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Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating

media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral

formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied

to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated

with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet

diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate

radiative heat transfer from soot particles in such flames, it is shown that the nonhomogeneity of radiative

property has very significant effects. The peak value of the divergence of radiative heat flux could be under-

estimated by a factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown

that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also inves-

tigated and found to be nonnegligible.

Nomenclature

A = area, m:

a = absorption coefficient, m-z

a,, = coefficient of scattering phase function. Eq. (2)

D = particle diameter, i_m

e = emissive power of the medium, W/m-"

i = radiation intensity, W/m:sr

K = kernel of integral equation. Eq. (8)

L = distance between boundaries, m

Nw = number of angular quadrature ordinates
n = inward unit normal vector

P,, = Legendre function of order n

q, = radiative heat flux vector. W/m-"

R = radiation quantity

R(r._o,) = distance from a point within the medium to the

wall in the direction w,, Eq. (Ii)

r = position vector

r, = cylinder radius, m

S_ = expansion function of Legendre series

s = scattering coefficient, ro-

T = temperature, K

V = volume, m -_

W, = weights of discrete ordinates set

w = radiative heat flux, W/m-"

x = distance, m

z,, = cylinder height, m

/3 = coefficient of anisotropic scattering phase

function

e = surface emissivity

rl = direction cosine

K = extinction coefficient, m-t

_. = direction cosine

,f = direction cosine

p = density of the gaseous mixture, kg/m J
o" = Stefan-Boltzmann constant.

5.6696 x 10 -_ W/m-'K _
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r = optical thickness, Kro

= normalized scattering phase function

f_ = domain or boundary of integration, Eqs. (5-7)

o_ = scattering albedo; solid angle

to = unit vector, Eq. (9)

Subscripts

b = blackbody

g = participating medium for radiative transfer
r = radiation

s = boundary surface

Superscript
' = incident direction
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Introduction

ADIATIVE heat transfer in a cylindrical enclosure with
a participating medium is a problem of practical impor-

tance, e.g., in the design of industrial furnaces and many

combustion devices. A solution method that is accurate, ef-

ficient of both computing time and storage, flexible in a com-

plex geometry, and compatible with the energy equation is

needed for the prediction of radiative performance. Few cur-

rent methods can satisfy all or part of these requirements.

The Monte Carlo method is flexible and requires little storage,

but can be extremely time-consuming, and the results are

subject to statistical error. The zonal method and the finite

element method are accurate but require large amounts of

computer time and storage. It is also difficult to handle non-

homogeneity or anisotropic scattering using the zonal method.

The product integration method, j while faster than the zonal

and finite element methods, does not reduce the required

storage. The discrete ordinates Sn method, although accurate

and less demanding of memory for large grid systems, suffers

from ray effects-' and high computer time for multidimensional

combined mode heat transfer problems. To deal with multi-

dimensional nonhomogeneous media, adaptive grid and adap-
tive difference schemes must be used with the discrete-ordi-

nates method to maintain the same order of local error. This

will consume large amounts of CPU time and memory, and

make calculation using the (Sn) method impractical. The

spherical harmonics (Pn) method, -_ which needs high-order

approximation to achieve accurate results for an optically thin

medium, is tedious in formulation and also requires large

amounts of computer time and memory, in dealing with non-
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homogeneous media. Recently, the finite volume method has

been applied to cylindrical geometry? For problems involving

fluid flow computation, the method can be formulated to use
the same grid system. However, a rather involved discreti-
zation scheme must be used.

In this article, a recently developed numerical method, the
YIX method _x' and its extension to three-dimensional ge-

ometryfl is used to solve the axisymmetric radiative transfer
problem within turbulent jet diffusion flames. The formula-
tion and solution scheme with cylindrical geometry (not lim-
ited to axisymmetric) is described in detail. Results are pre-

sented for homogeneous and nonhomogeneous participating

media. The significance of the nonhomogeneity effect is dem-
onstrated through comparisons with results for equivalent ho-

mogeneous media. The treatment of media with spectrally
dependent radiative properties is not considered in this study,

but will be a subject for a future paper.
There is increasing interest in the calculation of radiation

heat transfer within nonhomogeneous sooting flames. X- "' As

part of the effort to couple turbulent diffusion flame modeling,
soot formation and oxidation, and radiation heat transfer in

a flame code, the treatment of radiation heat transfer within

nonhomogeneous, absorbing, emitting, and scattering media
is discussed.

