvalue rep- 

resent either the axial compression buckling load or 

the lateral pressure buckling load for a perfect cylin- 

der. The initial geometric imperfection were given by 

superimposing a small imperfection in the form of the 

weighted sum of several buckling modes(eigenvectors) 

on the initial geometry. In generating results two type 

of imperfection shapes are considered with different 

imperfection amplitude coefficients(<). Three ampli- 

tude coefficients (<= 0.1,0.5 and 1.0) are considered. 

Imperfection sensitivity of ply-level scaling of lami- 

nates for the case of axial compression are presented 

in Figure 3. This figure shows that, ply-level scaled 

models have almost the same imperfection sensitivity 

regardless of the number of plies. 

Figure 4 shows the normalized critical end- 

shortening for the ply-level scaled models. It is clear 

that despite the scalibility of imperfection sensitiv- 

ity, the end-shortening can not be scaled for the 
case of axial compression. Figure 5 shows the effect 

of imperfections on critical axial compression loads 

for sublaminate-level scaled models. Cylinders with 

4,8,12, and 16 layers with sublaminate-level scaling 

has roughly the same imperfection sensitivity. 

Figure 6 shows the normalized post-buckling behav- 

ior for ply-level completely similar cylindrical shells 

under lateral pressure. We can see that the limit point 

in this case can be scaled and equ. 6 can be used to 

predict the limit point of prototype using results of 

model. For this case the post buckling behavior can 

also be scaled as depicted in figure 7 once the end 

shortening is normalized with respect to the thickness 

of the shell. Imperfection sensitivity of ply-level scal- 

ing of laminates for the case of lateral pressure are 

presented in figure 8. This figure shows that, ply-level 

scaled models have the same imperfection sensitivity 

regardless of the number of plies. Next, partial simi- 

larity is considered in which two distortions are ana- 

lyzed. The normalized post-buckling behavior of cylin- 

drical shells under lateral pressure with distortions in 

the length and thickness for two different imperfection 

amplitude are presented in figures 9 and 10. Also, sim- 

ilar results are presented for distortions in length and 

radii of the shell in figure 11. From these results, one 

can observe that limit points can be predicted using 

scaling laws, however, post-buckling do not obey sim- 

ilarity conditions derived from the linearized buckling 

equations. 

Based on this information, the designor can choose 



models which have identical, or at  least similar, im- response of a cross-ply cylindrical shell with initial ge- 

perfection sensitivity with their prototype. ometric imperfections, based on structural similitude, 

Discussion 

The results presented herein indicate that,  for buck- 

ling response of laminated cylindrical shells subjected 

to axial compression and lateral pressure, based on 

structural similitude, a set of scaling laws can be found 

which are used to develop design rules for designing 

small scale models. For simplicity the linear form of 

governing equations of the system can be used to de- 

veloped the necessary scaling laws. These scaling laws 

can be used to design or investigate the available scaled 

down models. Later, a more complex non-linear anal- 

ysis(with initial imperfection) can be used to investi- 

gate the effect of non-linearity on the prototype and its 

models behavior. If the mode1 structural geometry pa- 

rameters are chosen carefully, a set of models with the 

same imperfection sensitivity can be found which are 

capable of predicting the prototype behavior. When 

model and its prototype have the same material prop- 

erties, through ply-level and sublaminated-level scal- 

ing of the prototype a wide range of models can be 

found which predict accurately the prototype behav- 

ior. However, models must be geometrically scaled 

down and have the same material properties as their 

a set of scaling laws can be found to establish similar- 

ity among a large number of cylinders with different 

number of plies, stacking sequence, and geometries. 

Both models with partial and complete similarity are 

presented. 

Some recommendations for future research include 

(a) develop a set of scaling laws for nonlinear governing 

equations with the effect of geometric imperfections. 

( b )  study of the effect of boundary conditions, config- 

urations and ( c )  initiation of an experimental program 

for validation. 
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Figure 2: Shell geometry with initial geometric imper- 
fections. 
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ABSTRACT 
A design strategy for optimal design of com- 

posite grid-stiffened cylinders subjected to global 
and local buckling constraints and, strength con- 
straints is developed using a discrete optimizer 
based on a genetic algorithm. An improved 
smeared stiffener theory is used for the global 
analysis. Local buckling of skin segments are 
assessed using a Rayleigh-Ritz method that ac- 
counts for material anisotropy. The local buck- 
ling of stiffener segments are also assessed. Con- 
straints on the axial membrane strain in the skin 
and stiffener segments are imposed to include 
strength criteria in the grid-stiffened cylinder de- 
sign. Design variables used in this study are 
the axial and transverse stiffener spacings, stiff- 
ener height and thickness, skin laminate stack- 
ing sequence, and stiffening configuration, where 
herein stiffening configuration is a design vari- 
able that indicates the combination of axial, 
transverse, and diagonal stiffener in the grid- 
stiffened cylinder. The design optimization pro- 
cess is adapted to identify the best suited stiffen- 
ing configurations and stiffener spacings for grid- 
stiffened composite cylinder with the length and 
radius of the cylinder, the design in-plane loads, 
and material properties as inputs. The effect of 
having axial membrane strain constraints in the 
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Copyright 01997 by Navin Jaunky. Published by 
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skin and stiffener segments in the optimization 
process is also studied for selected stiffening con- 
figurations. 

Nomenclature 

a 
b 
h 
t 
t s 

N1 
LAMI 

ICON 

AG 
A s k  

A 1 1  A 2 ,  A 3  

ss k 

Sl, 5'2, s 2  

Axial stiffener spacing 
Transverse stiffener spacing 
Stiffener height 
Skin kminate thickness 
stiffener thickness 
Axial design load 
Design variable for stacking 
sequence of skin laminate 
Design variable for stiffening 
configuration 
Global buckling load factor 
Buckling load factor of skin 
segment 
Crippling load factor of axial 
transverse, and diagonal 
stiffener segment 
Strain level factor for skin 
segment 
Strain level factor for axial 
transverse, and diagonal 
stiffener segment 

Introduction 
An ai~craft or a launch vehicle in flight is 

subjected to loads associated with all flight con- 
ditions. These external loads are resisted by the 
structure, and an internal load distribution is es- 
tablished based on the structural layout and ex- 
ternal loads. The internal loads, which depend 



on the location in the aerospace vehicle, may 
cause either overall buckling of the stiffened fuse- 
lagelfuel tank structure, buckling of the skin seg- 
ment between stiffeners, or crippling of stiffener 
segment. A stiffened circular cylindrical shell is 
a widely used structural configuration for an air- 
craft fuselage or a launch vehicle fuel tank. An ef- 
ficient and accurate analysis method is needed for 
developing a buckling-resistant design of general 
grid-stiffened composite circular cylindrical shell 
and to identify the most effective stiffening con- 
figurations and stiffener spacings for shells sub- 
jected to  combined in-plane loading conditions. 
The identification of structurally efficient stiff- 
ening configurations and stiffener spacings also 
requires integration of optimization techniques 
with accurate structural analysis methods. 

The optimum design of stiffened panels or 
shells that satisfy buckling constraints along with 
or without strain constraints have been of consid- 
erable interest to researchers since aircraft and 
launch vehicle structures consist mostly of stiff- 
ened panels or shells. Researchers have used 
gradient-based optimizer, discrete optimizer, and 
the simplex method. Gradient-based optimizer 
has been used in References [l] - [8]. Discrete 
optimizer has been used in References [9] - [13]. 
The simplex method has been used in References 
[14] and [15]. 

A literature survey of optimal design of stiff- 
ened panels and shells is presented in Reference 
[13]. The survey deals with the type of optimiz- 
ers that used has been used, the type of buck- 
ling analysis, and the type of stiffened panel or 
shell that has been optimized. Type of stiff- 
ened panel or shell herein refers to whether the 
panel or shell is stiffened axially, orthogonally or 
in multiple directions (e.g grid-stiffened panel or 
shell). According to the review, optimization of 
panels or shells stiffened in multiple directions 
have been considered in Reference [5, 6, 81 and 
1161. Grid-stiyened cylinders was considered in 
Reference [6, 81 and [16]. Geodesically stiffened 
flat panels were considered in Reference [5] and 
recently grid-stiffened curved panel were consid- 
ered in Reference [13]. 

The survey also shows that the stiffener 
spacing is treated as a design variable in Ref- 
erences [ l ,  2, 7, 8, 141 and [15]. Gradient-based 
optimizer was used in References [1, 2, 71 and 
[8], whereas the simplex method ([17]) was used 
in References [14] and [15]. The stiffener spac- 
ing is a discrete variable since it can be a cer- 

tain rnllltiple of the length or width of the panel 
or shell. Both gradient-based optimizer and the 
simplex method assume continuous variables and 
in addition the gradient-based optimizers require 
derivative information. Therefore as discussed in 
Reference [13] rigorous optimization with respect 
to stiffener spacing as a design variable is best 
achieved using a discrete optimizer such as the 
genetic algorithm ([Ill). 

Reddy et. al. ([16]) studied the buckling 
response of isogrid and orthogrid cylinders with 
various stiffener spacings using global and local 
analyses and concluded that isogrid cylinders are 
in general more efficient than orthogrid cylinders. 
It is also shown in Reference [7] that optimizing 
axially stiffened panels for different fixed stiffener 
spacings using gradient-based optimizer can be a 
good strategy. For panels or shells stiffened in 
multiple directions, this approach is tedious since 
one has to consider too many starting points in 
the optimal design process. The stiffener spac-@ 
ings and stiffening configurations can be treated 
as design variables in an optimization process 
provided a discrete optimizer is used. A discrete 
optimizer such as the genetic algorithm ([ll]) has 
been used in References [9] - [13] in optimizing 
unstiffened or axially stiffened composite panels, 
and in Reference [18] for other engineering prob- 
lems. Haftka et. al. (Ref. [9] - [12]) showed 
the efficiency of the genetic algorithm in deal- 
ing with discrete design variables for optimizing 
composite panels. They treated the skin and/or 
stiffener laminate as discrete variables since in 
practical applications, the ply orientations are 
limited to 0, 90 or f 4 5  degrees and, the lami- 
nate thickness can only be integer multiples of 
commercially available ply thickness. Jaunky et. 
al. ([13]) optimized flat and curved grid-stiffened 
panels with stiffener height and thickness, skin 
laminate, stiffener spacings, and stiffening config- 
uration as design variables with a global buckling 
constraint only and showed that the efficiency of 
the genetic algorithm in dealing with all these 
discrete design variables that affect the buckling 
response of grid-stiffened panels. 

The literature survey in Reference [13] also 
comments about the buckling analyses that have 
been used. 'Finite element analysis (e.g. Ref. [GI), 
discrete analysis (e.g. Ref. [5]), PASCO ([19]) 
type analysis (e.g. [3]), and global and local anal- 
yses. The merits of these type of analyses are dis- 
cussed in Reference [13]. Most researchers have 
used global and local analyses and local analvses. 



Examples are References 11, 2, 7, 8, 14, 15, 161 
and 1131. Global and local analyses can be made 
computationally very efficient. Researchers have 
neglected the anisotropic properties of skin seg- 
ments in the local buckling analysis, and also the 
curvature of the skin segments. Restrictions on 
the geometry of the skin segment and loading 
were imposed in order to obtain closed-form so- 
lution for the buckling response. In some cases 
the eccentricities of the stiffener were even ne- 
glected. The main problem of assessing the lo- 
cal buckling of the skin segment was the non- 
availability of computationally efficient and accu- 
rate buckling analyses for curved skin segments 
with anisotropic material properties, and differ- 
ent planform geometry (e.g . general triangular 
and arbitrary quadrilateral geometry). In Refer- 
ence [13] accurate buckling analyses (Ref. 121,221 
and 1231) were used for global and local analyses, 
and the occurrence of non-simultaneous of global 
and local failure were used as this condition leads 
to design that are less sensitive to imperfections 
as discussed in Reference 1151. 

The present paper will present the analy- 
sis and weight optimization strategy for grid- 
stiffened composite circular cylindrical shells sub- 
jected to  axial load and a global buckling de- 
sign constraint as well as strength constraints us- 
ing the genetic algorithm. Design variables are 
the stiffener height and thickness, skin laminate, 
stiffener spacings, and stiffening configuration. It 
is intended at developing a design tool that can 
be used at a preliminary design stage for grid- 
stiffened cylinders for aircraft fuselage or launch 
vehicle application. To the authors' opinion such 
a tool for cylinders stiffened in multiple direc- 
tions is lacking. Results will be presented and 
discussed for cylinder designs with and without 
strength or strain constraints which explains the 
damage tolerant characteristics of grid-stiffened 
structures 1201. 

Shell Buckling Analysis 

The buckling analysis of grid-stiffened com- 
posite shells subjected to combined loads requires 
several key steps. In the present study, accept- 
able designs are those which buckle globally and 
do not exhibit any local skin buckling or stiff- 
ener crippling. The first step in the design pro- 
cess is to assess the global buckling response of 
a grid-stiffened shell. Once this global buckling 
response is determined, the second step is to de- 
termine the local skin buckling response for the 

quadrilateral and/or triangular skin segments be- 
tween the stiffeners. The third step is to deter- 
mine whether stiffener buckling or stiffener crip- 
pling has occurred a t  this global buckling load 
level. 

The global buckling analysis is based on a 
Rayleigh-Ritz method using a first-order, shear- 
deformation theory and the improved smeared- 
stiffener modeling approach discussed in [21] that 
accounts for skin-stiffener interactions. It is 
shown in Reference [21] that buckling loads for 
stiffened panels with different stiffening config- 
urations obtained using the improved smeared 
stiffener theory are in good agreement with re- 
sults obtained using detailed finite element anal- 
ysis. The cylinder is assumed to be simply sup- 
ported and hence, the Rayleigh-Ritz method for 
the global analysis assumes the following mode 
shape for the transverse deflection w: 

(1) 
where L and R are the length and radius of the 
cylindrical shell, respectively, and N is the num- 
ber of terms in the Fourier series. The coordinate 
system for the cylinder is shown in Figure 1. 

The buckling analysis of local skin-segments 
is also based on a Rayleigh-Ritz analysis using 
a first-order, shear-deformation theory and ac- 
counts for material anisotropy. Boundary re- 
straints on the skin segments are provided by 
the stiffeners and hence, the analysis must be ca- 
pable of accommodating a variety of boundary 
conditions and a variety of skin-segment shapes 
122, 231. In most cases, the skin segments for 
grid-stiffened panels will have either a general 
parallelogram-shaped or a general triangular- 
shaped planform. The skin segments are assumed 
to have simply supported boundary conditions in 
the present study. It is shown in References 1221 
and 1231 the buckling analyses presented for arbi- 
trary anisotropic quadrilateral plates and general 
triangular anisotropic plates can accommodate 
different boundary conditions, and provide buck- 
ling loads that are in very good agreement with 
finite element analysis and existing solutions. 
The Rayleigh-Ritz buckling analysis method for 
the global and local analysis makes use of the 
Sanders-Koiter shell theory 124, 251. This shell 
theory provides buckling loads that are in good 
agreement with finite element analysis compared 



to other shell theories as shown in Refences [26] Xi is < 1 .O, and subscript i can be any one 
and [27]. of slc, 1, 2 or 3. 

In addition to analyzing the local skin seg- 
ment for buckling, the local stiffener segments 
must be analyzed to determine whether stiffener 
crippling will occur. Reference [16] provides a 
method for determining the crippling load of a 
stiffener segment. Accordingly, the stiffener seg- 
ment is assumed to be clamped at the nodes or in- 
tersection points of the stiffeners while the edge of 
the stiffener along the stiffener-skin attachment 
line is assumed to be a simply supported. 

The global buckling load is assumed to be 
a scalar multiple of the design load and has the 
form 

N, = XG Nl (2) 

where Nl is the applied prebuckling axial load 
and represents the design load. Once the global 
buckling load factor (AG) has been determined 
using the improved smeared stiffener theory, the 
loads acting on the stiffener and skin segments 
have to be determined by distributing the loads 
based on the extensional stiffness of the skin and 
the stiffener. The procedure for distributing the 
applied loads for a general grid-stiffened panel 
is discussed in References [5] and [26] and is the 
same for a general grid-stiffened circular cylindri- 
cal shell. The loads acting on the skin and stiff- 
ener segments are computed based on a global 
load of N, = XGNl and these loads are used to 
determine the local buckling load factor of the 
skin, (Ask), local crippling factors of axial stiff- 
ener segment, (A1), transverse stiffener segment, 
(A2) and diagonal stiffener segment, (A3). The lo- 
cal buckling load factors of each stiffener segment 
type and skin segment is 

Xi = 
critical load of local segment 

(3) 

load in  local Jegment due t o  XoxNl 

where i = 1, 2, 3 and slc. These local buckling 
and crippling load factors describe the buckling 
characteristics of the stiffened cylinder and is as 
follows 

e For Ask ,  X I ,  X2 ,  A 3  2 1.0, then the cylinder 
buckles globally at an axial load of XG N1, 
i.e., ACT = XG. 

If one of A s k ,  XI, X2 ,  X3 < 1.0, then the 
stiffened cylinder buckles locally. If Ask < 
1.0, then skin buckling occurs, and if X1 
< 1.0 then crippling of the axial stiffener 
occurs. For this case, ACT = Xi  x XG where 

e If more than one of A s k ,  X I ,  X2 and A 3  are 
< 1.0, then local buckling of the stiffened 
cylinder occurs and A,, = Xi x XG where 
Xi  is the minimum of any of A s k ,  X I ,  X2 or 
X3 with values < 1.0. 

Strain Analysis 
The critical buckling load of the stiffened 

cylinder is XcTNl where ACT takes on values as 
discussed previously and based on this load value 
the loads acting on the skin and stiffeners seg- 
ments are obtained [5, 261. For an axial load in 
the skin segment of Nxsk, and the loads in ax- 
ial, transverse and diagonal stiffener segments of 
N,1, N,:! and N,3, respectively, the axial mem- 
brane strain in the skin and stiffener segments 
are 

where EE,~, €El ,  cz2 and E : ~  are the axial mem- 
brane strains in the skin segment, axial, trans- 
verse, and diagonal stiffener segments respec- 
tively. The quantities a[;"k), a!:), a!:), and ag )  
are axial flexibilities of the skin, axial, transverse, 
and diagonal stiffeners respectively. 

The strain level factors for the skin, axial, 
transverse, and diagonal stiffener segment are 

where ( E ; , ~ ) ~ ?  and (€ESt)al are the allowable ax- 
ial membrane strains in the skin and stiffeners, 
respectively. The values for ( ~ : ~ ~ ) a l  and (C;,~),I 
are taken from Reference [28]. 

These global and local buckling analysis 
methods and the strain analysis have been inte- 
grated into a computer code to provide a compu- 
tationally efficient tool for predicting the buck- 
ling load and the strain level factors of grid- 
stiffened composite circular cylindrical shells sub- 
jected to axial compression. 



Shell Design Procedure 

The design variables for a grid-stiffened com- 
posite shell are the axial and transverse stiff- 
ener spacings (a, b), the stiffening configura- 
tion (ICON), which is the combination of axial, 
transverse and diagonal stiffeners, the skin lam- 
inate (LAMI), and the height (h), and thick- 
ness (t,) of the stiffener. Except for the height of 
the stiffener, these design variables take on dis- 
crete values. Hence gradient-based optimization 
methods are not suitable for optimal design grid- 
stiffened shells. Furthermore, due to manufac- 
turing constraints a "family" of good designs is 
needed rather than a single point design. 

The genetic algorithm is a method for 
"evolving" a given design problem to a family of 
near-optimum designs (e.g . , see References [lo], 
ill],  [13] and [18]). Stochastic processes are used 
to generate an initial population of individual de- 
signs and the process then applies principles of 
natural selection and survival of the fittest to 
find improved designs. Furthermore, since the 
discrete design procedure works with a popula- 
tion of designs it can explore a large design space 
and climb different hills. This is a major ad- 
vantage as the converged solution may contains 
many optima of comparable performance. The 
cost of having a large number of function eval- 
uations is offset by the fact that a large num- 
ber of optimum solutions are now available. The 
population or family of good designs produced 
by using the genetic algorithm may include the 
global optimal design, rather than a single design. 
Hence, it is an appropriate tool for designing gen- 
eral grid-stiffened composite shells. 

Design Problem Definition 

The present design problem is to minimize 
the weight of a grid-stiffened composite circular 
cylindrical shell given the design loading condi- 
tion, the length and radius of the cylinder, and 
the material properties for the skin and stiffeners. 
The design variables include stiffener spacings (a, 
b), the stacking sequence of the skin, stiffener lay- 
out, stiffener thickness (t,), and stiffener height 
(h) as shown in Figure 1. All stiffeners are as- 
sumed to be of the same height and thickness for 
manufacturing and assembly reasons. The design 
sought here is a cylinder of minimum weight in a 
certain design space which buckles globally at the 
design loads while the axial membrane strain in 
the skin and the stiffener segments do not exceed 
the allowable axial membrane strain (E:,~),~ and 

(E: ,~)~~ respectively. This design problem can be 
defined by setting up the optimization procedures 
in the following way. First, the global buckling 
load is assumed to be a scalar multiple of design 
loads and has the form 

where Nl is the applied in-plane prebuckling 
load. This values represent the design loads for 
the grid-stiffened cylinder. Second, the design 
constraints imposed on panel include 

1. The critical buckling load should be 
greater than or equal to the design loads, 
that is, XG > 1. 

2. Skin segments should not buckle at the 
critical buckling load, that is, Ask > 1. 

3. Stiffener segments should not cripple 
at the critical buckling load, that is, 
X1, X2, A 3  L 1. 

4. The axial membrane strain in the skin 
segment should be greater than or eaual 
( ~ : ~ ~ ) a ~ t  that is, S s k  2 1. 

5. The axial membrane strain in the stiffener 
segment should be greater than or equal 
(~z,t)al, that is, Si, 5'2, S3 2 1. 

The general form of each constraint equation is 
written as 

Finally, the "Fitness" expression based on exte- 
rior penalty function approach is 

Fitness = Q 
(F'(x, ri)) = ' 

Max Q 
W(X) + ri x,N. [Igj(X)I + gj(X)12 

(8) 

where X = design variable vector 
F(X,  ri) = Modified objective function 
W(X) = weight of panel per unit area 
ri C? [(gj(X)I + gj(X)I2 = penalty function 
Q = normqlizing constant 
Nc = Number of design constraints 
ri = penalty parameter 
i = generation or iteration cycle in the optimiza- 
tion procedure. 



Design Process Based on 
Genetic Algorithm 

Implementation of the genetic algorithm 
([ll]) is shown schematically in Figure 2. The 
design process begins with a random selection of 
a specified number of designs which comprise the 
initial population (i.e., first generation) for the 
genetic algorithm. Material properties, radius 
and length of the cylinder, boundary conditions 
of the skin segment, and design loadings are input 
to the analysis processor routine. The buckling 
analysis is performed which provides the critical 

95.5 in. and have blade stiffeners made of uni- 
directional materials [16]. The nominal ply me- 
chanical properties are: Ell = 18.500 Msi; EZ2 
= 1.640 Msi; G12=G13=G23 = 0.870 Msi and 
~ 1 2  = 0.300. The mass density of the material 
p, is 0.057 lbs/in3. The probabilities used for 
crossover, mutation, and permutation are 1.0, 
0.10 and 0.95, respectively, and the number of 
discrete values that each design variable can ac- 
commodate is eight which is a limitation of the 
FORTRAN code being used. The design vari- 
ables ICON and LAM1 are described in Table 
I 
1. eigenvalues for the global buckling response of 

the grid-stiffened cylinder, the local buckling re- 
sponse of the skin and stiffener segments, and the 
strain level factors of the skin and stiffener seg- 
ments. The weight of the grid-stiffened cylinder 
is also computed. This procedure is repeated for 
each design configuration in the population. The 
"fitness" processor then evaluates the "fitness" 
of each design using Equation (8) and assigns a 
rank based on the fitness expression or objective 
function. The current population of design con- 
figurations is then processed by the genetic op- 
erators (crossover, mutation, and permutation) 
to create a new population of design configura- 
tions for the next generations which combines the 
most desirable characteristics of previous gener- 
ations. Designs from previous generations may 
be replaced by new ones (i.e., children) except 
for the "most fit" designs (i.e., parents) which 
are always included in the next generation. The 
process is repeated until design convergence is 
obtained, which is defined herein by specifying a 
maximum number of generations (NSTOP) that 
may occur without improvement in the best de- 
sign. The design procedure will now be demon- 
strated on grid-stiffened cylinders with and with- 
out the axial membrane strain constraint in the 
skin and stiffener segments to study the influ- 
ence of constraints on the axial membrane strain 
on the optimal designs. 

Numerical Results for 
Grid-stiffened Cylinders 

Results are presented for composite grid- 
stiffened cylinders subjected to axial compres- 
sion in order to demonstrate the changes in opti- 
mal designs due to constraints on the axial mem- 
brane strain. These changes will depend on the 
loading, stiffening configuration (ICON) , and 
stiffener spacings (a, b), and the skin laminate 
(LAMI). The cylinders studied in examples 1 
and 2 are 291.0-in.-long and have a radius of 

Example 1 

The first example is a cylinder subjected to 
an axial load of Nl = 1000 lbs/in. which rep- 
resents a cylinder case studied in Ref. [16]. The 
design variables are the axial and transverse stiff- 
ener spacings, the height and thickness of the 
stiffeners, the stiffening configuration (ICON), 
and the skin laminate (LAMI). The thickness, 
of each ply of the skin laminate for this example 
is 0.006 in. The design space for a,  b, h, and t, 
is shown in Table 2. The height and thickness of 
the stiffener is chosen such that the aspect ratio 
(hlt),  of the stiffener is between 4 and 10, and 
the stiffener thickness is an integer multiple of 
0.006 in. due to manufacturing constraints. The 
minimum values of the stiffener spacings are also 
due to manufacturing constraints. A population 
size of 20 is used NSTOP = 15, and the penalty 
parameter ri = 100,000 at any iteration. The 
allowable strains (€:sk)al and are 2 4 2 8 ~  
in./in. and 1092,~ in./in., respectively ([28]). 

The results from design optimization with 
and without strain constraints are shown in Table 
3. The minimumweight for this cylinder is 1061.6 
lbs compared to the weights of 1058 lbs for an iso- 
grid cylinder and 1053 lbs for an orthogrid cylin- 
der presented in Ref. [16]. Only three optimal de- 
signs are identify here and they all buckle globally 
at their respective XG values since Ask and X3 val- 
ues are greater than 1. For this case, the optimal 
designs have ICON = 6, that is the stiffening 
configuration has transverse and diagonal stiff- 
eners only, and LAMI = 4, which corresponds 
to a skin laminate which a stacking sequence of 
[ f 4 5 / 0 ~ ] ~ , ,  h = 0.4 in., and t, = 0.048 in. In 
this case, the optimal designs without strain con- 
straints are the same as the optimal design with 
strain constraints. The buckling-resistant design 
for this load case results in in-plane stiffness val- 
ues that provide large strain level factors. This 



analysis suggests that the cylinder design satisfies 
both buckling and strength requirement. Con- 
vergence is obtained after 49 generations for the 
case without strain constraints and after 77 gen- 
erations for the case with strain constraints. 

Example 2 

The second example is for a grid-stiffened 
cylinder as in Example 1 but subjected to an ax- 
ial load of Nl = 1800 lbs/in. For this case, the 
stiffening configuration with axial and diagonal 
stiffeners only (TC0N)has  been selected. The 
design variables are the axial and transverse stiff- 
ener spacings, the height and thickness of the 
stiffeners, and the skin laminate with each ply 
being 0.008-in. thick. The design space for the 
skin laminate is the same as shown in Table 1, 
and the design space for a,  b, h and t ,  is shown 
in Table 2. The material properties, the genetic 
parameters and the strain allowables for Exam- 
ple 2 are same as in Example 1. The optimal 
designs without strain constraints are shown in 
Table 4, whereas the optimal designs with strain 
constraints are shown in Table 5. Only three op- 
timal designs are shown here for each case. 

All the designs in Tables 4 and 5 buckle glob- 
ally since A s k ,  Al and A3 are all greater than one. 
The optimal designs obtained with constraints on 
the axial strain are about 9 to 14 lbs heavier than 
the optimal designs obtained without constraints 
on the axial strain for approximately the same 
global buckling load. The designs in Table 5 have 
larger axial stiffener spacing ( a )  than the second 
and third designs in Table 4. For the designs in 
Table 5, the strain level factors of the axial stiff- 
eners (&), are very close to unity whereas the 
strain factors for the diagonal stiffeners (SI) are 
much larger. The increase in structural weight of 
the optimums design for this case over the designs 
in Example 1 is due to the increase in load and 
the choice of stiffening configuration. Even for 
this load condition, imposing strain constraints 
does not result in a significant increase in weight. 
Convergence is obtained after 18 generations for 
the case without strain constraints and after 41 
generations for the case with strain constraints. 

