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FOREWORD

The following report prepared for NASA/MSFC entitled " Advanced Space Propulsion
System Flowfield Modeling” constitutes the final documentation for contract NASS-
40845.

All inquiries regarding this Final Report should be directed to:

Sheldon D. Smith

Huntsville Sciences Corporation

7525 South Memorial Parkway, Suite D
Huntsville, AL 35802
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1.0 INTRODUCTION AND SUMMARY

Solar thermal upper stage propulsion systems currently under development utilize small
low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the
nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of
the total nozzle flow area. Accurate characterization of the nozzle/plume flowfields for
these type systems are necessary to support testing, performance characterization and
plume induced environments such as plume impingement heating and pressure loads.
The conventional uncoupled flow methods which treat the nozzle boundary layer and
inviscid flowfield separately by combining the two calculations via the influence of the
boundary layer thickness on the inviscid flowfield are not accurate enough to adequately
treat highly viscous nozzles. Models such as VNAP2 (1) and VIPER (2) utilize Navier
Stokes (NS) and Parabolized Navier Stokes (PNS) methodologies to solve the complete
nozzle flowfield in a coupled formulation such that the advanced space propulsion system
nozzle flowfields can be accurately treated. However, these codes cannot treat the
vacuum plume flowfields. This study built upon recently developed artificial
intelligence methods and user interface methodologies to couple the appropriate VNAP2
nozzle flowfield solutions with the RAMP2 vacuum plume code. The RAMP2 (3)
plume model that currently is a part of the Plume Environment Prediction Code(PEP, 4)
can accurately treat the vacuum exhaust plume characterization but treats the
nozzle/boundary interaction via a uncoupled approach. This study added the capability to
calculate highly viscous nozzle and plume flowfields into the PEP model via the
following specific tasks:

1) Develop Artificial Intelligence(Al) analogs for VNAP2
2) Develop user interfaces for input and operation of the VNAP2 module within
the PEP environment

3) Integrate the VNAP2 into the PEP system
4) Validation of the VNAP2/PEP flowfield model

This report summarizes the results of this study including:

1) Description of the implementation of the VNAP2 module into the PEP system
2) Using the VNAP2 module in PEP

3) Description of the VNAP2 module input variables

4) PEP/VNAP2 flowfield model validation/demonstration
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2.0  DISCUSSION

2.1 Description of the Implementation of the VNAP2 Module into the PEP
System

The VNAP2 computer code was developed by Los Alamos Natal Laboratory for
calculating turbulent(as well as laminar and inviscid), steady and unsteady flow. VNAP2
solves the two-dimensional(2D), axisymmetric, time-dependent, compressible Navier-
Stokes equations by second-order-accurate finite-difference method. VNAP2 allows
arbitrary grid spacing, has two options to speed up calculations for high Reynolds number
flows, contains three different turbulence models, and can solve either single- or dual-
flowing stream geometry’s. This last option allows the VNAP2 code to compute
internal/external flows, such as inlets and jet-powered afterbodies as well as airfoils. It is
apparent from this general description of the VNAP2 code that it has a wide range of
capabilities and as a result input variables. The object of this study was to use the
VNAP2 code to calculate highly viscous nozzle flows and subsequently perform a -
vacuum plume solution using the RAMP2 module of the PEP model. The effort required
to generate the logic for input and modification of all the type problems this code can
handle is far beyond the scope and resources of this study. Therefore, the input
generation/modification module that was developed under this study was limited to
automatically generating the VNAP2 input files for performing a combustion/nozzle
calculation only. This restriction on the use of the PEP code to generate input data and
run the VNAP2 code does not prevent a user from generating an input file and running
VNAP2 for any other type of problems. The user merely needs to set up a new named
problem, manually generate the VNAP2 module input file *inp.vnp(where * is the
problem name) and execute the VNAP2 module. The output for the case will be found in
the file *out.vnp.

The basic philosophies that were adopted in implementing a VNAP2 code into the PEP
model are:

1) The input data file for generating the VNAP2 viscous nozzle solution is
generated automatically. A limited number of VNAP2 input variables can be
modified using a GUI module.

2) The RAMP2 module is utilized to calculate the exhaust plume.

3) Nozzle geometry and operating conditions are input using the RAMP2 input
module

4) Thermodynamic and transport property data required by the VNAP2 code are
supplied by the CEC module. The user does not necessarily have to utilize
the CEC module but the correct/appropriate transport data must be available to
be input through VNAP2 input generation GUI module.
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5) The RAMP2 nozzle flow solution module must be run prior to generating the
VNAP2 input data file and nozzle flow solution. The RAMP2 flow solution
provides input data to the automatic input data generation routines via
RAMP?2 generated data files(*str.ram and *lip.ram).

6) VNAP2 is an ideal gas model that requires the RAMP2 plume solution utilize
the ideal gas variable total enthalpy using average specific and molecular
weights.

7) Only combustion/chamber nozzle flow solutions can be automatically input
and calculated with the VNAP2 module. In the event that the user does not
have or input the combustion chamber geometry and as a result inputs the
nozzle geometry from the throat, the input generation routine will provide the
combustion chamber geometry assuming: the combustion chamber diameter is
twice the throat diameter, the inlet angle is 45 degrees, the throat upstream
radius of curvature is twice the throat radius, and the combustion chamber to
inlet transition radius is twice the throat radius. The user does not have an
option of changing these defaults in the event that no combustion chamber
geometry has been input.

8) In the event that the user enters the VNAP2 input generation module and the
code detects the preexisting input file the code will allow the user to use the
preexisting file, modify the file using the GUI module or automatically
regenerate the input data file.

Based on the above assumptions and philosophies the following modifications/additions
were made to the PEP and VNAP2 codes:

e A VNAP2 control subroutine was developed to control input and execution of the
VNAP2 module.

e A VNAP2 automatic input file generation routine was added to the PEP model.

» A graphical user interface was developed to allow updates to the VNAP2 input data
file.

e VNAP2 was modified to:

¢ Data file are named and opened according to the PEP file system convention.

e VNAP2 generates an output file containing the exit plane data required by
RAMP? to initiate a viscous plume solution.

* Module was added to output a binary data file(*plm.vnp) containing the
spatial distribution of the flowfield properties that are calculated by the
VNAP2 module. This file is in the same format as a RAMP2 binary flowfield
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file so that the results can be displayed using the RAMP2 post processing
module.

e Miscellaneous updates and modifications were made to monitor program
execution, results and error detection.

e The CEC module was modified to produce a data file(*cec.sav) that contains chamber
conditions, transport and thermodynamic properties required for automatic VNAP2
input file generation. CEC module execution for a particular case is not necessary but
the user must be able to manually input/change transport(viscosity and conductivity)
and thermodynamic data via the graphical user interface. The CEC module
automatically generates the correct data. It is recommended that the CEC module be
used for generating thermodynamic data for all VNAP2 cases even if there is a gas
that can be simulated with constant molecular weight and specific heat ratios(like
room temperature air, nitrogen, argon and helium).

e RAMP2 was modified to:

o Generates data files containing startline properties(*str.ram) and exit plane lip
properties(*lip.ram) for automatic VNAP2 input file generation. These files
are generated during the required RAMP?2 nozzle solution.

e Sets up an exit plane start line using the exit plane data file generated by
VNAP?2 and subsequently performs a plume solution

The VNAP2 flowfield code is not an actual module of the PEP code. The VNAP2 code
is accessed during a PEP execution session via a system call. Upon receiving the system
call VNAP2 is executed and the PEP code waits untii VNAP2 is finished.
Communication of data between PEP and VNAP2 is done via data files that are opened
and closed in both codes. The VNAP2 control and input routines are physically a part of
the PEP code. The next section provides a step-by-step description on how to generate a
viscous high altitude exhaust plume that uses a VNAP2 nozzle flow solution.

2.2  Using the VNAP2 module in PEP

The VNAP2 module is generally used to provide nozzle exit plane properties for
calculating high altitude(>300000 feet) exhaust plumes from rocket engines that have
relatively low chamber pressures(<50 psia) and high area ratio nozzles(>100). The
VNAP2 module is restricted to ideal gas solutions so that exhaust plumes using VNAP2
nozzle data must be calculated using the ideal gas total enthalpy approximation. The
VNAP?2 input generation module calculates a averaged specific heat ratio and molecular
weight that is used throughout the solution. In general this approximation will result in
conservative plume induced environments. The following are step-by-step instructions
for generating a rocket exhaust plume that includes a viscous nozzle flowfield solution
from the VNAP2 module:
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Obtain all motor operating conditions(chamber pressure, propellant and O/F ratio),
geometry(preferably including the combustion chamber data) and vehicle operating
parameters(altitude, angle of attack and mach number).