Mathematical Formulation

The radiative heat transfer equation is written as _t

di(r, w)
dl - -Ki(r, w) + aib(r )

_-_ f, i(r. w')O(oJ, oJ') dco'dr ' -4_
(i)

where the phase function, based on the Mie theory, can be

expressed as t-"

0(_. _o') = _ (2n + 1)a,,P,,(w.w') (2)

For particles with the size parameter (TrD/a) much less than
unity, the scattering effect is usually neglected, e.g., Rayleigh

particles. P,.(w. to') can be expanded using the addition theo-
rem of the Legendre function _Jand

(3)

where (/z, ,f, 0) are the direction cosines of ca with respect to
each coordinate axis. After the P,,(ca.ca') terms are expanded,
the phase function can be expressed as

N

O(w, _') = _ (2n + 1)a,,P.(o_.o/)

f_,s,.(ca)sdca') (4)

where/3, = 1,/3, = /3_, = /3_ = 3a,,/3._ = 5a:/4,/3._ = /3f, =
5a,_/3,/3_ = ]3_,= 5a_,/12, etc.

The integral formulation of radiative heat transfer in a gen-

eral three-dimensional, gray, emitting, absorbing, and ani-
sotropic scattering medium corresponding to Eq. (1) by Tan j
is used here. Crosbie and FarrelF _ also developed similar

integral expressions for intensity in three-dimensional cylin-
drical geometry. The present formulation is convenient to

couple with the energy equation, since heat flux and its di-

vergence are computed directly in addition to the computa-
tional efficiency for high-order scattering phase function

4e,(r) - ! V.q,(r)
a

=fff K(r,r')I'w.(r')-_aV'q,(r')]dV(r')

+ ¼ _ /3kf f f,_K(r,r')we(r')S.(oJ) dV(r ')
k-i

X cos(r - r', n') d,4(r') r _ f_ (5)

w,(r)=fff K(r,r')[Ke.(r')-_V.q,(r')]

M

× S,(w)dV(r') + 4 k_., _" f f fn K(r, r')w,(r')

e q,(r') Si(co)cos(r - r', n') dA(F)

i = 1,2 ..... M rEl) (6)

e:(r) - !q,(r) = fff K(r,r') [Ke,(r')

S

V'q,(r')J cos(r' - r, n) dV(r')4a

+ S M
"_ k_[ _k f f fil K(r, r')w_(r')Sk(ca)cos(r'-- r, n)

xdV(r')+ff, K(r.r')[e,(r') 1 - e q'(r')]e

X cos(r - r', n')cos(r' - r. n) dA(r') r _ all (7)

In the above equations, e_ and e_ are the blackbody emlssive
powers of the medium and the boundary, and q, is the net

radiative heat flux at the wall. For isotropic scattering and

nonscattering media, the second terms on the right sides of
Eqs. (5-7) can be deleted. The kernel K is

K(r, r') =

and the unit vector

fl,.-,'l dt]exp [- ,, K(r + tot)

_'ir - r'l:
(8)

r - r

to = Ir - r'l (9)

When the medium is nongray, the integral equations are

essentially the same. except that all radiative quantities are
wavelength-dependent, and ex and e, are replaced by the spec-
tral Planck function.

Numerical Method

Geometry

Unlike planar two-dimensional (x-y) geometry, which ex-

tends infinitely in the third (z) direction, axisymmetric cylin-
drical (r-z) geometry does not extend infinitely in the third

(0) dimension. For the planar two-dimensional problem, by
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Fig. ! Geometry of the cylindrical enclosure and coordinate system.

Note the example ray of ab originated from the volume node a and

hit boundary at point b. The direction of ab is determined from the

discrete ordinates set used in angular quadrature.

integrating with respect to the infinite length direction in the

volume integration in Eqs. (5-7), the Bickley functions of
different degrees will be the kernels. However, if one per-

forms the volume integrations with respect to 0, as in the case
of axisymmetry geometry (Fig. I)

f f _ K(r, r')w_(r')S,(oa) dV(r')

= fi" fi" fi" K(r, r')w_(r')S_(aJ)r' dr' dO" dz'

a flat wall. '_ These difficulties are eliminated in three-dimen-

sional schemes.

