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Abstract

This paper reviews the important recent progress in three-dimensional boundary-layer transition research.
The review focuses on the crossflow instability that leads to transition on swept wings with a favorable
pressure gradient. Following a brief overview of swept-wing instability mechanisins and the crossflow problem,
a summary of the important findings of the 1990s is given. The discussion is presented from the experimental
viewpoint, highlighting the ITAM work of Kachanov and co-workers, the DLR experiments of Bippes and co-
workers, and the Arizona State University (ASU) investigations of Saric and co-workers. Where appropriate,
relevant comparisons with CFD are drawn. The recent (last 18 months) research conducted by the ASU
team is described in more detail in order to underscore the latest developments concerning nonlinear effects

and transition control.

Nomenclature

A disturbance amplitude

A, reference disturbance amplitude

Cp pressure coefficient

C airfoil streamwise chord (along X axis)
¢ airfoil normal chord (along = axis)

f frequency

k roughness height

* Present address: Mystech Associates, 3233 E. Brookwood Court, Phoenix, AZ 85044. Member ATAA.
T Professor, Associate Fellow AIAA.



N = lu(4/4,), amplification factor

Re, = {/,.C/r, chord Reynolds number
; 3 oy 1/2 . . . ,
U = (u' +w?)"", magnitude of total velocity, U = U(y)
U. boundary-layer edge velocity along X axis
U freestream velocity along X axis

w.vow  velocity components in (X, Y, Z) coordinates
u', v’ w' disturbance velocity in (X, Y, Z) coordinates
X,Y,Z global test-section coordinates: X is along the flow axis, 17 is wall-normal, Z is unswept spanwise

coordinate (positive down)

Ty, E model-oriented coordinates: z is chordwise, y is wall-normal, z is spanwise
o airfoil angle of attack

Ag crossflow disturbance wavelength measured in swept span direction

1z kinematic viscosity

1 Introduction

1.1 Swept-Wing Flows

The study of three-dimensional boundary layers is motivated by the need to understand the fundamental
instability mechanisms that cause transition in swept-wing flows. Research has identified four types of
instabilities for these flows: attachment line, streamwise, centrifugal, and crossflow. The attachment-line
problem is caused by a basic instability of the attachment-line boundary layer or by its contamination with
turbulent disturbances and develops, in general, on swept wings with a large leading-edge radius (Poll 1979,
1984, 1985; Hall et al. 1984; Hall and Malik 1986). The streamwise instability is not unlike the familiar
Tollinien-Schlichting (T-S) wave in two-dimensional flows. This mechanism is associated with the chordwise
velocity component and is generally stabilized by a favorable pressure gradient. Centrifugal instabilities
can appear over concave regions on the surface and result in the development of Gortler vortices (Floryan
1991; Benmalek and Saric 1994; Saric 1994). Crossflow waves, on the other hand, are an inviscid instability
mechanism caused by the combined effect of wing sweep and pressure gradient. All of these instabilities can
appear individually or together depending on the combination of Reynolds number, wall curvature, wing
sweep, pressure gradient, and external disturbances. Thus, the swept wing provides a rich environment in

which to study the stability behavior of three-dimensional boundary layers.



1.2 Crossflow Instability

The present review focuses on the crossflow instability that occurs on swept wings in regions of strong,
favorable pressure gradient. Unlike T-S instabilities, the crossflow problem exhibits stationary (f = 0) as
well as traveling disturbances that are amplified. Even though both types of waves are present in typical
swept-wing flows, transition is usually dominated by cither the stationary or the traveling waves. Lincar
theory predicts that the traveling disturbances are more highly amplified, however many experiments are
dominated by stationary waves. Whether the stationary or traveling waves dominate is directly related
to the receptivity process. Stationary waves dominate transition in low-disturbance environments, while
traveling waves arc more important in high-disturbance environments (Miiller and Bippes 1989; Bippes
1990, 1991; Bippes 1991; Deyhle and Bippes 1996; Bippes 1997). Since the low-disturbance environment is
more characteristic of flight, the stationary waves are expected to be more important.