Specify a new problem identification upon accessing the PEP code.

Input the applications GUI for the problem. This will be automatically be accessed
for a new problem.

Access the CEC module and input the propellant and combustion chamber data via
the CEC input generation module. Set up a constant O/F/constant total enthalpy case.
The CEC module need not be utilized but the user must aiready have the proper
thermodynamic and transport data available for input to RAMP?2 and VNAP2.

Execute the CEC module to generate the CEC thermodynamic and transport data
files(*ul0.ram, *sav.cec).

Access the RAMP2 module and generate the RAMP2 input data using the RAMP?2
input data generation module. You must respond to the control input module queries
that you are going to utilize the VNAP2 module to provide properties for the plume
calculation. If you utilized the CEC module to provide thermodynamic and transport
data for the VNAP2 input module, select the equilibrium/frozen chemistry option for
running RAMP2. The code will automatically switch to the ideal gas variable total
enthalpy option for the plume solution. Be sure to respond to input data queries to
indicate that you do not want multiple passes through the nozzle and boundary
solutions.*

* Steps 1 through 6 need not be performed during 1 PEP execution session. Steps 7
through 10 must be performed during a single PEP execution session.

7)

8)

Access the RAMP2 module and run RAMP?2 a first time to generate the RAMP2
nozzle solution.

Access the VNAP2 module from the top control menu. Select the input generation
module to automatically generate the VNAP2 input data file(*inp.vnp). If the input
file already exists several options are available for user to select. A GUI will be
displayed(see Figures 1 through 3) that allows the user to change selected input
variables. Each of these three GUT's all the user to change selected inputs from the
three functional parameter groups: Mesh/Convergence Control, Gas Properties and
Geometry/Boundary Conditions. Each of these three GUI's are accessed using the
mouse and the parameter button at the top of the GUL. Move the arrow to parameter
button, hold down left mouse button and drag the arrow down to the desired
parameter group. Then let up on button. Make any desired changes to the available
input variables. After all three GUI's have been accessed(if desired) use the mouse to
select the use button at the bottom of any one of the GUI's to use the data and exit the
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GUI module. Variables that are listed but are shaded cannot be changed and uare
shown for information only. It is not recommended that none of the variubles be
chunged unless the user is familiar with the VNAP2 code. The values and PO
which have automatically been specified have been selected (o provide the most
trouble free execution of the VNAP2 module for typical nozzles that require a tully
coupled viscous ~olution.

Figure I~ VNAP2 Mesh/Convergence Control Variables Input/Modification GU1
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9) After the input generation/update module has been exited, execute the VNAP?2
flowfield generation module. The user will be informed that the module has been
entered and finished. There will be intermediate outputs to the screen every 10 time
steps to inform the user of the codes progress. The VNAP2 solutions module can take
a relatively long time to calculate the nozzle depending on the number of grid points
and time steps that are specified(as well as the platform PEP/VNAP2 is being run on).
Once the VNAP?2 solution has been successfully completed return to the top menu
and select the RAMP2 module.

10) Execute the RAMP2 solution module for the plume solution. Following the plume
solution the RAMP2 post processing module can be accessed to provide plot files that
can be used with TECPLOT or PLOT3D to display contour plots of both the nozzle
and plume solutions. The VNAP2 binary flowfield file is *plm.vnp. This file can be
post processed from the RAMP?2 post processing module by instructing the code that
it is a RAMP?2 format flowfield type. The plume flowfield(which includes the nozzle
inviscid flowfield) is the file *u3.ram.

11) The plume induced environment modules can then be access and the file *u3.ram may
be used to provide flowfield properties for generating the induced environments

Table 1 presents a list files and descriptions that are generated when the VNAP2 module
is accessed for a particular problem.

Table 1
Files Generated and Used During A PEP/VNAP2 Nozzle/Plume Solution

File Name Description Generated Used By
By
*sav.cec Thermodynamic and Transport Property Date CEC VNAP2/
RAMP2
*lip.ram RAMP? flowfield properties at the nozzle lip RAMP2 VNAP2
Input
Module
*str.ram RAMP?2 properties at startline RAMP2 VNAP2
Input
Module
*inp.vnp | VNAP2 input file VNAP2 VNAP2
Input
Module
*out.vnp | VNAP2 printed output file. VNAP2 User
*str.vnp VNAP2 exit plane property distributions VNAP2 RAMP2
*plm.vnp | VNAP?2 binary flowfield property binary data VNAP2 RAMP2
Post
Processing
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2.3 Description of the VNAP2 Flowfield Module Input Variables

The file *inp.vnp supplies the input data to the VNAP2 flowfield module of the PEP code. All options that
were available in the version of the VNAP2 code that is described in Reference | can be run with the
version that has been integrated into the PEP code. However, as been discussed above only two types of
calculations can be input via the input generation and GUI input modules. Any other options will require
the used to manually generate/modify the *inp.vnp namelist input file prior to running the VNAP2 module.
A complete description of the VNAP2 input variables is presented below. The description of the variables
were taken almost verbatim from Reference 1. Variables that are shown shaded(MAIN) and shaded with an
underline(MAIN) are variables that are automatically set by the VNAP2 automatic input generator that was
developed for the use of VNAP2 with the PEP code to generate a viscous exit plane startline. The
underline shaded variables(MAIN) can be updated and changed with the PEP input update GUI module.
All other variables are the default values that are set in the VNAP2 code. The variable defaults that are
listed in the description of input variables that are shown in brackets - (0.0) ,are the original default values
that are set in the VNAP2 code. The default values specified above these values are those set by the PEP
automatic input file generation module. The problem description record and 10 namelists must be
contained in the *inp.vnp file in the order that they are presented below. Each namelist must be included
even if there are no variables contained in the input namelist.

Problem Description

Format:20A4
Column Parameter Description
1-80 TITLE Record containing up to 80 alphanumeric characters that describe the
problem. This record must always be the first card in the input file, even if
no information is contained on this record.
Namelist CNTRL

This namelist reads in the parameters that control the overall logic of the program.

Parameter Description Default
LMAX An integer specifying the number of mesh points in the x direction with a 61
maximum value specified by a PARAMETER(101 Max) statement. (None)
MMAX - | An integer specifying the number of mesh points in the y direction with a 31
maximum value specified by a PARAMETER(51 Max) statement. (None)
NMAX An integer specifying the maximum number of time steps. For NMAX=0. 10000
Only the initial data surface is computed and printed (provided NPRINT>0). 0)
NPRINT | An integer specifying the amount of output desired. For NPRINT=N, every 0

Nth solution plane, plus the initial-data and final solution planes, is printed. For
NPRINT=-N, every Nth solution plane, plus the final solution plane, is printed.
For NPRINT=0, only the final solution plane is printed.

TCONV - | Specifies the axial velocity steady-state convergence tolerance in percentage. .003
If equal to zero, the convergence is not checked. This parameter is a function 0.0)
of the problem as well as of grid spacing and, therefore, should be used
carefully.

FDT The parameter A in Eqgs.(67)-(69) of Reference 1 that premultiplies the 0.8
allowable CFL time step. It is desirable to use as large a value of FDT as 0.9)

possible without causing the computation to become unstable. Values as large
as 1.3 have been used successfully for shockfree flows, but smaller values are
required for flows with shocks (see Sec.IL.F of Reference | ).
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Namelist CNTRL(Cont.)

Parameter

Description

Default

EDTI

The same as FDT, except it applies on the first time step only. Because the
viscous contribution to the time-step limitation is not used on the first time
step, FDTI may be used to get the calculation started with a small time step,
without having to use this small value for the entire calculation. Some flows
may require a small time step for the first few steps owing to initial gradients in
the flow variables. This is often true for viscous flows when the Quick
Solution option is used. For this situation, make a short run with small enough
values of FDT or FDTI so that the code will run. Then use the restart option
(see IPUNCH) to continue the run with more desirable values of FDT or FDTIL.
For any long running problem, it is usually worth experimenting with FDT and
FDTI (as well as VDT and VDTI) to make sure that optimum values are being
used.

0.8
(0.9)

The same as FDT, except it applies only in the subcycled part of the mesh.
That is, FDTI is used from M = MVCB to M = MVCT (see Namelist VCL).

