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Abstract

Application of the free-suspension residual flexibility
modal test method to the International Space Station
Pathfinder structure is described. The Pathfinder, a large
structure of the general size and weight of Space Station
module elements, was also tested in a large fixed-base fixture
to simulate Shuttle Orbiter payload constraints.  After
correlation of the Pathfinder finite element model to residual
flexibility test data, the model was coupled to a fixture
model, and constrained modes and frequencies were compared
to fixed-base test. modes. The residual flexibility model
compared very favorably to results of the fixed-base test.
This is the first known direct comparison of free-suspension
residual flexibility and fixed-base test results for a large
structure.

The model correlation approach used by the author for
residual flexibility data is presented. Frequency response
functions (FRF) for the regions of the structure that interface
with the environment (a test fixture or another structure) are
shown to be the primary tools for model correlation that
distinguish or characterize the residual flexibility approach.
A number of critical issues related to use of the structure
interface FRF for correlating the model are then identified
and discussed, including (1) the requirement of prominent
stiffness lines, (2) overcoming problems with measurement
noise which makes the antiresonances or minima in the
functions difficult to identify, and (3) the use of interface
stiffness and lumped mass perturbations to bring the
analytical responses into agreement with test data. It is
shown that good comparison of analytical-to-experimental
FRF is the key to obtaining good agreement of the residual
flexibility values.
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Fixed-base modal survey tests have traditionally been
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used in the aerospace industry for refinement of
mathematical models of substructures or launch vehicle
payloads. This is mainly because the test configuration is
designed to match the flight boundary conditions as closely
as possible. The measured fixed-interface modes can also be
used directly in the well-known Hurty or Craig-Bampton
component synthesis methods (Refs. 1-3). However, an
adequate fixed-base test fixture is not always available, and
the cost of designing and building one may be prohibitive.
Test articles are sometimes shipped to a facility where test
fixturing exists, but there is considerable inconvenience as
well as cost and scheduling problems involved in such a
practice. There are also a number of difficulties associated
with measurement of modal parameters in fixed-boundary
modal tests, in some cases making the approach impractical.
For example, as described in Refs. 4 and 3, it is not possible
to perform a truly fixed-boundary test due to coupling
between the test article and fixture. In addition, the
boundary constraints of the test article may not adequately
simulate flight conditions, particularly in cases such as
Shuttle payloads where some degrees-of-freedom (DOF) at a
boundary point are constrained and some DOF are free.

To provide an alternative approach for verifying
substructure models, the free-boundary residual flexibility
method has been investigated. This approach provides a
technique for obtaining fixed-boundary mode shapes for a
structure through measurement of (1) free-suspension mode
shapes of the overall structure, and (2) frequency response
data for the boundary DOF to be constrained in service.
Measured free-free data can be utilized in a component mode
synthesis approach to derive the constrained data. A residual
flexibility value is obtained by measuring or calculating a
displacement/force frequency response function (FRF) , and
subtracting from it the FRF synthesized from mode shapes
and frequencies. The value of the remaining function at zero
frequency is defined as residual flexibility.

The residual flexibility approach has been treated
analytically in considerable detail, as described in Refs. 6-12,
but has had limited application to date as a test method
(Refs. 13-16). Residual flexibility testing has been used in
relatively few cases due to concern over difficulty in
performing the required frequency response (FRF)
measurements from which residuals are derived.  This
concern is justified for a number of reasons. Two of these
are well-described by Blair (Ref. 16).  First, residual
flexibilities are very small numbers, typically on the order
of 1.0E-6 in/lb for translational diagonal terms, and orders of
magnitude smaller for off-diagonal values. This presents
difficulty in obtaining accurate and noise-free measurements,
especially for points removed from the excitation source. A
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second difficulty encountered in residual measurements lies
in obtaining a clean residual function in the process of
subtracting synthesized modal data from a measured response
function.

Craig discussed potential problems with the residual
flexibility matrix and the associated mass matrix in Ref. 10,
pointing out that “...although the residual flexibility method
appears to hold the most promise as a CMS (component
mode synthesis) method for use with experimentally-acquired
data, additional careful study is needed in order to clarify the
potential problems and possibilities inherent in the method.”

