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Project Summary

Bioaerosols have been linked to a wide range of different allergies and respiratory

illnesses. Currently, microorganism culture is the most commonly used method for

exposure assessment. Such culture techniques, however, generally fail to detect between

90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting

airborne microorganisms is essential. In this Phase II proposal, a portable air sampling

device has been developed for the collection of airborne microbial biomass from indoor

(and outdoor) environments. Methods were evaluated for extracting and identifying lipids

that provide information on indoor air microbial biomass, and automation of these

procedures was investigated. Also, techniques to automate the extraction of DNA were

explored.

After investigating many commercially available air samplers, the Portable Air

Sampling Device (PASD) was designed with and then purchased from Graseby GMW

with adaptations made to meet the needs of this project. The PASD was calibrated using

orifice plate calibration standards to determine the air flow (changes in which were

continuously recorded during sample acquisition enabling accurate determination of

sample volume). Initial testing of the air sampler utilized three local businesses where

complaints of respiratory problems had been voiced. Results from these studies showed

that the indoor air in high-complaint areas tended to contain larger viable bacterial

microbial communities that significantly differed in structure from those detected in low-

complaint areas. Also, the Gram negative communities in high-complaint areas typically

experienced higher levels of environmental stress from either toxicity or starvation than

did those from low complaint areas.

The conventional process by which lipids were extracted was both tedious and

time-consuming (requiring at least 24 hours per sample). The automation of this process,

as well as other common extraction procedures, was of great interest. To achieve this

goal, an Automated Solvent Extractor (ASE 200) was purchased. The ASE 200

combines high temperatures and pressures to increase extraction efficiency while reducing

analyst time. Several lipid extraction methods were evaluated and improvements were

made for the extraction of phospholipid fatty acids from pure biomass and environmental

samples (including air); poly 13-hydroxyalkanoates from soil; and polyunsaturated fatty

acids, certain sterols, and lipopolysaccharides from different types of pure biomass. Also

investigated were the extraction of aflatoxins from Aspergillus spp. and mycolic acids

from species of Mycobactermm. In addition, the computer based process of identifying

the fatty acids that allow for characterization of the microbial community was automated.

Finally, attempts were made to extract DNA from environmental samples using the
ASE 200, however these were less efficient than the conventional mechanical extraction

procedures.

In conclusion, the objectives set out in the Phase II proposal were pursued and, in

general, achieved. The portable air sampling device may be used in any indoor air

environment to determine indoor air quality. Automation of lipid (biomarker) extraction

and identification from a wide variety of habitats was developed, improving extraction

efficiency and substantially decreasing turn-around time.



Phase II Final Report

The principal objectives of this Phase II contract were: 1) to adapt or build a portable air

sampling device with which it would be possible to sample the indoor air microbial

community in any given indoor air environment, 2) to automate the extraction and

identification of lipid biomarkers from biomass, 3) using the same technology to automate

the extraction of nucleic acids (DNA) from filters, thereby enabling isolation of both DNA

and lipids from one sample, and 4) to prepare a report of the SBIR Phase II.

Work carried out throughout the project

Objective 1: Air sampler design
Airborne microbial contaminants within indoor air environments are an ever

increasing source of concern in public health and industrial hygiene. Exposure to such

biocontaminants can give rise to large numbers of different health effects including

infectious diseases, allergenic responses, and respiratory problems. Biocontaminants

typically found in indoor air environments include bacteria, fungi, algae, protozoa, and

dust mites. Traditionally, methods employed for monitoring microorganism numbers in

indoor air environments have involved classical culture-based techniques. However, it has

been repeatedly documented that such culture techniques only account for between 0.1-

10% of the total community detectable by direct counting.

A large number of different types of air samplers have been designed for the

collection of airborne biomass. Characterized according to collection methodology, the

major groups are the inertial and the non-inertial samplers. Inertial samplers enable

collection of airborne particles through settling (i.e. gravity), impaction, impinging, and

centrifugation. The majority of inertial samplers are designed for the collection of

undamaged microbial biomass enabling eventual cell culture. As such, with the exception

of the centrifugation technique, the majority of such samplers enable low to mid volume

biomass collection and are of low to mid efficiency. Conversely, non-inertial samplers

employ filtration, electrostatic precipitation, and thermal precipitation, with, for large scale

sampling, filtration being the most widely used method. However, filtration can lead to

cellular damage and non culturability, and as such, is not often used where culturing of

large scale samples is required.

For a successful and comprehensive lipid analysis, relatively large quantities of

biomass are required (approx. 106 bacteria), and as such, a high volume sampling system

was required. We investigated the filtration and centrifugation approaches to sampling.

The filtration device (Portable Air Sampling Device, PASD) was designed to collect
sufficient amounts of biomass from indoor air environments for the characterization of the

microbial community through lipid analysis. Although several commercially available air

samplers were investigated (the standard high volume sampler, the portable tripod

sampler, and the small portable sampler (all Graseby GMW)), each was too loud for use in

occupied space. Consequently, Graseby GMW modified the design of a commercially

available sampler to reduce the noise levels. The final design was for a sampler

approximately 25 inches overall diameter and 24 inches in height (Figure 1C). The

sampler operated off 115 volt AC current at 60 hertz and used approximately 10 amps



runningat maximumflow rate. It couldoperate 24 hours per day and 7 days a week. The

sampler was able to pull air at more than one cubic meter per minute over a glass fiber

filter (GF/D) onto which air particulate matter was loaded. Air volume sampled was

monitored by determining the changes in the pressure drop across the filter; the pressure

drop increased as the volume ofbiomass on the filter increased. In addition, the unit was

modular and enabled samples to be taken at various heights (including the breathing zone)

and/or from air ventilation systems, making it ideal for environments such as buildings or

planes. The muffler system reduced noise levels to under 60 decibels, and with wheels

attached, the sampler was fully and easily portable. Figure IC shows the PASD in an

office setting. This sampler was designed so that it would be easy to set up, required no

observation during the sample collection time, and collected biomass from the air directly

onto filters for simplicity of analysis. Throughout its use, the PASD was calibrated on a

regular basis using orifice plate calibration standards obtained from Graseby GMW to

determine the actual air flow of the sampler in m3/minute.

In order to have a more portable sampler, a Quick Form Air Sampler (Figure 1B)

was also designed that consisted of a hard plastic filtration unit that attached directly to a

common industrial vacuum cleaner. Air is pulled over the plastic attachment where a glass

fiber filter is secured with sample volume determined from pressure drop across the filter.

Provided an industrial vacuum cleaner was easily accessible at the sample site, this was a

substantially smaller sampler than the PASD, however, it does not have any form of sound

muffling and was therefore unsuitable for occupied buildings.

We also investigated the suitability of a Cyclonic Sampler manufactured by Team

Technologies of Newton Upper Falls, Massachusetts. This was a form of inertial sampler.

