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Introduction 

This report summarizes work accomplished under NASA Grant NCC2-5 167, 
"Development of Advanced Methods of Structural and Trajectory Analysis for Transport 
Aircraft," October 1, 1995 - February 28, 1998. The effort was in two areas: (1) 
development of advanced methods of structural weight estimation, and (2) development of 
advanced methods of flight path optimization. 

During the Spring of 1996 both graduate student research assistants working on the 
project, H.C. Chou and Mark Chambers, resigned to take positions in industry. This 
required assigning three new Santa Clara people to the project: Dr. Lee Hornberger, 
Associate Professor of Mechanical Engineering; Robert Windhorst, graduate student 
research assistant; and Frank Dickerson, undergraduate student. These new people 
inevitably required time to learn the ACSYNT code and the nature of the ongoing 
research. The result is that the grant was extended at no additional cost from September 
30, 1997, to February 28, 1998. 

Dr. H. Miura, M. Moore, and J. Phillips were the NASA collaborators on the Grant. 
All publications resulting from the grant were co-authored by Santa Clara and NASA 
Arnes personnel. 

Structural Weight Estimation 

A report that was prepared under a previous grant was published in May 1996 
("Analytical Fuselage and Wing Weight Estimation of Transport Aircraft," by 
M. Ardema, M. Chambers, A. Patron, A. Hahn, H. Miura, and M. Moore, NASA TM 
110392). A paper that summarizes this report was accepted for presentation at the World 
Aviation Congress held in October 1996; a copy of this paper appears in Appendix A. 

Throughout the first year, integration of the structural weight computer code, PDCYL, 
into ACSYNT continued. Input variables used by PDCYL but already in ASCYNT have 
been removed from PDCYL. Infrequently used input variables have been defaulted. Data 
transfer has been modified so that optimization runs with ACSYNT can be done with 
PDCYL as an integral part of the code. 

The major effort of the first year of the grant was to develop an improved method of 
estimating the weight of wing and hselage structures made from composite materials. 
This involved an extensive literature search, the coding of a composite materials 
subroutine, and demonstrating the code. This work is discussed in detail in Appendix B. 

Previously in ACSYNT, the weight of composite material structures was estimated 
assuming quasi-isotropic materials, maximum stress failure theory, and smeared structural 
elements. The new capability accounts for realistic lay-ups of unidirectional fibedmatrix 



composites and uses a bi-axial strain failure theory. The new composite routine has been 
implemented for the fbselage and wing weight calculations. 

A user's manual for the new composite subroutine may be found in Appendix B. As a 
check case for the new subroutine, the wight  of a composite fuselage of the ASA 2 150 
has been estimated. 

The final effort in the structures area was support of the project to design and analyze a 
150 passenger advanced transport airplane, the ASA 2150. PDCYL has been used as an 
integral part of ACSYNT to estimate the fuselage and wing weights ofthis aircraft. 
Appendix C gives the details of the weight calculations for both Aluminum and 
Graphite/Epoxy hselage versions of the ASA 2150. 

Appendix C shows that at a gross take-off weight of 152,18 1 pounds, the ASA 2 150 is 
estimated to have a wing weight of 10,3 15 pounds and a hselage weight of 15,652 
pounds when made of Aluminum. Figure 1 shows the ASA 2 150 fiselage bending 
moment distribution. The critical loading condition for most of the fuselage is either the 
landing condition (L) or the runway bump condition (B), with a small portion governed by 
the maneuver condition (M). The shell unit weight distribution is shown on Figure 2. 
Approximately the first half of the hselage is sized by minimum gage, with most of the 
rest yield strength critical. 

When the fbselage is made of composite material, the weight is estimated to be 15,375 
pounds, a weight savings of about 2% relative to aluminum. The composite material is a 
uni-directional tape made from Hercules AS4 carbon fiber in Fiberite 12W938 resin. The 
reason for this relatively low weight savings is that for relatively small and lightly loaded 
aircraft such as the ASA 2150, the fact that the composite material thickness must be in 
integer thicknesses of the basic stack thickness means that the structure is in many places 
considerably overdesigned. The basic stack used was a quasi-isotropic lay-up of eight 
unidirectional plys. Also, the nonoptimun factor used for the composite was 17% higher 
than that for the Aluminum design. As for the Aluminum design, the composite fuselage 
was sized by minimum gage and yield strength. 

Trajectory Optimization 

The last year of the grant focused on development of trajectory optimization 
routines for supersonic transport aircraft. The results of this research were published as 
NASNTM-1998-112223, included as Appendix D. Since this report gives a 
comprehensive description of this work, it will not be fbrther discussed here. 
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ABSTRACT 

A mclhod of estimating b e  load-hearing fu.wbge weight 
and wing weight of vansprr aircraft based on furwhmenlal 
uructwaJ principles has been develojml. This method of 
weight estimation reprtsenls a compromise hetween the rapid 
assessment of component weight using empirical melhtxls 
based on actual weights of existing aircrafL and detailed. but 
tirne-consuming, analysis using the finite element method. The 
method was applied to eight existing subsonic transporn for 
validation and cornlation. Integration of tbe mulling corn- 
p u r  program. PDCYL, has been made into the weights- 
calculating module of rtre AirCraft.SYN7besis (ACSYNT) 
cmputer program. ACSYNT has aaditiondly used only 
empirical weight wtimation methods: PDCYL adds lo 
ACSYNT a rapid, accurate means of assesqing the fuselage 
and wing weights of unconventional aircraft. PDCYL also 
allows flexibility in the cboice of suuctural concepl, as well 
as a direct means of determining the impact of advancxd 
mataials on structural weight 

INTRODUCTION 

A methodology based on fundamental svuctural 
principles has been developad to estimate the badcarrying 
weight of Ihc fuselage and basic box weight of b e  wing 
for aircraft. and has bcen incaprated into b e  Aircraft 
SYKIbcsis program (ACSYNT). This weight routine is also 
available w  nu^ indqmkntly of ACSYNT, and is a modifi- 
cation of a coUcction of previously developed svuaural 

'fbe main subroutine called by ACSYNT is 
PDCYL. This study has amcentrated on m o t h  m s p n  
aimdl kcausc of tbe detailed weight information available, 
allowing tk weigh output fmm PDCYL to be m p a r t d  to 
actual .suuctural weights. Tbt delaild migbt stalcments also 
allow nonoprimwn factors to he compuwl which, when 
multipticli by Ihe Id-bearing structural weight5 caicuhled by 
PDCYL. will give good refmencative uwal structure weight 
estimates. nK.e ncmoptimurn factors will be c m p u t d  
Lhrough a regression analysis of a gmup of eight transpcKt 
aimaft. 

P D C n  is able to model both skin-suinger-frame and 
c o m p i l e  .sandwich shell fuselage and wing box cmsrruc- 
tions. Numerous moditications w d m a d e  to PDCYL and its 
associated collection of suhulines. These modifications 
include the addition of detailed fuselage shell gemeuy 
calculations; optional integration of a cylinrlrical tirselage 
midsection hetween h e  n o s  and tail sections; addition of 
landing and bump maneuvers to the load cases sizing the 
fuselage; ability cn invoduce an elliptical spanwise lift I d  
distribution on b e  wing; variation of wing thickness ratio from 
tip to toot; ability to place landing gear on tk wing to relieve 
spanwise bending loads; distribution of propulsion system 
compmcnu between wing and fuselage: and the ckurmination 
of maximum wingtip kflcction. 

BRIEF DESCRIPTION OF ACSYNT 

Tbe Aircraft Synthesis Computer program, ACSYNT, is 
an integrated design IWI ustd in the modeling of advanad 
a b a f t  for conceptual design studiess ACSYNT clevelopmmt 
began at NASA Ames Rescarcb Cmttr in the 1970s and 
carcinuct to this day. Tbe ACSYNT program is quiu flexible 
rrrQ can model a wide range of ainxaft -gurations and 
sizts, f m  m l y  piloted higb altitude craft to the largest 
-a 

Tbt ACSYNT pgrarn uses tbc fobwing modules, not 
necessarily in this aada: Gaomary, Trajectory, Aerody- 
nslpnics, Propulsion, Stability. Weights, Cost, Advanced 
AtrocJynamic MetbocLs, and Takeoff. An ACSYNT nm warld 
wnnally progress as follows: the Geometry module is d d  
to Mine Lbe airaaft sbapc md the Trajectory 
d u k  hen runs the vthide lhrougb a specifid mission; 
finally h e  Weight and Cost modules are secured. To deter- 
mine b e  fa for ma^^^ of rbc vehick at ePcb mission piat. the 
Trajectmy mocluk will call b e  Aaodyni~nics and Repulsion 
modules. 

Work d tbe frrst two authors was suppond by NASA Amcs 
Research Center Grant N C M - W .  



Afta the mission is completed. the calculated weight of the 
aircraft may be cumpa& with h e  inilial estimate and an 
$cr&on xbane nm lo converge upon the required aircraft 
weight This process is n e c c . l y  iterative as the aircraft 
wight ACSYNT calculates is dependent upon the initial 
weight estimate. 

ACSYNT is able to perform a sensirivity unulysis on any 
design variable, such as nspect ratio, thickness-to-chord ratio. 
fuselage length or  maximum fuselage diameter. Sensitivity is 
Mined as (change in objective funcuon/valuc of objective 
function) divided by (change in design variahlddesign 
variable). As an example, if gross weight is the objective 
function and decreases when the wing thickness-ttrchord ratio 
incnasts. then the sensitivity of thickness-to-chord ratio is 
negative. It is important to notc that while his increase in 
thickness-to-chord ratio lowers the gross weight of the aircraft, 
it may also have a detrimental effect on aircrafl performance. 

ACSYNT is also able to stre multiple design variables by 
optimizing the objective funchon The objective function 
represents the interactions hccwr~n design disciplines such 
structures. aerodynamics imd propulsion. The automiad 
siting of design variable\ dunng thc optimization process is 
accomplished using the gmdrnt mclhod. Two t w s  of 
constraints may be i m p d  Junng the optimization process. 
These are performance-huJ c~nstraints such as runway 
length a maximum roll mglc.  rubd side consminth on design 
variables such as limit;~trbn\ cn wrng span or fuselage length. 
ACSYNT never violate\ ctn\tnunL\ during the optimization 
process so that each itcr.-.trtm pn~1uc.c~ a valid aircraft. 

METHODS OF WEN; t l l  F-\fIM ATION - 
Two mehods arc ammtmly available to estimate the 

knd-bearing fuselage wcrfhc a d  wrng hox  saucture weight of 
aircraft These m e M \ .  In uwmung wder of complexity and 
accuracy, are empirical rrFrc\utn detailed finite element 
suuctural analysis. Eacb mcr&d hsr pvticular advantages and 
limitations which will bc hrwfly J~.scussed in the following 
sections. Tbere is an add~t~tnal mclhod based on clnssicd 
plate theory (CPT) which m y  k used to estimate (be weight 
of the wing box suuaurr. 

EMPIRICAL 

Tbe empirical approacb is the simplest weight estimation 
tool. It requires knowledge of fuselage and wing weighu from 
a number d similar existing aircraft in d d i  tion to various key 
configuration parameten of these aircraft in order to e u c e  a 
linear r e p s ~ i o n .  Thiq regression is a function of the configu- 
ration m e t e r s  of h e  existing aircraft and is then scaled to 
give an estimate of fuselage and wing weights for an aircraft 
under investigation. Obviously. the accuracy ot' this method is 
depe~dent upon the quality and quantity of data available for 
existing aircraft. ALSO. Ihe accuracy of the estimation will 
depend on how clostly the existing aircraft match ihe cmfigu- 
ration and weight of the aircraft under investigation. All of the 
empirical regression functions current1 y in the ACSYNT 
program give total fusehge weight and k)l;rl wing weight. 

RNITE ELEMENT 

Finite element analysis b t h e  matrix method of wiution ot' 
a discretized model of a sauaure. Ttus structure. such as an 
aircraft fuqelage or wing, is modeled as a system of elements 
connected to adjacent elements at nodal points. An element is 
a discrete (or finite) structure that has a certain geomelric 
makeup and set of physical characteristics. A ntKLal force act5 
at each nocial point. which is capable of displacement. A set of 
malhematica1 equations may be written for each elemenr 
relating its nodal displacements to the c m s p n d i n g  nodal 
forces. For skeletal structures, such as those composed ot' rods 
or beams, the determination of clement sizing and correspond- 
ing nodrrl positioning is relatively straightforward. Placement 
of nodal points on these simple structures would naturally fall 
on positions of concenuated external force application or 
joints. where discontinuities in local displacement occur. 

Continuum structures, such as an aircraft fuselage or 
wing. which would use some combination of solid, flat plate, 
or shell elements. are not as easily discretizahle. An approxi- 
mate mesh ol'elemcnts must be mad$ to model these smc-  
tures. In effect, an idealized model of the suucture is made. 
where the element selection and sizing is tailored to ltral 
loading and stress conditions. 

The awmhly of elements representing the endre structure 
is a large set of simultaneous equations that, when combined 
with the loading condition and physical consuainls, can be 
solved to find the unknown nodal forces and displacements. 
The nodal forces and displaaments are then substituted hack 
into the each element to produce stress and suain distributions 
for the entire structural model. 

CLASSICAL PLATE THEORY 

CPT has heen applied to wing structure design and weight 
eslimation for the past 20 years. Using CPT a mathematical 
model of the wing based on an equivalent plate representation 
is combined with global Rin analysis techniques to study h e  
structural response of the wing. An equivalent plale model 
does noc require detailed suuaural design &fa as required for 
finite element analysis model generation and has been shown 
to be a reliahle model for low aspect ratio fighter wings. 
Generally. CFT will overestimate the stiffness of more 
flexible, higher aspect ratio wings. such as those employed 
on modern transpm aircraft. Rtantly, transverse shear 
deformation ha$ been included in equivalent plare models to 
account for this added flexibility. This new lechnique has been 
shown to give closer representations of tip deflection and 
natural frequencies oC higher aspect ratio wings, although it 
still overestimates the wing stiffness. No fuselage weight 
estimation technique which comspon& ~o the equivalent plate 
rncxlel for wing structures is available. 

NEED FOR BEITER INTERMEDIATE METHOD 

Preliminary weight estimates of aircraft are tracLitionaJly 
made using empirical methods based on the weights of 
existing aircraft, as h s  ken &.scribed. W s e  meth(uls. 
however, are undesirable for studies of unconventional aircraft 
ccwrceprs for two ftilsons. First, since the weight estimaling 



ormuhs ac based an existing airuaft tbeir application to 
~comrmtional coafigurations We., canard aimaft or area 
u k d  bodies) is suspea. Second, they provide no suaight- 
w a r d  method to assess the impact of advanad technologies 
nd materials (i.e.. bonded construction and advanad 
omposite laminates). 

On tbe other hand. finite-element based methods of 
wctural analysis, commonly u.ed in aircraft detailed design, 
rc not appropriate for conceptual design, as the idealized 
vuctlrral model must be built off-line. The solution of even a 
noderately complex model is also computationally intensive 
nd will become a bottleneck in the vehicle synthesis. Two 
ppmxks which may simplify finiteelement strucu~ral 
nalysis also haw drawbacks. The first approach is to creale 
ietailed analyses at a few critical locations on the fuselage and 
ving, tben extrapolate the results to the entire aircraft, but this 
an be misleading because of the great variety of struct~rral. 
md, and geometric characteristics in a typical design. The 
econd method is to create an extremely coarse mode1 of the 
iscraft, but this scheme may miss key loading and stress 
oncenmtions in addition to suffering from h e  problems 
ssociated with a numher of detailed analyses. 

The fuselage and wing smcturd weight estimation 
netbod employed in PDCYL is based on another approach. 

theory structural analysis. This resulL~ in a weight 
:sthate that is directly driven by material proprties, load 
:onditions, and vehicle size and shape, and is not confined lo 
m existing data base. Since the analysis is done sntion-by- 
tation along the vehicle longitudinal axis. and along the wing 
mtd cbord, the disvibutinn of loads and vehicle geometry 
s accounted for, giving an integrated weight that accounts for 
ocal conditions. An analysis based solely on fundamental 
winciples will give an accurate estimate of structural weight 
aly. Weighrs for fuselage and wing secondary suuaure, 
ncluding control surfaces and leading and trailing edges, and 
ome items from the primary structure, such as doublers, 
mtouts, and fasteners, must be estimated from correlation to 
:xisting aircraft. 

'Ibe equivalent plate representation, which is unable to 
node1 tbe fuselage suuaure, is not u.ed in PDCYL. 

Since it is necessary in systems analysis studies to be able 
D rapidly evaluate a large numher of specific cksigns, the 
netbods employed in PDCYL are baed  on idealized vehicle 
noclels and simplified suuctural analysis. 7he analyses of the 
/uselage and wing structures are performed in different 
mrtines within PDCYL, and, as such, will be cliscussecl 
icpmely. The PDCYL weight analysis p m g m  is inilialed at 
'be p i n t  where ACSYNT performs its fuselage weight 
=alcu&tion. P D C n  first performs a basic gcomeuical sizing 
~f the aircraft in which the overall dimensions of the aircraft 
uc &ermined and the propulsion system. landing gear, wing, 
mJ lifting surfaces are placed. 

The detailed fuselage analysis s t a m  with a calculation of 
vehicle loads on a station-by-station basis. Three types of 
loads are considered-longitudinal acceleration (applicable to 
high-thrust propulsion systems), lank or internal cabin pres- 
sure. and longitudinal bending moment. All of these loads 
occur simultaneously, representing a critical loading condition. 
For longitudinal acceleration longitudinal stress resultants 
caused by acceleration are computed as a function of Imgi- 
tudinal fuselage station; these stress resultantq are compressive 
ahead of the propulsion s y s m  and lenqile behind the propul- 
sion system. For internal pressure loads. Ule longitudinal 
disuibution of longitudinal and circumterential (hoop) stress 
resullanls is computed for a given shell gage pressure 
(generally 12 psig). There is an option to either use the 
pressure loads to reduce the compressive ltnds from othcr 
sources or not to do this; in either case, the pressure loads are 
adcled to the other tensile loads. 

' h e  following is a gurnrnary of the methtwls used; the 
details may be found in Ref. 6. 

Longitudinal bending moment distributions from three 
Imd cases are examined for the fuselage. Lmds on the 
fuselage are computed for a quasi-sutic pull-up maneuver, a 
landing maneuver, and uavel over runway humps. These three 
l a d  cases occur at user-specified fractions o f  gross lakeoff 
weight. Aerodynamic loarls art: ctxnputed as a constant 
fraction of fuselage planfonn area and are considered negli- 
gible for subsonic transports. For pitch control there is an 
option lo use either elevators mounted on the horizontal tail 
(the conventional configuration) or elevons mounted on the 
trailing edges of the wing. Tbe envelop of m i m u m  bending 
moments is computed for all three load c a e s  and is then used 
to determine the net stress issultanls at each fuselage station. 

After the net stress resultants are derennined at each 
fuselage station, a search is conducted at each station to 
determine the amount of svuctural matenal required to 
preclude failure in b e  most critical condition at the most 
critical point on the shell circumference. This critical p i n t  is 
assumed to be the outermost fiber ;u each station. Failure 
modes considered an tensile yield. compressive yield, local 
buckling, and gross buckling of h e  entire structure. A 

, minimum gage muiction is aLu, imposed as a final criterion. 
It is assumed that the mat- near the neutral fiber of Ibc 
fuselage (with respa to longitudinal bending I d s )  is 
suffiient to resist rbe shear and tmion l&s nansnitled 
tbrougb the fuselage. For the sbuu loa& this is a g o d  
approximation as the f i r s  farthest from the neuval axis will 
carry IK, .shear. Use, for heams with large fineness ratios 
(fuselage length/maximum diameter) bending becomes the 
prwiominant failure mcxle. 

The maximum svess failure theory b used for predicting 
yield failures. Buckling calculauons assume stiffened shelLs 
behave as wide columns and sandwich shells behave as 
cylinders. The frames rrquired for the stiffened shells are sized 
by tbe Shanley criterion. This aiterion is based cn the pnmise 
that, to a first-orrla apprnxirnation, the frames act as elaqtic 
supports for the wide column. 

'Ihere an a variety of structural geometries available for 
the fuselage. There is a simply stiffened shell concept wing 
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kmgit~ldinal frames. ?here are three concepts wilh 2-stiffened 
sbch and longitudinal frames; one wilh svuauni material 
pmthned tn give minimum weight in buckling, one with 
buckling efficiency compromised to give lighter weight in 
minimum gage. and one a buckling-pressure compromise. 
Similarly, there arc three truss-core sandwich designs, two for 
minimal weight in buckling with and without frames. and one 
a budding-minimum gage compmmise. 

