Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data

Eugene A. Morelli*
Lockheed Martin Engineering and Sciences Company, Hampton, Virginia 23681-0001
and
Vladislav Klein†
George Washington University and NASA Langley Research Center, Hampton, Virginia 23681-0001

An important part of building mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. An expression is developed for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates when the output residuals are colored. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle. As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, whereas conventional parameter accuracy measures were optimistic.

Nomenclature

\begin{itemize}
\item \(a_i \) = vertical acceleration, \(g \)
\item \(C_l \) = lift coefficient
\item \(C_m \) = pitching moment coefficient
\item \(C_D \) = vertical force coefficient
\item \(\bar{c} \) = mean aerodynamic chord, ft
\item \(D \) = dispersion matrix
\item \(d_{ij} \) = \(i \)th diagonal element of \(D \)
\item \(E(i) \) = expected value
\item \(e(i) \) = \(i \)th equation error residual
\item \(g \) = gravitational acceleration, \(32.174 \text{ ft/s}^2 \)
\item \(I_p \) = pitch axis moment of inertia, slug-ft\(^2\)
\item \(J \) = cost function
\item \(M \) = information matrix
\item \(m \) = mass, slug
\item \(N \) = total number of sample times
\item \(n_o \) = number of outputs
\item \(\hat{y} \) = body axis pitch rate, rad/s
\item \(q \) = dynamic pressure, \(\text{lb/ft}^2 \)
\item \(R \) = discrete noise covariance matrix
\item \(\mathbf{R}_w \) = autocorrelation matrix of vector \(v \)
\item \(S \) = wing area, ft\(^2\)
\item \(S(t) \) = output sensitivity matrix at time \((i - 1)\Delta t \)
\item \(s \) = sample standard error
\item \(t \) = time, s
\item \(u(t) \) = control vector
\item \(V \) = airspeed, ft/s
\item \(v(i) \) = output residual vector at time \((i - 1)\Delta t \)
\item \(x(t) \) = state vector
\item \(y(i) \) = \(n_x \times 1 \) output vector at time \((i - 1)\Delta t \)
\item \(y(t) \) = \(n_x \times 1 \) output vector
\item \(z(i) \) = \(i \)th measured scalar
\item \(z(i) \) = measured \(n_p \times 1 \) output vector at time \((i - 1)\Delta t \)
\item \(\alpha \) = angle of attack, rad
\item \(\Delta t \) = sample time, s
\item \(\delta_{ij} \) = Kronecker delta
\item \(\delta_i \) = stabilator deflection, rad
\item \(\Theta \) = pitch angle, rad
\item \(\Theta \) = element of the parameter vector \(\Theta \)
\item \(\Theta \) = \(n_p \times 1 \) parameter vector
\item \(\sigma \) = Cramér-Rao bound for the standard error of \(\hat{\Theta} \)
\item \(\eta(i) \) = measurement noise vector at time \((i - 1)\Delta t \)
\item \(\nabla_\Theta \) = gradient with respect to \(\Theta \)
\item \(\Phi \) = roll angle, rad
\item \(\theta \) = zero vector
\end{itemize}

Subscripts

\begin{itemize}
\item \(c \) = corrected
\item \(m \) = measured
\item \(o \) = initial or bias
\item \(w \) = wind axes
\end{itemize}

Superscripts

\begin{itemize}
\item \(T \) = transpose
\item \(-1 \) = matrix inverse
\item \(\hat{} \) = estimate
\item \(\bar{} \) = mean value
\item \(. \) = time derivative
\end{itemize}

Introduction

AIRCRAFT dynamic models include parameters that quantify the dependence of aerodynamic forces and moments on state and control variables. The values of these parameters are often estimated from flight test data. A good quantitative assessment of the accuracy of these parameter estimates is important for a variety of reasons related to experiment design, modeling, simulation, and flight control.