0.8
(1.0

VDT

The parameter Al in Eqgs. (67)-(69) of Reference 1 that premultiplies the
viscous part of the time-step equation, whereas FDT premultiplies the entire
time step.. Increasing VDT increases the time step.

0.25

VDTI

The same as VDT, except it applies only in the subcycled part of the mesh.
That is, VDTI is used from M=MVCB to M=MVCT (see Namelist VCL). The
default value is 0.25, although values larger than 1.0 have been used in free-
shear layers.

0.25

GAMMA

Specific heat ratio.

1.4

RGAS -

Denotes the gas constant in Ibf-f/lbm-deg R if English units are used, or J/kg-
deg K if metric units are used.

53.35

TSTOP

Specifies the physical time, in seconds, at which the computations will stopped.

1.0

116)1

An integer specifying the type of units to be used for the input quantities. IF
IUI=1, English units are assumed; if IUI=2, metric units are assumed. In using
any default values, make sure the values correspond to the proper units.

1o

The same as IUI except for output quantities. IF IUO=3, both English and
metric units are printed.

IPUNCH

An integer which, if nonzero, punches (writes) the last solution plane on cards
(disc or tape) for restart.

NPLOT

An integer which, if greater than or equal to zero, plots both velocity vectors
and contours of density, pressure, temperature, Mach number, turbulence
energy, and dissipation rate on an SC-4020 microfilm recorder. For NPLOT
=N, all Nth solution planes, plus the initial-data and final solution plane, are
plotted. For NPLOT=0, only the final solution plane is plotted. Note: this
option is not operational since the SC-4020 routine calls are dummied out.

LPP1,MPP1
LPP2,MPP2
LPP3,MPP3

Three sets of integers that specify three grid points(the first point is
L=LPP1,M=MPP1) for which the pressure is printed at each time step. When
MPP1(MPP2 or MPP3) = MDEFS not equal O(Namelist DFSL), the upper dual-
flow space wall value is printed. This pressure history is very useful for
determining when subsonic flows have reached steady state. If LPP1< O, the
pressure at each subcycled grid point (see MVCB and MVCT in Namelist
VCL) is also printed.

NASM

An integer specifying which part of the flow field is tested for steady-state
convergence. For NASM=0, the entire flow field is tested. For NASM=1, the
transonic and supersonic (throat region to exit) regions are tested.

10
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Namelist CNTRL(Cont.)
Parameter Description Default
NAME An integer that, when nonzero, causes the 10 namelists to be printed in 0
addition to the regular output.
NCONV!1 | An integer specifying how many times the convergence tolerance TCONV 1

must be satisfied on consecutive time steps before the solution is considered to
have converged.

IUNIT An integer that, when equal to zero, causes the program to use either English or 0
metric units (see [UI and IUO). For IUNIT=1, a nondimensional set of units is
used.

PLOW If the pressure becomes negative during a calculation, it is set equal to PLOW 0.01

in psia or kPa.

ROLOW | If the density becomes negative during a calculation, it is set equal to ROWOL 0.0001
in Ib/ft’ or kg/m’.

IVPTS An integer that controls the scaling of the velocity vector plots. IVPTS=1 1
produces one plot with the maximum vector equal to 0.9 delta x, where delta x
is the average value. IVPTS=2 produces the above plot and a second plot
where the maximum vector is 1.9 delta x and so on. Note: this option is not
operational since the SC-4020 routine calls are dummied out.

PRANFR | Frozen Prandtl Number that is not used by VNAP2 module but is passed along 1.0
from the RAMP2 module solution to the plume solution that used the VNAP2
exit plane results.

Namelist IVS

This namelist specifies the flow variables for the initial-data surface.

Parameter Description Default

NID - An integer specifying the type of initial-data surface desired. For NID=0, a 2D 1
initial-data surface is read in. A value of U,V,P, and RO (discussed below)
must be read in for all mesh points from L=1 to LMAX and from M=1 to
MMAX. In addition, for dual-flow-space examples, values of UL,VL, PL and
ROL (discussed below) must be read in for all mesh points from L=LDFSS to
LDFSF. For the single-equation turbulence model, a value of Q along with QL
for the dual-flow-space example, may be read in. For the two-equation model,
a value of E, along with EL for the dual-flow-space example, may also be read
in. If the arrays Q and QL and the arrays E and EL are not read in, they are set
equal to FSQ and FSE (Namelist TURBL), respectively. Values of Q and E
may be read in for either NID=0 or N1D not equal to 0. For N1D not equal to
0, a 1D data surface is computed internally. The following combinations are
possible:

N1D=-2 subsonic See RSTAR and RSTARS
N1D=-1 subsonic See RSTAR and RSTARS

N1D=1 subsonic-sonic-supersonic No
N1D=2 subsonic-sonic-subsonic additional
N1D=3 supersonic-sonic-supersonic data are

N1D=4 supersonic-sonic-subsonic needed

11
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Namelist IVS(Cont.)
Parameter Description Default
U(LM,1) | An array denoting the x-direction velocity components in ft/s or m/s. For None
N1D=0, U(L,M,1) must be read in for cases from L=1 to LMAX and from
M=1 to MMAX. For N1D not equal to 0, U(IL,M,1) is not read in.
V(LM,1) | An array denoting the y-direction velocity component in ft/s or m/s. See None
U(L.M,1) for additional information.
P(LLM,1) | An array denoting the pressure in psia or kPa. See U(L,M,1) for additional None
information.
RO(LM,1) | An array denoting the density in Ibm/ft” or kg/m’. See U(LM,1) for additional None
information.
Q(L.M,1) | An array denoting the turbulence energy in ft/s* or m*/s*. See U(LM, 1) for FSQM)
additional information. The default value is FSQ(M) in Namelist TURBL
E(LM,1) | An array denoting the dissipation rate in ft*/s’ or m’/s’. See U(LM,1) for | FSE(M)
additional information. The default value is FSE(M) in namelist TURBL
UL(L,1) An array denoting the x-direction velocity component in ft/s or m/s and None
corresponding to the lower dual-flow-space wall. The values for the upper
dual-flow-space wall are read in by U(L,MDFS,1). For N1D=0 and MDSF not
equal to 0, UL(L,1) must be read in for cases from L=LDFSS to LDFSF. For
N1D not equal to 0 or MDFS=0, UL(L,1) is not read in.
VL(L,1) An array denoting the y-direction velocity component in ft/s or m/s. See None
UL(L,1) for additional information.
PL(L,1) An array denoting the pressure in psia or kPa. See UL(L,1) for additional None
information.
ROL(L,1) | An array denoting the density in Ibm/ft’ or kg/m°. See UL(L,1) for additional None
information.
QL(L,1) An array denoting the turbulence energy in ft*/s* or m*/s*. See UL(L,1) for FSQL
additional information. The default value is FSQL in Namelist TURBL
EL(L,1) An array denoting the dissipation rate in ft*/s’ or m*/s’. See UL(L,1) for FSEL
additional information. The default value is FSEL in Namelist TURBL
RSTAR If N1D=-1 or -2, either RSTAR for planar or RSTARS for axisymmetric flow None
RSTARS | must be read in. RSTAR is the area per unit depth or height (in in. or cm)

where the Mach number is unity. RSTARS is the area divided by pi that is the
radius squared (in in. or cm?) where the Mach number is unity.

Notes on Namelist IVS:

If the restart option is to be used, the initial run must be made with IPUNCH not equal 0 in CNTRL,
thereby causing a new IVS Namelist deck to be written on disc a file. The new IVS Namelist replaces the
one used initially and includes two additional parameters, NSTART and TSTART, which denotes,

respectively, the time step and the physical time where the solution was restarted.

When NID is not equal to 0, the initial data are calculated using 1D isentropic theory. However, the x and
y velocity components are adjusted while the magnitude is kept constant and the flow angle is satisfied.
The flow angles are linearly interpolated between the slope of the wall and the centerbody. For the dual-
flow-space example, the Mach number is assumed to be equal in both flow spaces at a given value of x.
However, the flow angles are interpolated between the centerbody and the lower dual-flow-space boundary
for the lower space and between the upper dual-flow-space boundary and the wall for the upper space.
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Namelist GEMTRY

This namelist specifies the parameters that define the wall contour.

Parameter Description Default
NDIM = | An integer denoting the flow geometry. For NDIM=0, 2D planar flow is 1
assumed, and for NDIM=1, axisymmetric flow is assumed.