The unit was smaller than the Graseby GMW filtration sampler, but was still able to

sample at a sufficiently fast rate for subsequent lipid biomarker analysis. To collect an

appropriately sized sample, however, it required centrifugation ofbiomass into 2 liters of

phosphate buffer per sample. As a result, the biomass sample obtained required filtration

to enable successful lipid analysis. This being the case, the filtration device (PASD) was

the most appropriate sampler design and was used throughout the remainder of this

project.

Following construction and adaptation of the PASD, three sites (two office

buildings and one industrial site) were selected for indoor air analysis and sampler

evaluation. To enable comparison with conventional airborne biomass sampling

techniques as well as with all previously published data, an Andersen sampler was used.

Using a vacuum, air was pulled at a known flow rate onto growth media plates suitable for

either bacteria or fungi placed within the Andersen sampler. The media plates were

incubated and counts made to determine the number of culturable microorganisms in the

air.

Air sampler testing:

Several different sites were chosen for sampler testing to enable observation of

differences in contamination due to location. For the purposes of confidentiality, all

sampling sites were designated the letters of the alphabet X, Y, and Z.
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Figure 1: A) ASE 200, B) Quick Volume Air Sampler, C) Portable Air Sampling Device
in an Office Environment



Thefirst building,CompanyX, was20yearsold, hadcarpetedfloors,covered
chairsandseparationpanels,andimproperlymaintainedheatingandair conditioningunits.
Over25 % of the employees at Company X had complained of respiratory problems. Five

offices were selected for air sampling and analyzed for PLFA, 3-OH fatty acids, sterols,

and total culturable heterotrophs content. Company Y also had poorly maintained heating

and air conditioning units as well as more than 20 % of employees complaining of

respiratory illness. Three indoor and three outdoor air samples were taken. Outdoor

samples are taken to ensure quality control, however, such samples also allow outdoor air

contamination to be ruled out of any investigation of indoor air quality. Unlike the

previous office buildings studied, Company Z, a local factory, had well maintained heating

and air conditioning units, and, due to the presence of two different types of machine lines

(with either aqueous based or oil based machine wash fluids), contained both "clean"

(complaint free) or "dirty" (about which there had been complaints) air. Samples were

collected from indoors while the machinery was running (two along machine lines with

"dirty" air, and two along lines with "clean" air). Samples were taken indoors when the

machinery was off(one from each of the machine lines), and outdoor samples were taken

concurrent with the indoor air sampling sessions.

Filters obtained from each of Companies X, Y, and Z were analyzed for PLFA.

The standard method used by the contractor for characterizing the microbial community

involves extraction of total lipidsfrom environmental samples using the modified

Bligh/Dyer solvent system. This solvent system consists of a homogenous solution of

methanol:chloroform:phosphate buffer (2:1:0.8 v/v/v). Samples are extracted in this

solvent for 4 hrs before appropriate volumes of chloroform and nanopure water were

added to give a ratio of 1:1:0.9 (v/v/v) of methanol :chloroform:water. This addition of

solvent resulted in a separation of the extract into organic (chloroform) and aqueous

(water and methanol) layers. To allow these two phases to completely separate, the

sample is allowed to sit undisturbed for an additional 18 hrs. At this point, the lower (lipid

containing) layer is removed and dried by rotary evaporation. The resulting total lipid is

fractionated into neutral lipids, glycolipids, and polar lipids using silicic acid column

chromatography. The phospholipid containing polar lipid fraction is subjected to mild

alkaline methanolysis, transesterifying the fatty acids cleaved from the phospholipids into

methyl esters. These fatty acid methyl esters are then analyzed by GC/MS to give a PLFA

profile that is used to characterize the microbial community. Specific lipids serve to

indicate the presence of a certain species and are biomarkers for that species. Other lipids

are less specific in that their presence is indicative of larger microbe divisions {e.g.

bacteria (Gram-negative, Gram-positive) or fungi }.

Additional tests on the samples taken from Companies X, Y, and Z were done to

determine levels of endotoxins and sterols. Inhalation of endotoxins, measured as 3-

hydroxy fatty acids (3-OH FA), have been shown to cause respiratory disorders. Sterol

analysis gives information on the amount ofmicroeukaryotes (e.g. fungi, algae, protozoa)

present in a sample. As a point of comparison with published sampling and microbial

biomass assessment techniques, total culturable heterotroph analysis (a standard

microorganism counting procedure) was done simultaneously with all air samples taken

using the Andersen sampler.

6



At CompanyX, all five indoorair samplescontainedrelativelysimplemicrobial
communitiescomposedof organismstypicallyfoundin thehumanskinand/orrespiratory
tract. Thesterolandendotoxin(3-OHFA) analysesalsorevealedonly thosesterolsand
3-OHFA commonlyfoundin thehumanflora. Thestandardmicrobiologytechniqueof
total heterotrophcountingof colonyformingunits(c.f.u.)per cubicmeterof air sampled
werealsowithin normallimits for ahealthybuilding(bacteria:approximately102c.f.u./m3
andfungi: approximately101c.f.u./m3),however,culturebasedcountswere 1-2ordersof
magnitudelower thantheamountof bacteriacalculatedfrom PLFA analysis.This
deviationis dueto thefact thatPLFA analysismeasuresall viablebiomass,whereasthe
standardcountingmethodrequiredthemicroorganismsin thesampleto beculturable.
Overall,eachmethodof analysisperformedonair samplesfrom CompanyX indicatea
buildingwithouthighmicrobialcontamination.

Comparedto CompanyX, the levelofbiomassat CompanyY washigh. More
diversemicrobialcommunitieswerefoundinall indoorandoutdoorair samples,although
theindoorair containeddifferentmicrobialcommunitiesasconfirmedby principal
componentsanalysis1(Figures2 and3). TheGramnegativecommunitiesineachof the
indoorair sampleswereexperiencinghighlevelsof stressfrom eithertoxicity or
starvation,but thosein theoutdoorsampleswerenot (Figure4). Thisstresswasmost
likely dueto thedry conditionsindoors,causedbyexcessiveair conditioningandheating,
that causedesiccationof bacteriaresultinginbiomarkersindicativeof environmental
stress.As with CompanyX, total culturableheterotrophcountswereapproximately2-3
ordersof magnitudelessthanthecountsobtainedbyPLFA analysisfor all samplestaken
at CompanyY.

In general,samplestakenfrom the "dirty" air at CompanyZ contained high

relative proportions of Gram negative bacteria (Figure 5a and b) that were in early

stationary growth phase and undergoing low levels of metabolic stress (Figure 6), whereas

those in samples from the "clean" air lines had smaller Gram negative communities (by

approximately 2 orders of magnitude), slower growth rates, and were, in general, not

experiencing as much environmental stress. Shutting down the machine lines resulted in a

significantly decreased amount of biomass (2-3 orders of magnitude less), suggesting that

aerosolization of the machine washing fluids was causing the high bacterial counts.