Recent research (Refs. 12, 17-18) has addressed some of
the problems associated with residual flexibility
measurements and analysis, and helped clarify limits of
practical application. It was demonstrated that for accurate
residual measurements, drive point FRF (response measured
at the excitation point) having prominent stiffness lines in
the acceleration/force format are needed. This is because
noise in FRF measurement and errors in parameter
estimation of modal properties are overcome by the
dominant mode(s) of the interface region of the structure, and
the associated stiffness line in the FRF. Physically, the
dominant stiffness line in an FRF means that the interface
region has one or more mode shapes having amplitude much
higher than other modes in the frequency band. Or, the
drive/response point has a resonant amplitude much higher
than the response at other frequencies, somewhat resembling
single-degree-of-freedom (SDOF) behavior, and implying a
flexible connection to the remaining structure. The lack of
such stiffness lines increases measurement errors for residual
flexibility values. Interface drive point frequency response
functions for many Shuttle Orbiter payloads exhibit
dominant stiffness lines, at least for some constraint
coordinates, making the residual test approach a good
candidate for payload modal tests. Figure 1 shows a Shuttle
payload carrier with the trunnion and keel interfaces clearly
shown, and in Fig. 2 a drive point response is shown for
one of the payload interfaces. The prominent stiffness line
is clearly seen in Fig. 2, and the resemblance to SDOF
behavior can also be observed.

Difficulties in extracting a residual flexibility value from
noisy test data have also been addressed in recent research
(Refs. 17-18). It was shown that use of a weighted second
order least-squares curve fit of the measured residual function
allows identification of residual flexibility that compares
very well with predictions for simple structures. That
approach also provides an estimate of second order residual
mass effects.

Analytical Backgroun f th esidual

Flexibility Method

The technique of using an approximation of the effects
of neglected higher order modes, or residual modes, to
improve the accuracy of reduced-basis mathematical models
was first presented by MacNeal (Ref. 6). In MacNeal's
method, a substructure mode! derived from truncated modal
properties was improved by including additional elements
derived from first-order static approximations of the effects
of higher modes. Rubin (Ref. 7) used a special statics
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problem to derive an expression for residual flexibility in a
form that is more easily applied in structural dynamic
analyses.

Matrix Formulation
As described in Ref. 7, the flexible-body displacements

for a substructure can be written as a first-order
approximation of residual effects,
T

up =GF = A Gc AF (n

where G is the free-free flexibility matrix. The constrained
flexibility matrix is G_. and the transformation matrix
1T
A=1-M®dp, M, g
the generalized mass associated with the rigid body modes
r If the contribution of modes to be retained is

removed from the deflection for the flexible substructure, the
residual flexibility matrix G, results, as shown in Eq.

2):

. It is noted that MR is

u, =(G-G, )F =G, _ F )

r

where G, =®, K, @] i the flexibility matrix
corresponding to the retained modes.
In Ref. 11, Martinez, et. al, expressed substructure

displacements in the form

[® (3)

Crp ] {F?b}

is the (N x n) matrix of retained or measured
is a partition of the (N x N) residual

u='1l>q+Grb F, =

where @
modes and Grb

flexibility matrix defined in Eq. (2). If the displacements are
partitioned into interior and boundary or interface degrees of
freedom, Eq. (3) becomes

@i Gy,

b Lo o o)

By solving the lower partition of Eq. (4) for the boundary
forces, and substituting the resulting expression back into
Eq. (4), the interior physical displacements are obtained in
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terms of generalized interior and physical boundary
displacements,
-1
uy, = (P -Grib Grbb dy g
-1
+ Grib Grbb u, (5)
Combining Eq. (5) with the identity uy = uy yields

the desired transformation for substructure displacements,
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where T is an (N x m) matrix and m = n + n, , the

number of retained modes plus the number of boundary dof.
The partitioned form of the undamped equation of
motion for a substructure is