Stationary crossflow waves (that is, the v' and «’ disturbances) are typically very weak, lience analytical
models have long been based on linear theory. However, experiments often show evidence of strong nonlinear
effects (Dagenhart et al. 1989, 1990; Bippes and Nitschke-Kowsky 1990; Bippes et al. 1991; Deyhle et al.
1993; Reibert et al. 1996). The resolution of this apparent paradox lies in the understanding of the physical
mechanism by which the stationary waves disturb the boundary layer. The key to the stationary disturbance
is that the wave fronts are fixed with respect to the model and nearly aligned with the potential-flow direction
(i.e., the wavenumber vector is nearly perpendicular to the inviscid streamline). Consequently, although the
(v',w') motion of the wave is weak, its stationary nature produces an integrated effect that causes a strong v’
distortion in the streamwise boundary-layer profile. This integrated effect and the resulting local distortion of
the mean boundary layer leads to the modification of the basic state and the early development of nonlinear
effects.

An interesting feature of the stationary crossflow waves is the destabilization of secondary instabilities.
The u’ distortions created by the stationary wave are time-independent, resulting in a spanwise modulation
of the mean streamwise velocity profile. As the distortions grow, the boundary layer develops an alternating
pattern of accelerated, decelerated, and doubly inflected profiles. The inflected profiles are inviscidly unstable
and, as such, are subject to a high-frequency secondary instability (Kohama et al. 1991; Malik et al. 1994).
This secondary instability is highly amplified and leads to rapid local breakdown. Because transition develops
locally, the transition front is nonuniform in span and characterized by a “saw-tooth” pattern of turbulent

wedges.



1.3 Literature Surveys

There is no shortage of publications in the ficld of boundary-layer stability and transition: certainly more
than can be discussed in detail here. Compreliensive reviews for both two- and three-dimensional flows are
given by Arnal (1984, 1986, 1992, 1994), Mack (1984), Poll (1984), Saric (1992h), and Reshotko (1994).
Reed ot al. (1996) give an up-to-date discussion of effectiveness and limitations of lincar theory in describing
boundary-layer instabilities. The reader is referred 1o these reports for overviews of much of the carly work
in stability and transition.

Several key papers provide in-depth reviews of stability and transition research in three-dimensional
boundary lavers and, in particular, swept-wing flows. Much of the early theoretical and experimental work
is discussed by Reed aud Saric (1989). Swept wings, rotating disks, axisymmetric bodies (rotating cones
and spheres), corner flows, and attachment-line instabilities are reviewed, as well as the stability of flows for
other three-dimensional geometries. This paper gives an excellent overview of the unique stability problems
in three-dimensional flows. For swept wings, a historical account of the early investigations concerning the

crossflow instability is given, along with a detailed literature survey.

1.4 Overview

Recently, improvements in both experimental techniques and computational methods have opened the door
to a new understanding of transition in three-dimensional boundary lavers. This paper will focus on the
latest developments, with emphasis on the experimental work and relevant comparisons with CFD. In
particular, the leading labs for three-dimensional boundary-layer research will be highlighted: Kachanov
and co-workers at ITAM, Novosibirsk studving principally traveling crossflow waves; Bippes and co-workers
at DLR, Gottingen investigating linear /nonlinear growth and the sensitivity to freestream conditions; Saric
and co-workers at Arizona State University (ASU) focusing on the linear/nonlinear growth of stationary
crossflow waves and the importance of surface-roughness-induced initial conditions. Both the ITAM and
DLR work use a swept ﬂatr plate while the ASU model is a simulated infinite-span swept wing.

Bippes (1997) reviews the European contributions to stability and transition in three-dimensional bound-
ary layers and as such is a companion paper to this work. In another paper, Kachanov (1996) reviews the

efforts in ITAM, Novosibirsk. We therefore concentrate here on the U.S. efforts.



2 Summary of the Last Seven Years

Although crosstlow disturbances have hecn observed experimentally since the early 1950s (Gray 1952), much
of the important advances have occurred within this decade. The primary accomplishunents are briefly

summarized in the following paragraphs. A more detailed review of recent findings is given in section 3.

Micro-Thin Hot-Film Elements Multiclement, microthin hot films developed at NASA Langley Re-
search Center have been successfully used at ASU to obtain multipoint measurements in swept-wing flows
(Dagenhart et al. 1989; Mangalam et al. 1990). The surface-mounted sensors can be distributed in the
chordwise direction for multipoint monitoring of the transition location, or with the elements aligned along
the stationary crossflow vortex axis for structure identification. The development of these gauges within a

controlled transition experiment aided their implementation in the flight environment.