1 is assumed that the structural materials exhibit elacto- 
plastic behavior. Further, to account for tbe effecw of mep. 
fatigue, sp-esscorrosion. thermal cycling and thermal stresses, 
options a available to scale the material propenies of 
strength and Young's modulus of elasticity. In the numerical 
results of h i s  study, all materials were considered elastic and 
lhe full room-temperature material properties were used. 

Composile materials can be modeled with PDCY L by 
assuming them to consist of orthotropic lamina formed into 
quasi-isouopic (two-dimensionall y. or planar, isotropic) 
laminates. Each of the lamina is assumed to be comp.sed of 
filaments placed unidirectionally in a matrix material. Such a 
laminate has heen found to give very nearly minimum weight 
for typical airaaft structures. 

Wing 

?be wing structure is a multi-web box beam designed by 
-wise bending and shear. The wing-fuselage carrythrough 
structure. &fined by the wing-fuselage intersection, carries the 
spanwise bending. shear. and torsion loads inuoduced by the 
outboard prt ion of the wing. 

Tbe load case u.wd for the wing weight analysis is the 
quasi-static pull-up maneuver. m'applied loads to the wing 
include Lbe distributed lift and inenia forces, and the point 
loads of landing gear and ppulsion.  if placed on the wing. 
Fuel may also be stored in tbe wing, which will relieve 
bending loads during the pull-up maneuver. 

The wing weight analysis proceeds in a similar fashion to 
that of Ibt fuselage. Ibe weight of the structural box is 
& m i n e d  by calculating tbe minimum amount of material 
required to satisfy static buckling and strength requirements at 
a series of spanwise stations. The covers of the multi-web box 
ue sized by buckling due to local instability and the webs by 
flex--mduced crushing. Required shear mattrial is computed 
indepenclently of buckling material. Aeroelastic effete are not 
accounted for directly, although an approximation of tbe 
magnitude of tbe tip deflection during the pull-up maneuver is 
made. For the carrythrough structure, buckling, shear, and 
torsion material arc computed independently and summed. 

As f a  the fuselage. hut arc a variety of svucwral 
geumtvics available. There arc a total of six suuctural 
concqHs. Lhree with unctiffened covers and three with truss- 
stiffened covers. Both cover configurations use webs that are 
eitber 2-stiffened unflangd, or truses. 

Tbe fuselage is assumed to k composed of a nnse 
section, an optional cylinclrical midsection, and a tail section. 
The gross density and fineness ratio are defined as 

where WB is the fuselage weight (WB = gross takeoff weight 
excluding the summed weight of the wing, tails. wing- 
mounted landing gear. wing-mounted ppuls ion ,  and fuel if 
stored in the wing). V B  is the total fuselage volume, 1~ is the 
fuselage length, and D is the maximum fuselage diameter. 
The fuselage outline is defined by two power-law hcdies ol' 
revolution placed hack-to-back. witb an optional cylindrical 
midsection between them (Fig. 1). (For the present study, all 
eight transpom used for validation of the analysis u s d  Ihe 
optional cylindrical midsection.) 

The horizontal tail is placed according to ifs quarter chord 
location as a fraction of the fuselage length. 

Repulsion may be either mounted on the fuselage or 
placed on the wing. In the case of fuselage mounted pmpul- 
sion. the staning and ending positions of the propulsion unit 
are again calculated from their respective fractions of fuselage 
length 

Similarly, the nose landing gear is placed on the fuselage 
as a fraction of vehicle length; the main gear, on the other 
hand, may be placed either on the fuselage as a single unit, 
ahso as a fraction of fuselage length, or on the wing in multiple 
units. 

Wing 

The lifting planforms are auumed to be tapered, swept 
wings with straight leading and bailing edges. The planform 
s h w  is trapezoidal as the root chord and tip chord are 
parallel. The wing is placed on the fuselage according ro the 
location of the leacling edge of i ~ s  mt chord, determined as a 
h t i o n  of the fuselage k n g b  (Fig. 2). It is assumed that 
spcified pn ions  of the streamwise (aerodynamic) chord 
are nquind for m m l s  and high lift devices. leaving the 
remain& for tbe structural wing box. Ibe intasection of thih 
s v u c t d  box with tbe fuselage mntcnrrs dctamines the 
location of the rectangular carrythmugh structure. The width 
of h e  carrythrough structure is cLefmed by the corresponding 
fuselage diameta. 



Fig. 1 The body configuration 

For the transports in the present study, all the fuel is 
xr ied  within rhe wing structure. An option is also available 
,o carry the fuel entirely within the fuselage, negating any 
xnding relief in the wing. 

Fuselage loading is determined on a station-by-station 
=is along tbe length of the vehicle. Three types of fuselage 
aads are consi&teb-longitudinal acceleration. tank pressure, 
urd bending moment. In the present study, all thne load types 
ue assumed to occur simultaneously to detennine maximum 
mpressive and tensile loads at the outer shell fibers at each 
W n .  

Bending loads a~plied to the vehicle fuselage are obtained 
)y simulating vehicle pitch-plane motion cluring a quasi-static 
wl.l-up mamum, a landing; and movuncnt o v a  a runway 
w p .  Simptifbed vehicle loading models arc u.sd where it is 
rssumed tbar (1) fuselage lift f a c t s  ( m i n a l l y  zero for 
,ubsonic transpns) are distributed uniformly o v a  the 
'uselage plan yta; (2) wing loading, detcnnined 
ndepckntly, is tra~sfmed by a couple of vefiical force and 
aque though the wing carrythrough suucauc; (3) fuselage 
wcigbt is distributed uniformly over fuselage volume; 
4) control surface forces and landing gear =actions arc p i n t  
@; and (5) the propulsion system weight, if mounted on 
be fuselage, is uniformly distributed. A facm of safety 
nominally 1.5) is applied to each load case. The aircraft 
veigbt for tacb case is selected as a hct ion of gmss takeoff 
veight All fuselage lift forces are axsumed to be linear 
u n a h s  of angk of atrack. Longitudinal bending moments 

are computed for each of the three loading cases and the 
envelopc of the maximum values laken as the design loading 
condition. The hending moment computation is given in delail 
in Ref. 4 and will only be summarized here. 

Considering first the pull-up maneuver loading. the 
motion is a~sumed a be a quasi-static pitch-plane pull-up of 
given normal load factor n (nominally 2.5 for Iranspon 
aircrafo. ?be vehicle is trimmed with the appropriate m m j l  
surface (a horizontal tail for all eight transport used for vali- 
dation in the present study), after which the angle of attack is 
calculated. 

Landing loads are developed as the aircraft descends at a 
given vertical speed after which it impacts the ground; there- 
afier the main and no.w landing gears are axsumed to exen a 
constant. or optionally a (1  - cos(ot)), force during iLs suoke 
until the aircraft comes tn rwt. Tbe vehicle weight is .set equal 
lo the nominal landing weight. Wing lift as a fraction of 
landing weight is specified, wbicb raluces the effective load 
the landing gear carries. Likewise, the @on of total vehide 
load the main gear carries is spccifnxl. No pitch-plane mcwion 
is consided during the tanding. 

Runway bump load$ arc handled by inputting the hump 
locLd factor into the W i n g  gear. Bump load factor is applied 
according to Ref. 8. This .simulates the vehicle running over a 
bump during taxi. In a similar fashion to tbe landing, the wing 
lift ns a fraction of gmss takeoff weighr is sp~ i f i ec l  as is the 
p m o n  of effective I d  input Uuougb the main gear. No 
pitch-plane motion is considered cluring the bump. 





if x is behind it. Similarly, the total compressive s t r w  
resultant is 

For tbc wing, only a quasi-static pull-up maneuver 
mdition at load faaor n is considcnd for determining lo&. 
i t  each s p w i s e  station along the quarter chord, fmm the 
vingtip u, the wing-fuselage intersection, tbe lift load, enter 
~f pressure, inertia load carter of gravily, shear farce, and 
mding moment are computed. For tbe inertia load it is 
wumed lhat Ibe fuel weight is disVibuted uniformly with 
=pea to the wing volume. 

'Ibere is an option for eitha a trapezoidal or a schrenk9 
ift load distribution along the wingspan; the Irapezoidal 
listribution represents a uniform lift over the wing area (which 
us a trapezoidal planform) while the Schrenk disuibution is 
ur average of tbe trapezoidal distribution with an elliptical 
fisaibution, wben the lift is ztm at the wingtip and maximum 
it tbe wing-fuselage intersection. Randll has shown that a m e  
:lliptical lift load distribution will have a minimum i n d u d  
kag, but a combination of the ellipdcai and uapezoidal 
listributions will give a better representation of  ircrual aircraft 
ioading ? 

STRUCTURAL ANALYSIS 

Fuselage 

Weight estimating relationships are now developed for the 
loadcarrying fuselage structure. In addition. tbe volume Laken 
up by the fuselage suucture is also J e t m i n d .  

Considering fvst tbe circular shell, the stress resultants in 
tbe axial direction caused by longitudinal bending, axial 
acceleration. and pressure at a fuselage station x are 

respectively, where r = D/2 is the fuselage radius, A = xr2 is 
tbc fuselage aoss-sectid area. and P t 2x1 is the fuselage 
psimew. 1. EQ (3). 1; = nr3 is the moment of inertia of the 
sbell divided by cbe sbell thickness. In EQ (4), for the case of 
fuselage-mounted propulsion, W, i. Ihe ponion of vehicle 
weigbt a b d  of station x if x is ahead of the inlet entrance. or 
tbc prtion of vehicle weight behind x i f x  is k h d  the nozzle 
exit In EQ (5). Pg L. tbe limit gage pressure differential for the 
passenger compartment during cruise. Tbe rotal tension stress 
resultant is hen 

if x is abed of the nozzle exil and 

(0. if not pressure suhilized] 

if xis ahead of the inlet enuance. and 

(0. if not pressure stabilized] 
N,- = NXB - 

I N x p  if stabilized 

if x is hehind il. Thest: relations are based on the premise 
tbat acceleration Ioadx never decrease sutss resultants, but 
ptessure loads may relieve stress, if pressure stabilization is 
chosen as an option. The stress resultant in the hoop direction 
is 

where K p  accounls for the fact Ihat not all of h e  shell material 
(for example, the core material in .sandwich designs) is 
available for resisting hoop stress. 

The equivalent isotropic thicknesses of the shell are given 
by 

for designs limited by compressive yield strength (Fv). 
ultimate tensile strength (Flu), and minimum gage, respec- 
tively. In EQ (13), tm8 is a specdied minimum material 
t h i b s s  and Kmg is a parameter dating iSG to rmB which 
depends on the sbell geometry. 

A fourth thickness that must be considered is that for 
buckling crilical designs. iSg, which will now be developed. 
'Tbe nominal vehicles of this study have integrally stiff- 
shells stabilizd by ring frames. In the buckling analysis d 
t h e  suuctures, the .sbcll is analyztd as a wide column sod the 
frames are sized by the Shanley criteria7 Expressions arr 
claived for the equivalent isampic thickness of tbe shell 
required to p l u c k  budding, is and for tbe smeared 
equivalent islun,pic thickness of ring frames required U1 

preclude general instability, rF. Tbe analysis will be r e s t r i d  
t tbe case of cylindrical shells. The major assumptions are 
that the suunural .shell behaves as an Eulu beam and that all 
structural material.. behave elattically. 

For the stiffened shell with frames concept, tbe commm 
pmcedure of a..suming the shell to be a wide column is 
adopted. If the frame spacing is defined as d and Young's 



modulus of thc sbell material is defmed as E. tbc budding 
equation is then 

or. solving f a  isB 

Fuselage saucuual geomevy concepts are presented in 
Table 1; values of the shell efficiency E for the various 
s u u c t d  concepts are given in Table 2. The suuaural shell 
geometries available are simply stiffened. Z-sti ffend, and 
truss-con sandwich. We next size the frames to prevent 
general instability failure. The Shanley aiterion is based on 
the premise that tbe frames act as elastic supporn for the wide 
column; this aiterion gives he  smeared equivalent thickness 
of the frames as 

where CF is Shanley's constant, Kpl is a frame geometry 
parameter, and EF is Young's modulus for the frame material. 
(See Ref. 3 f a  a discussion of the applicability of this criterion 
and for a detailed deri~tion of the equations presented here.) 
If the structure is buckling critical. the total thickness is - 

Minimizing i with respect to d results in 

where p~ is tbc density of the frame material and pis the 
dcnsity of the shell material, so rha~ b e  shell is three rimes a. 
heavy as the frames. 

Frameless sandwich shell concepts may al.w he used. For 
these ccmcepu. it is assumed that the elliptical shell buckles 
at the load detamined by the maximum compressive stress 

resultant Ni on the cylinder. Tbc buckling equation for these 
frameless sandwich shell concepts is 

where m is the buckling equation exponent. Or. solving for 
isse 

This equation is bawd on small cleflection theory. which 
seems reasonable for sandwich cylindrical shells, allhough it is 
known to be inaccurate for monocoque cylinders. Values of m 
and E may be found, for,example in Refs. 10 and 11 for many 
shell gmmeuies. Table 2 gives values for sandwich structural 
concepts available in PDCYL. numbers 8 and 9, bolh of which 
are uuss-core sandwich. The quantities Ni , r ,  and conse- 
quently iSB. will vary with fuselagfitation dimension x. 

At each fuselage station x, the shell must salisfy all failure 
criteria and meet all geomeaic constraints. Thus. the shell 
thickness is selected according to compression, tension. 
minimum gage, and buckling criteria, cx 

If is = iSB , the structure is buckling critical and the 
equivalent isotropic thickness of the frames, iF, is computed 
from EQ (20). If is > isB. the sauc~re  is not buckling critical 
at the optimum frame sizing and tbe frames are resized to 
make is = is B .  Specifically, a new frame spacing is computed 
fmm EQ (15) a? 

and this value is u . d  in EQ (16) tn determine iF . 
The total thickness of the fuselage suucture is then given 

by tbe summation of the smeared weights of the shell and the 
frames 

The shell gage thickness may be computed from 
ig = is I Kmg . The ideal fustlage structural weight is obtained 
by .summation over the vehick length 

where the quantities subscripted i dqmd on x. 
Since the preceding analysis gives only the ideal weight. 

WI. the mmprimwn weight, WNO (including fasteners, 
cutouts, surface attachments, uniform gage pndties. 



Table 1 Fuselage sawxural gaxncvy -ts 

KCON sets 
wnap number 

2 Simply stiffened shell, frames, s W  for minimum weight in buckling 
3 2-stiffened sbell, frames. best buckling 
4 2-stiffened sbell, frames, buckling-minimum gage compromise 

5 2-stiffened shell, frames, buckling-pressure compromise 
6 Tnsscoft sandwich, frames, best buckling 
8 Tnrsscon sandwich, no frames, best buckling 

9 Truss-con sandwich, no frames, buckling-minimum gage-pressure compromise 

Table 2 Fuselage stnrctural geometry parameters 

manufacturing constraints, etc.) I& yet to be determined. The 
metbod used will be explained in a later section. 

Wing 

Using the geometry and loads applied to the wing 
developed above, the suuctural dimensions and weight of the 
suuctural box may now be calculacul. The wing structure is 
assumed to be a rectangular multi-web box beam with the 
webs nmning in the direction of tbe structural semispan. 
Refmna 10 indicates that tbe critical instability mode for 
multi-web box beams is simultaneous buckling of the covers 
due to local instability and of h e  webs due to flexure induced 
d i n g .  This reference gives tbe wlidity (ratio of volume of 
structllml material to atal wing box volume) of the least 
weight multi-web box beams & 

whac E and c depend m the cover and web geometries 
(Table 3), M is the applied momen4 I is tbe thickness, E is the 
elastic modulus, and ZS is obtained from Ref. 10. The solidity 
is Umefore 

where W$IEND is the weight of bending material per unit span 
and p is the material density. Whm is computed from 
EQS (28) and (29). 'I3e weight p r  unit span of the shear 
material is 

where FS is the applied shear load and US is b e  allowable 
shear s m s .  The optimum web sqixing is computed from2 

where subscripts Wand C refer to webs and covers. 
mpectively. The equivalent isotropic thicknesses of the 
covers and webs are 



Table 3 Wing spucuxal c a f f r i e n t s  d expncnts 
- - 

Covers Webs E c E Cc EW Kg, K b ~  

Unstiffcncd Tmss 2.25 0.556 3.62 3 0.605 1.000 0.407 

Tnrss Truss 2.44 0.600 1.108 2 0.605 0.546 0.407 

Truss Unflanged 2.40 0.600 1.108 2 0.656 0.546 0.505 
Truss Z-stiffened 2.25 0.600 1.108 2 0.911 0.546 0.405 

used for validation in the present study, wc = D.) The quanri. 

(32) 
ties dw, rw, and tc are computed in the same manner as for h e  
box. The weight of the shear material is 

where Fso = Fg(0). I 

The torque on the carrythrough smaure is 
spectiveiy, and h e  gage thicknesses are 

T = M* sin(hS) 
tsc = K g c k  (34) 

and the weight of the torsion material is then 
isw = Kswfw (35) 

YORSION~ = 
PT((O + CSR Iwc (41) 

Values of E, e, EC, Ec, EW, k;p,, and K g ,  are found in foCs~as 
'able 3 for various smceural c o n c c p .  lo If the wing structural 
emispan is divided into 14 equalEngtb segments, the total Finally, the ideal weight of tbe carrythrough structure is 
&a1 weight of the wing box structure is crmputed from a summation of the bending sbear and torsion 

material. or 
N 

2bs WBOY = ( W ~ ~ Q .  + W k R ,  ) (36) WC = WBEND~ + WSHUR~ + &ORSION~ (42) 
i= l 

As in h e  case of the fuselage structural weight. non- 
Ibe wing mrrytbmugb suucture consiso of torsion optimum weight must be added to the ideal weight LO obtain 

mataial in addition to bending and shear mataid .  The torsion the me wing suuctural weight Tbe method u s 4  will be 
material is required ro resist the twist induced due to the sweep discussed below. 
ofrbe wing. 'IEe bending mataial is computed in a similar 
manna as that of tbe box except that only the longitudinal REGRESSION ANALYSIS 
campoent of the bending moment contributes. Letting 
fo=f(y=O)andMg=MCy=O), Ovaview 

Ibe weight of the bending material is then 

a 

Using fuselage and wing weight statemenu of eight 

(37) subsonic transports. a relation hetwten the calculated l a d -  
bearing sVudure weights obtained Umugh PDCYL and the 
Mual load-bearing .sm~~ture weigh&, Firnary structure 
weights, an<l tml weights is CLCtaminal using sratislical 
analysis techniques. A h ~ i c  applicatim which is first 

WBEND~ = P ~ C ~ S R [ O W C  (38) 
described is linear ngnssion.hcd&uxcin the eslhatd weights 
of the aircraft are related to tht weights calculated by PDCYL 
witb a straight line. y = mr + b, wbaz y is tbe value of the 
estimated weight, m is the skrpe of the line. x is tbe value 

wbac w c  is the width of Ihe carrythmugh structure. (When htained through PDCYL, ancl b is the y-interctp~ 731s line is 
the wing- fuselage intersection occurs entirely wilhin the tenned a regression line, and is fmnd by wing the nvrhocl of 
cyl~ndrical midsection, as is the case with all eight uanspon leusf sqwres. in which h e  sum of lhe .squares of the residual 



arcxs between actlla.1 data points and the comsponding points 
on regression line is minimized. Effectively, a straight line 
is drawn through a set of ordaed pairs of data (in this case 
eight weights okaiaed through aid Ibe awreJpading 
ncrual weights) w that the aggregate deviation of tbe actual 
weights above a below this line is minimized. Thc estimated 
weight is tbmfon dependent upon the independent PDCYL 
weight 

Of key imprcance is the degree of accuracy to which the 
pndiaioo techniques arc able to estimate actual aifcraft 
weight A measure of this accuracy, the comlation coefficient. 
denoted R, represents the reduction in residual ennr due to the 
regressioa whnique. R is defined as 

where El and E, refer to the residual errors associated with the 
regression before and after analysis is performed, respmively. 
A value of R = 1 &notes a perfect fit of the data with the 
regression tine. Conversely, a value of R = 0 denotes no 
improvement in the data fit due to regression analysis. 

?bere are two basic forms of equations which are 
implemented in this study. The firu is of the form 

?be second general form is 

Fuselage 

'The analysis above is used to develop a relationship 
between weight calculaled by PDCYL and acwal wing and 

PlXn analysis only predicts the loaclcarrying sauctun of 
the aircraft components, a comlation betwear tbc predicted 
weight and the actual loadcarrying sl!ucfural wcigbt and 
primary weight, as well as thc total weight of tbe fuselage, was 
made. 