Example 3 

The third example is a grid-stiffened cylinder 
subjected to an axial load of Nl = 2000 lbs/in. 
This represents a generic, wide body transport 
aircraft fuselage section between two frames. The 
radius of the cylinder is 95.5-in. and the length 
is 22-in. The design variables are the transverse 

stiffener spacing, the height and thickness of the 
stiffeners, and the skin laminate with each ply 
being 0.009-in. thick. The optimization is per- 
formed with the stiffening configuration selected 
to ICON= 1 and ICON= 5. For the case when 
ICON= 5, the axial stiffener spacing is 6.2857 in. 
The design space for the skin laminate is the same 
as shown in Table 1. and the design space for b, h 
and t ,  is shown in Table 6. The material proper- 
ties and the genetic parameters for Example 3 is 
same as in Example 1. Three optimal designs ob- 
sained with strain constraints are shown in Table 
7 for the axially stiffened cylinders and in Table 8 
for the cylinders stiffened with axial and diagonal 
stiffeners. For axially stiffened cylinders conver- 
gence is obtained at 38 generations, while for the 
cylinders with axial and diagonal stiffeners, con- 
vergence is obtained at 20 generations. 

All the optimal designs in Tables 7 and 8 
buckle globally and do not violate any strain 
constraint. However, the optimal designs with 
ICON=5 are slightly heavier than the optim%l 
designs with ICON=l .  The buckling behav- 
ior of the first design in Table 7 and Table 8 
subjected to an axial load of N, = 2000 lbs/in. 
and combined transverse compression ( N y  ) , ind 
shear (N,,) is sought to determine their capabil- 
ity to support additional in-plane loads. A load 
combination for N, = 2000 lbs/in., Ny and Nxy 
is sought in such a way that the cylinder can still 
support an axial load of N, = 2000 lbs/in., i.e., 
A,, 2 1 and A,, 1. The results are shown 
in Table 9 for the axially stiffened cylinder and 
in Table 10 for the grid-stiffened cylinder with 
ICON= 5. It is seen that the grid-stiffened cylin- 
der can support up to 400 lbs/in. of transverse 
compression and 400 lbs/in. in shear whereas the 
axially stiffened cylinder can only support addi- 
tional loads of 20 lbs/in. in transverse compres- 
sion and 220 lbs/in. in shear without exceeding 
the strain allowables. It is assumed here that 
the strains ey, and yXy due to Ny and NXy  do 
not produce strains large enough to create fail- 
ure since N y  and Nxy are small compared to Nx. 
For these loading combinations, both cylinders 
buckle globally and the constraint on the axial 
membrane strains in the skin and stiffener are 
not violated. Hence the grid-stiffened cylinder 
can sustain larger magnitudes of additional trans- 
verse compression and shear loads than the axi- 
ally stiffened cylinder. 



Concluding Remarks 
A minimum-weight design optimization tool 

with global buckling constraint and constraint 
on the axial membrane strain in the skin and 
stiffener segments has been developed for grid- 
stiffened cylinders using global and local buckling 
analyses and a genetic algorithm. Design vari- 
ables used are axial and transverse stiffener spac- 
ing, stiffener height and thickness, skin-laminate 
stacking sequence, and stiffening configuration. 
The present design optimization procedure has 
been validated by comparing with existing re- 
sults. Results for grid-stiffened cylinders sub- 
jected to axial compression indicate that there 
is no significant difference in weight between op- 
timal designs obtained with and without strain 
constraints for simply supported cylinders that 
buckle globally. It is also shown that a grid- 
stiffened cylinder optimized for axial load has a 
larger additional load capacity for combined load- 
ing than for a conventional axially stiffened cylin- 
der. This additional load capability permits load 
redistribution in the event of structural damage 
and suggests that a grid-stiffened cylinder is more 
damage tolerant than an axially stiffened cylin- 
der. 
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Table 1 Design space for design variables I C O N  and L A M I .  

Integer L A M I  ICON 
value 

1 [ f 4 5 / 0 ] 2 ~  axial stiffeners 

2 [f45/90]2, axial stiffeners 

3 [ f45/0/90I2,  axial and transverse stiffeners 

4 [ f 4 5 / 0 2 ] 2 ~  diagonal stiffeners 

5 [f45/902]2, axial and diagonal stiffeners 

6 [f45/O2/90I2, transverse and diagonal stiffeners 

7 [f45/0/902]2, axial, transverse and diagonal stiffeners 

8 [ f  45/O2/902I2, no stiffeners 

Table 2 Design space for a ,  b, h ,  and t ,  for Example 1 and 2. 

a, in. 8.559 8.314 8.083 7.864 7.657 . 7.461 7.275 7.097 

b i n .  20.689 20.000 19.355 18.750 18.182 17.143 17.647 16.667 

t,, in. 0.048 0.054 0.060 0.066 0.072 0.078 0.084 0.090 

Table 3 Best designs obtained by genetic algorithm for grid-stiffened 
cylinders ( N ,  = 1000 lbs/in). 

Design variables (in.) Weight (lbs) Aj si 
a = 7.461, b = 20.689 1061.6 AG = 1.008 S,k = 2.68 
h = 0.4, t s  = 0.048 Ask = 1.009 S3 = 105.1 
L A M I =  4 ,  I C O N  = 6 A3 = 55.1 
a = 7.461, b = 19.355 1062.0 AG = 1.025 SSk = 2.63 
h = 0.4, t s  = 0.048 Ask = 1.011 S3 = 81.7 
L A M I =  4 ,  I C O N  = 6 A3 = 43.4 
a = 7.461, b = 18.75 1062.3 AG = 1.034 S J k  = 2.61 
h = 0.4, t ,  = 0.048 Ask = 1.012 S3 = 72.6 
L A M I =  4 ,  I C O N  = 6 A3 = 38.8 



Table 4 Best designs obtained by genetic algorithm for grid-stiffened cylinder 
with no constraints on strain and ICON= 5, (N, = 1800 lbs/in). 

Design variables (in.) Weight (lbs) Xi 

a = 7.657, b = 16.667 1401.1 .AG = 1.0541 
h = 0.4000, t, = 0.078 Ask = 1.077 
LAM I=3 X1 = 1.04, A3 = 32.1 

Table 5 Best designs obtained by genetic algorithm for grid-stiffened cylinder 
with constraints on strain and ICON= 5, (N, = 1800 lbs/in). 

Design variables (in.) Weight (lbs) Xi si 
a = 8.314, b = 16.667 1406.6 XG = 1.0113 Ssk = 2.07 

Table 6 Design space for b, h, t, for Example 3. 

Axially stiffened cylinder, ICON= 1 

b,(in.) 8.5590 8.3140 8.0833 7.8640 7.6570 7.4610 7.2750 7.0970 
h,(in.) 0.6375 0.6500 0.6625 0.6750 0.6875 0.7000 0.7125 0.7250 
t ,  (in.) 0.102 0.108 0.114 0.120 0.126 0.132 0.138 0.144 

Grid-stiffened cylinder, ICON= 5 

b, (in.) 12.7669 12.5609 12.2458 12.0000 11.7656 11.5393 11.3216 11.1119 
h,(in.) 0.525 0.5375 0.5500 0.5625 0.5750 0.5875 0.6000 0.6125 
t ,  (in.) 0.066 0.072 0.078 0.084 0.090 0.096 0.102 0.108 



Table 7 Best designs obtained by genetic algorithm for axially cylinder 
with constraints on strain, (N, = 2000 lbs/in). 

Design variables (in.) Weight (lbs) Xi Si 

Table 8 Best designs obtained by genetic algorithm for grid-stiffened cylinder 
with constraints on strain, ICON= 5 (N, = 2000 lbs/in). 

Design variables (in.) Weight (lbs) Xi Si 



Table 9 Buckling load factors and strain level factors for axially stiffened cylinder 

Table 10 Buckling load factors and strain level factors for grid-stiffened cylinder 

Loading Nx=2000, N,=2000, Nx=2000, N,  =2000, 
(lbslin.) Ny =400, Ny  =300, Ny  = loo ,  Nu=O, 

Nxy  =O NXy  = lo0  Nxy =300 NXy  =400 
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A REVIEW AND SUGGESTED IIMPROVElClENTS 
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Abstract 

A summary of existing NASA design criteria mono- 
graphs for the design of buckling-resistant thin-shell 
structures is presented. Subsequent improvements in the 
analysis for nonlinear shell response are reviewed, and 
current issues in shell stability analysis are discussed. Ex- 
amples of nonlinear shell responses that are not included 
in the existing shell design monographs are presented, and 
an approach for including reliability based analysis proce- 
dures in the shell design process is discussed. Suggestions 
for conducting future shell experiments are presented, and 
proposed improvements to the NASA shell design criteria 
monographs are discussed. 

Introduction 

In the 1960's, NASA experience with spacecraft de- 
velopment indicated a need for uniform design criteria. 
This need led to the development of a series of mono- 
graphs that provide design information and recommenda- 
tions in the areas of environment; material properties and 
processes; stability, guidance, and control; chemical pro- 
pulsion; and structures. One of the structures monographs 
published in 1965, and revised in 1968, provides recom- 
mendations for the design of buckling-resistant circular 
cylindrical shell structures. This monograph is known 
throughout the aerospace industry as NASA SP-8007.' 
This monograph was followed in 1968 by NASA SP- 
8019~, which gives recommendations for the design of 
conical shells, and in 1969 by NASA SP-8032~ ,which 
gives recommendations for the design of doubly curved 
shells. These monographs emphasize primarily the behav- 
ior of thin-walled metallic shells subjected to axial com- 
pression, torsion, pressure, and bending loads, and to 
various combinations of these loads. Prior to the publica- 
tion of these monographs, one of the most comprehensive 
collections of shell stability information available was the 
series of structural stability handbooks written by Gerard 

* Senior Research Engineer, Structural Mechanics Branch. Senior 
Member, AIAA. 
Head, Structural Mechanics Branch. Fellow, AIAA. 

Copyright O 1997 by the American Institute of Aeronautics and Astronautics, Inc. No copyright 

is asserted in the United States under nrle 17. U. S. Code. The U. S. Government has a royalty- 

free license to exercise all rights under the copyright claimed herein for government purposes. All 

other rights are resewed by the copyright owner. 

and ~ e c k e r . ~ '  5' The NASA monographs used and ex- 
panded the information provided in these handbooks. 

The NASA structural stability monographs remain 
popular among designers primarily because they address 
one of the most important concerns associated with de- 
signing shells to satisfy stability requirements. Experi- 
ence has shown that large discrepancies often occur 
between the classical shell stability analysis predictions 
for geometrically perfect shells and corresponding re- 
sults from experiments. The NASA monographs provide 
a reliable, but often overly conservative, means of de- 
signing shells using simple, linear analytical models and 
an empirical correction factor, referred to herein as a 
"knockdown factor." The format of the monographs was 

" 

intended to satisfy the requirements of engineers and 
project managers concerned with the preliminary design 
of spacecraft. However, the amount of information pre- 
sented in the NASA monographs is somewhat limited 
and, as a result, their range of applicability to the design 
of high-performance shell structures, such as those made 
of fiber-reinforced composite materials, is small. 

Continued use of these NASA monographs by 
structural designers and technical specialists, and recent 
NASA experience with the development of launch vehi- 
cles and aircraft structures have indicated that the mono- 
graphs on shell stability need to be updated and 
expanded. For example, the original NASA monographs 
contain practically no design information for light- 
weight, high-strength laminated composite shells sub- 
jected to mechanical or thermal loads. Such information 
could be used in the preliminary design of a high-speed 
civil transport aircraft or a single-stage-to-orbit reusable 
launch vehicle. The interest in updating the monographs 
is also influenced by the many advances in the state of the 
art of shell stability analysis that have taken place since 
the original monographs were published. Significant ad- 
vances in computer technology and computational anal- 
ysis tools since the late 1960's have made it possible to 
use much more sophisticated analytical models of non- 
linear shell response. These tools have also enabled in- 
depth investigations of the effects of complicating struc- 
tural details such as cutouts and other discontinuities on 
the buckling of shells, and on their nonlinear behavior. In 
addition to advancements in analytical tools, many ad- 
vancements have been made in experimental methods 



and techniques. For example, technology is now avail- and engineers learned that the buckling behavior of 
able to measure accurately the initial geometric imper- shells is fundamentally different from that of columns 
fections of shell test specimens, and new combined-load and plates. 
test capabilities have been developed and used to provide The fundamental difference between the buckling 
more carefully controlled experiments and higher-fideli- behavior of columns and plates and the buckling behav- 
ty test results. Because of these technological advances 
and the large body of experimental data that has been 
amassed since the late 1960's, the development of mod- 
ern versions of the shell stability monographs is being 
considered at the NASA Langley Research Center. 

The present paper begins with a discussion of the 
approach commonly used to design buckling-resistant, 
thin-walled shells and how it evolved. Then, an overview 
of the NASA monographs on shell stability is given. 
Next, a discussion of some important issues that are pres- 
ently confronting designers is presented, and then two 
examples that illustrate some of these issues are de- 
scribed. The first example is the Space Shuttle super- 
lightweight external LO2 tank. This contemporary thin- 
walled spacecraft structure was partially designed using 
NASA SP-8007. The second example is a basic example 
that illustrates the effect of cutout size on the buckling 
behavior of a compression-loaded c w e d  panel. Both of 
these examples illustrate shell behavior that is not ad- 
dressed in the NASA monographs. The present paper in- 
cludes a brief discussion of a state-of-the-art nonlinear 
shell analysis code and how it could be used to obtain a 
wide range of design information. In addition, a discus- 
sion of how to address design uncertainties and reliabili- 
ty in shell design is presented, and some suggestions for 
conducting future high-fidelity experiments are given. 
Finally, potential improvements to the NASA mono- 
graphs on shell stability are discussed 

Common Approach to Stability Design 

Prior to the late 1 9 7 0 ' ~ ~  the use of sophisticated an- 
alytical methods, such as the finite-element method, was 
not widespread and shell stability calculations were done 
primarily with simple, specialized analytical models. 
These analytical models were typically formulated for 
regular geometries with uniform properties, uniform 
loading conditions, and uniform boundary conditions, 
and certain aspects of the response were neglected in or- 
der to obtain linear partial differential equations that 
could be readily solved. The simple analytical models 
typically neglected nonlinear prebuckling deformations, 
and simply supported boundary conditions were often 
used to reduce the computational effort needed to con- 
duct parametric studies. This linear modeling approach, 
referred to more accurately as a linear bifurcation buck- 
ling analysis, came into use not only because of the com- 
putational considerations mentioned above, but also as 
the natural extension of the linear bifurcation buckling 
approach that had been used successfully for modeling 
columns and plates. Over the course of time, scientists 

ior of shells was identified by von K h n h  and ~sien' 
and clarified by Donne11 and wan8 and by ~ o i t e r . ~  These 
references show that a major reason for the large discrep- 
ancy between the analytical predictions of shell buckling 
behavior and the corresponding experimental results is a 
sensitivity of shell buckling to initial geometric imper- 
fections. This sensitivity was shown to be a consequence 
of the fact that shells are typically unstable at load levels 
equal to the bifurcation load. Because of the practical 
limitations of the analytical models and the sensitivity of 
shells to geometric imperfections, a stability design pro- 
cess evolved in which empirical "knockdown factors" 
were introduced to compensate for the differences ob- 
served between the results of theory and experiments. As 
a part of this design process, a designer was faced with 
the need to conduct expensive experiments. 

The NASA Monographs on Shell Stability 

By 1960, many buckling tests of isotropic cylinders 
and curved panels had been conducted (e.g., see Refs. 4, 
5, and 6) as part of an effort by the technical community 
to establish a rational, practical approach for designing 
buckling-resistant shells. NASA conceived the shell sta- 
bility monographs at that time to make available to the 
aerospace structural design community the results of 
these tests and many proposed tests for other shell geom- 
etries, and to establish practical design recommenda- 
tions. The development of these monographs was a 
combinkd effort by members of industry, academia, and 
the NASA Langley Research Center. Much of the infor- 
mation given in these monographs is based on the re- 

search conducted by Seide, Weingarten, and ~ o r ~ a n . "  
The initial emphasis on cylinders and cones, and the for- 
mat of the monographs, were originally intended to sat- 
isfy the needs of engineers and project managers 
concerned with the preliminary design of launch vehicles 
and spacecraft. However, over time, it became evident 
that the monographs were also of great interest to struc- 
tural stability specialists. The use of NASA SP-8007 was I 

recently demonstrated in the shell analysis textbook by 

 inso on. ' 
The NASA monographs provide design informa- 

tion in the form of empirical knockdown factors (referred 
to in the monographs as correction factors) and design 
recommendations for isotropic, orthotropic, ring- and 
stringer-stiffened, and sandwich shells. The important 
characteristics of various shell design problems, the 
sources of the design recommendations and their lirnita- 
tions, and discussions of how to proceed for cases with 
little known analytical and experimental data are also 



presented. In most cases, the knockdown factors are de- 
fined as empirical corrections to linear bifurcation buck- 
ling solutions for primarily elastic, simply supported 
shells. The knockdown factors are lower bounds to ex- 
perimental data that were available at that time, and are 
used to account for the large amount of scatter in the da- 
ta. They consist of corrections that account primarily for 
initial geometric imperfections, nonlinear prebuckling 
effects associated with edge supports, and plasticity in 
some cases. The effects of edge boundary restraints (e.g., 
a simply supported versus a clamped boundary condi- 
tion) are included in the knockdown factors so that edge 
restraints are treated as a random effect, in addition to the 
initial geometric imperfections. Plasticity correction fac- 
tors are given only for cases where there was a sufficient 
amount of data to characterize the behavior in a conser- 
vative manner. The basic recommendation given in the 
monographs is that any knockdown factor used for a de- 
sign be substantiated by experiments. This recommenda- 
tion applies for shell designs in which the restraint or 
boundary conditions are to be accounted for more accu- 
rately, or for designs with unusual surface geometries, 
modal interaction associated with optimization, cutouts, 
joints, or other irregularities, or where there are little or 
no test data and analytical results. A brief overview of 
the contents of each monograph follows. 

NASA SP-8007 (1968 Revision) 

The 1968 revision of NASA SP-8007 consists pri- 
marily of discussions of research studies and design rec- 
ommendations for elastic, isotropic, cylindrical shells. 
However, some information is provided for orthotropic 
and sandwich cylinders. Design recommendations are 
presented for isotropic cylinders subjected to axial com- 
pression, pure bending, uniform lateral pressure, uniform 
hydrostatic pressure, torsion, and combined loading con- 
ditions. The uniform lateral pressure loading condition 
does not include the compressive axial load caused by 
pressure acting at the ends of a cylinder. In contrast, the 
uniform hydrostatic pressure loading condition includes 
the lateral pressure load and the compressive axial load. 
Design recommendations for cylinders that are subjected 
to combined loading conditions are limited almost en- 
tirely to isotropic shells. The combined loading condi- 
tions consist of axial compression and pure bending; 
axial compression and lateral pressure or hydrostatic 
pressure; axial compression and torsion, internal pres- 
sure and axial compression; internal pressure and pure 
bending; and internal pressure, axial compression, and 
pure bending loads. 

Design recommendations and buckling formulas 
that are lower bounds to experimental data for a wide 
range of radius-to-thickness ratios are given for isotropic 
cylinders subjected to axial compression or pure bending 
loads. For cylinders loaded by lateral or hydrostatic pres- 

sure, a single knockdown factor, that is a lower bound to 
the corresponding experimental data, is given for shells 
that buckle with more than two circumferential waves. 
An additional empirical knockdown factor is given for 
long shells that buckle into a one-half-wave oval shape. 
For torsion loads, a single knockdown factor that is a 
lower bound to the corresponding experimental data is 
given for moderately long cylinders. Because of limited 
experimental verification, design recommendations are 
given in the form of conservative, linear buckling inter- 
action equations for shells subjected to combined axial 
compression and pure bending loads, combined axial 
compression and lateral pressure loads or hydrostatic 
pressure loads, and combined axial compression and tor- 
sion loads. For shells subjected to combined internal 
pressure and axial compression or combined internal 
pressure and pure bending loads, the buckling load is ex- 
pressed as a combination of the load caused by the inter- 
nal pressure, the buckling load for the unpressurized 
shell (including the appropriate knockdown factor), and 
an increase in the buckling load associated with the re- 
duction in imperfection sensitivity caused by the internal 
pressure. Empirically determined increases in the buck- 
ling load, that are associated with the reduced imperfec- . 
tion sensitivity, are given for moderate ranges of internal 
pressures and radius-to-thickness ratios. Conservative, 
linear buckling interaction equations are also given for 
shells subjected to combined internal pressure, axial 
compression, and pure bending loads. 

Results are also presented in NASA SP-8007 for 
elastic, orthotropic cylindrical shells subjected to axial 
compression, pure bending, uniform hydrostatic pres- 
sure, uniform lateral pressure, or torsion loads, and to 
combined axial compression and bending loads. The 
term "orthotropic" is used to indicate single-layer and 
multi-layer composite monocoque shell wall construc- 
tions and stiffened shell wall constructions for which the 
rings and stringers are perpendicular. These results con- 
sist primarily of design recommendations because of the 
small amount of experimental data for orthotropic cylin- 
ders that was available at the time. Formulas for comput- 
ing homogenized (or "smeared") elastic, orthotropic 
stiffnesses for multi-layered stiffened cylinders, isotro- 
pic stiffened cylinders, and ring-stiffened corrugated cyl- 
inders are presented. 

An empirical formula for knockdown factors is pre- 
sented for monocoque orthotropic cylinders loaded by 
axial compression. This formula is based on a small 
amount of experimental data and has a very limited range 
of validity. A similar formula is given for cylinders load- 
ed by pure bending. A single knockdown factor, that is 
based on a small amount of experimental data, is given 
for cylinders subjected to axial compression or pure 
bending loads and with closely spaced, moderately large 
stiffeners. A single knockdown factor that is also based 
on a small amount of experimental data is suggested for 



cylinders loaded by lateral or hydrostatic pressure, or by 
torsion loads. In addition, because of a small amount of 
experimental data, a conservative, linear buckling inter- 
action formula is suggested for use with cylinders loaded 
by combined axial compression and pure bending loads. 

Design recommendations for sandwich cylinders 
with isotropic face sheets and with either an isotropic or 
an orthotropic core are also presented in NASA SP-8007. 
Design recommendations are given for shells loaded by 
axial compression, pure bending, uniform lateral pres- 
sure, or torsion loads. Knockdown factors are given only 
for shells with cores that have high transverse shear stiff- 
ness, and practically no experimental validation is de- 
scribed. 

Analytical results and design recommendations are 
also presented in NASA SP-8007 for isotropic cylindri- 
cal shells with an elastic core and that are subjected to ax- 
ial compression, uniform lateral pressure, or torsion 
loads, or to combined axial compression and lateral pres- 
sure loads. The knockdown-factor formula given for 
compression-loaded cylinders without an elastic core is 
recommended for use for cylinders with an elastic core, 
based on experimental data. For cylinders loaded by lat- 
eral pressure, a single knockdown factor is given that is 
a lower bound to the corresponding experimental data. 
For the cylinders loaded by torsion, only design recom- 
mendations are given. Similarly, a conservative linear 
buckling interaction formula is recommended for cylin- 
ders loaded by combined axial compression and lateral 
pressure loads. 

NASA SP-8019 

NASA SP-8019 consists primarily of design rec- 
ommendations for elastic, isotropic, conical shells sub- 
jected to axial compression, pure bending, uniform 
hydrostatic pressure, torsion, or combined loads. The de- 
sign recommendations for cones subjected to combined 
loads are given for isotropic shells only. The combined 
loads consist of internal pressure and axial compression; 
internal pressure and pure bending; axial compression 
and pure bending; internal pressure, axial compression, 
and pure bending; uniform hydrostatic pressure and axial 
compression; torsion and uniform hydrostatic pressure; 
and torsion and axial compression. 

Design recommendations and a single empirical 
knockdown factor that is a lower bound to experimental 
data are given for each of the single-component loading 
conditions. Only conservative design recommendations 
based on rational arguments are given for loading condi- 
tions that consist of combined internal pressure and axial 
compression, and combined internal pressure and pure 
bending, because of the very small amount of experi- 
mental data and the lack of analytical results that @ere 
available at the time. Conservative, linear buckling inter- 
action equations based on experimental results are given 

for all the other combined load conditions. 
Results are also presented in NASA SP-8019 for 

elastic, orthotropic conical shells (constant-thickness 
orthotropic material and stiffened shells) subjected to 
uniform hydrostatic pressure or to torsion loads. These 
results consist primarily of design recommendations be- 
cause of the very small amount of experimental data that 
were available at the time. Similarly, only design recom- 
mendations are given for sandwich cones with isotropic 
or orthotropic face sheets and with either an isotropic or 
orthotropic core. 

NASA SP-8032 

NASA SP-8032 consists primarily of discussions 
of research studies and results for elastic, isotropic, dou- 
bly curved shells. Design recommendations are given for 
spherical caps that are loaded by uniform external pres- 
sure, by a concentrated load at the apex, or by a combi- 
nation of these loads. Buckling formulas that are lower 
bounds to experimental data are given for clamped 
spherical caps that are loaded by uniform external pres- 
sure or by a concentrated load at the apex. A lower- 
bound, empirical buckling formula is given for spherical ' 
caps that are loaded by a concentrated load at the apex 
and that have edges that are free to rotate and expand in 
the direction perpendicular to the axis of revolution. No 
conclusive experimental results are given for spherical 
caps that are loaded by combined uniform external pres- 
sure and a concentrated load at the apex. 

Design recommendations are also discussed for 
complete prolate and oblate spheroidal shells subjected 
to uniform external pressure, and for complete oblate 
spheroidal shells subjected to uniform internal pressure. 
A single knockdown factor is given for the prolate sphe- 
roidal shells, and a lower-bound, empirical buckling for- 
mula is given for the oblate spheroidal shells. No 
experimental validation is given for the results for the 
oblate spheroidal shells subjected to uniform internal 
pressure. Design recommendations are also discussed for 
oblate spheroidal and torispherical bulkheads that are 
subjected to uniform internal pressure and that have 
clamped edges. An empirical knockdown factor is given 
for the torispherical bulkheads; however, no experimen- 
tal validation is given for the oblate spheroidal bulkhead. 

Design recommendations are discussed and results 
are given for complete circular toroidal shells subjected 
to uniform external pressure, and for shallow, equatorial 
segments of complete toroidal shells. The toroidal shell 
segments, which consist of barrel-like shells that are 
bowed outward from the axis of revolution (positive 
Gaussian curvature) and waisted shells that are bowed 
inward (negative Gaussian curvature), are subjected to 
axial tension, uniform lateral pressure, or uniform hydro- 
static pressure loads. Experimentally verified analytical 
results are given for complete circular toroidal shells for 



a small range of geometric parameters. Similarly, an ex- experimental data. Often, these data do not exist. In some 
perimentally verified knockdown factor is given only for cases, however, the shell manufacturing process may 
equatorial segments of toroidal shells that are loaded by consistently produce a known imperfection shape with a 
axial tension and that are truncated hemispheres. known maximum amplitude. If so, this information can 

Essentially no experimentally validated design in- be used to determine a knockdown factor analytically. 
formation is given for orthotropic shells or sandwich 
shells that are doubly curved. Rational arguments are 
used to present design recommendations for specially - 

orthotropic shells due to the absence of ex~erimental da- Nonlinear prebuckling deformations of shells are 
ta. No design recommendations are for sandwich generally caused by the interaction between the com- 

shells. pressive stresses in a shell and any localized bending de- 
formations that arise, for example, from support 

Shell Stabilitv Issues conditions, or discontinuities in stiffness that are caused 
There are several important shell stability issues. by abrupt changes in thickness, or joints. The signifi- 

most of which are not addressed in the NASA mono- cance of the nonlinear prebuckling deformations was 
graphs, that designers must understand in order to design first identified by Stein for compression-loaded isotropic 
adequately a lightweight, thin-walled shell structure to cylinders.i2. 13 an isotropic cylindrical shell is 
be buckling resistant. Some of these issues are listed in pressed axially, it expands the sup- 
Table 1 and a few are discussed subsequently. ported edges, however, the radial expansion is restrained 

which produces local bending deformations whose ex- 

Table 1 Shell stability issues tent along a generator depends on the cylinder radius and 
thickness. A similar condition exists for compression- 

Initial geometric imperfections loaded isotropic truncated conical shells where the extent 
Nonlinear prebuckling deformations of local bending deformations along a generator also de- 
Cutouts and joints pends on the vertex angle. Generally, as a cone gets flat- 
Boundary conditions 
Load introduction effects ter, the extent of the boundary bending deformations 

Thickness variations grows. Another example of nonlinear prebuckling defor- 
Variation in material properties mations is the local bending deformations that occur 
Stiffener spacing around a relatively large cutout in a compression-loaded 
Local reinforcement cylinder or curved panel. These bending deformations 
Combined loads 
Variation of loads with time 

are manifested by the coupling between the in-plane and 

Small vibrations out-of-plane displacements in the strain-displacement re- 
Laminate construction lations for curved panels or shells. 
Transverse shear deformation A very important consequence of substantial non- 
Sandwich construction linear prebuckling deformations is that a linear bifurca- 
Inelasticity and damage 
Local eccentricities tion solution and a knockdown factor may be inadequate 

and uncharacteristic of the actual nonlinear response. 
One simple example of this deficiency is illustrated by 
the behavior of a ring-stiffened cylindrical shell loaded 

Initial Geometric Imperfections by axial compression or by external pressure.147 l5 For 
Two major issues in the design of isotropic shells these shells, a linear bifurcation analysis may not only 

are sensitivity to initial geometric imperfections and the overpredict the buckling load, but may also predict an in- 
effects of nonlinear prebuckling deformations. Experi- correct buckling mode. Another, more complicated ex- 
ence has shown that initial geometric imperfections with ample is presented in Ref. 16 for the Space Shuttle 
a maximum amplitude on the order of one wall thickness superlightweight LO2 tank shown in Fig. 1 and is dis- 
can cause a reduction in the buckling load of a shell that cussed in the section entitled, "Examples," of the present 
is on the order of 60% of the buckling load calculated for paper. 
the corresponding geometrically perfect shell. Thus, de- 
signing a minimum mass shell structure to be buckling 
resistant is a difficult task because a designer usually 
does not know the initial geometric imperfection shape The effects of a cutout on the buckling behavior of 
and amplitude in advance. As a result of this lack of a shell is another important shell stability issue for de- 
knowledge, an assumed imperfection shape must be used signers. The presence of a cutout may alter significantly 
to determine analytically a knockdown factor, or the de- the prebuckling stress distribution in a shell, depending 
sign must be based on a knockdown factor that cone- on the type of loading and the cutout size, and reduce its 
sponds to the lower bound to the known relevant buckling load significantly. In addition, nonlinear preb- 
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uckling deformations, that are local bending deforma- 
tions near the cutout, may be present that can affect 
significantly the characteristics of the buckling behavior. 
A cutout may also have a significant effect on the imper- 
fection sensitivity of a shell because as the cutout size in- 
creases the amount of material removed by the cutout 
region, where imperfections may be very important, is 
reduced. Some of the effects of cutouts on the behavior 
of compression-loaded curved panels are also discussed 
in the section entitled, "Examples," of the present paper. 