Maximum likelihood\(^1\,^2\) is commonly used to estimate aerodynamic parameters from flight test data. Assuming the model
Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data
E. A. Morelli and V. Klein

Reprinted from
Journal of Guidance, Control, and Dynamics
Volume 20, Number 1, Pages 74–80

A publication of the
American Institute of Aeronautics and Astronautics, Inc.
1801 Alexander Bell Drive, Suite 500
Reston, VA 20191–4344
structure is correct, maximum likelihood parameter estimates approach the true parameter values, and the parameter variances approach their theoretical minimum values (the Cramér–Rao lower bounds), as the number of measured data points increases. Generally, a flight test data record length at least two to three times the period of the slowest dynamic mode to be modeled is sufficient for the parameter variances to closely approach the Cramér–Rao bounds. In such cases, the Cramér–Rao bound can be used as a good approximation to the variance of maximum likelihood parameter estimates. References 3–5 compare and contrast the Cramér–Rao bounds with other methods for assessing the accuracy of parameter estimates. Theoretical properties of maximum likelihood estimators and related arguments discussed in Ref. 3 indicate that the Cramér–Rao bound is the best accuracy measure for maximum likelihood parameter estimates.

The research described here focuses on the output error formulation of maximum likelihood parameter estimation. This formulation includes measurement noise, but no process noise. A modified Newton–Raphson optimization procedure was used to determine the maximum likelihood parameter estimates. With this approach, the Cramér–Rao bounds are computed as part of the estimation procedure. It is well known, however, that the Cramér–Rao bounds computed in this way are usually optimistic (too small) compared to the scatter in the parameter estimates from repeated flight test maneuvers. This prompted the work of Maine and Ifkali (Refs. 8 and 9) and Balakrishnan and Maine, who traced the discrepancy to the fact that the output residuals are colored for real flight test data analysis because some deterministic modeling error is always present. Output error techniques lump the deterministic modeling error together with the broadband random part of a measured signal and call this the measurement noise. This means the measurement noise is model dependent and colored, because the deterministic modeling error usually lies in the same frequency band as the aircraft rigid body dynamics and accounts for a large part of the total noise power. References 2, 3, and 8–10 describe how this kind of colored measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers.

The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers. The theory underlying the output error formulation of maximum likelihood estimation assumes that the measurement noise is white Gaussian and band limited by the Nyquist frequency. The band limit is the result of discrete measurements taken at the sampling frequency, which is twice the Nyquist frequency. This measurement noise is broadband and incoherent. The term incoherent implies amplitude discontinuity and a lack of consistent phase-amplitude structure, which is twice the Nyquist frequency. This measurement noise is responsible for the discrepancy between the conventional calculation of the Cramér–Rao bounds and the observed scatter in flight-determined parameter estimates from repeated maneuvers.
probability in Eq. (6) is equivalent to minimizing the cost function
\[J(\theta) = \frac{1}{2} \sum_{i=1}^{N} [z(i) - y(i)]^T R^{-1} [z(i) - y(i)] \] (7)

The cost in Eq. (7) can be minimized using a modified Newton–Raphson technique\(^6\) to determine parameter updates, starting from some initial guess of the parameter vector. The initial guess for the parameter vector can be obtained from equation error methods,\(^7\) but, typically, a much rougher initial guess can be used.

The sensitivity matrix is defined as
\[S(i) = \frac{\partial y(i)}{\partial \theta} \mid_{\theta = \hat{\theta}} = 1, 2, \ldots, N \] (8)

where the \(j\)th column of the sensitivity matrix contains the output sensitivities for the \(j\)th parameter, computed from central finite differences in Eqs. (1–3). The modified Newton–Raphson parameter update is given by\(^1,6,11\)
\[\Delta \theta = \hat{\theta} - \theta = \left(\sum_{i=1}^{N} S(i)^T R^{-1} S(i) \right)^{-1} \sum_{i=1}^{N} S(i)^T R^{-1} [z(i) - \hat{y}(i)] \] (9)

The parameter vector update from Eq. (9) is added to the current estimate of the parameter vector to approach the true value of the parameter vector. In practice, there are times when the parameter vector update computed from Eq. (9) leads to an increase in the cost function or a divergence. This is because the modified Newton–Raphson step assumes that the current estimate of the parameter vector is near the true value. Using several iterations of a simplex algorithm\(^12\) when the modified Newton–Raphson step produced an increase in the cost was found to be very effective in avoiding divergence and reaching a solution. This approach was followed in the present study.