The community structure of the microbial biomass samples from the "clean" air

were similar to each other and to those of the outdoor air samples. This was not

surprising given that the machine lines were located adjacent to permanently open doors.

As before, total culturable heterotroph counts were consistently approximately 2-3 orders

of magnitude less than those obtained by PLFA analysis. In the initial proposal, it was

reported that culturable microbe (bacteria and fungi) counts of between 200- 12000

colony forming units/cubic meter of air had been reported in the literature. Due to the

high efficiency of filtration sampling and the fact that lipid analysis does not require cell

culture, the bacterial counts at Companies X, Y, and Z tended to be higher.

1Principal Components Analysis (PCA) is built on the assumption that variation implies information. In

PCA, the multivariate data (PLFA profiles) is projected onto a reduced number of dimensions (principal
components), thereby simplifying the data so relationships between sample sets can be easily observed.
Thus, PCA analysis can show which microbial communities are similar.
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Except for Company X, higher levels ofbiomass were detected in areas where

complaints were expressed. In all three Companies, the community structures of high-

complaint areas were distinctly different from those of low-complaint areas (which more

closely resembled the community structure of outdoor air samples). Typically,

microorganisms from "dirty" samples were experiencing higher levels of environmental

stress than were those from "clean" samples. Samples "Clean la" and "Clean 2a" from

company Z were experiencing significantly higher levels of environmental stress possibly

due to dry conditions in that area of the factory..

From this study of Companies X, Y, and Z, it is clear that the PASD was capable

of effectively sampling air for subsequent lipid analysis to provide information on possible

airborne contaminants. Due to the generally low biomass content per cubic meter of air,

obtaining an air sample is not as simple as obtaining a typical environmental sample of soil

or water. Using the PASD, however, an operator has the ability to take an air sample in

any facility, even while it is occupied. As public awareness of problems associated with

airborne biocontaminants increases, the simple, convenient method of indoor air analysis

developed in this project will be able to meet arising needs by characterizing viable

biomass in polluted air.

Objective Two:
Accelerated solvent extraction

A primary focus of the work performed during the Phase II contract has been the

automated and improved extraction of PLFA and other lipids from both air filters and

other environmental matrices. Generally, the wet chemistry required for lipid analysis is

slow and labor intensive, often taking up to 24 hours for an initial lipid extraction.

Pressurized accelerated hot solvent extraction offered the possibility of significantly

improving the speed and extraction efficiency of lipid analysis. The higher temperature

increases the extraction kinetics while high pressure keeps solvents below their boiling

points, thereby enabling safe extractions. The accelerated hot solvent extractor (ASE
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200) was developed by Dionex Corporation (P.O. Box 3603, Sunnyvale, CA 94088-9988)

for the extraction of compounds such as PCBs and PAHs (Figure 1A). Whereas

supercritical fluid extraction (SFE) of polar analytes is a complex, time-consuming and

matrix-dependent procedure, the ASE offered the possibility of increasing the automation,

speed, and efficiency of lipid extraction without such complications. The ASE 200 uses

elevated temperatures and pressures to increase recovery and decrease extraction time.

Solvent usage is also reduced because of the increased solute capability of heated solvents.

The ASE 200 is capable of performing up to 24 extractions sequentially and is fully

programmable, allowing samples to be set up and extractions to take place overnight.

In a typical extraction, samples are loaded into stainless steel extraction cells, filled

with the solvent of interest, heated, and pressurized. These conditions are maintained for

a predetermined amount of time (typically 5-25 rain) before the solvent is purged to a

collection vial. If desired, this static cycle may be repeated. At this point, the collection

vial containing the total lipid is removed from the ASE 200. This basic extraction

procedure is the same for whatever microbial component is under analysis. However, to

optimize the extraction efficiency for a large number of different lipids, the solvent, time,

pressure, temperature and static cycle number parameters were evaluated. Investigations

of improved extraction for each biomarker are presented below.

Phospholipid fatty acids

Initial comparisons between the conventional Bligh and Dyer and the ASE 200

extractions were carried out using pure filter borne biomass. A wide range of different

solvent extraction parameters were tested. Parameters investigated included solvent

system, temperature, extraction time, and static cycle number. The pure biomass used

included vegetative cells {bacterial biomass (Gram negative Escherichia coli, Gram

positive Staphylococcus aureus, Actinomycete (Mycobacteriumfortuitum), and yeast } and

sporulated biomass {fungal spores (Aspergillus niger) and bacterial spores (Bacillus

subtilis) }.

In general, two solvent systems were used. The specific extraction conditions for

pure biomass are listed in Table 1.

The pure biomass studies were performed to determine the most efficient

extraction procedure for the extraction of lipids from environmental samples. As such,

only the most efficient extraction parameters determined from these studies were

investigated with the environmental samples (Table 2). Figure 7 is a schematic diagram of

the accelerated solvent extraction system used in this study. All extraction vessels were

solvent rinsed in acetone prior to use to remove any lipid contaminants. The outlet end of

the cell was then lined with a chloroform rinsed cellulose filter, stopping particulates from

entering the system. Samples were loaded into the cells and, where necessary, excess

space was filled with muffle furnace sterilized sand (Ottawa sand, 20-30 mesh, Fisher

Scientific, Atlanta, GA 30091), minimizing the solvent volume required. After loading the

cell into the ASE system, the cell was filled with extraction solvent by opening the pump

valve, following which the cell was pressurized, achieving a high pressure seal at both

ends.
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Table 1: Extraction conditions investi[ated using the ASE 200 for pure biomass

Biomass Temperature Time Cycle Solvent systems

(°C) (min)

E. coli 80 and 120 5, 10, 15 1, 2, 3 CHCl3:Methanol (1:2 v/v)

Methanol:CHCl3:PO4 buffer (2:1:0.8 v/v/v)

1, 2 CHCl3:Methanol (1:2 v/v)

Methanol:CHCl3:PO4 buffer (2:1:0.8 v/v/v)

1, 2 CHCl3:Methanol (1:2 v/v)

Methanol:CHC13:PO4 buffer (2:1:0.8 v/v/v)

1, 2 Methanol:CHCl3:PO4 buffer

1, 2 CHCl3:Methanol (1:2 v/v)

Methanol:CHCl3:PO4 buffer (2:1:0.8 v/v/v)

1, 2 CHCi3:Methanol (1:2 v/v)

Methanol:CHCI3:PO4 buffer (2:1:0.8 v/v/v)

S. aureus 80 and 120 5, 10, 15

M. fortuitum 80 and 120 5, 10, 15

B. subnlis 80 and 120 5, 10, 15

A. niger 80 and 120 5, 10, 15

S.cerevisiae 80 and 120 5, 10, 15

Sample cell heating (under constant pressure) followed, and when the appropriate

temperature was reached, the static extraction occurred. The extract was then transferred

into the sealed sample vial after displacement with fresh solvent. Following this, further

static cycles were performed where necessary. After the final static cycle extractions, the

cell was purged with nitrogen for 3 minutes finishing the extraction process. The solvent

was then rinsed through the system before the ASE 200 automatically loaded the next

sample and collection vial. Where phosphate buffer was used in the first phase extraction

solvent, an appropriate volume of chloroform and deionized water was added to give the

correct final ratio (chloroform:methanol:phosphate buffer/water; 1:1:0.9 v/v/v) to form

the two phases. The chloroform layer was transferred into a new test tube and

evaporated under nitrogen at 37 °C. Where no phosphate buffer was used, the methanol :

chloroform (2:1 v/v) was evaporated directly under nitrogen prior to fractionation.

