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DIRECTIONAL AGGLOMERATION MULTIGRID TECHNIQUES FOR
HIGH-REYNOLDS NUMBER VISCOUS FLOWS

DIMITRI J. MAVRIPLIS *

Abstract. A preconditioned directional-implicit agglomeration algorithm is developed for solving two-
and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The
multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines con-
structed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration
is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and direc-
tional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm,
which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the de-
gree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the

three-dimensional convergence rates through a GMRES technique is also demonstrated.
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1. Introduction . The goal of this work is the development of an efficient solver for compressible steady-
state high Reynolds number Navier-Stokes flows on unstructured meshes. The overall strategy is based on
a multigrid approach. Multigrid methods form the basis of some of the most efficient available solvers for
such problems, both on structured and unstructured grids. For inviscid transonic flow problems, multigrid
methods can deliver converged solutions in under 100 cycles [8]. However, for high-Reynolds number Navier-
Stokes problems, and for flows involving large regions of low velocity fluid, multigrid convergence rates
degrade seriously. This degradation is due partly to the stiffness induced by the highly stretched grids
which are required to resolve efficiently the thin boundary layers and wakes which occur at high Reynolds
numbers. Additional stiffness is induced in regions of low Mach number flow, due to the disparity in
eigenvalues corresponding to the acoustic and convective wave speeds, as the Mach number tends to zero.

The construction of an efficient solver requires simultaneous treatment of these effects. Semi-coarsening
multigrid techniques as well as implicit line-solvers can be used effectively on structured grids to relieve
the stiffness associated with highly stretched meshes [3, 1]. The basic semi-coarsening strategy consists
of constructing coarser multigrid levels by coarsening the original grid in the coordinate direction normal
to the grid stretching, rather than in all directions simultaneously. When conflicting stretching directions
exist, multiple coarse grids must be constructed, each generated by a coarsening in a particular coordinate
direction [20]. However, when a single stretching direction can be identified, only one family of directionally
coarsened grids is required [23].

Semi-coarsening techniques can be generalized to unstructured meshes as directional coarsening methods
[13, 26, 5, 28]. Graph algorithms can be constructed to remove mesh vertices based on the local degree and
direction of anisotropy in either the grid or the discretized equations. This is achieved by basing point-
removal decisions on the values of the discrete stencil coefficients. This is the basis for algebraic multigrid
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methods [28], which operate on sparse matrices directly, rather than on geometric meshes. These techniques
are more general than those available for structured meshes, since they can deal with multiple regions of
anisotropies in conflicting directions.

One of the drawbacks of semi- or directional-coarsening techniques is that they result in coarse grids of
higher complexity. While a full-coarsening approach reduces grid complexity between successively coarser
levels by a factor of 4 in 2D, and 8 in 3D, semi-coarsening techniques only achieve a grid complexity reduction
of 2, in both 2D and 3D. This increases the cost of a multigrid V-cycle, and makes the use of W-cycles
impractical. Perhaps more importantly for unstructured mesh calculations, the amount of memory required
to store the coarse levels is dramatically increased, particularly in 3D.

An alternative to semi-coarsening is to use an implicit line-solver in the direction normal to the grid
stretching coupled with a regular full coarsening multigrid algorithm. Although predetermined grid lines
do not exist in an unstructured mesh, such lines can be constructed by identifying and grouping together
neighboring mesh edges using a graph algorithm [6, 12]. By using a weighted graph algorithm with edge
weights which reflect the degree of coupling in the discretization between neighboring grid points, sets of
lines which propagate in the direction of strong grid coupling can be constructed [15].

The solution strategy described in this paper addresses the anisotropy-induced stiffness problem through
a combination of implicit line solvers coupled with directional coarsening multigrid. This coupled algorithm
permits faster coarsening rates which result in more optimal coarse grid complexities. The low Mach number
stiffness problem is addressed using preconditioning techniques [32, 11, 4, 35], which are integrated into the
overall directional implicit multigrid algorithm. The combination of these three techniques into a single solver
has previously been demonstrated in the context of geometric multigrid for two-dimensional problems [15].
The current work represents an extension of this strategy to the more practical agglomeration or algebraic

multigrid approach for unstructured meshes, as well as the extension to three dimensions.

