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DIRECTIONAL AGGLOMERATION MULTIGRID TECHNIQUES FOR

HIGH-REYNOLDS NUMBER VISCOUS FLOWS

DIMITRI J. MAVRIPLIS *

Abstract. A preconditioned directional-implicit agglomeration algorithm is developed for solving two-

and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The

multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines con-

structed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration

is achieved using a similar weighted graph algorithm. A tight coupling of thc line construction and direc-

tional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm,

which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the de-

gree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the

three-dimensional convergence rates through a GMRES technique is also demonstrated.
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1. Introduction. The goal of this work is the development of an efficient solver for compressiblc steady-

state high Reynolds number Navier-Stokes flows on unstructured meshes. The overall strategy is based on

a multigrid approach. Multigrid methods form the basis of some of the most efficient available solvers for

such problems, both on structured and unstructured grids. For inviscid transonic flow problems, multigrid

methods can deliver converged solutions in under 100 cycles [8]. However, for high-Reynolds number Navier-

Stokes problems, and for flows involving large regions of low velocity fluid, multigrid convergence rates

degrade seriously. This degradation is due partly to the stiffness induced by the highly stretched grids

which are required to resolve efficiently the thin boundary layers and wakes which occur at high Reynolds

numbers. Additional stiffness is induced in regions of low Mach number flow, due to the disparity in

eigenvalues corresponding to the acoustic and convective wave speeds, as the Mach number tends to zero.

The construction of an efficient solver requires simultaneous treatment of these effects. Semi-coarsening

multigrid techniques as well as implicit line-solvers can be used effectively on structured grids to relieve

the stiffness associated with highly stretched meshes [3, 1]. The basic semi-coarsening strategy consists

of constructing coarser multigrid levels by Coarsening the original grid in the coordinate direction normal

to the grid stretching, rather than in all directions simultaneously. When conflicting stretching directions

exist, multiple coarse grids must be constructed, each generated by a coarsening in a particular coordinate

direction [20]. However, when a single stretching direction can be identified, only one family of directionally

coarsened grids is required [23].

Semi-coarsening techniques can be generalized to unstructured meshes as directional coarsening methods

[13, 26, 5, 28]. Graph algorithms can be constructed to remove mesh vertices based on the local degree and

direction of anisotropy in either the grid or the discretized equations. This is achieved by basing point-

removal decisions on the values of the discrete stencil coefficients. This is the basis for algebraic multigrid
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methods [28], which operate on sparse matrices dircctly, rather than on geometric meshes. These techniques

are more general than those available for structured meshes, since they can deal with multiple regions of

anisotropies in conflicting directions.

One of the drawbacks of semi- or directional-coarsening techniques is that they result in coarse grids of

higher complexity. While a full-coarsening approach reduces grid complexity between successively coarser

levels by a factor of 4 in 2D, and 8 in 3D, semi-coarsening techniques only achieve a grid complexity reduction

of 2, in both 2D and 3D. This increases the cost of a multigrid V-cycle, and makes the use of W-cycles

impractical. Perhaps more importantly for unstructured mesh calculations, the amount of memory required

to store the coarse levels is dramatically increased, particularly in 3D.

An alternative to semi-coarsening is to use an implicit line-solver in the direction normal to the grid

stretching coupled with a regular full coarsening multigrid algorithm. Although predetermined grid lines

do not exist in an unstructured mesh, such lines can be constructed by identifying and grouping together

neighboring mesh edgcs using a graph algorithm [6, 12]. By using a weighted graph algorithm with edge

weights which reflect the degree of coupling in the discretization between neighboring grid points, scts of

lines which propagate in the direction of strong grid coupling can be constructed [15].

The solution strategy described in this paper addresses the anisotropy-induced stiffness problem through

a combination of implicit line solvers coupled with directional coarsening multigrid. This coupled algorithm

permits faster coarsening rates which result in more optimal coarse grid complexities. The low Mach number

stiffness problem is addressed using preconditioning techniques [32, 11, 4, 35], which are integrated into the

overall directional implicit multigrid algorithm. The combination of these three techniques into a single solver

has previously been demonstrated in the context of geometric multigrid for two-dimensional problems [15].

The current work represents an extension of this strategy to the more practical agglomeration or algebraic

multigrid approach for unstructured meshes, as well as the extension to three dimensions.

