
NASA-IVV-97-005

NASA IV&V Facility, Fairmont, West Virginia

A Taxonomy of Object-Oriented Measures Modeling the

Object-Oriented Space

Ralph D. Neal, H. Roland Weistroffer, Richard J. Coppins

July 2, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http:llwww.ivv.nasa.govl

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

A Taxonomy of Object-Oriented Measures
Modeling the Object-Oriented Space

Ralph D. Neal

NASA/WVU Software Research Laboratory, West Virginia University,

100 University Drive, Fairmont, WV26554, U.S.A.

Email: meal@ research, ivv.nasa.gov

H. Roland Weistroffer

School of Business, Virginia Commonwealth University, PO Box

844000, Richmond, VA 23284-4000

Email: hrweistr@ vcu.edu

Richard J. Coppins

School of Business, Virginia Commonwealth University, PO Box

844000, Richmond, VA 23284-4000

Email: rcoppins @ busnet, bus. vcu. edu

Abstract--In order to control the quality of software and the software development

process, it is important to understand the measurement of software. A first step

toward a better comprehension of software measurement is the categorization of

software measures by some meaningful taxonomy. The most worthwhile taxonomy

would capture the fundamental nature of the object-oriented (O-O) space. The

principal characteristics of object-oriented software offer a starting point for such a

categorization of measures. This paper introduces a taxonomy of measures based
upon fourteen characteristics of object-oriented software gathered from the

literature. This taxonomy allows us to easily see gaps or redundancies in the existing

O-O measures. The taxonomy also clearly differentiates among taxa so that there is

no ambiguity as to the taxon to which a measure belongs. The taxonomy has been
populated with measures taken from the literature. !

INTRODUCTION

Software development historically has been the arena of the artist. Artistically

crafted code often resulted in arcane algorithms or spaghetti code that was

unintelligible to those who had to perform maintenance. Initially only very primitive
measurements such as lines of code (LOC) and development time per stage of the

development life cycle were collected. Projects often exceeded estimated time and

budget. In the pursuit of greater productivity, software development evolved into

1
Funded in pad by NASA Cooperative Agreemen! NCCW-O040

Taxonomy I

software engineering. Part of the software engineering concept is the idea that the

product should be controllable. Control of a process or product requires that the

process or product is measurable; therefore, control of software requires software

measures [3].

Measurement is the process whereby numbers or symbols are assigned to
dimensions of entities in such a manner as to describe the dimension in a

meaningful way [7]. An entity may be a thing or an event, i.e., a person, a play, a

developed program or the development process. A dimension is a trait of the entity,

such as the height of a person, the cost of a play, or the length of the development

process. Obviously, the entity and the dimension to be measured must be specified

in advance. We cannot take measurements and then apply them to just any

dimensions. Unfortunately this is exactly what the software development

community has been doing [8], e.g., lines-of-code, being a valid measure of size, has

been used to "measure" the complexity of programs [19]. In order to truly

understand software and the software development process, software measurement

must be better understood. What are the dimensions that define software and how

do we measure them? A beginning step toward understanding software

measurement is the categorization of the measurements by some meaningful

taxonomy.

Software and software development are extremely complex. We should not expect

to be able to measure entities of such complexity with one, two, or even a dozen

measures. Measures have to be developed to allow us to view software from many

perspectives. In this paper, we differentiate between measures and metrics: A metric

is defined to be any proposed type of measurement, not necessarily validated,

whereas a measure must be validated. Thus all measures are metrics, but not all

metrics are measures. Many object-oriented (O-O) metrics have been proposed in

the literature, e.g., [2], [4], [5], [10], [11], and [12]. To better comprehend the

contributions of these metrics, it is necessary to categorize them in a meaningful

way so that the various dimensions of O-O software being measured can be better

understood. The authors are not aware of any proposed organization of software

measures or metrics in the published literature that models the object-oriented space

in a comprehensive manner. Until we better understand the many dimensions of O-

O software, we cannot truly understand the product. It does little good to measure

the process if the product is not measured. Being the best at producing an inferior

product does not define a quality process. To facilitate understanding of the product,

this paper proposes a taxonomy that helps us model the object-oriented space and

allows us to classify measures accordingly.