2. Discretization . The governing equations are discretized using a finite-volume approach. Flow
variables are stored at the vertices of the mesh, and control volumes are formed by the median-dual graph
of the original mesh, as shown in Figure 2.1. A control-volume flux balance is computed by summing fluxes
evaluated along the control volume faces, using the average values of the flow variables on either side of the
face in the flux computation. This construction of the convective terms corresponds to a central difference
scheme which requires additional dissipation terms for stability. These may either be constructed explicitly
as a blend of a Laplacian and biharmonic operator, or may be obtained by writing the residual of a standard

upwind scheme as the sum of a convective term and dissipation term:
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where the convective fluxes are denoted by F(w), n;; represents the normal vector of the control volume face
separating the neighboring vertices i and k, and A, is the flux Jacobian evaluated in the direction normal
to this face. wy and wg represent extrapolated flow values at the left and right hand sides of the control
volume face respectively. For a first order-scheme, these are taken as the values at the vertices to the left
and right of the control volume interface, whereas for a second-order scheme, these are extrapolated from

the corresponding vertex values using solution gradients pre-computed at these vertices.



FiG. 2.1. Median control-volumes for stretched quadrilateral and triangular elements

In this work, a matrix artificial dissipation is employed. The matrix-based artificial dissipation scheme is
obtained by utilizing the same transformation matrix [A x| as the upwind scheme, but using this to multiply a
difference of blended first and second differences (i.e. blended laplacian and biharmonic operator) rather than
a difference of reconstructed states at control-volume boundaries. The traditional scalar artificial dissipation
scheme [9, 16, 18] is obtained by replacing the four eigenvalues u, u, u + ¢, u — ¢ in the |A;| matrix of
the matrix dissipation model by the maximum eigenvalue |u| + ¢, where u and ¢ denote local fluid velocity
and speed of sound, respectively. This matrix dissipation construction has been found to deliver accuracy
comparable to an upwind scheme, while eliminating the need to compute and store flow gradients at mesh
vertices.

The thin-layer form of the Navier-Stokes equations is employed in all cases, and the viscous terms
are discretized to second-order accuracy by finite-difference approximation. For multigrid calculations, a
first-order discretization is employed for the convective terms on the coarse grid levels.

The single equation turbulence model of Spalart and Allmaras [31] is utilized to account for turbulence
effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with
the exception that the convective terms are only discretized to first-order accuracy.

This particular discretization is designed to enable the use of mixed element meshes in two dimensions
(quadrilaterals and triangles) and three-dimensions (tetrahedra, prisms, pyramids, hexahedra). Meshes of
differing element types are handled by employing a single edge-based data structure to assemble the fluxes
across all element types [17]. In two dimensions, quadrilateral elements are employed in the regions of high
mesh stretching, while triangular elements are employed in isotropic regions of the mesh. In three dimensions,
hexahedra or prisms are employed in regions near the wall, while tetrahedra are generally employed eclsewhere.
The use of different element types in regions of high mesh stretching enables a more complete decoupling of

the discretization in the stretching and normal directions, as discussed in section 4.

3. Preconditioned Smoothing . Once the governing equations are discretized, they must be inte-
grated in time to obtain the steady-state solution. This is achieved using a preconditioned multi-stage

time-stepping scheme. An explicit k-stage scheme can be written as:
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where At represents the scalar time step estimate. While such a scheme is commonly used for scalar artificial
dissipation discretizations, for upwind or matrix dissipation discretizations substantial increases in efficiency
can be obtained by using a Jacobi preconditioning approach in conjunction with the multi-stage scheme
[27, 19, 21, 22]. The (g + 1)th stage of a Jacobi preconditioned multi-stage scheme can be written as:

(32) W = w® 4 D] x Ri(w(®)

where the scalar time step At from equation (3.1) is replaced by the matrix time step given by the inverse
of the matrix

nelghbors
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which is a 5 x 5 matrix (4 x 4 in two dimensions) corresponding to the pointwise Jacobian of the residual.
Note that for a scalar dissipation scheme, this matrix becomes diagonal, and the scalar time-step estimate

is recovered, thus reducing the scheme to the standard explicit multi-stage scheme.