Although using the phosphate buffer added another step to the extraction, chloroform

evaporates substantially faster than 2:1 MeOH:CHCI3 and, as such, the time added to the

sample preparation was inconsequential.

Solvent

Oven
Y

Nitrogen

Extrac_on

c_l

Collection vial

Figure 7: Schematic diagram of the ASE 200
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Using the ASE 200, maximum extraction of PLFA from pure biomass was

achieved with the methanol : chloroform : phosphate buffer (2:1:0.8 v/v/v) solvent system

with two 15 minute static cycles at either 80 or 120 °C. Figure 8 shows the maximum

recovery of PLFA using the ASE 200 as a percentage of the PLFA extracted using the

modified Bligh and Dyer (defined as100%). Although there was no significant difference

between extraction efficiencies obtained using the modified Bligh and Dyer or the ASE

200 for the vegetative biomass, PLFA was extracted with far higher efficiency from the

spore forms analyzed (fungal and bacterial; p<0.05). Bacillus spp. spores can contain

higher relative proportions of certain terminally branched saturate PLFA than do the

corresponding vegetative cells (14) and the ASE 200 enabled recovery of higher relative

proportions of terminally branched saturate PLFA (specifically i l 5:0 and i l 7:0) than were

extracted using the modified Bligh and Dyer extraction.

400

350

.__

__ 300

>. 250

OO 200

"_ 150

C

U_ 100

_. 50

E. coli S.aureus M. fortuitum B, subtilis
(spores)

II:3Modified BlightDyer BLASE 200 1 Biomass

A. niger S, cerevisceae
(spores)

Figure 8: Extraction of phospholipid fatty acids from pure biomass samples using

accelerated solvent extraction expressed as a percentage of extraction using the modified

Bligh and Dyer procedure (100%)

Following comparison of different extraction parameters, it was evident that

solvent system, time, and static cycle number had the greatest influence on extraction

efficiency. Generally, the methanol : chloroform : phosphate buffer (2:1:0.8 v/v/v)

solvent system gave more consistent and higher recoveries of PLFA than did the

methanol : chloroform (2:1 v/v) solvent system. Indeed, compared to extraction

efficiencies obtained using the methanol:chloroform:phosphate buffer system the

extraction efficiencies obtained using 2:1 methanol:chloroform were low (data not

shown). Principal components analysis (PCA) enabled comparison of the multi-variate

PLFA profiles obtained following the different extraction procedures for each type of

biomass. Independent of whether the modified Bligh and Dyer or the accelerated solvent

extraction was used, there was no distinct trend in the extraction efficiencies achieved for

specific PLFA when using the methanol : chloroform : phosphate buffer solvent system.

However, where the solvent system contained only 2:1 methanol:chloroform, a decreased

relative proportion of the PLFA 18:1 e)9c was extracted from the S. cerevisiae while an

increased relative proportion of the PLFA 10mel8:0 was extracted from the M. fl_rtuitum.
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Where the temperature of the accelerated solvent extraction was too high ( i. e.

above 120 °C), using either the methanol:chloroform (2:1 v/v) or the methanol :

chloroform : phosphate buffer (2:1:0.8 v/v/v) solvent system resulted in breakdown of

the extraction cell and poor PLFA recovery independent of static cycle number (data not

shown). Following extraction of PLFA from pure biomass, it was necessary to further

test the ASE 200 using environmental samples. The common environmental matrices of

air, water, and soil were chosen for extraction efficiency analysis. All of the samples

underwent PLFA analysis with extraction by conventional Bligh/Dyer and ASE

Bligh/Dyer with the following extraction conditions (Table 2).

Table 2: Extraction conditions investigated using the ASE in the environmental

sample studies

Sample type Temperature Static Cycle Solvent systems

Airborne
biomass

Water

biomass

C C )
80

number (15 min)

2,3

80 and 120 2, 3

Soil biomass 80 and 120 2, 3

CHCI3:Methanol (1:2 v/v)

Methanol:CHCl3:P04 buffer (2:1:0.8 v/v/v)

CHC13:Methanol (1:2 v/v)

Methanol:C HC13: PO4 buffer (2:1:0.8 v/v/v)
CHCls:Methanol (1:2 v/v)

Methanol:CHCis: PO4 buffer (2:1:0.8 v/v/v)

Compared to the modified Bligh and Dyer, a greater amount of PLFA was

extracted from soil using the ASE 200, however, the increase was not significant (Figure

9; p>0.05). Also, there was no significant difference between the efficiency of the Bligh

and Dyer and the ASE 200 for PLFA extractions from water samples (Figure 9), however,

using the ASE a significantly greater (p<0.05) amount of PLFA was extracted from the

air biomass sample.
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Environmental sample
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FIGURE 9: Extraction of phospholipid fatty acids from air, soil, and water samples

using accelerated solvent extraction expressed as a percentage of extraction using the

modified Bligh and Dyer procedure (100 %)



Although the percentage recovery of PLFA for both the air and soil samples increased

with the extra 15 minute static cycle, these increases were not significant (Figure 9;

p>0.05). The increase in the recovery of PLFA was probably due to the rinse and purge

procedures within the ASE 200, both of which displaced solvent extractant from the

samples into the collection vials. During the conventional modified Bligh and Dyer

procedure, no such solvent displacement is performed.

Extraction recoveries at 120 °C were generally lower, although not significantly so,

than those at 80 °C. It is likely that some decomposition of the PLFA was occurring at

this higher temperature. Due to comparatively low recoveries of PLFA from airborne

biomass samples in preliminary studies at 120 °C, additional studies were not performed at

this temperature for this type ofbiomass.

