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Barriers to Achieving

Textbook Multigrid Efficiency (TME) in CFD

Achi Brandt_

Abstract

"Textbook multigrid efficiency" (TME) means solving a discrete PDE prob-

lem in a computational work which is only a small (less than 10) multiple of the

operation count in the discretized system of equations itself. As a guide to attain-

ing this optimal performance for general CFD problems, the table below lists every

foreseen kind of computational difficulty for achieving that goal, together with the

possible ways for resolving that difficulty, their current state of development, and
references.

Included in the table are staggered and nonstaggered, conservative and non-

conservative discretizations of viscous and inviscid, incompressible and compress-

ible flows at various Mach numbers, as well as a simple (algebraic) turbulence

model and comments on chemically reacting flows. The listing of associated com-

putational barriers involves: non-alignment of streamlines or sonic characteristics

with the grids; recirculating flows; stagnation points; discretization and relax-

ation on and near shocks and boundaries; far-field artificial boundary conditions;

smMl-scale singularities (meaning important features, such as the complete air-

plane, which are not visible on some of the coarse grids); large grid aspect ratios;

boundary layer resolution; and grid adaption.

Introduction (by James L. Thomas, NASA LaRC)

Computational fluid dynamics (CFD) is becoming a more important part of

the complete aircraft design cycle because of the availability of faster computers

with more memory and improved numerical algorithms. As an example, all of the

external cruise-surface shapes of the new Boeing 777 wide-body subsonic transport

were designed with CFD [R1]. The cruise shape of such a vehicle is designed to

minimize viscous and shock wave losses at transonic speeds and can be analyzed

with potential flow methods coupled with interacting boundary layers. Off-design

performance associated with maximum lift, buffet, and flutter and the determina-

tion of stability and control derivatives, involving unsteady separated and vortical
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flowswith stronger shockwaves,aredetermined largely by experimental methods.
Computational simulations of thesefiowfields require the useof Reynolds-averaged
Navier-Stokes(RANS) methods; thesecomputations for high-Reynolds flows over
complexgeometriesare very expensive,the turnaround time is too long to impact
the designcycle, and the turbulence models for separatedflows have a high degree
of variability. Thus in these areas experiments, rather than computations, are
preferred for reasonsof cost and uncertainty

Inroads are being made into these off-design areaswith RANS methods. A
major lessonlearnedfrom industrial useof RANS methods is that both the numer-
ics and the physics must be improvedsubstantially for a new procedure to replace
an older procedure. Also, there is a synergistic interplay between the speedof
the simulation and the fidelity of tile turbulence model, since a larger parameter
variation and/or model formulation can be explored on fine enough grids with
a faster simulation. For example, the TLNS3D Navier-Stokes code [R2] found
its way into usebecauseit was the first three-dimensional Navier-Stokescode to
show true multigrid performance, in which the cost scaleslinearly with the num-
ber of unknowns,and it incorporated a better turbulence model than the algebraic
models then in use. Solutions with 1 million grid points could be convergedin ap-
proximately 1 hr of Cray-2 time, which allowed spatial convergencestudies to be
conducted to ensurethat the level of truncation error is sufficiently low, and the
prediction of the angleof attack to attain a desired lift coefficient was improved
over interacted potential methods [R3]. The faster turnaround of the multigrid
procedure enabled the extension and calibration of the original two-dimensional
turbulence model to three-dimensions, thus allowing a more accurate prediction
of the transonic shock/boundary-layer interaction.

The current RANS solverswith multigrid requireon the order of 1500residual
evaluations to convergethe lift and drag to one percent of their final valuesfor
wing-body geometriesnear transonic cruise conditions. Complex geometry and
complex physics simulations require many more residual evaluations to converge,
if indeed convergencecan even be attained. It is well-known for elliptic problems
that solutions canbe attained using full multigrid (FMG) processesin far fewer,on
the order of 3-6, residual evaluations; this efficiency is known as textbook multi-
grid efficiency (TME). Thus, there is a potential gain of two orders of magnitude
in operation count reduction if TME could be attained for the RANS equation
sets. This possibletwo order of magnitude improvement in convergencerepresents
an algorithmic floor since it is unlikely that faster convergencefor these nonlin-
ear equations could be attained. This algorithmic speed-up, however, coupled
with further increasesin computational speedcan open up avenuesand accelerate
progress in many areas,including: the application of steady and time-dependent
simulations in the high-lift, off-design, and stability and control areas;the usage
of RANS solversin the aerodynamic and multidisciplinary design areas;and the
developmentof improved turbulence models.