Additional preconditioning of the type described in [32, 11, 4, 35] must be implemented in order to address
the stiffness problems induced by regions of low Mach number flows. Traditionally, such preconditioners are
described as a matrix multiplying an explicit updating scheme, and a similar matrix-based modification to
the dissipation terms, which improves the accuracy at low Mach numbers. Thus, the (g + 1)th stage of the

standard multi-stage scheme (c.f. equation (3.1)) is rewritten as:
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In the present work, we wish to implement this type of “preconditioner” in the context of a point-implicit
(Jacobi-preconditioned) or line-implicit scheme. Since the low Mach number preconditioning matrix is a
point-wise matrix, its implementation for point-implicit schemes is similar as for line-implicit, or any implicit
scheme. The approach taken, which was originally described in [33, 17}, is to modify the dissipation terms
in the discretization, as per equation (3.4) , and then simply take this modification into account in the
point-wise linearization that is required for the point-implicit Jacobi scheme. Thus, the (g + 1)th stage of

the low Mach number preconditioned Jacobi multi-stage scheme becomes:
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In regions where the Mach number is relatively large, the low Mach number preconditioning matrix P
becomes the identity matrix, and effect of the preconditioner vanishes. In this case, the above scheme
reverts to the Jacobi preconditioned scheme of equations (3.2). Likewise, for scalar dissipation discretizations
(i.e. when |PA;| is approximated as a diagonal matrix), this scheme reverts to the low Mach number
preconditioned schemes characterized by equation (3.4) and described in [32, 11, 35]. The particular form of
the preconditioning matrix P employed is that described in [25]. The implementation described therein is
attractive because it can be achieved without any change of variables in the original discretization.

Equation (3.5) represents the scheme used in isotropic regions of the mesh. In regions of large mesh
stretching, this pointwise scheme is replaced by a line implicit scheme, operating on grid lines which are
pre-constructed in the grid. The implicit system gcnerated by the set of lines can be viewed as a sim-
plification of the general Jacobian obtained from a linearization of a backwards Euler time discretization,
where the Jacobian is that obtained from a first-order discretization, assuming a constant Roe matrix in
the linearization. For block-diagonal preconditioning, all off-diagonal block entries are deleted, while in the
line-implicit method, the block entries corresponding to the edges which constitute the lines are preserved.
The line-implicit solver is introduced into the current solution strategy as an extension of the Jacobi pre-
conditioner. At each stage in the multi-stage scheme, the corrections previously obtained by multiplying the
residual vector by the inverted block-diagonal matrix are replaced by corrections obtained by solving the
implicit system of block-tridiagonal matrices generated from the set of lines. This implementation has the
desirable feature that it reduces exactly to the block-diagonal preconditioned multi-stage scheme when the
line length becomes one (i.e. 1 vertex and zero edges), as is the case in isotropic regions of the mesh.

In summary, the final scheme, which is used as a smoother for multigrid on all levels, results in a
point-implicit low-Mach number preconditioned multi-stage scheme in isotropic regions of the mesh, and
a line-implicit low-Mach number preconditioned multi-stage scheme in regions of high mesh stretching. A
three-stage multistage scheme with stage coefficients optimized for high frequency damping properties {34],
and a CFL number of 1.8 is used in all computations.

4. Directional Agglomeration and Line Construction . The stiffness due to grid anisotropy is
addressed by a directional agglomeration multigrid strategy coupled with a line-implicit smoother. The
combination of these two strategies into a single algorithm has been found to result in a more robust and
efficient solution method than the use of either strategy alone [14, 15].

In regions of high grid stretching, standard directional agglomeration (i.e. coarsening) results in the
removal of one grid point for every retained coarse grid point. This produces a sequence of coarse grid levels
for which the complexity between successive levels decreases by a factor of 2. Isotropic agglomeration, on the
other hand, produces a coarse grid complexity reduction of 4:1 in 2D and 8:1 in 3D. The higher complexity
of the directionally coarsened levels greatly increases memory overheads, particularly in three dimensions,
and makes the use of the multigrid W-cycle impractical, since the operation count of the W-cycle becomes

unbounded in such cases as the number of grid levels is increased.

