
D.O. Davis, B.P. Willis, and W.R. Hingst
Lewis Research Center, Cleveland, Ohio

Flowfield Measurements in a Slot-Bled
Oblique Shock-Wave and Turbulent
Boundary-Layer Interaction

NASA/TM—1998-206974

April 1998

AIAA–95–0032



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           800 Elkridge Landing Road
           Linthicum Heights, MD 21090-2934



D.O. Davis, B.P. Willis, and W.R. Hingst
Lewis Research Center, Cleveland, Ohio

Flowfield Measurements in a Slot-Bled
Oblique Shock-Wave and Turbulent
Boundary-Layer Interaction

NASA/TM—1998-206974

April 1998

National Aeronautics and
Space Administration

Lewis Research Center

Prepared for the
33rd Aerospace Sciences Meeting and Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
Reno, Nevada, January 9–12, 1995

AIAA–95–0032



Acknowledgments

The authors would like to gratefully acknowledge Mr. T. Bencic of NASA Lewis Research Center for
matters concerning the pressure-sensitive paint technique.

Available from

NASA Center for Aerospace Information
800 Elkridge Landing Road
Linthicum Heights, MD  21090-2934
Price Code: A03

National Technical Information Service
5287 Port Royal Road
Springfield, VA 22100

Price Code: A03



FLOWFIELD MEASUREMENTS IN A SLOT-BLED OBLIQUE
SHOCK-WAVE AND TURBULENT BOUNDARY-LAYER INTERACTION

D. O. Davis* , B. P. Willis* , and W. R. Hingst*

NASA Lewis Research Center, Cleveland, Ohio

Abstract

An experimental investigation was conducted to de-
termine the flowfield inside a bleed slot used to control
an oblique shock-wave and turbulent boundary-layer in-
teraction. The slot was oriented normal to the primary
flow direction and had a width of 1.0 cm (primary flow
direction), a length of 2.54 cm, and spanned 16.5 cm. The
approach boundary layer upstream of the interaction was
nominally 3.0 cm thick. Two operating conditions were
studied: M=1.98 with a shock generator deflection an-
gle of 6� and M=2.46 with a shock generator deflection
angle of 8�. Measurements include surface and flow-
field static pressure, Pitot pressure, and total mass-flow
through the slot. The results show that despite an initially
two-dimensional interaction for the zero bleed-flow case,
the slot does not remove mass uniformly in the spanwise
direction. Inside the slot, the flow is characterized by
two separation regions which significantly reduce the ef-
fective flow area. The upper separation region acts as an
aerodynamic throat resulting in supersonic flow through
much of the slot.

Nomenclature

A = area
D = slot width
Hinc = incompressible shape factor
L = slot length
_m = mass-flow rate
_m0

bl = unit mass-flow rate in boundary-layer

_m = normalized mass-flow rate
M = Mach number
P = static pressure
Pt = total pressure
Pt2 = Pitot pressure

Pw = normalized wall static pressure
Q = sonic flow coefficient
Re = Reynolds number
S = slot span
Tt = total temperature
x,y,z = cartesian coordinate system

* Research Engineer, Inlet, Duct, and Nozzle Flow
Physics Branch.

xslot = distance from nozzle exit to slot l.e.
� = shock generator deflection angle


 = ratio of specific heats
� = boundary-layer thickness
�� = displacement thickness
� = momentum thickness
� = density

Subscripts

0 = condition in wind-tunnel plenum
1 = condition in Zone 1
2 = condition in Zone 2
3 = condition in Zone 3
cl = centerline condition
i = inviscid condition
ref = condition at upstream reference plane
w = condition at wall