2. Discretlzation . The governing equations are discretized using a finite-volume approach. Flow

variables are stored at the vertices of the mesh, and control volumes are formed by the median-dual graph

of the original mesh, as shown in Figure 2.1. A control-volume flux balance is computed by summing fluxes

evaluated along the control volume faces, using the average values of the flow variables on either side of thc

face in the flux computation. This construction of the convective terms corresponds to a central difference

scheme which requires additional dissipation terms for stability. These may either be constructed explicitly

as a blend of a Laplacian and biharmonic operator, or may be obtained by writing the residual of a standard

upwind scheme as the sum of a convective term and dissipation term:

neighbors 1 1

(2.1) _ _(F(wi) + F(wk)).nik - _lAikl(WL -- WR)
k=l

where the convective fluxes are denoted by F(w), nik represents the normal vector of the control volume face

separating the neighboring vertices i and k, and Aik is the flux Jacobian evaluated in the direction normal

to this face. WL and wR represent extrapolated flow values at the left and right hand sides of the control

volume face respectively. For a first order-scheme, these are taken as the values at the vertices to the left

and right of the control volume interface, whereas for a second-order scheme, these are extrapolated from

the corresponding vertex values using solution gradients pre-computed at these vertices.



FIG.2.1.Median control-volumes for stretched quadrilateral and triangular elements

In this work, a matrix artificial dissipation is employed. The matrix-based artificial dissipation scheme is

obtained by utilizing the same transformation matrix [Aik [ as the upwind scheme, but using this to multiply a

difference of blended first and second differences (i.e. blcndcd laplacian and biharmonic operator) rather than

a difference of reconstructed states at control-volume boundaries. The traditional scalar artificial dissipation

scheme [9, 16, 18] is obtained by replacing the four eigenvalues u, u, u + c, u - c in the [Aik] matrix of

the matrix dissipation model by the maximum eigenvalue lul + c, where u and c denote local fluid velocity

and speed of sound, respectively. This matrix dissipation construction has been found to deliver accuracy

comparable to an upwind scheme, while eliminating the need to compute and store flow gradients at mesh

vertices.

The thin-layer form of the Navier-Stokes equations is employed in all cases, and the viscous terms

are discretized to second-ordcr accuracy by finite-difference approximation. For multigrid calculations, a

first-order discretization is employed for the convective terms on the coarse grid levels.

The single equation turbulence model of Spalart and Allmaras [31] is utilized to account for turbulence

effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with

the exception that the convective terms are only discretized to first-order accuracy.

This particular discretization is designed to enable the use of mixed element meshes in two dimensions

(quadrilaterals and triangles) and three-dimensions (tetrahedra, prisms, pyramids, hexahedra). Mcshes of

differing element types are handled by employing a single edge-based data structure to assemble the fluxes

across all element types [17]. In two dimensions, quadrilateral elements are employed in the regions of high

mesh stretching, while triangular elements are employed in isotropic regions of the mesh. In three dimensions,

hexahedra or prisms are employed in regions near the wall, while tetrahedra are generally employed elsewhere.

The use of different element types in regions of high mesh stretching enables a more complete decoupling of

the discretization in the stretching and normal directions, as discussed in section 4.

3. Preconditioned Smoothing . Once the governing equations are discretized, they must be inte-

grated in time to obtain the steady-state solution. This is achieved using a preconditioned multi-stage

time-stepping scheme. An explicit k-stage scheme can be written as:

w(o) _ (n)
i : wi

(3.1)

w(q)= w_°)+ At_ × l_(w (q-I))

w(q+l)i = w_°) + Ati x R_(w (q))



w(n+l) = W_q=k)i

where At represents the scalar time step estimate. While such a scheme is commonly used for scalar artificial

dissipation discretizations, for upwind or matrix dissipation discrctizations substantial increases in efficiency

can be obtained by using a Jacobi preconditioning approach in conjunction with the multi-stage scheme

[27, 19, 21, 22]. The (q + 1)th stage of a Jacobi preconditioned multi-stage scheme can be written as:

(3.2) W (q+l) = W_ 0)i + [Di]-i x P_(w (q))

where the scalar time step At from equation (3.1) is replaced by the matrix time step given by the inverse

of the matrix

OPt(w) .elghbors

(3.3) [Di] = Owi k=l

which is a 5 × 5 matrix (4 × 4 in two dimensions) corresponding to the pointwise Jacobian of the residual.

Note that for a scalar dissipation schemc, this matrix becomes diagonal, and the scalar time-step estimate

is recovered, thus reducing the schemc to the standard explicit multi-stage scheme.

