OVERVIEW

The tasks carried out during this grant achieved the goals as set forth in the initial proposal. The Boston University Space Physics Acquisition CEnter (BUSPACE) now provides World Wide Web access to data from a large suite of both space-based and ground-based instruments, archived from different missions, experiments, or campaigns in which researchers associated with the Center for Space Physics (CSP) at Boston University have been involved. These archival data sets are in digital form and are valuable for retrospective data analysis studies of magnetospheric as well as ionospheric, thermospheric, and mesospheric physics. We have leveraged our grass-roots effort with the NASA seed money to establish dedicated hardware (computer and hard disk augmentation) and student support to grow and maintain the system. This leveraging of effort now permits easy access by the space physics community to many underutilized, yet important data sets, one example being that of the SCATHA satellite.

PROJECT DESCRIPTION

A complete list of the data and data products archived within the BUSPACE, that are available through our system is beyond the scope of this brief document. We note that the system is already in place and presently incorporates much of the background information regarding the various missions, instrumentation, and data sets; this information can thus be perused at your convenience. We invite you to explore BUSPACE; the URL is http://buspace.bu.edu/BUSPACE/welcome.html. A copy of the homepage and the summary information as well as the interface developed for access to the SCATHA data sets are shown on the pages at the end of this report.

The present BUSPACE hierarchy and functionality is self explanatory and intuitive. Satellite, sounding rocket, and ground-based missions and campaigns are listed in separate sections on the data center
In the current **BUSPACE**, data sets derive from either past, present, or upcoming missions; this proposed effort is responsive to the archival data that are not readily available elsewhere. Each subsection includes overviews of the missions or programs and provides detailed instrument descriptions and the data sets affiliated with each instrument. The format of the data is also described in detail including, for example, data availability (start/end dates, data gaps, etc). The user can access any particular data section or subsection directly by entering the appropriate URL, thus providing more flexibility to the frequent user.

We provide data access in two ways: *.gif* files and on-line data browsing. The *.gif* files format allows the user to display rapidly *.gif* files containing data previously analyzed and "blessed" by the Principal Investigator (PI) in charge of the particular program. These files will form a continuum of events with a prescribed time interval assigned by the PI. The on-line data browsing format provides an excellent tool for the user to look at any particular data within any particular interval. As appropriate, the user has the option to select a desired type of plot, (i.e. differential flux, magnetic field intensity, etc.) for the desired time interval. The visuals are patterned after the interface developed at LANL for the highly-visited Magnetospheric On-Line Data (MOLD) WWW page, which provides a highly flexible tool for the direct access to and analysis of on-line data.

The preliminary development of **BUSPACE** was entirely sponsored by the CSP at BU and the bulk of the design and implementation have been carried out by undergraduate and graduate students involved with research projects within the Center. The additional NASA support has allowed us to leverage the present institutional and volunteer support and provide the archival data as a service to the community. We were in the need of hard disk space to store the data sets and one person, preferably an undergraduate work-study student, to maintain the effort; these funds were provided by NASA to make the project happen.

**FINAL SUMMARY**

In summary, we established **BUSPACE** as a "grass-roots" data center that gave our communities access to both ionospheric and magnetospheric data. With NASA funding we have continued and expanded this effort.
APPENDICES:

(1) Buspace Homepage

(2) Scatha Homepage

(3) Scatha Data Browser CGI Interface Page

(4) Sample Scatha Data Survey Plot - Vector Magnetic Field (GSM Coordinates)
    From 4/1/79 0:00 - 0:600 UT
Welcome to the Boston University Space Physics Acquisition Center. BUSPACE provides data acquired from the missions, experiments, and instruments which involved the Boston University Center for Space Physics faculty. This node of the Space Physics Data System exists to provide access to space physics phenomena found in the Earth's atmosphere by a variety of rockets, spacecrafts, and groundbased equipment.

**Cluster**: Please see the European Space Agency Press Release for more information.
As of July 4th, the Science Policy Committee has approved the immediate start of a fifth Cluster spacecraft as the first of a new "fleet to the magnetosphere". Decision about remaining spacecrafts is to be taken later this year.