Introduction

PREVENTION or control of boundary-layer separa-
tion resulting from a shock-wave and boundary-layer

interaction can be achieved by removing low momentum
fluid (boundary-layer mass) near the surface through a
porous region.1, 2 The porous region may be a series of
discrete perforations (holes) or a single slot. Numerical
analysis of the interaction region can be very costly in
terms of computer time and grid generation if the flow
through the individual holes or the slot is endeavored.
This is especially true if the interaction is part of a full
supersonic inlet calculation. To avoid this, a global bleed
model is sought which eliminates the need for resolving
the bleed flow passages. An effective global bleed model
should do two things: predict the amount of mass re-
moved from the boundary-layer and predict the condition
of the boundary-layer downstream of the interaction. The
former is important from the standpoint of bleed drag
and bleed system scaling while the latter is an indica-
tion of the effectiveness of the bleed on maintaining a
“healthy” boundary-layer. To achieve these goals, the lo-
cal flow phenomena in the interaction region including
the bleed passages and bleed plenum must be understood
and accounted for in a model. Not surprisingly, previous
investigations resolving the flow through bleed passages
have been computational in nature. Hamedet al. have
studied the oblique shock-wave and laminar boundary-
layer interaction with bleed through normal slots,3 and the
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Fig. 1 Schematic of bleed
interaction region (no scale).

oblique shock-wave and turbulent boundary-layer interac-
tion with bleed through various normal4–6 and slanted5, 7

slots. Because the slot configuration is two-dimensional,
Hamedet al. were able to perform a fairly comprehen-
sive parametric study including the effects of bleed mass-
flow rates, slot location relative to shock impingement
location, slot inclination angle, and slot length-to-width
ratio. Hahnet al.8 also numerically studied the oblique
shock-wave and turbulent boundary-layer interaction with
bleed through normal slots and in addition to investigating
various shock impingement locations and slot length-to-
width ratios included the effects of two slots with vari-
ous streamwise spacing. Rimlinger, Shih and Chyu9–12

considered the more complex (three-dimensional) case of
oblique shock-wave and turbulent boundary-layer interac-
tions with bleed through holes. These numerical studies
have identified several important features of the bleed in-
teraction. Among them are the presence of separation
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Fig. 3 Plan view of slot bleed experiment.

region(s) in the bleed passage which have a large effect
on the flow coefficient of the hole or slot13 and the pres-
ence of a two-segment barrier shock (see Fig. 1) which
may or may not be attached depending on local flow
conditions. Although these studies have provided a sig-
nificant increase in the understanding of the shock-wave
and boundary-layer interaction with bleed, unfortunately
there has been no experimental flowfield data with which
to compare. The present experimental investigation was
undertaken in order to gain further insight into the slot-
bled oblique shock-wave and turbulent boundary-layer in-
teraction and to provide validation data for CFD methods.

Experimental Program

A schematic of the slot bleed experiment with ref-
erence coordinates is shown in Figs. 2 and 3. The bleed
model is a single 90� slot, 1.00 cm wide (D) and 2.54
cm long (L) as shown in Fig. 2 and spanning 16.51 cm
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WIND TUNNEL NOZZLE EXIT

β
    FENCE
EXPANSION

B.L. FENCE
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Fig. 2 Slot bleed experiment schematic.
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Fig. 4 Slot bleed experiment wind-tunnel schematic.

(S) as shown in Fig. 3. As indicated in Fig. 2, an oblique
shock-wave is generated by a rotatable and translatable
(x-direction) sharp-edged plate (shock generator). The
shock generator spans the full width (30.5 cm) of the
wind-tunnel. For a given deflection angle (�), the shock
generator is translated until an inviscid shock-wave orig-
inating at the generator leading edge will impinge on the
upstream edge of the slot. For the purpose of setting
the axial position of the shock generator, the shock angle
(�) is calculated based on the core Mach number mea-
sured in the upstream reference plane indicated in Fig. 2.
Boundary-layer fences were used to isolate the wind tun-
nel test section corner flow from the interaction region.

The experiments were performed in the NASA Lewis
Research Center 1X1 ft. Supersonic Wind Tunnel (SWT)
which is a continuous-flow facility with Mach num-
ber variation provided by replaceable nozzle blocks. A
schematic of the 1X1 SWT experiment is shown in
Fig. 4. The approach boundary-layer is the naturally oc-
curring boundary-layer on the wind tunnel wall. The
oblique shock-wave interacts with the boundary-layer and
a portion of the resulting distorted boundary-layer is re-
moved through the bleed slot. The bleed flow exhausts
into a large plenum where the plenum static pressure is
recorded. The bleed flow rate was measured with cal-
ibrated ASME nozzles and the rate of mass-flow was
controlled by a choked mass-flow plug. Bleed vacuum
was supplied by lab-wide altitude exhaust and a 450 psi
air ejector system.