Structural weight consists of all load-carrying members 
including bulkheads and frames. minor frames, covering. 
covering stiffeners, and longaons. For the linear curve-fit tbe 
resulting regression equation is 

This shows that the nonopfimum factor for fuselage 
structure is 1.3503; in otber words. ihe calculated weight must 
be increased by about 35 percent t get the actual suuctural 
weight For the alternative power-intercept curve fitting 
analysis, the resulting load-carrying regression equation is 

To use either of these equations.to estimate total fuselage 
weight nonsuuctural weight items must he estimated inde- 
pendently and added to the srructufal weight. 

Rrmary weight consists of all load-carrying memhers as 
well as any secondary suuctural items such a.s joinls faqteners. 
keel beam, fail-safe suaps, flooring, floonng structural 
supplies, and pressure web. It also includes the lavatory 
structure, galley supprirt, partitions, shear ties, tie rods, 
suuctural firewall, torque boxes, and attachment fittings. The 
linear curve fit f a  this weight yields the following primary 
regression equation 

The primary power-intercept regression equation is 

fuselage weights. 'Ihe data were obtained from detailed weight 
breakdowns of eight uansprt air~raft'~-'hand are shown in W,,=1.6399~:2'~ R=O.9!17 (49) 

Tabk 4 for the fuselage. Because the theory used in the 

Table 4 Fuselage weight breakdowns for eight uansprt aimaft 

Weight, Ib 

Airaaft PDCYL Load-canying structure Rimary structure Total suuctl~e 



'Ibe. t d  frsclage weight acunmts far all manbas of the 
by,~gtbcsauarPalwdghtaadpimarywcigi l tI t  
e s n o t i n d ~ p s s s a r g t r ~ t i ~ ~ ~ , s o e b a s j e a t s .  
mwks, kitdms, stowage, and lighting; tht &cuical 
Jtem; flight and navigation systems; alighting gear, fuel and 
Jpllsiaa syslans; hydraulic and gnamratic systans; tk 
cnmmhtim system; cargo acanumodations; flight deck 
ammodatioas; air conditioning aquipmens the arailiary 
~wa sysotm; aod anagency systems. Linear regression 
;ults iu tbc following total fuselage weight equation 

This shows tbat tbc oonoptimum faaor for the total 
selage weight is 2.5686; in otba wcxds, the fadage 
mxmr: weight estimattd by PDCYL must be increased by 
nut I57 paceot to get the actuaI tow fuselage weight. This 
-timum fixlor is used to comparc firsclage strucMt 
eight estimates drom PDCYL with total fuselage weight 
;cimates from tbe Sandas and the Air Force equations used 
y ACSYNT. 

'Ibe total fuselage weight power-intercept regression 
quation is 

Plots of actual fuselage component weight versus 
IXNLdculated weighf as well as the camponding linear 
t ~ o o s ,  an shown in Rgs. 3-5. 

'Ibe same analysis was p a f d  on the wing weight for 
tbe samp1c aircraft and is shown in Table 5. Tbe wing box, 
a loadcarrying structurt, coosirtr, of spar caps, inurspar 
covaings, sp~wise stiff- spar webs, spar sWam and 
waspar ribs. ?be wing box lioeat iegressim equation is 

so that the naaoprimum facux is 0.9843. Power-intercept 
regrcssiou results in 

Wing primary smcnrral weight includes all wing box 
items in addition to auxiliary spar caps and spar webs, joints 
and fastartrs, landing gear support beam, leading and sailing 
edges, tips, saucaual tirtwall, bulkbeads, jacket fittings, 
taminal fiaings, and attakhment~. Linear regression results in 

Power-intempt regression yields 

0 5000 10000 15000 20000 25000 30000 

Rg. 3 Fuselage loadcarrying structure and linear regression. 



Fig. 4 Fuselage Frimary s t ru~urc  and linear regression. 



Table 5. Wing weight breakdowns for eight transport air& 

Weight, Ih 
--- - - ~ 

Aimaft PDCYL, Ld-carrying structure Primary structure Total smam 

B-720 13962 11747 189 14 23528 
B-727 8688 879 1 12388 17860 
B-737 5717 5414 767 1 10687 

B-747 52950 50395 6876 1 88202 

The total wing weight includes wing hox  and primary 
:ht i t m s  in addition lo high-lift devices, control surfaces, 
a s s  items. It does no1 include the propulsion system, 
system, and lhwt reversers; the electr id system; 
~ting gear; hydraulic and pneumatic systems; anti-icing 
,as; and emergency systems. The resulting t d  weight 
ar regression equation is 

/ 

This shows hat  the nonopimum factor for the total wing 
gbt is 1.7372; in otber words. the wing box weight esti- 
ted by P D C n  must be i n m e d  by about 74 percent to 
the actual mtal wing weight This nonoptimum factor is 
XI lo compare wing box weight estimates from PDCYL with 
a1 wing weight estimates from the Sanders and the Au 
rce equations used by ACSYNT. 

'Be power-intercept equadon for tokd wing weight is 

Plots of actual wing component weight versus PDCYL- 
Jculaud weight, as well as ~ b c  comspnding linear 
gressiom, are &own in Figs. 68. 

Di.scu%s ion 

Both fuselage and wing weight linear and power regres- 
sions give excellent cmla t ion  with the: respective weigh~s 
of existing aircrafl, as evidenced by the high values of the 
correlation coefficient. R. It .hould be noted that even though 
the power-based regressions give correlations equal to or 
better than the linear regressions theif factc~s may vary 
distinctly from Ihe linear cases. This ix due to their powers 
not equaling unity. 

Because estimates of wn-load-bearing primary structure 
are generally not available at the conceptual design stage. and 
because nonprimary structure is probably not well estimated 
by a nowptirnum factor, EQS (48) and (54) are recommended 
fot estimating the primary smcmral weighs of the 
u a n s p n  fuselage and wing structures (Figs. 4 and 7). 

A comp;ui.wn may tie made between weight estimales 
from weight estimating relationships currenlly used by 
ACSYMT, PDCYL ourput, and actual aircrafl cmpcurent 
weigh~s. Figure %a) shows a comparison between fuselage 
weight estimated fmm the Sanders equation, the Air Force 
equation, and PDCYL output with the actual fuselage weight 
of the 747-2 1 P. Figure 9(h) .shows a similar comparison fm the 
wing weight. 
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Fig. 6 Wing load-g s m  and linear rtgnsion. 

Fig. 7 Wmg primary stnraae a d  linear rqmsidn. 



Fig. 8 Wing total smamc and linear n ~ o n  
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ADDING COMPOSITES TO PDCYL 

Light weight materials such as fiber reinforced plastics (composites) and 
bonded honeycomb sandwiches have become more and more common in 
airplanes in the last two decades (1). Designers value the unique 
properties of these materials, particularly their high stiffness to weight 
ratios. They must, however, balance these assets against the additional 
cost of these materials and their manufacture. To aid designers with this 
analysis, a composites subroutine has been added to the PDCYL structures 
weight calculation code. This subroutine sizes the thickness of a 
particular composite necessary to withstand the required aircraft loads, 
and provides this information to PDCYL which calculates the resultant 
weight of the aircraft. 

TYPICAL AIRCRAFT COMPOSITES 

The selection and use of composites on transport aircraft is an evolving 
process. A variety of composites have been tested in both military and 
commercial aircraft in the last 25 years (1). These composites typically 
consist of a strong, stiff fiber such as glass, graphite or kevlar, and a 
protective, adhering, inexpensive plastic matrix such as polyester or 
epoxy. 

Glass fibers embedded in a polyester matrix have been the dominate 
composite for military and civil aircraft in the past. Currently, the 
aircraft industry prefers the stiffer and higher temperature composites 
made from carbon fiber in an epoxy matrix. However, the grade of carbon 
fiber and epoxy seems to change from year to year and from airplane 
manufacturer to airplane manufacturer. The current favored carbon fibers 
are AS4 (Hercules/Hexcel), IM6 and IM7 (Hercules/Hexcel) . The AS4 is an 
economical, high-strength carbon fiber and the IM6 &7 are high-modulus 
expensive fibers. These three carbon fibers have been used on military 



aircraft and in research, but are not on commercial vehicles. The T-800 
fiber (a Toray equivalent to IM7) has recently been used in some 
commercial applications (1 -6). 

Epoxies, particularly the 350°F curing systems, are the least expensive 
high temperature options for matrix materials. Several epoxy systems 
have been developed and tested for use with specific fibers. There is a 
current trend to use rubber modified epoxies such as 8552 and 3900 to 
increase the toughness of the composite system and its resistance to 
impact. Fiber-resin combinations currently in use by airplane designers 
and researchers are: 

AS41938 (ICI Fiberite) -Boeing Advanced Composites Program Door 
Panel(2) 
AS418552 (HexcellHercules), -Boeing Adv. Comp Fuselage (6-7) 
AS418551 (HexcelIHercules) (6) 
AS41350 1 -6 (Hercules) -McDonnell Douglas Adv. Technology 
Composite Wing program (8) 
AS413502 (Hercules) Military Aircraft (6) 

COMPOSITE STRUCTURAL ANALYSIS 
Composite materials were originally added to the options in the 

PDCYL program in 1995. This was done by simulating these materials by 
homogeneous structures with uniform mechanical properties (strength 
and modulus of elasticity) in every direction. This approach limits the 
code to evaluation of only the simplest and weakest type of composites 
called random matl. Random mat composites are made by stacking the 
reinforcing fiber in all direction throughout the thickness of the 
material. 'In this type of composite the elastic properties and strength of 
the layup are roughly the same in every direction but the fiber density and 
reinforcement is low in any specific direction. 

Random mat composites are not favored by aircraft designers because of 
their low strength to weight ratios. The preferred type of composite for 
these applications are ones in which the properties of the material are 
customized to meet the specific directions and magnitudes of the 
structural loads. This yields the minimum weight composite for the job. 
To accomplish this, composite designers specify a layup pattern for a 
composite laminate relative to a major axis of loading. 

1 See Appendix A for definition of composite terms 



A typical composite laminate is made of a stack of 4-16 plys. A ply is a 
single layer of parallel reinforcing fibers embedded in a partially cured 
matrix of plastic. The location of each ply in the stack is defined 
relative to the angle its fibers makes with a major axis, such as the x- 
axis. For instance. a 0/90/90/45/0 layup is one in which the fibers of the 
outer and inner layers are parallel to the x-axis, the next two plies have 
fibers perpendicular to this axis and the fibers of the third layer are at an 
angle 45" clockwise to the x axis. This type of composite would have 
reinforcing fibers to sustain tensile and compressive loads in the x and y 
directions but would be weakest in the 45" direction. Composites walls 
for structural parts such as aircraft are often made from stacks of these 
laminates. 

Analysis of a multilayer stack is more complex than that of homogeneous 
materials such as aluminum or random mat and requires the use of a 
macromechanics approach to determine elastic properties and strength. 
The macromechanics approach used in the COMPOS part of the PDCYL code 
is that presented in most textbooks on composite design (9-11) . In this 
approach the stiffness of a particular laminate is calculated by summing 
the contributions of each layer (ply) in the stack to the stiffness of the 
laminate in a particular direction. The composite stiffness in each major 
direction is then used to calculate the net strain of the composite in that 
direction due to the applied loads. From the net strain, the strain on each 
layer (ply) parallel and transverse to its fiber is derived. The resulting 
strains are then compared to the failure strains of the ply material and 
from this the potential for the failure of the stack is determined. The 
details of implementing this approach in PDCYL are described in the 
following section describing the COMPOS (composites) code addition. 

COMPOSCODE 
COMPOS is a section of code which has been added to PDCYL program to 
calculate the minimum laminate thickness required to withstand the 
forces imposed at each section of the airplane. . . 

ns m ~ n  COMPOS 
*The laminate is symmetric and orthotropic. (This type of layup is 
commonly used in aircraft design to minimize warpage of the layup). 

Every ply in the stack is composed of the same resin- fiber material. 
The stack is a minimum of 3 plys. (A ply is usually ,003-.007 inches 

thick depending on the material.) 



The modulus of the material is the same in compression and tension. (if 
the compression modulus is different than its tensile modulus, the 
smaller of the two values is selected for all calculations.) 

Failure of the composite laminate occurs when any single ply fails. 
Failure of a ply occurs when it reaches the maximum strain transverse 

or parallel to the fiber direction in tension, compression or shear (1 1) 
Maximum strain theory is invoked in this analysis because it is currently 
believed to be the most predictive failure theory for composites (3,4,8) . 
.The minimum gage thickness for the composite material is assumed to 
be the thickness of the initial laminate (a stack of plies). 
.All loads are applied in the plane of the ply. This means that there are 
no z direction loads in tension, compression or shear. 

The buckling equations used in PDCYL to analyze the frames and 
stringers made from homogeneous materials apply to these heterogeneous 
materials. For buckling analysis the modulus of the laminate in the 
direction of load is used. This is a very course assumption and maybe 
somewhat optimistic for quasi isotropic composites manufactured with 
adhesive joints but seems highly unlikely for symmetric orthotropic 
laminates with heterogeneous properties. However, buckling analysis of 
complex composites structures is still in the developmental stage.(l2) 

.Calculations for Compressive and Tensile Loads 
Once the maximum tensile and/or compressive loads per unit width (Nx 
and Ny) at any given aircraft section are determined in the PDCYL code, 
they are transferred to the COMPOS subroutine. The effect of these 
normalized forces on the composite laminate strain is calculated using 
the following relationship for an orthotropic symmetric laminate (9) : 

[Nl = [A1 x [e01 (1) 
Where: 

[N] = Matrix of forces on the composite section (Nx, Ny and Nxy) 
[A] = Stiffness matrix of the composite 
[EO] = strain matrix of the composite (ex, ey, exy) 

The components of the stiffness matrix [A] are determined in the code 
through the following relationship (9): 



Where: 
QBij = component of each ply's stiffness in the i and j's directions 
h = thickness of k ply 
k= ply number in the laminate 

The stiffness contributions, QB values, of each ply are determined from 
the initial ply properties, E l ,  E2, vl2 and the ply angles, 8, specified by 
the user in the input file for a particular laminate construction. (Here, the 
"1" direction is taken parallel to the fiber and the "2" direction 
transverse to the fiber). 

Once the average laminate strain is determined from equation (I), this 
strain is then transferred to each ply and transformed into strain parallel 
and transverse to each fiber as well as shear strain. These strains are 
then divided by the mating failure strains for the material (supplied by 
the user in the input file) to determine the R value of the layup. 

Where: 
alleij-allowable components of strain in principle ply direction 
eij = components of strain in principle ply directions 

If the R value for all plys in all the principle directions is more than 1, 
the laminate thickness is adequate to support the load and is left 
unaltered. If R is less than one on any ply in any of the principle 
directions, the thickness of the laminate is increased by giving it the 
value of it initial thickness divided by R. 

Calculations for Buckling 
PDCYL currently determines critical buckling loads from the modulus of 
elasticity of the material. COMPOS calculates the modulus of the 
laminate in the direction parallel to the buckling force and passes this 
value back to PDCYL. As mentioned in the assumptions portion of this 
report, the buckling calculation of PDCYL may not be valid for composites 
as they were developed for isotropic materials. Little research has been 
done on composites in buckling so the authors advise caution in 
interpreting this result particularly with non-isotropic layups. 



Unfortunately, few all composite planes have been built so it is 
difficult to find planes to use as checks for the composite section of the 
code (8). The all composite planes listed in the literature (8) are: 

Windecker Eagle in 1967 which was glass fiber reinforced 
Learfan in 1981 which used glass, carbon and kevlar fibers 
Piaggio Avanti in 1986 with carbon fiber parts 
Beech Starship in 1986 with carbon fiber 
Grob GF-200- all composite 
Slingsby T-3A Firefly -all composite 

A literature search and personal interviews failed to turn up much 
information directly useful in determining non-optimum factors. (These 
factors are used to multiply the results of theoretical calculations to get 
weights of practical structures.) 

One reference was found which had this type of data (12). In this 
reference, a theoretical analysis gave 8640 pounds as the weight of a 
composite wing box whereas the actual wing was estimated to weigh 
11,284 pounds giving a non-optimum factor of 1.306. Using the non- 
optimum factors for aluminum structures (13) this number can be used to 
estimate non optimum factors for carbon fiber-epoxy structures. If it 
is assumed that the non-optimum factors for the fuselage primary 
structure increase in the same proportion as wing structure relative to 
aluminum, and that the increments for secondary structure and non- 
structural are the same for graphite-epoxy composites and aluminum, 
then the following non-optimum factors for the composite result: 

There are many composite components in commercial and military 
structure as well as some from research on advanced composites. It may 
be possible to compare these components to predictions of the code. 

Fuselage 

Wing 

Total 
Assembly 

3.01 0 

2.059 

Primary 
Structure 

1.792 

1.306 

Primary &Secondary 
Structure 

2.329 

1.666 
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AeEwxl  
COMPOGITES TERMINOLOGY 

Random Ma-  equal fibers in every direction 
W a n c e d -  equal fibers in orthotropic directions yield a composite with 
identical properties in 2 principal directions. 
S m - A  symmetric laminate is one in which for each ply above the 
center of the stack there is and identical one at an equal distance below 
the center. For instance, a 01-45/90/90/-4510 is a symmetric layup 
but a 01-451901 01-45/90 is not. 

S I - l so t ro~ i~ -  Layups which are designed to have only two independent 
elastic constants, the modulus of elasticity and Poisson's ratio. These 
materials have the same values in every inplane direction. To meet this 
criteria fiber (ply) layups must have the following conditions: 

*Total number of plies must be 3 or more 
*Individual plies must have identical stiffness [Q] matrices and 
thickness 
*Layers must be oriented at "equal" angles (if total number of 
layers is n, than each layer is piln relative to the next). If the 
laminate is constructed from several groups of laminates,. the 
condition must be satisfied for each laminate group 
Typical laminates which satisfy these rules : [0/60/-601, [0/45/- 
45/90]  



Appendix C 

Weights of ASA 2 150 With Aluminum and Graphite/Epoxy Fuselage 



Calling Module # 1 
Calling Module # 2 
TAKEOFF 

K T 0  = 0.1521810E+06 WFT01 = 0.3242445E+04 WFTO2 = 0.0000000E+00 WFTO = 0.3242445E+04 W = 0.1489386E+06 
HNTO = 0.1500000E+04 CLS = 0.1769708E+01 VS = 0.1337697E+03 V2 = 0.2259222E+03 SMN2 = 0.20340923+00 
CL2 = 0.1758139E+01 TN2 = 0.0000000E+00 SFC2 = 0.1000000E+01 TNO = 0.0000000E+00 SFCO = 0.1000000E+01 

W A V E  = 0.0000000E+00 SFCAVE = 0.1000000E+01 FLTO =-0.1450002E+05 

LANDING 

WGTO = 0.1521810E+06 WFUSED = 0.64028823+05 WFRES = 0.1176211E+05 WFTOT = 0.6430918E+05 WrmEL = 0.64309183+05 
WPL = 0.3150000E+05 W = 0.8815213E+05 WLAND = 0.1246486E+06 XGRLAN = 0.1692168E+04 FLLAND = 0.5155803E+04 

WGCALC = 0.1524791E+06 

Calling Module X 6 
FROM geometry: body diameter = 

BODY VOLUME - - 
BODY LENGTH - - 
TAPER RATIO - - 
ASPECT RATIO = 
RATIO 1/4 CHORD = 
WING SWEEP - - 
HOR. TAIL / CL = 
NOSE VOLUME - - 
TAIL VOLUME - - 
CLlA - - 
CLlB - - 
T/C AT ROOT - - 
T/C AT TIP - - 
ENTEMP - - 
ENWINGTEMP - - 
CLRWl - - 
CLRW2 - - 
CLRW3 - - 
CLRPl - - 
CLRP2 - - 