Laminate Construction 

Approximately twenty-five years ago, it was real- 
ized that there is a great potential for reducing structural 
weight by using fiber-reinforced composite materials for 
structures. The increased use of composite materials for 
shell structures has led to additional shell stability issues 
for designers. For example, the effects of laminate con- 
struction (including sandwich construction) and trans- 
verse shear deformations on imperfection sensitivity are 
not well understood. Transverse shear flexibility tends to 
reduce the effective stiffness of a structure and can re- 
duce its buckling load. It 1s also known that laminated 
shell wall construction can greatly affect the attenuation 
length of bending deformations, which implies that the 
effects of nonlinear prebuckling deformations may be se- 
vere for some laminate constructions. 

Examples 

The common approach to stability design described 
previously in the present paper is often used by industry 
in the preliminary design of shell structures. However, in 
some cases, the results of a linearized stability problem 
may not represent adequately the underyling physics of 
the actual response. Two examples that illustrate this po- 
tential pitfall are presented in this section. The first ex- 
ample is the Space Shuttle superlightweight LO2 tank. 
This example of a contemporary thin shell structure that 
is subjected to combined loads illustrates complex non- 
linear behavior that is dominated by local bending defor- 
mations. The second example is a much simpler 
"subcomponent-level" example; that is, a compression- 
loaded curved panel with a cutout. Because cutouts ap- 
pear in nearly every kind of aerospace vehicle structure, 
properly designing for their effects on the buckling resis- 
tance of shells is very important. These two examples il- 
lustrate some physical behaviors that are not commonly 
understood and are representative of problems that are 
dominated by effects that are currently not addressed in 
the NASA monographs. 

Space Shuttle Superli~htwei~ht L O W  

The Space Shuttle consists of the Orbiter, two Solid 
Rocket Boosters (SRBs), and the External Tank (ET), as 

shown in Fig. 1. The External Tank consists of a liquid 

Forward 

Fig. 1 Space Shuttle External Tank components. 

oxygen (LO2) tank, a liquid hydrogen (LH2) tank, and an 
intermediate structure called the Intertank (see Fig. 1). 
Currently, NASA is engaged in the flight certification of 
a newly designed LO2 tank that is referred to as the su- 
perlightweight LO2 tank. This new LO2 tank is signifi- 
cantly lighter than the one presently in service, and a 
significant concern in its design Is its buckling behavior. 
The superlightweight LO2 tank is a thin-walled mono- 
coque shell that is made primarily of 2195 aluminum- 
lithium alloy. It consists of a nose cone, a forward ogive 
section, an aft ogive section, a cylindrical barrel section, 
and an aft elliptical dome section, as shown in Fig. 1. The 
Intertank (see Fig. 1) is a 6ght circular cylinder that is 
made from 2090 and 7075 aluminum alloys. Details and 
dimensions of the LO2 tank, the LH2 tank and the Inter- 
tank are given in Ref. 16. .. , 

An important loading condition that is illustrated 
by this example is the prelaunch loading condition for 
which the LH2 and LO2 tanks are full. Compressive 
stresses are present in the ogive sections of the (mono- 



coque) LO2 tank directly above the solid rocket booster 
attachment points for this loading condition. These com- 
pressive stresses are caused by the weight of the filled 
LH, and LO2 tanks that is reacted at the two SRB attach- 
ment points. Both linear bifurcation and nonlinear anal- 
yses are presented in detail in Ref, 16. These results, 
which were obtained by using the Structural Analysis of 
General Shells (STAGS) nonlinear structural analysis 

code,17 are described briefly as follows. 
The linear bifurcation solution yields a critical 

buckling load factor of pa = 3.78, where a value of pa = 
1.0 corresponds to the magnitude of the operational 
loads. The corresponding buckling mode is shown in Fig. 
2 and consists of a short-wavelength buckle in the for- 
ward part of the aft ogive that is essentially a wrinkle in 
the skin. The shortness of the wavelength is caused by 
the hoop tension that resists the LO2 pressure. 

Results of nonlinear analyses presented in Ref. 16 
are reproduced in Figs. 3 and 4. The solid lines shown in 
Fig. 3 represent the normal displacements along the 
length of the aft ogive shell wall for values of the applied 
load factor pa approximately equal to 3.0, 4.0, and 5.0. 
Overall, negative values of the normal displacements are 
indicated by the left-hand-side ordinate for these three 
lines because of contraction of the aft ogive that is caused 
primarily by the LO2 thermal load. The linear bifurcation 
mode is represented in the figure by the dashed line with 
the normalized amplitude given by the right-hand ordi- 
nate of the figure. The solid lines shown in Fig. 3 indicate 
a short-wavelength bending response in the aft ogive 
over the SRB attachment point (figure 2) that is similar 
in shape to the corresponding linear bifurcation mode 
shape. The overall slope of the solid lines (obtained by 
fitting a straight line to each curve) is a result of outward 
displacements of the shell wall (indicated by less nega- 
tive values) that are caused by the internal pressure and 
that are represented by a nonlinear analysis. This effect 
is not represented in the prebuckling stress state that is 
used in a linear bifurcation buckling analysis and, as a re- 
sult, does not affect the overall slope of the dashed line. 

The results presented in Fig. 3 predict a stable non- 
linear response at load levels greater than the buckling 
load predicted by a linear bifurcation analysis. As the ap- 
plied load increases, substantial bending deformations 
(indicated by the waviness of the curves) develop and 
grow in the shell wall. These bending deformations re- 
duce the apparent meridional stiffness of the aft ogive. 
The nonuniformity of the bending deformations is 
caused by thickness variations in the ogive and the pres- 
ence of circumferential weld lands. Similar results are 
presented in Ref. 16 which indicate that a geometric im- 
perfection with a small negative amplitude and with the 
shape of the linear bifurcation mode greatly increases the 
severity of the stable bending deformations. This imper- 
fection causes the growth of the bending deformations to 
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Fig. 2 Linear bifurcation buckling mode for a 
99,000 degree-of-freedom model. (pa = 3.78). 

begin at much lower load levels than the linear bifurca- 
tion buckling load. 
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Fig. 3 Predicted nondimensional normal 
displacement wlt of the aft ogive of a geometrically 
perfect shell for inceasing LH2 interface loads. 

The reduction in the apparent meridional stiffness 
of the aft ogive is shown more explicitly in Fig. 4. In this 
figure, the intensities of the largest bending deformations 
(indicated by the largest magnitude of the normal dis- 
placement amplitude) for the geometrically perfect shell 
and a geometically imperfect shell are given as a func- 
tion of the load factor p,. The amplitude Aw shown in 
Fig. 4 is the distance from the maximum value of the 
shell-wall displacement to the adjacent minimum value 
and represents the intensity of the local bending defor- 
mation in the response. The filled circles in the figure 
correspond to results for a geometrically perfect shell 
and the unfilled triangles correspond to results for geo- 
metrically imperfect shells with imperfection-amplitude- 
to-wall-thickness ratio of A/t = 0.3 (t = 2.540 mrn (0.100 
in.)). The horizontal dashed line in the figure represents 
the linear bifurcation buckling load level. 

The results presented in Fig. 4 indicate that the am- 
plitude of the greatest local bending deformation grows 
with increasing load, and that the amount of growth in- 
creases substantially with increasing geometric imper- 
fection amplitude. The results predict that the shell can 
support loads greater than the critical buckling load pre- 
dicted by the linear bifurcation analysis. Most important- 
ly, the results show that the linear bifurcation analysis 
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Fig. 4 Predicted local nondimensional 
displacement .amplitude Awlt of the aft ogive 
surface for inceasing LH2 interface loads; 
geometrically perfect and geometrically imperfect 
shells. 

does not accurately represent the mechanics of the actual 
shell response. Moreover, a design based on the linear bi- 
furcation analysis and a knockdown factor that was ar- 
rived at using an intuitive approach would likely be 
overly conservative. 

Compression-Loaded Curved Panel With a Cutout 

Several tests of compression-loaded 6061-T6 alu- 
minum singly curved panels with a central circular cut- 
out were conducted at the NASA Langley Research 
Center. The panels had a nominal radius of curvature of 
R = 152.4 cm (60 in.) and a nominal thickness of t  = 2.54 
rnm (0.10 in.). The length and arc-width of the panels 
were approximately 37.47 cm (14.75 in.) and 36.83 cm 
(14.5 in.), respectively. The panels were loaded slowly in 
axial compression by uniformly displacing the two oppo- 
site curved edges with a 1334-kN (300-kip)-capacity hy- 
draulic testing machine. The loaded ends of a panel were 
clamped and the unloaded edges were simply supported 
by a test fixture. The length and arc-width of the panels 
between the inside edges of the test fixture (unsupported 
area) were both 35.56 cm (14.0 in.). Electrical resistance 



strain gauges were used to measure strains, and direct- 
current differential transformers were used to measure 
axial displacements and displacements normal to the 
panel surface. Shadow moir6 interferometry was also 
used to monitor displacements normal to the panel sur- 
face. 

Experimental results for load versus end shortening 
are presented in Fig. 5. The load is nondimensionalized 

0 0.1 0.2 0.3 0.4 
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Fig. 5 Nondimensional load versus end-shortening 
curves for aluminum curved panels with a central 
circular cutout. 

by the linear bifurcation buckling load for a panel with- 

out a cutout Pii,= 62,988 N (14,161 lbs) that was ob- 
tained from STAGS. This buckling load is based on a 
length L = 35.56 cm (14.0 in.), an arc-width W = 35.56 
cm (14.0 in.), a nominal thickness of t = 2.54 rnm (0.1 
in.), a Young's modulus of E = 72.4 GPa (10.5 x lo6 psi), 
and a Poisson's ratio of v = 0.33. The end-shortening A 
is nondimensionalized by the nominal panel thickness t. 
The dashed line in the figure corresponds to a panel with- 
out a cutout and the solid lines correspond to panels with 
cutout-diameter-to-panel-width ratios d/W = 0.3, 0.4, 
and 0.5. 

The experimental results presented in Fig. 5 indi- 
cate that the character of the nonlinear response of a pan- 
el changes significantly as the cutout size increases. For 
example, the results indicate that the panels with d/W = 
0 and 0.3 exhibit buckling behavior that involves a dy- 
namic change from one stable equilibrium configuration 
to another. Similar results, not shown in the figure, were 

obtained for panels with d/W = 0.1 and 0.2. The results 
in Fig. 5 also indicate that the panels with dJW = 0.4 and 
0.5 do not exhibit this type of behavior, but exhibit sta- 
ble, monotonically increasing nonlinear responses. The 
results show that the intensity of the dynamic buckling 
process decreases substantially as d/W increases from a 
value of zero to 0.3. The intensity of the dynamic buck- 
ling response is indicated by the difference between the 
buckling load and the lowest stable postbuckling load. 

The results presented in Figs. 6 through 9 provide 
additional insight into the effect of cutout size on the 
character of the nonlinear response. The results in these 
figures are shadow moir6 patterns on the convex or outer 
surface of the panels. The shadow moir6 patterns for the 
panel without a cutout are shown in Fig. 6 for values of 

P/Pii,= 0.86 (just before buckling) and 0.57 (just after 
buckhng). The top pattern in Fig. 6 indicates that no sig- 

P . 
7 = 0.86 (before buckling) 

P - = 0.57 (after buckling) 
Pi' 

Fig. 6 Shadow moir6 patterns for aluminum curved 
panels without a cutout. 

nificant nonlinear prebuckling deformations are present, 
which is consistent with the straightness of the initial 
portion of the dashed line shown in Fig. 5. The bottom 
pattern in Fig. 6 indicates that the stable postbuckling 
mode shape consists of a single half-wave along the pan- 
el length and across the panel width. The radial displace- 



ments of this postbuckling mode shape are inward. 

Shadow moir6 patterns for the panel with a cutout 

with d/W = 0.3 are shown in Fig. 7 for values of P/P& = 

0.72 (just before buckling) and 0.67 (just after buckling). 

P - = 0.72 (before buckling) 
PbOif 

Fig. 8 Shadow moire patterns for aluminum curved 
panels with a central circular cutout (d/W = 0.4). 

P - = 0.69 (aRer buckling) 
G i f  

Fig. 7 Shadow moir6 patterns for aluminum curved 
panels with a central circular cutout (d/W = 0.3). 

The top pattern in Fig. 7 indicates that significant nonlin- 
ear prebuckling deformations occur around the cutout, 
which is consistent with the deviation from straightness 
of the initial portion of the solid line shown in Fig. 5 for 
d/W = 0.3. The radial deformations around the cutout are 
outward. The bottom pattern in Fig. 7 indicates that the 
stable postbuckling mode shape consists of an outward 
deformation pattern on the left-hand-side of the cutout, 
similar to the nonlinear prebuckling deformation pattern 
shown on the left side of the top pattern in the figure, and 
an inward buckle on the right-hand-side of the cutout. 
This buckle consists of, approximately, a single half- 
wave along the panel length and across the panel half- 
width. 

Shadow moir6 patterns for the panel with a cutout 

with d/W = 0.4 are shown in Fig 8 for values of PIP& = 
0.46 and 0.71. The patterns in Fig. 8 and the correspond- 
ing curve in Fig. 5 indicate that significant outward non- 

linear prebuckling deformations around the cutout 
dominate the response. There is no dynamic buckling re- 
sponse for this panel. Similarly, the shadow moir6 pat- 
terns for the panel with a cutout with d/W = 0.5 are 

shown in Fig. 9 for values of PP&= 0.50 and 0.70, and 
the corresponding curve in Fig. 5 supports the same con- 
clusion about the response. 

In summary, this simple example illustrates a re- 
sponse for compression-loaded curved panels that is typ- 
ically not well understood, not considered by designers, 
and that is not addressed in the NASA monographs. The 
response trends change with loading, boundary condi- 
tions, and material systems, such as a laminated compos- 
ite system. How these trends affect the cutout size at 
which the response changes its character is generally un- 
known. Information of this kind would be a valuable 
contribution to an updated shell design monograph. 

Concept for New Design Recommendations 

New, expanded versions of the NASA monographs 
are now possible to develop because of significant tech- 
nological advances and advances in the understanding of 



Fig. 9 Shadow moirr5 patterns for aluminum curved 
panels with a central circular cutout (d/W = 0.5). 

shell stability. In particular, advances in computers and 
analysis tools have increased greatly the ability to solve 
complex shell stability problems. Thus, a brief descrip- 
tion of the capabilities of an advanced, state-of-the-art 
analysis tool that could be used to obtain a wide range of 
analytical results that could be included in expanded ver- 
sions of the NASA monographs is presented in this sec- 
tion. 

Before embarking on an endeavor to revise the 
NASA monographs, a two-part question remains to be 
addressed; that is, "What kind of an approach to stability 
design should be used, and how should problem uncer- 
tainties be addressed?' A basic, first-approximation an- 
swer to this question is suggested below. The approach is 
based on the premises that many of the shell response pa- 
rameters are not necessarily probabilisitic in nature, and 
that a completely probabilistic approach may tend to ob- 
scure the physical understanding of behavior. Thus, a hy- 
brid approach to shell stability design is under 
consideration and will be discussed briefly in this sec- 
tion. 

Another major consideration in the formulation of 
new design recommendations for a revised set of NASA 
monographs is experimental testing. With shell buckling 

behavioral trends established analytically, selective ex- 
periments can be identified and conducted to establish 
credible design recommendations. This selective testing 
approach, made possible by advanced analysis tools, is 
particularly important when considering the costs of con- 
ducting experiments and the costs of test specimens such 
as those made of fiber-reinforced composite materials. 
Moreover, to establish the best possible design recom- 
mendations, it is imperative to use high-fidelity experi- 
mental results. This step is necessary to prevent the 
introduction of excessive conservatism through the use 
of poor-quality experimental results. Some suggestions 
on how to obtain high-fidelity experimental results are 
also given in this section. Finally, some specific sugges- 
tions for improving the NASA monographs are present- 
ed. 

Capabilities of an Advanced Analvsis Tool 

Advances in the finite-element method during the 
last fifteen years have improved the capability for ana- 
lyzing complex nonlinear shell problems and to obtain 
accurate buckling and nonlinear response predictions. 
For example, an advanced, state-of-the-art structural ' 
analysis code has been used to conduct in-depth nonlin- 1 

ear analyses of the Space Shuttle superlightweight LO2 

tank.16 This code was chosen for analyzing this problem 
because of its robust state-of-the-art nonlinear-equation 
solution algorithms and its general user-input capability 
that is convenient for modeling branched shells typically 
used for launch vehicles. It uses both the full and modi- 
fied Newton methods to obtain an accurate nonlinear so- 
lution, and large rotations in a shell are represented by a 
co-rotational algorithm at the element level. The Riks 
arc-length projection method is used to continue a solu- 

tion past limit points, and the Thurston1* equivalence 
transformation processor is used for solution-branch 
switching in the vicinity of a bifurcation point. The code 
also permits complex geometries, loading conditions, 
boundary conditions and initial geometric imperfections 
to be modeled in a direct manner by the use of user-writ- 
ten subroutines. These subroutines are essentially inde- 
pendent of the mesh discretization, and provide analysts 
with a great deal of flexibility for modeling complex 
structural configurations (e.g., see Ref. 16) and conduct- 
ing mesh refinement studies. 

Advanced analysis tools with the capabilities men- 
tioned above make it possible to determine accurate ana- 
lytical estimates of the sensitivity of a shell buckling load 
to initial geometric imperfections or other destabilizing 
irregularities. Thus, state-of-the-art nonlinear shell anal- 
ysis codes can be used to establish shell buckling behav- 
ioral trends deterministically for a wide range of system 
parameters, and to identify any unusual, possibly unex- 
pected nonlinear behavior that designers should consid- 
er. 



Basic Ap~roach to Stability Design 

Modern, high-fidelity nonlinear shell analysis 
codes, such as STAGS, have enabled accurate predic- 
tions of the nonlinear response and buckling loads of thin 
shell structures. The response of a shell can be deter- 
mined accurately when its dimensions and properties are 
known to sufficient precision. For example, the effects of 
initial geometric imperfections can be dealt with by mea- 
suring the true shape of the shell and modifying the shell 
analysis model to represent the true measured geometry. 
Such deterministic analyses are valuable for identifying 
and isolating important contributions to the nonlinear re- 
sponse, and for systematically quantifying the effects of 
changes in structural and material design parameters. 

The reliability of current shell design procedures 
can be improved by using these more accurate determin- 
istic tools, provided that accurate information on the di- 
mensions and material properties is available. If some 
dimensions and properties are not well known, however, 
it should be possible to modify the design process to in- 
clude such uncertainties. By coupling a probabilistic rep- 
resentation of uncertain dimensions, tolerances, and 
material properties with a deterministic analysis that in- 
corporates the better-known parts of the design problem, 
a hybrid design process could be developed. A typical re- 
sult of the process might be a stiffened shell with a pre- 
scribed buckling load complete with a rationally 
obtained confidence interval. The hybrid approach could 
also serve as the basis for a reliability-based design pro- 
cedure. 

Suggestions for Future Experiments 

The determination of meaningful knockdown fac- 
tors for shell buckling depends greatly on high-fidelity 
experimental results. Some of the scatter in the post- 
1930's test data for buckling loads of isotropic cylindri- 
cal shells can be attributed to nonuniform load introduc- 
tion or a poor simulation of the boundary conditions by 
the test fixture. When questionable test results are used 
to determine knockdown factors from lower bound curve 
fit approximations to the test data, the knockdown factor 
is likely to be overly conservative. Thus, it is very impor- 
tant to know the pedigree of a given set of test data. 

To obtain high-fidelity experimental results, sever- 
al issues must be addressed and several tasks must be 
performed. Prior to conducting an experiment, initial 
geometric imperfections of the shell surface, the wall 
thickness distribution, unevenness of the loaded edges, 
and the material properties should be measured. Knowl- 
edge of these quantities is extremely important for ob- 
taining good correlation between theory and experiment. 
The instrumentation for a test should be planned ade- 
quately to facilitate the correlation between theory and 
experiment, and to provide enough data to help under- 
stand the expected behavior. The data sampling rate 

should be high enough to represent the shell response. 
The instrumentation should include back-to-back strain 
gages for monitoring bending strains and local nonlinear 
deformations; direct-current differential transformers 
(DCDT's), or other similar devices, for monitoring dis- 
placements normal to the shell surface; and shadow 
moire interferometry for qualitatively monitoring buckle 
patterns. In many cases, the amount and type of instru- 
mentation needed can be determined from preliminary 
analyses. It is important to reiterate that for some shell 
stability problems, a linear bifurcation analysis may not 
represent adequately the shell behavior, and as a result, 
may be inadequate for planning instrumentation. For ex- 
periments that involve load introduction by displacing a 
platen of a loading machine, proper alignment of the 
platens should be verified, and DCDT's, or other similar 
devices, should be used to define the plane of the loading 
platen and to detect any load introduction anomaly. The 
loaded edges of compression-loaded shells should be 
measured to ensure that the edges are as close to flat and 
parallel as possible. A loading rate that is consistent with 
the goals of the test should be selected. Details of the test 
fixture, and its relationship to the desired boundary con- . 
ditions, should be clearly defined when reporting test da- 
ta, and the locations of all instrumentation that 
correspond to the reported results should be clearly indi- 
cated. 

For experiments that involve thermal loading, or 
combined mechanical and thermal loading, additional is- 
sues must be considered. An in-depth discussion of sev- 

eral of these issues has been presented by ~ l o s s e r ' ~  and 
some of the information needed to characterize experi- 
mental results adequately is summarized as follows. 
First, the temperature distribution of the structure and its 
test fixture and the heat flux at all of the surfaces need to 
be recorded adequately to facilitate the correlation be- 
tween theory and experiment. In addition, any difference 
in coefficient of thermal expansion of the specimen and 
the test fixture, any heating of the loading platens, and all 
locations of insulated surfaces and heat conduction paths 
should be recorded. Complete descriptions of the thermal 
test fixture components, including coolant passages and 
cavities, should be given and any interaction of the ther- 
mal components with the components used to introduce 
mechanical load should be identified. Other important 
details that should be recorded are the air temperature in 
the area surrounding the test specimen, the method of 
heating or cooling used for the specimen and test fixture, 
and changes in material properties of the specimen and 
test fixture with temperature. 

Potential Improvements to the NASA Monomaphs 

Certainly one of the most signficant improvements 
to the NASA monographs would be the inclusion of de- 
sign recommendations for laminated composite shells 



that are based on the analytical and experimental studies Concluding Remarks 
that have been conducted over the past twenty-five years. 
Another improvement would be to base knockdown fac- 
tors on accurate analytical models of "nominally perfect" 
shells (shells free of initial geometric imperfections, ma- 
terial variances, etc.) that include the proper boundary 
conditions (as opposed to only simply supported bound- 
ary conditions which are used to a large extent in the cur- 
rent monographs) and possibly the effects of nonlinear 
prebuckling deformations. These tasks can be done for a 
wide range of parameters using specialized codes such as 
BOSOR4 and DISDECO, that compute bifurcation 
buckling loads that include the effects of nonlinear preb- 
uckling deformations and various boundary conditions 

by solving a nonlinear eigenvalue problem.209 21 Isolat- 
ing the effects of nonlinear prebuckling and boundary 
conditions are essential steps to understanding the shell 
behavior and to obtaining reliable knockdown factors 
that are not overly conservative. 

Another significant improvement to the NASA 
monographs would be to establish practical nondimen- 
sional parameters that contain the appropriate geometric 
and material variables and that enable concise represen- 
tations of behavioral trends and sensitivity of the re- 
sponse to variations of the parameters (e.g., see Ref. 22). 
Guidelines for including damage tolerance and the sensi- 
tivity of a design to load introduction effects would be 
valuable additions to the monographs. One of the most 
significant improvements that can be made immediately 
is to provide insight into, and quantitative results for, the 
true nonlinear interaction of combined loads that has 
been treated very conservatively in the NASA mono- 
graphs as a linear interaction. Furthermore, providing de- 
sign recommendations for thermal loads and for 
combined mechanical and thermal loads would be a sig- 
nificant improvement. 

Another issue that must be addressed in order to ob- 
tain a new set of useful and practical design monographs 
is design uncertainties. A significant contribution to this 
area can be made by providing guidelines for determin- 
ing which shell stability issues are handled more ade- 
quately in a deterministic rather than a probabilistic 
manner. From a practical viewpoint, this information in- 
dicates approximately the number of experiments and 
analyses needed to establish meaningful design recom- 
mendations and reliable, but not overly conservative, 
knockdown factors. Ultimately, the improvements to the 
NASA monographs should be focused on the practical 
needs of industry structural designers and chief engi- 
neers, and should reflect the scientific advances that have 
been made over the last twenty-five years. The end result 
of such an effort would be a collection of scientifically 
based knockdown factors and design recommendations. 

A summary of existing NASA monographs for the 
design of buckling resistant thin shell structures has been 
presented. Improvements in the analysis of nonlinear 
shell response were reviewed, and current issues in shell 
stability analysis were discussed. Examples of nonlinear 
shell responses that are not included in existing NASA 
shell design monographs have been presented, and an ap- 
proach for including reliability-based analysis proce- 
dures in the shell design process was discussed. 
Suggestions for conducting future shell experiments to 
obtain high-fidelity results have been presented, and pro- 
posed improvements to the NASA shell design criteria 
monographs have been discussed. 
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Abstract 

Methodologies used in industry for designing transport aircraft composite fuselage structures are discussed. 
Several aspects of the design methodologies are based on assumptions from metallic fuselage technology which 
requires that full-scale structures be tested with the actual loading conditions to validate the designs. Composite 
panels which represent crown and side regions of a fuselage structure are designed using this approach and tested in 
biaxial tension. Descriptions of the state-of-the-art test facilities used for this structural evaluation are presented. 
These facilities include a pressure-box test machine and a D-box test fixture in a combined loads test machine which 
are part of a Combined Loads Test System (COLTS). Nonlinear analysis results for a reference shell and a stiffened 
composite panel tested in the pressure-box test machine with and without damage are presented. The analytical and 
test results are compared to assess the ability of the pressure-box test machine to simulate a shell stress state with 
and without damage. A combined loads test machine for testing aircraft primary structures is described. This test 
machine includes a D-box test fixture to accommodate curved stiffened panels and the design features of this test- 
fixture are presented. Finite element analysis results for a curved panel to be tested in the D-box test fixture are also 
discussed. 

Introduction 

The potential for cost and weight reductions 
still exists for aircraft structures made of polymeric 
composite materials despite recent material and 
manufacturing advances for metallic materials. This 
potential can be realized in aircraft fuselage structures by 
judicial integration of materials, structural design and 
analysis practices, and manufacturing processes. 
Assessing the advantages of using different materials and 
material forms, and understanding the response of aircraft 
structures subjected to combined loading conditions are 
important aspects of designing aircraft structures. 
Current composite structural designs are based on 
metallic structural experiencebased approximations for 
design loads and individual panel analysis and sizing 
techniques. Such a metals-based design approach can 
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result in a composite structural design with inadequate 
margins of safety. Structures are analyzed at the local 
level to satisfy damage tolerance and durability 
requirements. Existing tension-fracture and impact- 
damage data from flat laminates are currently used to 
design stiffened-skin and sandwich shell structures 
which could result in very conservative structural 
designs. A very limited amount of information 
currently exists for curved stiffened panels subjected to 
combined loading conditions to support the design of 
composite fuselage structures with large-size damage. 
Since composite structures have more material design 
variables than metallic structures, better design and 
analysis approaches are necessary to design efficient 
structures and to assess properly the advantages of dsin-: 
composite structures to replace metallic structures. 
Testing composite structures is likely to be an integral 
part of developing and validating designs for composite 
structures in the future. 

Analytical and experimental work on composite 
fuselage crown and side panels is currently being 
conducted at NASA Langley Research Center to help 
study issues related to the nonlinear response, tensile 
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test machine and a combined loads test system with a D 



box test fixture have been designed and fabricated to test 
structural panels with boundary conditions that simulate 
the actual stress states for panels in a fuselage shell 
structure. These new test facilities are designed to test 
damaged and undamaged panels subjected to actual flight 
load conditions. 