Additional preconditioning of the type described in [32, 11, 4, 35] must be implemented in order to address

the stiffness problems induced by regions of low Mach number flows. Traditionally, such preconditioners are

described as a matrix multiplying an explicit updating schemc, and a similar matrix-based modification to

the dissipation terms, which improves the accuracy at low Mach numbers. Thus, the (q + 1)th stage of the

standard multi-stage scheme (c.f. equation (3.1)) is rewritten as:

w_q+l) = w_°) + P/X4 x

neighbors

k=l

1p-ilPAik](WLq -- wnq) )
(3.4) 2

In the present work, we wish to implement this type of "preconditioner" in the context of a point-implicit

(Jacobi-preconditioned) or line-implicit scheme. Since the low Mach number preconditioning matrix is a

point-wise matrix, its implementation for point-implicit schemes is similar as for line-implicit, or any implicit

scheme. The approach taken, which was originally described in [33, 17], is to modify the dissipation terms

in the discretization, as per equation (3.4) , and then simply take this modification into account in the

point-wise linearization that is required for the point-implicit Jacobi scheme. Thus, the (q + 1)th stage of

the low Mach number preconditioned Jacobi multi-stage scheme becomes:

w_ q+l) : w_ °) +

"neighbors 1 --1

E 2P-IIPA'k ×
k=l

neighbors

( E F(w q)).nik
k=l

(3.5) -1P-11PAikI(wLq - wa q) )
2



In regionswheretheMachnumberis relativelylarge,the lowMachnumberpreconditioningmatrixP
becomestheidentitymatrix,andeffectof the preconditionervanishes.In this case,the abovescheme
revertstotheJacobipreconditionedschemeofequations(3.2).Likewise,forscalardissipationdiscretizations
(i.e. whenIPAikl is approximatedasa diagonalmatrix),this schemerevertsto the lowMachnumber
preconditionedschemescharacterizedbyequation(3.4)anddescribedin [32,11,35].Theparticularformof
thepreconditioningmatrixP employedis that describedin [25].Theimplementationdescribedthereinis
attractivebecauseit canbeachievedwithoutanychangeofvariablesin theoriginaldiscretization.

Equation(3.5)representsthe schemeusedin isotropicregionsof themesh.In regionsof largemesh
stretching,thispointwiseschemeis replacedby a line implicitscheme,operatingongrid lineswhichare
pre-constructedin thegrid. Theimplicit systemgeneratedby thesetof linescanbeviewedasa sim-
plificationof thegeneralJacobianobtainedfroma linearizationof a backwardsEulertimediscretization,
wheretheJacobianis that obtainedfroma first-orderdiscretization,assuminga constantRoematrixin
thelinearization.Forblock-diagonalpreconditioning,all off-diagonalblockentriesaredeleted,whilein the
line-implicitmethod,theblockentriescorrespondingto theedgeswhichconstitutethe linesarcpreserved.
Theline-implicitsolveris introducedinto thecurrentsolutionstrategyasanextensionof theJacobipre-
conditioner.At eachstagein themulti-stagescheme,thecorrectionspreviouslyobtainedbymultiplyingthe
residualvectorbytheinvertedblock-diagonalmatrixarereplacedby correctionsobtainedby solvingthe
implicitsystemof block-tridiagonalmatricesgeneratedfromthesetof lines.Thisimplementationhasthe
desirablefeaturethat it reducesexactlyto theblock-diagonalpreconditionedmulti-stageschemewhenthe
linelengthbecomesone(i.e.1vertexandzeroedges),asis thecasein isotropicregionsofthemesh.

In summary,thefinal scheme,whichis usedasa smootherfor multigridon all levels,resultsin a
point-implicitlow-Machnumberpreconditionedmulti-stageschemein isotropicregionsof themesh,and
a line-implicitlow-Machnumberpreconditionedmulti-stageschemein regionsofhighmeshstrctching.A
three-stagemultistageschemewithstagecoefficientsoptimizedfor highfrequencydampingproperties[34],
andaCFLnumberof 1.8isusedin all computations.

4. Directional Agglomeration and Line Construction . The stiffness due to grid anisotropy is

addressed by a directional agglomeration multigrid strategy coupled with a line-implicit smoother. The

combination of these two strategies into a single algorithm has been found to result in a morc robust and

efficient solution method than the use of either strategy alone [14, 15].

In regions of high grid stretching, standard directional agglomeration (i.e. coarsening) results in the

removal of one grid point for every retained coarse grid point. This produces a sequence of coarse grid levels

for which the complexity between successive levels decreases by a factor of 2. Isotropic agglomeration, on the

other hand, produces a coarse grid complexity reduction of 4:1 in 2D and 8:1 in 3D. The higher complexity

of the directionally coarsened levels greatly increases memory overheads, particularly in three dimensions,

and makes the use of the multigrid W-cycle impractical, since the operation count of the W-cycle becomes

unbounded in such cases as the number of grid levels is increased.

The implicit-line solver achieves superior smoothing of error components along the direction of the

implicit lines, as compared to a regular explicit scheme. This in-turn permits the use of an accelerated

coarsening schedule by the agglomeration multigrid algorithm. However, since the implicit line-solver is only

effective at smoothing error components along the implicit lines, multigrid coarsening must proceed precisely

along the direction of these lines. This requires a close coupling between the directional agglomeration

algorithm and the line construction algorithm. Both techniques are based on weighted graph algorithms,



andmustemploythesamedefinitionofthegraphweights.