Numerical Quadratures

The integrations of Eqs. (5-7) are performed using the

YIX method? The integral equations are first rewritten into
the distance-angular form. To maintain the same order of

accuracy in angular integration at volume and boundary ele-
ments in three-dimensional geometries, the fully symmetric
discrete ordinates and" weights sets were used. r' The use of
discrete ordinates sets is discussed in Hsu et al. 7

The volume and surface integrations on the right sides of

Eqs. (5-7) are constructed as follows:

f f fl K(r, r')F(r')dV(r')

'.....{s,: ]= -- exp - K(r + tot') at' F(r + oJt) dt
w 1T

s,"-"[ s }_ _ W, exp - K(r + oaf) dr' F(r + toit) dt
t 9

(10

fro,, K(r, r')F(r')cos(r - r', n) dA(r')

s:[s ]= exp - K(r + oat') dt' F(r + oaR) d.._w_w
J 71"

-_ W, exp - K(r + oa/')dt' F(r + oa_R)
i i

N_¢ = Nw, if r E.Q, or

N_ = N_2, if rE 0f/ (12)

depending on Sj,, the integration related to 0 can be expressed
as

]exp .-- _(r + oat)dt

(:,exp[-KXc/r: + r"- - 2rr' cos 0' + (z - z'):] dO'
= j,, --.'-z ...........-,'r{,--+ ,""-- 2,',"cosO'+ 7--"- ''7-"

(10)

where r and r' are any two points within the cylinder, and 0'
is the angle between • and r' projected on the x-y plane.

Equation (I0) is a kernel function different from the Bickley
function. The kernel function is a function of three variables

(r. r'. and z-z'), which makes it difficult to tabulate or ap-
proximate by any computationally efficient function. Al-

though direct numerical integration is possible, the amount
of computation involved makes it essentially equivalent to a

three-dimensional calculation. Another approach is to assume

that the grid points and angular quadrature ordinates are
predetermined, so that the new kernel function can be re-
duced to a single variable. The YIX integration points can

then be precalculated and stored. However, the significantly

larger number of YIX integration points will also make the
computation equivalent to a three-dimensional calculation.

Other difficulties in treating axisymmetric cylinder cases as

a two-dimensional problem are 1) an artificial symmetry
boundary condition must be imposed at r = 0 (Menguc and
Viskanta. L_and Jamaluddin and Smith'"), which could result

in singularity caused by 1/r-term'_; and 2) how to account for

the curvature of the wall at r = r,,, rather than treating it as

where the R(r, oa) is defined as

R(r, oa) = rain Ir + oatl

= length of a beam emitted from r in oa direction
and striking the nearest boundary

Nw is the number of ordinates, which depends on the order
of discrete ordinate sets used. For the Sn discrete ordinate

set, Nw = n(n + 2). The distance integrals in Eq. (11) are

evaluated using the YIX quadrature. It is interesting to note
that the right sides of Eqs. (5) and (6) are essentially the same

except for the additional S_ term in Eq. (6). Therefore, the
integrations in Eq. (6) can be avoided and a significant re-

duction of computati-0nal tlme Can be achieved. For calcu-
lation with a high-degree anisotropic scattering phase func-
tion, this causes only a minor increase in CPU time [due to

the second term on the right side of Eq. (5)] compared with
other methods. This is impossible for the two-dimensional
formulation, where different kernels exist in Eqs. (5) and (6).

Additionally, the current scheme is flexibile enough to use

multiple discrete ordinates sets in the formulation, which is
very advantageous in dealing with ray effectsJ This flexibility
does not exist in the conventional discrete ordinates method z"

for the differential-integral formulation of the radiative trans-

fer equation, where a consistent discrete ordinate set must be
used even in the homogeneous case. By utilizing the axisym-

metric geometry, only the first "wedge" of the boundary and
volume elements is calculated (Fig. 1). To reduce computa-
tional time further, the angular quadrature is not carried out

for all Nw rays: in practice, only the rays with positive y
ordinates are calculated, due to the symmetry. The current

scheme thus has the computational advantages of the three-
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dimensional scheme, but at a cost approaching that of the
two-dimensional scheme.