The present paper presents an integrated 
approach for designing structures to satisfy performance, 
producibility and cost requirements. The paper describes 
the pressure-box test machine and the D-box test fixture 
for a combined loads test machine, and describes how 
these new facilities are being used to simulate the actual 
stress states in a fuselage shell. Analytical and 
experimental results are presented and compared for two 
composite curved panels tested in the pressure-box test 
machine. Analytical results are also presented that relate 
test results for panels subjected to combined loads to 
fuselage shell results. The need to include nonlinear 
effects in the analysis and design of pressurized 
composite structures is also discussed. 

Design Methods for Fuselage Structure 

The current approach for designing fuselage 
shell structures is based on designing individual panels 
based on the fuselage load distribution and 
manufacturing considerations. A fuselage barrel section 
divided into three different panels is shown in Figure 1, 
and the panels represent the crown, side and keel panels 
for the section. Each panel is further sub-divided into 
smaller-sized panels with approximately uniform stress 
states and analyzed and sized to satisfy stability and 
strength requirements. Since manufacturing procedures 
and cost are important elements in developing a 
transport composite fuselage, an integrated design 
approach is used that includes all structures and 
manufacturing disciplines in the design process for 
sizing the smaller-sized panels. 

This integrated design approach includes the 
traditional structural design, structural analysis, weights, 
cost and manufacturing disciplines. The internal load 
distribution is determined from a finite element analysis 
model. Manufacturing processes that are appropriate for 
the structural concepts and material forms are selected to 
assure cost-effective fabrication of the structural parts, 
and the material strength, stiffness properties and design 
and manufacturing cost centers are identified. Structural 
design constraints including stability, strength, skin-to- 
stringer and skin-to-frame stiffness ratios, minimum 
skin gage, stringer spacing, ply layup, stringer height, 
minimum stringer flange width, stringer web angle, etc. 
are used for the structural analysis and sizing of the 
smaller-size panels. Additional constraints are imposed 

for damage tolerance and durability. A panel blending 
algorithm is used to optimize and assemble all the 
smaller-size panels into a larger panel design such that 
structural continuity is maintained for the skin, 
stringers, and frames. Design rules based on empirical 
and semi-empirical data are defined for blending the 
designs of several skin laminates, stringers, and frames. 
The designer identifies one or more sub-divided panels 
with regions of high stress concentrations to assure that 
the blending variables in non-critical areas of the panel 
are controlled by those for the critical areas, and a 
preliminary design for the fuselage shell is generated. 
Since the structural definition is usually completed to 
the 70 to 80 percent level of the final structural 
configuration during the preliminary design phase, it is 
important to use accurate structural analysis methods for 
this part of the design process. Finite element analyses 
are performed using the preliminary design as a starting 
point to arrive at a final design. 

Evaluation of Fuselaye Panels Subjected to Combined 
Lads 

A common approach for studying the damage 
tolerance characteristics of pressure-loaded stiffened 
panels is to test flat panels with combinations of 
tension and compression loads in the longitudinal and 
lateral directions. These tests are relatively easy to 
perform, but the data generated from such tests are not 
directly applicable to the design of pressure-loaded curved 
panels since the bending gradients in the skin and the 
resulting nonlinear effects are not represented by the 
simpler tests. The best approach for determining the 
effect of these nonlinear response phenomena is to 
perform tests on a cylindrical shell to generate the 
requjred structural response information. Another 
approach for testing curved panels with combined 
compression, internal pressure, and inplane shear loading 
conditions is to mount a test panel in a cylindrical shell 
test fixture that has a cutout to accommodate the test 
panel. The panel is then subjected to the intended 
combined loading conditions by loading the cylindrical 
shell test fixture. The correct boundary conditions can 
be imposed on the test specimen more readily using this 
approach. This approach is useful unless it is necessary 
to test panels with different radii than the radius of the 
cylindrical shell test fixture. To avoid the expense of 
building a series of cylindrical shell test fixtures with 
different radii, a pressure-box test machine and a D-box 
test fixture have been developed for testing curved 
stiffened panels of different radii and frame spacings. 
The pressure-box test machine is used to test curved 
stiffened panels subjected to internal pressure and biaxial 



tension loading conditions, and the D-box test fmture 
has been developed for testing curved stiffened panels 
subjected to combined internal pressure, compression, 
and shear loads compression by using a combined loads 
test machine. Analytical and test results for two typical 
fuselage panels tested in the pressure-box test machine, 
and analytical results that supported the design and 
development of the D-box test fixture are presented in 
the next section. 

Biaxial Tension Loading Conditions 

A photograph of the pressure-box test machine 
for testing curved stiffened panels subjected to internal 
pressure and biaxial tension loads is shown in Figure 2. 
This pressure-box test machine was designed to ensure 
that the appropriate boundary conditions are imposed on 
a pressurized curved panel to develop a stress state in the 
panel that is representative of a fuselage shell. This 
design requirement is particularly important when 
investigating failure of curved panels and for damage 
propagation studies. For both the undamaged and 
damaged states of the panels investigated using this test 
machine, It is possible to develop the proper stress 
magnitudes and gradients in a curved panel that 
representative of the stress state in a shell with the 
corresponding loading conditions. A detailed description 
of this test machine is presented in Ref. 1. 

Fuselave Crown Panel Evaluation. A stiffened 
graphite-epoxy fuselage crown panel shown in Figure 3 
was tested in the pressure-box test machine to study its 
response characteristics. The panel has a 122-in. radius, 
a 72-in. length, and a 63-in. arc width. The material 
type and material properties for this panel are presented 
in Ref. 1. The panel skin is tow-placed using a 
fiberglass-graphite-epoxy hybrid material system to 
improve the damage tolerance characteristics of the 
panel. The panel frames are made of triaxially braided 
graphite fiber preform impregnated with an epoxy resin 
and cured using a Resin Transfer Molding process. ?he 
stringers pass through cutouts machined into the frames 
and no clips are used to attach the stringers to the 
frames. This design detail reduces the structural part 
count and the cost associated with panel fabrication. 

The crown panel was analyzed using a 
nonlinear finite element code to determine the hoop-load 
reaction forces needed for the panel to simulate the stress 
state in the corresponding shell, and to provide analysis 
results to correlate with the test data for the damaged and 
undamaged test specimen. The hoop-load reaction forces 
are generated by adjusting a series of turnbuckles that 
attach the skin and the frames to the load reaction £rame 

of the test machine. Finite element models for the 
cylindrical shell and the test panel in the pressure-box 
test machine were generated using PATRAN (Ref. 2). 
Nonlinear structural analyses for both the shell and the 
test panel were performed using STAGS (Ref. 3). 

The finite element models for the test panel and 
the shell are shown in Figure 4. The quarter model for 
the panel shown in Figure 4(a) has approximately 
10,000 shell, rod, and beam elements and 62,000 degrees 
of freedom. The load introduction structure, the 
turnbuckles, and actuator rods for the axial hydraulic 
jacks are modeled to account for rigid-body 
displacements and flexibilities at the panel boundaries. 
The shell reference model is shown in Figure 4(b). The 
model has symmetry boundary conditions, 16,686 shell 
and beam elements, and 100,000 degrees of freedom. 
Analytical hoop stress resultant results for the test panel 
subjected to 18 psi of internal pressure are compared 
with analytical shell results in Figure 5. The nonlinear 
analysis results for the panel with the turnbuckle loads 
adjusted to the required magnitude indicate that the 
boundaries influence the stress state in the load . 
introduction region, but the stress states in the interior 
of the panel compare very well with the stress states for 
the shell structure. The hoop stress gradients for the 
reference shell and the panel in the pressure box with a 
22-in.-long notch are compared in Figure 6. The 
location of the maximum value for the hoop stress 
resultant for both models is at the notch tip. The 
magnitudes for the hoop stress resultants also compare 
well with one another in the interior of the panel, but 
there are some differences in the results due to the load 
introduction effects at the boundaries of the curved panel. 
The undamaged test panel was subjected to an internal 
pressure of 18.2 psi and an axial load of 1,110 lblin. 
This pressure value corresponds to twice the operating 
pressure, the design limit load condition, for the fuselage 
structure. Analytical and experimental hoop strain 
results are compared for the panel in Figure 7, and the 
strain gage locations are defined in the figure. The 
results correlate very well for the 5-psi and 18-psi 
internal-pressure load conditions shown in the figure. 
After the undamaged panel test was completed, a notch 
was cut into the panel skin to study the damage 
tolerance characteristics of the panel. Damage growth 
initiated at the notch tips for an internal pressure of 6.3 
psi, and grew along a curved trajectory at approximately 
11.2 psi of internal pressure. The details of the 
experimental results for the damaged panel are presented 
in Ref. 1. These results illustrate that the pressure-box 
test machine can be used to simulate a shell stress state 
in a test panel. The test panel exceeded its design 
requirements for the design burst pressure condition 
(twice the design limit load condition) in the undamaged 



state, and satisfied the design limit load condition with 
damage. 

Sandwich Fuselage Side Panel Evaluation. 
Sandwich fuselage side panels with window cutouts have 
also been evaluated using the pressure-box test machine. 
One of the sandwich panels is shown in Figure 8(a) and 
has three frames, a 122-in. radius, a 72-in. length, and a 
63-in. arc width. The panel has two window cutouts 
located midway between the center frame and each of the 
outer frames. The elliptical window cutouts are 19.92- 
in. long in the fuselage circumferential direction and 
15.30-in. long in the fuselage longitudinal direction. 
The sandwich panel facesheets were fabricated from the 
Hercules, Inc. AS4-8552 graphite-epoxy material 
system, and the core is a Korex honeycomb core 
material. The facesheets were made from tow-placed 
material for the inner plies and fabric material for the 
outer plies. The fuselage frames and window frames 
were fabricated from fiber preforms consisting of 
triaxially braided AS4 graphite fibers impregnated with 
PR500 epoxy resin and cured by using a Resin Transfer 
Molding (RTM) process. The sandwich skin and the 
three precured frames were cocured in a single cure stage. 
Typical material properties for the tow placed, fabric, 
and triaxially braided AS4-8552 and AS4-PR500 
graphite-epoxy material systems are presented in Table 
1. A photograph of the finished test panel assembled in 
the pressure-box test machine is shown in Figure 8(b). 
One of the objectives of this effort was to determine 
whether the structure designed with a three-frame 
configuration could be used with an increased frame 
spacing to demonstrate additional potential for aircraft 
structural weight reductions. A two-frame panel 
configuration was developed from the tested threeframe 
panel by removing its center frame. 

A finite element model of the sandwich panel 
in the pressure-box test machine is shown in Figure 9. 
The sandwich panel is modeled using the ABAQUS 
finite element program (Ref. 4) with Cnode 
isoparametric elements for the face sheets and three 8- 
node solid elements through-the-thickness to represent 
the honeycomb core. The circumferential frames and the 
window frames are also modeled using the Cnode shell 
elements. The window glazing is also modeled using 
shell elements. The hoop and axial load introduction 
plates are modeled with shell elements. Symmetry 
boundary conditions are assumed at the axial and hoop 
centerlines which allows a quarter of the structure to be 
modeled and analyzed. The quarter model of the test 
panel in the pressure box has a total of 5,343 elements 
and approximately 26,650 degrees of freedom. This test 
panel was evaluated in the three-frame and two-frame 
configurations for two combined loading conditions: an 

18.2-psi burst-pressure condition with 1,110 lblin. of 
axial tension and a 13.65-psi design ultimate-pressure 
condition with 2,450 lblin. of axial tension. Finally, 
the panel with the two-frame. configuration was damaged 
with a cut along the panel hoop direction at the window 
cutout and tested to the design limit load condition of 
8.85 psi of internal pressure and 1,630 lblin. of axial 
tension. 

The analytical hoop and axial strain results for 
the panel with three frames subjected to the design 
ultimate loading condition are presented in Figure 10. 
The design ultimate loading condition includes 13.65 psi 
of internal pressure and 2,450 lblin. of axial tension. 
This loading condition causes high tensile forces in both 
the panel axial and hoop directions. The stress 
concentration factors are 2.88 and 2.05 for the hoop ard 
axial stresses, respectively, at the edge of the cutout. 
The trends of the experimental results agree very well 
with the finite element analysis results. The 
experimentally measured strains on the panel outer 
surface in the hoop direction vary from 1,150 pin.1in. to 
-900 pin./in. and the finite element analysis results * 

which vary from 937 pin.1in. to -949 pin.1in. The 
measured strains in the axial direction vary from 4,000 
pin./in. to -775 pin./in. and the corresponding results 
from the finite element analysis vary from 3,540 
pin./in. to -815 pin.1in. 

The next set of loading conditions imposed on 
the panel with the center frame removed include 13.65 
psi of internal pressure and 2,450 lblin. of axial tension 
load. The panel outer surface hoop and axial strain 
results from the finite element analysis for this loading 
condition are very similar to the results presented in 
Figure 10 with the center frame loads redistributing in 
the sandwich skin. The experimental strain results for 
the two-frame panel are compared with the three-me 
panel results in Figure 1 1. Strain gage locations around 
the panel cutout are illustrated in Figure ll(a). The 
maximum axial strain results at the cutout for the two- 
frame panel varies from -850 pin.1in. to 4,000 pin.1in. 
compared to the analytical results which vary from -540 
pin./in. to 3,860 pin./in. These strain magnitudes are 
comparable to the axial strains for the three-bne panel 
for the same load condition. 

This configuration was also tested with 
damage. A maximum value for the axial strain of the 
undamaged test panel occurs at the edge of the elliptical 
cutout at its major axis. The magnitude of this strain is 
3,860 pin.1in. for 13.65 psi of internal pressure and 
2,450 lblin. of axial tension. A 1-in.-long notch was cut 
into the panel at this critical location to study the 
damage tolerance characteristics of this sandwich panel 
concept. The notch was machined into the panel to 
extend in the panel hoop direction slightly beyond the 



window frame edge. A combined loading condition with 
8.85 psi of internal pressure and 1,630 lblin. of axial 
load was applied to the panel. This loading condition 
corresponds to 213 of the design ultimate load condition. 
The panel outer surface hoop and axial strain results 
from the finite element analysis are presented in Figure 
12 for this combined loading condition. The hoop 
varies from - 1,100 pin.1in. at q=90° to 1,900 pin.1in. at 
q=OO. These strain magnitudes are 150% higher than for 
the hoop strain results presented in Figure 12 for 13.65 
psi of internal pressure and 2,450 lblin. of axial tension. 
This increase in strain for this test case is due to the 
increased bending in the skin between the two cutouts 
caused by the notch. The finite element results for the 
axial strain at the outer surface along the cutout indicate 
that the maximum strain of approximately 5,200 
pin.1in. occurs at the tip of the machined notch. The 
experimental strain results for this load case are 
presented in Figure 13(a). The test results indicate that 
the axial strains -500 pin./in. to 5,800 pin./in. and 
compare very well with the analysis results. No growth 
was observed in the notch length during the test. The 
experimental hoop strain results along the x-axis for the 
three-frame panel, for the two-frame panel, and for the 
two-frame panel with a notch at the window cutout are 
compared in Figure 13(b). These results suggest that 
the far field strains in the hoop direction are influenced 
more by the removal of the frame than by the 
introduction of the notch. The increase in the panel 
strain state due to the introduction of the notch is local 
and does not result in any significant load redistribution. 
These results illustrate that the panel configuration with 
three- and two-frames respond in a predictable manner 
and the strain are well within the failure strain 
allowables for this loading condition. The results on the 
three- and two-frame sandwich side panel suggest that 
additional structural weight savings are possible by 
increasing the frame spacing to 40 inches. 

Combined Axial Com~ression and Internal Pressure 
Loading Conditions 

Combined Loads Test Machine and D-Box Test Fixture 

The combined loads test machine and D-box 
test fixture configurations are illustrated in Figure 14. 
The details of the combined loads test machine are 
summarized in Ref. 5. The D-box test fixture has been 
designed to ensure that appropriate boundary conditions 
are imposed on a curved panel to provide a stress state 
that is representative of a shell. This requirement is 
particularly important when investigating the failure of a 
curved panel and in damage propagation studies. 

Analytical studies have been performed on a D-box test 
fixture with a full-scale stiffened aluminum fuselage 
panel. 

The D-box test fixture shown in Figure 15(a) 
must have adequate radial stiffness to support the 
pressure load but have a small axial stiffness compared 
to the test panel. The small axial stiffness of the D-box 
test fixture allows a test panel to experience most of the 
applied axial load and minimizes the shift in the center- 
of- pressure of the assembly if the test panel buckles. 
The low axial stiffness of the D-box test fixture is the 
result of an assembly of curved I-beams with the cross- 
section shown in the inset. The I-beam sections are 8.0 
inches deep and 15 of these sections are used for the D 
box test fixture. The axial stiffness of the D-box test 
fixture is designed to be 5 percent of a typical curved 
stiffened panel and D-box test fixture. The axial 

stiffness of the curved panel is assumed to be 1 . 1 ~ 1 0 ~  
lblin., which is representative of the stiffness of a 
typical fuselage shell. This D-box test fixture is 
designed to test curved panels with 60 to 130 inch radii 
and 20 to 22 inch frame spacings. The panels a~ 
attached to the D-box test fixture with the hinge fittings 
as indicated in Figure 15(b). A cross-section of the D 
box test fixture is presented in Figure 15(b) that shows 
the details of the hinge fittings. Thirteen of these hinge 
fittings are provided between the I-beams for this 
purpose. When the D-box assembly is internally 
pressurized, the assembly expands in a manner that 
causes the hinge supports to move inward. This 
deformation will cause the test panel to bend in a way 
that is not representative of the response of an internally 
pressurized shell. To prevent this undesirable 
deformation, cross bars are mounted between the hinge 
points as shown in the figure such that the distance 
between the hinge points can be held constant or 
adjusted as needed to induce the appropriate stress state 
in the test panel. 

Descri~tion of Finite Element Models 

Two important design details significantly 
influence the stress state in a curved stiffened panel 
tested in a D-box test fixture. The first design detail is 
the load introduction region that attaches the curved 
panel to the D-box test fixture. If the hoop load in the 
panel from internal pressure of the D-box assembly is 
only reacted at the panel boundary by the skin, the panel 
will be subjected to bending moments at the hinge 
attachment point. Part of the hinge fitting that attaches 
the test panel to the D-box test fixture is designed to 
react load through the frames as well as the skin. The 
analytical results used to select a hinge fitting design are 



presented in Ref. 5. The second design detail is the 
support conditions along the two straight edges of the 
panel. Appropriate boundary conditions must be 
imposed on the panel so its response compares with the 
corresponds shell response for a given loading condition. 
The cross bars have to be designed to apply forces that 
prevent unwanted radial displacements that would bend 
the panel at the hinge locations. These design details 
have been studied using the results of finite element 
analyses. The finite element models for a cylindrical 
shell and the D-box test fixture with a corresponding test 
panel were generated using PATRAN (Ref. 2) and linear 
and nonlinear structural analyses were performed using 
NASTRAPJ (Ref. 6). The nonlinear analyses for the 
pressure and the combined pressure and axial load cases 
have been performed for the cylindrical shell case to 
understand nonlinear effects. 

The shell is modeled using quadrilateral plate 
elements and has 25,973 degrees of freedom. The D-box 
test fixture assembly with the curved panel is modeled 
with plate, bar, beam, and spring elements totaling 
6,773 elements and 33,130 degrees of freedom. To 
simulate the cylindrical shell subjected to internal 
pressure, the curved panel for the D-box test fixture is 
analyzed with boundary conditions that only permit 
radial displacements along the straight. To simulate the 
20-in.-long longitudinal crack in the panel, two rows of 
coincident nodes are generated along the panel centerline 
which were disconnected along the 20-in. length. 

Curved Panel and Shell - Linear Analvses 

Finite element analysis results for internal 
pressure load cases and a combination of internal 
pressure and axial compression loads are presented herein 
for both undamaged and damaged curved panels. The 
entire hoop load developed in a pressurized panel must 
be supported by the D-box test fixture without 
introducing undesirable boundary effects. When a 
stiffened curved panel is tested in a D-box test fixture, 
the test fixture should provide proper support conditions 
to the panel and induce a stress state that is 
representative of the corresponding shell structure. 
Cylindrical shell results are compared with the 
corresponding curved panel results for internal pressure 
load cases with and without an axial compression load to 
study these issues. The panel used for the analytical 
studies is a full-scale aluminum panel which is planned 
to be tested as a proof-test article for the D-box test 
fixture which will be loaded in the combined loads test 
machine. The frame spacing for the panel is 20 inches 
and the stringer spacing is 6.85 inches. The panel is 96 
inches wide and 120 inches long, and has a radius of 120 

inches. A 20-in.-long longitudinal crack through the 
skin and the frame at the mid-length is used to represent 
penetration damage in an aircraft fuselage. The response 
of the panel with this damage condition will be studied 
with the panel tests. 

Internal Pressure Loads. Two specimen and 
pressure combinations are considered for the internal 
pressure load cases. The first combination is the 
undamaged panel subjected to 18 psi internal pressure 
condition that is representative of the burst pressure 
(ultimate load) condition in a transport aircraft fuselage. 
The second combination is a panel with 20-in.-long 
penetration damage and subjected to the limit load 
condition of approximately 9 psi internal pressure. The 
panel also has a severed frame to simulate penetration 
damage. 

Linear finite element analysis results for the 
panel in the D-box test fixture subjected to 18 psi of 
internal pressure and the results for the corresponding 
cylindrical shell are shown in Figure 16. The resulting 
hoop stresses in the shell (Fig. 16(a)) are uniform in the 
skin and frame regions. The load distribution between 
and the skin and frames is 46 percent and 54 percent of 
the total load, respectively. The maximum hoop stress 
resultant of 3500 lblin. occurs on the skin surface 
opposite to the frame location, the hoop stress resultants 
for the inside flange of the frame is 1600 lblin. The 
corresponding stress state in the curved panel supported 
in the D-box test fixture with rigid cross bars to prevent 
relative displacement between the hinge points is shown 
in Figure 16(b). The load is not uniformly distributed 
in the panel skin bays. The load distribution between 
the frame and the skin is 47 and 53 percent of the total 
load, respectively. The load in the middle of the panel 
has a bending component in addition to the membrane 
tension component. This undesirable bending moment 
can be corrected by applying a compressive preload to 
the cross bars which generates in a bending moment in 
the opposite direction. This correction is accomplished 
in the analysis by applying a uniform temperature to the 
cross bars. The cross bars apply an equal and opposite 
bending moment to the test panel and provide a uniform 
membrane stress state between the skin bays for a 
temperature of 150°F. The load distribution between the 
frames and the skin are also comparable to that of the 
cylindrical shell case for this 18-psi internal pressure 
condition as shown in Figure 16(c). 

Analytical results for a panel with a 20-in.-long 
longitudinal crack extending from the center of one skin 
bay and with a severed h e  are shown in Figure 17. 
The applied pressure load is 9 psi for this damage 
condition, which is the design limit pressure for the 



fuselage. The load distribution for the shell is shown in 
Figure 17(a) and indicates that there is a 25 percent 
increase in the stress level in the undamaged frames 
compared to the undamaged panel results. This loading 
condition can be simulated in a curved panel in the D- 
box test fixture and the results of an analysis for this 
configuration are shown in Figure 17(b). 

Combined Internal Pressure and Axial 
Linear analysis has been 

performed on the shell and the curved panel in the D-box 
test fixture to determine the loads that need to be applied 
through the cross bars to simulate the stress state in a 
shell by the stress state in the curved panel in the D-box 
test fixture. The results for the undamaged panel are 
summarized in Ref. 5. The hoop stress results for a 
shell with a 20-in.-long longitudinal crack and loaded 
with 2350 lb/in. of axial compression and 9 psig of 
internal pressure are compared with a corresponding case 
for the damaged curved panel in Figure 18. The stress 
resultant distributions for the two ~urfaces are 
comparable as shown in this figure when the 
appropriate cross bar forces are applied for this load 
case. The results indicate that the influence of a 20-in.- 
long longitudinal crack or an axial compression load is 
approximately the same on the loads in the cross bars. 
The crossbar forces are minimally affected by the above 
two conditions. 

Axial Compression Load Case - Nonlinear Cvlindrical 
Shell Analysis 

The proof test of the panel for the combined 
loads test machine will be loaded in compression to 
levels beyond buckling. Reductions in curved panel 
stiffness in the postbuckling load range are determined 
from a nonlinear analysis to understand the panel 
response and the associated boundary conditions that 
must be imposed on the test panel in the D-box test 
fixture. The internal pressure causes nonuniform skin 
hsplacements that cause nonlinear interactions between 
skin and stringers and this response must be understood. 
Shell analyses have been performed for internal pressure 
and combined pressure and axial loading conditions to 
help understand the influence of these nonlinear effects 
on structural response. A representative shell segment 
is used for these analyses. The relatively small model 
size minimizes the computational times associated with 
the nonlinear analysis. Since the structure will be 
loaded beyond buckling, the dimensions of this shell 
segment need to be determined so that the model 
represents the shell response for compression loads. The 
cyclic symmetry technique in MSCINASTRAN (Ref. 6) 
was used for a linear buckling analysis study to 

determine the size of this shell segment. The lowest 
eigenvalue for the shell segment was determined to be 
for a skin buckling mode with the skin between frames 
buckling along the shell circumference into 48 half- 
waves at a total load of 773 lb/in. A shell segment with 
two stringer spacings was chosen to correspond to this 
harmonic result. The length of the shell segment was 
chosen to include three frames to facilitate studies of 
shell response with a 20-in.-long longitudinal crack in 
the skin and with a failed mid-me .  Interactions from 
the boundaries of the shell segment on the internal stress 
states are expected to be a minimum for this structural 
size. 

The hoop stresses for the damaged shell with 
the combined load case with 9 psi of internal pressure 
and 1,600 lblin. of axial compression are presented in 
Figure 19. The nonlinear analysis results indicate 
significantly larger out-of-plane deformations for the 
damaged shell. The maximum values for the out-of- 
plane deflection occur in the vicinity of the crack tip. 
The magnitudes of these deflections are 0.26 in. and 
0.59 in. for the linear and nonlinear analyses, 
respectively. The maximum hoop stress values for the 
nonlinear analysis results (Figure 19(b)) are twice the 
values for the linear analysis results. The load 
distributions between the skin and the frames obtained 
from nonlinear analysis results for both the undamaged 
and damaged shell models suggest that the stiffening of 
the skin due to large deformations enables the skin to 
support greater loads. The nonlinear analysis results for 
this axial load condition suggest that the skin supports 
50 percent of the total load in the damaged state 
compared to 35 percent for the linear analysis results. 

The differences between the load carrying 
capability of the skin with and without damage as 
obtained form the results from linear and nonlinear 
analyses for the combined pressure and axial load cases 
are explained by means of Figure 19(c). The change in 
stiffness of the skin is summarized in this figure as the 
end-shortening corresponding to an axial compression 
load is increased for the pressure loaded panel. Both the 
linear and nonlinear analysis results suggest that as the 
compression load is increased, stiffness reduction for the 
skin in the undamaged state is more than that for the 
skin in the damaged state. The nonlinear results suggest 
that for end-shortening values greater than 0.070 in. and 
0.055 in. for the undamaged and damaged panels, 
respectively, the skin exhibits a stiffening behavior that 
results in the skin carrying more load compared to the 
value obtained from the linear analysis. 

These analysis results suggest that curved 
panels subjected to internal pressure and axial 
compression can be tested in the D-box test fixture to 
study the response of full-scale shell structures. 
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Table 1. Typical material properties for graphite-epoxy materials used to manufacture the sandwich fuselage side 
panel. 

Tow Fabric . Triaxial Korex 
braid core 

AS418552 AS418552 AS4PR500 

Longitudinal modulus, El , Msi 18.30 9.20 7.50 0.00001 
Transverse modulus, E, , Msi 1.36 9.20 7.50 0.00001 
Lateral modulus, E, ,Msi 1.36 1.30 ---- 0.0340 
In-plane shear modulus, GI, , Msi 0.76 0.72 0.57 0.00001 
Transverse shear modulus, G,, , Msi 0.52 0.50 0.40 0.0136 
Transverse shear modulus, G,, , Msi 0.76 0.50 0.57 0.0326 
Major Poisson's ratio, V ,, 0.32 0.04 0.29 0.30 
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a. Hierarchy of design models. 

b. Interactions between major disciplines. . 
Figure 1 .  Summary of an integrated structural design 
approach. 

Figure 2. Pressure-Box Test machine. 

Figure 3. Composite fuselage panel. 
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Figure 4. Finite element models. 
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Figure 5. Typical hoop stress contour results. 
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Figure 6. Typical hoop stress contour results at notch tip. 
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Figure 7. Comparison of experimental and analytical 
hoop strain results. 
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b. Photograph of sandwich panel in pres- 
sure-box test machine. 

Figure 8. Details for the sandwich panel. 

Figure 9. Finite element model of the sandwich panel. 

a. Hoop strain contour. 

b. Axial strain contour. 
Figure 10. Finite element analysis results for strain con- 
tours on the panel outer surface for a combined 13.65 psi 
internal pressure and 2,450 Iblin. axial loading condition-Con- 
cluded 

strain gage 
rosettes 

a. Strain gage locations on the cutout 
edge. 

