Airborne Measurements of NO, NO₂, and NOᵢ as Related to NASA's Pacific Exploratory Mission

Final Report (NAG-1-1213)
Period of Performance 2/14/91 to 6/30/97

Submitted to:
Dr. Edward V. Browell, Project Monitor
National Aeronautics and Space Administration
Langley Research Center
Mail Stop 401A
Hampton, Virginia 23665

Submitted by:
Dr. Scott Sandholm
School of Earth & Atmospheric Sciences
Georgia Institute of Technology
Atlanta, Georgia 30332-0340

Phone: (404) 894-3895 or -3824
Fax: (404) 894-6670 or -5073
E-mail: sts@minitower.gtri.gatech.edu
Scientific Objectives

The Tropospheric Trace Gas and Airborne Measurements Group's (TTGAMG) efforts on NASA GTE (Global Tropospheric Experiment) PEM (Pacific Exploratory Mission) West A & B field campaign primarily involved the acquisition of NO, NO₂ and NO₃ measurements, as well as the subsequent analysis and interpretation of the data base obtained during the PEM West field campaign. These investigations focused on the distribution of trace gases, sources and sinks of ozone, ozone producing precursors with a heavy emphasize on ozone's photochemical state, and the partitioning of the molecules within the NO₃ family over the north western Pacific Ocean. The two components of PEM West were focused on observing air masses as they reached the Asian Continent (PEM West A) or as the air mass departed the Asian Continent (PEM West B).

NOₓ concentrations play a pivotal role in controlling the photochemical lifetime of ozone in these environments, and understanding the NOₓ species partitioning is paramount. The transport of NOₓ into the regions, in the form of longer lived NOₓ family members, was examined in relation to the comparison of natural occurring sources of NOₓ (i.e., lightning and stratosphere/troposphere exchange) to those produced as a result of anthropogenic activity (i.e., biomass burning and aircraft emissions). The TTGAMG's measurements of NOₓ and NO₃, in conjunction with other investigators' measurements of PAN (H. B. Singh's group) and HNO₃ (R. W. Talbot's group), have been used to assess the total reactive odd nitrogen levels over the study regions, the partitioning of the reactive odd nitrogen species in their various forms, and the usefulness of the NOₓ measurement and its measurement technique.

The TTGAMG's primary PEM West objectives were the characterization of the factors controlling the distribution and fate of reactive odd nitrogen compounds over the western Pacific Ocean and an analysis of the concentration of various trace gases in the troposphere as the air mass aged by both dynamical mixing and photochemical processes in the troposphere.

Summary of Results

From the data the science team collected during the PEM West A field mission, the TTGAMG took the lead role in developing a collaborative paper on the characterization of aged western Pacific air. This paper was presented at the first IGAC meeting in Eilat, Israel and was subsequently published in the JGR special issue on the results of PEM
West A. This paper, in conjunction with a series of papers by Gregory and Talbot, gave a detailed examination of the overall chemical composition of the air observed over the western Pacific Ocean during PEM West A. It also showed the importance of in situ NO\textsubscript{x} production by comparing the ratios of long lived hydrocarbons, which were used as relative "atmosphere processing" markers, to both NO\textsubscript{x} mixing ratios and anthropogenically produced species.

At the request of the GTE project office, the TTGAMG carried out an analysis of the GA TECH and the Nagoya University's NO and NO\textsubscript{y} measurements. After a preliminary report at the second PEM West A workshop, a Blue Ribbon Panel headed by Dr. Crosley was organized. As a result of the Blue Ribbon Panel's critical review of the PEM West A NO and NO\textsubscript{y} measurements and their measurement techniques, the TTGAMG made a couple of modifications to their sensor during the upload for PEM West B. A flow diffuser at the front end of the sampling probe, the capability to add zero grade air in flight to the NO\textsubscript{y} converters flow stream, and the ability to do HCN, HNO\textsubscript{3}, and n-propyl nitrate standard addition calibrations in flight were all added. The diffuser allowed us to maintain a high flow rate through the sampling probe at the upper altitudes without compromising our ability to keep from sampling large aerosols. The zero air additions allowed us to address our NO\textsubscript{y} converters so called "offset" or "bias" correction. In the past, zero grade air was used mainly as part of conversion efficiency tests, and only on the ground as part of preflight and postflight. NO values obtained while sampling bottled air in flight were generally at or below the LOD for the instrument and as a result we did not make any adjustments to our reported measurement. The ability to do HCN and n-propyl nitrate calibrations addressed the issue of what is really being converted in the hot converter and on the catalytic surface of the converter. It should be noted that NO\textsubscript{x} conversion efficiency tests conducted to date indicate that several "non-reactive" nitrogen compounds having less than a +2 oxidation state are being converted to a measurable NO signal in our system. These compounds include HCN, NH\textsubscript{3}, and CH\textsubscript{3}CN. In addition, the nitro-alkanes were converted (nitro-ethane, nitro-propane, etc. as does nitro-toluene).

Three papers are being reviewed by JGR covering our involvement in the PEM West B field campaign. The first is an instrument paper that covers modifications to our LIF sensor since it was last reported in the literature. The second covers the topic of NO\textsubscript{x} and the data the TTGAMG collected over the last ten years on various NASA GTE field programs. It also addresses the troubles and difficulties in collecting and analyzing data from what one would initially think is a very simple instrument and the definition of what constitutes being a molecule included in the NO\textsubscript{x} family. The third revolves around the comparison of the chemical signatures between air mass classes from the PEM West experiments over the western Pacific Ocean. In this paper, we compare the use of chemical signature air mass classification schemes with a back-trajectory method to elucidate some of the similarities and variations between autumn (PEM West A) and winter (PEM West B) data sets. This paper investigates the difference between the seasonal change in atmospheric processing and the effect on the NO\textsubscript{x} relationships with the hydrocarbon ratios.
Publications (Co-Authored), Submitted for Publication

Presentations

Undergraduate Student Researchers Associated with the Project

Mr. Harold Arnold
Mr. Robert Burgess
Mr. Stephen Donald
Mr. Atul Kanvinde
Mr. Kevin Levron
Mr. William Mitch
Mr. Ram Movva
Mr. Erwin Oei
Mr. Vikram Reedy
Ms. Christy Robb
Mr. Brian Shumaker
Ms. Nicole Shumaker
Ms. Sandra Simms

Graduate Student Researchers Associated with the Project

Mr. Rongpo Bai
Ms. Deanna Dougherty
Ms. Sally Hamlin
Mr. John Olson
Mr. Walter Patterson
Mr. Chris Riggins
Ms. Amy Tilgham

Post Doctoral Researchers Associated with the Project

Dr. Scott Smyth
Dr. Xiaonan Zheng