NGEOM | An integer specifying one of four different wall geometry’s. A discussion of 3
these four cases follows the definitions of the additional parameters in this (none)
namelist.

X1 The x coordinate, in in, or cm, of the wall inlet. None
Rl The y coordinate, in in. or cm, of the wall inlet. None
RT The y coordinate, in in. or cm, of the wall throat. None
XE The x coordinate, in in. or cm, of the last solution station(wall or free-jet exit). None
RCI The radius of curvature, in in. or cm, of the wall inlet. None
RCT The radius of curvature, in in. or cm, of the wall throat. None
ANGI The angle, in degrees, of the converging section. None
ANGE The angle, in degrees, of the diverging section. None
XWI A 1D array of non-equally spaced x coordinates in in. or cm. None
YWI A 1D array of y coordinates, in in. or cm, corresponding to the x coordinates in None
array XWI,

NWPTS. [ An integer specifying the number of entries in arrays XWI and YWL. The None
maximum value is specified by a PARAMETER(101 max) statement (see Sec.
I1.E.1 of Reference 1).

IINT An integer specifying the order of interpolation used. The maximum value is 2 2
IDIF An integer specifying the order of differentiation used. The maximum value is 5. 2
YW A ID array of y coordinates, in in. or cm, which correspond to LMAX x None

coordinates given by XP in Namelist VCL.

NXNY A 1D array (floating point) of the negative of the wall slopes corresponding to None
the elements of YW.

JFLAG An integer that, when equal to 1, denotes that a free-jet calculation is to be 0
carried out and, when equal to -1, denotes that a supersonic sharp expansion
corner is present on the wall. These two options are allowed only for the free-
slip wall boundary condition. Many free-jet flows contain shocks and will
therefore, require artificial viscosity (see Namelist AVL),

LJET An integer that, when JFLAG=1, denotes the first mesh point of the free-jet None
boundary (the last wall mesh point is LJET-1. However, when JFLAG=-1,
LIJET is the next mesh point downstream of the sharp expansion corner (the
corner mesh point is LJET-1). The program assumes that either the wall ends
exactly at LJET-1 (JFLAG=1) or the sharp expansion corner is located exactly
at LJET - I( JFLAG = -1). Also, for the sharp expansion corner case
(JFLAG=-1), the slope of the wall at the corner (LJET-1) should be the
upstream value. The program does not allow both a sharp expansion corner
and a free-jet calculation. In addition LJET must be > 2 and < LMAX - 1.

XEXTF- | Axial location of the nozzle exit in in. or cm. This variable is determined from None
the RAMP2 module inputs and passed onto VNAP?2 for determining exit plane
properties that are passed on to RAMP?2 for the plume solution.

REXIT Radial location of the nozzle lip of in in. or cm. This variable is determined None
from the RAMP2 module inputs and passed onto VNAP2 for determining exit
plane properties that are passed on to RAMP? for the plume solution.
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Notes on VNAP2 geometry input options:

The default option that is used by the Al code in setting up the geometry for using the VNAP2 code to
establish exit plane flow properties is NGEOM=3. The user cannot enter another option using the built in
menu. The following is a discussion of the four different wall geometry’s considered by this program:

a. Constant Area Duct (NGEOM=1). The parameters XI,RJ(radius of the duct) and XE must be specified.

b. Circular-Arc, Conical Wall (NGEOM=2). The geometry for this case is shown in Fig. 21 of Reference 1.
The parameters XI, RI, RT, XE, RCILLRCT, ANGI, and ANGE are specified. The x coordinate of the throat
and the radius of the exit are computed internally.

¢. General Wall (NGEOM=3). An arbitrary wall contour is specified by tabular input. NWPTS x- and y-
coordinates pairs are specified by the arrays XWI and YWI, respectively. The tabular data need not be
equally spaced. From the specified values of NWPTS, XWI, YWI, IINT, and IDIF, the program uses
IINT-order interpolation to obtain LMAX y coordinates that correspond to the x coordinates given by XP in
Namelist VCL. Next, IDIF-order differentiation is used to obtain the wall slope at these LMAX points.

d. General Wall (NGEOM=4). An arbitrary wall contour is specified by tabular input. LMAX vy
coordinates and the negative of their slopes are specified by the arrays YW and NXNY, respectively. These
y coordinates correspond to the LMAX x coordinates given by XP in Namelist VCL, XI and XE also must
be read in.

Namelist GCBL

This namelist specifies the parameters that define the centerbody geometry. If no centerbody is present,
this namelist is left blank but must still be present in the data deck. None of the variables specified by this
namelist are used by the options necessary to generate nozzle exit plane flow properties for the PEP code so
that a blank namelist is input.

Parameter Description Default

NGCB An integer that, when nonzero, specifies one of four different centerbody 0
geometry’s. A discussion of these four cases will follow the definitions of the
additional parameters in this namelist.

RICB The y coordinate, in in. or cm, of the centerbody inlet. None
RTCB The y coordinate, in in. or cm, of the centerbody maximum radius. None
RCICB The radius of curvature, in in. or cm, of the centerbody inlet. None
RCTCB The radius of curvature, in in. or cm, of the centerbody maximum radius. None

ANGICB | The angle, in degrees, of the converging section. None
ANGECB | The angle, in degrees, of the diverging section. None

XCBI A 1D array of non-equally spaced x coordinates in in. or cm. None
YCBI A 1D array of y coordinates, in in. or cm, corresponding to the x coordinates in None

array XCBI

NCBPTS | An integer specifying the number of entries in arrays XCBI The maximum None
value is specified by a PARAMETER(101 max) statement (see Sec. ILE.1 of
Reference 1).

IINTCB An integer specifying the order of interpolation used. The maximum value is 2
2.
IDIFCB An integer specifying the order of differentiation used. The maximum value is 2
5.
YCB A 1D array of y coordinates, in in. or cm, which correspond to LMAX x 0.0

coordinates given by XP in Namelist VCL.

NXNYCB | The 1D array (floating point) of the negative of the centerbody slopes 0.0
corresponding to the elements of YCB.
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The following is a discussion of the four different centerbody geometry’s considered by the VNAP2
program that can be input in the GBCL namelist:

a. Cylindrical Centerbody (NGCB=2). The parameter RICB (radius of the centerbody) must be specified.

b. Circular-Arc, Conical Centerbody (NGCB=2). The geometry for this case is shown in Fig. 22 of
Reference 1. The parameters RICB, RTCB, RCICB, RCTCB, ANGICB and ANGECB are specified. The
x coordinate of the maximum radius and the radius of the exit are computed internally.

¢. General Centerbody (NGCB)=3). An arbitrary centerbody contour is specified by tabular input.
NCBPTS x- and y-coordinate pairs are specified by the arrays XCBI and YCBI, respectively. The tabular
data need not be equally spaced. From the specified values of NCBPTS, XCBI, YCBI, IINTCB, and
IDIFCB, the program uses IINTCB-order interpolation to obtain LMAX y coordinates that correspond to
the x coordinates given by XP in Namelist VCL. Next, IDIFCB-order differentiation is used to obtain the
centerbody slope at these LMAX points.

d. General Centerbody (NGCB=4). An arbitrary centerbody contour is specified by tabular input. LMAX
y coordinates an the negatives of their slopes are specified by the arrays YCB and NXNYCB, respectively.
These y coordinates correspond to the LMAX x coordinates given by XP in Namelist VCL.

Namelist BC

This namelist specifies the flow boundary conditions for all computational boundaries.

Parameter Description Default

NSTAG An integer that, when nonzero, denotes that variable total pressure PT, variable 0
total temperature TT, and variable flow angle THETA (all discussed below)
have been specified. If NSTAG not equal to 0, then a value for PT,TT, and
THETA must be specified at all the points from M=1 to MMAX, even if one
or two of the variables are constant or some grid points are not used
(ISUPER=2 or 3). If NSTAG=0, only the first value for each of the three
arrays needs to be specified.

PTM) A ID array denoting the stagnation pressure, in psia or kPa, across the inlet None
(see ISUPER). This array is used to calculate the 1D initial-data surface as
well as the inflow conditions for ISUPER=0, 2, or 3.

TTM) A 1D array denoting the stagnation temperature in degrees R or K, across the None
inlet (see ISUPER). This array is used to calculate the 1D initial-data surface
as well as the inflow conditions for ISUPER=0, 2, or 3.

