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Abstract

EUPDF is an Eulerian-based Monte Carlo PDF solver developed for

application with sprays, combustion, parallel computing and unstructured

grids. It is designed to be massively parallel and could easily be coupled

with any existing gas-phase flow and spray solvers. The solver accommodates

the use of an unstructured mesh with mixed elements of either triangular,

quadrilateral, and/or tetrahedral type. The manual provides the user with

the coding required to couple the PDF code to any given flow code and a basic

understanding of the EUPDF code structure as well as the models involved

in the PDF formulation. The source code of EUPDF will be available with

the release of the National Combustion Code (NCC) as a complete package.
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I. Nomenclature

A

a__

Cn

D

Ea

h

J:
k

Mi
mk

Ik,e//

Ni
Nm

nk

P

P

R_

r

S_

S_

_mlc

_rnle

S._tm

_mls

T

t

Ui

Wc_

Xi

X

pre-exponential coefficient in an Arrhenius reaction-rate term

outward area normal vector of the nth surface, m 2

specific heat, J/(Kg K)

convection/diffusion coefficient of the nth face, kg/s

turbulent diffusion coefficient, m2/s

activation energy in an Arrhenius reaction-rate term

specific enthalpy, J/Kg

diffusive mass flux vector, Kg/ms

turbulence kinetic energy, m2/s 2

molecular weight of ith species, kg/kg-mole

droplet vaporization rate, Kg/s

effective latent heat of evaporation, J/Kg

number of time steps employed in the PDF time-averaging scheme

number of surfaces contained in a given computational cell

total number of Monte Carlo particles per grid cell

total number of computational cells

number of droplets in kth group

pressure, N/m 2

Prandtl number

joint scalar PDF

gas constant, J/(Kg K)

radial coordinate (gas-phase equations), m

liquid source contribution of the c_ variable

Schmidt number

liquid source contribution of the gas-phase continuity equation

liquid source contribution of the gas-phase energy equation

liquid source contribution of the gas-phase momentum equations

liquid source contribution of the gas-phase species equations

temperature, K

time, s

velocity component in the ith direction, m/s

chemical reaction rate, 1/s

Cartesian coordinate in the ith direction, m

mass fraction of jth species

spatial vector

greek symbols
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r_
At

_tf
_V

P

x
_7

¢

T

turbulent diffusion coefficient, kg/ms

local time step used in the PDF computations, s

local time step in the flow solver, s

computational cell volume, m a

Dirac-delta function

species mass fraction at the droplet surface

rate of turbulence dissipation, rn2/s a

thermal conductivity, J/(ms K)

dynamic viscosity, kg/ms

density, kg/m a

mole fraction

dimensionality of _-space

independent composition space

turbulence frequency, 1/s

stress tensor

superscripts

" Favre averaging

- time averaging or average based on the Monte Carlo

particles present in a given cell

/t fluctuations

subscripts

a scalar variable of the joint PDF

f represents conditions associated with fuel

9 global or gas-phase

i coordinate or specie indices

j specie indices

k droplet group or liquid phase

l liquid phase or laminar

rn conditions associated with Nm

n nth-face of the computational cell

o initial conditions or oxidizer

p grid cell

s represents conditions at the droplet

surface or adjacent computational cell

t conditions associated with time

, partial differentiation with respect

to the variable followed by it
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II. Introduction

The gas-turbine combustor flows are often characterized by a complex

interaction between various physical processes associated with the interaction

between the liquid and gas phases, droplet vaporization, turbulent mixing,

heat release associated with chemical kinetics, radiative heat transfer as-

sociated with highly absorbing and radiating species, among others. The

rate controlling processes often interact with each other at various disparate

time and length scales. In particular, turbulence plays an important role

in determining the rates of mass and heat transfer, chemical reactions, and

liquid phase evaporation in many practical combustion devices. Most of the

turbulence closure models for reactive flows have difficulty in treating non-

linear reaction rates. 1-2 The use of assumed shape PDF methods was found

to provide reasonable predictions for pattern factors and NOx emissions at

the combustor exit. However, their extension to multi-scalar chemistry be-

comes quite intractable. The solution procedure based on the modeled joint

composition PDF transport equation has an advantage in that it treats the

nonlinear reaction rates without any approximation. This approach holds

the promise of modeling various important combustion phenomena relevant

to practical combustion devices such as flame extinction and blow-off limits,

and unburnt hydrocarbons (UHC), CO, and NOx predictions. 2

However, in the PDF transport equation, all of the composition variables

are present as independent variables in addition to the space and time vari-

ables. Because of the large dimensionality of a joint scalar PDF transport

equation, a deterministic solution becomes impractical. 2 However, Monte

Carlo methods are better suited over other numerical methods because of

the advantage that the computational effort rises only linearly with the di-

mensionality of the PDF. But they tend to be computationally very time

consuming and require a large computer memory for application to 3D flows.

However, the success of any numerical methodology used in the study of

practical combustion flows depends not only on the modeling and numeri-

cal accuracy considerations; but its applicability would be dictated mainly

by the available computer memory and turnaround times afforded by the

present-day computers.

Other than some simple cases, there is a limited experience with the

application of the PDF method based on the solution of the PDF transport

equation to the calculations involving three-dimensional practical combus-

tion flows. 3 With the aim of demonstrating its viability to the modeling of

practical combustion flows, we have undertaken the task of extending this

technique to: (1) the modeling of sprays in order to facilitate simulation of

gas-turbine combustion flows, (2) parallel computing in order to facilitate

large-scale combustor computations, and (3) unstructured grids in order to



facilitate computationsoncomplexcombustiongeometries.Also, severalnu-
merical techniquesare outlined for overcomingsomeof the high computer
time and storagelimitations associatedwith the Monte Carlo simulation of
practical combustorflows.

Someof our previousworkon the Monte Carlosimulation couldbefound
in Refs. 4 to 7. Initially, the emphasisof our work wasonextending thejoint
scalar Monte Carlo PDF method to the modeling of compressiblereacting
flows.4The MonteCarlo solverwasusedin conjunction with severaldensity-
basedcodesfor the mean-velocityand turbulence fields. Severalaveraging
proceduresintroduced in Refs. 4 and 5 proved to be useful in providing
smoothMonte Carlosolutionsto the CFD solver.The PDF method provided
favorable resultswhenapplied to severalsupersonicdiffusion flames.4-s

Later on this approachwas further extended to the modeling of spray
flames and parallel computing.6 This method combined the novelty of the
PDF method with the ability to run on parallel architectures. This algo-
rithm was implementedon the Cray T3D at NASA Lewis ResearchCenter,
a massivelyparallel computer, with an aggregateof 64 ProcessorElements
(PEs). The computer code was written in Cray MPP (Massively Parallel
Processing)Fortran. The application of this method to both openaswell as
confinedaxisymmetric swirl-stabilized spray flamesshowedgood agreement
with the measureddata.6 Preliminary estimates indicated that it was well
within modernparallelcomputer's capacityto do a realistic gas-turbinecom-
bustor simulation on grid sizesof 125,000nodesand a total of 12.5million
Monte Carlo particles with reasonableturnaround times.

It is well known that considerableeffort usually goesinto generating
structured grid meshesfor gridding up practical combustorgeometrieswhich
tend to be very complex in shapeand configuration. The grid generation
time could be reduced considerablyby making useof existing automated
unstructured grid generators,s With the aim of advancingthe current multi-
dimensionalcomputational tools usedin the designof advancedtechnology
combustors,wehave recently extendedthis techniqueto unstructured grids
following theguidelinesestablishedfor the developmentof the National Com-
bustion Code (NCC)/NCC is beingdevelopedin the form of a collaborative
effort betweenNASA LeRC, aircrMt enginemanufacturers,and severalother
governmentagenciesand contractors.9 Someof the salient features of our
work in Ref. 7 are summarizedbelow:

(1) The scalar Monte Carlo PDF solver has beenextended in a cell-
centered,finite volume context to mixed unstructured grid elementsof tri-
angular, quadrilateral, tetrahedron, wedge,and hexahedronelements.

(2) The PDF codewasrewritten in Fortran 77with PVM calls for par-
allel computingwhich enablesthe computationsto be performedwith equal
easeon both massivelyparallel computersas well as workstation clusters.



(3) The PDF module was coupled with Pratt and Whitney's
CORSAIR1° - an unstructured flow solver, and LSPRAYn - a Lagrangian
spraysolver,which wereselectedto be the integral componentsof the NCC
cluster of modules. LSPRAY was developedfor application with unstruc-
tured grids and parallel computing.