To further investigate any impact on the types and amounts of PLFA recovered

when using the ASE 200 (at either 80 or 120 °C with 2 or 3 static cycles) compared to the

modified Bligh and Dyer, a PCA was performed on the PLFA profiles obtained. Although

there were some out-lying profiles for both the soil and water samples (following either

Bligh and Dyer or ASE extractions), there was no significant difference in the amounts of

PLFA obtained dependent on extraction procedure (data not shown). Conversely, the

PLFA profiles from the air samples exhibited clustering (Figure 10a). Compared to the

profiles obtained using the Bligh and Dyer extraction, the PLFA profiles obtained

following extraction using the ASE at 80°C contained larger amounts of typically

eukaryote type PLFA (Fig 10b). The first principal component accounted for 97% of the

variance and the second, 1. 1%. The first principal component was most heavily

influenced by the PLFA 18:3c03, 18: lc09c, and 16:0, all of which are more commonly

present in eukaryote biomass (Fig. 10b). The second principal component was most

heavily influenced by 18:0, 18: l_7t and 18: k07c. For the remainder of the PLFA, there

was no difference in the relative proportion extracted using either procedure. We

concluded that, compared with the Bligh and Dyer extraction, ASE extraction

procedures on predominantly prokaryote samples should have no impact on the

extraction efficiencies of the different PLFA. However, the accelerated solvent extraction

was substantially more efficient than the Bligh and Dyer for a predominantly eukaryote

sample, and this will have an impact upon community structure analysis of such samples.

In conclusion, it is clear that using a methanol : chloroform : phosphate buffer

system solvent system (1:2:0.8 v/v/v) at 80°C and 1200 psi, the ASE 200 enabled rapid

extraction of phospholipids from both pure biomass and environmental samples. The

accelerated solvent extraction required substantially less materials, labor and time than did

the conventional modified Bligh and Dyer extraction. Compared to the modified Bligh

and Dyer extraction, PLFA yields obtained using the pressurized hot solvent extraction

were not significantly different for the bacteria, yeast, or water samples but were

significantly higher (p<0.05) in the case of the bacterial and fungai spores and the airborne

biomass.
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FIGURE 10: (A) A scatter plot of the scores from a principal components analysis of the

PLFA profiles from Figure 3 (from airborne biomass). Principal component 1 described

98 % of the variance, and principal component 2, 1.1%. (B) A scatter plot of the

coefficient of loading derived from the principal components analysis in A.

Computer automated identification of PLFA

A major time-consuming portion of the lipid analysis is the identification of

individual fatty acid biomarkers. Computer automation of this process was achieved by

developing a retention time calibration table from fatty acid standards. The basic

algorithm for any peak identification in a uni-dimensional analysis technique is based on
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retention time matching. In order for these algorithms to operate successfully, the

retention times of the calibration table (standards) must closely agree with those obtained

from the sample. There are a number of instrumental and sample related parameters which

can cause these values to "wander" or vary. In order to correct for this, a "window" is

defined in which the peak's retention time will fall 95% of the time. This works well for

systems where compounds of interest are well separated and result in comparable signal

levels. When either large numbers of components or widely varying signal levels are

encountered, these algorithms fail to accurately identify components of the mixture. In the

case of a large number of components, this happens when multiple peaks occur within the

specified retention window. This misidentification can be remedied by reducing the

retention time window, but this reduction results in large numbers of components not

being identified or being misidentified because of retention time "wander". When widely

varying signal levels are encountered identification problems result from retention time

shifts due to column overload conditions (non-linear adsorption isotherms). In the case of

the PLFA analyses, both situations contribute to the difficulty in peak identification.

In order to correct for the wander in retention time and more correctly identify

overloaded peaks, the retention times must be standardized. For most GC situations, a

single time reference is utilized. However, when large numbers of closely eluting

components must be identified (as with PLFA analyses) such standardization does

not result in sufficiently reproducible retention times to allow the required narrow

retention time windows to be utilized. Therefore, additional corrections must be applied.

In order to accurately adjust retention times over the full elution window, a retention time

standard containing the normal saturates consisting of chain lengths from 12 to 24 is

analyzed. An Equivalent Chain Length (ECL) value, or retention index, is then utilized to

calculate a linear conversion factor for all peaks which have retention times between those

of the normal saturates. Once the conversion factors have been calculated

for each region of the elution window, they can be applied to the chromatogram. Since

the Chemstation software has an extremely robust retention time matching/peak

identification algorithm, it was employed for the actual identifications. However, since it

is much more accurate to generate retention times from ECLs than vice versa, it was

decided that the most logical approach would be to convert a standard table of ECLs into

their equivalent retention times and then utilize the existing identification algorithms.
Standard ECL values were determined for all PLFAs of interest and entered into the

Chemstation's calibration table. For each individual sample these values were converted

to retention times using the calculated conversion factors. Major changes in

environmental, column, and instrumental parameters were accounted for in this manner.

Since most of the retention times are relatively stable over a 6-8 hr period, a retention time

standard mixture is required only every 5-6 analyses. Any slight changes in retention time

over this period can usually be compensated for by using the internal standard (19:0

normal saturate) as a time reference in the standard identification algorithm. Employing

the outlined method, very small retention time windows (relative windows as small as +/-

0.6°,4) may be used and very complicated samples can be accurately identified. At this

point, approximately 95% of all fatty acids in a complex environmental sample will be

correctly identified. Subsequently, this computerized identification has been incorporated

into our PLFA analysis.
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becorrectlyidentified. Subsequently,thiscomputerizedidentificationhasbeen
incorporatedintoourPLFAanalysis.
Poly unsaturated fatty acids (PUFA)

From the results of the separate PLFA extraction efficiencies above, there seemed

to be a possibility of a discrepancy between extraction efficiencies for the bacterial type

of PLFA (the majority of which have one double bond) and the eukaryote type PLFA (the

majority of which have 2 or more double bonds and are therefore known as polyenoic

unsaturated fatty acids). As such, we investigated the extraction efficiency of accelerated

solvent extraction for these specific PLFA.

Polyenoic unsaturated fatty acids (PUFA) are eukaryotic components of PLFA.

PUFA may also exhibit significant branching of the carbon chain. Using UIva spp., a

marine algae containing relatively high proportions of PUFA, a study was conducted to

determine the best method of extraction of PUFA by the ASE 200 varying the solvent,

temperature, and number of static cycles (15 minutes each). Figure 11 shows the

extraction efficiencies obtained for Ulva PLFA.
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FIGURE 11: Extraction of fatty acids from Ulva using conventional and ASE

methodologies. N=3, error bars represent standard deviation. ASE Bligh/Dyer = ASE 200

with Bligh/Dyer solvents and ASE Methanol:Chloroform = ASE 200 with 2:1
Methanol:Chloroform

As is apparent in Figure 11, the best method of extracting PLFA from Ulva was

the ASE Bligh/Dyer at 120°C using 3 cycles. However, to determine which method was

most efficient for extracting the PUFA, it was necessary to further subdivide the PLFA

findings above into the major catagories of PLFA. Figure 12 shows these major

catagories of PLFA.
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From Figure 12, it was clear that the most efficient extraction of PUFA from UIva

was obtained using the ASE Bligh/Dyer at 120°C with 3-15 minute cycles. It is also

clear, however, extraction efficiency is at least partly dependent on the nature of the

substrate and the target molecule. The total PLFA from environmental samples were

more efficiently extracted at 80°C, whereas PUFA were more efficiently extracted at

120°C.