When repeated application of Eq. (9) converges, an estimate of the measurement noise covariance matrix \(R\) can be obtained from the output residuals. The expression for the estimate of \(R\), which maximizes the conditional probability in Eq. (6), is\(^1,3,6,11\)
\[\hat{R} = \frac{1}{N} \sum_{i=1}^{N} [z(i) - y(i)][z(i) - \hat{y}(i)]^T \] (10)

The most recent estimated output \(\hat{y}(i)\) is substituted for \(y(i)\) in Eq. (10) to compute the matrix \(\hat{R}\). Often only the diagonal elements of the \(R\) matrix are estimated from Eq. (10), enforcing an assumption that the measurement noise sequences for the measured outputs are uncorrelated with one another. This assumption is generally a good one for real flight test data. All estimates of the measurement noise covariance matrix in this work assume a diagonal \(\hat{R}\) matrix. Retaining the full \(\hat{R}\) matrix could have been done with little conceptual difficulty, but the expected benefits did not warrant the extra computation involved.

The noise covariance matrix estimate \(\hat{R}\) was used in the cost function of Eq. (7), and the minimization process described earlier for known \(R\) was repeated. Thus, the maximum likelihood estimation proceeds by alternately estimating the noise covariance matrix from Eq. (10), and minimizing the cost function using Eq. (9) with the latest value of the estimated noise covariance matrix. Convergence is reached when the estimated parameter vector \(\hat{\theta}\), the estimated noise covariance matrix \(\hat{R}\), and the cost \(J(\hat{\theta})\) reach nearly constant values.

Since maximum likelihood estimation is asymptotically unbiased,\(^1,2\) the estimated parameter vector \(\hat{\theta}\), should be close to the true value \(\theta\), and the gradient of the cost function with respect to the parameter vector should be close to zero. From Eq. (7), assuming \(\hat{R}\) is held fixed,
\[\nabla_{\theta} J(\hat{\theta}) \mid_{\theta = \hat{\theta}} \approx -\sum_{i=1}^{N} S(i)^T R^{-1} [z(i) - \hat{y}(i)] \] (11)

For practical computation, simultaneous satisfaction of the following numerical criteria was used to define convergence of the maximum likelihood estimation:
\[\left| \left[\hat{\theta}_j - [\hat{\theta}_j]_{k-1} \right] \right| < 1.0 \times 10^{-5} \quad \forall j, \quad j = 1, 2, \ldots, n_p \]
\[\left| \frac{[\hat{y}_i]_k - [\hat{y}_i]_{k-1}}{[\hat{y}_i]_{k-1}} \right| < 0.05 \quad \forall i, \quad i = 1, 2, \ldots, n_o \]
\[\left| \frac{J(\hat{\theta}_k) - J(\hat{\theta}_{k-1})}{J(\hat{\theta}_{k-1})} \right| < 0.001 \] (12)

where \(k\) denotes the current estimate iteration number and \([\hat{\theta}]_k\) denotes the estimate of the \(k\)th diagonal element of \(\hat{R}\). The approximate expression for the cost gradient with respect to the parameters [Eq. (11)] was used for the last criterion in Eq. (12).

The minimum achievable parameter variances, called the Cramér–Rao lower bounds, are the diagonal elements of the dispersion matrix \(D\) (Refs. 1–3 and 6). The dispersion matrix is defined as the inverse of the information matrix \(M\), the latter being a measure of the information contained in the data from an experiment. The expressions for these matrices are\(^1,3,6\)
\[M = \sum_{i=1}^{N} S(i)^T R^{-1} S(i) \] (13)
\[D = M^{-1} = \left[\sum_{i=1}^{N} S(i)^T R^{-1} S(i) \right]^{-1} \] (14)

The square root of the \(j\)th diagonal element of \(D\) gives the Cramér–Rao lower bound for the standard error of the \(j\)th parameter estimate,
\[\sigma_j = \sqrt{d_{jj}} \quad j = 1, 2, \ldots, n_p \] (15)

It can be seen from Eqs. (9) and (14) that the dispersion matrix is computed when determining the modified Newton–Raphson step as part of the conventional maximum likelihood estimation. The assumption that the output residuals are white and, therefore, uncorrelated in time is implicit in the algorithm and indicated in Eq. (5). The next section details the theory involved in accounting for arbitrary colored output residuals, which are correlated in time.