(4) Our experiencehasshownthat by introducing the concept of local
time-stepping into the Monte Carlo PDF computations, we were able to
avoid the occurrenceof the so-calledfrozencondition3and, thereby,able to
computethe solution with the useof a relatively fewernumberof stochastic
particles in flows characterizedby recirculation, swirl, and boundary layers.

(5) The effect of temperature variation was taken into account in the
evaluation of both temperature and specificenthalpy of a gaseousmixture.

(6) The PDF solverreceivesthe mean-velocityandturbulencefieldsfrom
the flow solver and the sourceterms arising from the liquid-phasecontribu-
tion from the spray solver. It in turn provides the speciesand temperature
solution to the spray and CFD solvers.

The PDF method seemsto provide favorableagreementwhen applied
to severalsupersonicdiffusion flamesaswell asseveralother swirl-stabilized
spray flames.4-7

III. Composition Joint PDF Equation

The transport equation for the density-weighted joint PDF of the com-

positions, i5, is:

[¢_].,+ [_,_]._, + [¢wo(_0)_]._o=

{Mean convection} {Chemical reactions}

,, !J_._-[p < u_ I ¢ > _1,_,- [_ < I _ > _].¢o
-- _0 , s --

{Turbule_t convection} {Molecular mixing}
1

-[_ < -so I ¢__> #],¢o
P

{Liquid - phase contribution}

(1)

where

Wc_
tt<u, I¢__>

tl9 II_gl __

< Is

= chemical source term for the c_-th composition variable,

= conditional average of Favre velocity fluctuations,

-- conditional average of scalar dissipation, and

= conditional average of spray source terms.



The terms on the left hand side of the above equation could be evalu-

ated without any approximation but the terms on the right hand side of the

equation require modeling. The first term on the right represents transport

in physical space due to turbulent convection? Since the joint PDF,/3, con-

tains no information on velocity, the conditional expectation of < u_I ] _ >

needs to be modeled. It is modeled based on a gradient-diffusion model with

information supplied on the turbulent flow field from the flow solver. 2

I!- < ui I_ > f, = r,_,=, (2)

The second term on the right hand side represents transport in the

scalar space due to molecular mixing. A mathematical description of the

mixing process is rather complicated and the interested reader is refered to

Ref. 2. Molecular mixing is accounted for by making use of the relaxation

to the ensemble mean submodel a as it seemed to provide rather satisfactory
results. 12

1 jc_ __< - i,=,I¢ >=-c¢_(¢_- _) (3)
P

The third term on the right hand side represents the contribution fi'om

the the spray source terms. The conditional average is modeled based on the

average values of species and enthalpy:

1 1
< -s_ I_ >= _ _kmk((_. -- ¢_)

p - /_AV

where ¢_ = Y_,c_ = 1,2,...,s = a - 1

(4)

1 1
< -_. I ¢ >= _ _mk(-t_,.:: + h_. - ¢_) (5)

p - t3AV

where ¢o = h.

where e_ is a mass fraction of the evaporating species at the droplet surface.

Here we assumed that the spray source terms could be evaluated independent

of the fluctuations in the gas phase compositions of species and enthalpy. Eqs.

4 to 5 represent the modeled representation for the conditional averages of

the spray contribution to the PDF transport equation.

IV. Solution Algorithm

In order to facilitate the integration of the Monte Carlo PDF method

in a finite-volume context, the volume integrals of convection and diffusion

in Eq. (1) were first recast into surface integrals by means of a Gauss's

theorem. 3 Partial integration of the PDF transport eqnation would yield:

9



cpAt c, At ,

_p(¢,t + At)= (1 _£-y)_p(¢,t) + E T£-y_(o__,t)

- zxt[wo(¢)_],¢o- zxt[< 1-jL I¢ > _].¢o- zxt[< ls_ I¢ > _],_o (6)
-- p '' _ p --

with subscript n refers to the nth-face of the computational cell. The coeffi-

cient cn represents the transport by convection and diffusion through the nth

face of the computational cell, p. The convection/diffusion coefficients in the

above equation are determined by one of the following two expressions:

2a_.a_n

c. = r_(/,,v_ +/',v. ) + ma_[O,-_a.._.]

2a__.a n

c,_= rnax[lO.5ba,_.Unl,r_(AVp + AV_) ]- 0.Spa__,.u__

and

Cp _ E Cn

n

In both the above expressions for cn, a cell-centered finite-volume derivative

is used to describe the viscous fluxes; but an upwind differencing scheme is

used for the convective fluxes in the first expression and a hybrid differencing
scheme in the second.

Numerical Method Based on Approximate Factorization

The transport equation is solved by making use of an approximate fac-

torization scheme. 2 Eq. 6 can be recast as

_.(¢,t + _t)=

(I + AtR)((I + AtS)(I + AtM)(I + AtT)_p(¢,t) + O(At 2) (7)

where I represents the unity operator and T, M, S, and R denote the opera-

tors associated with spatial transport, molecular mixing, spray, and chemical

reactions, respectively. The operator is further split into a sequence of inter-

mediate steps:

i6;(¢,t) = (I + AtT)_p(¢,t) (s)
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_*v'(_,t) = (I + AtM)_*p(_,t) (9)

= (I + AtS)_*p*(C__,t) (lo)

15v(¢__,t + At)= (I + AtR)ff_-*(C__,t) (11)

The operator splitting method provides the solution for the transport of i6

by making use of a Monte Carlo technique. In the Monte Carlo simulation

the dentity weighted PDF at each grid cell is represented by an ensemble

of Arm stochastic elements where the ensemble-averaged PDF over Nm delta

functions replaces the average based on a continuous PDFfl

1 Nm

/Svm(_b) =</?P(_) >= N----_y_ 5(4 - q_n) (12)
n----1

The discrete PDF i5;m(_) is defined in terms of Nm sample values of d '_,

n = 1, 2, 3...Nm. The statistical error in this approximation is proportional

to Na_/2.

Using the operator splitting method, the solution for the PDF transport

equation is obtained sequentially according to the intermediate steps given

by Eqs. 8 to 11.

Convection/Diffusion Step

The first step associated with convection/diffusion is given by:

15;(¢__,t)= (I + AtT)_p(_,t) =

(1 cvAt c_Att)+ E (13)

This step is simulated by replacing a number of particles ( = the nearest

integer of _ _AV , at c}p(t) by randomly selected particles at _n(t)

Numerical Issues Associated With Fixed Versus Variable Time Step

11



It is obvious from the above equation that a necessary criterion for

stability requires satisfaction of _ < 1. This restriction needs to be
_AV

satisfied for all grid nodes at the same time. However, this criterion tends

to be too restrictive for applications involving complex combustor chamber

flows where resolution considerations require concentration of the grid lines

more in certain regions of the flowfield than the others. For example, more

grid lines are clustered in regions where boundary layers are formed. The

time step as determined by a limited region in the computational domain

can lead to a frozen condition in some other nodes where there may be no

elements for shifting across the neighboring cells. In order to avoid this frozen

condition, the following criterion

cn A t Nm
> 1

_AV

has to be satisfied at all grid nodes; but such a restriction could invariably

lead to a prohibitively large cpu time. Scheurlen et al. 3 were the first ones to

recognize the limitations associated with the use of a fixed time step in the

Monte Carlo PDF computations.

However, our experience has shown that this problem can be overcome

by introducing the concept of local time-stepping which is a convergence

improvement technique widely used in many of the steady-state CFD com-

putations. In this approach, the solution is advanced at a variable time step

for different grid nodes. In our present computations, it is determined based

on

pAV

At = min(CtfAt/, C_(cn + State) )

where Ct/ and C_ are constants and were assigned the values of 4 and 2.5,

respectively, At/ is the local time step obtained from the flow (CORSAIR)

module, and S,_zc = _ nkmk. The time step is chosen such that it permits

transfer of enough particles across the boundaries of the neighboring cells

while ensuring that the time step used in the PDF computations does not

deviate very much from the time step used in the flow solver.

Molecular Mixing Step

The second step associated with molecular mixing is given by

d¢_
- C¢_(¢_ -¢_) (14)

dt

The solution for this equation is updated by:

- 9,_)e

where w = c/k, and C¢ was assigned a value of 1.

(15)
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Spray Step

The third step associated with the spray contribution is given by

d_G 1

dt - _/xV E nkmk(_o-- _)

where _b_ = Y,_,a = 1,2, ...,s = er - 1

(16)

d¢_ 1

dt _/xv F, '_kmk(--lk,_11+ hks - 6_) (17)

where _ba = h.