Agglomerationmultigridmaybeviewedasasimplifiedalgebraicmultigridstrategy.Coarselevelgrids
areconstructedbyfusingtogetheror agglomeratingneighboringcontrolvolumesto forma coarsersetof
largerbut morecomplexcontrolvolumes.In thealgebraicinterpretationof agglomerationmultigrid,the
coarselevelsarenolongergeometricgrids,but representgroupingsoffinegridequationswhicharesummed
togetherto formthecoarsegrid equationssets[13,7]. Therefore,it is importantto basethedirectional
agglomerationandlineconstructiongraphweightsonalgebraicquantitiessuchasstencilcoefficients,rather
thangeometricquantitiessuchasedgelengths,whichmaybeill-definedonthecoarselevels.However,aone-
to-onecorrespondencebetweenstencilcoefficientsandgridedgesonlyexistsforscalarequationsandisnot
possiblefor systemsof equations.Forthisreason,theedgeweightsfortheline-constructionalgorithmand
thedirectionalagglomerationalgorithmaretakenasthestencilcoefficientsof a scalarconvectionequation
discretizedon the finegrid usingthe finite-volumeapproach.Onthefinelevel,thesecorrespondto the
area-weightednormalsofthecontrolvolumefacesdelimitingtwoneighboringvertices.Onthecoarserlevels,
theseareconstructedbysummingtheconstituentfinelevelfacenormals.

Forhighlystretchedquadrilateralcells,thisresultsin largeweightsbeingassociatedwith gridedges
normalto thedirectionof stretching,andsmalledgeweightsin thedirectionparallelto thestretching,as
canbe inferredfromtherelativesizesof thecontrolvolumefacesin Figure2.1. However,for stretched
triangularcells,thediagonalgridedgesresultin weightswhichmaybecomparablein thetwodirections.
Thisweakerdecouplingofthenormalandstretchingdirectionsfortriangularelementsin twodimensionscan
produceundesirableresultsin the lineandagglomerationalgorithms.Therefore,weemployquadrilateral
elementsin twodimensionsin regionsof highmeshstretching,andprismatic(orhexahedral)elementsin
highlystretchedregionsforthreedimensionalmeshes.Analternateapproachwouldbeto employadifferent
controlvolumedefinition,suchasacontainment-dualbasedcontrolvolumc[2],andretainsimplicialelements
in theseregions,howeverthishasnotbeenattemptedto date.

Thelineconstructionalgorithmbeginsbypre-computingtheratioofmaximumto averageadjacentedge
weightfor eachvertex.Theverticesarethensortedaccordingto thisratio.Thefirstvertexin thisordered
list is thenpickedasthestartingpointfor a line. Theline isbuilt by addingto theoriginalvertexthe
neighboringvertexwhichis moststronglyconnectedto the currentvertex,providedthisvertexdoesnot
alreadybelongto aline,andprovidedtheratioofmaximumto minimumedgeweightsforthecurrentvertex
isgreaterthan_, (using_ -- 4 inall cases).Thelineterminateswhennoadditionalvertexcanbefound.If
theoriginatingvertexisnotaboundarypoint,thentheproceduremustberepeatedbeginningattheoriginal
vertex,andproceedingwiththesecondstrongestconnectiontothispoint.Whentheentirelineiscompleted,
anewlineis initiatedbyproceedingto thenextavailablevertexin theorderedlist. Orderingoftheinitial
vertexlist in thismannerensuresthatlinesoriginatein regionsofmaximumanisotropy,andterminatein
isotropicregionsofthemesh.Thealgorithmresultsin a setoflinesofvariablelength.In isotropicregions,
linescontainingonlyonepoint areobtained,andthepoint-implicitor Jacobipre-conditionedschemeis
recovered.

Theagglomcrationalgorithmconsistsof choosinga seedpoint(i.e. a control-volume)whichinitiates
a localagglomeration,andthenagglomeratingthe neighboringcontrolvolumesto theseedpoint. The
isotropicversionof thisalgorithm[10,30,16]constitutesanunweightedgraphalgorithm.In thisversion
of thealgorithm,eachtimea seedpointis chosen,all neighboringpointsareagglomeratedto thispoint.
Thedirectionalagglomerationalgorithmis basedona weightedgraphtechnique.Theedgeweightsare



definedin thesamemannerasforthelineconstructionalgorithm.Onceaseedpointis chosen,onlythose
neighboringpointsthatareconnectedto theseedpointthroughanedgeofweightgreaterthan_x max_eigh_

are agglomerated, where max_e_ght denotes the maximum edge weight incident to the seed point. Taking