Data were obtained for two wind-tunnel operating
conditions. These conditions are referred to by the wind-
tunnel core Mach number measured in the upstream ref-
erence plane (see Fig. 2). Table 1 summarizes the wind-
tunnel plenum condition and the boundary-layer char-
acteristics measured in the reference plane for each of
the reference Mach numbers. The unit Reynolds num-
ber reported in this table is based on the plenum condi-
tions and the reference plane core Mach number (Mref ).
For theMref=1.98 condition, the shock generator de-
flection angle was set at�=6� and for theMref=2.46
condition, the deflection angle was set at�=8�. Previous

Table 1 Wind-tunnel operating conditions.

Mref

1.98 2.46

Pt;0 kPa 138.0 172.4

Tt;0
�K 293.0 293.0

Re� 10�7 /m 1.77 1.75

�ref cm 2.62 3.06

��ref cm 0.565 0.712

�ref cm 0.201 0.196

Hinc 1.262 1.260

Cf;ref � 103 1.50 1.29

_m0

bl;ref kg/s/cm 0.04047 0.03768

experience14 has shown that for both of these cases the
shock strength is sufficient to separate the wind-tunnel
boundary-layer. Hereafter, the two cases will be referred
to by the M198A6 and M246A8 designations.

Instrumentation

The experiment was instrumented to measure surface
and flowfield static pressure, flowfield Pitot pressure, and
the total mass-flow through the slot. All flowfield mea-
surements were made in the z=0 plane of symmetry using
conventional (intrusive) pressure probes. Because it was
recognized that there would be large gradients and flow
angles in the slot, efforts were made to choose instru-
mentation least sensitive to these conditions. However,
as with all forms of intrusive type probes, inherent errors
are introduced into the measurements which are very dif-
ficult to quantify. Regions of the flow that the authors
believe to have a high level of uncertainty are accord-
ingly identified.

All pressures were measured with a Pressure Sys-
tems Incorporated electronic scanned pressure system us-
ing various range transducers. All of the PSI transducers
have a manufacturers quoted accuracy of±0.07% of full-
scale span.

Surface Static Pressure

Surface static pressure data were measured with
pressure sensitive paint and with conventional static pres-
sure taps. The pressure sensitive paint data were acquired
using the technique described by Bencic.15

The tap data were measured with±5 psi range pres-
sure transducers which yield an absolute accuracy of
�Pw=±0.048 kPa (0.007 psi).
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Fig. 5 Knife–edged static pressure probe detail.

Flowfield Static Pressure

Flowfield static pressure data were measured using
a knife-edged probe as shown in Fig. 5 and 6. For the
purpose of measuring flowfield static pressure, a special
bleed plate insert was fabricated which had small grooves
machined along the vertical interior surfaces of the slot
on the centerline as shown in Fig. 6. These grooves
serve as a guide for the knife–edged probe whose details
are shown in Fig. 5. Five 0.254 mm diameter static
pressure taps are located on a 0.254 mm thick sharp-
edged brass shim. The taps are offset from the slot
centerline such that a reversal (180� rotation about the
stem) of the probe in the guides will yield data between
the original tap positions for a total of ten data points in
the x-direction. The probe was zeroed with the center
of the taps lying in the y=0 plane (wind-tunnel surface).
A remotely controlled actuator in the bleed plenum then
pulled the probe through the slot. Knife-edged probes
are known to be very sensitive to yaw misalignment.16

However, since all of the data taken were confined to the
plane of symmetry and the machined guides prevented
aerodynamic deflection of the probe, the errors due to
yaw misalignment were minimized.

Like the surface static pressure, the flowfield static
pressure data were measured with±5 psi range pres-
sure transducers which yield an absolute accuracy of
�P=±0.048 kPa (0.007 psi).