Figure 11. Experimental strain results on the two-frame 
panel outer surface for a combined 13.65 psi internal pressure 
and 2,450 lblin. axial loading condition.. 
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b. Hoop strain. 
Figure 11. Continued. 
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Figure 11. Concluded. 
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b. Hoop strain. 
Figure 13. Comparison of experimental strain results on the 
three-frame, two-frame, and notched two-frame panel outer 
surface for a combined 8.85 psi internal pressure and 1,630 lbl 
in. axial loading condition. 

b. Axial strain. 
Figure 12. Finite element analysis results for strains on the 
notched two-frame panel outer surface for a combined 8.85 
psi internal pressure and 1,630 lblin. axial loading condition. 
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Figure 14. NASA Combined loads test machine. 

-*v.' I-beam assembly 
(a) Overall configurallon. 

Hinge 

0-box 

(b) Cross-sec~ional view. 

a. Cylindrical shell. 
Figure 16. Comparison of hoop stress resultant distribu- 
tions for the cylindrical shell and the curved stiffened panel 
for an internal pressure of 18 psi. 

Lblin." . 

b. Curved panel in the D-box test fixture 
with rigid cross bars. 

Figure 16. Continued. 

Figure 15. D-box test fixture for testing curved stiffened 
panels. 



c. Curved panel in the D-box test fixture 
with preloaded cross bars. 

Figure 16. Concluded. 

20-inch-long 
longitudinal crack 

a. Cylindrical shell. 
Figure 17. Continued. 

longitudinal crack 

b. Curved panel in the D-box test fixture 
W I ~  loaded cross bars. 

Figure 17. Comparison of hoop stress resultants contours 
for the cylindrical shell with 20-inch-long longitudinal c ra~k  
for 9 psi internal pressure. 
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a. Cylindrical shell. 
Figure 18. Comparison of hoop stress resultant distribu- 
tions for the cylindrical shell and curved stiffened panel for a 
combined internal pressure of 9 psi and an axial loading of 
2,350 lblin. 
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&4BSTRACT 
The @om regarding the most effective 

technique of modelling stBened shells persist despite the 
extensive literature available on them. In this stucly, ring 
stSened cylinders having widely varying radius to 
thickness ratios are analyLedusing alternative approaches 
for the ddemidon  of their b&Achg strength mder 
pressure. The approaches considemi here are : (i) Linear 
stability analysis using a two- dimemid mode1 (6) 
Linear stability analysis using a three d i m a s i d  model 
(iii Nonlineer b i i o n  analysis using a two dimensional 
model and (iv) Nanlinear b k t i o n  aualysis using a three 
dimensioaat model. In-house computer programs based on 
p-version ring elements have been developed for these 
approaches It is found that for thin shells linear stability 
ansEysis can siguiiicantly overestimate the buckling 
capacity. For moderately thick shells the linear and 
nonlinear approaches give close d t s  for overall 
buckling, but can differ signiscantly for local buckling. 
This is largely due to end effects where the buckling mode 
is localized. For two dimensional models, the precise 
manner of connecting the shell and stBener seems to be 
import@. Asymptotic approach can predict the collapse 
I d  with an accuracy o h  sufficient for initial design, but 
not if there is a possibility of modal interaction. 

Ring-&end cylinders have been a subject of 
detailed study by several investigators in the past (see for 
example ref. 1-5). The problem is revisited in the present 
work, and ring-stif€ened cylinders under hydrostatic 
pressure investigated for buckling and collapse by several 
alternative modeling techniques in order to gain an insight 
into the limitations and the range of applicability. To this 
end , in-house programs have been developed using ring 
elements with p-version type shape functions. Both "live" 
and "deadw normal pressures are treated 

In the context of bifurcation analysis, the paper 
focusses attenti~n on two specific points : 
(i) Accuracy of the classical linear stability analysis in 

corngarison to that of nonlinear bilkcation analysis, 
(ii) various 2-D f e r n  in comparison to a rigorous 
3-D formulation 

We note that, of these the former has been 
explored in detail by ~rbocz 23 and his coworkers, but the 
latter has not received d c i e n t  attention. 

I n ~ f o r ~ f o r w h i c h a s l n g l e m o d e  
ofbucMingisident%edto bethedominantone,onecan 
use Koiter's asymptotic approach for the detexmbstion of 
the maximum load. The asymptotic appmach is discussed 
inmeraltreatisesstartingwithKoiter'sthesis6. Inthe 
context of ring-stifEd cyhdem this is &cussed in a 
recent paper by Kasagi and  ridh ha ran'. There is often a 
question of how accurate is this prediction even in the 
context of a single dominant mode of buckling. NNoting that 
the asymptotic appmach is often used in conjunction with a 
linear prebuckling analysis, there arises the question if 
indeed the buckling mode thus generated is the critical 
mode of imperfection Obviously there is a more realistic 
alternative, namely the buckling mode gemrated by a 
nonlinear bi ia t ion analysis, which entails significantly 
greater computational &OR 

In this study, the results of collapse loads given 
by the asymptotic approach are compared with those 
obtained using fdl-tkdged nodbear analysis . For the latter 
too, ring elements are employed with harmonic shape 
functions. In the examples considered the number of 
participating harmonics is not too many as there is only a 
single dominant mode of buclding,.fius not-wi-ding 
the coupling of harmonics that occurs, the ring- elements 
are found to be a viable tool for the analysis. Further the 
harmonics are decoupled in the solution process, so that the 
gommbg equations are ofthe block-diagonal form as in the 
linear analysis7. 

In the context ofprediction of collapse, the paper 
addresses two specific issues: (i) the accuracy of the 

asymptotic prediction of the maximum load and (ii) the 
sensitivity to imperfections in the shape of buckling modes 
given respectively by the linear and nonlinear b i ia t ion  
analysis. 

Copyright O 1997 by S. Sridharan 
Printed by NASA with permission. 
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Fig.1 Cylinder with the Coordinate System, Key Dimeorions and Loading 

Fig.2 hngitudhal Section ofthe Q h d e r  



dir;ectioa p -don type  shape areutilizedinthe 
x d k d o n  for 2-D models and x- aad t h i w  dhxtion 
for 3-D models. 

Bifhrcation Bucklin~ 
The following approaches are amsided for comparative 
cvaluatian: 
(i) 2-D Classical Linear Stability Analysis (LIN2D) which 
emplays W s  shell theory m&ed to capture the first 
order&ear~meIfiz&. SW- are treatedby the 
Reissmr-Mindlin plate theory. The o k c a l  lamination 
theoryisusedtotreatthelayered~te*lls.The 
sbtllend~~ersareassumedtobecolllrcdcdattheir 
midme d8ces  A linear lpretrucMing analysis gemaka the 
stress- distribution and the effect of pmbuckling 
displacements are neglected in the buckling analysis. 

(ii) 2-D Nonlinear Bifurcation Analysis (NONLIN2D) : 
The formulation is similar to LIN2D, but the preb- 
adysisisnonlinearandthecriticalpressuresareobtained 
as bifurdon h m  the nonlinear prebuckling path. At the 
end of each loading step, a locally linear analysis is 
performed which extends the equilibrium path along the 
tangent at the current equilibrium state. At any point along 
this projected path, the displacements, the the and the 
strains are all given in terms of a single variable A , the 
increment in the loading panmekx fiom that uf the 
equilibrium state. A linear eigen-value problem is then set 
up to compute the critical value of A. . Be#a and better 
qmxbt ions of the critical pressures are obtained as the 
equilibrium state approaches the bifin-don point, i.e. as X - 0. 

(iii) 3-D Classical Linear Stability Analysis (LIN3D) : 
Three dimensional elasticity thmq is employed to model 
thestructurewhichisdiscretizedintothreetypesof 
elements, viz, shell, stiffener and junction It is pmumed 
that each of the constituent laminates is made up of a 
number of repetitive multi-ply units, so that for elastic 
analysis the layered material can be homogenized As in 
LIN2D7 the &at of pre-buckling displ8~ements is 
neglected in the determination of bihrcation pressures. 

(iv) 3-D Nonlinear Bifurcation 
The is 
dhetwise similar to NONLIN2D. The 
technique is employed as in LIN3D. This is the most 
rigomus of the four appmachcs to the biikrdon analysis 
h o n e d  in the foregoing. 

Benchmuk Problems 
Ring stiffened cyhden having the following 

description are studied and the results obtained are 
comparedto resultsobtainedbyusinggeneraly 
computer &, whenever available. 

(i) An isotropic, thin, (R/t = 173.4) cyhder 
carryingsix & = 6 ) ~ ~ T h e s e w e r e i n v e s t i ~ b y  
Moradi and parsonss using a variety of c o d a l  codes. 

Makately thick isotropic cylinder =SO) 
carrying12 ( N , 3 = 1 2 ) ~ ~ i n ~ b y A r b o c z  
using BOSOR and EPAC at Delft University of 
Technology (Arbocz, Private Communicatiion, 1992). 
These cylinders were analyzed with alternative depths of 
rings- 

(iii) The last cyliader studied is a layered ' 

composite ring stiffened cylhder Gomposed of a large 
number of [90/0] units, with RH = 100 and 10 stiffeners 
(N, = 10 ). When co+ of a single unit of plies, this 
was analyzed by Kasagi and Sridharans using INSTACC~ 
and investigated for interactive buckling. 

The key dimensions of the 3-D and 2-D models 
respectively are shown in Fig.2. In all the calculations 
symmetry with respect to center line ( x = L#) was 
exploited and only half the cylinder was modelled The 
simply supported boundary amditions applied to the 
cyhder for each analysis : 
Atx=O,L, vo=wo=$=O(2-Danalysk); v=w=O 

(3-D andpis) 
Byvirtueofsymmetry a t x = L # ,  uo = a = O  (2-D 
analy~is) and u = 0 (3 -D analysis). 

Thin, Isotropic Cylinder (Moradflamns) 
The cylinder studied is an isotropic cylinder 

with six ring stithers. A thorough study of this shell was 
caxnpIekd by Moredi and ~arsons*, and this study provides 
a benchmark to compare current results with. 
GeamdcData: L=2.38in ;R=3.9885in ;(R1 =4in) 
h=0.023in; Ns=6;  $=0.017in; S,= 0.34in.The 
ratio of volume of stiffener materia material to that of 
cylinder is 0.24, based on center line dimensions, so that 



the Menat depth ( of the 
shell) d =  0.1288 in. of the 3-D modeis 
( LTtd3D, PJONLIM3D. IS derived from the 

ons given above. ( AU bays of 2-D 
length whereas the end bays of 3-0 

intexior ones by $12.) 

are:E=10;400ksi, v=0.3The 
cylinder was subjected to hydrostatc pressure intbeform 
of radial loading. 

TABLE 1 
Buckling pnssu~es of Moradi-Pamon Cylinder 

The buckling loads obtained by Moradi and Parsons using 
difkeat types ofelements and fonnulations8 are presented 
inTable 1 alongwiththeannxtresults. Theresultsshown 
are buckling pressures for the overall mode of buckling, 
with seven waves in the ciraderential direction 

Table I. demomtmtes: 
(i) The close agreement of the current results shown in the 
bottom half of the table with previous results shown 
in the top halfofthe table which were obtained by standard 
software such as ABAQUS and BOSOR4. 
(ii) The importance of a nonlinear prebuckling analysis. 
The table shows a fairly large discrepancy between the 
loads obtained by the linear prebuckling analysis and those 
obtained by the nonlinear prebuckling analysis. 

(iii) Both 2-D and 3-D analyses give cssentiaUy the same 
results for the shell. 

In gena-4 for thin cylinders the buckling pressure 
produced by the nonlinear bifixcation analysis is 
significantly lessthanthatproduoed by the linearbifUrcation 
~ T h i s a p p e a r s t o h a v e ~ c a u s e d ~ t i ~  bythe: 
prebuckliug defkmation which alters the longitudinal 
profile of sheli at the ends ofthe cylinder. This becanes 
evident upon an hspction of the prebuckling response 
which shows marked nonlinearities with signiscant 
deflections developing in the first bay. This effect is 
missed in the linear bifincation analysis. 

Itisalsoimportanttonotethatthe ovadl buckling 
mode as generated by the linear prebuckling d y s i s  differs 
greatly h that generated by the nonlinear prebuckling 
analysis.This can be seen in Fig. 3(a) , wbich shows the 
overall buckling modes generated by LIN2D and 
NONLINU). For the nonlinear bilkcation adysis, the 
maximum radial displacement occurs near the edge ofthe 
jiinder and far the linear bithation analysis the maximum 
radial displacement occurs at the center of the cylinder. 

Only the overall buclding pressures are shown in 
Table1 as this cylinder was studied for purposes of 
comparison, and there was no previously obtained data in 
on local buckling pressures. As a matter of intenst, the 
local buckling pressure detemined by LIN2D was 578 psi 
(m 217 ) in the ckcuderential direction The local 
bucading modes as dehmined by LTtd2D and NONLIN2D 
are shown in Fig. 3@). Once again, it is demonstrated that 
the buckling mode generated by the linear bifin;cation 
analysis differs greatly from that of the nonlinear 
bifurcation analysisis. It is seen that the maximum modal 
radial displaceme& gemmted by the linear bithation 
analysis is near the center, and the maximum modal radial 
displacamt gmxated by the d e a r  b i o n  analysis 
is near the edge of the cylinder. 

Note that the application of live pressure as 
against dead pressure does not change the results by more 
than ahdion of percent. This is due to the relatively large 
number of waves associated with buckling (m = 7). 

Stfiened, Moderately Thick, Isotropic (Arboa ) 
Cylinders 

These two cylinders, designated as Case 1. and 
Case 2 Arbocz cylinders , are moderately thick, isotropic 
cylinders with twelve stBeners. Both the A h  cylinders 
have the same goemetry, with the only difference being that 
the Case 1 cylinder has a greater depth of the stBener than 
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CaSe2.The~ensiionsof bdhthe 
Table 2. Pill tke bays mx of equal 
Poisson's ratio is taken as 0.3 . 
subjected to both live and dead presum. 

are about 7% and 2% respectively. 

Tables 3(a-b) and 4 (a-b) show the budding 
pressure predictions for for overall and local budding 
respectively. Two cases are d d e r e d  viz. Case 1 and 
Case 2 with alternative depths of &Tenas. The buckling 
pressures ate given in the non-dimensional form of the 
ratio afthe bucWingpressure to the elastic modulus. n and 
m indicates the number of waves in the c i -daI  
direction for overall and local buckling respectively. Tabk 3(b) Overall Buckling Pressures of 

ArboaCyhders (n-2) 
BveM BacMing Rest& 

The most significant observation f k m  Table 3(a) 
isthatbothFPAe end BOSOM overestimate the buckling 
pressures in comparison to the bench mark result of 
NONLN3D which makes no assumptiom other than linear 
elastic material response. The error (which is about 15% 
or more) is the combined result of approximatiom in the 
formulation and the manner in which &Tener is modelled 
TheBOSORpro~7am (i) models the shell and stBeners by 
thin shell approximations , (ii) treats the stSeners as 

to the inside of the shell, and (iii) assumes that 
tbc junction q$cm bebaves as a thin shell. In contrast, the 
present 2-D treatment accounts for the first order shear 
deformation effects and assumes the shell and stSener as 
connected at the center of the shell. With respect to the 
connection of the stSener with the she& neither the 
BOSOR nor the present treatment can be claimed to be 



Table 4(a) and 4@) summarize the critical 
asxiatedwithlocalbucMingforthetwo Arbocz 
. m is found b be 9 in all but one result. This is 

the BOSORS result of case 2 m=8. The pointof 
major interest in these results is the significaut Werence 
between the critical g- as given by the nonlinear 
bifurcation analysis on the one hand and the linear 
bifiuc&(~1~ontheother.ThebbucMingmodesare 
strongly localized near the ends due to significant 
prebudding d e h m f h  near the supports - a phenomenon 
not picked up by the linear programs LIN2D, LIN3D and 
INSTACC. BOSOM and EPAC results are now in better 
agreement with the bench nrark result (of NONLIN3D) 
than NONLDN2D. 

Stiffened Composite Cylinder 
The d t s  for a carbonepoxy stSened shell [90/0], ( n is 
~large)as&tainedusingvariousapp~areshown 
in Table 5. The geomdric parameters ( re£ Fig. 1) are : 
Lm=262,R/h= loO,N,(numberofstBenem)= 10, 
S#h = 22, = 2.0, dm = 5.422. 
Theshellis subjectedto hydmstaticpmsure and is simply 
supported at its ends. For calculations employing 
INSTACC the number of layers were increased till the 
results converged. A homogenkation p~xxxdue~ was 
adopted to obtain the effective elastic constants for LIN3D 
and NONLIN3D. 

As can be seen, there are d d e r a b l e  differences 
between the predictions of the various approaches. The 
differences are accentuated in this case where shear 
deformation, the actions of shell-stS- junctions and 
the tendency for l a o n  of the buckling mode all 
-important. 

Fort f i insheI l s , ihe~earb~onpressutes  
si&cantly differ from those given by linear stability 
analysis. The bucMing displacements as given by the 
nodinear bifurcation analysis tend to be concentrated near 
the ends of the shell. For thicker shells, considerable 

differences can arise in the predictions of 2-D and 3-D 
models. This is the combined result of shear-defnmation 
of the shell, the 3-D action at the junctions and the 
significant Wefence between the inner and outer radii of 
the shell. 

Prediction of CoUapse :Nonlinear Analvsis 
In order to determine the imperfection-sensitivity 

and collapse strengths both asymptotic and full-blown 

Table 4@) : Local BucWliag Pawsum of 
Cylinders ( m = 9) : Case 2 

nonlinear analyses are employed and the results studied in 
comparison. The nonlinear analysis employs ring elements 
with displacement ~ c t i o n s  in the fonn of multiple 
harmonics in the circumferential direction and p-version 
polynomials in the longitudinal direction. A preconditioned 
conjugate gradient scheme is employed to uncouple the 
harmonics in the solution process. 



Tdk 5 (a) : < k v e d  Buckling Pmsures of 
Composite Qlinder ( n = 3) 

following cases: 
(i) Aqmgmic procedure with hprfkdion in the form of 
buGkling mode as given by the linear stability analysis (I;B) 
with amplitudes repectively of 0.2Sh and 0.5h at the 
center of the shell. 
(ii) Full-blown ncmlinear analysis with the same levels of 
impededion as in (i) above, and finally 
(iii Full-blownllonlinear analysis with imperfections in the 
form of the buckliag mode as given by the nonlinear 
b W c m  analysis (NLB) with maximum amplitudes of 
imperfection of 0.25h and 0.50h ( near the fbt bay) 
respectively. 

Theasymptoticprodme mule arehigherthan 
the -nonlinear analysis results by 7% and 5% 
for the two levels of imperfections. This is because the 
asymptotic p d r e  does not account for p r e b e g  
& w i c  deformation. As discussed earlier, the 

Table 5 @) : Local Buckling Pressures of prebuacling nonlinearities tend to precipitate buckling 

Composite Cylinder ( m = 10) Further in the nonlinear analysis there is some soope for a 
freer nadjustment ofthe deformations in the l o n g i e a l  
direction in comparison to the asymptotic analysis. 
Neveaheless, the latter gives a quick estimate of the 
maximum load albeit with some sacrifice of accmcy. 

Prediction of Collause: Asmutotic Procedure 
Asymptotic procedure which is an order of 

magnitude simpler offers itself as a viable alternative to 
nonlinear analyses . The simplest version of such a 
procedure is based on the extraction of the buckling load 
by a hear stability analysis and the calculation of a second 
order field The problem is converted to one of single 
Qegree ofiladom in which it is possible to incorporate the 
effect of initial imperfections in the form of the buckling 
mode. 

Boththese types ofdculations, i.e. the asymptotic 
and the fully nonlinear , have been performed for the 
Moradi -Parson cylinder and the results obtained are 
plotted in Fig.4. The following cases are studied : 

canparing the results of nonlinear analysis with 
imp&ections in Mode LB and Mode NLJ3 respectively, it 
is seen that the l a th  imperfection is more critical. The 
discrepancies are of the order of 7%. Furthennore, the 
adysisemp1~ModeI.B astheimperfection shape fails 
to identify the region of the shell s tn~~tu re  where failure 
would initiate. 

However, there are cases when the asymptotic 
adysis would mhxdmak the maximum capa&yof the 
shell. This happens because the second order field is 
evaluated at the critical load wfiich is significantl~ greater 
than the maximum load carried by the structure. This tends 
to overestimate the second order deformations and thus 
exaggerate their destabilizing influence. 

All the foregoing pertains to situations where a 
single buckling mode plays the dominant role. Ofcourse, 
if there is modal in-on especially between a local mode 
and an overall mode, the maximum load can be 
significantly lower. The problem of modal interaction in 
Mened cylinders has been sMied in detail by Kasagi and 
sridharans. It turn out that this is a highly imperfection- 
sensitive phenomenon and must be considered in any near- 
optimal design of stiffened shells. 



CONCLUSION 

l.Forthin&Ils (R/h> 150)Carryingring~eners,linear 
stability analysis not only overestimates the buckling 
pressures, but also fails to capture the correct buckling 
mode. Even for moderately thick shells, linear b h t i o n  
analysis is found to be undsfactory when the governing 
mode is local. The nonlinear bifkwtion analysis captuns 
the effect of prebuckling bending defbrmation in the 
vicinity of the supports and a buckling mode which is 
localized near the ends. In all these cases nonlinear 
bibxtiion adysis must be used. For thicker shells which 
tend to buckle in the overall mode, the linear stability 
analysis can give an acceptable estimates for practical 
design, 

2. For moderately thick stifFened cylinders the precise 
mdehgdthe M a e r  and shell connection is important. 
A simple approach in which the stBener and the shell are 
both represeated by their centerlines and assumed to be 
connected at the point of intersection was folmd to be 
effective and produced results within 2% of the 
corresponding 3-D result for thin shells. For shells with 
stocky stBenefs, 2-D approaches give poor results 
especially for local buckling. 

3.In general, the asymptotic procedure can either 
underestimate or overestimate the maximum load. In thin 
shells with R/t > 150, the prebuckling nonlinearities play a 
significant role in causing a reduction of the maximum load 
canying capacity - an effect not considered by the 
asymptotic procedure. On the other hand, for moderately 
thick she& the prebuckling nonlinearities may enhance the 
buckling capacity and in such cases the asymptotic 
procedure mdenshates the maximum load. Further ifthe 
second order contributions are often exaggerated in 
asymptotic analysis leading to an underestimate of the 
maximum load. 

4. The 3-D homogenization procedure for composite shells 
consisting of a large number of repeating group of plies 
(n) was found to yield accurate results for n >20. 
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DEVELOIPMENT OF CURVED-PLATE ELEMENTS FOR THE EXACT BUCKLING mALUSIS OF 
COMPOSITE PLATE ASSEMBLmS INCLUDI[NG T SVERSE SWEAR EFFECTS 

David M. McGowan* Melvin S. Anderson*" 
NASA Langley Research Center and Eagle Aeronautics, Inc. 

Hampton, VA 2368 1-0001 Newport News, VA 23606 

Abstract 
The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear- 

deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and 
tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived 
that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to 
allow the plate reference surface to be located a distance z, from the centroidal surface which is convenient for 
modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and 
vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order 
shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for 
several example problems with different loading states are made. Results from the new curved-plate analysis 
compare well with closed-form solution results and with results from known example problems in the literature. 
Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is 
presented. 

List of Svmbols 
A extensional stiffness matrix 
a upper half of the eigenvectors of matrix R, 

associated with displacements 
B coupling stiffness matrix 
B, c9 E, 
E G, :,H coefficients used to select physical or tensorial 

strains 
b lower half of the eigenvectors of matrix R, 

associated with forces 
b plate width (arc length) 
c single eigenvector of matrix R 
D bending stiffness matrix 
d vector of displacement amplitudes at the two 

edges of a plate 
Eii Young's modulus in the i-direction 
E matrix used to define vector d 
F matrix used to define vector f 
f vector of force amplitudes at the two edges of 

a plate 

Gij shear stiffness associated with i-j direction 
I identity matrix 
i imaginary number, square root of -1 
K plate stiffness matrix 
k transverse shear compliance matrix 
M,,, M,,, M,, applied (prebuckling) moment 

resultants 
m,,, m,,, m,, perturbation values of moment 

resultants just after buckling has 
occurred 

Gll, G22, fhl2 moment resultants 

N,,, N,, N12 applied (prebuckling) stress resultants 
n,,, n,, n,, perturbation values of stress resultants 

just after buckling has occurred 
iill, 622, fi12 stress resultants 

622, 612 effective forces per unit length at an 
edge 5, = constant 

n, number of layers in a general curved laminate 
P coefficient matrix of the set of first-order plate 

- differential equations 

Q lamina reduced transformed stiffness matrix 
Q1, Q2 applied (prebuckling) shear stress resultants 
q,, q,, perturbation values of shear stress resultants 

just after buckling has occurred 
Gl, G2 shear stress resultants 

42 effective transverse shear force per unit length 
at an edge 5, = constant 

R matrix whose eigenvalues are the characteristic 
roots of the plate differential equations 

R,, R, radii of lines of principal curvature 
T coefficient matrix of the set of first-order plate 

differential equations 
t plate thickness 
U,, U, prebuckling displacements 
u,, u, perturbation values of displacements just after 

buckling has occurred 
w normal displacement in the e3-direction 

* Aerospace Engineer, Structural Mechanics Branch, z vector of the forces and displacements in the 

*I 
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z vector of the amplitudes of the forces and 
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displacements in the plate assuming a 
sinusoidal variation in the 5,-direction 

z, distance from the plate centroidal surface to the 
plate reference surface 

zk distance from laminate reference surface to the 
kth layer in the laminate 

Greek 
a,, % Lam6 parameters 
P angle included by a curved plate 
E vector containing strains E,,, G,, and y,, 
E,,, q, in-plane direct strains 
El,, y,, in-plane shear strains 
El39 Y13 

E,,, yZ3 transverse shear strains 
$,, $z rotations 
4% rotation about the normal to the plate middle 

surface 
k vector containing curvatures K,,, K,,, andx,, 
Kll, K2, middle surface changes in curvature 
K,, middle surface twisting curvature 
h half wavelength of buckling mode 
v Poisson's ratio 
8, angular orientation of ply k in a laminate with 

respect to the laminate coordinate system 
P density 
o vector containing stresses o,,, o,,, and T,, 

o,,, 02, in-plane direct stresses 
T,, in-plane shear stress 
C1, 5,, C3 coordinate measures in the 1,2, and 3- 

directions, respectively 

Subscripts and Superscripts 
cr critical value for buckling 
k kth layer in a laminated composite plate 
n normal to middle surface 
1 ,2 ,3  1,2, and 3-directions, respectively 
0 value at centroidal surface 

Introduction 
Longitudinally stiffened plate structures occur 

frequently in aerospace vehicle structures. Thus, 
analysis and optimization capabilities that can be used 
economically for their design are of great importance. 
One approach to modeling these structures is to 
represent the stiffened panel mathematically by long, 
thin, flat or curved-plate elements that are rigidly 
connected along their longitudinal edges as shown in 
Figure 1. Furthermore, the designs for these structures 
often exploit the increased structural efficiency that can 
be obtained by the use of advanced composite 
materials. Therefore, any analysis tool used to design 
these structures must include the effects of anisotropy 

and through-the-thickness or transverse-shear 
deformation. The transverse-shear deformation 
capability is especially important when the plate 
elements are thick compared to their width or are made 
of compliant lamina. Additionally, to satisfy the 
current demands for more cost-effective and 
structurally efficient aerospace vehicles, these 
structures are frequently optimized to obtain minirnum- 
mass designs that satisfy a wide range of constraints. 
Two particularly important phenomena that must be 
accounted for when performing a design optimization 
of a stiffened-plate structure are buckling and vibration. 
Constraints on buckling loads, vibration frequencies, or 
a combination of both usually appear as design criteria 
in the design-optimization process. Therefore, an 
analytical tool that is economical and predicts 
accurately the structural response of stiffened-plate 
structures is highly desirable. One such analytical tool 
is the VICONOPT computer code [I]. 

The VICONOPT computer code is an analysis and 
design-optimization code for the buckling and vibration 
analyses of prismatic assemblies of flat- or curved-plate* 
elements subjected to in-plane-loads. The code 
includes the capability to model anisotropic stiffened- 
plate structures that have fully populated A,  B and D 
stiffness matrices. The user can select either classical 
plate theory (CPT) or first-order transverse-shear- 
deformation plate theory (SDPT) [2]. The SDPT used 
in VICONOPT and in the present study uses the usual 
first-order assumption that straight material lines that 
are originally normal to the centroidal surface of a plate 
remain straight and inextensional during deformation of 
the plate, but not necessarily normal to the centroidal 
surface. The formulation used in VICONOPT to model 
plate elements is referred to herein as an exact finite- 
strip method (FSM) [3] because it uses the exact 
solution to the differential equations that describe the 
behavior of a plate element to formulate the 
corresponding stiffness matrices. Examples of other 
exact FSM analyses of curved plates are given in Refs. 
[4, 5, and 61. Other FSM analyses that formulate the 
stiffness matrices from a variational approach are 
referred to as approximate FSM's. Examples of 
approximate FSM analyses of curved plates are given in 
Refs. [7 and 81. 