When the maximum likelihood estimation has converged, the estimated parameter vector will be close to the true value and Eq. (9) holds. Define the residual vector
\[v(i) = z(i) - \hat{y}(i) \quad i = 1, 2, \ldots, N \] (16)

The estimated parameter covariance matrix can be expressed using Eq. (9) with substitutions from the definitions in Eqs. (14) and (16),
\[\text{cov}(\hat{\theta}) = E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)^T] = E \left[\sum_{i=1}^{N} \sum_{j=1}^{N} S(i)^T R^{-1} v(i) v(j)^T R^{-1} S(j) D \right] \] (17)

If it is assumed that the discrete noise covariance matrix and the output sensitivities do not depend on the parameter vector estimate at the maximum likelihood solution, then the estimated parameter covariance matrix can be written as
\[\text{cov}(\hat{\theta}) = D \left[\sum_{i=1}^{N} \sum_{j=1}^{N} S(i)^T R^{-1} E[v(i)v(j)^T] R^{-1} S(j) \right] D \] (18)

When the output residuals are assumed to be zero mean white [cf. Eq. (5)], then
\[E[v(i)v(j)^T] = R \delta_{ij} \] (19)
From Eqs. (14), (18), and (19), it is easy to see that the parameter covariance matrix reduces to the dispersion matrix D when the output residuals are white.

By definition, when v is a zero mean weakly stationary random process,

$$E[v(i)v(j)^T] = \Phi_{rr}(i-j) = \Phi_{rr}(j-i)$$ \hspace{1cm} (20)

where $\Phi_{rr}(i-j)$ is the autocorrelation matrix for the output residual vector. The estimated parameter covariance matrix can be computed by substituting for $E[v(i)v(j)^T]$ from Eq. (20) into Eq. (18) and using an estimated value for $\Phi_{rr}(i-j)$. An estimate for $\Phi_{rr}(i-j)$ can be obtained using the colored residuals from conventional maximum likelihood estimation. The autocorrelation estimate accounts for the frequency content of the colored residuals in the expression for the parameter covariance [Eq. (18)]. Substituting Eq. (20) into Eq. (18) results in

$$\text{cov}(\hat{\theta}) = D \left[\sum_{i=1}^{N} x(i)^T \sum_{j=1}^{N} \Phi_{rr}(i-j) R^{-1} x(j) \right] D^{-1}$$ \hspace{1cm} (21)

where $\Phi_{rr}(i-j)$ is computed using the discrete unbiased estimate of the output residual autocorrelation:

$$\hat{\Phi}_{rr}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k} v(i)v(i+k) = \hat{\Phi}_{rr}(-k)$$ \hspace{1cm} (22)

Equation (21) is the expression for the parameter covariance matrix for colored residuals, which are correlated in time. Equation (22) was used to estimate $\Phi_{rr}(i-j)$ in Eq. (21). The values for D, R^{-1}, and S are from the conventional maximum likelihood estimation. Equations (21) and (22) embody the postprocessing applied to a conventional maximum likelihood solution to account for colored residuals.

Because this technique postprocesses the output residuals from conventional maximum likelihood estimation to correct the Cramér-Rao bounds, all of the properties of conventional maximum likelihood parameter estimation in a practical flight test data analysis application remain unchanged. These properties are discussed in Refs. 2 and 3.

For equation error parameter estimation, the model has a single output

$$z(i) = x(i)^T \theta + \epsilon(i) \hspace{1cm} i = 1, 2, \ldots, N$$ \hspace{1cm} (23)

where $x(i)$ is an $n_x \times 1$ vector of regressors at the ith data point and $\epsilon(i)$ is the equation error. The preceding analysis applies to this case as well, and the equivalents of Eqs. (21) and (22) are

$$\text{cov}(\hat{\theta}) = D \left[\sum_{i=1}^{N} x(i)^T \sum_{j=1}^{N} \Phi_{rr}(i-j) x(j)^T \right] D^{-1}$$ \hspace{1cm} (24)

and

$$\hat{\Phi}_{rr}(k) = \frac{1}{N-k} \sum_{i=1}^{N-k} \epsilon(i)\epsilon(i+k) = \hat{\Phi}_{rr}(-k)$$ \hspace{1cm} (25)

where

$$D = \left[\sum_{i=1}^{N} x(i)x(i)^T \right]^{-1}$$ \hspace{1cm} (26)

and

$$\epsilon(i) = z(i) - x(i)^T \hat{\theta}$$ \hspace{1cm} (27)