The solution for the above equations is upgraded by a simple explicit

scheme:

At _. nkrnk At _. nkrnk

G** = _ _av + _**(1 _av ) (is)

wherea <cr-- 1

At _. nkrnk **
G** -- _aV (-l_,e. + hks) + G (1 at___E,Wnk)paV " (19)

where a = _r.

After a new value for enthalpy is updated, temperature is determined

iteratively from the following equation:

where

No- _ 1

h = E u,h, (20)
i=1

hi = h°]i + CpiyidT,
el

R_,

Cpi - Wii (Ali q- A2iT + A3iT 2 + A4iT 3 + AsiT4),

h_i is the heat of formation of ith species, and R_ is the universal gas constant.

Reaction Step

Finally, the fourth step associated with chemical reactions is given by:

de,dr 9 ,','jP@)o.2_(,1__o " ep¢°_.25 -(-_)_-ur A(-77- ' (21)

13



where_b_= Yr.

d¢o

dt

where _b_ = Yo.

where _b_ = h.

u WoatPC/)f _o.2stP¢o _1.25_-(_)
°--'"-if-i,' '-W2' TP y o

(22)

dpqbo
- 0 (23)

dt

The numerical solution for Eqs 20-23 is integrated by an implicit Eu-

ler scheme, a3 The resulting non-linear algebraic equations are solved by the

method of quasi-linearization. TM

Details of combustion chemistry

Combustion is modeled by finite-rate kinetics with a single step global

mechanism of Westbrook and Dryer is for n-heptane. This global combustion

model is reported to provide adequate representation of temperature histories

in flows not dominated by long ignition delay times. For example, the overall

reaction representing the oxidation of the n-heptane fuel is given by

C7H16 -4- 11(O2 + 3.76N2) ---+

7C0: + 81120 + 41.36N: (24)

Because of the constant Schmidt number assumption made in the PDF

formulation, based on atomic balance of the constituent species, the mass

fractions of N2, C02, and H20 can be shown to be related to the mass

fractions of O: and C7H16 by the following expressions:

YH_O = K2 - KI K2Yo2 - K2yCTH_6

YCO2 = K2K3 - K1K2K3yo2 - K2K3ycTH16

YN2 = 1 -- K2 - K2K3 - y02(1 - KaK2 - K1K2K3)-

yCTH,6(1 -- K2 - I¢:K3)

(25)

where K1 = 4.29, K2 = 0.08943, and K3 = 2.138.

Using Eq. 25 results in considerable savings in computational time as it

reduces the number of variables in the PDF equation from five (four species

and one energy) to three (two species and one energy).

Revolving Time-Weighted Averaging

14



It is noteworthy that although local time stepping seems to overcome

some of the problems associated with the PDF computations, the application

of the Monte Carlo method requires the use of a large number of particles

because the statistical error associated with the Monte Carlo Method is pro-

portional to the square root of Arm which makes the use of the Monte Carlo

method computationally very time consuming. However, a revolving aver-

aging procedure used in our previous work 4 seems to alleviate the need for

using a large number of stochastic particles, Arm, in any one given time step.

In this averaging scheme, the solution provided to the CFD solver is based on

an average of all the particles present over the last Nay time steps instead of

an average based solely on the number of particles present in any one single

time step. This approach seemed to provide smooth Monte Carlo solutions

to the CFD solver and, thereby, improving the convergence of the coupled

CFD and Monte Carlo computations. The reason for improvement could be

attributed to the average being based on NavNm particles instead of Arm.

Here, it is assumed that the solution contained in different time steps to be

statistically independent of each other.

V. Parallelization

There are several issues associated with the parallelization of the PDF

computations. The goal of the parallel implementation is to extract maxi-

mum parallelism so as to minimize the execution time for a given application

on a specified number of processors. 16 Several types of overhead costs are as-

sociated with parallel implementation which include data dependency, com-

munication, load imbalance, arithmetic, and memory overheads. Arithmetic

overhead is referred to the extra arithmetic operations required by the paral-

lel implementation and memory overhead refers to the extra memory needed.

Excessive memory overhead reduces the size of a problem that can run on a

given system and the other overheads result in performance degradation. 16

Any given application usually consists of several different phases that must

be performed in certain sequential order. The degree of parallelism and data

dependencies associated with each of the subtasks can vary widely. 16 The

goal is to achieve maximum efficiency with a reasonable programming effort.

In our earlier work, we discussed the parallel implementation of a spray

algorithm developed for the structured grid calculations on a Cray T3D. 6

These computations were performed in conjunction with the application of

the Monte Carlo PDF method to spray flames. The parallel algorithm made

use of the shared memory constructs exclusive to Cray MPP (Massively Par-

allel Processing) Fortran and the computations showed a reasonable degree

of parallel performance when they were performed on a NASA LeRC Cray

T3D with the number of processors ranging between 8 to 32. Later on, the

extension of this method to unstructured grids and parallel computing in

15



4-- PE 1

Fig. 1 An illustration of the parallelization

strategy employed in EUPDF.

Fortran 77 with PVM calls was reported in Ref. 7. The Fortran 77 ver-

sion offers greater computer platform independence. In this section, we only
highlight some important aspects of parallelization.

In the domain decomposition employed, the domain of computation is

simply divided into n-parts of equal size and each part is solved by a different

processor. Fig. 1 illustrates a simple example of the domain decomposition

strategy adopted for the gas-phase computations where the total domain is

simply divided equally amongst the available computer processing elements

(PEs). In this case, we assumed the number of available PEs to be equal to
four.

At the beginning of the computation, all the information that is needed

from the adjoining cells in computing the cell-face variables at the boundaries

of the interface separating two neighboring processor-domains is obtained

from the appropriate processors and stored in ghost cells. And interproces-

sor communications are performed only at the beginning of integration step

as the need arises. With the domain decomposition adopted, all the stages of

a single PDF integration step involving the spatial transport, molecular mix-

ing, spray, and chemical kinetics lend themselves perfectly to parallel com-

puting. Therefore, the Monte Carlo simulation is ideally suited for parallel

computing and the run time could be considerably minimized by performing

16



I START I

I !

! II

I READ PARAMETERS & GEOMETRIC DATA
/ Listed in
" _ Appendix III

CALL SPRAY_PDF_READ_PARAMETERS !

..... _ Listed in Appendix Vl

T RER Nj_-----[INITIALIZE ..__--_ ,C_CA__LLP__DF_IN_: _ RU _ RERUN

I-I_-A--LIZEPDI ="_/-AR-/A-BL-E-S] ItREAD PDF RESTART FILES 11L
T I-

I
INITIALIZE _ CALL SPRAY INT RERUN ;_'_IRERUN

I INITIALIZE..... SPRAY VARIABLES] -IREAD SPRAY RESTART FILES _i1
1 I r

INITIALIZE I _ CRERUN) _ I RERUN

I INITIALIZE FLOW VARIABLES I

I I
I READ FLOW RESTART FILES I

_1.
I-C-ALLDC-I:R TO ADVANCE SPRAY EQUATIONS ]
L I. I

I CALL PDF TO ADVANCE PDF EQUATIONS q,
L /

I ADVANCE FLOW EQUATIONS I

YES ,_]_11,_l_rllt_ _

[CALL SPRAY_PDF_OUTPUT _1_ Listed in Appendix VII
I mm--I

NO

..... .-.-] .....

IOUTPUTI
I

ISTOPI
Fig. 2 The overall flow structure of the combined flow, LSPRAY, ad EUPDF solvers.
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the computations on a massively parallel computer.

VI. Details of the Coupling With the Flow & Spray Solvers

The PDF module is designed so that it could easily be coupled with

any of the existing unstructured-grid flow and spray solvers. If geometric

grid parameters - e.g. area vectors, grid connectivity, etc., were supplied

separately, it could even be coupled with any of the existing structured-grid

flow solvers. However, the present release of the code relies on the other

modules of NCC for obtaining that information.

The structure of the PDF solver is so designed that only a minimal

amount of code modifications needs to be made within the flow and spray

solvers for their coupling with EUPDF. The present version of the module

relies entirely on the use of the Fortran common blocks for information ex-

change between the various modules. Even this reliance should entail only

few changes to be made within the PDF code for linkage with different solvers.