THETA(M) | A 1D array denoting the flow angle , in degrees, across the inlet (see ISUPER). 0.0
The default value is THETA(1)=0.0, which is meaningful only when
NSTAG=0.
PTL Denotes the stagnation pressure, in psia or kPa, at the point where the lower None

dual-flow-space wall intersects the inlet (see Namelist DSFL). The upper dual-
flow-space wall value is read in by PT(MDFS). If NSTAG=0 or MDFS=0 or
LDFSS not equal to 1, then PTL is not read in.

TTL The same as PTL, except denotes the stagnation temperature in degrees R or K None

THETAL | The same as PTL, except denotes the flow angle is degrees. None
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Namelist BC(Cont.)
Parameter Description Default
PE(M) A 1D array denoting the pressure, in psia or kPa, to which the flow is exiting. Exit
This pressure is used to compute the flow exit conditions when the flow is | pressure
subsonic, the free-jet boundary location when a free-jet calculation is from
requested, or the wall inflow-outflow boundary when IWALL=1. The free-jet RAMP2
or wall inflow/outflow boundary pressure is assumed to be constant and equal (14.7)
to PE(IMMAX). Subroutine WALL could be modified to allow PE to be a
function of x or t. This array starts with the centerline or centerbody value and
ends with the wall value. If the exit pressure is constant, only the first value of
the array needs to be read in.
PEL Denotes the pressure, in psia or kPa, to which the flow is exiting at the point None
where the lower dual-flow-space wall intersects the exit (see Namelist DFSL).
The upper dual-flow-space wall value is read in by PE(MDSF). If MSSF=0
or LDFSE=LMAX,PEL is not read in.
Uiy A 1D array denoting the x velocity, in ft/s or m/s, across the iniet (see None
ISUPER), This array, as well as the arrays, VI, PI, and ROI below, starts with
the centerline or centerbody value and ends with the wall value. Values must
be specified for points from M=1 to MMAX even if some grid points are not
used (ISUPER=2 or 3).
Vim) The same as Ul except y velocity. None
PI(M)- | The same as UI, except denotes pressure in psia_or kPa. None
ROI‘ML The same as Ul, except denotes density in Ibm/ft’ or kg/m’. None
UIL Denotes the x velocity in ft/s or m/s at the point where the lower dual-flow- None
space wall intersects the inlet (see Namelist DFSL). The upper dual-flow-
space wall value is read in by UI((MDSF). For MDFS=0 or LDFSS not equal
to 1, UIL is not read in. See ISUPER for additional information.
VIL The same as UIL, except y velocity. None
PIL The same as UIL, except denotes pressure in psia or kPa. None
ROIL The same as UIL, except denotes density in lbm/ft’ or kg/m’. None
™ A 1D array denoting the wall temperature in degrees R or K corresponding to None
the x mesh points. If TW is not specified, the wall is assumed to be adiabatic.
TCB The same as TW, except denotes centerbody temperature. None
TL The same as TW, except denotes lower dual-flow-space wall (see Namelist None
DSFL). If MDFS=0, TL is not read in.
TU The same as TW, except denotes upper dual-flow-space wall (see Namelist None
DSFL), If MDFS=0, TU is not read in.
ISUPER An integer that specifies whether the inlet flow is subsonic, supersonic, or both 0

ISUPER may have the following values:

ISUPER=0 Subsonic inflow with PT,TT, and THETA as the
specified quantities.
Subsonic, supersonic or mixed inflow with UL VI,PI,
and ROI as the specified quantities. For subsonic
flow, Pl is only an initial guess if INBC=0, and Ul is
only an initial guess if INBC not equal to 0.
Subsonic, supersonic, or mixed inflow between the
centerbody and lower dual-flow-space wall with
ULVI, PI, and ROI as the specified quantities. For
subsonic flow, PI is only an initial guess if INBC=0,
and Ul is an initial guess if INBC not equal to 0.

ISUPER=1

ISUPER=2
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Namelist BC(Cont.)
Parameter Description Default
ISUPER ISUPER=2 is subsonic inflow between the upper

dual-flow-space wall and the wall with PT,TT, and
THETA as the specified quantities.

ISUPER=3 The same a ISUPER=2, except subsonic and
subsonic, supersonic or mixed sides are switched.

Note: For nozzle cases where the PEP code has geometry for the
combustion chamber ISUPER is set to 0. For cases where PEP is solving
the flowfield beginning from the throat ISUPER is set to 1.

INBC An integer that specifies whether u or p will be the inflow boundary condition 0
for ISUPER not equal to 0. If INBC=0, u is the boundary condition and p is
calculated. If INBC not equal to 0, the reverse is true.

TWALL An integer that denotes whether the wall is a solid boundary(includes free-jet 0
option) or a constant pressure inflow/outflow boundary that is fixed with
respect to time.

IWALL=0 Specifies a solid or free-jet boundary.

IWALL=1 Specifies a constant pressure PE(MMAX)
boundary. When there is inflow across this
constant pressure boundary, u and p are set
equal to the wall-inlet value. This option
cannot be used with JFLAG not equal to 0 in
Namelist GEMTRY.

IWALLO | An integer that, when not equal to 0, forces linear extrapolation of the pressure 0
at the wall for the IWALL=1 case. This option is useful when a shock wave
exits the wall boundary or when the flow normal to the boundary is supersonic
outflow,

IINLET An integer that, when not equal to 0, forces specification of all variables as the 0
inflow boundary condition regardless of the Mach number. It applies only
when ISUPER not equal to 0.

IEXITT An integer that, when not equal to 0, forces either extrapolation (IEXITT=1) 0
or specified pressure (IEXITT=2) as the outflow boundary condition regardless
of the Mach number.

IEX An integer that denotes the type of extrapolation to be used for supersonic 1
outflow. IEX=0 denotes zeroth-order extrapolation, and IEX=1 denotes linear
extrapolation.

IVBC An integer that specifies whether extrapolation or reflection is used to 0

determine the viscous terms at boundaries. IVBC=0 specifies reflection,
IVBC=1 specifies linear extrapolation, and IVBC=2 specifies zeroth-order
extrapolation. Reflection is always used at the centerline or midplane. The
adiabatic wall boundary condition (that is TW,TCB,TL and TU not specified)
requires IVBC=0.

NOSLIP | An integer that, when equal to zero, specifies free-slip walls whereas 1
NOSLIP=1 specifies no-slip (u=v=0) walls for all solid boundaries. The no- ()]
slip boundary condition is not enforced at the wall when IWALL=0.

DYW A parameter that specifies the maximum change that is allowed on each time .001

step in the free-jet boundary location. The default value is 0.001, that is 0.1%
maximum change per time step.
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Namelist BC(Cont.)

Parameter

Description

Default

IAS

An integer that, if not equal to zero, causes the upper and lower dual-flow-
space wall slopes to be se equal to the average of the two slopes. This occurs
only at the point or points where the two dual-flow-space walls intersect. That
is, for LDFSS not equal to 1, the slopes at LDFSS will be set equal on their
average. Also, id LDFSF not equal to LMAX, the same occurs.

0

ALI

The coefficient C, is Egs. (55) and (56) of Reference 1. This coefficient
controls the nonreflecting inflow boundary condition employed at the left
boundary. Any nonzero value will activate the nonreflecting option; however,
values of approximately 0.1 appear to work well for many problems.
Specifying ALI not equal to 0.0 for the P, , T, , and flow angle boundary
condition or supersonic inflow has no effect.

0.0

ALE

The coefficient C, in Eq. (54) of Reference 1. This coefficient controls the
nonreflecting inflow and outflow boundary condition at the right boundary.
See ALI for further details. Specifying ALE not equal to 0.0 for supersonic
outflow has no effect.

0.0

ALW

The coefficient C, in Eq (54) of Reference 1. This coefficient controls the
nonreflecting inflow and outflow boundary condition at the wall boundary.
See ALI for further details. Specifying ALW not equal to 0 when IWALL=0
(Namelist BC) has no effect.

0.0

Namelist AVL

This namelist specifies

the parameters that determine the artificial viscosity used to stabilize the

calculations for shocks and control space-and time-smoothing option. For flows without shocks or where
space or time smoothing is not desired, this namelist is left blank. See Sec. ILF of Reference ! for
additional information. None of the variables specified by this namelist are used by the options necessary to
generate nozzle exit plane flow properties for the PEP code so that a blank namelist is input.

Parameter Description Default

CAV Denotes the artificial viscosity premultiplier C in Eq. (23) of Reference 1. Sec. 0.0
IL.F of Reference 1 for typical values.