Solution Procedure

The discretized integrals of Eqs. (5-7) are solved by iter-

ation. The steps are 1) give an initial guess for V-q,, w,(r),

and q.,(r), with e_(r), and e,(r) known; 2) calculate integrals
on the right side of Eqs. (5-7) bythe YIX quadrature; 3)
calculate the new 7.q,, w_.(r), and q,(r); and 4) go to step 2

unless the convergence criterion is satisfied.
For the case with e_(r), and e,(r) as the unknowns, V.q/is

obtained from the given heat source term of the energy equa-

tion and q,(r) from the given flux boundary conditions. The

iterative procedure is the same as above.

Results

The computation was performed on a Sun 4/690 worksta-
tion. In all calculations, the first YIX integration point is 0.01,

except in the optically thin case, with overall optical thickness
less than 0.1, where a first integration point of 0.001 is used.

Typical run times can be several seconds to several hundred

seconds, depending on the solution accuracy required and the
optical thickness of the problem. Run time will be discussed
later for the examples shown in Figs. 2 and 3.

In Fig. 2, the YIX method is applied to a benchmark prob-
lem: a uniform temperature (T_) nonscattering medium en-
closed in a black cold cylinder with unity radius and height

equivalent to one diameter. The net surface heat flux q, (or,
in this particular case, heat flux q, at r = 1), by three different
solutions is shown in the figure. The YIX results are very

close to the "exact" solution by Dua and Cheng. *" The max-
imum differences between YIX results and the exact solution

are 3.2, 1.9, and 9.6% for "r = 5.0, 1.0, and 0.1, respectively.

The P3 solution by Sun,-'" which is similar to that of Menguc
and Viskanta, '_ is reasonably accurate for "r = 1, except at

large z, where it overpredicts. At low optical thickness, P3
has a large deviation from the exact solution. The finite vol-
ume method _ results are nearly the same as the exact solutions

and are not shown in the figure. The calculation time for the

YIX method increases as the optical thickness increases• The
CPU times for ;" = 5.0. 1.0, and 0.1 are 335, 195, and 32 rain

respectively, with 0.001 as the first integration point and S16

as the angular quadrature.
Experimental cylindrical furnace data were available for

comparison with several numerical solutions. The 0.9-m diam

1,2 I ' ' I ' I ' '

......... p3

0•,' ,. ,•o
......... li ......... i .......... i .......... .

oq.4 _'"..
--.._....
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Fig. 2 Nondimensional radiant heat flux on the wall of cylindrical
enclosure containing nonscattering medium at three different optical
thicknesses.
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Fig. 3 Comparison of local surface heat fluxes at the side wall of a
cylindrical furnace with experimental data.

and 5-m length water-cooled DeLft furnace data were obtained
from Jamaluddin and Smith '6 and Wu and Fricker. :_ The

radiative medium for this experiment was modeled as gray,

nonscattering with constant extinction coefficient of 0.3 m- '
The boundaries are at 425 K with an emissivity of 0.8, except

at the inlet and exit plenums, where the boundaries are treated "

as black surfaces at 300 K. Figure 3 shows the measured wall
heat flux and calculations by various methods. All the nu-

merical solutions correctly predict the location of maximum
heat flux. However, the P3 method __seriously underpredicts

the value of maximum heat flux, while other methods are

reasonably close to each other. In the legend in Fig. 3, YIXJ

Sn represents the YIX quadrature using 0.00i as the first
integration point and an angular quadrature using the Sn dis-
crete ordinates set. It is interesting to note that the YIX/S4

and finite volume _ methods produce nearly identical results.

The higher-order quadrature (YIXJS16) predicts a higher peak
flux than all other methods at an axial distance 1 m from the

furnace base. Compared with results from the YIX and finite
volume methods, the $4 result'-: is lower for almost the entire

length of the furnace. It is acknowledged _'_-'z that the mea-
sured values cannot be reproduced even with more accurate
numericaL methods. One of the reasons for the discrepancy

is believed to be the assumption of a uniform extinction coef-

ficient. This shows the necessity for treating the medium as

nonhomogeneous in radiation transfer calculation for com-

bustion systems.
For the experimental furnace problem, the YIX run times

and maximum errors for using different integration points and ....

angular quadrature orders are shown in Table 1. Note that
the $16/0.001 case is used as the baseline for error comparison.