Sterols extraction

Sterols are typically found in the glycolipid and neutral lipid fractions of the total

lipid extract obtained following the Bligh/Dyer extraction and are an excellent measure

of the microeukaryotes (fungi, algae, protozoa, etc.) found in the microbial community.

Two important sterols have been studied in Phase II: 1) ergosterol, a common fungal

sterol, and 2) isofucosterol, found in algae. Both sterols have great potential as

diagnostic markers for biomass contamination, whether in indoor air or in marine
environments.

Ergosterol is the primary component of fungi cell walls and, as such, has been

used as an indicator of fungi present in many environmental matrices including air, soil,

and grain. Fungal propagules represent one of the major forms of indoor air

biocontamination. To determine the efficiency of using the ASE 200 to extract

ergosterol from fungal biomass, experiments were performed comparing the established

extraction procedure for ergosterol (methanolic saponification) with several ASE

methods.

Because the majority of airborne fungi are present in spore rather than mycelial

form, spores (A,_pergillus niger) were analyzed during this study. The spores were

cultivated, harvested, and then loaded onto glass fiber filters. Extractions of ergosterol



andLarsson,L. J. Chromatography, 666:77-84 (1995)). Initial quantification of

ergosterol was done by High Performance Liquid Chromatography (HPLC). Our early

results indicated that the fractionation performed to separate lipid groups resulted in a

substantial loss of ergosterol (into the glycolipid fraction), and consequently, this

fractionation step was not used. Figure 13 shows the ergosterol extraction efficiencies

(100% recovery was defined as that of the methanolic saponification). No ergosterol was

extracted using hexane as the solvent.
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Subsequent inclusion of the fractionation step decreased the total amount of

ergosterol detected, but not the relative extraction efficiency among the four methods
studied.
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Initial ergosterol detection was done using HPLC with identification made by

comparing retention times to that of a known ergosterol standard. Adaptation of analysis

to GC/MS enabled lower limits of detection and definitive identification by mass

spectrometry. Ergosterol was extracted from A. niger as before using ASE Methanol,

ASE Bligh/Dyer, and KOH saponification. Half of these samples were fractionated while
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theotherswereanalyzedin total lipid. All ASE 200samplesweremethylated,andthenall
sampleswerederivatizedby theadditionoftrimethyisilyl groupto eachhydroxylposition
to facilitateanalysisbyGC.
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bars represent the standard deviations of the mean.

Figure 15 showed that ASE Methanol and ASE Bligh/Dyer were the most

efficient, most consistent methods of analysis. As previously, it was also apparent that

fractionation negatively impacted the extraction efficiency, significantly increasing the

standard deviation for the data and should, if possible, be omitted.

From these results, ASE Methanol provided the greatest extraction efficiency,

followed by ASE Bligh/Dyer, KOH saponification, and conventional Bligh Dyer. It can be

concluded that when analysis is simply for sterols, ASE Methanol is the extraction method

of choice, but when PLFA is also required, ASE Bligh/Dyer followed by fractionation

(saving the glycolipid and neutral lipid for ergosterol analysis and the polar lipid for

PLFA) is the preferred technique.

To determine efficiency of recovery of ergosterol from airborne biomass samples,

outdoor air samples were collected for 36 hours in triplicate and analyzed using KOH

saponification, ASE Methanol, and ASE Biigh/Dyer techniques. All three extraction

techniques were comparable in efficiency, but, because of erratic and low concentrations

of fungi in the air in mid-autumn/winter, the standard deviations for ergosterol extracted

from each filter was very large. Thus, no significant conclusions could be made (data not

shown).
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Isofucosterolisanalgalsterolfoundin Enteromorpha Linza. Extraction of

isofucosterol was performed using the following conditions: ASE Bligh Dyer, ASE

methanol:chloroform (1:1 v/v), ASE methanol:chloroform (2:1 v/v), hand extraction

methanol:chloroform (1 : lv/v), and hand extraction methanol:chloroform (2:1 v/v).
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FIGURE 16: Amount ofisofucosterol extracted from Enteromorpha Linza

As is apparent from Figure 16, the most consistent and efficient method for

extracting isofucosterol from Enteromorpha was the ASE 200 (120°C, 3-cycles) with

methanol:chloroform (2:1 v/v) as the solvent system. ASE Bligh/Dyer provided the next

most efficient extraction, but the standard deviation was much greater. Figure 16 also

shows that the ASE methods extract more isofucosteroi per lag than the traditional, time-

consuming hand extraction (requiting 30 minutes of sonication and then an 18 hour

heating in a water bath). The dramatic reduction in analysis time and improvement in

extraction efficiency makes the ASE 200 extremely appealing for the extraction of

isofucosterol from Enteromorpha Linza.

Poly 13- Hydroxyalkanoic Acid (glycolipid)

Another major lipid group referred to in our initial Phase II proposal was the

glycolipids from which fraction the poly 13- hydroxyalkanoic acids are obtained. When

essential nutrients required in the formation of bacterial membrane lipids are lacking from

the environment, bacteria cannot divide, formation of PLFA ceases, and instead, carbon is

stored as poly 13- hydroxyalkanoic acid (PHA). Therefore, analysis of PHA provides

valuable information on the unbalanced growth and nutritional status of the microbial

community. The current limits of detection of PHA are high relative to the amount of

PHA found in a typical sample, so improvements on the extraction of PHA were required.

To compare extraction efficiency of the ASE 200 versus conventional Bligh/Dyer

analysis for PHA, soil samples were obtained from near the contractor's facility. For use

in the ASE 200, samples were thoroughly mixed with diatomaceous earth to remove

excess water. The solvent systems used in the ASE 200 (80°C, 2 cycles) were Bligh/Dyer,
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100%methanol,100%chloroform,and 1:1methanol:chloroformAll extractions were

performed in triplicate and the resulting total lipid fractionated. The glycolipid was saved

and subsequently underwent ethanolysis. Samples were then analyzed by GC/MS.

Results of this analysis are shown in Figure 17.
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FIGURE 17: Extraction of PHA from soil by various methods. Error bars represent the

standard deviation from the mean.

The ASE-methanol and the ASE-chloroform based methods failed to extract any

PHA from the samples, but it is clear that the ASE Bligh/Dyer extraction yielded the

greatest amount of PHA per gram and is the most consistent extraction method. The large

errors (as represented by the standard deviation) can be attributed to the fact that the

amount of PHA extracted was quite low because of limited space in the ASE 200
extraction cells.