FROM weights.acs SLFMTEMP - - 
FACSTEMP - - 
WFPTEMP - - 
WINGLTEMP - - 
UWWGTEMP - - 
AR'M'EMP - - 



FROM stblcon.acs 

From namelist 

UWI"rMP 
W I N G  
W I N G  
WGTO 
CLRGlTEMP = 
CLRG2TEMP = 
WFGRlTEMP = 
WFGRZTEMP = 
I c n  - - 
WTFF - - 
ISCHRENK = 
ICOMND - - 
CLRGl - - 
CLRG2 - - 
WFGRl - - 
WFGR2 - - 
IGEAR - - 
CWMAN - - 
ITAIL - - 
I STAMA - - 
TMGW - - 
EC - - 
KGC - - 
KGW - - 
WGNO - - 
CS1 - - 
CS2 - - 
EFFW - - 
EFFC - - 
ESW - - 
FCSW - - 
DSW - 
TRATWR - - 
TRATWT - - 
XCLWNGR = 
NWING - - 
FTST - - 
0.0000000E+00 
0.0000000E+00 
FTSB - - 
0.0000000E+00 
0.0000000E+00 
FCST - - 
0.0000000E+00 
0.0000000E+00 
FCSB - - 
0.0000000E+00 
0.0000000E+00 



EST - - 
0.0000000E+00 
0.0000000E+00 
ESB - - 
0.0000000E+00 
0.0000000E+00 
EFT - - 
0.0000000E+00 
0.0000000E+00 
EFB - - 
0.0000000E+00 
0.0000000E+00 
DST - - 
0.0000000E+00 
0.0000000E+00 
DSB - - 
0.0000000E+00 
0 .0000000E+00 
DFT - - 
0.0000000E+00 
0.0000000E+00 
DFB - - 
0.0000000E+00 
0 .0000000E+00 
PS - - 
CF - - 
PGT - - 

11.25000 
11 .25000 

PGB - - 
11.25000 
11 .25000 

TMGT - - 
0.0000000E+00 
0.0000000E+00 
TMGB - - 
0.0000000E+00 
0.0000000E+00 

CLAPR - 
CKF - - 
WCW - - 
WCA - - 
AXAC - - 
IFUEL - - 
WMIS - - 
WSUR - - 
KCONT - - 

4 



4 4 
KCONB - - 4 4 4 4 

4 4 4 4 4 4 
4 4 

CLBRl = 1.100000 
ILOAD - - 3 
CMAN = 1.000000 
CLAN = 0.7210000 
CBUM = 1.000000 
WFLAND = 0.9000000 
WFBUMP = 1.0000000E-03 
VSINK = 10.00000 
STROKE = 1 .167000  
GFRL = 1.0000000E-03 
SLFMB = 1.200000 
CLRGWl = 0.2090000 
CLRGW2 = 0.0000000E+00 

SPAN BS ROOTC TIPC TAPER TRATWR TRA'IWT GAML GAMT GAMS WING WPUEL DENW ' 

FT FT FT FT DEG . DEG. DEG. FT3 LBS LB/FT3 
107.3392 50 .764  19 .8116 5 .4034 0 .250  0 .146 0 .110  23 .72453 7 .82576  20 .000  1269.270 42488.93 41 .598 

WING 
STATION 

FT 
50.764 
49 .495 
48 .226 
46 .957 
45.688 
44 .419 
43.150 
41 .881  
40 .611  
39 .342 
38 .073 
36 .804 
35 .535 
34 .266 
32 .997 
31 .728 
30 .459 
29 .190 
27 .920 
26 .651  
25.382 
24 .113  
22 .844 

CHORD 

FT 
5.4034 
5 .7636 
6 .1238  
6 .4840 
6 .8442 
7 .2044 
7 .5646  
7 .9249  
8 . 2 8 5 1  
8 .6453  
9 .0055  
9 .3657 
9 .7259 

1 0 . 0 8 6 1  
10 .4463  
10 .8065  
11 .1667  
11 .5269  
1 1 . 8 8 7 1  
1 2 . 2 4 7 3  
1 2 . 6 0 7 5  
12 .9677  
13 .3279  

LENGTH 

FT 
2.4504 
2 . 6 3 4 1  
2 .8179  
3 .0017 
3 .1855 
3 .3692 
3 .5530  
3 .7368  
3 .9206 
4 .1043  
4 . 2 8 8 1  
4 .4719  
4 .6557  
4 .8395  
5 .0232 
5 .2070 
5 .3908  
5 . 5 7 4 6  
5 .7583  
5 . 9 4 2 1  
6 .1259 
6 .3097  
6 .4934 

LENGTH 
PRIME 

FT 
2.4504 
2 .6341 
2.8179 
3 .0017 
3.1855 
3 .3692 
3.5530 
3 .7368 
3.9206 
4.1043 
4 .2881 
4.4719 
4.6557 
4 .8395 
5.0232 
5 .2070 
5 .3908 
5 .5746 
5.7583 
5 .9421  
6 .1259 
6 .3097 
6 .4934 

BEND 
MOM 
FT-LBS 

130 .  
1713.  
5798. 

12923. 
23489. 
37831. 
56236. 
78955. 

106209. 
138198. 
175102. 
217079. 
264273. 
316811. 
374806. 
438357. 
507548. 
582452. 
663128. 
749622. 
841966. 
940182. 

1044280. 

WEB COVER 
SPACE THICK 

IN IN 
0.1830 0 .0543  
0 .3699 0 .0543  
0 . 5 1 9 5  0 .0543  
0 .6522  0 .0543  
0 . 7 7 5 1  0 .0543  
0 . 8 9 1 5  0 .0543  
1 . 0 0 3 2  0 .0543  
1 .1114  0 .0543  
1 .2169  0 .0543  
1 . 3 2 0 2  0 .0543  
1 .4217  0 .0543 
1 .5217  0 .0567 
1 .6204  0 .0634 
1 .7179  0 .0700  
1 .8146  0 .0765  
1 .9104  0 .0828 
2 .0054 0 .0889 
2 .0997 0 .0949 
2 .1934 0 .1007 
2 .2865  0 .1064 
2 .3790 0 .1118  
2 . 4 7 1 1  0 .1170 
2 .5626 0 .1220 

WEB 
THICK 

IN 
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960  
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 
0 .03960 

CGAGE 
THICK 

IN 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0200 
0 .0209 
0 .0233 
0 .0258 
0 .0281  
0 .0305 
0 .0327 
0 .0349 
0 .0371  
0 .0391 
0 .0411  
0 .0431  
0 .0449 

WGAGE 
THICK 

IN 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0.02000 
0 ,02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0.02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 
0 .02000 

UNITYrP 
COVERS 

LB/FT2 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0 .7904 
0 .7904 
0.7904 
0.7904 
0 .8251  
0 .9222 
1 .0179  
1 .1120  
1 .2040  
1 .2936 
1 .3808 
1 .4652  
1 .5468  
1 .6256  
1 .7014 
1 .7743  

UNITWT NJW 
WEBS 

LB/FT2 
0 .5760  3 
0 .5760  3 
0 .5760  3 
0 .5760  3 
0 .5760 3 
0 .5760 3 
0 .5760 3 
0 .5760  3 
0 .5760  3 
0 .5760  3 
0 .5760  3 
0 .5760 5 
0 .5760 5 
0 .5760  5 
0 .5760  5 
0 .5760  5 
0 .5760 5 
0 .5760 5 
0 .5760  5 
0 .5760  5 
0 .5760  5 
0 .5760  5 
0 .5760  5 



CLBOXl C L I N T  C L I N T P  LBOX WBOX TBOX NJW WEBSB TORK T T O  TBCOV 
F T  F T  FT F T  F T  F T  F T  FT-LBS I N  I N  

47 .603  4 9 . 9 5 5  59 .861  9 .9058  11 .9334  2 .892 5  0 .3353  586064.7  0 .0134  0 .0438  

WSHEAR WBEND W I N G  WSHBOX WBDBOX WOBOX WWBOX WWINGT WPOD D E L T I P  
LBS LBS LBS LBS LBS LBS LBS LBS LBS F T  

71 .50  2532.25  9046.48  31 .93  1177.02  59 .63  1268 .58  10315 .06  3272 .93  3.849 

CONTROL AREA STRUCTURE AREA SPLAN 
F T 2 .  FT2. F T 2 .  

514.99  719.62  1450.  

WEIGHTS W O  WBOD W I N G  WPROP W A I L  CG RG 
152181. 83574. 52804.  6546. 2983.  53 .255  0 .000  

BODY/PROP VOLUME DENSITY CL1 F I N  RAT LENGTH WIDTH ABOD ASUR CLPl CLP2 
PARAMETERS 9348. 16 .2789 58 .915  9 .3665 117.830 12 .580  1 1 4 4 . 9  3596 .8  0 . 0 0  0 . 0 0  

T A I L  ATAIL CLT 
P M E T E R S  202. 115 .47  

CRUISE WEIGHT ALPHA DEFLEC L I F T B  LIFTW L I F T T  CLAQW CLAQB STAMA CGM 

PARAMETERS 152181. 7 . 0 0  -11 .50  132.  166974.  -14925. 1 6 . 4 5  0 .02  4 .72  5 3 . 3  

MANEWER SLFM ALPHA DEPLEC L I F T B  LIFTW L I F T T  

PARAMETERS 2 .50  1 7 . 5 0  -28 .75  330.  417435. -37312. 

X Y BEND MOMENT WSAV(1) BMBW BMBL BMW 
1 . 9 6  2 . 6 0  -0.39743+03 219.  -399. 2 .  0 .  

BMP BMT BUG MAX MOMENT 
0 .  0 .  0 .  0.3974E103 





LANDING WEIGHT ALPHA 
PARAMETERS 109722. 7.00 

LANDING SLFM ALPHA 
PARAMETERS 2.58 7.00 

BEND MOMENT 
-0.41273+03 
-0.2677E+04 
-0.7993E+04 
-0.1737E+05 
-0.3171E+05 
-0.5185E+05 
-0.8447E+05 
-0.12773+06 
-0.1791E+06 
-0.23913+06 
-0.3086E+06 
-0.3882E+06 
-0.47853+06 
-0.57983+06 
-0.69213+06 
-0.81563+06 
-0.95013+06 
-0.10963+07 
-0.1252E+07 
-0.1420E+07 
-0.15993+07 
-0.17893+07 
-0.19893+07 
-0.21993+07 
-0.24203+07 
-0.2308E+07 
-0.61453+06 
0.1979E+07 
0.4556E+07 
0.6198E+07 

DEFLEC LIFTB 
-149.10 -43. 

DEFLEC LIFTB 
* * * * * *  -43. 

WSAV(1) BMBW 
219. -412. 
712. -2676. 
1417. -7990. 
2309. -17361. 
3372. -31697. 
4595. -51836. 
5970. -78567. 
7489. -112639. 
9147. -154770. 
10939. -205650. 
12860. -265948. 
14907. -336311. 
17068. -417364. 
19250. -509462. 
21432. -612628. 
23614. -726861. 
25797. -852162. 
27979. -988530. 
30161. -1135967. 
32342. -1294469. 
34498. -1463984. 
36615. -1644337. 
38694. -1835330. 
40734. -2036764. 
42734. -2248447. 

0. -2470179. 
0. -2701755. 
0. -2942975. 
0. -3193633. 
0. -3453522. 

LI FTW LIFTT CLAQW CLAQB 
-54239. 153032. 16.45 0.02 

LIFTW LIFTT FGEAR 
-54239. 153032. 184619. 

BMBL 
0. 

-1. 
-3. 
-6. 
-10. 
-16. 
-23. 
-31. 
-41. 
-53. 
-66. 
-81. 
-98. 
-116. 
-137. 
-159. 
-183. 
-209. 
-237. 
-636. 
-655. 
-672. 
-690. 
-706. 
-721. 
-736. 
-749. 
-762. 
-774. 
-785. - 

BMW 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

5934. 
33770. 
58469. 
50455. 
19845. 

BMP 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-1192. 
-9037. 

-23857. 
-45242. 
-72782. 

STAMA 
6.55 

CGM 
51.1 

BMG 
0. 
0. 
0. 
0. 
0. 
0. 

-5878. 
-15063. 
-24248. 
-33433. 
-42618. 
-51803. 
-60988. 
-70173. 
-79358. 
-88543. 
-97728. 

-106913. 
-116098. 
-125283. 
-134468. 
-143653. 
-152838. 
-162023. 
-171208. 
158344. 

2063313. 
4888512. 
7745263. 
9744895. 

MAX M o m  
0.41273+03 
0.26773+04 
0.79933+04 
0.17378+05 
0.31713+05 
0.5185E+05 
0.84473+05 
0.1277E+06 
0.17913+06 
0.23913+06 
0.30863+06 
0.38823+06 
0.47853+06 
0.57983+06 
0.69213+06 
0.8156E+06 
0.9501E+06 
0.1096E+07 
0.1252E+07 
0.14203+07 
0.15993+07 
0.17893+07 
0.19893+07 
0.21993+07 
0.24203+07 
0.26113+07 
0.3071E+07 
0.3595E+07 
0.45563+07 
0.6198E+07 



BUMP WEIGHT ALPHA DEFLEC LIFTB LIFTW LIFTT CLAQW CLAQB 
PARAMETERS 152181. 7.00 -57.45 -126. -159141. 159419. 16.45 0.02 

BUMP SLFM ALPHA DEFLEC LIFTB DEFLTW LIFTT FGEAR 
PARAMETERS 1.20 7.00 -57.45 -126. -159141. 159419. 182465. 

BEND MOWENT 
-0.19233+03 
-0.1247E+04 
-0.37223+04 
-0.8085E+04 
-0.1476E+05 
-0.24133+05 
0.2939E+05 
0.11663+06 
0.2001E+06 
0.2795E+06 
0.3545E+06 

WSAV ( I ) 
219. 
712. 
1417. 
2309. 
3372. 
4595. 
5970. 
7489. 
9147. 
10939. 
12860. 

BMBW 
-192. 
-1243. 
-3712. 
-8067. 

-14728. 
-24086. 
-36506. 
-52337. 
-71913. 
-95555. 
-123572. 

BMBL 
-1. 
-4. 
-9. 
-18. 
-30. 
-47. 
-67. 
-92. 
-121. 
-155. 
-194. 

BMW 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

BMP 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

STAMA 
4.72 

CGM 
53.3 

BMG 
0. 
0. 
0. 
0. 
0. 
0. 

65966. 
169037. 
272109. 
375181. 
478253. 

MAX MOMENT 
0.41273+03 
0.26773+04 
0.79933+04 
0.17373+05 
0.31713+05 
0.51853+05 
0.84473+05 
0.1277E+06 
0.2001E+06 
0.27953+06 
0.3545E+06 





STRUCTURAL CKF 
PARAMETERS 5.2400 
1 

FUSE BENDING 
STAT MOMENT 
FT FT LBS 

1.9638 619.015 
3.9277 4015.657 
5.8915 11989.037 
7.8553 26050.969 
9.8192 47561.238 
11.7830 77778.055 
13.7468 126702.141 
15.7107 191600.266 
17.6745 300112.031 
19.6383 419206.312 
21.6022 531729.500 
23.5660 637229.750 
25.5298 735272.000 
27.4937 869627.625 
29.4575 1038184.313 
31.4213 1223344.750 
33.3852 1425109.750 
35.3490 1643478.750 
37.3128 1878452.250 
39.2767 2130582.000 
41.2405 2398660.500 
43.2043 2682994.000 
45.1682 2983286.250 
47.1320 3299240.000 
49.0958 3630565.000 
51.0597 3915888.750 
53.0235 4606577.500 
54.9873 6913951.500 
56.9512 9887048.000 
58.9150 11683106.000 
60.8788 11631395.000 
62.8427 11274519.000 
64.8065 10911652.000 
66.7703 10542948.000 
68.7342 10168552.000 
70.6980 9788623.000 
72.6618 9403313.000 
74.6257 9012783.000 
76.5895 8617191.000 
78.5533 8216694.000 

FSK 
0.04504 

THIC 

EFF CK 
0.76000 2.03 

SHELL 
STRESS 

PSI 
33.1421 

132.5520 
298.2244 
530.1569 
828.3481 
1192.7972 
1744.9386 
2403.9612 
3468.3428 
4501.3037 
5342.1821 
6024.9893 
6719.1787 
7946.9687 
9487.2998 
11179.3613 
13023.1621 
15018.6953 
17165.9688 
19538.9277 
22389.4512 
25501.5098 
28888.3418 
32564.5059 
36546.1406 
40223.6992 
47831.5078 
54000.0000 
54000.0000 
54000.0000 
54000.0000 
54000.0000 
53999.9961 
54000.0000 
54000.0000 
54000.0000 
53999.9961 
54000.0000 
53999.9961 
54000.0000 

EQUIV 
THICK 
IN 

0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0734 
0.0741 
0.1007 
0.1472 
0.1780 
0.1815 
0.1803 
0.1789 
0.1775 
0.1760 
0.1743 
0.1725 
0.1705 
0.1684 
0.1661 

CF CTHIC 
!50 0.6250E-04 0.000 

GAGE 
THICK 

IN 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0360 
0.0364 
0.0494 
0.0722 
0.0873 
0.0890 
0.0884 
0.0878 
0.0871 
0.0863 
0.0855 
0.0846 
0.0836 
0.0826 
0.0815 

FRAME 
SPACE 

IN 
18010.9727 
4503.2979 
2001.5850 
1125.9333 
720.6165 
500.4382 
342.0873 
248.3074 
172.1056 
132.6108 
111.7374 
99.0743 
88.8384 
75.1131 
62.9179 
53.3949 
45.8354 
39.7452 
34.7735 
30.5504 
26.6608 
23.4073 
20.6631 
18.3304 
16.3334 
14.8400 
12.6057 
15.1663 
22.1738 
26.8083 
27.3285 
27.1466 
26.9482 
26.7324 
26.4984 
26.2454 
25.9722 
25.6778 
25.3607 
25.0195 

SAFEFAC DEFL 
1.500 0.000 

SECTION 
AREA 

SQ FT 
21.2041 
34.3929 
45.6394 
55.7851 
65.1837 
74.0269 
82.4333 
90.4832 
98.2337 
105.7277 
112.9981 
120.0712 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
123.7931 
121.6254 
119.4408 
117.2388 
115.0187 
112.7799 
110.5216 
108.2432 
105.9439 
103.6227 
101.2787 
98.9111 
96.5186 
94.1001 
91.6544 
89.1801 
86.6757 
84.1396 
81.5699 
78.9646 
76.3216 

SHELL 
UNITWT 
LB/FT2 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0676 
1.0784 
1.. 4647 
2.1415 
2.5891 
2.6393 
2.6218 
2.6026 
2.5818 
2.5592 
2.5347 
2.5084 
2 A799 
2.4493 
2.4163 

FRAME 
UNITWT 

MAX 
BENDING 

LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
BUM 
BUM 
BUM 
BUM 
BUM 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
MAN 
MAN 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 



7811461.500 0.0000 54000.0000 
7401658.500 0.0000 54000.0039 
6987453.000 0.0000 54000.0000 
6569014.500 0.0000 53999.9961 
6146523.000 0.0000 54000.0000 
5720152.500 0.0000 54000.0000 
5290087.500 0.0000 54000.0039 
4856512.500 0.0000 54000.0000 
4419615.000 0.0000 54000.0078 
3979597.500 0.0000 54000.0039 
3536653.500 0.0000 54000.0000 
3090988.500 0.0000 53999.9961 
2642824.500 0.0000 54000.0000 
2192373.000 0.0000 54000.0000 
1739874.000 0.0000 54000.0000 
1285563.000 0.0000 54000.0039 
829707.000 0.0000 46374.3086 
372576.000 0.0000 27633.7871 
18816.750 0.0000 2263.7334 

0.000 0.0000 0.0000 
STRUCTURAL WEIGHT SUMMARY 

Bun 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
MAN 
NONE 

WEIGHT WEIGHT UNIT 
(LBS) FRACTION WEIGHT 

(LBS/FT'FT) 

SHELL 5719.80 0.0376 1.5945 
FRAMES 373.81 0.0025 0.1042 
NONOP 9558.42 0.0628 2.6646 
SEC 0.00 0.0000 0.0000 
TOTAL 15652.02 0.1029 4.3634 
VOLPEN 0.00 0.0000 0.0000 
GRANTOT 15652.02 0.1029 4.3634 

Surface Area, SQF 
Volume Ratio 
BODY WEIGHT 

1 
FUSE BENDING 
STAT MOMENT 
FT FT LBS 

1.9638 619.015 
3.9277 4015.657 
5.8915 11989.037 
7.8553 26050.969 

THIC SHELL EQUIV GAGE FRAME NJ SECTION SHELL F M  MAX 
STRESS THICK THICK SPACE AREA UNITWT UNITWT BENDING 

IN PSI IN IN IN SQ FT LB/FT2 
0.0000 33.1421 0.0734 0.0360 18010.9727 3 21.2041 1.0676 0.0000 LAN 
0.0000 132.5520 0.0734 0.0360 4503.2979 3 34.3929 1.0676 0.0000 LAN 
0.0000 298.2244 0.0734 0.0360 2001.5850 3 45.6394 1.0676 0.0000 LAN 
0.0000 530.1569 0.0734 0.0360 1125.9333 3 55.7851 1.0676 0.0000 LAN 



LAN 
LAN 
LAN 
LAN 
BUM 
BUM 
BUM 
BUM 
BUM 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
MAN 
MAN 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 



2642824.500 0.0000 54000.0000 
2192373.000 0.0000 54000.0000 
1739874.000 0.0000 54000.0000 
1285563.000 0.0000 54000.0039 
829707.000 0.0000 46374.3086 
372576.000 0.0000 27633.7871 
18816.750 0.0000 2263.7334 

0.000 0.0000 0.0000 
STRUCTURAL WEIGHT SUMMARY 

WEIGHT WEIGHT 
( LBS ) FRACTION 

SHELL 
FRAMES 
NONOP 
SEC 
TOTAL 
VOLPEN 
GRANT0 

UNIT 
WEIGHT 

(LBS/FTeFT) 

Surface Area, SQF 3587.15 
Volume Ratio 1.00000000 
BODY WEIGHT 15652.02441406 

1 STRUCTURAL WEIGHT SUMMARY 

WEIGHT WEIGHT UNIT 
( LBS ) FRACTION WEIGHT 

(LBS/FTtFT) 
......................................................... 