Pitot Pressure

Pitot pressure measurements were made with a 0.508
mm diameter square-edged round Pitot tube probe having

x

y

z

C   SLOTL

D=1.00 cm

Fig. 6 Knife–edged static pressure probe installation.

an inner-to-outer diameter ratio of 0.4. Based on data
presented by Bryer and Pankhurst,16 the critical angle for
this probe configuration is±15� for incompressible flow
and slightly larger for supersonic flow. Calibration of
the probe in a Mach 2.0 stream showed that the probe
would read within 2% of the actual Pitot pressure for
pitch angles as high as±20�. The probe was actuated
from the bleed plenum in the x and y-directions.

The flowfield Pitot pressure data were measured
with ±15 psi range pressure transducers which yield an
absolute accuracy of�Pt2=±0.145 kPa (0.021 psi).

Total Mass-Flow

The total mass-flow through the slot was measured
with an ASME flow nozzle. The flow rate is determined
from a semi-empirical relation which gives the mass-flow
as a function of nozzle geometry, temperature, upstream
pressure and the pressure drop across the nozzle. A
description and uncertainty analysis of this system is
given by Willis et al.17 For the present measurements,
the uncertainty is estimated to be between±2.20% of the
calculated mass-flow.

Results and Discussion

Sonic Flow Coefficient

Numerical simulations of a bleed region utilizing a
global bleed model must specify the bleed mass flow,
which usually varies with local flow conditions, as a
boundary condition. The mass flow may be determined
from semi-empirical relations or from an experimental
table look-up for a given bleed configuration. The abil-
ity of a bleed configuration to remove mass from the
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Fig. 7 Sonic flow coefficient distributions,�=0.

boundary-layer is typically quantified by the sonic flow
coefficient:

Q =
_m

_mideal;choked

(1)

which is usually presented as a function of the ratio of
bleed plenum static pressure to freestream total pressure.
Sonic flow coefficient distributions were measured for the
case of an undistorted approach boundary-layer (�=0�)
for four reference Mach numbers and are shown in Fig. 7.
These data are presented here for reference and can be
used to validate flow coefficient models for use in CFD
methods. A comprehensive discussion of flow coefficient
behavior for the present slot and other bleed configura-
tions is given byWillis et al.17

When an oblique shock-wave is positioned upstream
of the slot, the local Mach number in the vicinity of the
slot is reduced from the upstream reference value and
a shift to a different flow coefficient curve occurs. An
interesting feature in Fig. 7 is the presence of a distinct
kink in all of the flow coefficient distributions. This is
the location where choked flow occurs in the slot. The
effective throat area, however, is determined by the size
of the separation region (see Fig. 1), which can vary with
local flow conditions. Lowering the plenum pressure
below this choke point causes an increase in effective
throat area and more mass is passed through the slot.

Surface Static Pressure

Pressure sensitive paint was applied to the bleed
plate insert shown in Fig. 3. Initially, it was thought
that with the boundary-layer fences and the relatively
large span-to-width ratio (S/D = 16.5) of the slot, that
the interaction near the center of the slot would be nearly
two-dimensional. For the case of no bleed flow, this
was indeed the case. However, when the bleed flow was
non-zero, the interaction became more three-dimensional.
This behavior is illustrated by the surface static pressure
obtained with the pressure sensitive paint and shown in
Figs. 8 and 9 which correspond to the M198A6 case and

the M246A8 case, respectively. In these figures, the
lower half of the plot corresponds to the no-bleed case
and the upper half corresponds to the highest bleed flow
rate attainable with the bleed system. The bleed rates are
given as a normalized mass-flow defined as:

_m =
100 � _m

(S) �
�
_m0

bl;ref

� (2)

where _m0

bl;ref is the unit boundary-layer mass flow in
the upstream reference plane (see Table 1) andS is the
spanwise dimension of the slot (see Fig. 3). While the
data for each flow rate are shown for only half of the
bleed plate, results were obtained across the entire plate
and exhibited a high degree of symmetry about the wind
tunnel centerline (z=0).