XMU Denotes the coefficient C,; in Eq. (24) of Reference 1 in the artificial viscosity 0.4
model. A non-dimensional value is used.

XLA Denotes the coefficient Cizmpa, in Eq. (23) of Reference 1 in the artificial 1.0
viscosity model. A nondimensional value is used.

PRA Denotes the coefficient Pr, in Eq. (25) of Reference 1 in the artificial viscosity 0.7
model and represents an artificial Prandt] number.

XRO Denotes the coefficient Cy, in Eq. (26) of Reference 1 in the artificial 0.6
viscosity model.

LSS, Integers that specify the x mesh points at which the addition of the artificial 1

LSF viscosity will begin (LSS) and end (LSF). These parameters can significantly 999
reduce the run time for inviscid flows where a shock occupies only a small part
of the flow.

MSS, The same as LSS and LSF, except that these specify the y mesh points at 1

MSF which the addition of the artificial viscosity begins (MSS) and ends (MSF). 999
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Namelist AVL(Cont.)
Parameter Description Default
IDIVC An integer that, when not equal to 0, bypasses the check on the sign of the 0

velocity divergence in the artificial viscosity model. That is, the artificial
viscosity will be nonzero for both expansions and compression’s. This
improves some complex multiple shock interactions, but also increases the
smearing of expansion.

ISS An integer that, when not equal to 0, adds the sound speed gradient to the 0
velocity divergence in Eq. (23) of Reference 1. For ISS=1, the sound speed
gradient is added to the velocity divergence only if the velocity divergence is
< 0. For ISS=2, the sound speed gradient is always added. This term improves
contact surface calculations (see Sec. I.F of Reference 1.)

SMACH | Denotes the Mach number below which no artificial viscosity for shock 0.0
calculations is added to the solution. This option is useful for moderate-to-
high Reynolds number, steady flow, where the artificial viscosity swamps the
molecular and turbulent viscosity’s in the boundary layer. By setting SMACH
equal to ~ 0.5, the artificial viscosity is zero for most of the subsonic part of
the boundary layer. See LF of Reference 1 for additional details.

NST An integer denoting the time step at which a small amount of numerical space 0
or time smoothing is stopped. Smoothing is employed on the regular time steps
and not the subcycled steps (see Namelist VCL). This smoothing may be
required to stabilize the calculations for very nonuniform or impulsively
started initial-data surfaces. Some initial smoothing in space causes subsonic
flows to reach steady state faster, but this is not the case for transonic and
supersonic flows. Time smoothing also causes subsonic flows to converge to
steady state faster. When using the restart option, make sure NST is set equal
to zero unless additional smoothing is desired. If additional smoothing is
desired on a restart, make sure that the values of SMP or SMPT on the restart
equal the final values of the previous run (see SMP and SMPT discussion
below).

SMP A Parameter that, along with NST and SMPF, controls the amount of space 1.0
smoothing (provided NST not equal to 0. SMP must be between 0.0 and 1.0.
The dependent variables are smoothed by the following formula:

uLm = SMP * up y + (1.0 - SMPY*( ULy m + UL met + Up g + U I 4.0

The value of SMP changes on each time step by the following replacement
formula:

SMP=SMP +(SMPF-SMP)/NST,

where the underlined SMP denotes the original input value. The inlet (L=1)
and exit (L=LMAX) columns of grid points are not smoothed.

SMPF A parameter that, along with NST and SMP, controls the amount of space 1.0
smoothing (see SMP for details). SMPF must be between 0.0 and 1.0.
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Namelist AVL(Cont.)

Parameter

.

Description

Default

SMPT

A parameter that, along with NST and SMPTF, controls the amount of time
smoothing or relaxation (provided NST not equal to 0). The dependent
variables are smoothed by the following formula;

ulm=SMPT*uM Y + (1.0 — SMPT)*uY ,,

The value of SMPT changes on each time step by the following replacement
formula:

SMPT = SMPT+ (SMPTF - SMPT)/NST,
where the underlined SMPT denotes the original input value. Where some

initial ~ space smoothing followed by longer duration time smoothing is
desired, flows can be computed using the restart option.

1.0

SMPTF

A parameter that, along with NST and SMPT, controls the amount of time
smoothing (see SMPT for details).

1.0

NTST

An integer that specifies the interval of time steps over which the solution is
time smoothed (provided NST not equal to 0 and SMART not equal to 1.0.
For example, if NTST=10, then after every 10 time steps the solution at the
current time step N is time averaged with the solution at time step N - 10. This
averaged solution is then stored and used to average with the solution at N +
10. For NTST=0, the code monitors the pressure at the L=LPP1 and M=MPP]|
grid point (Namelist CNTRL) and time smoothes when this pressure changes
direction. If LPPI and MPP1 are not specified and NTST=0, there is no time
smoothing. This extended-intended-interval time smoothing usually improves
the convergence to steady state of subsonic flows. To use this option with
NTST=0 or >1, the arrays US, VS, PS, ROS, QS and ES must be dimensioned
for LMAX and MMAX, while arrays ULS, VLS, PLS, ROLS, QLS, and ELS
must be dimensioned for LMAX. These arrays are located in Common AV.

IAV

An integer that, when not equal to 0, causes the viscous-turbulence terms,
turbulence energy, and dissipation rate (or length scale) to be printed at the
solution planes specified by NPRINT. IAV=2 causes the viscous terms for
each subcycled time step to be printed (provided MVCB and MVCT in
Namelist VCT are nonzero).

Namelist RVL

This namelist specifies the real or molecular viscosity parameters. For inviscid flows, this namelist is left

blank.

Parameter Description Default
CMU, These parameters specify the second molecular viscosity MU by the following | .165E-07
EMU equation: 0.5

MU=CMU*TEMU |

where T is the temperature in degrees R or K. The units of MU are Ibf-s/fi2
or Pa-s.
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Namelist RVL(Cont.)

Parameter

Description

Default

CLA,
ELA

These parameters specify the second coefficient of viscosity LAMBDA by the
following equation:

LAMBDA=CLA*TEA |

where T is the temperature in degrees R or K. The units of LAMBDA are
Ibf-s/ft* or Pa-s.

-.11E-07
0.5

CK,
EK

These parameters specify the thermal conductivity k by the following equation:
k=CK*T™,

where T is temperature in degrees R or K. The units of k are 1bf/s-R or W/m-
K.

.143E-03
0.5

Namelist TURBL

This namelist specifies the turbulence model parameters. For laminar as well as inviscid flow, Namelist
TURBL cannot be blank

Parameter

Description

Default

IT™

An integer that, when nonzero, specifies one of three different turbulence
models. ITM=1 specifies a mixing-length model; ITM=2 specifies a one-
equation, turbulence energy model: and ITM=3 specifies a two-equation,
turbulence energy dissipation-rate model.

1
0)

An integer, required for ITM=1 or 2, that specifies whether the flow is a free
shear layer (IMLM=1) or a boundary-layer flow (IMLM=2). This information
is required because the equations for the mixing length (ITM=1) and the
length scale of the one-equation model(ITM=2) are different depending on
whether the flow is a free shear or boundary layer. For single-flow spaces, the
shear layer option assumes either that the boundaries are free slip or that the
lower boundary is a symmetry boundary and the wall must be a constant
pressure inflow/outflow boundary. The boundary-layer option assumes one
no-slip boundary, which is either a centerbody or a wall, but not both. For
dual-flow spaces (see Namelist DFSL), the dual-flow space walls are assumed
to be no-slip boundaries, but the lower boundary must be a symmetry boundary
and the wall must be a constant pressure inflow/outflow boundary. The
program then uses the boundary-layer option between the dual-flow-space
walls an the shear-layer option elsewhere, regardless of IMLM. Therefore, for
dual-flow spaces IMLM does not need to be specified.

(1)

CML1,
CMI2

These coefficients, defined in Egs.(9) and (10) of Reference 1 and required for
ITM=1 or 2 or used in the shear-layer option (for IMLM=1 or for dual-flow
spaces). The mixing length used in both ITM=1 and 2, is calculated by
multiplying shear-layer thickness by these coefficients. CML2 is for velocity
profiles where the minimum velocity is in the flow interior, and CML1 is for
monatomic profiles. The default values for both coefficients are 0.125 for
planar flows and 0.11 for axisymmetric flow.

125, .11
125, .11

CAL

Denotes the coefficient alpha bar in the governing equations, Egs.(1)-(4) of
Reference 1. This coefficient controls the effect of variable density for all
three turbulence models.