/_ -- 0.5 reproduces the isotropic agglomeration algorithm in regions were all edge weights are close in

size. However, in regions where one edge weight is much larger than the others, a directional coarsening is

achieved. This results in a 2:1 coarsening ratio in such regions. In order to obtain a 4:1 coarsening ratio,

the process must be repeated. This will result in the agglomeration of points or control volumes which were

not originally neighbors of the initial seed point. This type of aggressive coarsening can only be tolerated in

regions where the implicit line solver is used as a smoother. Therefore, the coarsening process is repeated

only if the agglomerated control volume is joined to the current seed point by an edge which is part of an

implicit line. The process is repeated until four control volumes are agglomerated together, or until no line

edges can be found.

From the above description, it is evident that the line construction and coarsening process are closely

coupled and must be carried out simultaneously. The edge weights, once defined on the finest level, are com-

puted on the fly for each coarser level as they are created. The whole process is performed in a preprocessing

phase, and the output, consisting of sets of lines for each level and coarse grid groupings, is passed to the

flow solver.

4!
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FIG. 4.1. Unstructured Grid Used for Computation of Transonic Flow Over RAE P8PP Air]oil. Number of PoinSe =

16167, Wall Resolution = 10-6 chords

As an example, the directional implicit agglomeration multigrid algorithm has been applied to the grid of

Figure 4.1. The lines created on the finest grid level are depicted in Figure 4.2. The first coarse agglomerated

level is illustrated in Figure 4.3, depicting the agglomerated cells in the boundary-layer region near the leading

edge, where a 4:1 directional coarsening is observed. Table 1 documents the complexity of the coarse grid

levels using the isotropic agglomeration algorithm of [16], as well as the coarse grid complexity achieved

using the current directional agglomeration multigrid algorithm. The resulting complexity for a multigrid

W-cycle is just 15 % larger for the directionally agglomerated grids than for the isotropically agglomerated

grids.
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F1a. 4.2. Directional Implicit Lines Constructed on Grid of Figure 4.1 by Weighted Graph Algorithm

_i_

FIG. 4.3. First Agglomerated Multigrid Level Constructed on Grid of Figure 4.1 Illustrating 4:1 Directional Coarsening

in Boundary Layer Region



Mesh Level

W-Cycle

Complexity

Regular AMG

Nnode Ratio

16167 1

4074 3.99

1038 3.92

268 3.87

1.89

Directional AMG

Nnode Ratio

16167 1

4476 3.61

1383 3.24

585 2.36

2.18

Table 1: Comparison of Coarse Grid Complexity and Resulting W-cycle Complexity for Regular Isotropic

Agglomeration and Directional Agglomeration Multigrid

5. Two Dimensional Results. The combined directional-implicit agglomeration multigrid algorithm

produces convergence rates independent of the degree of grid anisotropy. This is demonstrated in two

dimensions by solving the transonic flow over an RAE 2822 airfoil on three different grids. All three grids

contain the same distribution of boundary points, but different resolutions in the direction normal to the

boundary and wake regions. The first grid contains a normal wall spacing of 10 -5 chords, and a total of

12,568 points, while the second grid contains a normal wall spacing of 10 -6 chords, and 16,167 points, and

the third grid a normal wall spacing of 10 -7 chords, and 19,784 points. The cells in the boundary layer

and wake regions are generated using a geometric progression of 1.2 for all three grids. The second grid,

depicted in Figure 4.1, contains what is generally regarded as suitable normal and streamwise resolution for

accurate computation of this type of problem, while the first and third grids are most likely under-resolved

and over-resolved in the direction normal to the boundary layer, respectively.

, ', I Ii'/" .-"_. \\ ', _ I /"

. '-,t t II/:";.;-_--U_>,,I_\ i 1 ! /
..... - ""411 ,,\ 1t I /

+ )
t t _-_," ' _ "\ -" '

\ "---/,'! t \ \. -- J : I t
1 ! l\ "_" i I ", ,'

,-.._,I_,, i ) , I

i ; i
', f

FIG. 5.1. Computed Mach Contours on Grid of Figure 4.1. Mach = 0.73, Incidence = _.31 degrees, Re = 6.5 million
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FIG. 5.2. Comparison of Explicit lsotropic and Directional-Implicit Agglomeration Multigrid Algorithm Convergence Rates

on 3 Grids of Varying Normal Resolution
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FZG. 5.3. Comparison of Low-Mach Number Preconditioned and Unpreconditioned Directional-Implicit Agglomeration

M_tigrid Algorithm Convergence Rates for Various freestream Mach Numbers

The Mach number for this case is 0.73, the incidence is 2.31 degrees, and the Reynolds number is 6.5 million.