Taxonomy

BACKGROUND

There has been little agreement among authors as to the characteristics that identify

the object-oriented approach. Henderson-Sellers [9] lists information hiding,

encapsulation, objects, classification, classes, abstraction, inheritance,

polymorphism, dynamic binding, persistence, and composition as having been

chosen by at least one author as a defining aspect of object-orientation. Rumbaugh,

et al. [15] add identity, Smith [16] adds single type and Sully [17] adds the unit

building block to this list of defining aspects. These characteristics of object-

orientation are not completely disjoint: there is much overlapping of aspects as

different authors group sub-aspects differently and create their own individual

groupings, each with a unique aspect name. It should be clear from the preceding list

that there are many dimensions to O-O software. It should also be noted that this list

may not be exhaustive.

Archer and Stinson [2] propose a taxonomy that places a metric in one (or more) of

five taxa, viz., system, coupling and uses, inheritance, class, and method. It is

unclear where a measure of say coupling among methods, as in Tegarden, et al.,

[18], would be classified in this taxonomy. The coarseness of this taxonomy also

causes metrics for different software artifacts to be grouped together, e.g., if all

coupling metrics are classified as "coupling and uses" metrics, then system measures

could be lumped together with measures of objects, measures of methods, and

measures of variables (see system messages, object fan-in, method fan-in, and

variable fan-in in Tegarden, et al., [18]). A useful taxonomy of software measures

should clearly differentiate among taxa so that a measure belongs to one and only

one taxon and there is no ambiguity as to the taxon to which a measure belongs.

The Tegarden, et al., [18] model of object-oriented systems complexity

measurement defines object-oriented systems as looking different from different

viewpoints. The model defines four levels of software strata that a software

developer might want to measure (in order of granularity): variables, methods,

objects, and systems. The model then defines characteristics (dimensions) that

contribute to the character of each level. The model clearly differentiates among the

four levels but is not so clear in defining the dimensions. For example, class design

encompasses encapsulation, complexity, and polymorphism.

Abreu and Carapuca [1] also see the advantages of separating measures by level.

However, the Abreu and Carapuca model also groups measures into large

ambiguous lots. This model defines software entities (granularity) as method, class,

and system, and it defines the dimensions within each level of granularity as design,

size, complexity, reuse, productivity, and quality. This three by six model is less

encompassing than the model of Tegarden, et al. Another problem with the Abreu

and Carapuca model is the grouping of process measures, with product measures,

e.g., productivity with size. While both process and product measures are useful,

Taxonomy 3

mixing them in the same taxonomy only clouds the two separate issues.

Beyond these models, little work on software measures taxonomies has been

reported in the published literature. Building on the models by Tegarden, et al., [18]

and Abreu and Carapuca [1], a new object-oriented measures taxonomy (see Table

1) is proposed. This taxonomy partitions the object-oriented space into non-

overlapping domains so that measures of these domains can be fit unambiguously

into one and only one taxon.

THE OBJECT-ORIENTED SPACE AND THE NEW

TAXONOMY

In order to measure object-oriented software the measurer needs to be aware of the

characteristics of O-O software and of the different levels of granularity inherent in

the O-O paradigm. The Tegarden, et ai., [18] model of object-oriented systems

complexity measurement defines four levels of software strata. Neal [12] adds a

fifth stratum to this. Building on this model, the object-oriented space can be

represented as a matrix that partitions the space into several levels of granularity

with multiple characteristics for each of these levels. The software levels that a

software developer might want to measure (in order of granularity) are variables,

methods, classes, programs, and systems. The levels are represented by the columns

of the matrix. Each level of granularity exhibits characteristics (dimensions) that

contribute to the character of that level. The dimensions are represented by the rows

of the matrix. Fourteen dimensions of O-O software have been gleaned from the

literature. This model partitions the object-oriented space into understandable,

unambiguous segments, and thereby forces a reasonable structure upon measurers.

As has been stated earlier, a first step toward understanding software measurement

better is the categorization of the measurements by some meaningful taxonomy. If

we are to learn about the object-oriented space, it must be possible for diversified

measurers to reach similar conclusions given the same data. A taxonomy should at
the least allow each measurer to start from a common basis.