Secondary Instability In carly experiments at ASU, Kohama et al. {1991) show that when the boundary
layer is dominated by the stationary crossflow instability, transition is caused by a high-frequency secondary
instability. This instability results from the local distortion of the mean streamwise boundary-layer profile by
the stationary disturbance. As the stationary crossflow wave grows downstream, the mean boundary layer
develops an alternating pattern of accelerated, decelerated, and doubly inflected profiles. The secondary
instability develops locally as a result of the inviscidly unstable inflected profiles. The secondary instability
is highly amplified, leading to rapid local breakdown and the characteristic “saw-tooth” transition front.
Malik et al. (1994) put the idea on firm footing with an analysis of the secondary instability and obtained

agreement with Kohama et al. (1991).

Linear Growth In the earlier work of Nitschke-Kowsky and Bippes (1988), Miiller (1990), Deyhle et al.
(1993), Kachanov and Tararykin (1990), and Kachanov (1996), the observed wavelength and growth rate of
the crossflow wave is initially in general agreement with linear theory and is independent of the freestream
turbulence level. However, it is reported that superposing a spanwise periodicity on the flow fixes the

wavelength of the stationary disturbance.

Forced Traveling Modes Deyhle et al. (1993) and Kachanov {1996) develop techniques to create con-
trolled traveling waves within the boundary layer and observe the growth of traveling modes. Linear theory
was verified in this case. The importance of traveling modes and their dependence on freestream conditions

and are put into perspective by Bippes (1997).



Sensitivity to Freestream Conditions The DLR experiments of Bippes and co-workers provide impor-
tant results concerning the role of freestream disturbances. The primary findings are reported by Nitschke-
Kowsky and Bippes (1988), Miiller and Bippes (1989), Bippes (1990, 1991). Bippes and Miiller (1990),
Bippes and Nitschke-Kowsky (1990), Miiller (1990), Miiller et al. (1990). aud Bippes et al. (1991). Recent
results are summarized by Deyhle et al. (1993), Lerche and Bippes (1995), Deyhile and Bippes (1996), and
Bippes (1997). These experiments measure both stationary and traveling crossflow waves, however their
relative importance in influencing the details of transition is found to depend on the freestream turbulence
level. Miiller and Bippes (1989) describe a series of comparative experiments using the same swept Hat plate
in both low- and high-turbulence tunncls. The stationary waves are found to dominate transition in the low-
disturbance enviromnent, however in the high-turbulence tunnel both the growth rate and final amplitude
of the stationary disturbance are reduced. At the same time, the traveling waves show larger growth rates
and dominate transition.

Not only does the type of transition depend on freestream conditions, but Deyhle and Bippes (1996)
show that transition can be initially delayed by increasing the freestream turbulence levels. In this case. the
strong stationary modes are not as effective in causing the secondary instability because of the unsteadiness

in the boundary layer.

Sensitivity to Roughness At ONERA-CERT, Arnal et al. (1990) use isolated roughness to verify the
roughness correlation of von Doenhoff and Braslow (1961). This involves using roughuess elements as a
bypass, i.e., transition occurs just downstream of the roughness element.

In the DLR experiments, Miiller and Bippes (1989) show that the stationary waves remain fixed with
respect to the model regardless of the wind tunnel in which the experiment is conducted. This indicates that
the stationary crossflow instability is sensitive to initial conditions provided by surface roughness.

In work reported by Radeztsky et al. {1993), the ASU team investigated the sensitivity of stationary cross-
flow waves to roughness-induced initial conditions by introducing isolated, micron-sized, artificial roughness
elements near the leading edge. These experiments show that a single, three-dimensional roughness element
can locally amplify the stationary wave leading to premature transition behind the roughness element. Only
single roughness elements are used in these tests, and the effects on transition are observed to occur only in
the region downstream of the roughness element. Moreover, the roughness element causes early transition
only when its diameter is larger than 10% of the most-unstable-mode wavelength and is placed near Branch I

of the stationary instability.



Noulinear Saturation In all the DLR experiments, the growth of the stationary and traveling crossflow
waves shows initial gualitative agreement with linear theory. However, the disturbance amplitude saturates
due ro nonlinear effects. Also, the amplitude of the traveling waves shows a spanwise modulation indicating
nonlinear interactions with the stationary modes.