The computed solution on the grid with normal wall spacing of 10 -s chords is depicted in Figure 5.1. The

flow is transonic and the low Mach number preconditioning matrix reverts to the identity matrix for this

case. With the effect of this preconditioning removed, a more direct comparison between the directional

implicit multigrid and the previously developed unpreconditioned full coarsening multigrid method [16, 18]
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is possible. The convergence rates of both methods on all three grids are shown in Figure 5.2. The explicit

full coarsening multigrid solver produces convergence rates which decay substantially as the grid stretching is

increased. In fact, the asymptotic rate of this scheme for the most highly stretched grid is almost two orders

of magnitude slower than that achieved on the least strctched grid. On the other hand, the directional-

implicit agglomeration scheme produces convergence to machine zero in under 600 cycles and is essentially

unaffected by the degree of grid anisotropy. This comparison represents the best possible performance for

each scheme. The explicit full-coarsening multigrid algorithm employs a five stage time-stepping scheme

which is augmented with implicit residual smoothing and is used to solve a scalar dissipation discretization.

The use of more accurate matrix dissipation with the explicit full-coarsening multigrid algorithm produces

slower and less robust convergence rates. The directional implicit agglomeration algorithm operates on the

matrix dissipation discretization and uses a thrcc stage time-stepping scheme with no residual smoothing

but with point- or line-preconditioning where the jacobians are evaluated and inverted only at the first stage

of the scheme and then frozen for the remaining stages. Although Figure 5.2 compares the two schemes

in terms of multigrid cycles, the cost per cycle of both schemes is relatively close, the directional implicit

agglomeration scheme being about 15% more expensive per cycle, which is mainly due to the added work

for the evaluation of the matrix dissipation.

The benefits of low Mach-number preconditioning are demonstrated in Figure 5.3, where the flow over an

RAE 2822 airfoil at varying Mach numbers has been computed on the grid of Figure 4.1 using thc directional

implicit agglomeration algorithm with and without the low Mach number preconditioner. For the transonic

case, the preconditioner is not active, and both cases give identical convergence. However, as the Mach num-

ber is lowered, the convergence rate degrades substantially for the cases run with no preconditioning, while

the preconditioned cases all converge to machine zero in approximately 300 cycles. This example demon-

strates the importance of employing both techniques simultaneously (low-Mach number preconditioning and

directional implicit agglomeration) in order to obtain rapid convergence rates for subsonic Navier-Stokes

flows.

The computation of high-lift flows simultaneously involves regions of low velocity fluid and high grid

anisotropy, therefore providing a good demonstration of the current algorithm. Figure 5.4 depicts an un-

structured grid about a three-clcment airfoil high-lift configuration. The grid contains a total of 61,104

points and a normal spacing of 10 -6 chords at the surface of each airfoil element. The implicit lines gener-

ated by the graph algorithm for this case are depicted in Figure 5.5, and a qualitative view of the solution

as a set of Mach contours is given in Figure 5.6. The freestream Mach number for this case is 0.2, the

incidence is 16 degrees, and the Reynolds number is 9 million. The convergence rates of the directional-

implicit agglomeration scheme and the explicit full-coarsening agglomeration scheme are compared on the

basis of CPU time in Figure 5.7. The explicit full-coarsening scheme employs a five stage time-stepping

scheme and residual smoothing and solves the scalar dissipation discretization, while the directional-implicit

agglomeration scheme employs the preconditioned three-stage time-stepping scheme with Jacobians frozen

at thc second and third stages, and solves the matrix dissipation discretization. As can be inferred from

Figure 5.7, the directional-implicit agglomeration scheme achieves a 6 order of magnitude residual reduction

in approximately one quarter of the time required by the explicit full-coarsening approach, which permits

engineering solutions to be obtained in approximately 1.5 hours on an inexpensive workstation.

I1



FIG. 5.4. Unstructured Grid Used for Computation of Subsonic Flow Over Three-Element Airfoil Geometry. Number of

Points = 61,10,_, Wall Resolution = 10 -6 chords
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FIG. 5.5. Implicit Lines Generated by Weighted Graph Algorithm on Grid of Figure 5.4

Fic. 5.6. Computed Mach Contours for Flow over Three-Element Airfoil. Mach = 0._, Incidence = 16 degrees, Reynolds

number = 9 million
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FIG.5.7.
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Comparison of Convergence Rates obtained for Flow Over Three-Element Airfoil in terns of CPU time on

6. Three Dimensional Results. In three dimensions, a directional coarsening ratio of 8:1 is required

in order to match the coarse grid complexities achieved by an isotropic full coarsening algorithm. Unfor-

tunately, robustness problems associated with 8:1 coarsening ratios have been encountered. Therefore, at

present a 4:1 coarsening ratio is employed in three-dimensions, although faster coarsening ratios are still un-

der investigation. This results in a 50% increase in storage and cpu time per multigrid W-cycle as compared

to that achieved by an 8:1 coarsening algorithm, but nevertheless results an an efficient solution procedure

for three dimensional problems.