The coupling issues could be understood better through the use of a

flow chart shown in Fig. 2. The chart contains several blocks - some shown

in solid lines and others in dashed lines. The ones in solid blocks represent

the flow chart that is typical of most flow solvers. The ones in dashed blocks

represent the coupling required for adding the spray and PDF solvers. The

details on the spray blocks are not provided in this report as they could

be found in the separate reference. 11 It should be borne in mind that the

PDF solver could be run without the spray solver and vice-versa as they are

independent.

The flow chart for a typical flow solver begins by calling several routines

- some for initiating the established PVM protocol for parallel computing

and the others for spawning children of the same processes so that the com-

putations could be performed simultaneously on various PEs participating

in the parallel computing environment. It is followed by a routine to read

various initial parameters. The geometric data could be either read directly

or created by the inclusion of appropriate calling routines needed for grid

generation. Then, the initial conditions for the flow variables need to be

either specified or read from the restart files if it is a rerun. The thermody-

namic and transport properties are then updated before advancing the flow

equations over a series of time steps until the desired number of iterations

are reached. Finally, the program is terminated after writing the output data

on the separate restart and standard files.

The coupling starts with the addition of a calling routine

spray_pdf_read_parameters - to read the spray and PDF control parame-

ters followed by calls to the restart or initialization routines: pdf_int_rerun

followed by spray_int_rerun. Then, calls to dclr and pdf were made in
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order to advance the spray and PDF equations in a sequential order be-

fore advancing the flow equations. It should be borne in mind that if the

PDF solver is invoked, the thermodynamic and transport properties would

be evaluated by the routines contained within the PDF solver instead of the

ones contained in the flow solver. Finally, spray_pdf_output and outpdf2

routines are included for outputting the PDF and spray data on appropriate
restart and standard files.

Appendix I contains a listing of all of the Fortran subroutines and func-

tions used in EUPDF.

A brief description of each one of these routines is provided in Appendix

II.

Appendix III contains the listing of a subroutine which is used for read-

ing some of the control and other associated parameters involving LSPRAY

and EUPDF solvers.

Appendix IV contains a list of some Fortran variables used by EUPDF.

Appendix V contains a list of the geometric variables used by EUPDF

which are currently supplied by the flow code of NCC.

Appendix VI contains a subroutine for initialization and restart of the

PDF computations. For the case of initialization, the PDF variables are

initialized based on the solution provided by the flow solver. For the case of

restart, the the PDF variables are read from a previous solution.

Appendix VII contains the listing of subroutines spray_pdf_output

and outpdf2 which are for writing output data from LSPRAY and EUPDF

codes on separate standard and restart files.

Appendix VIII contains an example of the partial listings of code initi-

ation for coupling LSPRAY and EUPDF with a gas flow solver.

Appendix IX contains a listing of all subroutines and functions used

in the evaluation of the thermodynamic and transport Properties which are

used not only in EUPDF but also in the flow solver as well as in LSPRAY.

These subroutines include retinp, props_ther, props_tram

get_kt_and_cp_lo c_m es, find_inverse_molecular_weight_rues, and
find_h_mcs.

The last appendix provides an example of the summary of the CPU times

taken by CORSAIR and EUPDF for the case of a confined swirl-stabilized

spray flame when the computations were performed on a LACE cluster at

NASA LeRC.

VII. Concluding Remarks

A Monte Carlo technique has been outlined for the computation of spray

flames on unstructured grids with parallel computing. The method outlines

several techniques designed to overcome some of the high computer time and

storage limitations associated with the Monte Carlo simulation of practical
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combustor flows. The viability of the present method for its application to

the modeling of practical combustion devices is demonstrated through the

ease with which grids could be generated for complex combustor geometries

by the use of automated unstructured mesh generators and the ability to run

the computations on massively parallel computers.
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Appendix I

Table 1. A List of EUPDF Fortran Subroutinesand Functions.

Number

.

2.

3.

4.

.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Name of the routine

chem2

coettiv()
convec

find_h_mcs()

Code released with

NCC/Description page

25

25

25

25

find_inverse_molecular_weight_mcs()

get_kt_and_cpJoc_mcs()
molmix

outpdfl()

outpdf2()

pdf

pdf_int_rerun

prnt()

props_ther

props_tran

rctinp

replac

spray

spray_pdf_output

spray_pdf_read_parameters

26

26

26

26

26

26

27

27

27

27

27

27

27

27

27

Code page/

User's manual

61

60

58

46

39

53

43

29

23





Appendix II

Description of EUPDF Fortran Subroutines and Functions

1. subroutine chem2:

PURPOSE: This subroutine integrates the chemical kinetics step

of the PDF solution which is especially tailored

to solve a single step global mechanism of the Westbrook

and Dryer for n-heptane oxidation.

2. subroutine coeffiv(axyzp,d):

PURPOSE: Computes convection/diffusion coefficients based on

a cell-centered finite-volume derivative for diffusion

and a upwind or hybrid differencing scheme for the

convection.

3. subroutine convec:

PURPOSE: This is the controlling routine for the integration

of the convection/diffusion step.

(i) Computes the convection/diffusion coefficients by

calling the subroutine coeffiv.

(2) Converts the decimal numbers into integer numbers

which represent the number of particles to be

transferred across the neighboring cells.

(3) Loads the random numbers into appropriate arrays

which are used in determining the particles that

need to be transferred across neighboring cells.

(4) Moves particles across different neighboring cells

based on the computed convection/diffusion

coefficients by calling the subroutine replac.

4. function find_h_mcs(element,centroid):

PURPOSE: Computes specific enthalpy at a nodal point of the

computational grid.
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5. function find_inverse_molecular_ weight_mcs(element,centroid):

PURPOSE: Computes inverse of the molecular weight of a gaseous

mixture at a nodal point of the computational grid.

6. subroutine get_kt_and_cp_loc_mcs(ijk,centroid):

PURPOSE: Computes specific heat and thermal conductivity of a

gaseous mixture at a nodal point of the computational

grid.

7. subroutine molmix:

PURPOSE: This is a routine for computing transport in scalar space

due to molecular mixing. It uses the relaxation to the

ensemble-mean molecular mixing model.

8. subroutine outpd_(ncyc):

PURPOSE: Calculates the residuals for the PDF solution.

9. subroutine outpdf2(ncyc):

PURPOSE: Outputs the PDF solution to restart files.

10. subroutine pdfi

PURPOSE: This is the main controlling routine for the

Monte Carlo PDF solver. It updates the pdf

solution through a series of calls to different

subroutines and returns control back to the

calling routine. It also performs the following

functions:

(i) controls interprocessor communications.

(2) calculates the average value of scalars over particles.

(3) transfers the time-averaged PDF solution into

corresponding arrays of the conventional CFD

solver.

(4) computes thermodynamic and transport properties.

(5) computes the residual terms.
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11. subroutine pdLint_rerun:

PURPOSE: This routine is used either to initialize the Monte

Carlo PDF computations or to restart the PDF computations

from the output of a previous PDF calculation.

12. subroutine prnt(aass,phig,nbc,nnode,np,ipid, nstart,nend,iul):

PURPOSE: I/O print out.

13. subroutine props_ther:

PURPOSE: This routine computes enthalpy, specific heat, and

density.

]4. subroutine props_ran:

PURPOSE: This routine computes transport properties.

15. subroutine rctinp:

PURPOSE: Initializes parameters used in the thermodynamic

and transport property evaluation as well as in

the chemical kinetics scheme.

16. subroutine replac:

PURPOSE: Moves particles across different neighboring cells

during the convection/diffusion step.

17. subroutine spray:

PURPOSE: Updates PDF solution associated with the contribution

arising from the liquid-phase source terms.

18. subroutine spray_pdLoutput:

PURPOSE: This routine writes output data from EUPDF _ LSPRAY

computations to restart and standard-output

files.

19. subroutine spray_pd_read_parameters:

PURPOSE: This routine reads controlling parameters associated

with the EUPDF and LSPRAY solvers. Based on the controlling

parameters read, it might invoke an initialization routine

of the EUPDF solver which is needed in the thermodynamic

transport properties evaluation.
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Appendix III

A Subroutine Listing For the Read Parameters of LSPRAY and

EUPDF

c

C

C ------

c

subroutine spray_pdf_read_parameters

include 'dcfslog.i'

include 'dcfslog_rw.i'

c PURPOSE: This routine reads controlling parameters associated

c with the EUPDF and LSPRAY solvers. Based on the controlling

c parameters read, it might invoke an initialization routine

c of the EUPDF solver which is needed in the thermodynamic &

c transport properties evaluation.