The RANS equation sets are a system of coupled nonlinear equations which



are not, even for subsonicMach numbers, fully elliptic, but contain hyperbolic
factors. The theory of multigrid for hyperbolic and mixed-type equationsis much
lessdevelopedthan that for purely elliptic equations. Resolution of complex ge-
ometries and the thin boundary layersat high Reynolds number causethe grid to
be highly irregular and stretched, leading to a slowdown in convergence.Discon-
tinuities, suchas shocksand slip surfaces,introduce additional dimculties. These
diffculties are illustrated in the sketch in Fig. 1 for a typical multi-element sec-
tion of a three-dimensional wing with the flaps deployed at takeoff and landing
conditions. Overcoming thesediffculties posesa formidable challenge,especially
becausein order to attain optimal and robust convergencerates for the applica-
tions of interest in aircraft design, they must all be overcome.

Brandt, in 1984 [G84], summarized the state of the art for attaining multi-
grid performance for fluid dynamics. Sincethat time, there hasbeen considerable
progress in the field, although optimal results have only been shown for inviscid
flows, viscousflowsat low Reynoldsnumber, and simple geometries.The method-
ology and theory that Brandt and othershavedevelopedis applicableto the RANS
equations and can lead to optimal convergencerates; however,a rational and sys-
tematic attack on the barriers which stand in the way needsto be mounted. The
purposeof this paper is to delineateclearly the barriers which exist to attaining op-
timal convergencerates for solutions to the fluid dynamic equations for complex
geometries. The following sectionsidentify the barriers, possible solutions, and
current status of the problem. The paper is intended as a guide to attaining the
optimal convergencegoal and is written for the most part in a tabular form sothat
new solutions and updates to the current status can be made. When completed,
the document is intended to list every type of computational difficulty encountered
on the road to attaining TME for RANS and the solution paths taken. The in-
sights, lessonslearned, and methodologiesgained from aerodynamic applications
shouldbe applicable to other areassuchas acoustics,electromagnetics,hypersonic
propulsion, and aerothermodynamics.

Preliminary comments

The table below does not refer to a vast literature on multigrid methods

in CFD (see for example [AJ]), in which enormous improvements over previous

(single-grid) techniques have been achieved, but without adopting the systematic

TME approach. This approach insists on obtaining basically the same ideal ef-

ficiency to every problem, by a very systematic study of each type of difficulty,

through a carefully chosen sequence of model problems. Several fundamental tech-

niques are typically absent in the multigrid codes that have not adopted the TME

strategy. Most important, those codes fail to decompose the solution process into

separate treatments of each factor of the PDE principal determinant, and there-

fore do not identify, let alone treat, the separate obstacles associated with each

such factor. Indeed, depending on flow conditions, each of those factors may have

different ellipticity measures (some are uniformly elliptic, others are non elliptic

at some or all of the relevant scales) and/or different set of characteristic surfaces,

- i%% -



requiring different combinations of relaxation and coarsening procedures.

The table deals only with steady-state flows and their direct multigrid solvers,

i.e., not through pseudo-time marching. Time-accurate solvers for genuine time-

dependent flow problems are in principle simpler to develop than their steady-

state counterparts. Using semi implicit or fully implicit discretizations, large and

adaptable time steps can be used, and parallel processing across space and time is

feasible [R88]. The resulting system of equations (i.e., the system to be solved at

each time step) is much easier than the steady-state system because it has better

ellipticity measures (due to the time term), it does not involve the difficulties

associated with recirculations, and it comes with a good first approximation (from

the previous time step). A simple multigrid "_F cycle" at each time step can

solve the equations much below the discretization errors of that step [Par]. It is

thus believed that fully efficient multigrid methods for the steady-state equations

will also yield fully efficient and highly parallelizable methods for time-accurate

integrations.
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Textbook Multigrid Barriers

(After Brandt, 1997)
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Attaining Ideal Multigrid Efficiency in CFD: Difficulties and Cures

Difficulty Possible Solutions Status

(_) Uniformly elliptic scalar

equation on uniform grids

in general domains

(_) Nonlinearity

(_) Fluid dynamics - general

(_) Non-scalar PDE systems

Multigrid cycles, guided by local mode analyses

+ FMG

FAS

+ FMG continuation

See a review in [R88, §2]; at some points it is not

fully up to date, but it concisely summarizes the

main procedures needed for obtaining TME

(1) General rules for the inter-grid transfers are

given in [G, §4.3], with some more details in

[RQMA, §3.3]