FIC. 6.1. Illustration of Mixed Element Grid and Implicit Lines Used for Computation of two-dimensional Flow over

three-dimensional Wing Geometry. Number of Grid Points: i77,837
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Fro. 6.2. Comparison of Convergence Rate obtained by Three-Dimensional Directional-Implicit Multig_id Algorithm with

Rate Obtained on Equivalent Two-Dimensional Problem

The first three-dimensional test case involves the computation of a two-dimensional flow using a three-

dimensional grid, in order to compare the performance of thc three-dimensional code with that of the

two-dimensional code. The grid of Figure 4.1 has been extruded in the spanwise direction, resulting in a

three dimensional grid of 177,837 vertices. While the original two dimensional grid contained quadrilateral

elements in the boundary and wake regions and triangular elements elsewhere, the three dimensional grid

contains hexahedral elements in the viscous regions, and prismatic elements in the inviscid regions. The

surface grid and the implicit lines generated by the three-dimensional graph algorithm are depicted in Figure

6.1. The prescribed coarsening ratio of 4:1 results in coarse levels which are very similar to those produced

by the two-dimensional algorithm, at least near the wing surface. The convergence rates of the two- and

three-dimensional codes are compared in Figure 6.2. The Mach number is 0.1, the incidence 2.31 degrees,

and the Reynolds number is 6.5 million. The three-dimensional convergence curve is much faster than the

convergence of the isotropic algorithm, reaching machine zero in just under 600 multigrid cycles. However,

it is somewhat slower than the equivalent two-dimensional algorithm which reaches machine zero in just 300

iterations.

The next example demonstrates the insensitivity of the current three-dimensional algorithm to grid

stretching. Three unstructured tetrahedral grids have been constructed about an ONERA M6 wing using

the VGRID grid generation package [24]. These grids all contain the same surface resolution, but different

normal resolutions near the wing surface. The first grid contains a normal wall spacing of 10 -5 chords, and

a total of 1.2 million p0ints_ while the second grid contains a normal wall spacing of 10 -s chords, and 1.6

million points, and the third grid a normal wall spacing of 10 -7 chords, and 2 million points. The cells in

the boundary layer and wake regions are generated using a geometric progression of 1.2 for all three grids.

The second grid (i.e. 10 -s spacing) is depicted in Figure 6.3. As explained previously, prismatic elements

are required in the boundary layer regions for the directional-implicit agglomeration algorithm. Since the

VGRID grid generation package produces fully tetrahedra] meshes, a mesh merging technique is employed

!

_m
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to mergetetrahedratripletsintoprismsin regionsnearthewall [17].At this initial stageof development,
auniformheightofprismlayersisemployedovertheentirewingsurface.Thisavoidstheuseof "hanging
edges"or transitionalelementssuchaspyramidswhena variablenumberof prismaticlayersareallowed
in thegrid. Ontheotherhand,thisrestrictionmayresultin the incompletemergingof somestretched
tetrahedralelements.Theconvergenceratesofthedirectional-implicitagglomerationalgorithmonallthree
gridsaredepictedin Figure6.4. A fourlevelW-cyclewasusedforthesecomputations.Thecoarsening
ratiosachievedbetweenthefirst andsecond,secondandthird, thirdandfourthlevelswere3.69:1,3.16:1
and2.2:1respectivelyfor the10-6 spacinggrid,withsimilarcoarseningratiosobtainedontheothergrids.
TheMachnumberis0.1,the incidenceis2.0degreesandtheReynoldsnumberis3million.

Verysimilarconvergenceratesareachievedonallthreegrids.All casesexhibitaslowdowninconvergenee
afterapproximately6 or 7ordersofmagnitude,butachievecloseto an8 orderof magnitudereductionin
600cycles.Consideringthat thesethreegridsrepresentatwoorderofmagnitudevariationin thedegreeof
gridstretching,theconvergenceratescanbequalifiedasindependentofthegridstretching.Asanexample
of thecomputationaloverheadsincurred,thegrid containing1.6millionverticesrequireda total of 350
Mwordsof memoryand53cpuhoursto converge600cycles.Thiscasewasrunon8 CPUsof theCRAY
C90andachieveda cputo wall-clocktimeratioof7ona lightlyloadedmachine.