In experiments at ASU, Reibert et al. (19935, 1996) investigate the nonlinear saturation of stationary
waves using micron-sized artificial roughness elements to control the initial conditions. Full-span arrays of
roughness elements are used to preserve the spanwise periodicity of the disturbance. By forcing the most
unstable mode (according to linear theory). nonlinear saturation of the disturbance amplitude is observed
well before transition.  Although the initial growth rare increases with increasing roughness height, the
saturation amplitude remains largely unaffected by changes in the roughness height.

The presence of a large laminar extent of nonlinear saturation gives rise to a certain difficulty in using

linear methods—such as ¢V or lincar PSE—to predict transition. The futility of such approaches is expressed
by Arnal (1994) and Reed et al. (1996), who show that lincar mecthods do not work in three-dimensional

boundary layers.

Modal Decomposition Radeztsky et al. (1994) describe a measurement technique that allows the ex-
peritmentally obtained stationary crossflow structure to be decomposed into its spatial modes. Using a
high-resolution traversing mechanism, hot wires are carefully moved through the boundary layer along a
predetermined path. Data are acquired at numerous spanwise locations, from which modal information
is extracted using a spatial power spectrum. Reibert et al. (1996) use a slightly modified technique to
more objectively determine the modal content. Under certain conditions, the amplitude of the fundamental

disturbance mode plus eight harmonics are successfully extracted from the experimental data.

Excitation of Less Unstable Modes Using the modal decomposition technique described above, Reibert
et al. (1996) investigate the effect of roughness-induced forcing at a wavelength three times that of the most
unstable stationary mode (according to linear theoryv). A cascading of energy from the fundamental to
higher modes (smaller wavelengths) is observed, leading to nonlinear interactions among the fundamental
mode and its harmonics. Transition is observed to occur slightly earlier compared to forcing at the most
unstable wavelength, and the saw-tooth transition front is much more “regular” in span. These data indicate

that nonlinear interactions among multiple modes is important in determining the details of transition.



Excitation of Subcritical Modes Continuing the experiments of Reibert et al. (1996). Carrillo (199G)
describes a set of experiments in which the stationary crosstlow disturbance is forced with suberitical rough-
ness spacing, i.e., the spacing between roughness elements is less than the wavelength of the mode unstable
mode. Under these conditions, the rapid growth of the forced mode completely suppresses the linearly most
unstable mode, thereby delaying transition beyond its “natural” location (i.c., where transition oceurs in the
absence of artificial roughness). These data demonstrate that surface roughness can be used to control the

stationary crossflow disturbance wavenumber spectrum in order to delay transition on swept wings.

Structure Identification Using POD Using data collected at ASU, Chapman et al. (1995, 1996) ap-
ply linear stochastic estimation (LSE) and proper orthogonal decomposition (POD) to identify the spatio-
temporal evolution of structures within a swept-wing boundary layer. Detailed measurements are acquired
using multiclement hot-film, hot-wire, and cross-wire anemometry. These data allow the POD to objectively
deterniine (based on energy) the modes characteristic of the measured flow. Data are acquired through the
transition region, from which an objective transition-detection method is developed using the streamwise

spatial POD solutions.

CFD Comparisons (DNS) Direct numerical simulations (DNS) have historically been constrained by
computer resources and algorithmic limitations, however some successes have been achieved in relation to
the stationary crossflow problem. Reed and Lin (1987) and Lin (1992) perform DNS for stationary waves
on an infinite-span swept wing similar to the ASU experiments. Meyer and Kleiser (1990) investigate the
disturbance interactions between stationary and traveling crossflow modes on a swept flat plate using Falkner-
Scan-Cooke similarity profiles for the basic state. The results are compared to the experiments of Miiller
and Bippes (1989). With an appropriate initial disturbance field, the nonlinear development of stationary
and traveling crossflow modes is simulated reasonably well up to transition. Wintergerste and Kleiser (1995)
continue this work by using DNS to investigate the breakdown of crossflow vortices in the highly nonlinear

final stages of transition.

CFD Comparisons (PSE) Combining the ability to include nonparallel and nonlinear effects with com-
putationally efficient parabolic marching algorithms, the parabolized stability equations (PSE) developed
by Herbert (1994) have recently been used to successfully model the crossfiow instability. For swept-wing
flows, nonlinear PSE calculations exhibit the disturbance amplitude saturation characteristic of the DLR

and ASU experiments. Wang et al. (1994) investigate both stationary and traveling crossflow waves for the



swept airfoil used in the ASU experiments and predict nonlinear amplitude saturation for both tyvpes of
disturbances. It is suggested that the interaction hetween the stationary and traveling waves is an important
aspect of the transition process.