GO POLAR G01 At 3:24 AM PST, on February 24th 1996, the Polar spacecraft roared into space atop a MacDonald Douglas Delta II HLV from Vandenberg AFB, CA. The DELTA booster performed near perfectly and placed POLAR into its desired orbit. The orbital parameters were rapidly assessed by both the Antarctic and Madrid ground receiving sites. The spacecraft antennas have been deployed and satellite status is nominal.

This page has been Netscape enhanced. Go to Netscape's Home Page for their latest browser.

---

**AREAS OF INTEREST**

---

**GROUND BASED**
1. All-Sky Imaging at Several Sites World Wide
2. Combined H-Alpha Radar Measurements (CHARM)
3. Ioian Sodium Magneto-Nebula Images
4. Lunar Extended Sodium Atmosphere Images
5. Magnetometer Array for Cusp and Cleft Studies (MACCS)

---

**ROCKETS**
1. Berkeley LiUV Airglow Rocket Spectrometer (BLARS)
2. CUBS
3. ERIC
4. JOHANNA
5. PULSAT
6. PULSating AURora II (PULSAUR II)
7. RED AIR 1 & 2
8. SPINEX 1 & 2

---

**SATELLITES**
1. Applications Technology Satellite 6 (ATS-6)
2. Cluster
3. Combined Release and Radiation Effects Satellite (CRRES)
4. ECOM 721
5. International Sun-Earth Explorer 1 & 2 (ISEE 1 & 2)
6. IUE
7. OGO-
8. Polar
9. Spacecraft Charging AT High Altitude (SCATHA)
10. Tomographic Experiment using Radiative Recombinative LiUV and Radio Sources (TERRIERS)
11. TIROS-NOAA

---

**FUTURE MISSIONS**
1. COTIF
Spacecraft Charging AT High Altitude (SCATHA)

MISSION OVERVIEW

- SCATHA Fact Sheet
- Spacecraft position overviews
- SC2 J Electron Detector Efficiency

EXPERIMENTS

http://nasa.edu/SPACEX/SCATHA/ scatha.html

DATA DISPLAYS

 RELATED PAGES

NASA
NASA Home Page

BUSPACE

Please mail any questions regarding data availability to either Harlan Spence or Joe Ferrone

Please mail any questions or comments concerning this website to Scott Thompson
Spacecraft Charging AT High Altitude (SCATHA)

MISSION OVERVIEW

- SCATHA Fact Sheet
- Spacecraft position overviews
- SC2-3 Electron Detector Efficiency

EXPERIMENTS

http://buspace.by.edu/BUSPACE/SCATHA/
scatha.html

DATA DISPLAYS

RELATED PAGES

NASA

NASA Home Page

BUSPACE

Please mail any questions regarding data availability to either Harlon Spencer or Joe Frensell

Please mail any questions or comments concerning this website to Scott Thompson
SCATHA Data Plot Choices

Click here for a listing of suspect data.

Data plots are available for months that are blinking.
Request plots using the form below.

Please note that data gaps do exist within individual months.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
<th>Data Type</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>January</td>
<td>01</td>
<td>Electron Differential Flux</td>
<td>00 hours - 06 hours</td>
</tr>
<tr>
<td>1980</td>
<td>February</td>
<td>02</td>
<td>Electron Integral Flux</td>
<td>06 hours - 12 hours</td>
</tr>
<tr>
<td>1981</td>
<td>March</td>
<td>03</td>
<td>Electron Moments</td>
<td>12 hours - 18 hours</td>
</tr>
<tr>
<td>1982</td>
<td>April</td>
<td>04</td>
<td>Proton Differential Flux</td>
<td>18 hours - 24 hours</td>
</tr>
<tr>
<td>1983</td>
<td>May</td>
<td>05</td>
<td>Proton Integral Flux</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>June</td>
<td>06</td>
<td>Proton Moments</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>July</td>
<td>07</td>
<td>ELF Magnetic Field</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>August</td>
<td>08</td>
<td>VLF Magnetic Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>09</td>
<td>Vector Magnetic Field(GSM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
01 April 1979

Vector Magnetic Field (GSM) 00:00:00 - 06:00:00