As the use of advanced composite materials has 
increased in the design of aerospace vehicles, stiffened- 
plate structures with one or more curved-plate elements 
have become more common. Currently, the 
VICONOPT code approximates the geometry of a 
curved plate by subdividing or discretizing it into a 
series of flat-plate elements that are joined to form the 
complete curved plate as shown in Figure 2. Thus, the 
analyst must ensure that an adequate number of flat- 



plate elements is used in the analysis. This procedure is 
analogous to the discretization approach used in finite 
element analysis, and it is referred to herein as the 
segmented-plate analysis in the VICONOPT code. 
Although this approach it not very difficult, it would be 
more efficient to have an exact method for modeling 
curved-plate elements within VICONOPT. 

The present paper describes an analysis method for 
modeling curved-plate elements exactly that has been 
implemented into the VICONOPT code. This new 
analysis capability is referred to herein as the curved- 
plate analysis in VICONOPT. Several features 
accompanying this analysis that have been added to the 
VICONOPT code are described in the present paper. 
The current version of VICONOPT only analyzes flat- 
plate elements based on a tensorial strain-displacement 
relation. However, the choice of strain-displacement 
relations can affect the magnitude and distribution of 
prebuckling stresses in curved plates. Therefore, a 
unified set of nonlinear strain-displacement relations 
that contains terms from both physical and tensorial 
strain measures is used to derive the curved-plate 
equilibrium equations. This unified set of strains is 
used throughout the derivation of the equilibrium 
equations, and the selection of either physical or 
tensorial strains is achieved by setting appropriate 
coefficients in the equilibrium equations equal to one or 
zero. Another addition to the code is the option to 
include the effects of in-plane transverse loads that act 
perpendicular to the longitudinal edges of a plate 
element and in-plane shear loads in the in-plane 
equilibrium equations. These effects are currently 
ignored in the VICONOPT code (see [I]). All of these 
features have been implemented such that they are 
available for use in the analysis of both flat and curved- 
plate elements. The methodology used to accomplish 
this enhancement of the code and results obtained using 
this new capability are presented. 

Analytical Formulation 
The analytical formulation of the present theory is 

described. The geometry, loadings, and sign 
conventions used in the present study are described 
first. The unified set of strain-displacement relations 
used in the present theory is then presented. Next, the 
derivation of a set of non-linear equilibrium equations 
and linearized stability equations is described. The 
stability equations are then modified such that they 
describe the response of the curved-plate segment with 
respect to a reference surface which may be offset from 
the centroidal surface of the plate. These modified 
stability equations are needed to simplify the numerical 

procedure used to implement the present analysis into 
the VICONOPT code. 

Geometrv. Loadings. and Sign Conventions 
The geometry of the basic curved-plate element 

this is being studied in this section is given in Figure 3. 
This figure depicts the orthogonal curvilinear 
coordinate system (tl ,  5,, 54 used in the analysis. The 
5,- and 5,-axes shown in the figure are along lines of 
principal curvature and they have radii of curvature R, 
and R,, respectively. Lines of principal curvature 
coordinates are sufficient for the analysis because twist 
of the curved-plate reference surface is absent in 
prismatic curved-plate assemblies. The reference 
surface for a curved-plate element used herein is its 
middle surface, and the corresponding first fundamental 
form is given by 

where a ,  and a,  are the Lam6 parameters. The 
coordinates 6,  and 5, are measured as arc lengths along 
the cl- and C2-axes, respectively. The result of 
measuring the coordinates in this manner is a, = a, = 1. 
The sign conventions for buckling displacements, 
moments, rotations, and stress resultants are also shown 
in Figure 3.  The sign convention for the applied in- 
plane loadings and the relationship of the reference 
surface of the plate to the centroidal surface of the plate 
are shown in Figure 4. The centroidal surface is 
defined to be located at the centroid of the face of the 
panel that is normal to the S1-axis. Observe that the 
centroidal surface can be offset from the reference 
surface by a distance z,. This offset is useful in 
maintaining a smooth outer-surface mold line when 
plates of different thicknesses are linked together (as in 
the analysis of a stringer-stiffened panel). The loading 
N,, shown in Figure 4 is referred to in the present paper 
as an in-plane transverse loading. 

Strain-Dis~lacement Relations 
The unified set of nonlinear strain-displacement 

relations used for the present study for small strains are 



where the following notation for partial derivatives is 
au 

used: - - = u , ~ .  The displacement quantities in Eqs. 
a5 i 

(2a)-(2e) are displacements of the centroidal surface of 
the curved-plate element. The constants B, G, E, E, and 
H are set equal to one and G is set equal to zero in Eqs. - 
(2a)-(2c) to obtain tensorial strain measures. The 
constants B, E, and S are set equal to one and C, ]E, and 
H are set equal to zero to obtain physical strain - 
measures. Note that the linear portions of the tensorial 
and physical strain measures are identical. The 
tensorial strain measures are those of Novozhilov [9]. 
The physical strains used in the present thesis are 
derived in a manner similar to that presented by Stein in 
[lo] and they were communicated to the first author in 
terms of lines of curvature coordinates by Dr. Michael 
P. Nemethl. 

The definitions for the changes in curvature of the 
centroidal surface in terms of surface rotations used for 
both theories are 

These changes in curvatures are equivalent to those 
given by Sanders in [ l l ]  with the terms involving 

-- - - 
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rotations about the normal neglected to simplify the 
analysis. 

Derivation of Stabilitv Eauations 
The nonlinear equilibrium equations for the curved 

plate illustrated in Figure 3 are derived using the 
principle of virtual work [12]. The present derivation 
uses the principle of virtual work in the manner of 
Sanders [13] that is written in the following form 

+fi226~22 +2fi128~12 
area 

The terms ii,, and fi12 are the effective membrane- 
shear and bending stress measures, respectively, , 
defined by Sanders in [13]. The terms and i2 are 
the effective transverse-shear stress measures defined 
by Cohen in [14]. The uppercase terms in Eq. (4) are 
the applied loads on the boundary of the plate. 

In order to derive a set of non-linear equilibrium 
equations that adequately models the behavior of an 
assembly of curved or flat-plate elements, the issue of 
continuity of rotations at a plate junction must be 
examined. When two plates are joined together such 
that one cross-section is oriented at an arbitrary angle, 
a, to.the other, rotations about the normals to the 
centroidal surfaces of the two plates must be included 
to satisfy continuity of rotations. However, this 
rotation, (P,, has been neglected in the kinematic 
equations used in the present paper. To account for this 
effect, a procedure to maintain continuity of rotations 
that was developed by Cohen in [15] is used in the 
present study and in VICONOPT. This procedure 
introduces the shear strain, y13, as a fundamental 
displacement variable instead of the rotation, $, by 

replacing 4, with the expression wYl - - - ~ 1 3  in the 
R1 

boundary integral over 5, in Eq. (4). Although a 
detailed discussion of this topic is given in reference 
1161, a brief discussion of the justification for using this 
approach is presented subsequently. As shown in 
reference [16] the equations for continuity of rotations 
at a plate junction will be satisfied if the transverse 
shear strain, y13, equals zero for any non-zero value of 
the angle a. Therefore, if y13 is a fundamental 
displacement variable, it may easily be set equal to zero 



by simply striking out the appropriate rows and and two sets of boundary conditions given in reference 
columns in the stiffness matrix of the plate. The [16]. These assumptions are: 
equations of continuity of rotations at a plate junction 

1) Prebuckling deformations, moments and 
presented in reference [16] also indicate that for a = 0, 

transverse shear stress are negligible 
the values of y,, in each plate are equal. 

2) The in-plane prebuckling stress state is uniform 
To derive a set of nonlinear equilibrium equations, 

the variations of Eqs. (2) and (3) are substituted into Eq. 
(4) and the resulting equation is integrated by parts to 
yield an integral equation that consists of an area 
integral and two line integrals. This integral equation is 
given in reference [16]. Recall that, per Cohen's 
procedure, $, is replace with the expression 

w,1--- ~ 1 3  in the boundary integral over 5, in Eq. 
R1 

(4). For arbitrary displacements u,, u,, w, $,, and $,, 
the coefficients of the displacements in the area integral 
are the five equilibrium equations. The coefficients of 
the displacement variables in the line integrals are the 
natural or force boundary conditions for the edges 
C,=constant and E,,=constant. 

A set of linear perturbation equilibrium equations 
that govern the stability of the plate, referred to herein 
as the stability or linear bifurcation buckling equations, 
is obtained by taking the difference between the 
equilibrium equations evaluated for a stable equilibrium 
state just prior to bifurcation buckling and an adjacent 
(perturbed) equilibrium state (not necessarily stable) 
just after bifurcation buckling has occurred. The 
prebuckling state is represented herein by: 

where the minus signs in the loading terms reflect the 
sign convention used in which the applied loads are 
opposite in direction to the loads that develop after 
buckling. The adjacent equilibrium state just after 
bifurcation buckling has occurred is represented herein 
by: 

The form of the stability equations used herein is a 
form that describes the response of the curved plate 
with respect to a reference surface of the plate that is 
located a distance z, from the centroidal surface shown 
in Figure 4. To obtain this form of the stability 
equations, the following information is used: 

1) The relationships of the displacements at the 
centroidal surface, u: and u; , to the displacements at 
the reference surface, u, and uz are: 

ui) = u1- z ~ $ ~  

u; = u2 - zc42 

2) The relationships of the moments at the centroidal 
surface, myl, mz2, and mf2, to the displacements at 
the reference surface, mil, m22, and ml2 are: .. 

4 1  =m11 -zcn11 (84 

4 2  = m22 - Zc"22 (8b) 

4 2  = m12 - zcn12 ( 8 ~ )  

3) The following quantities do not vary through the 
thickness (with c3): 

N11, N22, N12, "11, "22, "12, 41. q2, and w 

4) The applied in-plane stress resultants, N,,, NZ2, 
and N,, act at the centroidal surface. 

Substitution of Eqs. (7) and (8) into the original 
linear stability equations yields the following modified 
linear stability equations: 

u 2 + u 2 ,  W + W  
- b ( w , l  - u1 i~") -  EN^ l(u2 - zcq2),1, 

where the lower-case variables are perturbation R2 (9b) 
variables. Taking the difference between the two 
equilibrium states represented by Eqs. (5) and (6), 
linearizing the resulting equations with respect to the 
perturbation variables, and applying several simplifying 
assumptions yields the set of five stability equations 



m11,1 +m12,2 -zc(nll.l +n12.2)-91 = 0 (94  

m12,1 + m22.2 - zc(n12,1+ n22,2) - 92 = 0 (9e) 

As will be discussed subsequently, a sinusoidal 
variation of the displacements and forces in the 5,- 
direction will be assumed to simplify the analysis by 
reducing the linear stability equations to a system of 
ordinary differential equations. Therefore, the 
boundary conditions for an edge 5, = constant are 
ignored. The remaining natural boundary conditions 
for an edge 5, = constant are 

m12 - zcn12 = 0 (1 0 4  
m22 - ~~n~~ = 0 (1 0e) 

where the terms with a caret (") are forces per unit 
length at an edge t2=constant that are aligned with the 
original (undeformed) coordinates. These forces have 
been introduced herein because of the fact that the 

stiffness matrix of a finite-strip element must relate the 
forces along the longitudinal edges of the plate in the 
original coordinate directions to the corresponding 
displacements along those edges. Note that the term 
m,,,, which appears in the Kirchhoff shear term of CPT 
also appears in the expression for G2 for SDPT when 
y,, is used as a fundamental displacement quantity. 

Modified expressions for the last two stability 
equations are obtained by substituting expressions for 
the quantities (nll,l +n12,2) and (nlZl + n22,2) that 

are obtained by using Eqs. (9a) and (lOa), and Eqs. (9b) 
and (lob) in the appropriate places in Eqs. (9d) and 
(9e), respectively. The definitions for the effective 
forces given in Eqs (10a)-(10c) are needed since the 
terms n,, and n,, that appear in the quantities in 
parentheses above are the perturbation values, not the 
effective forces. Substitution of the expressions for the 
two quantities in parentheses above into Eqs. (9d) and 
(9e), respectively, yields the final form of the last two 
stability equations 

These modified equations are used to simplify the 
numerical procedure used to implement the present 
analysis into the VICONOPT code. The stability 
equations in the form given in Eqs. (9a)-(9c) and Eqs. 



(1 la)-(1 lb) are those implemented into the VICONOPT 
code. 

Constitutive Relations 
The through-the-thickness geometry and the 

geometry of an arbitrary lamina of a general, curved 
laminate is given in Figure 5. The number of layers in 
the laminate is n,, and as shown in the figure, the arc- 
width of the laminate is b. The 5,.- and c2.-axes are the 
principal material axes of the kth specially orthotropic 
lamina that makes an angle 0, with the 5,-axis in the 
middle surface tangent plane at a given point of the 
plate. The laminate 6,-axis 'is aligned with the 
longitudinal edges of the plate. The overall isothermal 
constitutive relations for a thin, elastic laminated 
composite shell are defined in reference [17] as 

The stress and moment resultants acting on the 
laminate, {N) and {M), respectively, are defined as 

The extensional, coupling, and bending stiffness 
matrices, A, B, and D, respectively, are defined as 

(A, 8, D)= fl zf [ ~ ~ ] ( l ,  539 5:) d53 (15) 
k=l zk-1 

plate theory into VICONOPT follows very closely the 
procedure described in [2]. Therefore, for convenience, 
the following discussion is presented in a form similar 
to that in [2]. 

Sim~lifications to the Theory 
The theory implemented into the VICONOPT code 

is for structures that are prismatic in the longitudinal 
direction. Therefore, for the curved-plate elements that 
are considered in the present paper, the radius of 
curvature in the longitudinal direction, R,, is infinite; 

1 

i.e., any terms involving the quantity -L are zero. 
R1 

Although these terms are set equal to zero in the 
calculation of the terms of the stiffness matrix, they 
have been retained for completeness of the theory 
presented herein. Another simplification to the theory 
involves limiting the capability to locate the reference 
surface a distance zc from the centroidal surface. This 
capability has only been implemented for the case 
where the effects of N,, and N,, loads in the in-plane 
stability equations are neglected. The expressions for' 
the stiffness terms that result when N,, and N,, are 
included in the in-plane stability equations are 
prohibitively long. Therefore, in the derivation of the 
stiffness matrix that follows, only the following two 
cases are included: 

1) N,, and N,, are included in the in-plane 
stability equations and z, is zero (i.e., reference surface 
is coincident with the centroidal surface) 

2) N,, and N,, are neglected in the in-plane 
stability equations and zc is non-zero (i.e., reference 
surface may be shifted from the centroidal surface) 

Derivation of the Curved-Plate Stiffness Matrix 

The constitutive relations for transverse shear used Throughout this section, reference is made to force 

in 'TICONOPT are those presented by Cohen in [14]. quantities. Although these quantities are force per unit 

The constitutive relations for transverse shear are length, they are designated forces herein for 
convenience. The first step in implementing the present written in inverted form as 
theory into VICONOPT is to derive a stiffness matrix 
that relates the force quantities along the two 

(I6) longitudinal edges (referred to herein as simply forces), 
b 

where [k] is a symmetric 2-by-2 transverse shear c2 = + -, to the displacements along those edges. The 
compliance matrix whose terms are defined in [14]. 2 

desired force and displacement quantities are in the 
direction of the original (undeformed) coordinates. The 

Im~lementation into VICONOPT displacement and force variables are 

The implementation of the present theory into the i ul i filz 
VICONOPT code is described in this section. Several 
simplifications made to the present theory are described 

d =  
first. Then the derivation of the curved-plate stiffness and f=[?:i 
matrix based upon the analysis of the present study is m22 
presented. The implementation of the present curved- i Y13 i ml2 



where the shear strain, y13, has been introduced as a 
fundamental displacement quantity instead of the 
rotation, @,. Note that the effective forces per unit 
length at the boundaries, defined by Eqs. (10a)-(lOc), 
are used as forces since they are equal to forces in the 
direction of the original (undeformed) coordinates. 

The curved-plate element equations may now be 
reduced to ordinary differential equations in 5, by 
assuming that the response of the plate in the 
longitudinal 6,-direction varies sinusoidally. For 
isotropic or orthotropic plate assemblies without shear 
loading, a sinusoidal response in the (,-direction is 
exact for simply supported end conditions. A series of 
sinusoidal modes is used with a Lagrangian multiplier 
technique to obtain results for other loadings and end 
conditions [2]. Applying the assumption of a sinusoidal 
variation in the el-direction, the variables of Eqs. (17) 
may be written as 

where h is the half-wavelength of the response in the 
6,-direction. Since a sinusoidal variation in the 5,- 
direction is assumed, the vector z will involve the 
amplitudes of the displacement and forces. The 
imaginary number, i, has been used in Eqs. (17) to 
account for the spatial phase shift that occurs between 
the displacement and force quantities when an in-plane 
shear loading is present and to result in real plate 
stiffnesses when using the exponential expression of 
Eq. (18). 

The next step in the derivation is to express all 
unknowns in terms of z. A partially inverted form of 
the constitutive relations is used to express the required 
quantities as functions of the fundamental variables in d 
and f ,  or terms that may be derived from the 
fundamental variables. The partially inverted 
constitutive relations are given in reference [2]. 

Another requirement of the present derivation is to 
express the relationship between q, and i2 without any 
5,-derivatives so that a first-order system of differential 
equations is maintained. This expression is 

where h,, and h,, are terms from the partially inverted 
constitutive relations given in reference [2]. As with 
the stability equations, only the linear portion of the 
strain-displacement relations (Eqs. (2c), (2b), (2e), (3b), 
and (3c)) are considered in the present derivation. The 

expression for K,, is re-written after substituting 
expressions obtained for 4, and$, from Eqs. (2d) and 
(2e) and using the linear portion of E,,, that is, 

Using the partially inverted constitutive relations and 
Eq. (19), the strain displacement equations, Eqs. (2c), 
(2b), (2e), (3b), and (3c), and the stability equations, 
Eqs. (9a)-(9c) and Eqs. (1 la) and (1 1 b) are written in 
terms of the elements of z as 

T z f = P z  or z*=T1 P z (21) 

where a prime denotes differentiation with respect to 5,. 
The square matrix T appears in the present study as a 
result of the inclusion of the effects of N,, and N,, in 
the in-plane stability equations. When these terms are 
neglected, this matrix is shown to be the identity matrix 
in reference [2]. The use of the modified stability 
equations given in Eqs. (1 la) and (1 lb) is also required 
for T to be the identity matrix. The presence of off- 
diagonal terms in T is a fundamental difference 
between the present theory and that presented in 
reference [2]. 

The elements of z are now assumed to be given by 

where p is a characteristic root of the system of 
differential equations. The number of values of P is 
equd to the order of the differential equation system. 
Substituting Eq. (22) into Eq. (21) results in the 
following equation 

(R - pQ c = 0, where R = ~T-'P (23) 

where I is the identity matrix. The vector c consists of 
the cj of Eq. (22). The eigenvalues of the matrix R are 
the characteristic roots of the differential equation. 
This matrix is not symmetric; however, it can be made 
real by multiplication or division of appropriate rows 
and columns by the imaginary number, i. The elements 
of the matrices T and P are given in reference [16]. For 
each eigenvalue of R, there exists an eigenvector, c. 
The upper half of each eigenvector, denoted a, is 
associated with displacements, and the lower half, 
denoted b, is associated with forces. 

The next step in the derivation is to determine the 
amplitudes of the displacements and forces at the two 

b 
edges of the plate. Quantities evaluated at c2 = -- 

2 
are identified with a superscript 1 and quantities 



b 
evaluated at 52  = + - are identified with a superscript 

2 
2 as follows: 

.. . 

N 
df = 1 ajkrk exp 

k=l 
N -i Pk f! = Z bjkrk eXp(T) 

k=l 
N i Pk 

f t  = k=l bjkrk eXp(T) 

where the r, are constants determined from the edge 
values and N is the order of the system of differential 
equations. Equations (24a)-(24d) may be written in 
matrix form as {::I = r and {::) =I? r (25) 

Eliminating r from Eqs. (25) yields 

where K is the stiffness matrix given by 

For CPT, K is real and symmetric. For SDPT, K is real 
and symmetric for orthotropic plates without in-plane 
shear loading, and it is Hermitian otherwise. Reference 
[2] presents a discussion of techniques used to ensure 
that accurate numerical results for K are obtained from 
Eq. (27). The stiffness matrix K is a transcendental 
function of the load factor and half wavelength of the 
buckling modes of the structure. Therefore, the 
eigenvalue problem for determining bifurcation 
buckling load factors is transcendental. The iterative 
analysis procedure used in VICONOPT to solve this 
eigenvalue problem is based upon the Wittrick- 
Williams eigenvalue algorithm described in [18]. This 
algorithm will not be discussed in the present paper. 

Numerical Results 
Numerical results are presented in this section that 

were obtained using the new curved-plate analysis 
derived herein that has been implemented into the 
VICONOPT code. Results for several known example 
problems are presented to verify the results obtained 
with this new capability. Comparisons of analyses that 
use both physical and tensorial strain measures are 
made for selected examples, and, where appropriate, 

results based upon CPT and SDPT are compared. The 
positive sense of the applied loadings for all of the 
following examples is given in Figure 6. 

Convergence of the Segmented-Plate Approach 
The convergence of bifurcation buckling results 

obtained using the segmented-plate analysis in 
VICONOPT is examined for the long, compression- 
loaded aluminum cylinder illustrated in Figure 7. The 
values of the material properties used for this example 
are E = 10.0 x lo6 psi and v,, = 0.33. The wall 
thickness, t, is 0.1 in., and the radius, R, is 60 in. As 
shown in Ref. [19], the critical value for the applied 
stress resultant, (NI )cr, for the axisymmetric buckling 

of a long isotropic cylindrical shell is 

~ t 2  
(~11)~. = 1) = 1019.354 lbl in. (28) 

R2 3 1 - v  

and the corresponding critical half wavelength, A,, is 

L C  = z = 1 . 4  = 4.255 in. (29; 
12(1- v 

Results that illustrate the convergence of the 
VICONOPT segmented-plate results for (NI as a 

function of the number of flat-plate elements used to 
approximate the cylinder are shown in Figure 8. In this 
figure, the results of the segmented-plate analysis are 
shown as the solid curve. The theoretical value 
obtained from Ref. [19] is shown as the dashed 
horizontal line. The value obtained by using the present 
curved-plate analysis is shown as the open symbol. All 
results in this figure were calculated for the value of h,, 
given in Eq. (29). The VICONOPT results presented in 
this figure were obtained using CPT with tensorial 
strain measures. As shown in Figure 8, the segmented- 
plate results converge to the theoretical value of 
1019.354 lblin. when 120 flat-plate elements are used. 
Therefore, to ensure that converged results are ostained 
when the segmented-plate approach is used to analyze 
the remaining example problems, sixty elements will be 
used when analyzing curved plates with an included 
angle of 180 degrees or less, and 120 elements will be 
used when analyzing full cylinders. 

Bucklin~ of an Unsymmetricallv Laminated Curved 
plate 

This example problem includes the effect of 
bending-stretching coupling and shear-extension 
coupling on the buckling of an unsymmetrically 
laminated curved plate with simply supported 



longitudinal edges (i.e., u, = w = m,, =O). The pre- 
buckling deformations associated with bending- 
stretching coupling are neglected in the analysis. The 
geometry of the curved plate is shown in Figure 9. To 
allow for direct comparison of results with those 
presented in [6], SI units are used. As shown in the 
figure, the laminate that is being studied consists of a 
0.508-cm.-thick layer of 2024 aluminum that is 
reinforced on the inner surface with pairs of 345" 
boronlepoxy plies. The material properties for a 
borodepoxy lamina and 2024 aluminum are given in 
Table 1. For this example, the number of pairs of &45" 
boronlepoxy plies is increased from one to seven. Both 
physical and tensorial strains are used with the new 
curved-plate analysis, while only physical strains are 
used with the segmented-plate analysis. The analysis of 
[6] uses physical strains. All analyses use CPT. Eight 
curved-plate elements are used for the curve-plate 
analyses, and 60 flat-plate elements are used for the 
segmented-plate analysis. The critical value of the 
applied stress resultants N,, and N,, at buckling are 
plotted as a function of the number of boronlepoxy 
plies used in the laminate in Figure 10 and Figure 11, 
respectively. The agreement between all the analyses is 
very good. As shown in the figures, there is no 
appreciable difference in the results obtained using 
physical and tensorial strains. 

Design O~timization of a Cvlindrical Shell Subject to 
Uniaxial Comuression 

The final example utilizes the new curved-plate 
analysis with the design optimization capability of 
VICONOPT to perform a structural optimization of two 
different cylindrical shell concepts subject to uniform 
axial compression (N,, loading). The two concepts are 
solid-wall construction and honeycomb-sandwich-wall 
construction. The geometry of this example problem is 
shown in Figure 12. As shown in the figure, the 
facesheets of the honeycomb-sandwich-wall concept 
are aluminum, and the core is KorexTM aramid paper 
honeycomb core [20]. The solid-wall concept is 
aluminum. The material properties used for the 
facesheets and core are presented in Table 2. Tensorial 
strains are used for the analysis. 

The design variables for the structural optimization 
are the thicknesses of the facesheets and the core for the 
sandwich concept and the wall thickness for the solid- 
wall construction. There is no minimum gage 
restriction on these design variables. The nominal 
values for these variables are 0.1 in., 0.5 in., and 0.1 in., 
respectively. The design constraints are that the strain 
in the facesheets or the solid wall cannot exceed 0.005 
idin and that the stress in the core cannot exceed 115 
psi in the 5, direction and 55 psi in the 5, direction. 

The results of this study, including the mass of the 
optimized cylinder and the final values of the design 
variables are given in Table 3 for the honeycomb- 
sandwich-wall concept and in Table 4 for the solid-wall 
concept. Results obtained using both CPT and SDPT 
with tensorial strains are given in these tables. The 
optimized mass values are also plotted as a function of 
the applied loading in Figure 13. As seen in the tables 
and the figure, the values of the optimized mass 
obtained using CPT are slightly less than those for 
SDPT for the honeycomb-sandwich-wall cylinder as the 
applied loading is increased. However, the values of 
the core thickness obtained using CPT become 
significantly less than those for SDPT as the loading is 
increased. This trend is expected because CPT results 
in an overly stiff approximation since transverse-shear 
flexibility is neglected. This overly stiff approximation 
results in higher buckling loads for a given core 
thickness. Therefore, the core thickness and the 
optimum mass obtained using CPT is less than that 
obtained using SDPT. The optimized mass values for 
the solid-wall construction are much greater than those 
for the honeycomb sandwich construction. The results 
for CPT and SDPT are nearly identical for the solid- 
wall construction with R,It = 600, as expected. 

Concluding Remarks 
The VICONOPT computer code is an exact 

analysis and optimum design program that includes the 
buckling and vibration analyses of prismatic assemblies 
of flat, in-plane-loaded anisotropic plates. In the 
present paper, the capability to analyze structures by 
using curved-plate elements has been described, and 
this capability has been added to the VICONOPT code. 
Non-linear curved-plate equilibrium equations have 
been formulated, and linearized stability equations were 
derived following the application of several simplifying 
assumptions. Modifications to these equations were 
then made to allow the reference surface of the plate to 
be located at a distance z, from the centroidal surface. 

The analysis described in the present paper 
improves upon the analysis existing previously in the 
VICONOPT code which required that curved-plate 
geometries be subdivided into several flat-plate 
elements that are joined along their longitudinal edges 
to approximate the curved-plate geometry. The new 
analysis formulation includes either classical plate 
theory (CPT) and first-order shear-deformation plate 
theory (SDPT), and anisotropic laminates with fully 
populated A,  B, and D stiffness matrices can be 
analyzed. 

The option to use plate elements (flat or curved) 
that are based upon nonlinear strain-displacement 



relations that contain terms from either physical or 
tensorial strain measures has also been added to the 
VICONOPT code. The option to include the effect of 
terms associated with in-plane transverse and in-plane 
shear loading in the in-plane stability equations has 
been added as well. 

Results from the present curved-plate analysis 
capability compare very well with a closed-form 
solution and the existing segmented-plate analysis for 
the linear bifurcation buckling of a long isotropic 
cylinder subjected to uniaxial compression. Results 
from the present analysis also compare well with results 
for unsymmetrically laminated plates that include the 
effect of extension-bending and shear-extension 
coupling. No appreciable effects of using tensorial 
versus physical strains were noted in these examples. 

Finally, the present curved-plate analysis was used 
to conduct a design-optimization study of two 
cylindrical shells subject to uniform axial compression. 
One shell was constructed with a honeycomb- 
sandwich-wall, and the other was a solid-wall 
construction. The values of mass for the optimized 
solid-wall design were much higher than those for the 
honeycomb-sandwich-wall construction. There was no 
difference between results using CPT and SDPT for the 
solid-wall cylinder. However, the values of core 
thickness and mass for the optimized honeycomb- 
sandwich-wall cylinder using CPT were less than those 
for SDPT as the applied loading was increased. This 
result occurred because CPT overestimates the wall 
stiffness by neglecting transverse-shear flexibility 
which results in higher buckling loads and a lower 
optimum mass. 
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Table 1. Material properties for borodepoxy plies and 2024 aluminum (SI units). 