Within the last year, the PSE have heen used at ASU to model the growth and development of the
stationary crossflow wave with remarkable precision. Using the experimental data of Reibert (1996) to
guide the initial conditions, Hayvnes and Reed (1996) arc able to accurately predict the nonlinear amplitude
saturation and model the detailed structure and evolution of the stationary crossflow wave. An interesting
discovery of Haynes (1996) is a hyper-sensitivity to seemingly negligible streamline and body curvature in

the ASU experiments.

3 Recent Results

The preceding section briefly summarizes the tmportant findings of the 1990s and lays the foundation for
understanding the current state of knowledge related to the crossflow instability. Building on that foundation,
this section presents a more detailed review of the last 18 months. In the interest of brevity, the focus will
shift exclusively to the ASU experiments of Saric and co-workers and computations of Reed and co-workers.

The reader is referred to Bippes (1997) for a more detailed review of recent DLR and other European work.

3.1 The ASU Experiment

The ASU crossflow experiments are conducted in the Arizona State University Unsteady Wind Tunnel—a
low-speed, low-turbulence, closed-circuit facility in which the stability and transition of laminar boundary
lavers are studied (Saric 1992a). The NLF(2)-0415 airfoil model (Somers and Horstinann 1983) is mounted
vertically in the 1.4 m x 1.4 m x 4.9 m test section. Floor and ceiling contours installed in the test section
produce an infinite-span swept-wing flow (figure 1). With a 45° sweep and a —4° angle of attack, the
favorable pressure gradient produces considerable crossflow while suppressing T-S modes (figure 2).

The aluminum surface of the NLF(2)-0415 is hand polished to a (0.25 pm rms finish so that even micron-
sized artificial roughness elements are well above the background roughness level. Detailed hot-wire mea-
surements within the boundary layer provide two-dimensional maps of the stationary disturbance structure,

while spectral techniques are used to identify and follow specific stationary modes.



3.2 Nonlinear Interaction and Amplitude Saturation
3.2.1 Natural Roughness

In the absence of artificial surface roughness. the naturally: oceurring stationary crossflow waves are nonuni-
form in span due to submicron surface irregularities near the leading edge. This is shown in figure 3. which
displays a contour plot of the normalized boundary-laver velocity at x/¢ = 0.45 for Re. = 3.0 x 10°. The
figure shows the streamwise velocity w /U, in the (Y, 2) plane. The flow is toward the reader (i.e., the observer
18 l()()kiné upstream into the oncoming bhoundary-layer flow), and the stationary vortices are turning in the
right-handed sense. The velocity contours are constructed from 100 mean-flow boundary-layer profiles each
separated by 1 mun in span. It is important to note that the wave-like structure of figure 3 represents the
integrated effect of the weak stationary vortices on the streamwise velocity.

Figure 3 displays a dominant feature at a 12 mm spanwise spacing, which is approximately the most
amplified stationary wavelength according to linear theory. At the same time, the richness in the spectral
content is evident and indicates nonlinear interaction among many modes. This is typical of all the early
experiments (Miiller and Bippes 1989; Dagenhart et al. 1989, 1990; Bippes and Nitschke-Kowsky 1990;
Bippes et al. 1991).

3.2.2 Critical Forcing

The initial conditions are controlled by applying a full-span array of & = 6 pum roughness elements at
x/c = 0.023. The spanwise spacing of the elements is 12 mm, corresponding to the naturally occurring
most-amplified wavelength. Figure 4 shows the streamwise velocity contour with the roughness installed.
The dominance of the 12 mm mode is striking, and allows a direct calculation of the stationary disturbance
amplitude (sce Reibert et al. 1996 for a description of the technique).

Figure 5 compares the experimental amplification factor (“N-factor”) for the 12 mm roughness forcing
with the predictions of the Orr-Sommerfeld equation (OSE), the linear parabolized stability equations, and
the full nonlincar parabolized stability equations. All computational results are provided by Haynes (1996).
The saturation phenomenon is clearly evident, and can be quantified. The early growth shows excellent
agreement with linear PSE, however strong nonlinear effects develop well before transition at (z/c). = 0.52.
The importance of nonparallel effects is indicated by the failure of traditional linear stability theory (OSE)
to accurately predict the growth even in the linear range. When nonlinearity is added, the agreement is

remarkable over the entire measurement region and all aspects of the growth are predicted. This is explained
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in maore detail in Reibert et al. (1996), Reibert (1996), and Havnes (1996).