Lipopolysaccharides (LPS)

The lipopolysaccharide LPS is one of the most important lipid- types that can be

used for analysis of air biocontamination. Lipopolysaccharides form part of the outer cell

envelope of Gram negative bacteria and can be indicative of airborne endotoxins that

cause a wide variety of clinical symptoms, including respiratory disorders. Usually, the

hydroxy fatty acids present within LPS are extracted from the sample residue following a

conventional Biigh/Dyer extraction. However, given the improved extraction efficiency of

the ASE, it was necessary to determine whether or not extraction with the ASE resulted in

any loss of LPS from the sample residue. Therefore, we compared the LPS extraction

from filter borne air biomass following either ASE Bligtd Dyer or conventional Bligh/Dyer

extractions of PLFA. Airborne biomass was collected on 3 separate filters (to ensure

homogeniety, samples were collected from outdoors). The filters were then cut in 2 and

the conventional Bligh/Dyer extraction or the ASE Bligh/Dyer extractions were carried

out. Following the conventional Bligh and Dyer extraction of filter bound airborne

biomass, the organic layer (containing PLFA) was removed, and the aqueous layer

(including the air filters) was filtered to collect the residue. After the ASE extraction, the
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cells were opened and the filters removed. Acid hydrolysis at 80°C was performed on the

ASE filters and the residue of the conventional Bligh/Dyer to extract the 3-OH fatty acids

present in the lipopolysaccharide. These fatty acids were analyzed by GC/MS and the

results are shown in Figure 18.
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There was no significant difference in extraction efficiency for the ASE Bligh/

Dyer and the conventional Bligh/Dyer, therefore this experiment indicated the ASE 200

does not interfere with the extraction of LPS. Consequently, ASE can be used as an

integral part of any combined PLFA/LPS analysis.

Mycolic Acids

Certain lipid molecules are known to have potential as biomarkers for pathogens

(many of which could be airborne). Mycolic acids are a-branched 13-hydroxy long chain

(60-90 carbons) carboxylic acids that are commonly found in, but not limited to, species of

Mycobacterium. The rapid detection ofmycolic acids could provide a means to detect

pathogens such as Mycobacterium tuberculosis. Due to their size, all analysis ofmycolic

acids was done using high performance liquid chromatography. Unfortunately, the .,

mycolic acids are not easily extractable and require a strong KOH saponification. The

stainless steel fittings of the ASE prevent any use methanolic potassium hydroxide above

0.06% (w/v; pH = 12). As a result, using the ASE 200 did not improve extraction

efficiency or time and was not suitable for the extraction of mycolic acids.

Aflatoxins

Aflatoxins are toxic secondary metabolites and carcinogens produced by a number

of different fungi including Aspergillus spp. These toxins are widespread in food stuffs

(e.g. grain, nuts) but have also been implicated in airborne biomass contamination. Rapid

and sensitive extraction and analysis of these compounds may well be highly beneficial in

any indoor air monitoring program. Sensitive high performance liquid chromatography

(HPLC) detection methods have been developed (Dunne et al., 1993 J. Chromatography,

629:229-235), however, the initial extraction procedures most commonly used are still

very rudimentary. Given the solvent based nature of the extraction procedures, we
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investigatedutilizationof acceleratedsolventextractionandhavecomparedthisaflatoxin
extractionmethodwith thestandardprocedures.All aflatoxindetectionandidentification
wasperformedusingHPLC. Theprincipalfour aflatoxinsfromAspergillusflavus are

aflatoxin B 1, aflatoxin B2, aflatoxin G1, and aflatoxin G2, so named because of the color

(blue or green) that they fluoresce. The focus of this study was the extraction and

detection ofaflatoxins B1, B2, G1, and G2 from a pure strain ofA. flavus (ATCC

11498).

To determine whether the ASE extraction procedure would cause any

deterioration of the afiatoxins, glass fiber filters were prepared that had been spiked with

50 t.tL each of standards of aflatoxins B 1, B2, G1, and G2 of known concentration (1

mg/mL). The spiked filters were extracted using the conventional simple extraction into

chloroform:water (10:1 v/v) (Leitao et al., J. Chromatography, 1988, 435:229); the

conventional Bligh/Dyer extraction; and finally, two ASE based procedures (80°C, 2 static

heat cycles with 1200 psi) in methanol and in the conventional Bligh/Dyer solvent system.

Extracts were then analyzed by HPLC. Extraction efficiencies are shown below.

Detection limits were: B1, 100 ng; B2, 100 pg; G1, 1 ng; and G2, 200 pg.
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Figure 20: Extraction of aflatoxin standards from spiked glass fiber filters (n=3, error bars

represent standard errors of means).

It was clear that the ASE extraction procedures (high temperature and pressure)

did not cause any breakdown of the aflatoxins. To determine the extraction efficiency of

the ASE procedures compared to the conventional procedure, the extractions were

repeated using pure fungal biomass rather than standards. A known aflatoxin producing

strain of A_pergillusflavus was used, with A. niger as the negative control. Using the

conventional procedure, pure biomass (spores) were covered with 10 mL chloroform and

1 mL nanopure water in a test tube. The test tubes were sealed with PTFE caps and

sonicated thirty minutes. The chloroform layer was removed and 2 additional 1 mL
washes of chloroform were combined with the initial extract. The chloroform was then

evaporated off under a stream of nitrogen. The samples were transferred to HPLC vials

and analyzed as above. The parameters used for the ASE extractions were 2 static heat

cycles at 80°C and both 1200 or 2000 psi. Solvents systems used were 100% methanol

and methanol : chloroform : phosphate buffer (2:1:0.8, v/v/v; the conventional Bligh/Dyer

solvents). Where methanol was used as the extractant, it was evaporated under nitrogen

prior to analysis by HPLC. The methanol : chloroform : phosphate buffer solvents were
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splitby theadditionof chloroformandwater(1:1:0.9v/v/v). Thechloroformwas
removedanddrieddownundernitrogenprior to HPLC analysis. Following
quantificationbyHPLC,onlytheconventionalprocedure{Leitao et al., (1988)} yielded

detectable aflatoxin. Neither the conventional Bligh/Dyer, ASE methanol, or ASE

Bligh/Dyer extractions yielded aflatoxin from the pure biomass.

Although problems were encountered with aflatoxins and mycolic acids, the

automation of lipid extraction methods was successfully accomplished for phospholipid

fatty acids, polyenoic unsaturated fatty acids, isofucosterol, ergosterol, poly 13-

hydroxyaikanoic acids, and lipopolysaccharides from both pure biomass and environmental

samples. As has been discussed, these chemicals can serve as biomarkers for potentially

harmful airborne contaminants. Increasing the extraction efficiency and reducing the time

spent for each of these analyses provides invaluable service, especially considering the
concentration of some of these biomarkers in indoor air is often at the current limit of

detection. In addition, the ability to perform multiple assays from the same sample filter

using the ASE 200 with Bligh/Dyer solvents in combination with fractionation provides

for a more thorough analysis of each sample. In conclusion, with increasing concerns over

the quality of indoor air and "sick buildings", the advances made in this project to

quantify and characterize the microbial community can assist in finding and correcting air-

related problems in homes, offices, and industries.