SHELL 5719.80 0.0376 1.5945 
FRAMES 373.81 186.9042 0.1042 
NONOP 9558.42 0.0628 2.6646 
SEC 0.00 0.0000 0.0000 
TOTAL 15652.02 0.1029 4.3634 
VOLPEN 0.00 0.0000 0.0000 
GRANTOT 15652.02 0.1029 4.3634 

Bun 
Bun 
BUM 
Bun 
BUM 
BUM 
MAN 

NONE 

Surface Area, SQF 3587.15 
Volume Ratio 1.00000000 
BODY WEIGHT 15652.02441406 



output for Module t 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fuselage Definition Nacelle Definition Nacelle Location 

Area X-Xnose R Area X Y Z 
0.00 0.00 0.70 1.53 39.31 13.42 -6.64 
3.78 0.37 0.70 1.53 39.31 -13.42 -6.64 
10.29 0.37 0.70 1.53 
18.17 1.76 0.70 1.53 
26.85 
35.97 
45.27 
54.55 
63.64 
72.40 
80.73 
88.52 
95.69 
102.17 
107.90 
112.83 
116.91 
120.12 
122.43 
123.83 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
123.83 
122.43 
120.12 
116.91 
112.83 
107.90 
102.17 
95.69 
88.52 



Fuselage Nacelles - 2 
. . . . . .  Max. Diameter 12.580 ..... 1.397 

Fineness Ratio.. ... 9.366 
....... Surface Area 3522.634 ..... 7.743 (each) 

Volume ............. 9348.345 



Dimensions of Planar Surfaces (each) 

NUMBER OF SURFACES. 
. . . . . . . . . .  PLAN AREA 

. . . . .  SURFACE AREA.. 
VOLUME. . . . . . . . . . . . .  
SPAN . . . . . . . . . . . . . . .  

. . . . . . . . .  L.E. SWEEP 
C/4 SWEEP . . . . . . . . . .  
T.E. SWEEP.. . . . . . . .  
ASPECT RATIO . . . . . .  
ROOT CHORD . . . . . . . . .  
ROOT THICKNESS . . . . .  
ROOT T/C . . . . . . . . . .  

. . . . . . . . . .  TIP CHORD 
TIP THICKNESS ...... 
TIP T/C . . . . . . . . . . .  
TAPER RATIO . . . . . . .  
MEAN AERO CHORD .... 

LE ROOT AT . . . .  
. . .  C/4 ROOT AT 

. . . .  TE ROOT AT 
LE M.A.C. AT.. 
C/4 M.A.C. AT. 
TE M.A.C. AT.. 
Y M.A.C. AT . . .  
LE TIP AT.. ... 
C/4 TIP AT. . . .  
TE TIP AT . . . . .  
ELEVATION.. . . .  

Wing H.Tail V.Tail Canard Units 

1.0 
0.0 (SQ.FT.) 
0.0 (SQ.FT.) 
0.0 (CU.FT.1 

0.000 (FT.) 
0.000 (DEG.) 
0.000 (DEG.) 
0.000 (DEG.) 
0.000 
0.000 (FT.) 
0.000 (IN.) 
0.000 
0.000 (FT.) 
0.000 (IN.) 
0.000 
0.000 
0.000 (FT.) 

GEOMETRIC TOTAL VOLUME COEFP 0.771 0.076 0.000 
REQUESTED TOTAL VOLUME COEFF 0.771 0.076 0.000 
ACTUAL TOTAL VOLUME COEFF 0.771 0.076 0.000 

E X T E N S I O N S  
Strake Rear Extension 

Centroid location at. . . . . . .  0.00 0.00 
Area . . . . . . . . . . . . . . . . . . . . . . .  0.00 0.00 
Sweep Angle . . . . . . . . . . . . . . . .  0.00 0.00 
Wetted Area . . . . . . . . . . . . . . . .  0.00 0.00 
Volume. . . . . . . . . . . . . . . . . . . . .  0.00 0.00 



Total Wing Area............ 1450.00 
Total Wetted Area.......... 7273.48 

F U E L  T A N K S  
Tank Volume Weight Density 
Wing 1101. 55033. 50.00 
Fustl 186. 9276. 50.00 
Fusn2 0. 0. 50.00 
Total 64309. 

Mission Fuel Required - 64309. lbs. 
Extra Fuel Carrying Capability = -9276. lbs. 
Available Fuel Volume in Wing = 1101. cu.ft. 

Aircraft Weight = 152181.000 lbs. 
Aircraft Volume = 11693.691 cu.ft. 
Aircraft Density = 13.014 lbs./cu.ft. 
Actual - Required Fuel Volume = -185.529 cu.ft. 

ICASE = 4 (Fineness Ratio Method) 



Output for Module # 6 
* * * * + + * * * * * * * * * * * * * + * * * * ~ + + + + * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * + * * * * * + * * * * * * * *  

Weight Statement - Transport 
TRANS W R T  

Qmax: 400. 
Design Load Factor: 2.50 
Ultimate Load Factor: 3.75 
Structure and Material: Aluminum Skin, Stringer 
Wing Equation: Ardema/Chambers WWING Analysis 
Body Equation: Ardema/Chambers PDCYL Analysis 

Component Pounds Kilograms Percent Slope Tech Fixed 

Airframe Structure 35228. 15979. 21.15 No 
Wing 10315. 4679. 6.19 1.20 1.00 No 
Fuselage 15652. 7100. 9.40 0.90 1.00 No 
Horizontal Tail ( Low) 1503. 682. 0.90 1.00 1.00 No 
Vertical Tail 1480. 671. 0.89 1.00 1.00 No 
Nacelles 4. 2. 0.00 1.00 1.00 No 
Landing Gear 6275. 2846. 3.77 1.00 1.00 No 

Propulsion 
Engines ( 2) 
Fuel System 
Thrust Reverser 

Fixed Equipment 
Hyd 6 Pneumatic 
Electrical 
Avionics 
Instrumentation 
De-ice & Air Cond 
Aux Power System 
Furnish 6 Eqpt 
Seats and Lavatories 
Galley 
Misc Cockpit 
Cabin Finishing 
Cabin Emergency Equip 
Cargo Handling 

Flight Controls 

6546. 2969. 3.93 No 
6546. 2969. 3.93 0.85 1.00 Yes 

0. 0. 0.00 1.00 1.00 No 
0. 0. 0.00 1.00 NO 

Empty Weight 66329. 30087. 39.82 



Operating Items 
Flight Crew ( 2 )  
Crew Baggage and Provisions 
Flight Attendents ( 4) 
Unusable Fuel and Oil 
Passenger Service 
Cargo Containers 

operating Weight Empty 

Fuel 

Payload 
Passengers (150) 
Baggage 
Cargo 

Calculated Weight 

Estimated Weight 

Percent Error 



Calling Module # 1 
Calling Module # 2 

TAKEOFF 

WGTO = 0.1521810E+06 WFTO1 = 0.3242445E+04 WFT02 = 0.0000000E+00 WFTO = 0.32424453+04 W = 0.1489386E+06 
HNTO = 0.1500000E+04 CLS = 0.1769708E+01 VS = 0.13376973+03 V2 = 0.2259222E+03 SMN2 = 0.2034092E+00 
C L ~  = 0.1758139~+01 T N ~  = 0.0000000~+00 SFC2 = 0.1000000E+01 mo = o.ooooooo~+oo s ~ c o  = o.loooooo~+oi 

TNAVE = 0.0000000E+00 SFCAVE = 0.1000000E+01 FLTO =-0.1450002E+05 

LANDING 

WGTO = 0.1521810E+06 WFUSED = 0.6402882E+05 WFRES = 0.1176211E+05 WFTOT = 0.6430918E+05 WFUEL = 0.6430918~+05 
WPL = 0.3150000E+05 W = 0.8815213E+05 WLAND = 0.1246486E+06 XGRLAN = 0.1692168E+04 FLLAND = 0.5155803E+04 

WGCALC = 0.1524791E+06 

Calling Module # 6 
FROM geometry: body diameter 

BODY VOLUME 
BODY LENGTH 
TAPER RATIO 
ASPECT RATIO 
RATIO 1/4 CHORD 
WING SWEEP 
HOR. TAIL / CL 
NOSE VOLUME 
TAIL VOLUME 
CLlA 
CLlB 
T/C AT ROOT 
T/C AT TIP 
ENTEMP 
ENWINGTEMP 
CLRWl 
CLRw2 
CLRW3 
CLRPl 
CLRP2 

FROM weights.acs SLFMTEMP 
FACSTEMP 
WFFTEMP 
WINGLTENP 
UWWGTEMP 
ARTTEMP 



m E M p  
WING 
KWING 
WGTO 

FROM stblcon.acs CLRGlTEMP = 
CLRG2TEMP = 
WFGRlTEMP = 
WFGRZTEMP = 

From namelist ICYL - - 
W F F  - - 
ISCHRENK = 
ICOMND - - 
CLRGl - - 
CLRG2 - - 
WFGR 1 - - 
WFGR2 - - 
IGEAR - - 
CWMAN - - 
ITAIL - - 
I STAMA - - 
TMGW - - 
EC - - 
KGC - - 
KGW - - 
WGNO - - 
CS 1 - - 
CS2 - - 
EFFW - - 
EFFC - - 
ESW - - 
FCSW - - 
DSW - - 
TRATWR - - 
TRATWT - - 
XCLWNGR = 
WING - - 
FTST - - 

50689.80 0.0000000E+00 
0.0000000E+00 0.0000000E+00 

PTSB - - 
50689.80 0.0000000E+00 

0.0000000E+00 0.0000000E+00 
FCST - - 

47036.48 0.0000000E+00 
0.0000000E+00 0.0000000E+00 

FCSB - - 
47036.48 0.0000000E+00 
0.0000000E+00 0.0000000E+00 



EST - - 
0.0000000E+00 
0.0000000E+00 
ESB - - 
0.0000000E+00 
0.0000000E+00 
EFT - 
0.0000000E+00 
0.0000000E+00 
EFB - - 
0.0000000E+00 
0.0000000E+00 
DST - - 
0.0000000E+00 
0.0000000E+00 
DSB - - 
0.0000000E+00 
0.0000000E+00 
DFT - - 
0.0000000E+00 
0.0000000E+00 
DFB - - 
0.0000000E+00 
0.0000000E+00 
PS - - 
CF - - 
PGT - 

11.25000 
11.25000 

PGB - - 
11.25000 
11.25000 

TMGT - - 
0.0000000E+00 
0.0000000E+00 
TMGB - - 
0.0000000E+00 
0.00000003+00 
CLAQR - - 
CKF - - 
WCW - - 
WCA - - 
AXAC - - 
IFUEL - - 
WMIS - - 
WSUR - - 
KCONT - 

4 



SPAN 
FT 

107.3392 

WING 
STATION 
FT 
50.764 
49.495 
48.226 
46.957 
45.688 
44.419 
43.150 
41.881 
40.611 
39.342 
38.073 
36.804 
35.535 
34.266 
32.997 
31.728 
30.459 
29.190 
27.920 
26.651 
25.382 
24.113 
22.844 

4 4 
KCONB - - 4 

4 4 4 4 
4 4 

CLBRl = 1.100000 
I LOAD - - 3 

CMAN = 1.000000 
CLAN = 0.7210000 
CBUM = 1.000000 
WFLAND = 0.9000000 
WFBUMP = 1.0000000E-03 
VSINK = 10.00000 
STROKE = 1.167000 
GFRL = 1.0000000E-03 
SLFMB = 1.200000 
CLRGWl = 0.2090000 
CLRGW2 = 0.0000000E+00 

BS ROOTC TIPC TAPER TRATWR 
FT FT FT 
50.764 19.8116 5.4034 0.250 0.146 

CHORD 

FT 
5.4034 
5.7636 
6.1238 
6.4840 
6.8442 
7.2044 
7.5646 
7.9249 
8.2851 
8.6453 
9.0055 
9.3657 
9.7259 
10.0861 
10.4463 
10.8065 
11.1667 
11.5269 
11.8871 
12.2473 
12.6075 
12.9677 
13.3279 

LENGTH 

FT 
2.4504 
2.6341 
2.8179 
3.0017 
3.1855 
3.3692 
3.5530 
3.7368 
3.9206 
4.1043 
4.2881 
4.4719 
4.6557 
4.8395 
5.0232 
5.2070 
5.3908 
5.5746 
5.7583 
5.9421 
6.1259 
6.3097 
6.4934 

LENGTH 
PRIME 
FT 

2.4504 
2.6341 
2.8179 
3.0017 
3.1855 
3.3692 
3.5530 
3.7368 
3.9206 
4.1043 
4.2881 
4.4719 
4.6557 
4.8395 
5.0232 
5.2070 
5.3908 
5.5746 
5.7583 
5.9421 
6.1259 
6.3097 
6.4934 

BEND 
MOM 
FT-LBS 

130. 
1713. 
5798. 
12923. 
23489. 
37831. 
56236. 
78955. 
106209. 
138198. 
175102. 
217079. 
264273. 
316811. 
374806. 
438357. 
507548. 
582452. 
663128. 
749622. 
841966. 
940182. 
1044280. 

TRATWT GAML 
DEG . 

0.110 23.72453 

WEB COVER 
SPACE THICK 

IN IN 
0.1830 0.0543 
0.3699 0.0543 
0.5195 0.0543 
0.6522 0.0543 
0.7751 0.0543 
0.8915 0.0543 
1.0032 0.0543 
1.1114 0.0543 
1.2169 0.0543 
1.3202 0.0543 
1.4217 0.0543 
1.5217 0.0567 
1.6204 0.0634 
1.7179 0.0700 
1.8146 0.0765 
1.9104 0.0828 
2.0054 0.0889 
2.0997 0.0949 
2.1934 0.1007 
2.2865 0.1064 
2.3790 0.1118 
2.4711 0.1170 
2.5626 0.1220 

GAMT GAMS W I N G  WFUEL DENh' 
DEG. DEG. FT3 LBS LB/FT3 

7.82576 20.000 1269.270 42488.93 41.598 

WEB 
THICK 
IN 

0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 
0.03960 

CGAGE 
THICK 
IN 

0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0200 
0.0209 
0.0233 
0.0258 
0.0281 
0.0305 
0.0327 
0.0349 
0.0371 
0.0391 
0.0411 
0.0431 
0.0449 

W A G E  
THICK 
IN 

0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0 02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 
0.02000 

UNITYrP 
COVERS 
LB/FT2 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.7904 
0.8251 
0.9222 
1.0179 
1.1120 
1.2040 
1.2936 
1.3808 
1.4652 
1.5468 
1.6256 
1.7014 
1.7743 

UNI'mT 
WEBS 
LB/FT2 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 
0.5760 



CLBOXl CLINT CLINTP LBOX WBOX TBOX NJW WEBSB TORK TTO TBCOV 
FT FT FT FT FT F"li FT FT-LBS IN IN 

47 .603 4 9 . 9 5 5  59 .861  9 .9058  11 .9334  2.892 5 0 . 3 3 5 3  586064 .7  0 .0134 0 .0438  

WSHBAR WEND WWING WSHBOX WTOBOX WWBOX WWINGT WPOD DELTI P WBDBOX 
LBS LBS LBS LBS LBS LBS LBS LBS LBS FT 

71 .50  2532.25  9046.48  31 .93  1177 .02  5 9 . 6 3  1268 .58  10315.06  3272.93  3 .849  

CONTROL AREA STRUCTURE AREA SPLAN 
FT2. FT2. FT2. 

514 .99  719 .62  1 4 5 0 .  

WEIGHTS WI'O WBOD WING WPROP WAIL  CG RG 
152181.  83574.  52804.  6546.  2983.  53 .255  0 .000  

BODY/PROP VOLUME DENSITY a1 FIN RAT LENGTH WIDTH ABOD ASUR CLPl CLP2 
PARAMETERS 9348.  16 .2789 58 .915  9 .3665  117 .830  12 .580 1 1 4 4 . 9  3596 .8  0 .00  0 .00  

TAIL ATAIL CLT 
PARAMETERS 202.  1 1 5 . 4 7  

CRUISE WEIGHT ALPHA DEFLEC LIFTB LIFTW LIFTT CLAQW CLAQB STAHA CGM 
PARAMETERS 152181.  7 . 0 0  -11 .50  132 .  166974 .  -14925.  1 6 . 4 5  0 .02  4 . 7 2  5 3 . 3  

MANEUVER SLFM ALPHA DEFLEC LIFTB LIFIW LIFTT 
PARAMETERS 2 . 5 0  1 7 . 5 0  -28 .75  330.  417435.  -37312.  

X Y BEND MOMENT WSAV(1) BMBW BMBL 
1 . 9 6  2 . 6 0  -0.39743+03 219 .  -399. 2 .  

BMW BMP BWI' BUG MAX MOMENT 
0 .  0 .  0 .  0 .  0 .39743+03 





LANDING WEIGHT ALPHA DEFLEC LIFTB LIFTW LIFTT CLAQW CLAQB STAMA 
PARAMETERS 109722. 7.00 -149.10 -43. -54239. 153032. 16.45 0.02 6.55 

LANDING SLFM ALPHA DEFLEC LIFTB LIFTW LI FTT FGEAR 
PARAMETERS 2.58 7.00 a * * * * *  -43. -54239. 153032. 184619. 

BEND MOMENT 
-0.41273+03 
-0.26773+04 
-0.7993~+04 
-0.17373+05 
-0.3171E+05 
-0.5185E+05 
-0.84473+05 
-0.12773+06 
-0.17913+06 
-0.2391E+06 
-0.30863+06 
-0.38823+06 
-0.47853+06 
-0.57983+06 
-0.69213+06 
-0.8156E+06 
-0.9501E+06 
-0.10963+07 
-0.12523+07 
-0.14203+07 
-0.15993+07 
-0.17893+07 
-0.1989E+07 
-0.2199E+07 
-0.2420E+07 
-0.2308E+07 
-0.61453+06 
0.1979E+07 
0.45563+07 
0.61983+07 

WSAV(1) BMBW 
219. -412. 
712. -2676. 
1417. -7990. 
2309. -17361. 
3372. -31697. 
4595. -51836. 
5970. -78567. 
7489. -112639. 
9147. -154770. 
10939. -205650. 
12860. -265948. 
14907. -336311. 
17068. -417364. 
19250. -509462. 
21432. -612628. 
23614. -726861. 
25797. -852162. 
27979. -988530. 
30161. -1135967. 
32342. -1294469. 
34498. -1463984. 
36615. -1644337. 
38694. -1835330. 
40734. -2036764. 
42734. -2248447. 

0. -2470179. 
0. -2701755. 
0. -2942975. 
0. -3193633. 
0. -3453522. 

BMBL 
0. 
-1. 
-3. 
-6. 

-10. 
-16. 
-23. 
-31. 
-41. 
-53. 
-66. 
-81. 
-98. 
-116. 
-137. 
-159. 
-183. 
-209. 
-237. 
-636. 
-655. 
-672. 
-690. 
-706. 
-721. 
-736. 
-749. 
-762. 
-774. 
-785. 

BMW 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

5934. 
33770. 
58469. 
50455. 
-19845. 

BMP 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

-1192. 
-9037. 
-23857. 
-45242. 
-72782. 

CGM 
51.1 



BUMP WEIGHT ALPHA DEFLEC LIFTB LIFTW LIFTT CLAQW CLAQB 
PARAMETERS 152181. 7.00 -57.45 -126. -159141. 159419. 16.45 0.02 

BUMP SLFM ALPHA DEFLEC LIFTB DEFLTW LIFTT FGEAR 
PARAMETERS 1.20 7.00 -57.45 -126. -159141. 159419. 182465. 