For the cases with no bleed flow (the lower half
of Figs. 8 and 9), the results indicate a reasonably two-
dimensional flowfield except in the vicinity of the slot
ends. As the bleed flow-rate is increased, the upstream
influence of the shock-wave decreases, but not uniformly
across the span of the slot. At the center of the slot
(z=0), the upstream influence is significantly less than
at the slot ends. This spanwise variation of upstream
influence indicates that more mass flow is removed near
the center of the slot. Although the interaction is not two-
dimensional, the results were observed to be symmetric
about the wind tunnel centerline (z=0 plane) and are still
cogent for a three-dimensional validation case.

Conventional surface static taps were located axially
on the wind-tunnel centerline through the interaction re-
gion. Normalized centerline static pressure distributions
for three bleed rates are shown in Figs. 10 and 11 for the
M198A6 and M246A8 cases, respectively. The normal-
ized wall pressure is defined as:

Pw =
(Pw � P1;i)

(P3;i � P1;i)
(3)

wherei denotes the inviscid no-bleed condition. In these
plots, the symbols represent data from the conventional
surface pressure taps and the solid lines represent data de-
duced from the pressure sensitive paint. The theoretical
inviscid distribution for the no-bleed case is also repre-
sented in these plots. The layout sketch at the top of the
figures shows the inviscid no-bleed wave structure. The
three bleed rates shown represent the no-bleed, maximum
bleed attainable for the configuration, and an arbitrary
bleed rate between the two extremes.

From Figs. 10 and 11, the following observations
can be made:

1. The upstream influence of the shock-wave and
boundary-layer interaction is reduced by approxi-
mately 1.5 cm for the M198A6 case and by approx-
imately 2.5 cm for the M246A8 case when bleed is
applied. This is presumably due to the removal or
reduction of the separated region.
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Fig. 8 Surface static pressure from
pressure sensitive paint, case M198A6.

Fig. 9 Surface static pressure from
pressure sensitive paint, case M246A8.

2. For both cases, there is very little difference between
the distributions corresponding to the two non-zero
bleed rates.

3. For the non-zero bleed cases, the pressure overshoots
the inviscid pressure distribution. This overshoot in
pressure is due to the barrier shock (see Fig. 1) and,
as expected, is greater for the higher bleed rate case.

4. The pressure sensitive paint data agrees quite well
with the conventional static tap data.

5. The drop in pressure below the inviscid value is
due to the upstream influence of the expansion wave
system set up by the experimental hardware (shock
generator and fences).

INVISCID NO-BLEED THEORY

m = 0

m = 5.04%

m = 7.63%

1 3

2

SYMBOLS - STATIC TAP DATA

SOLID LINES - PRESSURE SENSITIVE PAINT DATA

L.E. SHOCK

REFLECTED
SHOCK

T.E. EXPANSION

         FENCE
EXPANSION

Fig. 10 Normalized centerline (z=0) static
pressure distributions, case M198A6.

INVISCID NO-BLEED THEORY

m = 0

m = 4.44%

m = 6.38%

1 3

2

SYMBOLS - STATIC TAP DATA

SOLID LINES - PRESSURE SENSITIVE PAINT DATA

L.E. SHOCK

REFLECTED
SHOCK

T.E. EXPANSION

        FENCE
EXPANSION

Fig. 11 Normalized centerline (z=0) static
pressure distributions, case M246A8.
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Flowfield Measurements in the Slot

For the flowfield measurements, only one bleed rate
was considered for each of the two operating conditions.
The bleed rate considered corresponds to the maximum
attainable with the bleed system and is the same as the
highest bleed rate condition reported for the surface static
pressure data. With reference to the sonic flow coefficient
distributions (Fig. 7), for all local Mach numbers, the
highest flow rate attainable with the bleed sytem is always
to the left of the aforementioned choke point in the flow
coefficient curves.