The implicit-line solver achieves superior smoothing of error components along the direction of the
implicit lines, as compared to a regular explicit scheme. This in-turn permits the use of an accelerated
coarsening schedule by the agglomeration multigrid algorithm. However, since the implicit line-solver is only
effective at smoothing error components along the implicit lines, multigrid coarsening must proceed precisely
along the direction of these lines. This requires a close coupling between the directional agglomeration

algorithm and the line construction algorithm. Both techniques are based on weighted graph algorithms,



and must employ the same definition of the graph weights.

Agglomeration multigrid may be viewed as a simplified algebraic multigrid strategy. Coarse level grids
are constructed by fusing together or agglomerating neighboring control volumes to form a coarser set of
larger but more complex control volumes. In the algebraic interpretation of agglomeration multigrid, the
coarse levels are no longer geometric grids, but represent groupings of fine grid equations which are summed
together to form the coarse grid equations sets [13, 7]. Therefore, it is important to base the directional
agglomeration and line construction graph weights on algebraic quantities such as stencil coefficients, rather
than geometric quantities such as edge lengths, which may be ill-defined on the coarse levels. However, a one-
to-one correspondence between stencil coefficients and grid edges only exists for scalar equations and is not
possible for systems of equations. For this reason, the edge weights for the line-construction algorithm and
the directional agglomeration algorithm are taken as the stencil coefficients of a scalar convection equation
discretized on the fine grid using the finite-volume approach. On the fine level, these correspond to the
area-weighted normals of the control volume faces delimiting two neighboring vertices. On the coarser levels,

these are constructed by summing the constituent fine level face normals.

For highly stretched quadrilateral cells, this results in large weights being associated with grid edges
normal to the direction of stretching, and small edge weights in the direction parallel to the stretching, as
can be inferred from the relative sizes of the control volume faces in Figure 2.1. However, for stretched
triangular cells, the diagonal grid edges result in weights which may be comparable in the two directions.
This weaker decoupling of the normal and stretching directions for triangular elements in two dimensions can
produce undesirable results in the line and agglomeration algorithms. Therefore, we employ quadrilateral
elements in two dimensions in regions of high mesh stretching, and prismatic (or hexahedral) elements in
highly stretched regions for three dimensional meshes. An alternate approach would be to employ a different
control volume definition, such as a containment-dual based control volume [2], and retain simplicial elements

in these regions, however this has not been attempted to date.

The line construction algorithm begins by pre-computing the ratio of maximum to average adjacent edge
weight for each vertex. The vertices are then sorted according to this ratio. The first vertex in this ordered
list is then picked as the starting point for a line. The line is built by adding to the original vertex the
neighboring vertex which is most strongly connected to the current vertex, provided this vertex does not
already belong to a line, and provided the ratio of maximum to minimum edge weights for the current vertex
is greater than «, (using o = 4 in all cases). The line terminates when no additional vertex can be found. If
the originating vertex is not a boundary point, then the procedure must be repeated beginning at the original
vertex, and proceeding with the second strongest connection to this point. When the entire line is completed,
a new line is initiated by proceeding to the next available vertex in the ordered list. Ordering of the initial
vertex list in this manner ensures that lines originate in regions of maximum anisotropy, and terminate in
isotropic regions of the mesh. The algorithm results in a set of lines of variable length. In isotropic regions,
lines containing only one point are obtained, and the point-implicit or Jacobi pre-conditioned scheme is

recovered.

The agglomeration algorithm consists of choosing a seed point (ie. a control-volume) which initiates
a local agglomeration, and then agglomerating the neighboring control volumes to the secd point. The
isotropic version of this algorithm [10, 30, 16] constitutes an unweighted graph algorithm. In this version
of the algorithm, each time a seed point is chosen, all neighboring points are agglomerated to this point.
The directional agglomeration algorithm is based on a weighted graph technique. The edge weights are



defined in the same manner as for the line construction algorithm. Once a seed point is chosen, only those
neighboring points that are connected to the seed point through an edge of weight greater than 8 X mazeight
are agglomerated, where maz,eigns denotes the maximum edge weight incident to the seed point. Taking
B = 0.5 reproduces the isotropic agglomeration algorithm in regions were all edge weights are close in
size. However, in regions where one edge weight is much larger than the others, a directional coarsening is
achieved. This results in a 2:1 coarsening ratio in such regions. In order to obtain a 4:1 coarsening ratio,
the process must be repeated. This will result in the agglomeration of points or control volumes which were
not originally neighbors of the initial seed point. This type of aggressive coarsening can only be tolerated in
regions where the implicit line solver is used as a smoother. Therefore, the coarsening process is repeated
only if the agglomerated control volume is joined to the current seed point by an edge which is part of an
implicit line. The process is repeated until four control volumes are agglomerated together, or until no line

edges can be found.