(2) General approach to the design of relaxation,

based on the operator principal matrix L and

on the factors of det L. Distribution matrix

3_r and weighting (or preconditioning) matrix

P are constructed so that PLM is triangular,

containing the factors of det L on the main

diagonal (separated from each other as much

as possible, to avoid the complication descri-

bed next). This (if necessary - together with

the technique described next), leads to decom-

posing relaxation into simple schemes for the

(scalar) factors of det L

(3) For systems of PDE which are of mixed type

(elliptic-hyperbolic) another possibility is to

introduce new unknowns in terms of which

elliptic and hyperbolic parts are separated

TME demonstrated 1971 [B73],

[B77] and rigorously proved

[RLMA], [RQMA]

Demonstrated 1975 [South], [B77],

[G, §8.3.2]

TME demonstrated in a number

of cases (see below). TME proved

for uniformly elliptic systems

[RLMA], [RQMA]

TME demonstrated for incom-

pressible and compresisble

cases [T1]-[T5]



Difficulty Possible Solutions Status

_0

• Product operator: an equation

LU = f, where L = L2L1, with

the Fourier symbols

Lj(O) = e-iO'x/hLeiO'x/h.

Assume a relaxation process for

Lj is given, with the amplification

factor #j(O) and the smoothing

factor gj, (j = 1,2)

Two possible approaches:

(1) Introduce an explicit new unknown function V,

replacing the equation with the pair of equations

LIU - V = 0 and L2V = f, throughout the MG

solution process (including, e.g., transferring

residuals of both equations to coarse grids and

correcting both u and v by interpolations from

the corresponding coarse-grid values). The smoo-

thing factor for this process is _ = max(_-l, K'2)

(2) Use V only as an auxiliary function in relaxation.

That is: starting with v = Llu, where u is the

current approximation to U, perform u2 sweeps

on the equation L2V = f, yielding a new value 5".

Then perform Ul sweeps on the equation Llu = _.

The resulting amplification factor is

p(O) = #1(0) ul _- [l -- #1(0) ul ]L1(0)-1#2(0) u2 Ll(O),
-- --P'I

so in scalar cases # < #1 + _-2

Not tried



Difficulty Possible Solutions Status

(_) Smoothing for special CFD

systems

Cauchy Riemann on staggered grid

0y -0x

Stokes on staggered grid

ox o_ 0

Stokes, non-staggered

(1) Quasi-elliptic discretization

-zx 0 0__)L = 0 -A 0 2h

o_ o_ o
with averaging of the resulting

pressure

(2) h-elliptic discretization, e.g.

L

-A 0 07h )0 -A O_h

a_h o__ -_h2_X

M = distribution operator

P = preconditioner

(1) ;w= L P=z
(2)P = _, M=z

(1) M= 1 -cgy , P=I

0 -A

(; 0 0)(2)P = 1 0 , M = r

ox oy -zx

Analogous to the staggered case:

00,)M = 1 --0 2h

0 -A

No modifications of the FMG

algorithm is required, even in the

quasi-elliptic ease (as explained in

[G84, §18.6]). In generalization to

NS, pressure averaging is required

of coarse-level results before their

interpolation to the next finer level

(whenever the coarse-level employs

the quasi-elliptic discretization)

(1) TME demonstrated [BD], [Dinar]

(2) TME validated IT6]

(1) TME demonstrated [BD], [Dinar]

(2) TME validated IT6]

(1) In a quasi-elliptic approach, TME

demonstrated [G84, §18.6], [quasi]

(2) TME demonstrated? (perhaps by

J. Linden)



Difficulty Possible Solutions Status

u1

Non-conservative incompre-

ssible Euler

L = u • V Oy

\ Ox Oy o

(similarly 3D) on staggered

grid, second (or higher) order
discretization

(1) Employ cycle index 7 = 2P, where p

is the order of discretization

1 0 -Ox )
(2) _/1//= 0 1 -Oy

0 0 u.V

(3)

For each of the momentum equations

employ a relaxation scheme which is

fast converging for the advection

operator u • V (i.e., converging fast

not only for h-f, but also for smooth

characteristic components; see discu-

ssion of advection below)

Use canonical variable (u, v, P) on sta-

ggered grid, where P = (u 2 + v2)/2 + p.