Material E ~ X  1 0-lo, G,,X~O-'~, "12 PY kg/m3 
-- 

N/m2 N/m2 N/m2 
Borodepoxy 20.69 1.86 0.48 0.21 2006.8 

Table 2. Material properties for aluminum and Korexm honeycomb core (English Engineering units). 
-6 -6 

~ ~ ~ ~ 1 0 ~  EZ2xlO, G , ~ X ~ O - ~ ,  G,,X~O-~, G,xlO, "12 p, lb/i$ 
Material lb/in2 lb/in2 lb/in2 lb/in2 lb/in2 

Aluminum 10.0 10.0 3.846 3.846 3.846 0.3 0.1 
a or ex^ WC core 0.0001 0.0001 0.0001 0.012 0.004 0.3 0.00116 

Table 3. Design-optimization results for a honeycomb sandwich cylinder subjected to N,, loading. 

N1lY Classical plate theory (tensorial strains) Transverse shear plate theory (tensorial strains) 
lblin. t,, in. tcow, in. mass, lb, t,, in. tcorP, in. mass, lb, 
1,000 0.010 0.310 213.53 0.010 0.3 13 213.85 
2,000 0.020 0.334 397.00 0.020 0.338 397.43 
3,000 0.030 0.324 576.88 0.030 0.33 1 577.64 
4,000 0.040 0.280 753.17 0.040 0.349 760.47 
5,000 0.050 0.270 933.02 0.050 0.367 943.44 

10,000 0.100 0.250 1,835.8 0.100 0.606 1,873.2 
15,000 0.150 0.194 2,734.7 0.150 0.909 2,809.7 
20,000 0.200 0.135 3,633.3 0.200 1.212 3,746.3 

Table 4. Design-optimization results for a solid-wall cylinder subiected to N,, loading. 
Classical date theorv (ten ' NII, sonal stram.$ Transverse shear date theorv (tensonal s t r sua  

lblin. twall, in. mass, lb, t,,,nl,, in. mass, lb, 
1,000 0.102 924.68 0.102 924.69 
2,000 0.143 1,296.8 0.143 1,296.8 
3,000 0.179 1,622.0 0.179 1,622.0 
4,000 0.207 1,873.8 0.207 1,873.9 
5,000 0.230 2,082.1 0.230 2,082.2 

10,000 0.324 2,93 1.8 0.324 2,93 1.9 
15,000 0.409 3,697.5 0.409 3,697.7 



Figure 1. Typical longitudinally stiffened plate 
structures. 

Figure 2. Segmented representation of curved-plate 
geometry currently used by VICONOPT. 

Figure 4. Sign convention for applied in-plane loads and 
relation of reference surface to centroidal 
surface. 

Figure 3. Curved-plate geometry and sign convention 
for buckling displacements, rotations, 
moments, and forces. 

Cross. 
Reference 

surface . 

Figure 5. Curved-laminate geometry. 

Figure 6. Positive applied in-plane loads on a long 
curved plate. 



Figure 7. Long isotropic (aluminum) cylinder 
subjected to uniaxial compression. 

Theoretical result (Ref. [19]) 

(N1l)cr, 800 
lblin. 
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Figure 8. Convergence of VICONOPT segmented- 
plate results as a function of the number of 
elements used in the approximation. 
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Figure 10. Critical value of N11 for buckling of an 
unsymmetrically laminated curved plate 
with simply supported longitudinal edges. a 
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Figure 11. Critical value of NIP for buckling of an 
unsymmetrically laminated curved plate 
with simply supported longitudinal edges. 

Figure 9. Unsymmetrically laminated curved plate with 
simply supported edges subjected to applied in- 
plane loads. 
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Figure 12. Cylindrical shell subjected to uniform axial compression (N11 loading). 
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Figure 13. Optimized cylinder mass as a function of the applied loading for a 
cylindrical shell. 
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Abstract a thin laminate, or skin, are typically utilized because of 
their structural efficiency and their ability to carry addi- 

Modeling procedures which predict accurately the tional load after the skin has buckled. The use of laminat- 
postbuckling response of composite panels with skewed ed fiber-reinforced composites has grown due to their 
stiffeners are presented. A particular e~perimentd pro- high strength-to-weight and ~tiffness-t~-~eight ratios, 
gram is considered and detailed finite element models and th, ability to tailor laminate properties for specific 
are created to represent the conditions in the experiment. aDDlications. 

L L 

First, a simple baseline model with minimal detail is de- Since experimental studies have shown that com- 
fined. Then, a number of modeling refinements that im- posite stiffened panels can exhibit postbuck- 
prove the accuracy of the are identified. These ling strength (see Refs. 1 and 2, for example), some 
refinements are applied individually to the baseline mod- design practices allow the skin of certain stiffened com- 
el to assess the effect of each refinement on the predicted ponents to buckle at load levels below design ultimate 
response. The individual refinements are then combined 
to create an advanced finite element model. In addition load conditions. Starnes, et a1.l presented the results of 
to model refinements which affect the overall panel re- an experimental and numerical study of postbuckled 
sponse, a modeling procedure for simulating nonuniform compression loaded panels with four I-shaped longitudi- 
initial load introduction that is specific to an particular nal stiffeners. In the experiments some panels supported 

experiment is described and demonstrated. as much as three times their initial buckling loads before 

By implementing a number of modeling refine- failing. 

ments, a finite element model is developed which im- In some aerospace applications, stiffened panels 

proves the correlation between the measured and have been structurally tailored by introducing axial- 

predicted responses. The skewed stiffener detail and shear stiffness coupling to control aeroelastic deforma- 
anisotropic skin in the selected problem create axial- tions in order to improve structural performance (see 
shear stiffness coupling which makes this problem sensi- Refs. 3 and 4, for example). l?wo techniques have been 

tive to the constraint on the shear displacement. The re- applied for ~tructural tailoring of stiffened panels. Axial- 

mainder of the modeling refinements considered are shear stiffness coupling has been incorporated in metal- 

applicable to general structural configurations. The re- lic stiffened ~anels  by utilizing skewed stiffeners, i.e., 

suits presented may be us& to guide future to im- stiffeners not aligned with the primary direction of load- 

prove correlation between predicted and measured ing. In stiffened panels with laminated composite skins, 

responses for postbuckled stiffened panels. axial-shear stiffness coupling has been generated by ro- 
tating the principal direction of orthotropy of the lami- 

Introductior! nated skin relative to the principal direction of loading. 
A recent experimental and numerical study conducted by 

Stiffened laminated composite panels are finding the authors has reported on the effects of tailoring both 
an increased number of applications in structural design. skin laminate anisotropy and stiffener orientation on the 
Stiffened panels, generally consisting of beam-like prebuckling and postbuckling response of stiffened com- 
members adhesively bonded or mechanically fastened to posite panels subjected to an end shortening displace- 

ment. Preliminary results from this study were presented 
* ~ e r o s ~ a c e  Engineer, Acoustics and Structures Department. 
i~mfessor, Department of Engineering Science and Mechanics. Asso- by YOU"% et a1.5 and the entire was documented in 
ciate Fellow, AIAA. Ref. 6. The structural configurations considered in Refs. 

Copyright 1997 by R. D. Young 5 and 6 were adopted by Noor et al.7 in a numerical study 

Printed by NASA with permission. which included thermal loads and introduced hierarchi- 
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cal sensitivity coefficients to characterize the structural 
response. 

When conducting an experimental and numerical 
study, efforts are made to create good correlation be- 
tween experimental and predicted responses. If good cor- 
relation is achieved, the numerical results can provide 
detailed information useful in interpreting the experi- 
mental behavior. Furthermore, the experiments can veri- 
fy the model accuracy so that the models can be used 
with confidence to study other configurations and condi- 
tions without the need to always conduct confirming ex- 
periments. The current paper presents the results of an 
investigation to determine the level of detail in a finite el- 
ement model that is necessary to simulate accurately the 
postbuckling response of a composite panel with skewed 
stiffeners. This investigation was conducted as part of 
the experimental and numerical study reported in Ref. 6 
mentioned above. A single test panel from Ref. 6 is con- 
sidered and the effects of several modeling details on the 
correlation of the experimental and predicted postbuck- 
ling responses are assessed. By carefully considering the 
details of the experiment, finite element modeling proce- 
dures which correctly represent the conditions in the ex- 
periment are defined. The current paper presents results 
which demonstrate the effect of individual modeling re- 
finements on the predicted response, and also demon- 
strate the improvement in correlation between the 
experimental and predicted responses resulting from 
modeling refinements. The skewed stiffener detail in the 

Fig. 1. Structural parameters studied in Refs. 5 - 7 

ness coupling is represented by Pw If the upper end of 
the panel is free to shear in the lateral, or y, direction, 
then the lateral displacement associated with shear is rep- 
resented by v. 

Test Panel 

The panels tested by ~ o u n ~ ' . ~  were fabricated 
from Hercules, Inc. AS4-3502 graphite-epoxy unidirec- . 
tional preimpregnated tape (pre-preg). The panels were 
sized so that the unsupported panel was 21.0 in. long and 
16.0 in. wide. All components were constructed from 16- 
ply laminates. The stacking sequence for the unrotated 
skin laminate was [+45/r45/03/90] s. The stiffener 

selected problem creates axial-shear stiffness coupling was an open-section I+tiffener with all sections made 
which raises additional response and modeling issues. with a [+45/0/90] 2, The stiffener geometry 
The results provide insight into modeling procedures 
which specifically address panels with stiffness cou- is shown schematically in Fig. 2(a). Five panel configu- 

although the majority of the results are also appli- rations with various combinations of skin and stiffener 

cable to general structural configurations. orientation were tested. The single configuration consid- 
ered in the current paper has both the skin laminate and 

Structural Confirmration 
- - 

the stiffener orientation rotated by 20" relative to the ax- 
ial direction, i.e., a = 20" and P= 20". Photographs of this 

The structural configuration considered in Refs. 5 - test panel are shown in Figs- 2(b) and 2(c). 

7 consisted of a rectangular graphite-epoxy laminated 
panel with a single centrally located I-shaped graphite- A ~ ~ r o a c h  for Model Develo~ment 
epoxy stiffener. Axial-shear stiffness coupling was intro- 
duced by rotating the orientation of the stiffener or the Experimental results6 for the panel with the stiffen- 
principal direction of orthotropy of the skin, or both. The er and skin rotated 20" are compared with numerical re- 
st~-wtural Parameters varied are shown in Fig. 1. The sults obtained from the STAGS finite element code.' The 
stiffener orientation is represented by the angle a, and approach applied in this paper is as follows. First, a sim- 
the orientation of the principal direction of orthotropy of ple baseline finite element model is defined. m e n  the 
the skin laminate is represented by the angle P, both mea- panel response predicted by this model is shown to poor- 
sured relative to the axial, or x, direction. A uniform end ly correlate with the experimental results, a list of possi- 
shortening displacement u is applied to the upper end of ble modeling refinements is developed that could 
the panel in the axial direction, and the axial displace- possibly make the model more closely resemble the test 
ment of the lower end is restrained. The upper and lower panel. The effect of each modeling refinement is as- 
ends are clamped and the unloaded sides are simply sup- sessed by creating additional models, each model intro- 
ported. The axial compressive force corresponding to ducing only one refinement to the baseline model, and 
the applied end shortening is represented by P,, and the comparing the response of each new model to the base- 
shear force reaction generated by the axial-shear stiff- line model. After each modeling refinement is assessed 
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u = constant 

(a) Stiffener geometry, (b) Stiffener-skin 
dimensions in inches. cross section. 

(a) Baseline model 

Baseline Model 

px. 

kips 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 3. Baseline model and experiment 

(c) Potted panel: stiffener rotated, a = 20". 

Fig. 2. Test panel 

independently, a model is assembled that incorporates all 
of the refinements. The predicted response of this model 
is then compared to the baseline model and the experi- 
mental data. Linear buckling and nonlinear postbuckling 
analyses are conducted for each model. The panel's glo- 
bal response is reflected in the predicted linear buckling 
load and nonlinear load vs. end shortening response. 
These results are presented for each model as a guide to 
the overall predicted behavior. The experimental buck- 

ling load for this panel was (Px) :P = 5.12 kips. In this 

paper, load vs. end shortening results for loads up to 15 
kips are considered. 

The Baseline Model 

The baseline model, which is the starting point for 
model development and is shown in Fig. 3(a), represents 
only the unsupported section of the panel, i.e., the 21.0 
in. length between the potted ends and the 16.0 in width 
between the knife edge supports. The panel is assumed to 

perfectly flat. The boundary conditions are typic 
clamped-clamped-simply-supported-simply 

ported panel with a uniform end shortening: 

* Top edge: u =constant, (v, w, Ru, Rv, Rw) = 0. 
Bottom edge: (u, v, w, Ru, Rv, Rw) = 0. 

Sides: (w, Rv) = 0, 

where Ru, Rv, and Rw are rotations about the x, y and z 
axes, respectively. 

The stiffener is modeled as a discrete beam stiffen- 
er, rotated 20" from the x-axis, and located with an ec- 
centricity relative to the reference plane of the skin. The 
nominal material properties in Table 1 are used in the 
baseline model. 

A linear buckling analysis using the baseline model 

predicts (Px) = 6.52 kips, as compared to (Px) :P = 
cr 

5.12 kips. The axial load vs. end shortening response for 
the baseline model and the experiment are compared in 
Fig. 3(b). The results from the baseline model do not cor- 
relate well with the experimental response. The baseline 
model over-predicts the stiffness and the buckling load 
of the panel. Below is a list of modeling refinements that 
are employed to make the baseline model more closely 
simulate the response of the test panel: 



u = constant 
1. The discrete beam stiffener is replaced with a 

branched shell model. 

2. The length of the panel in the potted sections on each 
end is included in the model. 

3. The width of the panel outside the knife edge sup- 
ports is included in the model. 

4. The material properties adjusted for the as-fabricated 
test panels are used. 

5. The top edge of the model is allowed to translate 
uniformly in the y-direction. 

6. Initial geometric imperfections are introduced. 

Table 1 Typical Material Properties: Hercules 

AS4-3502 ~ r a ~ h i t e - ~ p o x ~ ~  

El 19.40 Msi 

E2 1.48 Msi 

G12 0.82 Msi 

t v l ~  0.0055 in. 

Incremental Modifications to the Baseline Model 

Each of the model refinements mentioned above is 
independently introduced into the baseline model to 
show how each model refinement alters the predicted re- 
sponse. 

(a) Model with branched shell stiffener 

Branched Shell Stiffener 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 4. Branched shell stiffener 

in. length of unsupported panel between the potted ends, 
the model shown in Fig. 5(a) uses an extended length to 
represent the potted portion of the panel. The uniform 

Branched Shell Stiffener Model end shortening is still applied at the top edge of the mod- 
The discrete beam stiffener in the baseline model is 

el. The dashed lines on the model indicate the sections of 
replaced with a branched shell model as shown in Fig. 
4(a). The cap, web, and attachment flanges of the stiffen- the model located within the potting. It is assumed that 

er geometry shown in Fig. 2(a) are modeled with plate el- the potting provided support perpendicular to the panel 

ements. A linear buckling analysis of the model with the ComPonents. This support is rmdeled by setting w = 0 for 

branched shell stiffener predicts (P,) = 7-06 kips. The nodes within the potting and consWining fhe u- and v- 
cr displacements such that the beam stiffener exits the pot- 

axial load vs. end shortening response for this model and ted regions at a constant 200. A linear buckling 
the baseline model are compared in Fig. 4(b). As can be 

of the model with the extended length predicts 
seen in the figure, the prebucklina response of the two - - * 

models are the same, but the model with the branched- (P,) p r  = 6.47 kips. The axial load vs. end shortening 
s, 

shell stiffener has a higher buckling load and higher post- 
buckling stiffness. The buckling load and postbuckling response for this model and the baseline model are com- 

stiffness are higher because the attachment flange of the pared in Fig. 5(b). The buckling loads from the two mod- 

branched shell stiffener Drovides out-of-Dlane and in- els are similar, but the extended length model is less stiff 

plane stiffness to the panel skin over a finite width, rather for all loads. This is the case because axial strain is d- 
than along a line. lowed to occur within the potted ends of the extended 

length model. For a given amount of end shortening, the 
Extended Length in Potting longer model has a lower strain, and therefore, a lower 

The test panels had a total length of 24.0 in. The top axial load. 
and bottom edges were potted in 1.5 in. of casting com- 
pound. While the baseline model includes only the 21.0 



u = constant u = constant 

(a) Extended length model 

Baseline Model 

(a) Extended width model 

px  
kips 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 5. Extended length in potting 

Extended Width Outside Knife-Edye Supports 

The panels had a total width of 16.5 in. The unload- 
ed edges had knife-edge supports located 0.25 in. from 
the panel edges. While the baseline model included only 
the 16.0 in. width of panel between the knife-edge sup- 
ports, the model shown in Fig. 6(a) represents an exten- 
sion to include the entire width. The dashed lines on the 
model indicate where the w = 0 constraint was imposed. 
A linear buckling analysis of the model with the extend- 
ed width predicted (Px) = 6.74 kips. The axial load vs. 

cr 

end shortening response for this model and the baseline 
model are compared in Fig. 6(b). The buckling loads 
from the two models were similar, but the extended 
width model was stiffer for all loads. The difference in 
stiffness increased in the postbuckling response, as the 
buckled skin transferred load into the stiffener and the re- 
gion of the skin supported by the knife-edges. 

px  , 
kips 

Extended Width 

10 Baseline 

'0 0.01 0.02 0.03 0.04 

Model 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 6. Extended width outside knife-edge supports 

sultants computed from strain gage data. The modified 
material properties that were obtained are shown in 
Table 2. A linear buckling analysis of the model which 

uses the modified material properties predicts (Px) cr = 

4.97 kips. The axial load vs. end shortening response for 
this model and the model with nominal material proper- 
ties are compared in Fig. 7. Using the modified material 
properties reduces the prebuckling panel stiffness by 
only 4.4%, but reduces the buckling load by 31%. The 
large reduction in the buckling load reflects the loss of 
local bending stiffness caused by reducing the ply thick- 
ness by 11%. 

Table 2 Modified Material Properties: Hercules 
AS4-3502 Graphite-Epoxy 

El 20.9 Msi 
E, 1.578 Msi 

Modified Material Properties L 

In Ref. 6, experimental results were used to define G12 0.886 Msi 

modified material properties for the as-fabricated panels. 12 0.297 
The ply thickness and fiber volume fraction were altered 
to provide better correlation between the load cell data "f 0.660 

and the axial load obtained by integrating the stress re- %Y 0.00490 in. 
429 



Baseline Model 

P x '  
kips 

Baseline Model 

10 v Unspecified 

'0 0.01 0.02 0.03 0.04 

u , in. 

Fig. 7. Modified material properties: axial load vs. 
end shortening response 

u , in. 

(a) Axial load vs. end shortening response 

Unspecified v-displacement on the Top Edge 
When a panel with axial-shear stiffness coupling is 

subjected to a uniform axial end shortening, the type of 
coupling exhibited depends on the boundary condition 
on the v-displacement. Two ideal boundary conditions 
are considered in Fig. 8. The first case assumes that v = 
0 and is represented in Fig. 8(a). In this situation an axial 
end shortening induces both axial and shear force reac- 
tions. This case represents pure force coupling with the 
amount of force coupling defined by the ratio Pq to P,. 
The second case considered assumes that v is uniform, 
but is unspecified, and the net shear force is equal to zero. 
As shown in Fig. 8(b), instead of a shear force reaction, 
an axial end shortening induces a shear displacement. 
This case represents pure displacement coupling with the 
amount of displacement coupling defined by the ratio v 
to u. The experimental response was bounded by these 
two ideal cases. 

(a) Pure f ~ r c e  coupling (b) Pure displacement 
(V = 0, Pq# 0) coupling (v # 0, Pq = 0) 

Fig. 8. Axial-shear force and displacement coupling: 
boundary condition on v 

The baseline model had v = 0 on both of the loaded 
edges and thus represented the pure force coupling case. 
The pure displacement coupling case is created by allow- 
ing a v-displacement of the top edge which is uniform 
and unspecified. A linear buckling analysis of a model 
which has the v-displacement unspecified predicts 
(P,) cr = 5.83 kips. The axial load vs. end shortening 

u , in. 

(b) Force coupling and displacement coupling 

Fig. 9. Unspecified v-displacement 

v-displacement lowers the buckling load and reduces the 
axial stiffness. The displacement coupling (v/u) for this 
model and the force coupling (PdP,) for the baseline 
model are compared in Fig. 9(b). Although the magni- 
tude of the coupling response differs for the two cases, 
the behavior of the response is very similar. In both cas- 
es, the coupling response is constant in prebuckling and 
increases substantially in postbuckling. The experimen- 

tal results6 for this test panel demonstrated a mixture of 
force coupling and displacement coupling, each to a less- 
er degree than shown in Fig. 9(b). 

Initial Geometric Imperfections 

Prior to testing, the surface shape of the skin 
was measured. A contour plot of the measured surface 
shape normalized by the thickness of the panel skin is 
shown in Fig. 10(a). The flat baseline model is modified 
by introducing an initial out-of-plane geometric imper- 
fection defined by a Fourier series representation of the 
measured surface shape. The axial load vs. end shorten- 
ing response for the imperfect model and the baseline 
model are compared in Fig. 10(b). The measured imper- 
fection shape for this panel has very little affect on the 
overall stiffness of the model. The imperfection does re- 
move the bifurcation behavior observed with the base- 
line model and increases the likelihood that the predicted 

responses for this model and the baseline model are and experimental deformations will be in the same direc- 
compared in Fig. 9(a). Releasing the constraint of the tion. 



(a) Measured surface shape, w/t 

Baseline Model 

Lines with 

"r Y (a) Advanced model 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 10. Initial geometric imperfection 

The Advanced Model 

Based on the individual model refinements, an ad- 
vanced finite element model was developed to simulate 
the response of the test panel. This model is shown in 
Fig. 1 l(a). The stiffener is represented by branched 
plates, the entire length and width of the panel is includ- 
ed in the model, and the modified material properties are 
used. Measured shape data is applied as an initial geo- 
metric imperfection. The mixture of force coupling and 
displacement coupling observed in the experiment is ad- 
dressed by specifying that the u- and v-displacement of 
the top edge be defined by measured experimental data 
uev and veV 

A nonlinear postbuckling analysis of the advanced 
model was conducted. The axial load vs. end shortening 
response for the baseline model, advanced model, and 
the experiment are compared in Fig. 1 1 (b). The advanced 
model accurately simulates the all response of the panel 
in the prebuckling and postbuckling range of loading. 

Local Panel Res~onse 

The previous refinements to the finite element 
model were directed toward accurately predicting the 
overall response of a panel. Considering the local panel 
response, one more modification is introduced to the fi- 
nite element model to simulate the nonuniform initial 

p x *  
kips 

Baseline Model 

10 

Experiment 

'0 0.01 0.02 0.03 0.04 

u , in. 

(b) Axial load vs. end shortening response 

Fig. 1 1. Advanced model and experiment 

load introduction that was evident in the experiments. 
During testing, load introduction into the panel skin was 
monitored by strain gages located across the panel width, 
4.0 in. from the top and bottom potting, and load intro- 
duction into the stiffener was monitored by strain gages 
located on the stiffener cap near the potted ends. Experi- 
mental strain readings were highly nonlinear and nonuni- 
form during initial loading, and became nearly linear 
when u = 0 . 2 5 ~ ~ ~  For the panel under consideration u,, 
was 8.38 mil. 

For u = 0 . 2 5 ~ ~ ~  numerically-predicted strains ob- 
tained using the advanced finite element model are com- 
pared to the measured strains in Fig. 12. The strains 
shown are normalized by the strain at buckling, i.e., 

E: = ex/ (u,,/24) . Note that with this normalization, 

compressive strains are positive. The measured strain 
values in the skin were low in the center of the panel. The 
measured strain values in the stiffener cap indicated 
bending, with the gages on the cap near the top potting 
showing a negative normalized strain, i.e., the stiffener 
cap was in tension when the remainder of the panel was 
in compression. 
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Fig. 12. Experimental and predicted strains 
near loaded ends: advanced model 

To better simulate the experimental load introduc- 
tion, a nonuniform initial displacement on each end of 
the model and superimposed on the uniform end shorten- 
ing. The nonuniform initial displacement consists of a 
nonuniform u-displacement and a rotation about the y- 
axis and is defined based on the experimental data for a 
uniform endshortening u = 0 . 2 5 ~ ~ ~  Experimental data 
from strain gages on the skin are used to infer the shape 
of the nonuniform u-displacement, while data from strain 
gages on the stiffener cap are used to infer the end rota- 
tions. The nonuniform initial displacement is adjusted it- 
eratively until the discrepancies between the predicted 
and measured strains for u = 0 . 2 5 ~ ~ ~  are minimized. The 
predicted strains obtained with the nonuniform initial 
displacement model are compared to the experimental 
strains in Fig. 13. The magnitude of the nonuniform ini- 
tial displacement in less than 3.0 mil. Although this value 
is within the tolerance allowed for machining and fixtur- 
ing test specimens, 3.0 mil. does represent a significant 
percentage of the end shortening at buckling, and thus 
nonuniform initial loading is important when consider- 
ing local response values. 

Fig. 13. Experimental and predicted strains near 
loaded ends: nonuniform initial displacement 

ing response for the advanced model, the nonuniform 
initial displacement model, and the experiment are com- 
pared in Fig. 14. The results in Fig. 14 indicate that the 
nonuniform initial displacement which has a substantial 
effect on the local strain distribution has very little effect 
on the overall panel response. 

px 
kips 

Nonuniform Initial 
Displacement Model 

u , in. 

Fig. 14. Advanced model, nonuniform initial 
displacement model, and experiment: 
axial load vs. end shortening response 

To conduct analyses at higher loads, the nonuni- 
form initial displacement is held constant, and a uniform A contour plot of the out-of-plane skin displace- 
end shortening is added. The axial load vs. end shorten- ment predicted by the nonuniform initial displacement 



(viewed from 
unstiffened side) 

(a) Moir6-fringe pattern 

(b) STAGS contour 
nonuniform initial 
displacement model 

Fig. 15. Comparison of experimental and predicted 
out-of-plane skin displacement contours in the 
postbuckled state 

model and a moir6-fringe pattern from the experiment 
are compared in Fig. 15 for an applied end shortening 

u = 2.1 u z p .  The shape, sign, and amplitude of the ex- 

perimental and predicted out-of-plane skin displace- 
ments in the postbuckling equilibrium state correlate 
well. 

Results of a study conducted to define modeling 
procedures which simulate accurately the postbuckling 
response of composite panels with skewed stiffeners 
have been presented. A particular experimental program 
was considered carefully and detailed finite element 
models were created to represent the conditions in the 
experiment. 

To initiate the study, a simple baseline model with 
minimal detail was defined. A number of modeling re- 
finements that could improve the accuracy of the model 
were identified. These refinements were applied individ- 

ually to the baseline model and the effect of each refine- 
ment on the predicted response is summarized below. 
Compared to the baseline model: 

Modeling the stiffener with branched shell elements 
increased the buckling load and postbuckling stiff- 
ness because the attachment flange's finite width 
provided greater support to the panel skin. This 
would not be the case if the attachment flange was 
very thin. 

* Modeling the extended length in the potting reduced 
the panel stiffness since a given end shortening 
caused lower strains. 
Modeling the extended width outside the knife-edge 
supports increased the effective width and thus 
increased the increased the buckling load and post- 
buckling stiffness. 
Using the modified material properties for the as- 
fabricated test panels substantially reduced the buck- 
ling load and postbuckling stiffness. 
Releasing the constraint on the transverse displace- 
ment altered the type of coupling response predicted 
lowered the buckling load and substantially reduced 
the postbuckling stiffness. 

* Initial geometric imperfection had little effect on the 
predicted response. 

The individual refinements were then combined to 
create an advanced finite element model. In addition to 
model refinements which affect the overall panel re- 
sponse, a modeling procedure for simulating nonuniform 
initial load introduction that is specific to an experiment 
were described and demonstrated. In the case consid- 
ered, the nonuniform initial loading affected the local 
panel response primarily and had little affect on the over- 
all panel response. In other situations, a local panel re- 
sponse may cause perturbations which influence the 
panel's overall response. 

Efforts to improve the correlation between the mea- 
sured and predicted response were successful. By imple- 
menting a number of modeling refinements, a finite 
element model was developed which represented the 
physics of the response. The skewed stiffener detail and 
rotated skin orientation in the selected problem created 
axial-shear stiffness coupling which made this problem 
sensitive to the constraint on the v-displacement. The re- 
mainder of the modeling refinements considered were 
applicable to general structural configurations. 

The results of this paper are considered quite im- 
portant to researchers interested in correlating predicted 
responses with experimental results 'for structural level 
tests. Inaccurate modeling assumptions and anomalies in 
the test, i.e., the support fixtures, the loading frame, the 
load introduction or the test specimen, can cause the pre- 
dicted response and the measured response to differ sub- 
stantially. To have credible predicting capability, the 
differences must be thoroughly understood. This paper 
represents a step in that direction. 
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FINITE ELEI\I[IENT STIGATION OF THE SNAP PHlENOIMENON IN BUCKLED PLATES 
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Abstract 

Finite element analysis was used to study a 
compressively loaded plate with supported edges which 
exhibits a secondary instability in the postbuckling 
regime. The instability initiates a dynamic snap from 
one waveform to another with an increase in the 
number of buckles along the load axis. The analysis 
simulated a plate configuration tested by Dr. Manuel 
Stein in 1959. Both clamped and simple support of the 
loaded ends were modeled, and dynamic analyses of 
the snap were performed. Good agreement with Stein's 
data was obtained with the clamped-end model, and 
major differences in snap behavior for the two different 
end-support conditions are examined in detail. Material 
stresses during the dynamic snap were found to exceed 
the pre-snap stresses by as much as 17%. An 
explanation is given for the inaccuracies of a previously 
used analytical approach. 