From the above description, it is evident that the line construction and coarsening process are closely
coupled and must be carried out simultaneously. The edge weights, once defined on the finest level, are com-
puted on the fly for each coarser level as they are created. The whole process is performed in a preprocessing
phase, and the output, consisting of sets of lines for each level and coarse grid groupings, is passed to the

flow solver.

Fic. 4.1. Unstructured Grid Used for Computation of Transonic Flow Over RAE 2822 Airfoil. Number of Points =
16167, Wall Resolution = 10~% chords

As an example, the directional implicit agglomeration multigrid algorithm has been applied to the grid of
Figure 4.1. The lines created on the finest grid level are depicted in Figure 4.2. The first coarse agglomerated
level is illustrated in Figure 4.3, depicting the agglomerated cells in the boundary-layer region near the leading
edge, where a 4:1 directional coarsening is observed. Table 1 documents the complexity of the coarse grid
levels using the isotropic agglomeration algorithm of [16], as well as the coarse grid complexity achieved
using the current directional agglomeration multigrid algorithm. The resulting complexity for a multigrid
W-cycle is just 15 % larger for the directionally agglomerated grids than for the isotropically agglomerated
grids.



] -
_\.\‘lwn.m‘vim';l'.h{!il‘| [ll'...|“;’flff;ﬁpumw" ,i; | '
R T AT ‘|7"i I i
i “ xs\"«',\\‘mMnL\:!l;"ﬂ'mw‘nf‘l"mi;i!‘|,l| . 1 i :
LN . 13 (RS “ i
RS gy

1

i !

Fic. 4.2. Directional Implicit Lines Constructed on Grid of Figure 4.1 by Weighted Graph Algorithm

FiG. 4.3. First Agglomerated Multigrid Level Constructed on Grid of Figure 4.1 Illustrating 4:1 Directional Coarsening
in Boundary Layer Region




Regular AMG | Directional AMG

Mesh Level | Nnode | Ratio | Nnode Ratio

1 16167 1 16167 1
2 4074 3.99 4476 3.61
3 1038 | 3.92 1383 3.24
4 268 3.87 585 2.36
W-Cycle
Complexity 1.89 2.18

Table 1: Comparison of Coarse Grid Complezity and Resulting W-cycle Complexity for Regular Isotropic

Agglomeration and Directional Agglomeration Multigrid

5. Two Dimensional Results. The combined directional-implicit agglomeration multigrid algorithm
produces convergence rates independent of the degree of grid anisotropy. This is demonstrated in two
dimensions by solving the transonic flow over an RAE 2822 airfoil on three different grids. All three grids
contain the same distribution of boundary points, but different resolutions in the direction normal to the
boundary and wake regions. The first grid contains a normal wall spacing of 10> chords, and a total of
12,568 points, while the second grid contains a normal wall spacing of 10~ chords, and 16,167 points, and
the third grid a normal wall spacing of 10~7 chords, and 19,784 points. The cells in the boundary layer
and wake regions are generated using a geometric progression of 1.2 for all three grids. The second grid,
depicted in Figure 4.1, contains what is generally regarded as suitable normal and streamwise resolution for
accurate computation of this type of problem, while the first and third grids are most likely under-resolved

and over-resolved in the direction normal to the boundary layer, respectively.

Fic. 5.1. Computed Mach Contours on Grid of Figure {.1. Mach = 0.78, Incidence = 2.31 degrees, Re = 6.5 million
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FIG. 5.3. Comparison of Low-Mach Number Preconditioned and Unpreconditioned Directional-Implicit Agglomeration
Multigrid Algorithm Convergence Rates for Various freestream Mach Numbers