1.0
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Namelist TURBL(Cont.)

Parameter Description Default

CQL This coefficient, which is Cy in Eq.(15) of Reference 1 and required by 17.2
ITM=2, is multiplied by the mixing length to obtain the length scale used in the 12.3
one-equation model. The default value is 17.2 for planar flows and 12.3 for
axisymmetric flow.

CQMU This coefficient, which is C, in Eqs(17) and (21) of Reference 1 and required 0.09

by ITM=2 or 3, pre-multiplies the expression for the turbulent viscosity in the
one-and two-equation models.

Cl, Coefficients, which are C, C;, SIGMA, and SIGMA, , respectively in Eq.(20) 1.44

C2, of Reference 1 and required by ITM=3, for the two-equation, turbulence 1.8

SIGQ, energy-dissipation-rate model. 1.0

SIGE 1.3

BFST A parameter, required by ITM=3, that sets a lower bound for q and ¢ in the 0.0
two-equation model by the following relation:

qum G.E. BFST * FSQM),
erm G.E. BFST * FSE(M)
where FSQ and FSE are defined below. A value between 0.0 and 1.0 is
necessary for some separated flows. If MDFS not equal to 0 and L < LDFSS
or L>LDFSF (Namelist DFSL), then BFST is set to zero.
FSQM) A 1D array that denotes the inlet or free-stream turbulence energy level 0.0001
(ITM=2 or 3)in ft/s’ or m%s’. This array, as well a the array FSE, starts with
the centerline or centerbody value and ends with the wall value.
FSE(M) The same as FSQ, except that the dissipation rate level (ITM=3) is given in 0.1
ft/s® or m%s’ .

FSQL Denotes the inlet or free-stream turbulence energy level(ITM=2 or 3) in ft*/s* 0.0001
or m%/s® at the point where the lower dual-flow-space wall intersects the
inlet.(see Namelist DFSL). The upper dual-flow-space wall is read in by
FSQ(MDES). For MDFS=0 or LDFSS not equal to 1, FSQL is not read in.

FSEL The same as FSQL, except that the dissipation rate level(ITM=3) is given in 0.1
ft/s® or m¥s’ .

QLOW If during a calculation the turbulence energy (ITM= 2 or 3) becomes less than 0.0001

or equal to QLOW, it is set equal to QLOW.

ELOW The same as QLOW except for the dissipation rate (ITM=3). 0.1
LPRINT, | Integers that, when greater than zero, cause the convection, production, 0
MPRINT | dissipation, and diffusion terms of the turbulence energy (ITM=2 or 3) and 0

dissipation rate (ITM=3) to be printed for L. = LPRINT, M = MPRINT at
every time step. The axisymmetric terms are not included.

PRT Denotes the turbulent Prandt] number in Eq. (8) of Reference 1. The turbulent 0.9
viscosity (mu,) is calculated by the turbulent model, after which the turbulent
conductivity (k,) is calculated from PRT.

STBQ, Denote the coefficients C; and Cg, respectively, in Eq. (22) of Reference 1. 0.0

STBE These coefficients control the fourth-order smoothing for the two-equation 0.0

model (ITM=3). This smoothing may improve the results for strongly
separated flows.
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Namelist DFSL

This namelist specifies the dual-flow-space walls. For single-flow-space examples, this namelist is left
blank. None of the variables specified by this namelist are used by the options necessary to generate nozzle
exit plane flow properties for the PEP code so that a blank namelist is input.

Parameter Description Default

MDEFS An integer that, when nonzero, specifies the M row of grid points along which 0
the dual-flow-space walls are positioned. MDFS cannot be set equal to 2 or
MMAX-1.

LDFSS, Integers that specify the x grid points where the dual-flow-space walls start and 0

LDFSF end, respectively. LDFSS and LDFSF cannot be set equal to 2 or LMAX -1, 0
respectively.

NDFS An integer specifying one of two different dual-flow-space wall geometry’s. A None

discussion of these two cases follows the definitions of the additional
parameters in the namelist.

YU, 1D arrays of y coordinates in in. or cm, which correspond to the LMAX x 0.0
YL coordinates given by XP in Namelist VCL. YU denotes the upper dual-flow- 0.0
space wall and YL denotes the lower.

NXNYU, | ID arrays (floating point) of the negative of the dual-flow-space wall slopes 0.0

NXNYL | corresponding to the elements of YU and YL, respectively. 0.0
XUI, 1D arrays of non-equally spaced x coordinates in in. or cm. XLI corresponds to None
XLI the upper dual-flow-space wall and XLI corresponds to the lower. None
YUI, 1D arrays of y coordinates in in. or cm, corresponding to the x coordinates in None
YLI arrays XUI and XLI, respectively. None

NUPTS, Integers specifying the number of entries in arrays XUI-YUI and XLI-YLI, None

NLPTS respectively. The maximum value is specified by a PARAMETER statement None
(see Sec. IL.E.1 of Reference 1)

IINTDES | An integer specifying the order of interpolation used. The maximum value is 2
2.

IDIFDFS | An integer specifying the order of differentiation used. The maximum value is 2
5.

The following is a discussion of the two different dual-flow-space wall geometry's considered by VNAP2.
If the dual-flow-space walls begin in the interior (LDFSS not equal to 1) the values of YL and YU (or YLI
and YUI) for L = LDFSS must be equal. The same is true at L = LDFSF if the dual-flow-space walls end in
the interior (LDFSF = LMAX). If the dual-flow-space walls begin and end in the interior, than the, ratio
(YL - YCB)/(YW - YCB) at L = LDFSS must equal that at = LDFSF. The angle of attack of the dual-flow-
space walls can be varied somewhat by changing the shape of centerbody and wall. However, if the
centerbody and wall shapes are fixed, then the angle of attack cannot be varied.

a. General Dual-Flow-Space Wall (NDFS=1). An arbitrary duel-flow-space wall contour is specified by
tabular input. NUPTS x and y coordinate pairs are specified the arrays XUI and YUI, respectively, NLPTS
x and y coordinate pairs are specified by the arrays XLI and YLI, respectively. The tabular data need not
be equally spaced. From the specified values of NUPTS, XUI, YUI, NLPTS, XLI, YLI, IINTDFS, and
IDIFDFS, the program uses IINTDFS-order interpolation to obtain (LDFSF-LDFSS+1) upper and lower
dual-flow space wall y coordinates that correspond to the (LDFSF - LDFSS +1 ) x coordinates given by
XP(LDFSS) to XP(LDFSF) in Namelist VCL. Next, IDIFDFS-order differentiation is used to obtain the
upper and lower dual-flow-space wall slopes at these (LDFSF - LDFSS + 1) points.
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b. General Dual-Flow-Space Wall (NDFS=2). An arbitrary wall contour is specified by tabular input
(LDFSF - LDFSS + 1) y coordinates and the negative of their slopes are specified by the arrays YU and
NXNYU for the upper dual-flow-space wall and YL and NXNYL for the lower, respectively. The y
coordinates correspond to the (LDFSF - LDFSS + 1) x coordinates given by XP(LDFSS) to XP(LDFSF) in
Namelist VCL.

Namelist VCL

This namelist specifies the variable grid coordinates as well as the parameters that control the sub-cycle and
Quick Solver options. For equal or uniform grid spacing, this namelist is left blank. The sub-cycle option
allows the part of the mesh with the small grid spacing to be computed for many time steps with the
required small time step, whereas the rest of the mesh is calculated only one time step. The Quick Solver
option can be used with the sub-cycle option to increase the time step in the small grid part of the mesh and,
therefore, reduce the number of time steps or sub-cycles. The Quick Solver allows the increased time step
by a procedure that removes the sound speed from the usual C-F-L stability condition. The Quick Solver
assumes the flow in the y direction is subsonic. None of the variables specified by this namelist are used by
the options necessary to generate nozzle exit plane flow properties for the PEP code so that a blank namelist
1s 1nput.

Parameter Description Default

IST An integer that, when nonzero, specifies that both the x and y coordinates will 0
have variable grid spacing. When IST=0, the program will generate equally
spaced values of XP and YL

XP A 1D array that denotes the x coordinate grid spacing. The elements of XP None
begin with the inlet (L=1) and extend to the outlet (L=LMAX). The first
element XP(l)must equal XI or XWI(1) of Namelist GEMTRY and
XP(LMAX) must equal XE or XWI(NWPTS). For IST not equal to 0, the
default values of XP consist of LMAX equally spaced grid points. For IST not
equal 0, no default values are given.