The knife-edged static probe was used to measure
the static pressure in the slot. A total of 210 points
were measured at the locations shown in Fig. 12. Re-
sults from the flowfield static pressure measurements for
the M198A6 and M246A8 cases are shown in Figs. 13
and 14, respectively. For presentation purposes, the data
have been extrapolated to the slot surfaces by setting the
pressure at the surface equal to the flowfield pressure
at the first point away from the surface. The data in
these plots are normalized by the wind-tunnel total pres-
sure (Pt;0). Qualitatively, the two cases are very simi-
lar. Although undoubtedly smeared by the presence of
the boundary-layer developing on the knife-edged static
probe, the presence of the interior segment of the barrier
shock is clearly seen by the large pressure gradient (in-
crease) in the upper right region of the flowfield. It is
not clear, however, whether the shock is attached or not.
Outside this region, the static pressure is fairly uniform
throughout the slot.

FLOW

INVISCID SHOCK

Fig. 12 Static pressure measurement grid.

FLOW

INVISCID SHOCK

Fig. 13 Normalized static pressure
distribution ((P/P t,0) � 100), case M198A6.

FLOW

INVISCID SHOCK

Fig. 14 Normalized static pressure
distribution ((P/P t,0) � 100), case M246A8.
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Fig. 15 Normalized centerline static
pressure distributions in the y=0 plane.

The normalized static pressure distributions from the
knife-edged probe in the y=0 plane are plotted along with
the surface static pressure upstream and downstream of
the slot in Fig. 15. The upstream influence of the slot
expansion can be clearly seen in the pressure sensitive
paint data. The low pressure in the upstream half of the
slot opening indicates a stalled condition and that very
little flow is being passed through this region.

A 0.508 mm diameter Pitot probe was used to mea-
sure the Pitot pressure in the slot. A total of 441 points
were measured at the locations shown in Fig. 16. Nor-
malized Pitot pressure distributions for the M198A6 and
M246A8 cases are shown in Figs. 17 and 18, respec-
tively. Near the top of the slot, very large flow angles
relative to the Pitot probe stem are expected and the Pitot
data should be considered very uncertain. This probably
accounts for the lack of a discrete barrier shock in the
data. Also, it should be noted that the Pitot probe will
sense nearly static pressure in regions of reverse flow.
These results indicate two fairly extensive regions of flow

FLOW

INVISCID SHOCK

Fig. 16 Pitot pressure measurement grid.

separation in the slot which severely reduces the effective
flow area. The data do indicate, however, that the flow
reattaches before exiting into the bleed plenum.

The Pitot and static data were combined to calculate
the local Mach number distribution in the slot. If the
Pitot-to-static pressure ratio (Pt2=P ) is less than or equal
to 1.893 (subsonic flow), then the Pitot pressure is equal
to the total pressure and the Mach number is calculated
from the isentropic relation:

Pt2

P
=

�
1 +


 � 1

2
M2

� 



�1

(4)

If the Pitot-to-static pressure ratio (Pt2=P ) is greater than
1.893 (supersonic flow), the Mach number is calculated
from the Rayleigh-Pitot tube equation:

Pt2

P
=

�

+1

2
M2

� 



�1

�
2



+1
M2

�

�1


+1

� 1


�1

(5)

For purposes of the calculation, the local static pressure
(P) data were interpolated onto the data grid used to ac-
quire the Pitot data. Recall that the static pressure at the
slot surface was set equal to the first column of data and
recognize that this may introduce errors in the Mach num-
ber values nearest the slot surface. The calculated Mach
number distributions for the M198A6 and M246A8 cases
are shown in Figs. 19 and 20, respectively. The presence
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FLOW
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Fig. 17 Normalized Pitot pressure
distribution ((P t2/Pt,0) � 100), case M198A6.

FLOW

INVISCID SHOCK

Fig. 18 Normalized Pitot pressure
distribution ((P t2/Pt,0) � 100), case M246A8.

FLOW

INVISCID SHOCK

Fig. 19 Calculated Mach number
distribution, case M198A6.