':Mn Mib] u; . [Kii Kib]{“i} _ {0}
Myi Moo | Kpi Kpb | [up Fy

)

and the corresponding partitioned form of the residual
flexibility matrix is

G. G,
Tii r1b:| 8)

G = [
f Grbi Grbb

where G, is t0 be obtained using frequency response

measurements of the free-free test article for the connect
coordinates and shaker drive points (Ref. 2), or computed
using Eqgs. (1) and (2). The retained natural frequencies and

mode shapes, (oi and <Dn , are to be obtained from a

free-boundary modal test, and correspond to subsets of the
eigenvalues and eigenvectors of Eq. (7) with F = 0.
Applying the transformation defined in Eq. (6) to Eq. (7),
the substructure reduced equation of motion becomes

[ _(q 0
M1t +K { } =T { }
" up Fy,
uy
= T = T .
where M =T MT and K =T KT . Martinez,
et. al (Ref. 11) showed that
[~ T T
Moo= | Tan* Papdoo®ab Pundbo
| sym. Jbb
3 2 T -1 T -1
% Qnt@ anl’bbd)nb '(Danfbb
= -1
i sym. Grbb
(10$)
where Q_ is the diagonal matrix of retained or measured
frequencies®, , and @, is the boundary partition of
. . -1
the retained modes. Also in Eq. (10), J, = Grbb

3
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-1 T
tbb and be =G
T
Grb - [Gfib Grbb

] . Residual mass cffects are
contained in the boundary partition H , and the full

MG

b b , where

Hy, G

residual mass matrix is given by

H =G'

r r MGI‘

(1

In order to verify an ideally-constrained model, the
corresponding constrained modes must be derived. As
discussed in Admire, et al. (Ref. 12), this is accomplished
using the present formulation by striking the rows and
columns of the matrices in Eq. (10) for boundary dof,
yielding

+ K

Mnd o 49=0 (12)

'r —
+¢nb ‘Ibb q)nb ] and Knn
1
bb

where Mnn =[I

2
nn

nn

@2 +ol G, @, 1. andboth marices are

(n x n). The eigenvalues (oz calculated from Eq. (12) are

the constrained frequencies, and the constrained modes are
obtained by assembling the eigenvectors from Eq. (12), @

,into an (m x n) matrix and premultiplying by T from Eq.

(6):
L]
o, =T[ ]
0

Since T is (N x m) and the partitioned mode shape matrix is
(m x n), an (N x n) matrix of constrained modes is obtained.
The frequencies and mode shapes for the constrained
structure, ®, and d’c , are used to obtain a verified

constrained mathematical model.

To derive modes of a structure constrained in a test
fixture, the mass and stiffness matrices described in Eq. (10)
must be coupled to the fixture model. Resulting frequencies
can be compared directly to the fixed-base test, but the mode
shapes require back-transformation and partitioning before
comparison to test.

(13)

n R n ti lation

To provide an efficient means of comparing test residual

measurements with analysis, the frequency response function

(FRF) approach as presented by Rubin (Ref. 7) was utilized.

In this method which is applicable to both analytical and

test data, the displacement is written as a function of
frequency,

U(w) = Y(w) F(w) (14)

where Y is the FRF matrix and F is the applied force as

function of frequency. The residual FRF matrix, or residual
function matrix as it will be denoted in this paper, is
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obtained by subtracting from the full FRF in Eq. (14) the
modal FRF containing the rigid body modes and elastic free-
free modes that are to be retained. The undamped modal
FRF matrix is given by

Yo (@ =-0p o2 My of
-1 -1 T
+ @, A, M O (15)
where M | is the generalized mass associated with the

retained modes @, and A is the diagonal matrix

2 -0)2

n . The residual function matrix becomes

®

Y, (w) Y(®)-Yn (0) (16)

which can be approximated over the frequency range of
interest by the undamped form

2
[ t o Hr

Y, (w) G an

corresponding to Egs. (2) and (11). For comparison of
residual flexibility values, the undamped forms of Egs. (15)-
(17) should be sufficient. However, if analytical and test
FRFs are being compared, damping should be included. In

. 2 .
, +ti2f, oo, -o in Eq.
(15) and the residual function matrix takes the form

2
that case, An ©

G. + 0 H

T T

Y, (w) - iwB, (18)

For practical computations, residual functions are
obtained individually rather than in matrix form. It is
important to note that the FRF and residual functions
described here are in displacement/force format. Residual
flexibility for a particular residual function is the value of
the function at zero frequency, as can be seen from Egs. (17)
and (18). Each G, determined in this way is equal to the

corresponding value from Eq. (8). Bookout (Ref. 18)
describes a technique for curve-fitting of noisy experimental
residual functions to estimate residual flexibility values. In
the following sections, application of the residual flexibility
approach is described for the Space Station Pathfinder
structure, which has prominent interfaces for constraining or
coupling to the environment. As stated in the Introduction,
this is a requirement for obtaining accurate experimental
residual flexibility values.