C

c FORM OF CALL: call spray_pdf_read_parameters

C

c

c ADDITIONAL I/O:

c

c INPUT: spray_pdf_parameter_input

c

c OUTPUT: None

C

C

C

c ispray controls turning on or off spray computations.

c ispray = .TRUE. - turns on spray computations.

c = .FALSE. - otherwise.

c

c idread controls reading or not from restart files for

c spray computations.

c idread = .TRUE. - restarts from previous runs.

c = .FALSE. - starts from initial conditions.

c

c ispray_mod= This variable controls calls to the spray

c solver. The spray solver is called once at

c every ispray_mod times of CFD iterations.
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c

c ipread = Assigned unit number for the file: liquid_input.

c idread = Assigned unit number for the file: liquid_results.

c idread2= Assigned unit number for the file: liquid_results_ini.

c idwrit = Assigned unit number for the file: liquid_results_new.

c idwrit2= Assigned unit number for the file: liquid_results_ini.

c

c ipdf controls turning on or off Monte Carlo PDF computations.

c ipdf = 0 turns off Monte Carlo PDF computations.

c = I otherwise.

c

c ns serves two functions depending on whether ns has a

c zero or non-zero value.

c ns = 0 starts the Monte Carlo PDF computations from

c initial conditions.

c ns = a non-zero number restarts the computations from

c a previous run. a non-zero number represents the

last iteration number of a previous run which is

used in the time-averaging scheme utilized in

the PDF computations.

c

c

c

c

c ipdf_mod

c

c

c

= This variable controls calls to the PDF

solver. The PDF solver is called once at

every ipdf_mod times of cFD iterations.

c ipdf_num = In a given cycle, the pdf solver is advanced over

c a number of time steps given by ipdf_num.

c

c ireal = Assigned unit number for the file: pdf_results.

c irea2 = Assigned unit number for the file: pdf_results_ave.

c iwril = Assigned unit number for the file: pdf_results.

c iwri2 = Assigned unit number for the file: pdf_results_ave.

c

c

open(unit=85,file='spray_pdf_parameter_input')

read(85,*)

read(85,*)Ispray,ldread,ispray_mod

read(85,*)

read(85,*)ipread,idread,idwrit,idread2,idwrit2

read(85,*)

read(85,*)ipdf,ns,ipdf_mod,ipdf_num
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read(85,_)

read(85,_)ireal,irea2,iwril,iwri2

close(unit=85)

C ---

c

c Routine rctinp of the PDF solver provides initialization

c parameters used in the themodynamic and transport property

c evaluation as well as in the chemical kinetics scheme.

c

if(ipdf.eq.l) then

call rctinp

endif

c

RETURN

END

c
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Appendix IV

A Listing of Some Fortran Variables Used in EUPDF

C ---

C

c arh = A

C

c

c avl ()

c

C

C

= constants in the equation used for representing the

chemical reaction rate.

It contains an average based on nparti*nav particles.

It is an average employed in the revolving time-averaging

technique.

c avmany() It contains nay number of individual averages which

c are computed over nparti.

c

c centroid = logical variable. If yes, it repesents the values at

c the cell center. If not, it represents values at the

cell faces.C

C

c cpO,..cp4

c

c

c dhform

c

c

c dwm

c

c

c eno2, epox,

c epfu,emno2,

= coefficients of the polynomial used in determining the

variable specific heat.

= coefficients of the polynomial used in determining the

specific enthalpy.

= coefficients of the polynomial used in determining the

inverse of the molecular weight of a mixture.

c empox,empfu = constants used in the chemical

c kinetics solver.

C

c erh = E_a = constants in the equation used for representing the

c chemical reaction rate.

C

c fl() = fuel mass fraction at the center of the grid cell.

c flbar() = fuel mass fraction at the cell face.

c

c f2() = oxygen mass fraction at the center of the grid cell.
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c f2bar() = oxygen mass fraction at the cell face.

C

C

c fluid() = logical variable. If yes, it repesents a fluid

c element. If not, it represents a solid element.

c

c h() = enthalpy at the center of the grid cell.

c hbar() = enthalpy at the cell face.

C

c iconpc = store differences in array index convention used by the

c flow and pdf codes.

c

c nav= N_{av} = number of time steps employed in the time-averaging technique.

c

C

c nparti = N_m = number of particles per cell

C

c

c ns = current iteration of the PDF solver.

c

c nscala = sigma = number of scalars

C

c partl contains pdf solution from the previous time step

C

c part2 contains pdf solution for the current time step

c

c pz = pressure

C

c ru = universal gas constant

c

c schmdi= Sc = Schmdit number (=1/0.7).

C

c t() = temperature at the center of the grid cell.

c tbar() = temperature at the cell face.

C

c wl,w2,w3

c

C

c

c wmole

c

= constants resulting from some algebraic manipulation

which reduces the need for solving speciess equations

from 5 to 3.

= W = molecular weight

c xnup, xnupp = nu = stoichiometric coefficients of reactants and
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C

C

C

C

products.

C
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Appendix V

A Listing of Geometric Variables Used in LSPRAY and EUPDF

c

C ------

c

c The EUPDF and LSPRAY modules expects the following inputs on

c the grid related information:

c

c nodes = total number of the computational elements.

c nedge = total number of cell faces in the computational domain.

c nfaces(i) = total number of faces of the element, i.

C

c edge(i,l) and edge(i,2) represent the adjacent elements

c of the face, i, if the face, i, if the face happens

c to be an interface between two elements. Otherwise

c edge(i,l) represents the correponding boundary

c condition identifier.

c

c face_to_edge(i,j) represents the face ID of the element, i,

c and the face, j.

c

C cl(i,j) provides connectivity map. cl(i,j) = adjacent element

c ID of the element, i, and the face, j, otherwise cl(i,3)

c = boundary condition identifier on any boudary.

C

c vol(i) = volume of the element, i.

c

c areax(i), areay(i), and areaz(i) are the cartesian components

c of the outward pointing area vector of the face, i.

C

c xl(i), yl(i), zl(i) are the cartesian components of the node

c one of the element, io Similarly, x2(i), y2(i), z2(i)

c are for node 2 and so on.

c

c triangle(i) is .true. if i is a triangular element. Similarly,

c quadrilateral(i), tetrahedron(i), and wedge(i) are logical

c varibles representing other type of elements.

c

c axisymmetric is set to .true. for axisymmetric computations

c otherwise it is .false. The axisymmetric computations are
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c

c

C

C

c

C ----

performed by generating 3D elements from a 2D mesh with

an arc centered around the z coordinate, z=0.0. The angle

of the arc is defined by the variables, ARC, in radians

and THETA0, in degrees.
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Appendix VI

A Subroutine Listing For EUPDF Code Initialization and Restart

c

subroutine pdf_int_rerun

include 'cfsparms.i'

include 'cfsdt.i'

include 'cfspert.i'

include 'cfsconv.i'

include 'cfstime.i'

include 'cfsmimd.i'

include 'cfsarea.i'

include 'cfsnodes.i'

include 'dcfslog.i'

include 'dcfslog_rw.i'

include 'cfsvars.i'

include 'cfsprop.i'

include _cfsh.i'

c

c Include common blocks associated with PDF computations.

c

include 'p3dpar.i'

include 'p3dcom.i'

include 'p3dave.i'

include 'pSdpro.i'

c

c

c

c

c PURPOSE: This routine is used either to initialize the Monte

c Carlo PDF computations or to restart the PDF computations

c from the output of a previous PDF calculation.

c

c FORM OF CALL: call pdf_int_rerun

c

c

C

c

C ------

c Initialize the computations if it is not a rerun.
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39

391

321

Initialize the PDF particle attributes as well

averages to those provided by the flow solver.

if(ipdf.eq.l.and.ns.eq.O) then

do 39 ijk = l,nodes

avyl=f2 (ijk)

avy2=f I (ij k)

avye=h (ij k)

avyt =t ( ij k)

avmany(ijk,pox,2) = avyl

avmany(ijk,pfu,2) = avy2

avmany(ijk,pen,2) = avye

avmany(ijk,pte,2) = avyt

avmany(ijk,pox,l) = avyl

avmany(ijk,pfu,l) = avy2

avmany(ijk,pen,l) = avye

avmany(ijk,pte,l) = avyt

continue

do 391 ijk = l,nodes

do 391 ip = l,nparti

partl(ijk,ip,pox) =

partl(ijk,ip,pfu) =

partl(ijk,ip,pen) =

part I(ijk, ip,pte) =

part2(ijk,ip,pox) =

part2 (ijk,ip,pfu) =

part2 (ijk, ip,pen) =

part2(ijk,ip,pte) =

continue

avmany(ijk,pox, 2)

avmany(ijk,pfu, 2)

avmany (ij k ,pen, 2)

avmany (ij k, pt e, 2)

avmany (ij k,pox, 2)

avmany (ijk, pf u, 2)

avmany (ijk, pen, 2)

avmany(ijk,pte,2)

do 321 ijk=l,nodes

do 321 n=l,nav

avl(ijk,pox,n) = avmany(ijk,pox,2)

avl(ijk,pfu,n) = avmany(ijk,pfu,2)

avl(ijk,pen,n) = avmany(ijk,pen,2)

avl(ijk,pte,n) = avmany(ijk,pte,2)

cont inue

ns=nav

Compute thermodynamic properties.