FLOW

INVISCID SHOCK

Fig. 20 Calculated Mach number
distribution, case M246A8.
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of the separation region on the upper left surface of the
slot causes an aerodynamic convergent-divergent nozzle
effect. As the flow expands downstream of the aero-
dynamic throat, the Mach number increases to a peak
of about M=2 for both cases. The back-pressure in the
plenum, however, is not low enough to maintain super-
sonic flow. But rather than shocking down to subsonic
flow as would happen for the inviscid case, the plenum
pressure feeds up through the boundary-layer on the slot
surface which causes the flow to separate. Compression
waves off of this separation act to decelerate the flow
gradually but still the flow exits the slot supersonically.
The upper separated region also leaves a rather large sub-
sonic wake which accelerates to a near sonic condition
at the slot exit.

Following Kline,18 the propagation of the uncer-
tainty in the measured Pitot and static pressures into the
calculated Mach number was estimated from the follow-
ing equation:

�M =

"�
@M

@P
�P

�2

+

�
@M

@Pt2

�Pt2

�2
#1=2

(6)

where �P , �Pt2, and �M represent the uncertainty in
the static pressure, Pitot pressure, and Mach number,
respectively. Using equation (6), the uncertainty in the
Mach number was evaluated at each point in the flowfield
and the results are shown in Fig. 21 as a function of
Mach number. Note that this uncertainty includes only
the pressure measurement uncertainty and not errors due
to probe interference or interpolation. The results indicate
that the uncertainty becomes excessive for a local Mach
number less than 0.5 which is confined to relatively small
regions of the flowfield.

Case M198A6  ( m = 7.63%)

Case M246A8  ( m = 6.38%)

Fig. 21 Uncertainty in Mach
number versus Mach number.

From the surface static pressure distributions (Figs. 8
and 9), we inferred that the mass-flow distribution in
the spanwise (z) direction was not uniform, but passed
a higher mass-flow at the center of the slot. If we as-
sume that the total temperature of the flow in the slot is
the same as the wind-tunnel plenum, then in conjunction
with the static pressure and Mach number distributions in
the slot, and assuming the ideal gas law applies, we can
calculate a mass-flux (��V ) distribution in the slot. In-
tegrating the��V distribution along lines of constant (y)
locations and then dividing by the unit mass-flow in the
reference boundary-layer will yield a normalized mass-
flow in the plane of symmetry:

_mcl = 100 �

1:0R
0

��V dx

_m0

bl;ref

(7)

There are, however, at least three sources of errors to
consider when performing the integration: regions of high
flow angle relative to the Pitot probe stem, regions of
reverse flow, and regions where the static pressure has a
high gradient near the wall which makes our extrapolation
assumption uncertain. The integrations were performed
along the 21 rows of data and the results are shown in
Fig. 22. In this plot, the centerline mass-flow calculated
from equation (7) is normalized by the bulk mass-flow
measured with ASME nozzle and presented as a function
of y location. From this figure we can estimate that for the
bulk mass-flows considered, on the average the centerline
mass-flow is roughly 50% higher than the bulk mass-flow.
Also the increase in centerline mass-flow through the slot
indicates a significant spanwise convergence of the flow
within the slot.

Case M198A6  ( m = 7.63%)

Case M246A8  ( m = 6.38%)

Fig. 22 Integrated mass-flow
in the plane of symmetry.
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Concluding Remarks

Development of global bleed models for boundary-
layer control will require experimental and computational
synergism due to the complexity of the flowfield. The
flowfield inside a bleed slot used to control an oblique
shock-wave and turbulent boundary-layer interaction has
been studied experimentally. From this study we can
draw the following conclusions:

1. For the configuration tested, despite a two-
dimensional flowfield for the zero-bleed case, appli-
cation of bleed-flow resulted in a three-dimensional
flowfield. Surface static pressure data indicate that
the slot passes more mass-flow near the center than
at the ends. This may very well be the case in ac-
tual inlet bleed systems.

2. The flowfield in the slot is characterized by the
presence of a barrier shock and two large separation
regions. These features serve to reduce the flow
coefficient of the bleed passage and their effects
should be included in flow coefficient models.

3. Due to an aerodynamic throat effect of the separa-
tion, much of the flow through the slot is supersonic.

The data presented in this report are available from
the first author on magnetic media or via the internet
(fsdavis@hopi.lerc.nasa.gov).
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