Results

The longitudinal short period dynamics of the F-18 HARV fighter aircraft at approximately 20-deg angle of attack were studied. The model state equations in wind axes are given by

\begin{align*}
\dot{\alpha} &= \frac{q S}{mV} \left[C_{\alpha q} \alpha + C_{\alpha q} \frac{q S}{2V} + C_{\alpha q} \delta_v + C_{\alpha q} \delta_r \right] + q \\
&+ \frac{g}{V} \left[\cos(\Theta_m) \cos(\Theta_m) \cos(\alpha) + \sin(\Theta_m) \sin(\alpha) \right] \\
\dot{q} &= (q S \xi / I_x) \left[C_{\eta \xi} + C_{\eta \xi} (q S / 2V) + C_{\eta \xi} \delta_v + C_{\eta \xi} \right]
\end{align*}

with measurement equations

\begin{align*}
\alpha_n(i) &= \alpha(i) + \nu_1(i) \\
q_n(i) &= q(i) + \nu_2(i)
\end{align*}

\begin{align*}
\alpha_n(i) &= \frac{q S}{mg} \left[C_{\alpha q} \alpha(i) + C_{\alpha q} \frac{q(i) S}{2V} + C_{\alpha q} \delta_v(i) + C_{\alpha q} \delta_r \right] + \nu_3(i) \\
i &= 1, 2, \ldots, N \hspace{1cm} (29)
\end{align*}

assuming that $C_{\xi q} \approx -C_{\xi q}$ and $\alpha_n \approx \alpha_n$. Initial conditions for the states were computed from the measured time histories of α and q using a time domain smoother. The parameters $C_{\alpha q}, C_{\xi q}$, and α_n' include both aerodynamic and measurement biases.

To validate the new technique for computing Cramér–Rao bounds, 200 Monte Carlo simulation runs were made using various colored measurement noise processes. Each noise sequence had part of its power in the frequencies between 0 and 1 Hz inclusive (roughly the frequency band of the uncorrupted simulation outputs), with the remaining power taken up by white Gaussian noise out to the Nyquist frequency. The narrow-band portion of the colored noise sequence was generated by passing zero mean white Gaussian noise through a fifth-order Chebyshev low-pass filter with frequency cutoff set at 1 Hz. The resulting narrow-band noise was combined with wideband noise from a separate realization of the zero mean white Gaussian noise process. The percentage of the total noise power from the narrow-band noise was determined by a random number with uniform distribution on the interval [0, 100]. The resulting colored noise sequence was then scaled to achieve approximately a 5/1 signal to noise ratio for the simulated noisy output. This procedure was carried out for each individual simulated output on each Monte Carlo run. Figure 1 shows the power spectral density for the colored noise added to α for run 200, where 19% of the noise power was in the frequency range of 0–1 Hz, inclusive. Colored noise sequences generated in this way are representative of residual sequences observed when analyzing real flight test data and were used for that reason.

To make the Monte Carlo simulation runs realistic, the stabilator input was taken from measured data for the F-18 HARV flying a maneuver designed specifically for accurate parameter estimation. The stabilator input is shown as the solid line in Fig. 2. The parameter values used in the simulations (given in column 2 of Table 1)
approximately reflect the short period dynamics of the F-18 HARV at 20-deg angle of attack. The stabilator input and parameter values were the same for each simulated data run, so that the information in the data was constant from run to run. The sampling rate was 50 Hz, and the data record length was 14 s. Maximum likelihood estimation as described in the previous section was used to estimate the parameters.

Since the true parameter values were known for the simulated data, the true accuracy of the maximum likelihood estimation could be compared to the accuracy indicated by the Cramér–Rao bound calculations. The conventional Cramér–Rao bounds for the parameter standard errors were denoted by \(\sigma \) and were computed from Eqs. (14) and (15). The Cramér–Rao bounds for the parameter standard errors corrected for colored residuals were denoted by \(\sigma_c \) and were computed as the square root of the diagonal elements of the covariance matrix from Eq. (21), using Eq. (22) to estimate the output residual autocorrelation. Results from both the conventional computation and the corrected calculation were expressed in terms of the ratio of the absolute deviation of each parameter estimate from its true value to the computed Cramér–Rao bound for the parameter standard error. This accuracy measure was assigned the symbol \(\eta \):

\[
\eta = |\hat{\theta} - \theta|/\sigma, \quad \eta_c = |\hat{\theta} - \theta|/\sigma_c.
\]