Postulate: A useful software measures taxonomy should clearly

differentiate among taxa so that there is no ambiguity as to the taxon

to which a measure belongs.

Table 1 supplies a summary of measures or metrics for each of the fourteen

dimensions across the five levels of granularity (70 cells). Though many of these

fourteen dimensions appear repeatedly in the literature, they may not necessarily be

the dimensions that matter the most. It is possible that there are other dimensions

that do not yet have metrics proposed to measure them, but the measurement of

which would be useful or necessary to understand an object-oriented artifact.

Taxonomy 4

Certainly not all fourteen dimensions apply to all levels, e.g., encapsulation does not

apply to variable or method. The same dimension measured on different levels will

almost certainly require different measures or at least a different scope, e.g., lines-

of-code (LOC) in a program vs. LOC in a system.

The object-oriented space matrix offers a starting point for such a categorization of

measures. By filling in the cells of the object-oriented space matrix with the

measures or metrics proposed in the literature, the matrix becomes the Object-

Oriented Measures Taxonomy. This taxonomy includes all of the published,

interesting characteristics of software and clearly defines where any measure fits

among the taxa without worry of overlap or ambiguity. If a measure cannot be

placed easily into one and only one taxon, the measure may not be well understood.

A measure that is not well understood is unlikely to be useful to the measurer and

should be discarded. It is also possible that if a measure cannot be placed easily into

any existing taxon that the taxonomy is incomplete. In that case, more research may

be needed to expand the taxonomy.

Table 1 has been populated with thirty measures taken from the literature

[4,5,10,11,14]. These measures have been validated in the narrow sense of Fenton

[7] using measurement theory with Zuse's augmentation [12, 13, 19, 20]. Every

measure that could be validated in the narrow sense could also be categorized in

this taxonomy. In addition to these validated measures, several unvalidated

metrics from Tegarden, et al., [18] have been included in Table 1. They have been

included to show that work is being done at the variable and method levels. These

metrics in no way represent all of the metrics offered by Tegarden, et al.

Additional metrics were not included for those cells for which validated measures

already exist.

CONCLUSION AND FUTURE RESEARCH

As Table 1 shows, often there are multiple metrics available which attempt to
measure the same dimension of the same level. The collection of measurement data

is usually very expensive [6]; nevertheless, the application of multiple measures to
measure the same dimension of the same level of software can be useful. The

collection of data for multiple measures allows the measures to be compared to each

other to either confirm that they do indeed measure the same dimension or establish

that one (or more) of them is measuring something other than the dimension in

question. Once it is established which measure most cost effectively measures the

dimension in question, it may no longer be necessary to collect data for the other

measures. If the measures in one cell are not all measuring the same dimension, then

one or more of the measures may have been miscataloged.

As stated earlier, the fourteen dimensions used in the proposed taxonomy are those

found in the literature. In other words, these are the dimensions that have been

Taxonomy 5

thought by the O-O community to be important enough to measure. Other

dimensions that may be of equal or higher importance may yet be discovered.

Because not all of the fourteen dimensions are applicable to all five levels some

cells in Table 1 should remain empty.

Some measures may be scaleable to levels other than that level for which they were

designed. Measures that are scaleable are not directly applicable as defined but may

lend themselves to being averaged or summed to fill a cell at a higher level. No

measures have been found to be scaleable to cells at a lower level.

Much work remains before the nature of the object-oriented software development

process can be sufficiently understood through the measurement of software

products. More measures need to be developed to allow us to view software from its

many perspectives, i.e., validated measures need to be found to fill more of the

empty ceils of the object-oriented measures taxonomy (Table 1). Further, the

measures populating the proposed taxonomy need to be tested empirically.

Software product measures ultimately are only useful when they can be shown to be

reliable prediction variables of software development cost and schedule, software

maintenance cost and schedule [7], or software performance.