As expected, with the higher-order discrete ordinates set, the
CPU time increases in proportion to the corresponding Nw.

While the smaller first integration point used in the YIX quad-
rature reduces the integration error, it also increases the CPU
time.

As part of the effort to model a turbulent jet diffusion
sooting flame, the radiation heat transfer within such a system
is treated rigorously. Flame temperature (Fig. 4) and soot
volume fraction data are obtained from numerical results for

a turbulent ethylene jet diffusion flame in quiescent air with
a nozzle diameter of D = 0.58 mm and a fuel flow rate of
3.96 cmVs. -'J Since the extinction coefficient of soot aggregates

can be approximated by that of Rayleigh spheres, -'_ it can be
calculated from volume fraction with known soot refractive

index and wavelength. We chose rn = 1.7 - i0.7 and 0.5-

/u.m wavelength for this study. We are not claiming that the
medium should be assumed gray. Rather, we do this so that
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Table I Comparison of CPU time and maximum error for the example problem

in Fig. 3

S 16 $4

The first YIX CPU Maximum CPU Maximum

integration point time. s error. % time, s error, %

0.001 270 0 (base case) 24.8 4.2

0.0I 37.4 4.7 3.8 5.9

A 3 x 17 grid system is used in all calculations on a Sun workstation.
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Temperature (K) distribution of a turbulent jet diffusion flame.Fig. 4
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Fig. 5 Extinction coefficient (m-') distribution of a turbulent jet

diffusion flame.

we can focus on effects of nonhomogeneity and scattering and

be more computationally efficient. The local extinction coef-
ficient, shown in Fig. 5, varies from as low as 10- _-' m-t to

about I0 m - ' within the whole computational domain, which
is much larger than the region covered in the figures. The

computational domain is between 0 -< r/D <- 130 and 0 -<
z/D <--500 using a 65 x 50 grid. The boundaries are assumed

to be black at 300 K. A high-order integration quadrature is
used: the first YIX integration point of 0.001 and the $16
discrete ordinates set.

We first calculate the nonscattering case. Based on the data
of Figs. ,t and 5, the calculated normalized radiative heat flux

355

305 5

20_ 10

155 20 [

S i ..... I

1 6 l[ 16 21 26 31 -0.1 0 0.1 . 0.3 0._. 0._
r_.

Fig. 6 Normalized radiative flux divergence contour and radial beat

flux (at rid = 31) for turbulent diffusion flame with nonhomogeneous

extinction coefficient and scattering albedo equals 0.

355305

205

151

5 , , , ,
6 II 16 21 7_ 3! -0.1 0 0.1 0.2 0.3 0.4 0._

q,

Fig. 7 Normalized radiative flux divergence contour and radial heat

flux (at rid = 31) for turbulent diffusion flame with homogeneous

extinction coefficient and scattering albedo equals 0.

divergence distribution is plotted along the r-z axis (the left

part of Fig. 6). The peak value (_370) of the normalized flux
divergence occurs near the flame center, i.e., at r/D = 0 and
z/D _ 155. The radiative heat flux is normalized with respect

to the blackbody emissive power at 1000 K. In Fig. 7 the same
temperature data are used, but the extinction coefficient is

treated as a constant. An equivalent mean extinction coeffi-
cient is obtained by averaging the local extinction coefficients

of all the volume elements whose temperatures are higher

than 300 K. As shown in Fig. 7, the peak flux divergence is
still at the flame center, but its value is reduced to about 49

from 370, by a factor of more than 7. In the right parts of
Figs. 6-10, the corresponding q, at r/D = 31 for different
conditions is also plotted. The homogeneous case (Fig. 7) has

smooth q, distribution due to its constant extinction coeffi-
cient. On the other hand, nonhomogeneous caseshave a sharp
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Fig. 8 Normalized radiative flux divergence contour and radial heat

flux (at riD = 31) for turbulent diffusion flame with nonhomogeneous

extinction coefficient and scattering albedo equals 0.2.