Objective Three:

Previously, separate methods have been developed for the direct extraction and

purification of lipids and DNA from environmental samples. Initial results from phase I of

this study showed that DNA could be extracted from glass fiber filters and was suitable for

PCR. Using supercritical fluid extraction (SFE) procedures, the extraction of DNA from

pure biomass has been developed (D.C. White, Personal communication). However,

successful lipid extraction was not possible using SFE. Following development of the

ASE 200 methodologies for lipid analysis, we applied the same technique to the extraction

of DNA, the aim being a combined process that would enable simultaneous extraction of

lipids and DNA.

Using the methanol : chloroform : phosphate buffer (2:1:0.8 v/v/v) solvent system,

we attempted to extract DNA from E. coli loaded glass fiber filters. Following DNA

precipitation, no DNA was visible on the agarose gel (Figure 21). This was in comparison

to the normal mechanical DNA extraction that resulted in clearly visible DNA (Figure 21).

In order to maximize recovery of any DNA present following accelerated solvent

extraction, we decided to use a single solvent phase (phosphate buffer; 0.1 M, pH 8) for

all further experiments regarding extraction of DNA. In this study, Bacillus subtilis was

the test bacteria. However, in comparison with the conventional mechanical extraction,

this also proved unsuccessful (Figure 22). The most likely reasons for the low extraction

recovery were unsuccessful cell lysis which, given the success of lipid extraction was

unlikely, or the large solvent volume required for any ASE extraction. Given that no

extraction cells that used smaller solvent volumes were available, the accelerated solvent

extraction of DNA was abandoned.
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Figure 21: AgarosegelsshowingDNA extractedfrom E. coli using the ASE 200

(wells 2-4) or the standard mechanical extraction (wells 7-9). Wells 1 and 6 contain the 2

Hind111DNA size marker, and well 5 contains the 1 Kb size ladder.
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Figure 22: Agarose gels showing DNA extracted from B. subtilis spores using the ASE

200 (wells 2-10) or the standard mechanical extraction (wells 12-14). Cells extracted

using the ASE without a phenol:chloroform purification are represented in wells 2-4, cells

extracted using the ASE with a phenol:chloroform purification are shown in cells 5-7,

cells extracted directly into phenol:chloroform using the ASE are seen in wells 8-10, and

wells 12-14 show DNA extracted using the standard mechanical method. Wells 1 and 11

contain the ;CHind III DNA size marker.
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Technical merit and feasibility assessment

Using the PASD, it has been shown that it is possible to characterize the microbial

community of breathable air. With an ever-increasing awareness of illnesses associated

with airborne biocontaminants, the fact that the PASD works effectively and efficiently

makes it ideal for indoor air testing at virtually any location. The most notable drawback

to the PASD is that, even though wheels have been added for ease of mobility, it is still

awkward and quite heavy. Travelling great distances with it can be impractical, and thus,

the Quick Form sampler (Figure 1B) was developed. The primary limitation of the Quick

Form sampler is the fact that even an industrial strength vacuum cleaner does not have as

great a capacity for air flow as the PASD. This restriction means the sampling time

required must be increased to acquire sufficient biomass per filter, and because of the

noise level of an industrial vacuum cleaner, this is inconvenient. Even with these

limitations, however, the air sampling technology resulting from this Phase II project has

potential for widespread use.

In addition, the incorporation of the ASE 200 to perform the traditional time-

consuming lipid extraction provides a more efficient process with faster turn-around time

that increases the potential for commercial success. Multiple assays can also be performed

on each sample, providing a more complete understanding of the components of indoor

air. Moreover, the ASE 200 is commercially available and simple to use. The primary

limitation to this technology is that extraction efficiency is dependent on a variety of

different parameters that must be defined for each type of analysis. In this study, the best

extraction method for all primary types of lipid analysis were investigated in detail and

final parameters set for all future work, but any new extractions to be performed will have

to be thoroughly examined prior to sample analysis.

Research Findings

Using Companies X,Y, and Z as models, it has been shown that the Portable Air

Sampling Device can be used to determine important information concerning the airborne

microbial community. Phospholipid fatty acid analysis of samples acquired with the PASD

revealed levels ofbiomass 1-3 orders of magnitude higher than those obtained using

traditional methods of counting culturable organisms. As such, this method of sampling

and subsequent analysis provides a more accurate representation of the actual indoor air

composition.

The subsequent automation of the extraction and identification process simplified

the steps required to proceed from sample acquisition to report generation. The

importance of this lies not only in speed of analysis, but also in reproducibility. Although

the identification process must be monitored, many simple errors are eliminated by the

repetitive processes of the instrumentation. Using the parameters set forth in this work,

the ASE 200 is now capable of efficiently extracting phospholipid fatty acids from any

environmental sample thus far analysed (including air samples); poly b-hydroxyalkanoates

from soil; and polyunsaturated fatty acids, certain sterols, and lipopolysaccharides from

different types of pure biomass and environmental samples.
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It wasalsodiscoveredthattheASE 200didnot enableextractionof DNA. The

most likely reason for this is that the solvent volume was too large for adequate analysis

and any subsequent concentration is not practical when there are currently numerous

simple, effective mechanical extraction procedures available.

Potential applications for the project results in a Phase HI for NASA purposes and

for commercial purposes

The successful results of the Phase II work have provided a means to develop

Phase III applications for both NASA and commercial services leading to the rapid

characterization of the entire indoor air microbial community. The habitat experiments

that NASA is conducting to determine the effects of humans and plants co-existing for

long periods could directly benefit from monitoring of the indoor air microbial

communities. Already this program is utilizing lipid analysis to characterize

microorganisms in the water system.

The contractor has begun to market the developed system to industrial hygienists

for the characterization of the total indoor air microbial communities in sick buildings. To

help promote wide spread utilization of this system, the contractor has also developed a

sampling attachment that fits on the end of a household or industrial vacuum cleaner

(Figure 1B). With this portable attachment, the contractor can quickly send calibrated

sampling supplies that are easy to use for the industrial hygienist.

The initial service will be targeted at members of the industrial hygiene society

who will find this service beneficial, as it is the only way to characterize the total indoor

air microbial community. It will have a rapid turnaround (5-10 days) and a low cost

(under $150 per sample). We expect the demand to grow to 5,000 samples a year by the

second year of our mass marketing effort, generating revenues of one half to three

quarters of a million dollars per year.

Funding for this Phase III commercialization will come initially from the sale of the

indoor air microbial analysis as a service. The contractor has three years experience

marketing a similar service to the environmental field to characterize microbial

communities in water and soil. The contractor has specific expertise at developing the

methods and then streamlining the process to provide a rapid, high value, low cost

analysis. The capital requirements for the expanded marketing efforts to promote this

system as a service will be financed entirely through the contractor's existing/expanding
cash flow.
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