Heat Conduction in Ceramic Coatings: Relationship between Microstructure and Effective Thermal Conductivity

Technical report for Task 2 (Second Year)

Contract Number: NAS3-97002

Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions:

- closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity;
- these results for one cavity have been incorporated to contrast heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects).

This problem constitutes a basic building block for further analyses, since the ellipsoidal shape covers a variety of practically important pore geometries.

The problem is formulated as the determination of the change in thermal conductivity due to inclusion. Namely:

$$\Delta Q = H \cdot G$$ (1)
where ΔQ is the heat flux change per reference volume V, G is the far-field temperature gradient and second rank tensor H is a function of the inclusion shape and the inclusion conductivity.

Mathematical considerations based on the analysis of the ellipsoidal shapes in the framework of Eshelby-type theory and on utilization of Green's function for the heat conduction problem in an unbounded medium, show that H has the following form:

$$H = \frac{V^*}{V} (k* - k_0) (A_1 ll + A_2 mm + A_3 nn)$$

(2)

where $V^* = \frac{4\pi}{3}a_1a_2a_3$ is the volume of the ellipsoidal inclusion with semi-axes a_1, a_2, a_3 with unit vectors l, m, n; $k*$ and k_0 are conductivities of the inclusion and of the matrix, correspondingly. Coefficients A_1, A_2, A_3 are given in terms of elliptic integrals (see Report for Task 1).

In the case when the inclusion is a spheroid ($a_1 = a_2 = a$), tensor H takes the form

$$H = \frac{V^*}{V} (k* - k_0) \left\{ 1 + \frac{k* - k_0}{k_0} f_0(\gamma) \right\}^{-1} (I - nn) + \left\{ 1 + \frac{k* - k_0}{k_0} (1 - 2f_0(\gamma)) \right\}^{-1} nn$$

(3)

or, in components:

$$H_{ij} = \frac{V^*}{V} (k* - k_0) \left\{ 1 + \frac{k* - k_0}{k_0} f_0(\gamma) \right\}^{-1} (\delta_{ij} - n_i n_j) + \left\{ 1 + \frac{k* - k_0}{k_0} (1 - 2f_0(\gamma)) \right\}^{-1} n_i n_j$$

(4)

where it is denoted:

- $\gamma = a/a_3$ - aspect ratio of the spheroidal inclusion,
- $n = n_1e_1 + n_2e_2 + n_3e_3$ - unit vector along the axis of symmetry of spheroid,
- $I = e_1e_1 + e_2e_2 + e_3e_3$ - unit second rank tensor,
- $f_0(\gamma) = \frac{1 - g(\gamma)}{2(1 - \gamma^2)}$, $g(\gamma) = \frac{\gamma^2}{\sqrt{\gamma^2 - 1}} \arctan\sqrt{\gamma^2 - 1}$ (for oblate shape, $\gamma > 1$),
- $g(\gamma) = \frac{\gamma^2}{2\sqrt{1 - \gamma^2}} \ln\frac{1 + \sqrt{1 - \gamma^2}}{1 - \sqrt{1 - \gamma^2}}$ (for prolate shape, $\gamma < 1$).
• In the case of spheroidal cavity (insulator, \(k_s = 0 \)) tensor \(H \) is as follows:

\[
H = -\frac{V^*}{V} k_0 \left\{ \frac{1}{1 + f_0(y)} (I - nn) + \frac{1}{2f_0(y)} nn \right\}
\]

(5)

• In the case of thin spheroidal cavity (\(\gamma \gg 1 \)):

\[
H = -\frac{V^*}{V} k_0 \left\{ \frac{1}{1 + \pi/(4\gamma)} (I - nn) + \frac{2\gamma}{\pi} nn \right\}
\]

(6)

• In the limit of a circular crack:

\[
H = -\frac{8a^2}{3V} k_0 nn
\]

(7)

• In the case of needle-shaped spheroidal cavity (\(\gamma \ll 1 \)):

\[
H = -\frac{V^*}{V} k_0 \left\{ \left[1 - \frac{1}{2} \left(1 + \gamma^2 - \gamma^2 \ln \frac{2}{\gamma} \right) \right]^{-1} (I - nn) + \left(1 + \gamma^2 - \gamma^2 \ln \frac{2}{\gamma} \right) nn \right\}
\]

(8)

In the approximation of non-interacting cavities (each cavity experiences the influence of the same far-field temperature gradient \(G \) unperturbed by the presence of other cavities), the heat energy potential \(\Delta \Omega \) for a solid with many cavities is obtained as follows (in terms of derived tensors \(H^{(i)} \) characterizing \(i \)-th cavity):

\[
\Delta \Omega = \frac{1}{2} G \cdot \left[\sum_i H^{(i)} \right] \cdot G
\]

(9)

For example, in the case of spherical cavities we have:

\[
\sum_i H^{(i)} = -\frac{3}{2} k_0 I \left[\frac{1}{V} \sum_i V^{(i)} \right] = -\frac{3}{2} pk_0 I
\]

(10)

\[
\Delta \Omega = -\frac{3}{4} pk_0 G \cdot G = -\frac{3}{4} pk_0 \left(G_1^2 + G_2^2 + G_3^2 \right)
\]

(10a)
where parameter p is the conventional porosity.

In the case of circular cracks we have:

$$\sum_{i} H^{(i)} = -\frac{8}{3} k_0 \left[\frac{1}{V} \sum (a^3 n n)^{(i)} \right] = -\frac{8}{3} k_0 a$$

(11)

$$\Delta \Omega = -\frac{4}{3} k_0 G \cdot a \cdot G$$

(11a)

where a is the second rank crack density tensor (well known in problems of effective elastic properties of cracked media).
Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions:

- closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity;
- these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects).

This problem constitutes a basic building block for further analyses.