The Mach number for this case is 0.73, the incidence is 2.31 degrees, and the Reynolds number is 6.5 million.
The computed solution on the grid with normal wall spacing of 107% chords is depicted in Figure 5.1. The
flow is transonic and the low Mach number preconditioning matrix reverts to the identity matrix for this
case. With the effect of this preconditioning removed, a more direct comparison between the directional

implicit multigrid and the previously developed unpreconditioned full coarsening multigrid method [16, 18]
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is possible. The convergence rates of both methods on all three grids are shown in Figure 5.2. The explicit
full coarsening multigrid solver produces convergence rates which decay substantially as the grid stretching is
increased. In fact, the asymptotic rate of this scheme for the most highly stretched grid is almost two orders
of magnitude slower than that achieved on the least stretched grid. On the other hand, the directional-
implicit agglomeration scheme produces convergence to machine zero in under 600 cycles and is essentially
unaffected by the degree of grid anisotropy. This comparison represents the best possible performance for
each scheme. The explicit full-coarsening multigrid algorithm employs a five stage time-stepping scheme
which is augmented with implicit residual smoothing and is used to solve a scalar dissipation discretization.
The use of more accurate matrix dissipation with the explicit full-coarsening multigrid algorithm produces
slower and less robust convergence rates. The directional implicit agglomeration algorithm operates on the
matrix dissipation discretization and uses a three stage time-stepping scheme with no residual smoothing
but with point- or line-preconditioning where the jacobians are evaluated and inverted only at the first stage
of the scheme and then frozen for the remaining stages. Although Figure 5.2 compares the two schemes
in terms of multigrid cycles, the cost per cycle of both schemes is relatively close, the directional implicit
agglomeration scheme being about 15% more expensive per cycle, which is mainly due to the added work

for the evaluation of the matrix dissipation.

The benefits of low Mach-number preconditioning are demonstrated in Figure 5.3, where the flow over an
RAE 2822 airfoil at varying Mach numbers has been computed on the grid of Figure 4.1 using the directional
implicit agglomeration algorithm with and without the low Mach number preconditioner. For the transonic
case, the preconditioner is not active, and both cases give identical convergence. However, as the Mach num-
ber is lowered, the convergence rate degrades substantially for the cases run with no preconditioning, while
the preconditioned cases all converge to machine zero in approximately 300 cycles. This example demon-
strates the importance of employing both techniques simultaneously (low-Mach number preconditioning and
directional implicit agglomeration) in order to obtain rapid convergence rates for subsonic Navier-Stokes

flows.

The computation of high-lift flows simultaneously involves regions of low velocity fluid and high grid
anisotropy, therefore providing a good demonstration of the current algorithm. Figure 5.4 depicts an un-
structured grid about a three-clement airfoil high-lift configuration. The grid contains a total of 61,104
points and a normal spacing of 10~° chords at the surface of each airfoil element. The implicit lines gener-
ated by the graph algorithm for this case are depicted in Figure 5.5, and a qualitative view of the solution
as a set of Mach contours is given in Figure 5.6. The freestream Mach number for this case is 0.2, the
incidence is 16 degrees, and the Reynolds number is 9 million. The convergence rates of the directional-
implicit agglomeration scheme and the explicit full-coarsening agglomeration scheme are compared on the
basis of CPU time in Figure 5.7. The explicit full-coarsening scheme employs a five stage time-stepping
scheme and residual smoothing and solves the scalar dissipation discretization, while the directional-implicit
agglomeration scheme employs the preconditioned three-stage time-stepping scheme with Jacobians frozen
at the second and third stages, and solves the matrix dissipation discretization. As can be inferred from
Figure 5.7, the directional-implicit agglomeration scheme achieves a 6 order of magnitude residual reduction
in approximately one quarter of the time required by the explicit full-coarsening approach, which permits
engineering solutions to be obtained in approximately 1.5 hours on an inexpensive workstation.
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FIG. 5.4. Unstructured Grid Used for Computation of Subsonic Flow Over Three-Element Airfoil Geometry. Number of
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FiG. 5.5. Implicit Lines Generated by Weighted Graph Algorithm on Grid of Figure 5.4
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Workstation