If the product measure is to be used as a performance predictor, performance

measures need to be established that baseline acceptable performance and act as

outside variables against which to test the product measure. If performance

measures cannot be established, it may be that this cell, i.e., this dimension at this

level, is not important to the performance prediction system. If the product measure

is to be used as a cost and schedule predictor, cost and schedule measures against

which to test the product measure need to be collected (or calculated). If cost and

schedule measures cannot be established, it may be that this cell is not important to

the cost and schedule prediction system.

Product measures that are found to be too costly to collect need to be discarded.

Likewise, product measures that are found to be ineffectual in the prediction

systems also need to be eliminated. However, if performance or schedule and cost

measures have been developed, other predictive measures must already exist or

must be developed to fill the appropriate cell in the taxonomy. When product

measures are eliminated, and the removal of the measure causes the cell to become

empty, then other product measures may need to be developed to fill the void.

The taxonomy itself needs to be tested empirically. If meaningful measures cannot

be defined for a specific cell (a given dimension at a given level), e.g., method

encapsulation, then perhaps the cell should be blackened out. Likewise, if useful

outside variables (performance, schedule, or cost) cannot be defined against which

to test the measures of a cell then, again, perhaps the cell should be blackened out.

If all levels of a dimension have been blackened out, the entire row (dimension)

Taxonomy 6

should be reviewed for possible removal from the taxonomy matrix. On the other

hand, if a new dimension becomes apparent, a new row should be added to the

taxonomy matrix. The new dimension then needs to be populated with validated
measures.

Though extremely complex, software should be as measurable as any other complex

entity, say, automobiles. If current wisdom holds, encapsulation may prove to be as

important to the stability of object-oriented software as wheelbase is to the stability
of an automobile.

Taxonomy 7

Table I

Level_

Dimension_

Clarity

Cohesion

Coupling

Complexity,
inter-structural

Object-Oriented Measures Taxonomy

Variable Method

(//

(vfi+vfo+ve))

(1-(1/
(vfi+vfo+vp)))

remote vfi

remote vfo

(local (mfi+mfo) /

total (mfi+mfo))

(remote(mfi+mfo) /

totat (mj_+mfo))

remote mfi

remote mfo
remote I/Ov

Class Program System

CLM CLM CLM

DMC

DCWO

UCGU

D_O

NIM

PIM

RFC

Complexity, local vfi SML
intra-structural local vfo local mfi

local mfo
local I/Ov

MAA MPC
Complexity, I/Ov WMC
psychological

PRC
Design NOM

Encapsulation FFU

Inheritance vfd mfd PMI
PMIS

Information PrIM

hidin 8

Polymorphism vp mp (vp+mp) normal-
ized

Reuse vfi-1 mfi-1

Size

Specialization

Measures from [12]

Measures from [4], [5], [10], and [1 I]

Metrics from [181

LOC
AMS

RUS

CRE

LOC
AMS

NIV

POM
NCM

NMA

DMC

DCWO

UCGU

DCBO

AIM

PIM

RFC

MPC
WMC

DMC
DCWO

UCGU

DCBO

Measure8 that can be scaled up tO a higher level or derived from scales at a lower level

AIM

PIM

RFC

MPC

WMC

PRC PRC

FOC FOC

FFU FFU

DAC DAC

NAC NAC

PrIM PrIM

ZRUS

_CRE

LOC
AMS

AIV

POM
NCM
NMA

ERUS

zCRE

LOC
AMS

AIV

POM

NCM
NMA_

Note: The abbreviated names of the measures and metrics are explained in the Appendix.

Taxonomy 8

APPENDIX: Definitions of measures and metrics

AIM

AIV

AMS

CRE

CLM

DAC

DCBO

DCWO

DMC

FFU

FOC

l/Ov

LOC

MAA

mfd

mfo

mp
MPC

NAC

NCM

NIM

NIV

NMA

NOM

P_

P_

P_S

POM

PRC

PrIM

_C

RUS

SML

_us
UCGU

Average number of instance methods per class [11]

Average number of instance variables [11]

Average method size [11]

Number of times a class is reused [11]

Average number of comment lines per method [11]

Density of abstract classes [12]

Degree of coupling between classes [12]

Degree of coupling within classes [12]

Density of methodological cohesiveness [12]

Use of friend functions [11]

Percentage of function-oriented code [11]

Input�output variables [18]