BEND MOMENT 
-0.1923E+03 
-0.1247E+04 
-0.3722E+04 
-0.80853+04 
-0.1476E+05 
-0.2413E+05 
0.2939E+05 
0.1166E+06 
0.2001E+06 
0.2795E+06 
0.35453+06 

WSAV (I 
219. 
712. 
1417. 
2309. 
3372. 
4595. 
5970. 
7489. 
9147. 
10939. 
12860. 

BMBW 
-192. 

-1243. 
-3712. 
-8067. 
-14728. 
-24086. 
-36506. 
-52337. 
-71913. 
-95555. 

-123572. 

BMBL 
-1. 
-4. 
-9. 

-18. 
-30. 
-47. 
-67. 
-92. 

-121. 
-155. 
-194. 

BMW 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

BMP 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

STAMA 
4.72 

CGM 
53.3 

BMG 
0. 
0. 
0. 
0. 
0. 
0. 

65966. 
169037. 
272109. 
375181. 
478253. 

MAX MOMENT 
0.41273+03 
0.26773+04 
0.79933+04 
0.17373+05 
0.31713+05 
0.5185E+05 
0.8447E+05 
0.1277E+06 
0.2001E+06 
0.2795E+06 
0.3545E+06 





STRUCTURAL CKF 
PARAMETERS 5.2400 

1 
FUSE BENDING 
STAT MOMENT 
FT FT LBS 

1 . 9 6 3 8  619.015 
3 .9277 4015.657 
5 .8915  11989.037 
7 .8553  26050.969 
9 .8192 47561.238 

11 .7830 77778.055 
13 .7468 126702.141 
15 .7107 191600.266 
17 .6745 300112.031 
19 .6383  419206.312 
21 .6022 531729.500 
23.5660 637229.750 
25 .5298 735272.000 
27 .4937 869627.625 
29 .4575  1038184.313 
31 .4213 1223344.750 
33 .3852 1425109.750 
35.3490 1643478.750 
37 .3128 1878452.250 
39.2767 2130582.000 
41 .2405 2398660.500 
43 .2043 2682994.000 
45.1682 2983286.250 
47.1320 3299240.000 
49 .0958 3630565.000 
51 .0597 3915888.750 
53 .0235 4606577.500 
54 .9873 6913951.500 
56 .9512 9887048.000 
58 .9150 11683106.000 
60.8788 11631395.000 
62 .8427 11274519.000 
64 .8065 10911652.000 
66 .7703 10542948.000 
68 .7342 10168552.000 
70 .6980 9788623.000 
72 .6618 9403313.000 
74 .6257 9012783.000 
76 .5895  8617191.000 
78 .5533 8216694.000 

FSK 
0.04504 

EFF CK FG CF CTHIC 
0.76000 2.0390 11 .250  0.6250E-04 0 .000  

SHELL 
STRESS 

PSI 
60.8191 

243.2463 
547.2716 
972.8910 

1520.1018 
2188.9026 
3202.1372 
4411.5093 
6364.7568 
8260.3418 
9803.4395 

11056.4580 
12330.3652 
14583.4834 
17410.1465 
20515.2480 
23898.8066 
27560.8105 
31501.2734 
17927.9453 
20543.4434 
23398.9141 
26506.5000 
29879.5664 
22355.2773 
24604.8379 
29553.9219 
27191.8789 
28397.0078 
26702.7754 
27220.9453 
27039.7930 
26842.1113 
26627.1602 
26394.1270 
26142.0918 
25870.0254 
28773.8477 
28418.5586 
28036.1699 

EQUIV 
THICK 
IN 

0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 .0400 
0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 .0400 
0 .0400 
0 .0400 
0 .0400  
0 .0400  
0 .0400  
0 .0400  
0 . 0 8 0 0  
0 .0800  
0 .0800  
0 .0800  
0 .0800  
0 .1200  
0 .1200  
0 .1200 
0 .2000 
0 .2800 
0 .3600  
0 .3600  
0 .3600  
0 .3600  
0 .3600  
0 .3600  
0 .3600  
0 .3600  
0 .3200  
0 .3200 
0 .3200  

GAGE 
THICK 

IN 
0.0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157  
0 .0157  
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157 
0 .0157  
0 .0157 
0 .0392 
0.0392 
0.0392 
0 .0392 
0 .0392 
0 .0589  
0 .0589  
0 .0589  
0 .0981  
0 .1373  
0 .1766 
0 .1766  
0 .1766  
0 .1766  
0 .1766  
0 .1766 
0 .1766  
0 .1766  
0 .1569  
0 .1569 
0 .1569 

FRAME 
SPACE 

IN 
3966.2410 

991.6824 
440.7740 
247.9446 
158 .6888  
110 .2027  

75 .3319  
54 .6804 
37 .8998  
29 .2025  
24 .6060  
21.8174 
19 .5633  
16 .5408  
13 .8553  
11 .7582  
10 .0935  

8 .7524  
7 .6576  

26 .9103  
23 .4842 
20 .6183 
18 .2010  
16 .1464  
32 .3713  
29 .4117 
24 .4864 
44 .3557  
59 .4627  
81 .3027  
79 .7550  
80 .2894 
80 .8807 
81 .5336  
82 .2534 
83 .0464  
83 .9198 
67 .0673 
67 .9058  
68 .8320 

SAFEFAC 
1.500 

SECTION 
AREA 
SQ FT 

21.2041 
34 .3929 
45.6394 
55 .7851  
65.1837 
74 .0269 
82.4333 
90.4832 
98 .2337 

105.7277 
112.9981 
120.0712 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
124.2313 
123.7931 
121.6254 
119.4408 
117.2388 
115.0187 
112.7799 
110.5216 
108.2432 
105.9439 
103.6227 
101.2787 

98 .9111  
96 .5186 
94 .1001  
91.6544 
89 .1801 
86 .6757 
84 .1396 
81 .5699 
78 .9646 
76 .3216 

DEFL 
0 .000  

SHELL 
UNITWT 
LB/FT2 
0.3226 
0 .3226 
0.3226 
0 .3226 
0 .3226 
0 .3226 
0 .3226 
0 .3226 
0.3226 
0 .3226 
0 .3226 
0.3226 
0.3226 
0.3226 
0.3226 
0 .3226 
0 .3226 
0.3226 
0 .3226  
0 .6451  
0 .6451  
0 .6451 
0 .6451  
0 .6451  
0 .9677 
0 .9677 
0 .9677 
1.6128 
2.2579 
2 .9030 
2.9030 
2.9030 
2 .9030 
2 .9030 
2 .9030 
2 .9030 
2 .9030 
2.5805 
2 .5805 
2 .5805 

FRAME 
UNITWP 

MAX 
BENDING 

LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
BUM 
BUM 
BUM 
BUM 
BUM 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
MAN 
MAN 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 



7811461.500 0.0000 27624.7090 
7401658.500 0.0000 27181.8398 
6987453.000 0.0000 26704.8340 
6569014.500 0.0000 26190.4316 
6146523.000 0.0000 25634.7813 
5720152.500 0.0000 28609.2949 
5290087.500 0.0000 27862.4805 
4856512.500 0.0000 27048.1484 
4419615.000 0.0000 26155.6289 
3979597.500 0.0000 29366.3047 
3536653.500 0.0000 28088.6504 
3090988.500 0.0000 26651.9238 
2642824.500 0.0000 30015.5234 
2192373.000 0.0000 27727.1777 
1739874.000 0.0000 31237.0234 
1285563.000 0.0000 26969.1016 
829707.000 0.0000 28367.1660 
372576.000 0.0000 25355.3828 
18816.750 0.0000 4154.1777 

0.000 . 0.0000 0.0000 
STRUCTURAL WEIGHT SUMMARY 

WEIGHT WEIGHT 
( LBS ) FRACTION 

SHELL 4927 -71 0.0324 
FRAMES 180.11 0.0012 
NONOP 10266.71 0.0675 
SEC 0.00 0.0000 
TOTAL 15374.53 0.1010 
VOLPEN 0.00 0.0000 
GRANTOT 15374.53 0.1010 

UNIT 
WEIGHT 

(LBS/FT'FT) 

Bun 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
RAN 
NONE 

Surface Area, SQF 
Volume Ratio 
BODY WEIGHT 

1 
FUSE BENDING 
STAT MOMENT 
FT FT LBS 

1.9638 619.015 
3.9277 4015.657 
5.8915 11989.037 
7.8553 26050.969 

THIC SHELL EQUIV GAGE FRAME NJ SECTION SHELL FRAME MAX 
STRESS THICK THICK SPACE m E A  UNITWX' UNIThT BENDING 

IN PSI IN IN IN SQ FT LB/FT2 
0.0000 60.8191 0.0400 0.0157 3966.2410 3 21.2041 0.3226 0.0000 LAN 
0.0000 243.2463 0.0400 0.0157 991.6824 3 34.3929 0.3226 0.0000 LAN 
0.0000 547.2716 0.0400 0.0157 440.7740 3 45.6394 0.3226 0.0000 LAN 
0.0000 972.8910 0.0400 0.0157 247.9446 3 55.7851 0.3226 0.0001 LAN 



LAN 
LAN 
LAN 
LAN 
BUM 
BUM 
BUM 
BUM 
BUM 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
LAN 
MAN 
MAN 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
BUM 



2642824.500 0.0000 30015.5234 
2192373.000 0.0000 27727.1777 
1739874.000 0.0000 31237.0234 
1285563.000 0.0000 26969.1016 
829707.000 0.0000 28367.1660 
372576.000 0.0000 25355.3828 
18816.750 0.0000 4154.1777 

0.000 0.0000 0.0000 
STRUCTURAL WEIGHT SUMMARY 

WEIGHT WEIGHT 
(LBS) FRACTION 

SHELL 4927.71 0.0324 
FRAMES 180.11 0.0012 
NONOP 10266.71 0.0675 
SEC 0.00 0.0000 
TOTAL 15374.53 0.1010 
VOLPEN 0.00 0.0000 
GRANTOT 15374.53 0.1010 

Surface Area, SQF 3587.15 
Volume Ratio 1.00000000 
BODY WEIGHT 15374.53222656 

1 STRUCmTRAL WEIGHT SUMMARY 

WEIGHT WEIGHT UNIT 
(LBS FRACTION WEIGHT 

(LBS/FT'FT) 

SHELL 4927.71 0.0324 1.3737 
FRAMES 180.11 90.0563 0.0502 
NONOP 10266.71 0.0675 2.8621 
SEC 0.00 0.0000 0.0000 
TOTAL 15374.53 0.1010 4.2860 
VOLPEN 0.00 0.0000 0.0000 
GRANTOT 15374.53 0.1010 4.2860 

Surf ace Area, SQF 
Volume Ratio 
BODY WEIGHT 

BUM 
BUM 
BUM 
BUM 
BUM 
BUM 
MAN 
NONE 



output for Module t 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fuselage Definition Nacelle Definition Nacelle Location 

Area X-Xnose R Area X Y Z 
0.00 0.00 0.70 1.53 39.31 13.42 -6.64 
3.78 0.37 0.70 1.53 39.31 -13.42 -6.64 
10.29 0.37 0.70 1.53 
18.17 1.76 0.70 1.53 
26.85 
35.97 
45.27 
54.55 
63.64 
72.40 
80.73 
88.52 
95.69 
102.17 
107.90 
112.83 
116.91 
120.12 
122.43 
123.83 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
124.29 
123.83 
122.43 
120.12 
116.91 
112.83 
107.90 
102.17 
95.69 
88.52 



Fuselage Nacelles - 2 
Max. Diameter . . . . . .  12.580 . . . . .  1.397 
Fineness Ratio ..... 9.366 

....... Surface Area 3522.634 . . . . .  7.743 (each) 
........... Volume.. 9348.345 



Dimensions of Planar Surfaces (each) 

Wing H.Tail V.Tai1 Canard Units 

NUMBER OF SURFACES. 1.0 
PLAN AREA . . . . . . . . . .  1450.0 
SURFACE AREA ....... 2923.7 
VOLUME. . . . . . . . . . . . .  2064.4 
SPAN . . . . . . . . . . . . . . .  107.339 
L.E. SWEEP.. . . . . . . .  23.725 
C/4 SWEEP . . . . . . . . . .  20.000 
T.E. SWEEP ......... 7.826 
ASPECT RATIO . . . . . .  7.946 
ROOT CHORD . . . . . . . . .  21.614 
ROOT THICKNESS . . . . .  37.867 
ROOT T/C .......... 0.146 
TIP CHORD.... . . . . . .  5.403 

. . . . . .  TIP THICKNESS 7,133 
TIP T/C . . . . . . . . . . .  0.110 
TAPER RATIO . . . . . . .  0.250 
MEAN AERO CHORD . . . .  15.130 

LE ROOT AT . . . . . . . . .  42.200 104.550 99.345 
C/4 ROOT AT ........ 47.603 107.281 103.966 
TE ROOT AT... . . . . . .  63.814 115.473 117.830 
LE M.A.C. AT . . . . . . .  51.635 110.664 106.114 
C/4 M.A.C. AT ...... 55.417 112.597 109.527 
TE M.A.C. AT ....... 66.764 118.395 119.763 
Y M.A.C. AT.. . . . . . .  21.468 8.062 0.000 
LE TIP AT . . . . . . . . . .  65.787 119.592 115.230 
C/4 TIP AT . . . . . . . . .  67.137 120.359 117.014 
TE TIP AT .......... 71.190 122.661 122.365 
ELEVATION . . . . . . . . . .  -6.290 5.032 6.290 

1.0 
0.0 (SQ.FT.) 
0.0 (SQ.FT.) 
0.0 (CU.FT.1 

0.000 (FT.) 
0.000 (DEG.) 
0.000 (DEG.) 
0.000 (DEG.) 
0.000 
0.000 (FT.) 
0.000 (IN.) 
0.000 
0.000 (FT.) 
0.000 (IN.) 
0.000 
0.000 
0.000 (FT.) 

GEOMETRICTOTALVOLUMECOEFF 0.771 0.076 0.000 
REQUESTED TOTAL VOLUME COEFF 0.771 0.076 0.000 
ACTUAL TOTAL VOLUME COEFF 0.771 0.076 0.000 

E X T E N S I O N S  
Strake Rear Extension 

Centroid location at....... 0.00 0.00 
Area ....................... 0.00 0.00 
Sweep Angle . . . . . . . . . . . . . . . .  0.00 0.00 
Wetted Area . . . . . . . . . . . . . . . .  0.00 0.00 
Volume . . . . . . . . . . . . . . . . . . . . .  0.00 0.00 



Total Wing Area............ 1450.00 
Total Wetted Area .......... 7273.48 

F U E L  T A N K S  
Tank Volume Weight Density 
Wing 1101. 55033. 50.00 
Fusll 186. 9276. 50.00 
Fusl2 0. 0. 50.00 
Total 64309. 

Mission Fuel Required - - 64309. lbs. 
Extra Fuel Carrying Capability = -9276. lbs. 
Available Fuel Volume in Wing = 1101. cu. ft. 

Aircraft Weight = 152181.000 lbs. 
Aircraft Volume = 11693.691 cu.ft. 
Aircraft Density = 13.014 lbs./cu.ft. 
Actual - Required Fuel Volume = -185.529 cu.ft. 

ICASE = 4 (Fineness Ratio Method) 



Output for Module t 6 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Weight Statement - Transport 
TRANSPORT 

Qmax : 400. 
Design Load Factor: 2.50 
Ultimate Load Factor: 3.75 
Structure and Material: Aluminum Skin, Stringer 
Wing Equation: Ardema/Chambers WWING Analysis 
Body Equation: Ardema/Chambers PDCYL Analysis 

Component Pounds Kilograms Percent Slope Tech Fixed 

Airframe Structure 34950. 15853. 21.02 NO 
Wing 10315. 4679. 6.20 1.20 1.00 No 
Fuselage 15375. 6974. 9.25 0.90 1.00 No 
Horizontal Tail ( Low) 1503. 682. 0.90 1.00 1.00 No 
Vertical Tail 1480. 671. 0.89 1.00 1.00 No 
Nacelles 4. 2. 0.00 1.00 1.00 No 
Landing Gear 6275. 2846. 3.77 1.00 1.00 No 

Propulsion 
Engines 
Fuel System 
Thrust Reverser 

Fixed Equipment 
Hyd h Pneumatic 
Electrical 
Avionics 
Instrumentation 
De-ice & Air Cond 
Aux Power System 
Furnish & Eqpt 
Seats and Lavatories 
Galley 
Misc Cockpit 
Cabin Finishing 
Cabin Emergency Equip 
Cargo Handling 

Flight Controls 

6546. 2969. 3.94 No 
6546. 2969. 3.94 0.85 1.00 Yes 

0. 0. 0.00 1.00 1.00 NO 
0. 0. 0.00 1.00 NO 

Empty Weight 



Operating Items 
Flight Crew ( 2 )  
Crew Baggage and Provisions 
Flight Attendents ( 4 )  
Unusable Fuel and Oil 
Passenger Service 
Cargo Containers 

Operating Weight Empty 

Fuel 

Payload 
Passengers ( 1 5 0 )  
Baggage 
Cargo 

Calculated Weight 

Estimated Weight 

Percent Error 
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This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed- 
range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables 
along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple 
equations of single order (second order for the fast dynamics). Application of the maximum principle to 
each of the decoupled equations, as opposed to application to the original coupled equations, avoids the 
two point boundary value problem and transforms the problem from one of a functional optimization to 
one of multiple function optimizations. It is shown that such an approach produces well known aircraft 
performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy 
climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle 
along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. 
In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic 
equations at constant load factor. Numerical results performed for a supersonic transport design show 
that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth 
the jump. 

INTRODUCTION 

The purpose of this work is to develop and implement a near-optimal guidance law for use in 
an aircraft synthesis computer code, such as the ACSYNT code1 developed at NASA Ames Research 
Center. Of primary interest is the optimization of supersonic transport trajectories. ACSYNT, like 
other such codes, models all aspects (aerodynamics, propulsion, structures, weights, etc.) of an aircraft 
design to produce consistent performance estimates. It is capable of computing "closed" vehicles, that 
is, designs that meet mission requirements, by iteratively adjusting vehicle parameters. It is also capable 
of optimizing design parameters. again by iteratively cycling through the code. 

A key element of an! \chicle synthesis code is the trajectory calculation. Because the trajectory 
routine is exercised repeatedl! in the course of a design study, it must be efficient, robust, and user- 
friendly. "Exact" trajecroq optimization, relying on optimal control theory, requires iterative solution of 
an unstable two-point boundap -value problem (2PBVP), and therefore is not suitable for this application. 
Thus simplifying approximattons are required. 

It has long been kn0vh.n that if there is but one state equation, then the functional optimization 
problem (2PBVP) reduces to a function ~ n e * ? ~ ' ~ .  A natural and well-established way to effect the 
required order reduction is to time-scale the system state equations and then apply singular perturbation 
techniques (see for example refs. 2-9). If each state variable is put on its own time-scale then the 
problem is thereby reduced to a sequence of function optimizations. 

The main problem with completely time-scaling the aircraft dynamics is that speed and altitude 
are not time-scale separable. This is usually resolved by replacing the speed by the total mechanical 
energy as a state variable (see for example refs. 2-12), and we adopt this approach here. In addition, 
another new state variable is introduced to replace the altitude, one which removes the inconsistency in 
flight path angle11313j14 that occurs in the energy dynamics with the usual formulation. This does not 



directly impact the energy dynamics solution but increases the accuracy of the altitudefflight path angle 
dynamics solution. 

The energy-state approximation (neglecting all dynamics except the energy dynamics) has been 
applied with success to a wide variety of aircraft, including high performance supersonic aircraft and 
launch vehicles. It is perhaps best suited, however, to transport aircraft because the benign maneuvers of 
these vehicles make the assumptions involved in the energy-state approximation (ESA) less questionable. 
The ESA has been applied most thoroughly to subsonic transport aircraft by ~rzber~er"- '~.  The results 
were so satisfactory that the resulting algorithms currently are being used for on-board guidance in 
commercial transports. 

Applying the ESA to supersonic transports introduces some new features. First, these aircraft have 
higher speeds and usually longer ranges than do subsonic aircraft. More importantly, due to the rise in 
drag near transonic speeds, they typically have an instantaneous altitude change in their energy-climb 
paths. These altitude jumps have been investigated by various means in references 12, 18-22. In this 
paper, we use the approach of references 12 and 22 to address this problem. 