6. Three Dimensional Results. In three dimensions, a directional coarscning ratio of 8:1 is required
in order to match the coarse grid complexities achieved by an isotropic full coarsening algorithm. Unfor-
tunately, robustness problems associated with 8:1 coarsening ratios have been encountered. Therefore, at
present a 4:1 coarsening ratio is employed in three-dimensions, although faster coarsening ratios are still un-
der investigation. This results in a 50% increase in storage and cpu time per multigrid W-cycle as compared
to that achieved by an 8:1 coarsening algorithm, but nevertheless results an an efficient solution procedure

for three dimensional problems.
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Fic. 6.1. Illustration of Mized Element Grid and Implicit Lines Used for Computation of two-dimensional Flow over
three-dimensional Wing Geometry. Number of Grid Points: 177,837
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The first three-dimensional test casc involves the computation of a two-dimensional flow using a three-
dimensional grid, in order to compare the performance of the three-dimensional code with that of the
two-dimensional code. The grid of Figure 4.1 has been extruded in the spanwise direction, resulting in a
three dimensional grid of 177,837 vertices. While the original two dimensional grid contained quadrilateral
elements in the boundary and wake regions and triangular elements elsewhere, the three dimensional grid
contains hexahedral elements in the viscous regions, and prismatic elements in the inviscid regions. The
surface grid and the implicit lines generated by the three-dimensional graph algorithm are depicted in Figure
6.1. The prescribed coarsening ratio of 4:1 results in coarse levels which are very similar to those produced
by the two-dimensional algorithm, at least near the wing surface. The convergence rates of the two- and
three-dimensional codes are compared in Figure 6.2. The Mach number is 0.1, the incidence 2.31 degrees,
and the Reynolds number is 6.5 million. The three-dimensional convergence curve is much faster than the
convergence of the isotropic algorithm, reaching machine zero in just under 600 multigrid cycles. However,
it is somewhat slower than the equivalent two-dimensional algorithm which reaches machine zero in just 300

iterations.

The next example demonstrates the insensitivity of the current three-dimensional algorithm to grid
stretching. Three unstructured tetrahedral grids have been constructed about an ONERA M6 wing using
the VGRID grid generation package [24]. These grids all contain the same surface resolution, but different
normal resolutions near the wing surface. The first grid contains a normal wall spacing of 10~° chords, and
a total of 1.2 million points, while the second grid contains a normal wall spacing of 10~° chords, and 1.6
million points, and the third grid a normal wall spacing of 10~7 chords, and 2 million points. The cells in
the boundary layer and wake regions are generated using a geometric progression of 1.2 for all three grids.
The second grid (i.e. 10~6 spacing) is depicted in Figure 6.3. As explained previously, prismatic elements
are required in the boundary layer regions for the directional-implicit agglomecration algorithm. Since the
VGRID grid generation package produces fully tetrahedral meshes, a mesh merging technique is employed

14



to merge tetrahedra triplets into prisms in regions near the wall [17]. At this initial stage of development,
a uniform height of prism layers is employed over the entire wing surface. This avoids the use of “hanging
edges” or transitional elements such as pyramids when a variable number of prismatic layers are allowed
in the grid. On the other hand, this restriction may result in the incomplete merging of some stretched
tetrahedral elements. The convergence rates of the directional-implicit agglomeration algorithm on all three
grids are depicted in Figure 6.4. A four level W-cycle was used for these computations. The coarsening
ratios achieved between the first and second, second and third, third and fourth levels were 3.69:1, 3.16:1
and 2.2:1 respectively for the 107¢ spacing grid, with similar coarsening ratios obtained on the other grids.
The Mach number is 0.1, the incidence is 2.0 degrees and the Reynolds number is 3 million.

Very similar convergence rates are achieved on all three grids. All cases exhibit a slowdown in convergence
after approximately 6 or 7 orders of magnitude, but achieve close to an 8 order of magnitude reduction in
600 cycles. Considering that these three grids represent a two order of magnitude variation in the degree of
grid stretching, the convergence rates can be qualified as independent of the grid stretching. As an example
of the computational overheads incurred, the grid containing 1.6 million vertices required a total of 350
Mwords of memory and 53 cpu hours to converge 600 cycles. This case was run on 8 CPUs of the CRAY
C90 and achieved a cpu to wall-clock time ratio of 7 on a lightly loaded machine.
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F1G. 6.3. Nustration of One of Three Unstructured Grids Employed For Computation of Flow Over ONERA M6 Wing:
Number of vertices= 1.6 million, Wall Spacing = 10~%
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FIG. 6.4. Comparison of Convergence Rates Achieved by Directional Implicit Agglomeration Multigrid Algorithm on 3
Grids of Varying Normal Resolution for ONERA M6 Wing Geometry at Mach number = 0.1