(30)

For a maximum likelihood estimator, the probability distribution of the parameter estimates approaches a Gaussian distribution centered on the true value as the number of data points gets large. Evidence of this can be found in Fig. 3, which is a histogram of the parameter estimates from all 200 Monte Carlo runs for the \(C_{M\phi} \) parameter. Corresponding histograms for the other estimated parameters were similar. When \(\sigma \) equals the standard deviation of the population of parameter estimates, the quantity \((\hat{\theta} - \theta)/\sigma\) is a standardized normal deviate. It follows that \(\eta \leq 3 \) nearly all of the time when \(\sigma \) is representative of the scatter in the parameter estimates, because a standardized normal deviate lies within ±3 standard deviations of the mean 99.7% of the time. Analogous statements apply for \(\eta_c \) and \(\sigma_c \).

Table 1 shows results for two representative Monte Carlo runs. Columns 4 and 5 for run 47 and columns 7 and 8 for run 185 show that the corrected Cramér–Rao bounds accurately reflected the true parameter accuracy, whereas the conventional Cramér–Rao bounds were optimistic (i.e., too small) and produced \(\eta \) ratios that exceeded 3 for almost every estimated parameter. Considering the full set of 200 Monte Carlo runs, Table 2 gives the mean values and standard errors of \(\eta \) and \(\eta_c \) for each estimated parameter. These data show that the conventional Cramér–Rao bounds were inaccurate on the average and exhibited a large variability, whereas the converse was true for the corrected Cramér–Rao bounds.

Table 3 gives another summary of the parameter estimation results for the 200 Monte Carlo simulation runs. The second column of the table gives the mean values of the parameter estimates, and the third column gives the sample standard errors for the parameter estimates, computed from the scatter of the parameter estimates and denoted by \(s \). Columns 4 and 6 give the mean values of the Cramér–Rao bounds for the parameter standard errors computed using the conventional and corrected techniques, \(\sigma \) and \(\sigma_c \), respectively. Columns 5 and 7 show the ratio of the sample standard errors for the parameter estimates to \(\sigma \) and \(\sigma_c \), respectively. These values are far less than 3 for the corrected calculation of the Cramér–Rao bounds, indicating a proper accounting for the changes in the residual spectra, whereas the conventional calculation of the Cramér–Rao bound was optimistic, producing values of the \(s/\sigma \) ratio greater than 3.

The data in Tables 1–3 demonstrate that to the extent to which the conventional Cramér–Rao bounds misrepresented the true accuracy of the parameter estimates, analogous statements apply for \(\eta \) and \(\eta_c \).
parameter accuracy was neither consistent nor predictable from parameter to parameter or from run to run. This phenomenon has been observed previously when analyzing flight test data from repeated maneuvers. It follows that the common practice of applying a fixed correction factor to the conventional calculation of the Cramér–Rao bounds is incorrect to a varying and unpredictable degree in cases where coloring of the residuals varies, as in this simulation study. Changes in the coloring of the residuals similar to those studied here can easily be brought about in practice by changes in the model structure, the maneuver, the flight condition, or the instrumentation.

Next, flight test data were analyzed from five repeats of the same longitudinal maneuver, flown on the F-18 HARV at approximately 20-deg angle of attack and 25,000 ft. The input was applied to the symmetric stabilator by a computerized onboard excitation system (OBES), so that the runs were very nearly repeats of one another. Figure 2 shows the excellent repeatability using the OBES system for five repeated runs of the stabilator input maneuver. All of the data used for analysis were sampled at 50 Hz. Corrections were applied to the angle-of-attack and accelerometer measurements to account for sensor offsets from the center of gravity, and the angle-of-attack measurement was corrected for upwash. Data compatibility analysis revealed that the data from the sensors were consistent to a degree that warranted no further corrections. The same model given in Eqs. (28) and (29) was used for the flight test data analysis, with measured time histories used for V and q. Maximum likelihood parameter estimation was carried out using the procedure described in the preceding section.