Applicatio f th to the Internati

Space Station Pathfinder

Free-boundary testing and model correlation activities for
the Pathfinder structure (Fig. 3) provided tremendous insight
into residual flexibility measurement procedures and
achievable accuracy. The desired end result was to compare
constrained mode shapes derived using free-free residual
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flexibility testing to fixed-base test results. To the
knowledge of the author, this has not been done previously
for a large structure.

Characteristics of Free-Boundary Test Data

It should first be pointed out that the testing described
here had to be done in a less-than-optimum situation and
environment, in that the suspension of the test article and
the measurements were done quickly. In other words, the
testing had to be done “on the fly”, without the benefit of
comprehensive pre-test analysis. A short amount of time
was available during a period of fixed-base testing of the
Pathfinder for doing free-free measurements.

The Pathfinder was suspended using a large crane. A
series of bungee cords was used to make the supports as soft
as possible, but still able to safely support the 28,000 Ib
test article.  Free-free mode shape measurements were
obtained using shaker excitation. It was discovered that the
suspension system was more stiff than desirable, and that it
contaminated the first elastic mode to some extent.
However, this problem was worked around quite easily by
including the elastic suspension cords in the model.

Trunnion and keel interface response data, which was
initially obtained using impact hammer excitation, presented
considerable difficulty, and was found to be very noisy in the
antiresonance regions (Fig. 5). Softer hammer tips were
utilized in efforts to improve the data, but this had little
effect other than to degrade the resolution of the resonances
or peaks. In further attempts to obtain cleaner
measurements, shaker excitation was examined, but was
found to provide little or no improvement in the
antiresonances. The shaker did provide better resolution of
the peaks, however. Finally, the data was accepted as the
best that could be obtained in the amount of time available,
and model correlation was initiated as described in the
following sections.

tion Free- h n
Frequencies

The first step in the process was to update the Pathfinder
finite element model to obtain the best agreement possible
with test free-free modes. Mode shape correlation procedures
for residual flexibility testing are essentially the same as
other free-boundary modal testing. A goal of 2 percent
frequency error was established when it became clear that
such a goal was realistic. Since it was not known how
accurate the residual flexibility model had to be to yield
constrained frequencies within 5 percent of test, additional
accuracy was desirable. It has not yet been determined if the
standard 5 percent error limit on frequency is sufficient for
free-suspension modes when using them to derive
constrained modes.

Visual inspection of animated analytical modes quickly
showed that the trunnion support structures on the upper
beams of the Pathfinder were rocking about the x-axis at
much lower frequency that in the test. Increasing the torsion
constant of the upper beams successfully moved the
trunnion rocking modes to higher frequencies. However, it
was not possible to complete correlation of the upper beam
torsional properties until frequency response functions
(FRF) were examined. That work is described later in this
section.
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Figure 4 shows scveral experimental frec-boundary mode
shapes. Due to the relatively simple geomectry of the test
article, it was possible to quickly identify model changes for
purc bending modes in the lateral (y) and vertical (z)
dircctions. For example, the y- and z-bending modes were
correlated by increasing or decreasing (by up to 10 percent as
a limit) the area moments of inertia for the upper and lower
long beams in each bending direction. The second y-bending
mode and an x-y shearing mode were also driven by the long
beam y-bending area moment of inertia. Other modes were
also visually inspected to identify critical parts of the
structure and properties (I or J) to modify. As further
examples, the two torsion modes (shapes | and 6 in Fig. 4)
were controlled at least partially by the torsion constant of
the center upper beam. Due to the fact that correlating one
mode often resulted in worse agreement with test for other
modes, considerable iteration was required for the final
correlation of all 9 elastic modes. As shown in Table 1, the
2 percent frequency error goal was achieved for the 9 elastic
mode shapes. Good orthogonality checks were also
achieved, with the worst value being near 0.93.