35_

..Cr q,

Fig. 9 Normalized radiative flux divergence contour and radial heat

flux (at r/D = 311 for turbulent diffusion flame with nonbomogeneous

extinction coefficient and scattering albedo equals 0.5.

_55

3S5

30_

t_s

Io5

$5

r q,

Fig. 10 Normalized radiative flux divergence contour and radial heat

flux (at r/D = 31) for turbulent diffusion flame with nonhomogeneous

extinction coefficient and scattering albedo equals 0.8.
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peak q,. It is evident that the effect of neglecting radiative
property nonhomogeneity is very significant. To predict the
flame behavior accurately with strong radiation effect and

nonuniform soot distribution, it is necessary to model the
radiation heat transfer by considering the local radiative prop-

erty variation.
Figures 8-10 show the results under the same conditions

as Figs. 4 and 5, but with isotropic scattering added where

the scattering albedo equals 0.2, 0.5, and 0.8, respectively.
Recent analysis za and measurements-'-' both show that the scat-

tering effect can be very significant, since soot particles are
agglomerated in flames. Figure 8 shows a nearly identical flux

divergence distribution as a nonscattering case (Fig. 6), except
that the peak value is reduced to about 330 from 370 and the

radial heat flux also decreases. As the scattering albedo in-
creases, both radiative flux and its divergence decrease. Note

that the scattering albedo may be a function of the position
in the flame, since at later stages of the combustion (or at a

higher position above the jet nozzle), the soot aggregates may
grow larger, which in turn increases the scattering albedo. In
the current numerical scheme using the YIX method, it is

very easy to incorporate the distribution of the scattering
albedo. However, since this data is not yet available, the

calculation will be left for future study.

Conclusions

Numerical solutions of radiative heat transfer within a finite

axisymmetric cylindrical enclosure involving homogeneous and
nonhomogeneous media are treated rigorously. The use of
the YIX quadrature and discrete ordinates is _hown to be able

to solve complicated multidimensional homogeneous as well
as nonhomogeneous problems accurately. Numerical results
for soot radiation from a turbulent jet diffusion flame show

that neglecting the nonhomogeneity in radiative property can

cause significant errors. They also show that the magnitude
of scattering albedo has a significant effect on the radiative
heat flux. It should be pointed out that the current numerical

solution can also easily include nonuniform distribution of
any other radiative properties, such as the scattering albedo.

Acknowledgments

Funding from NASA Lewis Research Center, Grant NAG3-
1265, is greatly appreciated. The authors also wish to thank
Zhiqiang Tan for fruitful discussions of the application of the
YIX method.

References

'Tan, Z., "'Radiative Heat Transfer in Multidimensional Emitting.

Absorbing, and Anisotropie Scattering Media--Mathematical For-
mulation and Numerical Method," Journal of Heat Transfer, Vol.
1ll. No. 1. 1989. pp. 14t-147.

:Lathrop, K. D.. "Ray Effects in Discrete-Ordinates Equations,"
Nuclear Science and Engineering, Vol. 32, 1968, pp. 357-369.

JMengue, M. P., and Viskanta. R.. "'Radiative Transfer in Three-
Dimensional Rectangular Enclosure,'" Journal of Quantitative Spec-
troscopy and Radiative Transfer, Vol. 33, No. 6, 1985, pp. 533-549.

*Chui, E. H.. Raithby, G. D.. and Hughes. P. M. J.. "'Prediction
of Radiative Transfer in Cylindrical Enclosure with the Finite Volume
Method," Journal of Thermophysics and Heat Transfer, Vol. 6, No.
4, 1992, pp. 605-611.

STan. Z., and Howell, J. R.. "A New Numerical Method for Ra-
diation Heat Transfer in Nonhomogeneous Participating Media."
Journal of Thermophysics and Heat Transfer, Vol. 4, No. 4, 1990.
pp. 419-424.

6Hsu. P.-F.. Tan. Z., and Howell. J. R., "A Correction of the
Y[X method for the Solution of Radiative Heat Transfer," unpub-
lished, 1992.

7Hsu, P.-F., Tan, Z., and Howell, J. R., "Radiative Transfer by

the YIX Method in Nonhomogeneous, Scattering. and Nongray Me-
dium." Journal of Thermophysics and Heat Transfer. Vol. 7, No. 3.
1993. pp. 487-495.