The outstanding agreement shown in figure 3 results from the inclusion of curvature in the compntations,
without which the disturbance growth is significantly overpredicted. The sensitivity to very weak curvature
is due to the strong stabilizing Gortler effect with convex curvature (Benmalek and Sarie 1991). This is
the reason for the disagreement between the linear experiments of Radeztsky et al. (1994) and lincar theory

without curvature. More information on the sensitivity to curvature can be found in Hayvnes (1996).

3.2.3 Multiple-Mode Crossflow Waves

Multiple-mode crossflow waves are produced by increasing the space between the roughness clements. Fig-
ure 6 shows the streamwise velocity contour obtained with a roughness spacing of 36 mmm. The primary struc-
tures are 36 mm apart corresponding to the roughness spacing. In addition, superharmonics are present at
integer multiples of the primary wavenumber. This is clearly indicated by the power spectral density (PSD)
plotted in figure 7, which displays amplified modes with wavelengths of 36 mn:, 18 mm, 12 mm, 9 mm,
7.2 mm, 6 mm, 5.1 mm, 4.5 mm, and 4 mm. The presence of this roughness-induced harmonic sequence
indicates that the stationary crossflow pattern is not predetermined by external flow conditions, but. can be

completely controlled by the surface characteristics.

3.3 Distributed Roughness and the Importance of Spanwise Spacing

Two important observations concerning the long-wavelength (A; = 36 mm) data of Reibert ct al. (1996) are:
1. Unstable waves occur only at integer multiples of the primary disturbance wavenumber, and
2. No subharmonic disturbances are destabilized.

In other words, spacing the roughness elements 36 mm apart excites disturbances with spanwise wavelengths
of 36 mm, 18 mm, 12 mm, 9 mm, etc., but does not produce any unstable waves with “intermediate”
wavelengths or with wavelengths greater than 36 mm.

Following this lead, the Carrillo (1996) investigates the effects of distributed roughness whose primary dis-
turbance wavenumber does not contain a harmonic at A; = 12 mm (the most unstable wavelength according

to linear theory).
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3.3.1 Nongcritical Forcing

The harmonic nature of the roughness-induced stationary crosstlow disturbance is confirmed by changing the
fundamental disturbance wavelengtl (i.c., the roughness spacing) to 18 mum. Figure 8 shows the streamnwise
velocity contowrs at a/e = 0.45 and Re, = 2.4 x 10% for this configuration. The corresponding PSID is shown
in figure 9.

The velocity contours clearly show the presence of the 18 min and 9 unn wavelength, and the PSD confirms
that the 18 mm forcing has produced the sequence of harmonics at A, = 18 mnw. 9 mm. 6 mn, ete. The most
important feature of ticure 9. however, is that the lincarly most unstable disturbance (N = 12 mim) has been
completely suppressed. Morcover (and consistent, with all previous results), no subharmonie disturbances aye

observed,

3.3.2 Subcritical Forcing

The 18 mimn forcing case proves that an appropriately designed roughness configuration can, in fact, inhibit
the growth of the (naturally occurring) most-unstable disturbance. Unfortunately, the transition location
remains relatively unchanged due to the nonlinear interaction between the A; = 18 mm and the Ay = 9 mm
modes.

The disturbance field changes remarkably, however, when the roughness spacing is reduced to inhibit the
growth of all disturbances whose wavelength is greater than that of the linearly most unstable disturbance.
Figures 10 and 11 show the streamwise velocity contours for 8 mm spaced roughness at x/c = 0.30 and
x/c = 0.60, respectively. The corresponding PSD are shown in figures 12 and 13. These data clearly indicate
that the disturbance is initially dominated by the A, = 8 mm mode, yet transforms to a “broad-band”
disturbance downstream.