call props_ther

as the
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c

C

C

c

c

Compute transport properties.

call props tran

endif

c

C

c

c

c

4000

C

c

C

Read restart files. Also, initialize some other parameters

of interest.

if(ipdf.eq.l.and.ns.gt.nav) then

itrecl=nparti*nscala*4+4

open(unit=ireal,file='pdf_results',

>access='direct',recl=itrecl,form='unformatted ')

itrecl=nscala*nav*4+nscala*2*4+4

open(unit=irea2,file='pdf_results_ave',

>access='direct',recl=itrecl,form='unformatted ')

do ijk=l,nodes

irecord=ijk+nodes*(ipid-l)

read(ireal,rec=irecord)

>((part2(ijk,il,i2),il=l,nparti),i2=l,nscala)

enddo

do ijk=l,nodes

irecord=ijk+nodes*(ipid-l)

read(irea2,rec=irecord)

>((avl(ijk,il,i2),il=l,nscala),i2=l,nav),

>((avmany(ijk,i3,i4),i3=l,nscala),i4=l,2)

enddo

do 4000 ijk=1,nodes

do 4000 i=l,nparti

do 4000 k3=l,nscala

partl(ijk,i,k3)=part2(ijk,i,k3)

Compute thermodynamic properties.

call props_ther

Compute transport properties.
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C

C

call props_tran

endif

C

return

end

C
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Appendix VII

A Subroutine Listing For LSPRAY and EUPDF Data Output

c

subroutine spray_pdf_output

include 'cfsparms.i'

include 'cfsdt.i'

include 'cfspert.i'

include _cfsconv.i'

include 'cfstime.i'

include 'cfsmimd.i'

include 'cfsarea.i J

include 'cfsnodes.i'

include 'cfsvars.i'

include 'cfsprop.i'

include 'cfsh.i'

c

c Include common blocks associated with spray and PDF computations.
c

include 'dcfslog.i'

include _dcfslog_rw.i'

c

c Include common blocks associated with PDF computations.

c

include 'p3dpar.i'

include 'p3dcom.i'

include 'p3dave.i'

include 'p3dpro.i'

c

c Include common blocks associated with spray computations.

c

include 'd3dpar.i'

include Jd3dcom.i'

include 'd3dinj.i _

include 'd3dprl.i'

c

c

C ------
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This routine writes output data from PDF & spray

computations on a separate restart and standard

output files.

0F CALL: call spray_pdf_output

ADDITIONAL I/0:

c PURPOSE:

c

C

C

c FORM

c

C

C

c

c INPUTS: None.

C

C

C

C

C

C

c

OUTPUTS:

liquid_results_new

liquid_results_ini

spray_pdf_parameter_input

c

c

C

c

c

C

Write spray restart files.

>

>

if(ispray) then

open(unit=idwrit,file='liquid_results_new',

access='direct',recl=136,

form='unformatted')

if(ipid.eq.l) then

open(unit=idwrit2,file='liquid_results_ini')

write(idwrit2,*)nr_total

call flush(idwrit2)

write(idwrit2,*)dtil,dtml,tl,tll,tml

call flush(idwrit2)

write(idwrit2,*)iseed

call flush(idwrit2)

close(unit=idwrit2)

endif

INTS_DATA_2=314

do n=l,np

no_to_ip(n)=nr
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c

c

C

enddo

do n=l,np

if(ipid.ne.n) then

irc= send_data_i (iul(n),no_to_ip(n),

endif

enddo

do n=l,np

if(ipid.ne.n) then

irc= recv_data_i (iul(n),no_fr_ip(n),

endif

enddo

no_fr_ip(ipid)=no to ip(ipid)

irecordd=O

do n=l,ipid-i

irecordd=irecordd+no_fr_ip(n)

enddo

i, INTS_DATA_2)

1, INTS_DATA_2)

do ip=l,nr

irecord=irecordd+ip

isent=isen(ip)+(isep(ip)-i)*nodes

write(idwrit,rec=irecord) ndrr(ip),ins(ip),

i isent,xki(ip),yki(ip),zki(ip),uki(ip),

2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),

3 (vh(ip,j),]=l,nde+4)

call flush(idwrit)

if(ip.ge.l) then

write(i,*) irecord,ndrr(ip),ins(ip),

i isent,xki(ip),yki(ip),zki(ip),uki(ip),

2 vki(ip),wki(ip),tki(ip),rki(ip),ski(ip),sklim(ip),

3 (vh(ip,j),j=l,nde+4),nr,nr_total,irecord

endif

enddo

close(unit=idwrit)

endif

c

c

C ---

c

c Update file: spray_pdf_parameter_input.

c Also, write PDF restart files.
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c

C

if(ipdf.eq.1) then

if(ipid.eq.l) then

open (unit =85, file=' spray_pdf_paramet er_ input' )

wrlte(85,*)'Ispray Idread ispray_mod'

write(85,*)Ispray,ldread,ispray_mod

wrlte(85,*)'ipread idread idwrit idread2 idwrit2'

wrlte(85,*)ipread,idread,idwrit,idread2,idwrit2

write(85,*)'ipdf ns ipdf_mod ipdf_num'

wrlte(85,*)ipdf,ns,ipdf_mod,ipdf_num

write(85,*)'ireal irea2 iwril iwri2'

write(85,*)ireal,irea2,iwril,iwri2

close(unit=85)

endif

call outpdf2(ns)

endif

C

C

C

c Write output of spray computations either to unit

c one or to the screen.

c

if(ispray) call prnspr

C

return

END

C

subroutine outpdf2(ncyc)

include 'p3dpar.i'

include 'cfsparms.i'

include 'cfsnodes.i'

include 'p3dcom.i'

include 'p3dave.i'

include 'parallel.i'

include 'cfsmimd.i'
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C

include 'dcfslog_rw.i'

C -----

c

c PURPOSE: Outputs the PDF solution to

C

c FORM OF CALL: call outpdf2()

c

c ARGUMENTS/PARAMETERS: ncyc

c

c ADDITIONAL I/0: pdf_results,

C

c OUTPUT:

c

C

C

C

restart files.

pdf_results_ave

outputs PDF solution to pdf_results

outputs PDF averaging-procedure solution

to pdf_results_ave.

itrecl=nparti*nscala*4+4

open(unit=iwril,file='pdf_results',

>access='direct',recl=itrecl,form='unformatted ')

itrecl=nscala*nav*4+nscala*2*4+4

open(unit=iwri2,file='pdf_results_ave ',

>access='direct',recl=itrecl,form='unformatted')

do ijk=l,nodes

irecord=ijk+nodes*(ipid-l)

write(iwril,rec=irecord)

>((part2(ijk,il,i2),il=l,nparti),i2=l,nscala)

call flush(iwril)

enddo

do ijk=l,nodes

irecord=i]k+nodes*(ipid-l)

write(iwri2,rec=irecord)

>((avl(ijk,il,i2),il=l,nscala),i2=l,nav),

>((avmany(ijk,i3,i4),i3=l,nscala),i4=l,2)

call flush(iwri2)

enddo
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close(unit=iwril)
close(unit=iwri2)

return
end
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Appendix VIII

An Example of the Partial Listings of Code Initiation For

Coupling LSPRAY and EUPDF With a Gas Flow Solver

1. The following segment shows how include calls to

spray_int_rerun & pdf_int_rerun.

C

c

C ------

c

c Include common blocks associated with spray and PDF computations.

C

include 'dcfslog.i'

include 'dcfslog_rw.i'

c

c

c Initialize Monte Carlo PDF computations.

c

if(ipdf.eq.l) then

call pdf_int_rerun

endif

c

c Initialize spray computations.

c

IF(lspray) then

call spray_int_rerun

endif

c

c

II. The following segment shows how to include calls to DCLR &

PDF.

C

c Include common blocks associated with spray and PDF computations.