1. Introduction 

Axially compressed thin rectangular plates with 
supported edges are capable of withstanding loads in 
excess of initial buckling loads. This postbuckling 
strength is used to advantage in obtaining the ultimate 
compressive strength of stiffened panels found in 
aircraft fuselage and wing structures. When loaded into 
the postbuckling regime, some plate configurations 
encounter a secondary instability which initiates a 
dynamic snap to a different waveform, resulting in an 
increase in the number of buckles along the load axis. 
Observations of this phenomenon have been reported 
for metallic plates,"2 symmetrically and 
unsymmetrically laminated composite a one- 
edge-free composite a composite channel 
section: and a composite plate with a hole: to name a 
few. 

Stein studied the snap phenomenon both 
experimentally and analytically.'~8~9 Stein tested in 
uniaxial compression a rectangular aluminum plate 
which was supported against out-of-plane deflection by 
a series of 12 evenly spaces knife edges running the 
length of the plate."8 Eleven bays were thus formed, 

* Associate Research Engineer, Member AIAA 
Associate Research Engineer, Member A M  

each with a length-to-width ratio of 5.4 and a width-to- 
thickness ratio of 67. The plate was flat-end loaded, 
which resulted in "almost complete clamping of the 
loaded edges."' The test configuration is depicted in 
Figure 1. The plate buckled initially with 5 buckles 
along the length. Further increases in the end 
displacement produced snaps to 6, then 7, then 8 
buckles along the length, with the first snap occurring 
in the elastic range of the material, and the second and 
third snaps occurring after some plastic deformation 
had occurred. The snaps occurred "in a violent 
manner".' 

,0708 in. 

4.71 in., typ. 

Figure 1. Aluminum plate configuration tested by 
Stein.' 

Stein analyzed an axiallv cornmessed infinite- 
length isotropic plate strip with side edge support 
conditions simulating those of a typical bay of me rest 
panel.' The plate strip buckles with a longitudinal 
halfwave length equal to the plate width, but as 
additional load is applied, the halfwave l'ength 
decreases. For example, at twice the initial buckling 
load, the halfwave length is slightly less than 70% of 
the width. Stein also studied the snap phenomenon 
using a simplified structural model possessing two 

A 'w 'tY t w  \ 
A 4 A/ Flat-end loading, typ A 

Copyright O 1997 Frederick Stoll and Steven Olson. 
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lateral degrees of freedom. He determined the 
complete topology of the equilibrium solution paths 
and the stability of the equilibrium along those paths. 
The model qualitatively duplicated plate buckling and 
snap behavior, thereby providing insight into the snap 
phenomenon with respect to potential energy and 
stability considerations. However, the full analytical 
characterization of the snap phenomenon in 
compressively loaded rectangular plates has remained 
elusive to date. 

Previous  effort^^^^^'^^^' related to the analysis of the 
snap phenomenon in buckled rectangular plates were 
reviewed by S t ~ l l . ~ ~  In all of these studies equilibrium 
behavior was analyzed, and in most, though not all, 
stability principles were employed to predict the onset 
of a snap. In none was the snap simulated 
dynamically. The majority of these s t ~ d i e s ' ~ ' ' ~ ' ~ " ~ ~  
include analyses of plates with simple support on all 
edges, with out-of-plane displacements represented 
using terms of a double Fourier series. The Fourier 
coefficients serve as generalized coordinates. In this 
approach, the equilibrium equations for von Karman 
nonlinear plate theory reduce to a coupled set of 
algebraic equations in terms of a load parameter and 
the generalized coordinates. The double Fourier series 
provides a complete set of shape functions which also 
correspond to buckling mode shapes, and simple 
postbuckling behavior can be analyzed accurately with 
only a few degrees of freedom." 

Nakamuro and Uetani systematically identified 
the consistent sets of shape functions required to 
accurately predict initial postbuckling, secondary 
bifurcation, and initial post-secondary-bifurcation 
equilibrium behavior for simply supported isotropic 
plates." Plates with length-to-width ratios between 1.4 
and 8 were considered, and it was demonstrated that 
the snap phenomenon can occur for all plates within 
(but not limited to) that range. It was found that a 
large number of appropriately selected shape functions 
must be incorporated to accurately analyze some 
regimes of behavior. Judged in the context of the 
rigorous approach of Nakamuro and Uetani, all other 
studies noted which employed global shape functions 
used inadequate sets of functions for accurately 
analyzing the secondary instability which initiates a 
snap. This has resulted in conclusions which were 
both quantitatively and qualitatively incorrect. For 
example, in several ~tudies""~.~' .~~ it was erroneously 
concluded that various simply supported plates in the 
category considered by Nakamuro and Uetani will not 
exhibit a snap. 

When applied to the plate geometry tested by 
Stein, the results of Nakamuro and Uetani do not 
accurately predict the observed snap initiation load. 
The fundamental difference between the analysis and 
experiment was the simple supported ends for the 
former versus the effectively clamped ends for the 
latter. Uemura and   yon' performed static finite 
element analyses of rectangular plates with length-to- 
width ratios ranging from 1 to 2, and found a strong 
influence of the loaded-end support condition on the 
secondary instability load. Sto1lZ4 investigated the 
importance of the end support condition for the Stein 
plate geometry by performing static analyses using 
global shape functions with clamped-end boundary 
conditions. Stoll obtained analytical predictions for 
the snap initiation load which agree relatively well 
with the experiment. It was found that while the end 
support condition only slightly affects the initial 
buckling load and mode shapes, it has a large affect on 
both the load at which the secondary instability occurs, 
and on the mode shape of the secondary instability. 

The set of ten global shape functions used by 
sto1lZ4 was not selected using a rigorous basis, and 
therefore, the results are not conclusive. Furthermore, 
the actual transition from one buckled waveform to 
another has never been analyzed as the dynamic event 
which it is. Consequently there remain questions 
about some aspects of the snap phenomenon. 

This paper seeks to fill gaps in the understanding 
of the snap phenomenon through the use of a general 
purpose finite element (FE) analysis code. Results 
from static and dynamic FE analyses of the plate 
configuration tested by Stein are presented. The 
specific goals of the paper are: 1) to verify the 
conclusions presented in Ref. 24 regarding the 
importance of boundary conditions at the loaded 
edges, 2) to investigate the characteristic stress levels 
induced during the dynamic snap, and 3) to explore 
some issues surrounding the analytical approaches that 
have been used to study the snap phenomenon. 
Section 2 presents a discussion of the FE code, FE 
models, and analysis procedures used. FE analysis 
results are presented and discussed in Section 3, and 
conclusions are presented in Section 4. 

2. Finite Element Analvsis A ~ ~ r o a c h  

The FE analyses reported herein were performed 
using ABAQUSIStandard Version 5.5 (ABAQUS), by 
Hibbitt, Karlsson, and Sorensen Inc. ABAQUS is a 
general purpose finite element code capable of both 
linear and nonlinear static and dynamic analysis. Pre- 
and post-processing of the FE model and results were 



performed using MSCIPATRAN Version 5.0 by the solution paths for the geometrically imperfect models. 
MacNeal-Schwendler Corp. Analyses were run on a Nonlinear dynamic transient analysis was used to 
Silicon Graphics Indigo 2 computer with an R8OOO simluate the snap event. Numerical damping was 
processor. included in the dynamic analyses, so that the post-snap 

The FE model geometry represented a single bay 
of the plate tested by Stein.' The geometry modeled 
was a plate 25.36 inches in length, 4.71 inches in 
width, and 0.0708 inches thick, providing a length-to- 
width ratio of 5.4 and a width-to-thickness ratio of 67. 
One longitudinal edge was fixed from translating out- 
of-plane or in the width direction. The second 
longitudinal edge was fixed from translating out-of- 
plane, but was free to move in the width direction 
provided the entire edge translated the same amount. 
Multiple-point constraints (MPCs) were used to 
enforce this condition. The longitudinal edges thus 
were simply supported, and were constrained to 
remain straight while carrying no net edge-normal 
load. Two different sets of end support conditions 
were used for the analyses: simply supported, and 
clamped. End-shortening was impoSed by fixing one 
end of the plate and controlling displacements at the 
opposite end. MPCs were used such that uniform axial 
displacement of the entire end of the plate could be 
controlled by imposing the displacement at a single 
node. The end load was then obtained as the reaction 
force at this key node. The plate was given typical 
properties of aluminum, including an elastic modulus 
of 10 .0x10~s i ,  a density of 0.100 1bmlin3, and a 
Poisson's ratio of 0.33. The analyses were limited to 
elastic material response. 

A baseline FE model used for most of the reported 
analyses consisted of 459 nodes and 400 four-node 
shell elements (ABAQUS type S4R5), with 50 
elements down the length of the model and 8 elements 
through the width. A refined-mesh model, with 200 
elements down the length and 32 element through the 
width, was used to check convergence with respect to 
FE discretization. Geometrically imperfect models for 
both end-support conditions were used for some 
analyses. The basic imperfect model for each end- 
support condition was created by adding imperfections 
with amplitudes of 0.1% of the plate thickness in the 
shapes of each of the first and second buckling modes. 

Several different solution strategies were 
employed during the investigation, and these are 
briefly described here. Initial bifurcation buckling 
analyses were performed with the geometrically 
perfect models. Nonlinear static analyses were 
performed using both controlled end-shortening, and a 
modified Riks method for arc-length control. The 
modified Riks method was used to trace equilibrium 

equilibrium path could be located. The -effective 
degree of damping used was relatively low, as 
discussed in Section 3. 

3. Analvtical Results 

All end-load values, P, and end-shortening values, 
A, reported in this section are nondimensionalized by 
the following reference load and end-shortening 
values: 

where E is Young's modulus, v is Poisson's ratio, h is 
the plate thickness, b is the plate width, and &f is the 
reference value of longitudinal compressive strain,' 
given by 

P,, and &f are the thin-plate-theory theoretical values 
of end load and axial strain, respectively, for initial 
buckling of both a uniaxially loaded square plate with 
simple support on all edges, and a uniaxially loaded 
infinite-length plate strip with simply supported edges. 
The numerical values of the parameters used in the 
current study are summarized in Table 1. 

Table 1. Reference Parameter Values 
11 b 4.71 in 1 v 0.33 1 

The initial thin-plate buckling problem for both 
the clamped-end plate and the simply supported plate 
can be solved analytically. Buckling eigenvalues and 
eigenfunctions so obtained were reported by  toll." 
The profiles of the buckling eigenfunctions along the 
load axis are plotted in Figure 2. All eigenfunctions 
feature a half sine wave profile across the plate width. 
Although the numbers of buckles along the length are 
the same for both end support conditions (five for the 
first mode, six for the second), there is a distinct 



influence of the end support condition on the buckling conclusions presented in this paper. While the 
eigenfunctions. baseline-model eigenvalues run 2.7% higher than the 

values for the refined mesh model, the consistency of 

Figure 2. Profiles of buckling eigenfunctions along 
the load axis. 

Simple End 
Support 

Clamped Ends 

The analytic buckling eigenvalues are summarized 
in Table 2 along with the eigenvalues for the baseline 
and refined-mesh FE models. It can be seen that the 
first and second eigenvalues for each end-support 
condition are very close, differing by 0.6% for simple 
support, and by 0.7% for clamped, according to the 
analytic solutions. The primary eigenvalue for 
clamped ends is 2.5% greater than the primary 
eigenvalue for simple end support. The buckling 
eigenvalues for the baseline FE model follow these 
trends very closely, except that they run 2.1% to 2.3% 
higher than the analytic values. The refined-mesh FE 
model results follow closely the trends of the first two 
results sets, but are approximately 0.5% below the 
analytic values and 2.7% less than the baseline-mesh 
values. 

First Mode (Symmetric) w 
Second Mode (Unsyrnmetric) 

.-.-. w 
First Mode (Symmetric) * 

Second Mode (Unsymmetric) 

Table 2. Normalized Buckling Eigenvalues, PJP 
1 End 1 Analysis 1 First 1 Second 

11 Support I II 
(1 Simple ( Analytic 11.009 11.015 (1 

I1 ) FE, refined mesh ) 1.029 1 1.037 1 
Clamped 

It is not clear why the refined-mesh eigenvalues 
fall slightly below the analytic values. Barring 
numerical error, the FE results should converge from 
above to the analytic values. The discrepancy is small 
however, and is not considered important to the 

the eigenvalue trends between the different mode 
shapes gives some confidence in the use of the 
baseline FE model. 

FE, baseline mesh 
FE, refined mesh 
Analytic 
FE, baseline mesh 

3.2 Postbucklin~ Response of Clamped End Plate 

A static analysis of the geometrically imperfect 
plate was performed using arc-length control to obtain 
a quick characterization of the clamped-end plate 
behavior. This approach avoids the difficulties of 
controlling path switching at the bifurcation points that 
are encountered with a geometrically perfect plate, 
while providing a good estimate of the perfect-plate 
secondary instability load due to the small amplitude 
of the imperfections. The end-load versus end- 
shortening curve generated using this approach is 
plotted in Figure 3. The initial postbuckling path 
represents stable equilibrium with five buckles along 
the length. The first load reversal on the postbuckling 
path corresponds to a change to unstable equilibrium. ' 
The second load reversal constitutes a return to stable 
equilibrium with six buckles along the plate length. 
The sharp reversal of the loaddisplacement curve for 
the first load reversal indicates that the loss of stability 
occurs at essentially the same point for either 
controlled end shortening or controlled load. The 
post-buckling instability occurs at normalized load and 
end-shortening values of P/P,,=1.90 and A/Ami=2.61, 
respectively. The postbuckling instability load 
correlates well with the experimentally observed value 
of ~/P,~=1.84.' 

1.03 1 
1.004 
1.034 
1.057 

Normalized End Shortening, 

1.036 
1.010 
1.043 
1.066 

Figure 3. Loadfend-shortening curve for the static 
response of the geometric imperfect clamped-end 
plate, computed using arc-length control. 



using controlled end shortening. This analysis was 
continued to 99.5% of the critical value for the 
postbuckling instability, or A/&ef =2.5945. From this 
point, a dynamic analysis was performed simulating 
0.679 seconds while AILf was increased at a rate of 
approximately 0.1 per second. The snap initiated 
between 0.382 sec and 0.387 sec elapsed time. Because 
the slight geometric imperfections cause the 
postbuckling instability to occur at a limit point rather 
than a symmetric bifurcation point, this analysis 
approach was adequate to initiate the simulated 
dynamic snap, since the solution was forced off the 
quasi-equilibrium solution path at the limit point. The 
automatic time step control option of ABAQUS was 
used, and the analysis was performed in 5000 non- 
uniform time steps. Analysis results were saved for 
postprocessing at every 10th time step 

Exaggerated-displacement images of the deformed 
FE model at key time steps in the dynamic analysis are 
presented in Figure 4. Figure 4(a) corresponds to the 
last results set before snap initiation, at which point the 
maximum von Mises stress was 33.2 ksi. Figure 4(b) is 
the instability mode shape corresponding to the 
perturbation buckling analysis performed with respect 
to the starting solution of the dynamic analysis. Figure 
4(c) is the state for the first results set after snap 
initiation. Figure 4(d) is the state at which the 
maximum von Mises stress value for all time steps, 
38.3 ksi, was computed. This peak stress value is 15% 
greater than the maximum stress before the snap. 
Figure 4(e) is the state at the end of the dynamic 
analysis, at which time most of the motion was 
numerically damped out. At the end of the dynamic 
analysis, the maximum von Mises stress was oscillating 
between 33.4 and 34.1 ksi, or about 1.0 1 to 1.025 times 
the pre-snap level. It can be seen in the figures that the 
dynamic snap produced a change from five buckles to 
six, which correlates with the initial snap in Stein's 
experiment.' The intermediate states depicted in 
Figures 4(c-d) also feature six buckles, but the peaks 
are shiftiag along the length of the plate. An inspection 
of displacement and stress results revealed that the 
back-and-forth wave motion had a period of 
approximately 0.008 sec. The dynamic simulation 
continued approximately 0.29 sec after snap initiation, 
or about 36 cycles of the dominant motion. During this 
interval, the short-term dynamic fluctuations in the 
maximum von Mises stress decreased from about 15% 

to about 1.4%. These performance numbers give an 
idea of the level of numerical damping. 

a) Pre-snap equilibrium, t=t,, 
At A,=2.634, w& =1.55. 

b) Secondary instability mode shape (apprx). 

c) Early snap, t=t,+0.005 sec, 
A/ Aref =2.634, w& =1.40. 

d) Max von Mises stress, t= t,+0.007 sec, 
Are, =2.635, w& =1.45. 

ej  Post-snap equilibrium, t=to+0.279 sec, 
Af Are,=2.665, w,Jh =1.46. 

Figure 4. Exaggerated-displacement images of FE 
results from dynamic and perturbation-buckling 
analyses of the clamped-end plate. 

The approximate instability mode shape depicted 
in Figure 4(b) is similar to that computed in Ref. 24, 
except that in the latter, the mode shape was exactly 
anti-symmetric since the model was free of 
imperfections. It can be seen that the secondary 
instability causes a new buckle to grow at one end of 
the plate as the bending curvature at that end changes 
direction. The maximum von Mises stress occurs at the 
left end of the plate in Figure 4(d) due to extreme 
bending curvature. 

3.3 Postbuckling Response of Simplv Supported Plate 

A static analysis of the simply supported plate with 
geometric imperfections was performed using arc- 
length control. The load versus end-shortening curve 
generated using this approach is plotted in Figure 5. 
The initial postbuckling path represents stable 
equilibrium with five buckles along the length. As with 
the clamped-end plate, the first load reversal 
corresponds to a change to unstable equilibrium. 
However, following the second load reversal the 
equilibrium remains unstable and the equilibrium path 
exhibits a steeper slope than the initial postbuckling 
path. In either a constant-end-load or constant-end- 
shortening jump from the limit point to the upper path, 



path. In either a constant-end-load or constant-end- 
shortening jump from the limit point to the upper path, 
the total potential energy increases, indicating that the 
upper path cannot be reached in an energy-dissipating 
snap. 

Normalized End Shortening, A/&, 

Figure 5. Loadlend-shortening curve for the static 
response of the geometric imperfect simply 
supported plate, computed using arc length control. 

The equilibrium solution path computed using arc- 
length control demonstrates that when arc-length 
control is used on a limit-point problem, it does not 
always guide an analysis to the proper post-snap 
equilibrium solution. This type of behavior has also 
been observed in a nonlinear plate analysis which used 
a series solution approach.26 Analysts should thus be 
aware that while arc-length control can be used to 
analyze some limit-load problems in terms of 
equilibrium behavior, it does not provide a fool-proof 
method to locate a physically meaningful post-snap 
equilibrium solution path for all problems. 

The post-buckling instability with simple end 
support occurs at normalized load and end-shortening 
values of P/P,,=2.44 and A/A,,.=3.78. This critical load 
significantly exceeds the value predicted for the 
clamped-end plate (P/Pn~1.90), but agrees fairly well 
(considering that imperfections are present) with the 
value Pff,~2.53 taken from the charts of Nakamuro 
and uetani.'' 

A second, multi-leg analysis of the geometrically 
imperfect simply supported plate was performed to 
study the dynamic snap and post-snap behavior. A 
static analysis was performed using controlled end- 
shortening, which was increased to 99.5% of the 
critical value for postbuckling instability, or 
A/A,,=3.763. From this point, a dynamic analysis was 

performed simulating 2.183 seconds while AIAd was 
increased at a rate of 0.1 per second. The snap 
initiated between 0.366 sec and 0.373 sec elapsed 
time. The automatic time step control option of 
ABAQUS was used, and the analysis was performed in 
388 non-uniform time steps. The last couple of time 
steps were very large (0.72 and 0.79 sec) revealing that 
the simulated dynamic motion had been almost 
completely damped out. Analysis results were saved 
for postprocessing every 10th time step. A static 
analysis using controlled end-shortening was resumed 
starting at the final solution point from the dynamic 
analysis. The composite load versus end-shortening 
curve thus formed is discussed in Section 3.4. 

Exaggerated-displacement images of the deformed 
FE model at key time steps during the dynamic 
analysis are presented in Figure 6. Figure 6(a) 
corresponds to the last results set before snap 
initiation, at which point the maximum von Mises 
stress was 44.8 ksi. Figure 6(b) is the instability mode 
shape corresponding to the perturbation buckling. 
analysis performed with respect to the starting solution 
for the dynamic analysis. Figure 6(c) corresponds to 
the first results step after snap initiation. Figure 6(d) 
corresponds to the time at which the maximum value 
of von Mises stress, 52.3 ksi, was computed. This 
peak stress value is 17% greater than the maximum 
von Mises stress at the time step before the snap. 
Figure 6(e) depicts the deflection state at the end of 
the dynamic analysis, at which point the motion was 
essentially damped out. 

While the critical snap-initiation load from FE 
analysis agrees fairly well with the series-solution 
results of Nakamuro and ~etani ,"  the instability mode 
shape of Figure 6(b) is very different. The shape 
computed by Nakamuro and Uetani was symmetric 
with respect to the mid-length. As a check of the 
mode shape shown in Figure 6(b), a second series of 
FE analyses leading up to the perturbation buckling 
solution was performed which differed from the first in 
that the FE model had imperfections only in the shape 
of the first buckling mode. This provides a 
perturbation buckling solution which is very close to 
the solution for a perfect plate. The secondary 
instability mode shape was qualitatively the same as 
the one in Figure 6(b) except that it was purely anti- 
symmetric. This result suggests that despite the 
meticulous effort of Nakamuro and Uetani,I9 they may 
have failed to identify the most-critical secondary 
instability mode shape in their series-solution 
approach. 



a) Pre-snap equilibrium, t=to, 
hlAref=3.801, wmalh ~ 2 . 0 5 .  

b) Secondary instability mode shape (apprx). 

c) Early snap, t=to+0.007 sec, 
hlAref=3.802, wmmlh = I  36.  

d) Max von Mises stress, t= to+0.009 sec, 
&A,f =3 302, wma/h = 1.78. 

e) Post-snap equilibrium, t=to+1.8 17 sec, 
&ber=3.988, w,,/h =1.75. 

Figure 6. Exaggerated-displacement images of FE 
results from dynamic and perturbation-buckling 
analyses of the simply supported plate. 

It can be seen in the Figure 6 that the dynamic 
snap produced an increase of two in the number of 
buckles, from five buckles to seven, in contrast to the 
clamped-end case in which the number of buckles 
increased by one. An explanation can be found by 
inspecting the secondary instability mode shapes. For 
the clamped end case, the instability manifests itself 
with a change in curvature at one end of the plate. 
The slope at the ends is zero, so no end rotation need 
occur for the buckle at one end to reverse direction. 
With simple end support, the ends are highly rotated 
before the snap, and there is apparently not enough 
strain energy available to produce through-rotation of 
an end. 

The displacement form early in the snap (Figure 
6(c)) is rather complex, and defies easy 
characterization in terms of waveform. However a 
short time later (Figure 6(d)) the displacement form is 
qualitatively similar to the final rest state (Figure 6(e)), 
although the buckle peaks are shifted toward one end 
of the plate. An inspection of displacement and stress 
results revealed that the back-and-forth wave motion 
had a period of approximately 0.0065 sec. 
Approximately 0.3 sec simulated time after snap 
initiation, the motion was largely damped out, and the 

peak von Mises stress was approximately equal the 
 re-snao value. 

3.4 Discussion of Results 

Composite loadfend-shortening curves formed 
from the results of EE analyses described in Section 
3.2 and 3.3 are compared with the experimental results 
of Steins in Figure 7. The experimental results 
presented in Ref. 8 reflect a correction to the results 
originally reported in Ref. 1. The measured value of 
end-shortening at the initial buckling point is in err 
due to deformation of the load plattens which 
prevented accurate determination of the end- 
shortening value.' The declining slope in the 
experimental results following the first snap is due to 
yielding of the aluminum material.' It can be seen that 
the clamped-end analysis results agree well with the 
experimental results with respect to the initiation load 
for the first snap. The drop in end load due to the snap 
in the simply supported plate is much greater than the 
drop in the clamped-end plate. 

Normalized End Shortening, MArn, 

Figure 7. Comparison of loadlend-shortening 
curves from analysis and experiment. 

There is some uncertainty in the comparison of 
analysis and test results because of the sensitivity of 
the snap initiation load to imperfections.24 For 
example, even with the small initial imperfections 
used in the clamped-end plate FE analysis 
(contributions of 0.1% of the plate thickness in the 
shape of each of the first two buckling modes) 
previous analytical resultsz4 indicate that the snap 
initiation load is reduced by about 3.5%. The effective 
imperfections for the test plate are not known. 

FE discretization also adds error in the form of an 
artificial increase in the computed snap initiation load. 
The refined-mesh FE model was used to compute the 



snap initiation load of the imperfect simply supported 
plate. The resulting critical load was P/PE72.33, 
compared to 2.44 for the baseline mesh, a decrease of 
4.6%. (The decrease in the initial buckling load due to 
mesh refinement was 2.7%.) 

The FE results presented here provide 
confirmation of themes put forth in Ref. 24 regarding 
the postbuckling behavior of uniaxially loaded plates 
with supported edges with length-to-width ratios 
significantly greater than unity. Specifically, despite 
the relative insensitivity of both the initial buckling 
load and initial postbuckling stiffness to the end- 
support condition, the snap initiation load is much 
higher for simple end support than for clamped end 
support. 

A new result from the current study is that for the 
specific plate aspect ratio considered, the clamped-end 
plate snaps to the next higher buckle number (from 
five to six) whereas the simply supported plate snaps 
from five to seven buckles, retaining the direction of 
end rotation at both ends. Furthermore, the maximum 
von Mises stress in this isotropic plate achieves peak 
values during the dynamic snap which are significantly 
higher than the pre-snap and post-snap values (15% to 
17% higher, depending on the end-support condition). 
This is important because it shows that plates designed 
only with a consideration of static postbuckling 
stresses may be underdesigned if a snap can occur 
within the design load range. 

Numerous researchers have used a two-term series 
solution or a two-term perturbation analysis to study 
the snap phenomenon. '"'3'2"2" As discussed in the 
Introduction, two-term solution approaches have 
provided results which are both quantitatively and 
qualitatively inaccurate. The two-term perturbation 
approach was developed by Koiter" to analyze 
buckling mode interaction in, and predict the 
imperfection sensitivity of, structures such as axially 
compressed weight-minimized buckling-critical 
cylindrical shell designs. For such configurations, 
fundamentally different buckling mode shapes (short 
wavelength versus long wavelength) having identical 
buckling eigenvalues interact in the vicinity of the 
initial buckling point. In retrospect, the plate snap 
problem has deceived many researchers because the 
snap involves a change of state between two 
waveforms which are associated with two buckling 
mode shapes that can have close or identical 
eigenvalues. This has led to the perception of the 
problem as a "modal interaction" problem in the same 
sense as the cylindrical shell. For buckled plates, 

not in the vicinity of the initial buckling point, but 
instead deep in the postbuckling regime. 

4. Conclusions 

Finite element simulations were performed using a 
general purpose finite element code to simulate the 
postbuckling snap or "mode change" phenomenon in a 
uniaxially compressed plate configuration with 
supported edges. The 5.4 aspect ratio plate 
configuration was one for which experimental results 
were available in the literature. Analytical simulations 
included initial buckling, tracing of stable and unstable 
equilibrium paths in the geometrically nonlinear 
regime, and geometrically nonlinear dynamic 
simulations. The plate was isotropic, and linear elastic 
material behavior was modeled in the analysis. The 
following conclusions were reached based on the 
results obtained. 

1. For the 5.4 aspect ratio plate modeled with finite 
elements, the difference between clamped and, 
simple support at the loaded ends was found to 
have a large effect on the postbuckling snap 
behavior. The clamped-end plate with slight 
shape imperfections initiated a dynamic snap at a 
normalized load of 1.90, correlating well with the 
experimentally observed value of 1.84, whereas 
the simply supported plate with slight shape 
imperfections initiated a dynamic snap at a 
normalized load of 2.44. The clamped-end plate 
snapped from five to six buckles whereas the 
simply supported plate snapped from five to seven 
buckles. 

2. Peak values of the von Mises stress during the 
dynamic snap were 15% to 17% higher, 
depending on the end-support condition, than pre- 
snap or post-snap stress values. This suggests that 
plates and panels designed based on static 
postbuckling stress levels may be under-designed 
if a snap occurs within the design operation range. 

3. While the plate snap phenomenon has the 
appearance of a classic "modal interaction" 
problem, the initial buckling modes do not interact 
in the vicinity of the initial buckling point. The 
snap instability generally occurs deep in the 
postbuckling regime. For this reason, series 
solutions or perturbation analyses which, in the 
spirit of Koiter's perturbation approach, use only 
two buckling modes to represent out-of-plane 
displacements are fundamentally inadequate for 
analyzing the plate snap problem. 

however, the instability which initiates the snap occurs 
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One arc-length control plate analysis failed to 
return to a stable equilibrium path after 
completing two load reversals in the postbuckling 
regime. This phenomenon has also been observed 
in series-solution analyses of geometrically 
nonlinear plate problems. Analysts should thus be 
aware that while arc-length control can be used to 
analyze some limit-load problems in terms of 
equilibrium behavior, it does not provide a fool- 
proof method to locate a physically meaningful 
post-snap equilibrium solution path for all 
problems. 
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