Lines of code [11]: Number of statements (NOS) [11]: Number of semicolons in a class

(SIZE1) [10]

Messages and arguments [12]

Method fan down [18]

Method fan in [18]

Method fan out [18]

Method poIymorphism [18]

Message-passing coupling [10]

Number of abstract classes [11]

Number of class methods in a class [11]

Number of instance methods in a class [1 l]

Number of instance variables in a class [11]

Number of methods added by a subclass [11]

Number of local methods [10]

Number of public instance methods in a class [11]

Potential methods inherited [12]

Proportion of methods inherited by a subclass [12]

Proportion of overriding methods in a subclass [12]

Number of problem reports per class or contract [11]

Number of private instance methods [12]

Response for a class [5]

Reuse of a class [4]

Strings of message-links [12]
Summation of CRE for all classes

Summation of RUS for all classes

Unnecessary coupling through global usage [12]

Variable fan down [18]

Variable fan in [18]

Variable fan out [18]

Variable polymorphism [18]

Taxonomy 9

WMC Weighted methods per class [5]

Taxonomy !o

References

. Abreu, Fernando Brito e, and Rogerio Carapuca, Candidate for Object-Oriented Software within a

Taxonomy Framework, Journal of Systems Software, 1995, 26, 87-96.

. Archer, Clark, and Michael Stinson, Object-Oriented Software Measures, Technical Report

CMU/SEI-95-TR-O02, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1995.

. Baker, Albert L., James M. Bieman, Norman Fenton, Davis A. Gustafson, Austin Melton, and

Robin Whitty, "A Philosophy of Software Measurement", The Journal of Systems and Software,

Vol. 12, 1990, p. 277-281.

. Chen, J-Y, and J-F Lu, A New Metric for Object-Oriented Design, Information and Software

Technology, 1993, 232-240.

° Chidamber, Shyam R., and Chris F. Kemerer, A Metric Suite for Object Oriented Design, IEEE

Transactions on Software Engineering, 20:6, June 1994.

. Deutsch, Michael S., and Ronald R. Willis, Software Quality Engineering: A Total Technical and

Management Approach, Prentice-Hall, Englewood Cliffs, NJ, 1988.

7. Fenton, Norman, Software Metrics: A Rigorous Approach, Chapman & Hall, London, UK, 1991.

. Fenton, Norman, Software Measurement: A Necessary Scientific Basis, IEEE Transactions on

Software Engineering, 20:3, March 1994.

9. Henderson-Sellers, B., A Book of Object-Oriented Knowledge, Prentice Hall, NY, 1992.

10. Li, Wei, and Sallie Henry, Maintenance Metrics for the Object-Oriented Paradigm, Proceedings of

the First International Software Metrics Symposium, May 1993b.

11. Lorenz, Mark, and Jeff Kidd, Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs,
NJ, 1994.

12. Neal, Ralph D., The Validation by Measurement Theory of Proposed Object-Oriented Software

Metrics, Dissertation, School of Business, Virginia Commonwealth University, Richmond, VA,
1996.

13. Neal, R.D., R.J. Coppins, and H.R. Weistroffer, The Assignment of Scale to Object-Oriented

Software Measures, Working Paper, Virginia Commonwealth University, Richmond, VA, 1997.

14. Neal, R.D., H.R. Weistroffer, and R.J. Coppins, An Improved Suite of Object-Oriented Software

Measures, Working Paper, Virginia Commonwealth University, Richmond, VA, 1997.

Taxonomy u

15.

16.

17.

18.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen,

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Smith, David N., Concepts of Object-Oriented Programming, McGraw-Hill, NY, 1991.

Sully, Phil, Modeling the World with Objects, Prentice Hall, NY, 1993.

Tegarden, David P., Steven D. Sheetz, and David E. Monarchi, A Software Complexity Model of

Object-Oriented Systems, Decision Support Systems 13, 1995, 241-62.

Zuse, Horst, Software Complexity: Measures and Methods, Walter de Gruyter, Berlin, 1990.

Zuse, Horst, "Foundations of Object-Oriented Software Measures", Proceedings of the Third

International Software Metrics Symposium, March 1996.

Taxonomy 12