The broad-band nature of the disturbance for large z/c¢ (figure 13) indicates that the long-wavelength
disturbances are not subharmonics of the fundamental (A, = 8 mm) instability. Instead, this indicates broad-
band growth of the “background” disturbances, which are only observed once the otherwise dominating
fundamental mode decays. This is clearly indicated in figure 14, which compares the total disturbance
amplitude to that of the A, = 8 mm mode as a function of chord position. As the A, = 8 mm mode decays
for z/c > 0.30, the long-wavelength, broad-band disturbances become unstable so that the total disturbance

energy increases for z/¢ > 0.50.
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3.3.3 Transition Location

The most remarkable result obtained from the suberitical roughness spacing is the dramatic affect on tran-
sition location.  In the absence of artificial roughness, transition occurs near the pressure minimum af
i =001 for e, =24 x 10", Adding & = 6 yun roughness with a spanwise spacing equal to (or a multiple
of 1 the wavelength of the lincarly most unstable wave (A; = 12 mm) moves transition forward to rfe < 0.52.
However, the suberitical forcing at 8 mun spanwise spacing actually delays transition beyond the pressure

manimum and onto the trailing-edge flap at x/c = 0.80.

4 Conclusions

Boundary-layer transition in three-dimensional flows is a complicated process involving complex geome-
tries, multiple instability mechanisms, and nonlinear interactions. Yet significant progress has been recently
made toward understanding the stability and transition characteristics of swept-wing flows. Concerning the

crossflow problem. the past seven years have produced several important discoveries including:
e Development of instrumentation that can be applied to the Hight-test environment.
e Application of POD methods to interpret wind-tunnel and flight-test transition data.

e Effect of environmental conditions in determining the relative importance of stationary and traveling

waves.
¢ Existence of a secondary instability causing local transition in stationary-crossflow-dominated flows.
¢ Sensitivity of the stationary disturbance to leading-edge surface roughness.

e Importance of nonlinear effects and modal interaction.

e Development of nonlinear PSE codes to predict all aspects of stationary disturbance growth.

o Sensitivity of stationary wave growth to very weak convex curvature.

e Use of artificial roughness to control the disturbance wavenumber spectrum and delay transition.

Three-dimensional boundary-layer stability is still far from being completely explained. Important factors

such as receptivity—the process by which external disturbances enter the boundary layer and create the

initial conditions for an instability—are still not well understood. Yet in spite of th se shortcomings, careful

13



experiments and accurate computations have resulted in significant progress toward nnderscanding, a difficult

problem.
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Figure 1: NLF(2)-0415 airfoil and wall liners removed from the Unsteady Wind Tunnel test section.
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Figure 2: Unswept NLF(2)-0415 airfoil contour and theoretical upper-surface free-air C,, for a = —4°. The
C, is computed with the NASA Langley code MCARF.
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Figure 3: Streamwise velocity contours at z/c = 0.45, Re. = 3.0 x 10°. No artificial roughness.
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Figure 4: Streamwise velocity contours at r/c = 0.45, Re, = 2.4 X 10%. A full-span array of k¥ = 6 um
roughness elenients with 12 mm spanwise spacing is at z/c = 0.023.
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Figure 5: Measured and theoretical N-factors for the conditions of figure 4. All theoretical calculations
include curvature.
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Figure 6: Streamwise velocity contours at z/c = 0.45, Re. = 2.4 x 105, A full-span array of k = 6 um
roughness elements with 36 mm spanwise spacing is at x/c = 0.023.
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Figure 7: FFT-based power spectral density at ¥ = 0.9 mm for the conditions of figurc 6.
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Figure 8: Streamwise velocity contours at z/c = 0.45, Re, = 2.4 x 10%. A full-span array of ¥k = 6 um
roughness elements with 18 mm spanwise spacing is at z/c = 0.023.
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Figure 9: FFT-based power spectral density at Y = 0.85 mm for the conditions of figure 8.
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Figure 10: Streamwise velocity contours at z/c = 0.30, Re. = 2.4 x 10%. A full-span array of & = 6 um
roughness elements with 8 mm spanwise spacing is at z/c = 0.023.
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Figure 11: Streamwise velocity contours at x/c = 0.60, Re. = 2.4 x 10%. A full-span array of k = 6 um
roughness clements with 8 mm spanwise spacing is at x/c¢ = 0.023.
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Figure 12: FFT power spectral density at ¥ = 0.85 mm for the conditions of figure 10.
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Figure 13: FFT power spectral density at ¥ = 1.0 mm for the conditions of figure 11.
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Figure 14: Total and single-mode disturbance amplitude and N-factors for Re. = 2.4 x 10%. A full-span
array of k = 6 pm roughness elements with 8 mm spanwise spacing is at z/c = 0.023. N-factor calculations
are relative to the location where the disturbance is first detected.
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