Finally, some numerical results are presented to demonstrate the utility of the method. 

DYNAMIC MODELING 

Equations of Motion 

The equations of vehicle motion in ACSYNT are: 

x = vcosy 

h = v sin y 

+ = Tsina  + L - mgcosy 
mu 

These equations assume no winds, thrust direction fixed with respect to the aircraft body, and a 
non-rotating flat earth. A linear throttle is not assumed; that is, specific fuel consumption, C, varies 
with thrust. The symbols used here and throughout this report are defined in Appendix A. 

To simplify the terms, define the tangential and normal load factors as 

(T cos ct - D) 
F = 

mg 

(T sin a + L) 
N = 

mil 



Then equations (1) become 

x = VCOS y 

6 = g(F - sin y) 

h = vsiny 

9 + = -(N - cosy) 
v 

In ACSYNT, as in many other vehicle synthesis codes, equations (3) are numerically integrated, 
with the j. term set to zero, for a specified set of ordered pairs of altitude and Mach number (or speed). 
The methods used for this integration are given in Appendix B. The (h ,  M) points needed for the 
integration may come from any number of sources, for example a constant dynamic pressure (constant 
equivalent airspeed) path or an external trajectory optimization. It is our purpose to develop an algorithm 
that generates these points near-optimally for some prescribed cost functional "on the fly", that is, as 
the trajectory integration proceeds. 

Transformation to New State Variables 

Experience has shown that the state variables in equations (3) have a natural time-scale separation 
for most vehicles and most missions, except that h and v are on almost the same time scale. To time 
scale separate these variables, we seek a new variable, E(h, v), to replace v, such that the state equation 
for E is independent of y 1 1 7 1 3 7 1 4 .  Taking the time derivative of E and using equations (3): 

Throughout, the following notation will be used: If Q is any function of h and u, then 

If k is to be independent of y, from equation (4): 

The solution of this equation is 



or any once-differentiable function of this. From equation (6) we see that E is just the total mechanical 
energy of the aircraft per unit weight. Substituting E for v as a state variable gives 

x = vcosy 

E = V F  

h = vsiny 

Numerous analyses have shown that there is a strong time-scale separation between E and h (see for 
example refs. 23, 24). In equations (8), v is to be regarded as a function of E and h, as given by 
equations (7): 

The product v F  in the third of equations (7) is usually called the specific excess power. 

Equations (7), along with a suitably defined cost functional, define an optimal control problem in 
the five states rn, x ,  E ,  h, and y, with control a (and possibly throttle if it is allowed to vary). The 
boundary conditions on these states are 

rn(0) = mo m ( t f )  free 

x(0) = 0 x ( t f )  = R 

E(0) = Eo W f )  = Ef 

h(0) = ho h ( t f )  = hf 

~ ( 0 )  = YO ~ ( t f )  = 7f 

where t f  is free. 

The following constraints are placed on the trajectory: 

1. Maximum dynamic pressure, q(h, v) 5 qm 

2. Maximum Mach number, M(h,  v) 5 hfm 

3. Maximum lift coefficient, cL(h, v)  5 C L ~  

4. Minimum terrain limit, h 2 hm 

5. Maximum loft ceiling (locus of flight conditions for which F = 0 for maximum throttle and 
r = 0) 



All of these constraints may be written as functions of h and M or of h and E; when drawn in 
the (h ,  M) plane (fig. 1) they define the flight envelope. In the context of equations (7) they are state 
inequality constraints of the form: 

Optimal control problems with state inequality constraints are a difficult class of problems for several 
reasons 25,26 

The complete time-scale decoupling of equations (7) will be formulated later. At present, for the 
sake of dynamic modeling, it is instructive to consider the energy-state approximation (ESA) associated 
with equations (7); it is: 

m = const 

0 = vsiny 

The fourth of these implies that y = 0 and the fifth then gives cr as a function of h and E. The problem 
thus reduces to a single state equation with h (and possibly throttle) as control and E as state. The 
solution, for a suitable cost functional, may be put into the form (see later) 

This will be called the energy-climb path, or ECP. This may be either one of the constraints equations (10) 
or an interior extremal. One of the main advantages of the ESA is that it converts the state variable 
inequality constraints, equations (lo), into state-dependent control inequality constraints, a much simpler 
situation from an optimal control point of view. 

Since equation (12) generally gives 6 # 0, y will not be zero on the ECP, giving a contradiction. 
What is needed is a new variable that is constant along the ECP. An obvious choice is f itself since by 
equation (12) j = 0 along the E C P ~ ~ , ~ ~ , ~ ~ .  Since df = fh d h  + f, dv = 0 we have 

But from equations (3) 

dv g ( F  - siny) - =  
d h v sin y 



so that 

This is the consistent value of y along the ECP. Also, from equations (3) 

f Z f h h + f v e  

Note that the choice of variable f actually depends on the nature of the ECP and may vary along the 
trajectory. The equations of motion in the new variables are now: 

x = vcosy 

E = vF 

These equations are entirely equivalent to equations (1). 

Some examples of the function f will now be given. 

1. ECP on a terrain limit: 

f h = 1 ,  f v = O  

From equations (1 5) and (16): 

y = o  

f = vsiny 

2. ECP on a dynamic pressure limit: 

1 
f (h ,  v) = Zp(h)v2 - q, = 0 



1 
f = -phu3 sin y + p v g ( ~  - sin y) 

2 

3. ECP an interior unbounded extremal. In this case ( d ( ~ F ) / d h ) ~  = 0 so that: 
n 

y = sin-' 
F 

v ( ~ F ~ + ~ v F , ~ - v * F ~ ~ )  
g ( 2 g F v + g ~ F v v - 2 ~ F h - v 2 ~ v h )  

2v v2 
2Fv +vFvv - -Fh - -Fht,) ( F -  siny) 

9 9 

Since this latter case involves second derivatives of F ,  usually a severe problem when dealing with 
numerically defined functions as in the case here, for this case it is probably preferable to compute y 
along the ECP directly from equation (14) 

where dvjdh is evaluated numerically along the ESA solution. These examples show that the usual 
choice of variable in the ESA, h, is only valid when the ECP is on a terrain limit. 

Now consider the ESA associated with equations (17): 

m = const. 

0 = fhv sin y + fvg(F  - sin y) 



The fourth and fifth of these are to be solved for ct and y as functions of E and f .  Direct elimination 
of y gives 

and thus the restriction -1 5 N 5 1 must be imposed. Since we will need to consider cases N > 1 
later on, this restriction is unacceptable. The problem is resolved by making the small y assumption 
(sin y = y, cosy = I), a very good approximation for transport aircraft whose flight path angles are at 
most a few degrees. Finally then, the equations of motion we shall be dealing with are 

with boundary conditions 

m(0) = mo m(t f )  free 

where the boundary conditions on E and f are determined by the boundary conditions on h and v, and 
t f  is free. 



OPTIMAL CONTROL AND SINGULAR PERTURBATIONS 

The Maximum Principle 

All of the equations of motion of the previous section (see for example equations (19)) are of state 
variable form: 

where 2 E Rn is the state and 2 E U c Rm is the control. Suitable boundary conditions on the state 
vector components are prescribed (see for example eqs. (20)). It is desired to find the components of 21 
along the trajectory such that a cost functional 

is minimized. It is assumed that the final time, t f ,  is free. Extensions of this basic problem such as for 
terminal cost or fixed final time are easily made, but are not of interest here. 

Theorem (the maximum principle)25727728: Introduce the variational Hamiltonian function 

where the components of the adjoint vector, A, satisfy the differential equations 

Then, if 11 is an optimal control, there exists a nontrivial solution of equations (24) such that 

(a) 3 = arg max H 
g E U  

(b) H = 0 

(c) Transversality conditions ("natural" boundary conditions on the Xi) hold 

(d) Xo = const. 5 0 

In the sequel it is assumed that Xo = 0 does not lead to a solution and therefore we may take 
Xo = -1 (this scales the adjoint variables Xi). 

The maximum principle gives the control as a function of time or of the state variables. When this 
function is substituted into equations (21) and (24), the result is a 2n dimension 2PBVP in the states 
and adjoints. Exactly n boundary conditions are provided at t = 0 and the other n at t = tf (due to 



the transversality conditions). Further, the equations are unstable in the sense that if they are linearized 
about a nominal trajectory, one-half of the system matrix eigenvalues will have positive real parts and 
the other negative (unless some are zero). Although many approaches have been developed to solve this 
class of problem, they are all computationally expensive (requiring repetitive solution of the equations), 
non-robust (due to the instability), and not user-friendly (requiring extensive input by experts). Thus 
they are unsuitable for use in a vehicle synthesis code and approximations must be developed for this 
purpose. 

Approximation Techniques 

Our basic approach is to reduce the complexity of the trajectory optimization problem by seeking 
means of reducing the problem to sub-problems of lower order. There are two keys observations in this 
regard. 

First, suppose there is a state variable, say xj ,  such that X j  does not appear in the system functions 
f nor the cost function fo, except for possibly fj ,  and the final value of Xj is unspecified. Then from 
equation (24) and the transversality conditions, the differential equation for the corresponding X j  and 
its boundary condition are 

J 

The only solution to this linear differential equation for a finite value of dfj/dxj is X j  = 0. Thus, from 
equation (23), we see that the j" state equation does not influence the optimal control; this equation 
has uncoupled from the problem and may be integrated after the optimal control problem has been 
solved. This is the reason, for example, that the range equation uncouples from the other equations in 
the minimum time-to-climb problem. 

Second, suppose that there is only one state equation & is a scalar) and one control variable: 

x = f (x, U) 

with cost functional 

We have then, from equations (23) and (24) 

The maximum principle gives, assuming that unbounded optimal control exists, 



Eliminating A from these two equations gives 

This may be thought of as an equation for u as a function of x, i.e., a feedback control law. 

Alternatively, a direct approach may be used. Combining equations (25) and (26) gives 

Thus ($1 f )  is to be minimized with respect to u holding x fixed. Carrying out this minimization for 
unbounded control results in exactly equation (27). Actually, a stronger result holds for the single state 
case; if is a bounded control of several components, then the optimal control is given by2y3 

u = arg min ($) - (28) 
g € U  x=const 

Singular Perturbations and Time Scaling 

We have just seen that if the dynamic system can be approximated by a single state equation, or by 
a series of such equations, then the solution may be obtained by elementary means, without solving the 
2PBVP. Singular perturbation theory provides a framework for accomplishing this, and indeed many of 
the references cited in the Introduction use this approach. 

The extensive literature on the application of singular perturbation theory to optimal control prob- 
lems in general and flight path optimization in particular will only be reviewed briefly here. 

Perturbation methods have a long history of application in applied mathematics. Noteworthy 
examples are viscous fluid flow, nonlinear oscillations, and orbital dynamics. Singular perturbation 
methods were put on a solid mathematical foundation for ordinary differential equations by ~ i k o n o v ~ ~  
and vasileva30. Initial applications to control were by 0 ' ~ a l l e ~ ~ ~  and ~ o k o t o v i c ~ ~ .  The theory 
concerns differential equations which depend on a parameter in such a way that the solutions as the 
parameter tends to zero do not approach uniformly the solution with the parameter set to zero. 

The regions of nonuniform convergence are modeled by "boundary-layer" equations, a term arising 
in fluid dynamics. Solutions in the outer regions (away from the boundary layers) and the inner regions 
(the boundary layers) are independently determined by expanding all system variables in asymptotic 
power series. These solutions are then "matched to determine their constants of integration. The final 
step is to combine the solutions to give uniformly valid approximations to the solution of the original 
problem. Thus the procedure is termed the method of matched asymptotic expansion (MAE). 

Experience has shown that for the highly dynamic maneuvers of high performance fightedattack 
type aircraft, carrying out the expansions to first order is required for high accuracy (see refs. 7 and 8 for 



example). For low performance aircraft, such as commercial transports, however, zero order analysis 
has been found to suffice (refs. 15-17 for example). The exception, for supersonic aircraft, is the rapid 
altitude transition typically occurring at transonic speeds; study of this transition is one of the main 
objectives of this report and will be taken up in detail later. 

In this report, for the most part, we will consider only zero-order approximations and complete 
time-scale decoupling. For this simple case the elaborate procedures of the MAE method are trivial8 
and do not need to be further explained. 

Reference 33 was the first to suggest complete time-scale decoupling and to recognize its advan- 
tages. In this approach, a "small" parameter E is inserted into the equations of motion as follows: 

where now : = (xO, XI, -., 2,). The maximum principle for the system (29) is the same as before, but 
with (see Theorem 5.1 of ref. 8) 

The i' dynamics are obtained by the stretching transformation ti = t /&. Substituting and then 
setting E = 0 gives (where now the dot denotes differentiation with respect to ti) 

xo = 0 =+ x0 = const. 



Thus the variables on a slower time-scale than x, are held constant and the variables on a faster time- 
scale than xi have their system functions set to zero. In order to be able to apply the maximum 
principle to this single-state problem, the conditions of Theorem 5.3 of reference 8 must hold. Let 
ff = (fi+" . . , fn)  and ~f = 2"). Then the key condition is that the matrix 

81, aLf 
[G a,] 

have maximum rank evaluated along the solution. 

If condition (33) is satisfied, then by the implicit function theorem the equations Q = f can be 
solved for n - i of the components of gf and 2 in terms of the remaining rn. After substituting these 
solutions into xi = fi, the optimal control may be determined directly from equation (28) with fi 
replacing f .  Alternatively, the equations Q = may be adjoined with ordinary Lagrange multipliers 4 
to the Harniltonian function and the maximum principle applied. This latter method has the advantage 
that it provides the values of these multipliers. This is of interest because these multipliers are the slow 
estimates of the adjoint variables associated with the fast states8. 

In the following section, transport aircraft guidance laws will be developed using the following 
time-scale dynamic model associated with equations (19): 

Note that with this formulation the mass is constant on all time-scales to zero order. The implications 
of this will be discussed later. 

Note also that the system is not completely time-scale decoupled because f and y are on the same 
time-scale. This was the approach adopted by Ardema (with h replacing f)7,8. Calise, on the other 
hand, time-scale decoupled h and -,213j4733. This will be discussed in more detail later. 

As a cost functional, following Erzberger a weighted sum of flight time and fuel consumption is 
adopted15-17. 



Since some elements of transport airplane direct operating cost are time dependent and some are 
fuel consumption dependent, a proper weighting of these two effects by appropriate selection of the 
parameters K1 and K2 will give a close approximation of direct operating cost. 

Finally, note that the system dynamics do not depend on state variable x and that therefore the 
state equation x = v would uncouple from the problem if its terminal condition were not specified. 



GUIDANCE LAW DEVELOPMENT 

Range Dynamics 

Setting E = 0 in equations (34) gives the range dynamics: 

Thus the single state equation with its boundary conditions is 

subject to 

m = const 

F=O 

y = o  

N = l  

The matrix (33) evaluated for conditions (38) is 

- VFE 
- 

v Ff 0  vFcr 

~ V S F E  fvgFf fhv - f vg  fvgFa 

ZNE -Nf  9 o -Na 9 

- v v v 

where, if Q is any function of E, f ,  and a, 

The rank of matrix (39) depends on the energy dynamics solution, which determines f .  For example, 
if the energy dynamics solution is on a terrain limit, then f = h - hT so that f h  = 1 and f ,  = 0. Thus 



the matrix (39) becomes 

For the special case of thrust-aligned-with velocity, N = L/W and N may be taken as the control; the 
matrix now becomes, with h replacing f ,  

Clearly this will have maximum rank if either FE # 0 or Fh # 0. 

Assuming that matrix (39) has maximum rank, we may apply the maximum principle to the single 
state problem defined in equation (37). Although equation (28) could be used to directly determine the 
optimal control, because the adjoint A, will be needed we proceed by forming the Hamiltonian. Note 
that the constraints (10) are now control constraints and do not need to be adjoined to the Hamiltonian. 

Forming the Hamiltonian (see eqs. (23), ( 3 3 ,  and (37)): 

subject to F = 0, N = 1 and equations (10). Applying the maximum principle gives the optimal control 
as 

hc, Ec = arg min 
h, E N = l  

eqs. (11) 

and the value of A, as 

Az = K1+ K2Pc 
vc 

Equation (42) defines the optimal cruise conditions. 

There are two interesting special cases. First, if K1 = 1 and K2 = 0, the problem reduces to 



as expected for minimum time. Second, if K1 = 0 and K2 = 1 and the fuel-flow varies linearly with 
throttle near the cruise point, equation (42) is equivalent to 

hc, Ec = arg max 
h, E 

where C is the thrust specific fuel consumption. That is, the Brequet factor is to be maximized. 

The total range of a transport aircraft is the sum of the ranges covered during the ascent, cruise, and 
descent portions of the flight. In our analysis of the range dynamics, the ascent and descent portions of 
the flight occur on a faster time scale and thus do not appear in the determination of the cruise condition. 

In Erzberger's analysis of this problem15-17 he subtracts out the range covered in climb and descent 
in determining the cruise conditions. This is important in short range flight and in fact Erzberger was 
able to get good results for flight ranges short enough to be composed entirely of climb and descent. For 
the long range fights of supersonic transports, of primary interest here, this factor is of less importance. 
In the context of singular perturbation theory, climb and descent range may be expected to appear as 
first order corrections. 

The range dynamics solution assumes constant mass. Variations in mass between take-off and 
cruise when determining the cruise point may be expected to be accounted for by first order corrections, 
not pursued here. 

Energy Dynamics 

Changing the independent variable to tl = t / r  in equations (34) and then setting E = 0 gives (the 
dot will denote differentiation with respect to t l  in this section) 

m = const 

x = const 

The matrix (33) for this case is 



where 

For the case of solution on a terrain limit, f = h - hT , fh = 1, f v  = 0 , fhh = fvv = fh, = 0 so that 
(47) becomes 

For the special case of thrust-aligned with velocity vector and N replacing a as control, this reduces to 

which is in agreement with Section 6.2 of reference 8, and clearly has maximum rank if v # 0. 

Forming the Hamiltonian associated with equations (46): 

The constraints (10) are state-dependent control constraints for this problem. Maximizing H gives 

h = arg max ( P )  N = l  (49) 
h E = const 

where 

with the value of X E  as 

Note that as h and v approach h, and vc, P becomes infinitely large. The three terms in the denominator 
of P have the following obvious interpretation. In climb, three factors are important: minimizing time 
(K1 term), minimizing fuel consumption ( K 2 ) ,  and covering range (-X,v). 



For the case of an unbounded local maximum, equation (49) implies 

or, in t e r n  of v and h (see eqs. (S) ) ,  

For this case, 

Substituting into the third of equations (46), 

As mentioned earlier, it is probably best to avoid computing numerical second derivatives and use 
equation (1 8): 

' Y =  v d v  
I+: m; 

instead for the value of -. along the energy dynamics solution. 

Fast States Dynamics 

Changing the independent variable to t q  = t / e 2  in equations (34) and then setting c = 0 gives (dot 
denotes differentiation with respect to t q ) :  

rn = const. 

x = const. 

E = const. 

f = f h v ~  + .fUg(F - Y) 



Our main interest in this paper is to use these equations to model the altitude transition that typically 
occurs transonically in the energy dynamics solution for supersonic aircraft. There have been three 
approaches to the solution of equations (54). 

kdema7y8 for the case of f = h, left h and y on the same time scale and iteratively solved the 
associated 2PBVP. Although this is not the approach that will be used here, the problem is formulated 
in general in Appendix C as a starting point for future investigation. ~ a l i s e ~ ~ ~ ~ ~  time-scaled decoupled 
h and y and obtained non-iterative solutions for each. This required adding a penalty term on y to the 
cost function and a "constrained matching'' technique. 

The approach used in this paper is a non-optimal one that assumes the fast state dynamics occur 
at constant load factor, N. This is motivated by reference 22 which showed that the transonic altitude 
transitions occurring in discontinuous energy dynamics solutions consisted of a push-over followed by 
a push-up (see fig. 2 which is reproduced from ref. 22). Reference 12 modeled this load factor history 
by two constant load factor segments and obtained good results. Using a non-optimal approach to the 
fast dynamics is partially justified by the fact that these altitude transitions take relatively little time and 
consume relatively little fuel. 

One way to approximate the altitude transition is to begin flying a constant minimum load factor 
flight path when a jump is detected and then switch to a constant maximum load factor when the new 
branch is crossed; this is the dotted path in figure 3, from reference 12. This is undesirable for two 
reasons. First, the transition is initiated too late, and second, the transition path overshoots the new 
branch of the energy dynamics solution. In our approach, we use the fast state dynamics to determine 
77, the optimum point for transition through F (see fig. 3). 