C

include 'dcfslog.i'

c

double precision tbiggas, tendgas, totaltgas
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C

C ----

C

C

c Call dclr in order to advance the spray computations

c over a time step of dtgl.

c

if(lspray.and.mod(iteration,ispray_mod).eq.O) then

call dclr

endif

C

C -

C

C

c Call pdf in order to advance the PDF computations

c over the next time step.

C

if(ipdf.eq.l.and.mod(iteration,ipdf_mod).eq.O) then

do i=l,ipdf_num

call pdf

enddo

endif

c

III. The following segment shows how to include the interphase

contributions to the gas phase governing equations.

c

C

c Include common blocks associated with spray and PDF computations.

C

include 'dcfslog.i'

c

c Include common blocks associated with spray the solver.

c
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C

C

c

c

include 'd3dqat.i'

C

C

C

C

c

Include liquid-phase contributions to

and energy equations.

if(Ispray) then

do i=l,nodes

sourcem(i)=sourcem(i)+qmsx(i)

sourceu(i)=sourceu(i)+qmsx(i)

sourcev(i)=sourcev(i)+qmsy(i)

sourcew(i)=sourcew(i)+qmsz(i)

sourcef(i)=sourcef(i)+qms(i)

sourceh(i)=sourceh(i)+qmsh(i)

enddo

endif

mass, momentum, species,
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Appendix IX

A Listing of Subroutines Used For Thermodynamic and

Transport Property Evaluation

subroutine rctinp

include 'p3dpar.i'

include 'cfsparms.i'

include 'cfsnodes.i'

include 'p3dcom.i'

include 'p3dpro.i'

include 'p3dtim.i'

dimension cpt0(nspt,3),cptl(nspt,3),cpt2(nspt,3),

> cpt3(nspt,3),cpt4(nspt,3)

C ------

c PURPOSE: Initializes parameters used in the themodynamic

c and transport property evaluation as well as in

c the chemical kinetics scheme.

c

c ru = universal gas constant

c pz = pressure

c

ru =8314.3

pz =1.01325e+5

cppdf =1297.1012

trefpdf=298.0

c

C

c

c

C

c

C

c

default species:

02 = 1

c7h16 = 2

h2o = 3

co2 = 4

n2 = 5
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C

c iconpc = store differences in array index convention used by the

flow and pdf codes.

iconpc(1)=2

iconpc(2)=l

iconpc(3)=3

C

c read datafile on properties for n-heptane.

c

c wl,w2,w3

c

C

C

= constants resulting from some algebraic manipulation

which reduces the need for solving speciess equations

from 5 to 3.

c xnup, xnupp = stoichiometric coefficients of reactants and

c products.

C

c arh,erh

C

C

c wmole

c

c cpO,..cp4

C

c

c dwm

c

c

c dhform

c

C

c eno2, epox,

c epfu,emno2,

= constants in the equation used for representing the

chemical reaction rate.

= molecular weight

= coefficients of the polynomial used in determining the

variable specific heat.

= coefficients of the polynomial used in determining the

inverse of the molecular weight of a mixture.

= coefficients of the polynomial used in determining the

specific enthalpy.

c empox,empfu = constants used in the chemical

c kinetics solver.

c

open(unit=35,file='nheptane_property_file')

read(35,*)wl,w2,w3

read(35,*)(xnup(1,i),i=l,4)

read(35,*)(xnupp(l,i),i=l,4)

read(35,*)arh(1),erh(1)
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read (35, *) (wmole (i) ,i=i, 5)

read(35,*) ((cpO(i,j), i=1,5) ,j=l,3),

i ((cpl (i ,j ), i=l ,5) ,j=i, 3),

I ((cp2(i,j),i=l,5) ,j=l,3),

i ((cp3(i,j),i=l,5) ,j=l,3),

i ((cp4(i,j),i=l,5) ,j=l,3)

read(35,*) (dwm(i),i=l,3)

read (35, *) (dhf orm (i), i=l, 3)

read(35,*)eno2,epox,epfu,emno2,empox,empfu

close(unit=35)

return

end

subroutine props_ther

include

include

include

include

include

include

include

include

include

cfsparms.i'

cfsnodes.i'

cfsvars.i'

cfsh.i'

cfsprop.i'

cfspref.i'

cfsgas.i'

cfscpmix.i'

conjugate.i'

include 'p3dpar.i'

include 'p3dpro.i'

PURPOSE : This routine computes enthalpy, specific heat,

density.

and

do I00 ijk=l,nodes

if (fluid(ijk)) then
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tmp= t (ijk)

icspec=iconpc(3)

dO=dhform(icspec)

icspec=iconpc(1)

dO=dO+ fl(ijk)*dhform(icspec)

icspec=iconpc(2)

dO=dO+ f2(ijk)*dhform(icspec)

do I010 iter=l,l

jc=cvmgp(2,l,tmp-600.O)

jc=cvmgp(3,jc,tmp-lO00.O)

icspec=iconpc(3)

dl = cpO(icspec,jc)

d2= cpl(icspec,3c)

d3 = cp2(icspec,jc)

d4 = cp3(icspec,jc)

d5 = cp4(icspec,jc)

icspec=iconpc(1)

dl=dl+ fl(ijk)*cpO(icspec,jc)

d2=d2+ fl(ijk)*cpl(icspec,jc)

d3=d3+ fl(ijk)*cp2(icspec,jc)

d4=d4+ fl(ijk)*cp3(icspec,3c)

d5=d5+ fl(ijk)*cp4(icspec,3c)

icspec=iconpc(2)

dl=dl+ f2(ijk)*cpO(icspec,jc)

d2=d2+ f2(ijk)*cpl(icspec,jc)

d3=d3+ f2(ijk)*cp2(icspec,jc)

d4=d4+ f2(ijk)*cp3(icspec,jc)

d5=d5+ f2(ijk)*cp4(icspec,jc)

h(ijk)=((((O.20*d5*tmp+O.25*d4)*tmp+d3/3.0)*tmp+

> 0.50,d2)*tmp+dl)*tmp+dO

devm=(((d5*tmp+d4)*tmp+

> d3)*tmp+d2)*tmp+dl

I010 continue

icspec=iconpc(3)

rmw = dwm(icspec)

icspec=iconpc(1)

rmw = rmw + fl(ijk)*dwm(icspec)

icspec=iconpc(2)

rmw = rmw + f2(ijk)*dwm(icspec)

rho(ijk)=(p(ijk)+p_reference)/(Rgas*tmp *rmw)

cp(ijk) = devm

endif
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I00 continue
return
end

subroutine props_tram

include
include
include
include
include
include
include
include
include
include
include

cfsparms.i'
cfsnodes.i'
cfsvars.i'
cfsmimd.i'
cfsprop.i'
cfsother.i'
cfsturb.i'
cfsvislam, i'
cfsdt.i'
cfscpmix.i'
conjugate.i'

PURPOSE:This routine computes transport properties.

C

100

calculate the effective viscosity for turbulent flow

if(turbulent) then

ivis=O

do 100 ijk=l,nodes

if (fluid(ijk)) then

mu (ijk) =rho (ij k) *k (ij k) ** 2. cmu/( e (ij k) +I. e-20 )

& +temp_vislam

enforce upper and lower bounds on turbulent viscosity

if(mu(ijk).gt.vismax) then

ivis=l

mu(ijk)=vismax

endif

mu(ijk)=amaxl(mu(ijk),temp_vislam)

kt (ij k) =mu (ij k) *cp (ij k)/prandl

endif

continue

if(mod(itime,50).eq.O.amd.ipid.eq.l) then

if(Ivis.eq.O) print 746
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746 format(t11,'No limit

if(Ivis.eq.1) print 747

747 format(tll,'Limit enforced

endif

else

do i01 ijk=l,nodes

if (fluid(ijk)) then

mu (ijk) =t emp_vislam

kt (ij k) =mu (ij k)*cp (ij k)/prandl

endif

i01 continue

endif

return

end

enforced on turbulent viscosity.',/)

on turbulent viscosity.',/)

subroutine get_kt_and_cp_loc_mcs(i3k,centroid)

include 'cfsparms.i'

include

include

include

include

include

include

include

include

include

include

include

include

include

'cfsnodes.i'

'cfsvars.i'

'cfsprop.i'

'cfsarea.i'

'cfsflux.i'

'cfssorc_enth.i'

'cfschar.i'

'cfsadj.i'

'cfsdt.i'

'cfsorder.i'

'cfscomp.i'

'cfscpmix.i'