YI A 1D array that specifies the y coordinate grid spacing at the inlet or x=XP(1) YI
column of grid points. The elements of YI begin with the centerline or and None
extend to the wall. If MDFS not equal to 0 and LDFSS=1 (Namelist DFSL),
then YIIMDFS) must equal YU(1) and a value of YI=YL(1) is not read in.
The grid spacing for the columns corresponding to x=XP(2), XP(3),...... ,
XP(LMAX) is proportional to the YI spacing. For IST = 0, the default values
of YI consist of MMAX equally spaced grid points. For IST not equal to 0, no
default values are given.

MVCB, Integers that, when nonzero, denote which grid points will be sub-cycled. The 0
MVCT sub-cycled grid points are M = MVCB to MVCT for all L. The restrictions 0
are:

MVCB not equal to 2, MVCT not equal to MMAX-1, and MVCT>MVCB+1.
Where dual-flow-space walls are present, MVCB = MDFS + 1 and
MVCT=MDFS-1. Finally, if the sub-cycled grid points extend on each side of
the dual-flow-space walls, MVCB < MDFS - | and MVCT > MDFS + 1.

NVCMI | An integer that, when nonzero, specifies the number of times the small spacing 0
grid points are sub-cycled. If NVCMI=0, the program determines the value
internally. NVCMI must be an odd integer for indexing reasons. See NIQSS
and NIQSF for additional details.
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Namelist VCL(Cont.)
Parameter Description Default
1QS An integer that, when nonzero, specifies the Quick Solver option. The option 0

assumes that the flow in the y direction is subsonic. Also, if MVCT=MMAX,
then the wall boundary must be a no-slip solid wall IWALL=0 and NOSLIP=1
in Namelist BC). If MVCB=1, then the centerbody boundary must be a no-slip
solid wall (NGCB=1 in Namelist GCBL and NOSLIP=1). If dual-flow-space
walls are present (see Namelist DFSL), the Quick Solver assumes that the sub-
cycled grid points extend on each side of the dual-flow space walls; that is,
MVCB < MDFS < MVCT.

NIQSS, Integers that, when nonzero, denote at which time step N the Quick Solver will 2
NIQSF start(NIQSS) and stop (NIQSF). If NIQSS> 1 and NVCMI is nonzero, then NMAX
the program internally calculates the number of times to sub-cycle the small
spacing grid points for N < NIQSS and uses NVCMI when N > NIQSS. The
default vales are NIQSS = 2 and NIQSF = NMAX in Namelist CNTRL.

CQs A parameter that specifies the convergence tolerance for the iteration that .001
locates the characteristic intersection points in the Quick Solver.
ILLQS An integer that specifies the maximum number of iterations allowed in locating 30

the characteristic intersection points in the Quick Solver.

SQS The coefficient C,, in Eqs(47) and (49) of Reference 1, that controls the 0.5
amount of numerical smoothing necessary to stabilize the Quick Solver.
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2.4 PEP/VNAP2 Flowfield Model Verificatiohn/Demonstration '

Two cases were selected to verify/demonstrate the PEP/VNAP2 model. The following
subsections discuss the results of the verification and demonstration cases

2.4.1 Verification Case 1

Case 1 is an existing VNAP2 sample case for which results are presented in Reference 1.
This case is a standard converging/diverging nozzle(see Figure 4 for the geometry) for
which nozzle wall pressure and mach number distributions were measured(7). This is a
industry standard case that is typically used to validate transonic nozzle flowfield models.
The case was set up and run using the steps presented in section 2.3. Figure 5 presents a
comparison of the measured data and the VNAP?2 results. While this case is basically
inviscid it does demonstrate that the VNAP2 module can accurately predict the transonic
region of rocket nozzles. The problem name for this case is “back”. The input/output
files for this case can be found under the */prog/ramp/feb96/work directory of the
version of the code that is contained on a 4mm tar tape, titled - PEP/VNAP2, which was
delivered to MSFC/ED32 - Mark D’ Agostino. '

1
0 0.3l 1.0 2.0 2.554 30 4.0 5.0
45-15° conical nozzle

Figure 4 Verification Case Nozzle Geometry
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Figure 5 Mach Number Contours and Wall Pressure Ratio for Verification Case

2.4.2 Demonstration Case 1

The Shooting Star solar propulsion demonstration project seeks to demonstrate the
practical application of a 1 Ibf solar propulsion system. This type of application is exactly
what the results of this study is supposed to be able to address. Solar energy is used to
heat hydrogen to temperatures of around 5000 degrees R. The heated hydrogen is
subsequently exhausted through a high area ratio nozzle ( chamber pressure of
approximately 45 psia). This nozzle provides 1 Ibf of thrust. The nozzle geometry
consists of a 20 degree half angle conical section having a throat diameter of .128 inches
and exit diameter of 1.558 inches. The current configuration locates the nozzle in a 20
inch diameter circular duct that has a length of 44 inches. Confining the nozzle and
subsequent exhaust in a duct results in potential effects on the design and performance of
the system. First, there are plume induced pressure and heat loads on the inside surface of
the duct or any other structures that are impinged upon by the exhaust plume. Second
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there is a possibility of thrust enhancement or loss due to impingement loads or flow
reversal. The Shooting Star solar thruster propulsion system was chosen as a
demonstration case for the viscous nozzle/plume option of the PEP code. The new
VNAP2-PEP flowfield modeling option was applied to the characterization of the
Shooting Star solar propulsion system exhaust plume. The results of solar propulsion
system characterization are shown in Figures 6-12. Figures 6-8 show mach number,
temperature and pressure contours in the VNAP2 nozzle flowfield. Figures 9-12 show
mach number, temperature, pressure and mass flow streamlines in the resulting exhaust
plume flowfield calculated using the updated RAMP flowfield module in PEP.

Plume impingement pressure and heating loads were determined for the inside face of the
20 inch diameter duct utilizing the Plume Impingement Code(PLIMP,5). The resulting
pressure and heating rate distributions on the cylinder are shown in Figures 13 and 14.
These figures show the axial variation of impact pressure and heating rate as a function of
the location of the exit plane of the nozzle in the duct. If the nozzle were to be located at
the furthest downstream extent of the duct then only that portion of the distribution
upstream of the nozzle exit would be applied to the duct. Conversely, if the nozzle were
located at the entrance of the duct only the downstream loads would be applied to the
duct. If the nozzle were located at some point in the nozzle then impingement loads
would be produced both upstream and downstream of the nozzle exit. In the event the
nozzle was located at some point inside the duct then there is a potential of thrust
cancellation due to the reversal of exhaust upstream of the exit. This is due to the fact
that the impingement flowfield on the inside of the duct produces an adverse pressure
gradient along the nozzle(see Figure 13). The peak pressure occurs near 1.2 feet
downstream of the exit. Thus all mass upstream of this location would be reversed.
Examination of the mass flow streamlines of Figure 12 shows that a maximum of 20 %
of the total mass can be reversed. The total mass flowing through the nozzle is .001185
Ibm/sec.

One of the potential fixes for retaining lost thrust is to place a circular plate at the exit of
the nozzle so that no mass can be reversed upstream. The presence of the plate will result
in an net increase of .0001 Ibf of thrust. The resultant radial distribution of pressure and
heating loads on the circular plate are presented in Figures 19 and 20. The plate is
assumed to be located .25 inches upstream of the lip. Pressure and heating rate
distributions are presented as a function of radial distance away from the nozzle
centerline.

The problem name for this case is “sstar”. The input/output files for this case can be
found under the */prog/ramp/feb96/work directory of the version of the code that is
contained on a 4mm tar tape, titled - PEP/VNAP2, which was delivered to MSFC/ED32 -
Mark D’ Agostino.
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3.0 CONCLUSIONS AND RECOMMENDATIONS

This report presents the results of a study to develop an accurate, practical and user
friendly method of calculating high altitude rocket exhaust plume flowfields emanating
from highly viscous, low chamber pressure, high area ratio rocket motor nozzles. This
report summarizes the results of this study, provides instruction in the use of the VNAP2
/PEP code, describes the input data variables and presents validation and demonstration
case results. The author would like feedback form users on any problems that are
encountered or suggestions on improvements of this version of the PEP model. The
deliverable version of the code is contained on a 4mm tar tape, titled - PEP/VNAP2.
This tape was delivered to MSFC/ED32 - Mark D’Agostino and installed on his SGI
system..
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