Noting that F = 0 because E = 0, consider the last two of equations (54) 

where K = N - 1 is a known constant. 

Following reference 12, the first of these equations is divided by the second to give an equation in 
f and y: 

v 
From equation (9) for E = const., dh = --dv so that 

9 



Substituting into equation (56) and carrying out the integration gives 

- K / = / ?dy + const. 

1 2  - K ln v = -7 + const. 
2 

Now label the last point on the subsonic climb path as point 1, the first point on the supersonic 
climb path as point 2, and the load factor transition point by an overbar (see fig. 3). Then equation (57) 
must hold from point 1 to the transition point with K1 = Nl - 1 and from the transition to point 2 with 
K 2 = N 2 - 1 :  

Solving for T and 7: 

This is the same solution as obtained in reference 12 except that now the values of yl and y2 are to be 
determined according to equation ( 15). 

The transition path is then determined as follows. Constant load factor solutions are generated with 
load factor Nl (see Appendix B )  which leave the lower energy branch of the climb path at different 
points. The solution that just achieves v = 5 when E = F is chosen and then the load factor is set to 
N2 for the transition from to the higher energy branch. 

It is also possible to obtain an integrated solution if the small y assumption is not made (this was 
not possible in reference 12 because of Coriolis and Earth curvature terms). This may be of importance 
because y may become large in some altitude transitions. Now divide the last two of equations (17) 



and integrate with F = 0: 

sin y 
dy + const. 

N - COST 

- In v = In(N - cos y) + const. 

v (N  - cosy) = const. 

Applying this to both branches of the transition 

or, solving for 'Zi and 7, 

Comparison of equations ( 5 8 )  and (59 )  shows that the non-small y solution, V g ,  is just as easy to 
implement as the small y solution, 'Z~A. Also note that, as a check, 

lirn TA = lim T g  = v l  
N1 -00 Nl +oo 

lim VA = lim V g  = v2 
N2+oo N2-00 



NUMERICAL EXAMPLE 

The guidance algorithm developed in the previous section has been implemented in the ACSYNT 
Computer Code and used to compute near-optimal trajectories for a supersonic transport design. The 
main characteristics of the design are listed in table 1. 

Figure 4 shows maximum thrust of the aircraft as a function of Mach number for various energy 
levels (recall that a linear throttle is not assumed), and figure 5 shows the total drag for N = 1 as a 
function of Mach for various energy levels, in the region of Mach 1. The transonic drag rise is clearly 
shown in figure 5, and this raises the possibility that there may be an instantaneous altitude transition 
in the energy climb path near Mach 1. 

The first step of the algorithm is to find the optimum cruise point, as given by equation (42). Figure 6 
shows the optimal cruise point at each energy level throughout the flight envelope for minimum fuel 
(K1 = 0 and K2 = 1). The optimal cruise point is interior to the flight envelope except from about 
Mach 1.25 to Mach 1.75, for which it is on the loft ceiling bound. 

Figure 7 shows the data of figure 6 plotted in a different way, as A, vs. Mach (see eq. (43)). This 
curve has three local minimums, each a locally optimal cruise point. One of these is a subsonic condition 
at Mach 0.95. The globally optimum point is at Mach 2.4, the highest Mach allowed. From figure 6, 
this Mach 2.4 cruise point is at an altitude of about 52,500 ft. The Mach 2.4 cruise condition has about 
a 15% higher cruise efficiency than the Mach 0.95 condition, as measured by A,; the Mach 0.95 cruise 
point would be used for over-land flight. 

The next step in the algorithm is determining the climb path. This involves maximizing P (see 
eqs. (49) and (50)) with respect to h at energy levels from take-off to cruise. Figure 8 plots P as a 
function of Mach for various energy levels for maximum thrust and again minimum fuel. The maximum 
dynamic pressure constraint is not applied for this calculation. The value of A, used in equation (50) is 
given by equation (43) for the Mach 2.4 optimal cruise condition. It is seen that for many energy levels 
P has two or more local maxima in the vicinity of Mach 1; it is the jumping of the global maxima 
between these local maxima that causes the transonic altitude transition. 

The resulting flight path in the Mach-altitude plane is shown in figure 9. The path starts along a 
terrain limit and then climbs at almost a constant high subsonic Mach. At about 32,500 ft, it instan- 
taneously transitions to about 22,500 ft at Mach 1.25. It then continues up to the cruise point, with 
a jump to higher altitudes between Mach 1.6 and 1.8. Also shown in figure 9 is the path with the 
dynamic pressure constraint imposed. It is seen that the unconstrained path violates the constraint by 
only a small amount between Mach 1.3 and 1.7. 

Figure 10 compares the minimum fuel flight path with A, included in P in equation (50) with the 
path with the A, term omitted. The latter case corresponds to minimum fuel to climb without regard to 
a range constraint. The paths are similar except at high speed where the path with Az omitted has much 
higher dynamic pressure (there is no dynamic pressure constraint imposed). A computation was made 
to verify that including the A, term gives better performance. Referring to figure 11, the path with the 
A, term included ended with an airplane weight of 657,310 Ib and a range of 836 nm. The path without 
A, ended at 690,683 Ib and 349 nm. By the Brequet formula, the range covered in a cruise condition 



is (see eq. (45)): 

At the cruise condition, v = 2323 ft/sec, (LID) = 9.0, and C = 1.315 IbfUel per hour per l b ~ , .  Thus 
for the same fuel consumed along the path with XZ, the path without Xz, has a range of 

Thus the case with Ax gives 21 nm. more range for the same fuel than the case without Ax. 

Minimum fuel, minimum time (K1  = 0, K2 = I), and "minimum direct operating cost" climb 
trajectories are compared in figure 12. For the minimum cost trajectory, K 1  = $500/hr and K2 = 
$0.0626/lb; these are the values used in reference 15 for short range subsonic transports, and would 
likely need to be adjusted for supersonic long range transports. The minimum fuel and minimum time 
trajectories are quite different. The latter has no transonic altitude transition, whereas the former has 
a large one. Also, the minimum time path is much lower in altitude in the high supersonic range (the 
dynamic pressure constraint was relaxed for this calculation and would be violated by the minimum 
time path). As expected, the minimum cost path is intermediate between the other two, being more like 
the minimum time path. 

One of the principal goals of this research has been to develop an algorithm for computing the 
trajectory segments connecting the branches of the energy climb path in the transonic region, that is, 
the altitude transitions. Specifically, equation (50) was used to determine 5, the value of v which is to 
be obtained when E = (see fig. 3). An iteration is then made to determine where on the subsonic 
branch of the ECP the departure should be made to achieve this condition. The constant load factor 
integration as described in Appendix B is used to generate the flight paths. 

Figure 13 shows the transition for Nl = 0.97 and N2 = 1.05 for the minimum fuel case in the 
altitude-Mach plane, and figure 14 shows the same path in the transonic region. The integration is 
terminated when the flight path angle is equal to the flight path angle on the supersonic branch of the 
ECP as given by equation (53). The dynamic pressure limit was ignored for this calculation. The figures 
show that there is a very close match between the altitude transition and the ECP at the termination of 
the former, and that even mild maneuvers (Nl  and N2 close to 1) give adequate transition trajectories. 

The transition trajectories for the same conditions, but using the linear estimate of iJ as given by 
equation (58), are shown in figure 15. Comparing figures 14 and 15 shows that the nonlinear solution 
gives a better match with the supersonic branch of the ECP than does the linear. 

The transition trajectory for a more severe load factor maneuver, Nl = 0.5 and N2 = 1.5, is shown 
in figure 16 (these load factors would not be acceptable for a commercial transport). As compared with 
a more benign maneuver, as shown in figure 14, the transition through E occurs at a much higher 
altitude and the trajectory is much closer to F, as expected. 

Figure 17 shows the variation of energy rate, vF, as a function of Mach in the transonic region for 
the mild transition (N-l = 0.97, N2 = 1.05). As expected, the energy rate drops when the load factor is 



switched from 0.97 to 1.05, but never gets near zero. Also as expected, the flight path angle, 7, at first 
decreases, and then increases when the load factor is switched as shown in figure 18; the magnitude of 
y stays below 6 deg, making the small y approximation extremely good. 

The same plots are made for the more severe maneuver (Nl = 0.5, N2 = 1.5) in figures 19 and 
20. In this case, the energy rate becomes negative after the load factor switch and the magnitude of 
y reaches about 22 deg, meaning that equations (59) and not equations (58) should be used for the 
calculation of the transition point. 



CONCLUDING REMARKS 

An algorithm for optimizing supersonic transport trajectories suitable for use in an aircraft synthesis 
computer code has been developed. The algorithm has been implemented in the ACSYNT computer 
program and illustrated using a typical supersonic transport design. 

The algorithm is based on singular perturbation theory and complete time-scale decoupling of the 
energy-state version of the equations of motion (except for the fast dynamics). This results in replacing 
the functional optimization problem by a series of function optimization problems. 

The first problem is determining the optimal cruise condition. This involves a weighted sum of 
the importance of time and fuel consumption. The second problem is determining the energy-climb 
path (ECP) to the cruise condition, which involves a weighted sum of the importance of time, fuel 
consumption, and cruise efficiency. 

For the fast dynamics, a variable is introduced such that the ECP gives a consistent value of the 
flight path angle. This variable is left on the same time scale as the flight path angle and a nonoptimal 
solution of the fast dynamics using constant load factor segments is obtained. 

Numerical results for a nominal supersonic transport showed the following: (1) The optimal cruise 
point was at the highest and fastest point in the flight envelope, although there are local optimal cruise 
points at high subsonic and low supersonic speeds. (2) The ECP for the minimum fuel case had a large 
transonic altitude transition, the minimum time case had no transition, and the minimum direct operating 
cost case had a mild transition. (3) The altitude transition solutions gave good matches between the 
subsonic and supersonic branches of the ECP with operationally acceptable load factors. 

There are two obvious shortcomings of the present state of the analysis. First, the weight is 
held constant during the search for the optimal cruise point. This weight is the gross take-off weight 
according to the time-scale assumptions, but in practice could be some empirical estimate of the weight 
at the start of cruise. Second, the range during climb and descent is ignored when optimizing the cruise 
point. This is obviously a more serious problem at short ranges than for the long ranges of a supersonic 
transport. 

It is expected that both of these shortcomings could be eliminated by solving the time-scaled 
equations of motion to first order, that is, by expanding all the state variables to first order terms. This 
is the next obvious step in this research. In addition to solving these problems, the first order solutions 
will give better overall accuracy to the algorithm. 



APPENDIX A - NOMENCLATURE 

D = drag 
E = mechanical energy 
F = normalized tangential force 
g = gravity 
h = altitude 
H = Harniltonian 
J = cost functional 
L = lift 
m = mass 
M = Mach number 
q = dynamic pressure 
T = thrust 
v = velocity 
x = range 

a = angle of attack 
p = fuel flow rate 
E = small parameter 
y = flight path angle 
X = adjoint variable 
q5 = cost function 
p = air density 



APPENDIX B - NUMERICAL INTEGRATION OF STATE EQUATIONS 

In this appendix we give the algorithms by which the state equations are integrated within ACSYNT. 
Two cases are of interest. First, the integration of the trajectory when pairs of altitude and energy 
(equivalently altitude and speed or Mach number) are given; (Eo, ho), (El, hl), . . ., (Ef,  h f ) .  This is 
.sometimes called path following. Second, the integration of the trajectory when the normal load factor 
N is held constant. 

Path Following 

It is assumed that all variables are known at step n - 1. These values are sought at step n ,  knowing 
only En and hn. Of particular interest are the values of tn, m,, and xn. We start with equations (7), 
with .jl = 0, written in finite difference form from step n - 1 to step n: 

where F' = T cos cr - D and, if Q is any variable, 

From the first of equations (Bl), - 
mn = mn-1 - pAt 

so that 
- a m = mn-1 - -At 

2 
Substituting this into the third of equations (Bl) and solving for At, 

Note that T, AE, E, and a are all known (the latter if throttle is fixed). The only quantity not known 
in equation (B3) is T', which depends on a. If At were known, the fourth of equations (Bl) gives 7: 



The algorithm may now be stated as follows: 

1. Guess an. 

2. Compute A t  from equation (B3). 

3. Compute 7 from equation (B4). 

4. Check to see if the fifth of equations (Bl) is satisfied to a suitable degree of accuracy. If not, 
select a new an by a suitable one-dimensional search procedure and return to step (2). If satisfied, 
continue. 

5. Compute mn from equation (B2) and tn and xn from: 

phillips" has proposed an alternative integration scheme as follows. The third of equations (Bl) 
is now averaged directly 

This is then combined with equation (B2) to give 

This is a quadratic equation to be solved for At, and replaces equation (B3) in the numerical procedure. 
As the integration step size tends to zero, these two integration schemes become equivalent. 

Constant Normal Load Factor (N) Paths 

In this case, A E  is not a suitable integration variable because it may happen that A E  5 0, which 
causes serious numerical problems. Alternative choices are At and Ay. Because the choice At results 
in an algorithm with three nested iterations, we follow ~ h i l l i ~ s ~ ~  and choose Ay. For this integration 
we do not neglect jl. 

Because N, Ay, and yn are now known, 

- 
K = g(N - COST) 

is a known constant. Thus the finite difference form of the last of equations (8) is 



Use this and equation (B2) to eliminate mn and At from the rest of equations (Bl). The result is 

AT sin 7 2 
hn = hn-t + ( ) ('" +?-I) 

The algorithm is as follows: 

(1) Guess vn. 

(2) Solve for hn from equation (B5). 

l 2  (3) Compute En = hn + -v, and A E  = En - En-l. 
29 

(4) Guess on.  

(5) Check to see if equation (B7) is satisfied. If not, select a new an and repeat this step. If 
satisfied, continue. 

(6) Check to see if equation (B6) is satisfied. If not, select a new vn and return to step (2). If 
satisfied, continue. 

(7) Compute all other quantities of interest. 

Thus this algorithm requires a nested two parameter search, whereas the path following routine required 
a one parameter search. From equations (B5HB7) it is seen that K = 0 (N = COST) is not allowed. 
Should this happen, one solution is a At integration but, as mentioned earlier, this involves a three 
parameter search. 

~ h i l l i ~ s ~ ~  has proposed an alternative method of constant load factor integration with Ay as 
integration variable. This approach holds all variables constant at the previous step but does a second 
order integration of the altitude state equation. The increments At and Av may be now directly 
computed from the third and fifth of equations (3): 

AV = g(Fn-l - sin T , - ~ ) A ~  

Differentiating the fourth of equations (3): 



Using the third and fifth of equations (3) this becomes 

h = g(Fn-1 sin 7n-1 + N cos yn-1 - 1) = C 

Integrating twice: 

The constant of integration cl is determined from hnVl = v,-1 sin ~ ~ - 1  = c1 SO that 

1 2  h, = vn_iAt sin T ~ - ~  + -gAt ( F , - 1  sin + N cos y,-1 - 1) 
2 

with At determined as above. Reference 35 shows that this gives good numerical results. 



APPENDIX C - NECESSARY CONDITIONS FOR FAST DYNAMICS 

The state equations of the fast dynamics are the last two of equations (54): 

with m, x, and E (the slower states) all known constants; the control variable is a. 

From equation (23) the Hamiltonian is 

where the constraints equations (1 1) are now state constraints and must be adjoined to H with multipliers 
vi ; the si are assumed to be written as functions of f and E, the latter a known constant. The adjoints 
A, and X E  are known constants from the slower dynamics solutions, equations (43) and (51). From 
equation (24) the adjoint equations are 

where the notations of equations (5) and (40) have been used. In these equations, if Q(h,  v) is any 
function then 

Q f  = Qhhf + Qvvf (C4) 

Assuming an unbounded optimal control, conditions (a) and (b) of the maximum principle give 

From equations (2) explicit forms for Fa and N, are 

1 
Fa = - (T, cos cr - T sin cr - D,) 

mg 

1 
N, = - (T,sincu+Tcosa + L,) 

mg 



Equations (Cl), (C3), and (C5) are used to model transitions from an initial condition to the energy 
dynamics solution (energy climb path, or ECP), from the ECP to a terminal condition, and between 
different branches of the ECP if the ECP is discontinuous. In what follows, the first case, transition 
from an initial condition to the ECP will be considered for the purpose of illustration. 

For this case, the boundary conditions on equations (Cl) and (C3) are 

X,(O) = Xyo selected to match with ECP 

where the second of equations (5) was used and where all quantities are known except Xyo. In summary, 
equations (Cl) and (C3) are to be integrated with control given by the first of equations (C5) subject to 
initial conditions equations (C7). 

The fast dynamics equations depend on the nature of the ECP solution because this solution 
determines the choice of variable f .  If the ECP solution is an unbounded optimum, singular perturbation 
theory states that the ECP solution will be an equilibrium point of the fast dynamics?.8 and the goal 
is to find a solution of the fast dynamics such that the solution approaches the ECP as t + w. If, on 
the other hand, the ECP is on a constraint, then the fast dynamics solution may reach the ECP in finite 
time.36 

Some examples will now be given. If the ECP is on a terrain limit, 

In this case the transformation (h ,  v )  + ( E ,  f )  and its inverse are given by 

so that 

9 
f h = l ,  f u = O ,  hf = 1 ,  v f = - -  

2, 

and from equation (C4) 



Putting these results into equations (Cl) and (C3) 

i7 = - x f v  
and into equations (C5) 

9 XEVF, + A,-N, = 0 
v 

9 -K1 - K2B + Azu + AEVF + Afvy + A,-(N - 1 )  = 0 
v 

The initial conditions for the integration of equations (C7) are as follows: 

f (0) = fo 

^;(O) = 20 

A-. (0)  = A , ,  . selected to match with ECP 

If the ECP is on a dynamic pressure limit, the transformation (h,  v) -t ( E ,  f) is 

with p = p(h) so that 

The inverse transformation is implicit. Taking differentials and using the fact that E = const.: 



Combining these equations gives 

Then from equation (C4) 

This gives, for example, 

Phh 
( ~ h ) f  = 1 2 

?Phv - Pg 



Equations (Cl) and (C3) become 

and equations (C5) become 

Initial conditions equations (C7) become 

Xy (0) = Xyo selected to match with ECP 

In all of these equations, quantities such as vf, Ff ,  and (fh) are to be determined from the equations 
derived above. 

Finally, consider the case for which the ECP is an unbounded local optimum. From equation (52), 
f in this case is 



where P is given by equation (50). Thus 

Because E = const., 

so that 

Let $J = @(h? u )  be defined as 

Then 

and equation (C4) becomes 

This explains how to compute quantities such as ,Bf, Ff, and (fh)f in equations (C3). Equations (Cl), 
(C3), (C5), and (C7) will not be written out explicitly for this case. 
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Table 1. Characteristics of supersonic transport 
- 

Gross take-off weight 
Wing planform area 
Wing span 
Leading edge sweep 
Aspect ratio 
Body length 
Payload 

first class passengers 
coach class passengers 
flight crew 
flight attendants 

Maximum Mach number 
Maximum dynamic pressure 

753,500 lb 
5500 ft2 

137.35 ft 
48 deg 

314 ft 

-- Mach number 

I I / M 
I terrain 

Figure 1. Sketch of constraints defining flight envelope. 
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Figure 2. Load factor history during altitude transition for a high performance aircraft. 
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Figure 3. Sketch of an altitude transition. 
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Figure 4. Thrust vs. Mach number in the transonic region. 

MACH No. 

Figure 5. Drag for N = 1 vs. Mach number in the transonic region. 
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Figure 7. A, vs. Mach number. 
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Figure 8. Energy rate vs. Mach number in the transonic region. 
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Figure 9. Energy climb path with and without dynamic pressure constraint. 
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Figure 10. Energy climb path with and without A,. 
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Figure 1 1. Sketch of trajectories with and without A,. 
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Figure 12. Energy climb path for minimum fuel, minimum time, and minimum cost. 
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Figure 13. Transonic altitude transition for Nl = 0.97, N2 = 1.05, nonlinear determination o f f  and 7. 
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Figure 14. Altitude transition in the transonic region. 
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Figure 15. Altitude transition, linear determination of T and 7. 
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Figure 16. Altitude transition for Nl = 0.5, N2 = 1.5. 
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Figure 17. Energy rate during altitude transition, N1 = 0.97, N2 = 1.05. 
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Figure 18. Flight path angle during altitude transition, Nl = 0.97, N2 = 1.05. 
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Figure 19. Energy rate during altitude transition, N1 = 0.5, N2 = 1.5. 
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Figure 20. Flight path angle during altitude transition, N1 = 0.5, N2 = 1.5. 
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