'conjugate.i'

include 'p3dpar.i'

include 'p3dpro.i'

logical centroid

PURPOSE: Computes specific heat and thermal conductivity of a

gaseous mixture at a nodal point of the computational

grid.
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if(centroid) then

tmp= t (ijk)

jc=cvmgp(2,1,tmp-600.O)

jc=cvmgp(3,jc,tmp-lO00.O)

icspec=iconpc(3)

dl = cpO(icspec,jc)

d2 = cp1(icspec,jc)

d3= cp2(icspec,jc)

d4= cp3(icspec,jc)

as= cp4(icspec,je)

icspec=iconpc(1)

dl=dl+ fl(ijk)_cpO(icspec,jc)

d2=d2+ fl(ijk)_cpl(icspec,jc)

d3=d3+ fl(ijk)*cp2(icspec,jc)

d4=d4+ fl(ijk)*cp3(icspec,jc)

d5=d5+ fl(ijk)*cp4(icspec,jc)

icspec=iconpc(2)

dl=dl+ f2(ijk)*cpO(icspec,jc)

d2=d2+ f2(ijk)*cpl(icspec,jc)

d3=d3+ f2(ijk)*cp2(icspec,jc)

d4=d4+ f2(ijk)*cp3(icspec,jc)

d5=d5+ f2(ijk)*cp4(icspec,jc)

cp(ijk)=(((d5*tmp+d4)*tmp+d3)*tmp+

> d2)*tmp+dl

kt(ijk)=mu(ijk)*cp(ijk)/prandl

else

tmp= tbar(ijk)

jc=cvmgp(2,l,tmp-600.O)

jc=cvmgp(3,jc,tmp-lO00.O)

icspec=iconpc(3)

dl= cpO(icspec,jc)

d2= cpl(icspec,jc)

d3= cp2(icspec,jc)

d4= cp3(icspec,jc)

d5 = cp4(icspec,jc)

icspec=iconpc(1)

dl=dl+ flbar(ijk)*cpO(icspec,jc)

d2=d2+ flbar(ijk)*cpl(icspec,jc)

d3=d3+ flbar(ijk)*cp2(icspec,jc)

d4=d4+ flbar(ijk)*cp3(icspec,jc)

d5=d5+ flbar(ijk)*cp4(icspec,jc)

icspec=iconpc(2)
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c

c

dl=dl+

d2=d2+

d3=d3+

d4=d4+

d5=d5+

f 2bar (ijk) *cp0 (ic spec, jc)

f2bar (ij k) *cpl (icspec, jc)

f2bar (ij k) *cp2 (icspec, jc)

f2bar (ij k) *cp3 (icspec, jc)

f2bar (ij k) *cp4 (icspec, j c)

cpbar(ijk)=(((d5*tmp+d4)*tmp+d3)*tmp+

> d2)*tmp+dl

ktbar(ijk)=mubar(ijk)*cpbar(ijk)/prandl

endif

RETURN

END

function find_inverse_molecular_weight_mcs(element,centroid)

include 'cfsparms.i'

include 'cfsv_rs.i'

include 'cfsgas.i'

include 'cfschem.i'

integer element

logical centroid

include 'p3dpar.i'

include 'p3dpro.i'

PURPOSE : Computes inverse of the molecular weight of a gaseous

mixture at a nodal point of the computational grid.

c

c

icspec=iconpc(3)

find_inverse_molecular_weight_mcs = dwm(icspec)

if(centroid) then

icspec=iconpc(1)

find_inverse_molecular_weight_mcs =

> find_inverse_molecular_weight_mcs+fl(element)*dwm(icspec)

icspec=iconpc(2)

find_inverse_molecular_weight_mcs =

> find_inverse_molecular_weight_mcs+f2(element)*dwm(icspec)

else

icspec=iconpc(1)

find_inverse_molecular_weight_mcs =

> find_inverse_molecular_weight_mcs+flbar(element)*dwm(icspec)

icspec=iconpc(2)
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c

C

find inverse molecular weight mcs=

find_ inver se_mol ecular_weight_mcs+f 2bar (element) *dwm (icspec)

endif

return

end

function find_h_mcs(element,centroid)

include 'cfsparms.i'

include 'cfsvars.i'

include 'cfshref.i'

include 'cfsgas.i'

include 'cfscpmix.i'

include 'cfschem.i'

include 'BLOCK'

integer element

logical centroid

include 'p3dpar.i'

include 'p3dpro.i'

C

C ------

c PURPOSE :

C

Computes specific enthalpy at a nodal point of the

computational grid.

C

C

if(centroid) then

tmp= t(element)

jc=cvmgp(2,l,tmp-600.O)

jc=cvmgp(3,jc,tmp-lO00.O)

icspec=iconpc(3)

hfmmO=dhform(icspec)

dl= cpO(icspec,3c)

d2= cpl(icspec,3c)

d3= cp2(icspec,jc)

d4= cp3(icspec,jc)

dS= cp4(icspec,jc)

icspec=iconpc(1)

hfmmO=hfmmO+ fl(element)*dhform(icspec)

dl=dl+ fl(element)*cpO(icspec,jc)

d2=d2+ fl(element)*cpl(icspec,jc)

d3=d3+ fl(element)*cp2(icspec,jc)
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d4=d4+ fl(element)*cp3(icspec,jc)

d5=d5+ fl(element)*cp4(icspec,jc)

icspec=iconpc(2)
hfmmO=hfmmO+ f2(element)*dhform(icspec)

dl=dl+ f2(element)*cpO(icspec,jc)

d2=d2+ f2(element)*cpl(icspec,jc)

d3=d3+ f2(element)*cp2(icspec,]c)

d4=d4+ f2(element)*cp3(icspec,]c)

dS=dS+ f2(element)*cp4(icspec,jc)

c --- calculate enthalpy of mixture

find_h_mcs=((((O.20*dS*tmp+O.25*d4)*tmp+d3/3.0)*tmp+

> 0.50*d2)*tmp+dl)*tmp+hfmmO

else

tmp= tbar(element)

jc=cvmgp(2,1,tmp-600.O)

jc=cvmgp(3,jc,tmp-lO00.O)

icspec=iconpc(3)

hfmmO=dhform(icspec)

dl= cpO(icspec,jc)

d2= cpl(icspec,jc)

d3= cp2(icspec,]c)

d4= cp3(icspec,jc)

d5= cp4(icspec,jc)

icspec=iconpc(1)

hfmmO=hfmmO+ flbar(element)*dhform(icspec)

dl=dl+ flbar(element)*cpO(icspec,jc)

d2=d2+ flbar(element)*cpl(icspec,]c)

d3=d3+ flbar(element)*cp2(icspec,jc)

d4=d4+ flbar(element)*cp3(icspec,jc)

d5=d5+ flbar(element)*cp4(icspec,]c)

icspec=iconpc(2)

hfmmO=hfmmO+ f2bar(element)*dhform(icspec)

d1=dl+ f2bar(element)*cpO(icspec,]c)

d2=d2+ f2bar(element)*cpl(icspec,]c)

d3=d3+ f2bar(element)*cp2(icspec,jc)

d4=d4+ f2bar(element)*cp3(icspec,jc)

d5=d5+ f2bar(element)*cp4(icspec,]c)

c --- calculate enthalpy of mixture

find_h_mcs=((((O.20*d5*tmp+O.25*d4)*tmp+d3/3.0)*tmp+

> 0.50,d2)*tmp+dl)*tmp+hfmmO

endif
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return

end

c
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Appendix X

An Example Summary of CPU Times Taken By CORSAIR and

EUPDF

Table 1 summarizes the cpu times per cycle taken by EUPDF and CORSAIR

solvers versus the number of processors used on the NASA LeRC LACE clus-

ter. These computations refer to the case of a confined swirl-stabilized spray

flame as reported in Ref. 7. The computations were performed on a grid of

3600 quadrilateral elements and a total of 0.36 million Monte Carlo parti-

cles (=100 particles/cell). Both the PDF and CFD solvers showed excellent

parallel performance with an increase in the number of processors. For a

discussion of the parallel performance of these solvers refer to Ref. 7. It

takes approximately about 1000 to 2000 cycles for the computations to reach

a converged solution.

Table 1. Cpu time (sec) per cycle versus numl)er of PEs oll LACE Clust('r.

Solver [Characteristic

EUPDE 1 step/cycle

CORSAIR 5 steps/cycle

Number of processors

2 4 8 16

2.30 1.35 0.75 0.44

3.55 1.90 1.10 0.60
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