Difficulty was encountered in correlating the tenth elastic
mode to the test data. The mode was characterized by x-
direction motion of the lower central portion of the
Pathfinder. An explanation for the relatively poor frequency
correlation (near 7 percent error) is that the upper beams
were about 21 in. deep in the z-direction. Diagonal beams
welded to the bottom surfaces of the upper beams, as can be
seen in Fig. 3, may have local flexibility that can only be
characterized using detailed plate models for the upper
beams.

Updating for Boundary Frequency Response

The next step was to examine the drive point response
functions for the trunnions (upper beam interfaces) and keel
(interface on lower beam). It is again noted that “drive
point” refers to excitation and response occurring at the same
point on the structure. Hammer impacts were used to excite
the structure. In Fig. 5 the analytical FRF before updating
is compared to test for the keel. Noisy data is apparent for
the measured response near the antiresonance as discussed
earlier. Upon initial inspection of this data, it was
concluded that model correlation would be extremely difficult
for the antiresonances. The impact of noise in the data on
model correlation will be addressed in the next paragraph.

In the updating process, it was quickly found that the
torsion constant of the upper beams in the vicinity of the
trunnions was the sensitive parameter for correlating the z-
direction FRF. Increasing the torsion constants (J) for the
upper beams brought the trunnion z-direction response
antiresonances into good agreement with test, and the
addition of lumped mass at the trunnion supports (for bolts
and welds) improved the peak or resonant frequency
correlation. Similarly, increasing J for the lower beam (near
the keel) brought the keel y-response antiresonance into
good agreement with test. Figure 6 shows the test and
analysis FRF after model updating for the keel y-direction.
Early in the FRF updating process, as stated in the previous
paragraph, it was thought that the noisy test data near
antiresonances would present severe problems, but this was
not the case. Visual comparison of overlaid test/analysis
FRF was sufficient for determining when good antiresonance
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agrcement had been achicved.  Inspection of the response
functions at frequencies slightly above and below the
antiresonance revealed when a good correlation had been
obtained.

The trunnion x-dircction responscs presented particular
difficulty for model correlation due to the lack of any visible
stiffness lines. This made it difficult to target modcling
changes. In fact, all that was done to update these FRF was
to refine the mode frequencies as much as possible, as
discussed at the beginning of this section. Poor agreement
was observed above 60 Hz, corresponding to the inability to
correlate the tenth mode (62.84 Hz in test) with good
accuracy.

The approach taken in this paper for test/analysis
correlation of residual flexibility values was to update the
model to obtain good agreement between analytical and
measured drive point response functions for the interfaces,
and then to compare the residual values. It has been found
that such an approach yields good agreement of the model
with measured residual flexibilities. However, the accuracy
requirement appears to be quite stringent. The experience of
the author is that the analytical FRF must lie virtually on
top of the measured data (in visual comparisons) for the
analytical residual flexibility values to be within a few
percent of the test values. Agreement of this quality may
not be possible in many applications. It can be seen from
Figs. 5-6 that excellent visual comparisons were obtained
for the FRF, and in Table 2 the test and analysis residual
flexibility values are compared for all the interfaces of the
Pathfinder. The poor agreement for the x-direction residuals
is due to the lack of stiffness lines in the FRF, as explained
previously, and the resulting inaccurate curve fits to obtain
experimental values.

i it

Fixed-Base Test Data
Following  correlation of free-free modes and
frequencies, interface drive-point FRF, and residual

flexibility values, the free-boundary finite element model
was coupled to a model of the Universal Test Fixture (UTF,
Fig. 7). This test fixture was used in the constrained test of
the Pathfinder. As described by Tinker (Ref. 19), the UTF
utilizes flexure mechanisms to simulate Shuttle Orbiter
payload constraints. The flexures are very stiff in the
constrained directions and soft in other coordinates.
However, a 6-DOF connection is made at each flexure, and
undesirable constraints exist in DOF that are free in the
Shuttle Orbiter. The flexure system still represents the
state-of-the-art for constrained modal testing of Shuttle
payloads.