"Gore. J. P.. lp, U.-S., and Sivathanu. Y. R., "'Coupled Structure
and Radiation Analysis of Acetylene/Air Flames." Jotwnal of Heat



440 HSU AND KU: FINITE CYLINDRICAL ENCLOSURES

Transfer, Vol. 114, No. 2, 1992, pp. '.187-493.
"Sivathanu, Y. R., Kounalakis. M. E., and Facth. G. M.. "Soot

and Continuum Radiation Statistics of Luminous Turbulent Diffusion

Flames," Twenty-Third Symposium ([nternationaO on ComblLstion,

Orleans, France, 1990. pp. 1543-1550.
_"Fairweather, M., Jones, W. P., and Lindstedt, R. P., "'Predic-

tions of Radiative Transfer from a Turbulent Reacting Jet in a Cross-

Wind." Combustion and Flame, Vol. 89, No. 1, 1992, pp. 45-63.
t_Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer.

3rd ed., Hemisphere, New York. 1993.
_"Chu, C. M., and Churchill. S. W.. "Representation of an Angular

Distribution of Radiation Scattered by a Spherical Particle." Journal

o[the Optical Society o/America, Vol. 45. No. 11. 1955, pp. 958-
962.

_Gradshteyn. I. S.. and Ryzhick. I. M., Table ofhltegrals. Series.
and Products. Academic Press, New York. 1980.

"Crosbie, A. L., and Farrell, J. B., "'Exact Formulation of Mul-

tiple Scattering in a Three-Dimensional Cylindrical Geometry."Jour-

hal of Quantitative Spectroscopy and Radiative Trat:sfer. Vol. 31, No.
5. 1984. pp. 397-416.

t_,'vlenguc. M. P., and Viskanta, R., "'Radiative Transfer in Axi-

symmetric. Finite Cylindrical Enclosure," Journal of Heat Transfer.
Vol. 108, No. 2, 1986. pp. 271-276.

t_'Jamaluddin, A. S., and Smith, P. J.. "Predicting Radiative Trans-
fer in Axisymmetric Cylindrical Enclosure Using the Discrete Or-
dinates Method," Combustion Science and Technology, Vol. 62, 1988,

pp. 173-186.

arLathrop, K. D., and Carlson, B. G., "Discrete-Ordinates An-

gular Quadrature of the Neutron Transport Equation," Los Alamos
Scientific Lab., Rept. LASL-3186. Los Alarnos, NM. 1965.

Z_'Fiveland, W. A., "'Three-Dimensional Radiative Heat-Transfer

Solutions by the Discrete-Ordinates Method." Journal o/Thermo-
physics and Heat Transfer, Vol. 2. No. 4, 1988, pp. 309-316.

'_'Dua, S. S., and Cheng. P., "Multi-Dimensional Radiative Trans-
fer in Non-Isothermal Cylindrical Media with Non-Isothermal Bound-

ing Walls," /nternational Journal of Heat and i_,'lass Transfer, Vol.
18, 1975, pp. 245-259.

-_un. J., Ph.D. Dissertation, Mechanical Engineering Dept., Wayne
State Univ., Detroit. MI, in preparation.

-'ZWu. H. L.. and Fricker. N., "'The Characteristics of Swirl-Sta-

bilized Natural Gas Flames--Part 2: The Behaviour of Swirling Jet
Flames in a Narrow Cylindrical Furnace." Journal of" the Institute of
Fuel, Vol. 49, Sept. 1976, pp. 144-151.

:-'Fiveland, W. A., "'A Discrete Ordinates Method for Predicting
Radiative Heat Transfer in Axisymmetric Enclosures." American

Society of Mechanical Engineers, Paper 82-HT-20. 1982.

-"_Tong, L.. Ph.D. Dissertation. Mechanical Engineering Dept..
Wayne State Univ., Detroit. MI, in preparation.

-'_Ku. J. C., and Shim. K.-H., "Optical Diagnostics and Radiative
Properties of Simulated Soot Agglomerates," Jol:rnal of Heat Trans-

fer, Vol. 113, No. 4, 1991. pp. 953-958.
:_Koylu, U. O., and Faeth, G. M., "'Optical Properties of Overfire

Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times,"
Journal of Heat Transfer (to be published).

I-7