The final case consists of a three-dimensional high-lift application. The geometry involves a partial span flap
unswept wing in a wind-tunnel. The unstructured grid employed for this case is depicted in Figure 6.5. This
mesh contains a total of 549,176 points, and a normal spacing at the wing surface of 10~% chords. As in the
previous case, a uniform height of prismatic layers was created in the boundary layer regions using the mesh
number is 3.7 million. The computed density contours for this case are depicted in Figure 6.6. A four level
W-cycle was used for this computation. The coarsening ratios achieved between the first and second, second
and third, third and fourth levels were 3.84:1, 3.43:1 and 2.23:1 respectively. The convergence obtained by
the directional implicit agglomeration multigrid algorithm is compared with that achieved by the explicit
full-coarsening agglomeration multigrid algorithm in Figure 6.7. As in the two-dimensional comparisons, this
represents the best possible performance for each algorithm: the directional algorithm employs a three-stage
time-stepping scheme and operates on the matrix dissipation discretization, while the isotropic algorithm
employs a five-stage scheme with residual smoothing and operates on the scalar dissipation discretization.
The directional algorithm produces substantially faster convergence than the isotropic algorithm, although a
slowdown is observed after 4 to 5 orders of magnitude. While the asymptotic rate of the directional algorithm
is still substantially faster than that of the isotropic algorithm, the rate is much slower than that achieved

in two dimensions.
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F1G. 6.5. Nlustration of Unstructured Grid employed for Computation of Flow Over Partial-Span Flap Geometry. Number
of Vertices = 549,176

FI1G. 6.6. Illustration of Computed Density Contours for Flow Over Partial-Span Flap Geometry. Mach Number = 0.2,
Incidence = 10 degrees, Reynolds Number = 3.2 million

Further increases in the convergence rate can be achieved by resorting to a Krylov acceleration technique
such as GMRES [29]. The preconditioned directional implicit agglomeration algorithm can be employed as a
preconditioner to GMRES [21, 15]. The current implementation uses a nonlinear GMRES solver [36] which
computes Jacobian-vector products by finite differencing the residual. The addition of GMRES incurs little
extra cpu time, measured on a multigrid cycle basis, but requires considerable additional storage, since a
solution vector must be stored for each of the Krylov search directions. In the current implementation, 20
search directions are employed, resulting in a memory increase of 100 words per vertex (about 50% increase).
The convergence rate using GMRES is depicted in Figure 6.7. The solver was run initially 150 multigrid
cycles using the directional agglomeration multigrid algorithm alone, and then another 462 multigrid cycles
using the preconditioned GMRES approach (i.e. 22 GMRES(20) cycles). The addition of GMRES is largely
successful in overcoming the slowdown in the asymptotic convergence rate observed by the simpler directional
implicit multigrid algorithm alone, achieving an overall residual reduction of 9 orders of magnitude over 600
cycles. This case required a total of 230 Mwords of memory and 20 cpu hours on the CRAY C90, and ran

at a cpu-time to wall-clock ratio of 7 on 8 processors.
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7. Future Work. The preconditioned directional agglomeration multigrid algorithm has been shown
to produce grid-aspect-ratio independent convergence rates in both two and three dimensions. In particular,
the two-dimensional implementation of the current algorithm has resulted in a very efficient solver for viscous
flows. However the convergence rates obtained in three dimensions, while substantially faster than those
achieved by the isotropic algorithm, are still slower than those observed in two dimensions. This may be due
in part to the possibility of the existence of multidimensional stretching in three dimensions. In such cases,
a modified line-construction and coarsening strategy may be required. Furthermore, the coarsening ratios
achieved in three dimensions, which are often even lower that the prescribed 4:1 rate, result in additional cpu
time per multigrid cycle and increase the overall memory requirements of the solver. Future work will focus
on augmenting the three-dimensional coarsening ratios to approximate the 8:1 ratio observed in isotropic
cases as closely as possible, and on accelerating the three-dimensional convergence rates through improved
line construction and preconditioning. In order to isolate the effects of the turbulence model, the turbulence
values have been frozen after 150 to 200 cyles in the in the computations of the preceding section. The

efficient convergence of the combined sys’cem of flow and turbulence equations is also under investigation.
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