It is noted here that the Pathfinder model was not
correlated in rotational DOF for any of the interface FRF,
nor was the keel correlated for x- or z-responses, and two
trunnions were not correlated in the x-direction. That is,
only the Shuttle Orbiter-constrained DOF were examined in
detail in the correlation activity. In future applications of
free-free testing, it may become necessary to correlate the
“unconstrained” translational directions if results are to be
compared to fixed-base testing. Rotational measurements
are still generally impractical and will not likely be
considered.
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Table 3 shows the analytical constrained frequency and
mode comparisons to test data. Table 4 describes similar
comparisons for a model that was independently correlated
by Boeing Defense and Space Group (Phillips, Ref. 20) to
the fixed-base test directly. These tables illustrate clearly
that the free-frce correlation to mode shapes, interface FRF,
and residual flexibility values yielded a model that compares
very favorably with a model correlated in traditional fashion
to fixed-base data. In both cases, the frequency error is high
for modes 7 and 10. The large frequency error in mode 7
may well be related to the difficulty in correlating the tenth
free-free mode discussed earlier in this section. It was stated
in relation to the tenth free-boundary mode that a detailed
plate model could be required to properly account for
flexibility at the diagonal beam connections to the upper
beams (Fig. 3).

The last step in the process was to develop a residual
flexibility model from the updated finite element model and
to repeat the comparison with fixed-base modal data. This
reduced model consisted of 15 free-free modes (including
rigid-body modes) and 30 residual flexibility values
representing the 30 interface DOF with the test fixture.
Equation (10) shows the form of the mass and stiffness
matrices for the residual flexibility model. After coupling to
a Craig-Bampton reduced model (Ref. 3) of the test fixture,
the constrained frequencies and mode shapes were obtained.
It is noted that back-transformation of the modes was
required before orthogonality comparisons could be made
with test. Table 5 again demonstrates good agreement with
constained test modes and frequencies.  The residual
flexibility model shows little loss in accuracy in comparison
to the finite element model. Frequency error for the second
mode is higher, while for other modes the error is lower than
for the finite element model.

Summary and Conclusions

This paper has described the application of the residual
flexibility test/analysis method to a large, very heavy
structure of the general size and weight of Space Station
modules. Measurement quality was addressed, and the
method was found to be reasonably robust with regard to
noise in the interface response measurements. The finite
element model updating procedure for the method as
practiced by the author was discussed in detail. First, the
model was correlated to free-free mode shapes in the
traditional manner. Next, the interface drive-point frequency
response functions were correlated to the measured functions.
Finally, the residual flexibility values were compared.

The accuracy requirement for the FRF comparison is
stringent for obtaining accurate residual values. If the
accuracy of analytical residual flexibility values is
unacceptable, i.e., not within errors of about 10-15 percent,
the model can be further modified in the interface regions to
provide better agreement between the test/analysis response
functions.

In conclusion, it has been shown that the free-boundary
test/updating process yielded a model that compared very
favorably with constrained test data, and with a model
correlated directly to fixed-base test data.  This direct
comparison of residual flexibility results with fixed-base
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testing is very significant. The work described in this paper
has addressed further the measurement and model updating
requircments for application of the residual flexibility
technique. The method is clearly applicable for cases where
the test article has interface drive-point frequency response
functions with prominent stiffness lines. In such cases,
experimental residual values are easily extracted, and
modeling changes are often identifiable in a straightforward
manner. The absence of stiffness lines in the response
functions complicates model updating, because it is not
readily apparent what part of the structure should be
modified. Model improvements in such cases may be
limited to further refinement of the free-free modes and
frequencies to obtain smaller frequency errors.
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Figure 3. Space Station Pathfinder In Modal Test Configuration

(s) First torsion, 7.84 Hz (b) X-swinging, 23.8 Hz {c) X-Y shear, 272 Hz

(d) First Y-bending, 33.8 Hz {e) First Z-bending, 40.5 Hz () Second torsion, 44.1 Ha

Figure 4. Experimental Free-Free Mode Shapes for Pathfinder
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Table 1. Post-Correlation Comparison of Test and Table 2. Residual Flexibility Values for Pathfinder,
Analytical Free-Free Modes for Space Station Pathfinder After Model Updates for Trunnions and Keel (9 elastic
free modes)