FIG.6.3.Illustration of One of Three Unstructured Grids Employed For Computation of Flow Over ONERA M6 Wing:
Number of vertices= 1.6 million, Wall Spacing = 10-6
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FIG. 6.4. Comparison of Convergence Rates Achieved by Directional Implicit Agglomeration Multigrid Algorithm on 3

Grids of Varying Norvnal Resolution for ONERA M6 Wing Geometry at Mach number = O.1

The final case consists of a three-dimensional high-lift application. The geometry involves a partial span flap

unswept wing in a wind-tunnel. The unstructured grid employed for this case is depicted in Figure 6.5. This

mesh contains a total of 549,176 points, and a normal spacing at the wing surface of 10 -5 chords. As in the

previous case, a uniform height of prismatic layers was created in the boundary layer regions using the mesh

merging algorithm of [17]. The Mach number for this case isO.2, the incidence is 10 degrees, and the Reynolds

number is 3.7 million. The computed density contours for this case are depicted in Figure 6.6. A four level

W-cycle was used for this computation. The coarsening ratios achieved between the first and second, sccond

and third, third and fourth levels were 3.84:1, 3.43:1 and 2.23:1 respectivcly. The convergence obtained by

the directional implicit agglomeration multigrid algorithm is compared with that achieved by the explicit

full-coarsening agglomeration multigrid algorithm in Figure 6.7. As in the two-dimensional comparisons, this

represents the best possible performance for each algorithm: the directional algorithm employs a three-stage

time-stepping scheme and operates on the matrix dissipation discretization, while the isotropic algorithm

employs a five-stage scheme with residual smoothing and operates on the scalar dissipation discretization.

The directional algorithm produces substantially faster convergence than the isotropic algorithm, although a

slowdown is observed after 4 to 5 orders of magnitude. While the asymptotic rate of the directional algorithm

is still substantially faster than that of the isotropic algorithm, the rate is much slower than that achieved

in two dimensions.
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FIc.6.5.Illustration of Ur_struetured Grid employed for Computation of Flow Over PartiaLSpan Flap Geometry. Number
of Vertices -- 549,176

FIC. 6.6. Illustration of Computed Density Contours for Flow Over Partial-Span Flap Geometry. Mach Number -- O.P,
Incidence =- 10 degrees, Reynolds Number -- 3._ million

Further increases in the convergence rate can be achieved by resorting to a Krylov acceleration technique

such as CMRES [29]. The preconditioned directional implicit agglomeration algorithm can be employed as a

preconditioner to CMRES [21, 15]. The current implementation uses a nonlinear GMRES solver [36] which

computes Jacobian-vector products by finite differencing the residual. The addition of GMRES incurs little

extra cpu time, measured on a multigrid cycle basis, but requires considerable additional storage, since a

solution vector must be stored for each of the Krylov search directions. In the current implementation, 20

search directions are employed, resulting in a memory increase of 100 words per vertex (about 50% increase).

The convergence rate using GMRES is depicted in Figure 6.7. The solver was run initially 150 multigrid

cycles using the directional agglomeration multigrid algorithm alone, and then another 462 multigrid cycles

using the preconditioned GMRES approach (i.e. 22 GMRES(20) cycles). The addition of GMRES is largely

successful in overcoming the slowdown in the asymptotic convergence rate observed by the simpler directional

implicit multigrid algorithm alone, achieving an overall residual reduction of 9 orders of magnitude over 600

cycles. This case required a total of 230 Mwords of memory and 20 cpu hours on the CRAY C90, and ran

at a cpu-time to wall-clock ratio of 7 on 8 processors.
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Comparison of Convergence Rates Achieved by Various Multigrid Schemes for Flow Over Partial Span Flap

7. Future Work. The preconditioned directional agglomeration multigrid algorithm has been shown

to produce grid-aspect-ratio independent convergence rates in both two and three dimensions. In particular,

the two-dimensional implementation of the current algorithm has resulted in a very efficient solver for viscous

flows. However the convergence rates obtained in three dimensions, while substantially faster than those

achieved by the isotropic algorithm, are still slower than those observed in two dimensions. This may be due

in part to the possibility of the existence of multidimensional stretching in three dimensions. In such cases,

a modified line-construction and coarsening strategy may be required. Furthermore, the coarsening ratios

achieved in three dimensions, which are often even lower that the prescribed 4:1 rate, result in additional cpu

time per multigrid cycle and increase the overall memory requirements of the solver. Future work will focus

on augmenting the three-dimensional coarsening ratios to approximate the 8:1 ratio observed in isotropic

cases as closely as possible, and on accelerating the three-dimensional convergence rates through improved

line construction and preconditioning. In order to isolate the effects of the turbulence model, the turbulence

values have been frozen after 150 to 200 cyles in the in the computations of the preceding section. The

efficient convergence of the combined system of flow and turbulence equations is also under investigation.

8. Acknowledgments. The author wishes to thank S. Pirzadeh for his time spent in generating the
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