Table 4 gives flight test results in a format similar to Table 3. Column 7 shows that the corrected Cramér–Rao bounds were an accurate measure of the scatter in the parameter estimates. In column 5, the conventional Cramér–Rao bounds were again optimistic for the pitching moment (C_M) parameters but were close to correct for the vertical force (C_Z) parameters. The reason is that the α and α_e measurements are the main influences on the C_Z parameters, and the residuals for both of these outputs exhibited considerable power at high frequencies, due to unmodeled structural modes. The power spectrum for a typical α_e residual (from run 1) is shown in Fig. 4. These colored residual spectra roughly resembled constant power out to the Nyquist frequency, which is the assumption made in the theory underlying the conventional Cramér–Rao bound calculation. The q measurement did not have these high-frequency components, and so the conventional Cramér–Rao bound calculation gave very optimistic values for the C_M parameters. The power

![Fig. 5 Power spectrum of q residuals, flight test run 1.](image)

![Fig. 6 Parameter estimates with conventional and corrected error bounds: left bar = conventional error bound and right bar = corrected error bound.](image)
A similar effect was seen for \(C_{L_2} \) in the maneuver. The change in included the effects of leading- and autocorrelation spectrum for a typical carded Cramér–Rao, maximum likelihood estimation are obtained and corrected calculation scatter in accompanying data in Table 4 show that the standard calculation (4-h7). The error bars to Cramér–Rao bounds for dynamic parameters. The true \(C_{M_4} \) parameter, therefore, contained variation due to the changes in the effective wing camber, violating the assumption that the parameters should be constant for repeated maneuvers. The result was a larger scatter in the estimates of \(C_{M_4} \), which increased the value of \(s/\hat{\sigma}_e \). A similar effect was seen for \(C_{M_4} \), whose estimated value reflects the trim condition to some extent.

Figure 6 depicts the parameter estimation results for the aerodynamic parameters. The error bars to the left of the round symbols marking the individual parameter estimates represent the Cramér–Rao bounds for the standard errors from the corrected calculation (\(\pm 1\sigma \)). The error bars to the right of the parameter estimate symbols represent the Cramér–Rao bounds for the standard errors from the corrected calculation (\(\pm 1\sigma_c \)). These plots and the accompanying data in Table 4 show that the standard calculation for the Cramér–Rao bounds gave optimistic values compared to the scatter in the estimates from repeated maneuvers, whereas the corrected calculation for the Cramér–Rao bounds produced Cramér–Rao bounds that accurately reflected the scatter of the estimates.

Concluding Remarks

Algorithms for aircraft parameter estimation using the output error formulation of maximum likelihood are in widespread use. The Cramér–Rao bounds characterizing parameter accuracy that are obtained from conventional calculations are known to be generally optimistic (i.e., too small) in practice, compared to the scatter in parameter estimates from repeated maneuvers. Estimated parameters have limited utility when there is no firm idea of their accuracy. In this work, an expression for correcting Cramér–Rao bounds from maximum likelihood estimation with colored residuals was developed and validated. This result is important because the residuals from maximum likelihood estimation are almost always colored in practice, due to deterministic modeling error. The technique was shown to be applicable to equation error parameter estimation as well.

The calculations involved in the algorithm for computing Cramér–Rao bounds that account for colored residuals can be carried out in a short subroutine called at the conclusion of a conventional maximum likelihood estimation algorithm. Bandwidth of the dominant power in the residuals need not be known or estimated because it is accounted for automatically in the algorithm by an unbiased estimate of the residual autocorrelation. There is no need for correction factors. The algorithm was shown to work for a wide range of colored residual spectra similar to what might be encountered in real flight test data analysis. All calculations are performed in the time domain, obviating the need for frequency domain analysis of the residuals.

The corrected calculation for the Cramér–Rao bounds presented here produced consistently accurate measures of the scatter in the parameter estimates, using an algorithm with moderate computational cost that was applied as a postprocessing of the output residuals from a conventional maximum likelihood solution.

Monte Carlo simulation runs using various colored noise sequences were carried out to validate the algorithm. Analysis of flight data from repeated maneuvers flown on the F-18 HARV demonstrated the validity of the technique for computing appropriate parameter accuracy measures using real flight test data. The algorithm described in this work was shown to be an effective means of accurately determining the quality of parameter estimates from the output error formulation of maximum likelihood estimation.

Acknowledgments

This research was conducted at the NASA Langley Research Center under NASA Contract NASI-19000 and NASA cooperative agreement NCC1-29.

References