Mode Test Anal. Percent Mode Model Test Anal. Res. Percent
No. Freq. Freq. Error Orthog. Loc. Residuals, After Error
in/lb Updates, in/lb
1 7.84 7.68 -1.99 98674
43Y 8.8047E-06 8.4959E-06 -3.51
2 23.84 23.50 -1.46 -.99687
447 2.9883E-06 2.9958E-06 0.25
3 27.15 26.70 -1.65 .99443
45X 1.0674E-06** 1.0677E-06 ——-
4 33.78 34.33 1.61 -.99366
45Z 2.5723E-06 2.8873E-06 12.25
5 40.45 40.00 -Li2 99628
46Z 2.7196E-06 2.6947E-06 -0.92
6 44.10 44.60 1.15 .99062
47X 4, 1840E-07** 1.2492E-06 _—
7 53.41 53.98 1.06 .99481
472 2.7966E-06 3.1298E-06 11.91
8 59.22 . 5920 -0.04 92821
9 60.60 60.82 0.36 99415
**Confidence in experimental residual flexibility values for the
X-direction is low, because of noisy data and lack of prominent
stiffness lines.
o +ooe-01
1.00E+00 -( 1.00E+00
1.005-010' 1.00-01°" g
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Figure 5. Test/Analysis Keel Interface Y- Figure 6. Keel Test/Analysis Interface Y-
Responses Compared Before Model Correlation Responses Compared After Model Updates
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Table 3. Comparison of Constrained-Boundary Modes from
Constrained Test and Derived from Model Correlated to Free-Free Test
for Space Station Pathfinder

Test Test Anal. Denved Percent Mode
Mode Freq. Mode Anal. Freq.  Error Orthog.
Na Na
1 7.46 1 7.64 2.28 99789
2 13.28 2 14.29 7.52 -.99149
3 14.83 3 15.31 3.24 98658
(a) Strongback Structures
4 21.15 4 22.23 S5.11 -.96187
5 22.96 5 23.54 2.53 98309
b b 1) 1101 6 2684 6 2801 4.36 98533
1ol i T IR
sl LA 7 27.55 7 30.17 9.51 -.95029
YaN17aN\ 7
\é‘ ~— 8 31.04 8 32.18 3.67 -.98883
EEL.
>\ RN '\%\ 9 3425 9 3571 4.26 97942
10 39.71 It 43.59 9.77 -.95655
(b) Fixture with Flexure Interface Mechanisms u 42.70 10 42.58 0.28 -.98460

Figure 7.
Payloads

Universal Test Fixture for Shuttle

Table 5. Comparison of Pathfinder Constrained-Boundary

Table 4. Comparison of Test/Analysis Constrained-

Boundary Modes for Fixed-Base Test Configuration; Modes from Constrained Test and Derived from Residual

Model Tuned Directly to Constrained Test Data Flexibility Model

Test Test Anal. Anal. Percent  Mode Test Test Anal. Dertved Percent Mode

Mode Freq. Mode Freq.  Error Orthog. :\q/l:de Freq. I;I:de Anal. Freq. Error Orthog.

No No
| 7.46 . 722 326 100 1 7.46 1 751 0.67 99667
2 13.28 2 13.88 4.47 -0.99 2 13.28 2 14.43 8.66 -.99076
3 14.83 3 14.81 011 -0.98 3 14.83 3 15.22 2.63 -.98408
4 211s 4 2174 278 0.95 4 21.15 4 2215 473 -96753
5 72 96 5 22.53 -1.83 0.98 5 22.96 5 2299 0.13 98327
6 2684 6 2671 048 0.99 6 26.84 6 28.10 4.69 96414
2 a7ss 7 3090 1214 0.95 7 2755 7 30.12 9.33 94862
s 3104 8 3218 367 0.99 8 304 8 31.37 106 -97947
o 3425 o 3501 22 0.6 9 34.25 9 35.29 3.04 98262
10 3971 1 4524 13.94 09?2 10 39.71 11 43.15 8.66 -.95861
I 4270 o 4367 227 0.98 1" 42.70 10 42.63 016  -97709
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