Upwind only P, use central discretiza-

tion for (u, v). Relaxation is marching

for P, and weighted (preconditioning)

for (u, v)

(1) TME for first-order discretization

using W cycles shown in [BD], [Dinar]

(2) TME demonstrated for 2D entering

flows with second-order discretization

[BY2] and for recirculating flows with

first-order discretization [BY3]

(3) TME in [T1-T3]

Low-Reynolds Incompre-

sibble NS, staggered or not

High-Reynolds Incompre-

ssible NS, staggered or not

Fully analogous to Stokes solvers: just

replace A in L by Q = -R-1A + u • V

Fully analogous to Incompressible Euler

(outside boundary layers: see discussion

on such layers below): just replace u • V

everywhere with Q

TME demonstrated 1978 [BD], [Dinar]

TME demonstrated for first-order discreti-

zation on staggered ([BD], [Dinar] and

non-staggered grids [G84, §19.5], and for

second-order staggered discretization[BY2]



Difficulty Possible Solutions Status

• Compressible Euler, non-conservative, on staggered grid:

The subprincipal operator on (Ul, u2, u3, p, e,p) is

L

/ pzt. _7 0 0 0 0 01

0 pu • V 0 0 0 02

0 0 pu. V 0 0 03

p201 f1202 f1203 flu • _7 0 0

p01 p02 pOa 0 pu. V 0

0 0 0 -0p/op -0p/0e 1

detL = p%. V)3((_. V__)2 - a2zX)

_2 op p Op
- _ + _ o-7' Mo = I_l/a

p, c, p defined at cell centers,

ui - at center of cell faces perpendicular to the i-th coor-

dinate

• 2D Compressible Euler, nonconservative and conserva-

tive, staggered grid, using canonical variables (u, v, S, H).

Structured and unstructured grids

• 2D/3D incompressible and compressible Euler: Canonical

variables in which velocities are replaced by vector poten-

tial representation. Nonstaggered structured and unstruc-

tured grid

M

(1 o o o o -p(__.v)oz
o 1 o o o -p(__.v_)o2

o o 1 o o -p(u-v_)oa

0 0 0 1 0 -p2A

0 0 0 0 1 -pA

,0 0 0 0 0 f12(u. X7)2

Tile advection and full-potential operators

are each relaxed by one of the approaches

described for them below. (The semi

coarsening described there would then be

used as an inner multigrid cycle for

relaxing one factor of the determinant, to

be distinguished from the outer multigrid

cycle, which can use full coarsening.)

Use (u, v) at cell edges, H at middle of cell,

S at vertices. Upwind only S at momentum

equations. Relax S, H by marching. (u, v)

by a weighting relaxation. Crocco's form is

used here to define relaxation

All variables at cell nodes. Relax hyperbo-

lic quantities using marching. Relax vector

potential using point Gauss-Seidel

Not tried

TME in [T2-T5]

TME acheived

(unpublished)
for interior

and exterior

flows in 2D,

interior in 3D

(,.



Difficulty Possible Solutions Status

"4

• Compressible Navier-Stokes, non-conservative.

The subprincipal operator on (Ul, u2, u3, p, ¢,p) is

L 8 _--

/ Q_ - _011 -_oq12 -_013 0 0 01 "_

-- A--021 Q_ - _022 -_023 0 0 02

-9,031 -9,032 Q_ - _033 o o 03

p201 p202 p2693 Qo 0 0

p01 p02 p03 0 Q _ 0

o o o -Op/Op -Op/& 1 )

whereQa=-aA+pu__.__V, _=9,+p, 9,= g#,2

ec = k/Cv (coefficient of thermal conductivity divided

by the specific heat at constant volume),

det Ls = Q_ det Lc, where Lc is the "core operator"

Q0 0 -p2A "_

Q_ -pA )
-Opl& Q_+-_

At standard conditions of laminar air flow the

Prandtl number 7tt/a ,._ 0.72; for turbulence 7#/_ _ 0.9,

with 7 = cp/Cv = 1.4

(1) Where 9,, #,t_ << phl_l relax as in Euler above

(2) Otherwise use

0

0
M=

0

0

_, 9,01

0

1

0

0

0

702

0 0 0 -01

o o o -02

1 0 0 -03

0 1 0 0

0 0 1 0

X03 0 0 Q_+_

relaxing each Qt_ by one of the approaches

described for the advection-diffusion below,

and Lc by procedures discussed for it below

(in the chapter on non-elliptic operators)

Not tried

2

2:

:7



Difficulty Possible Solutions Status

O0

• Non-conservative not staggered

Euler and NS

• Conservative discretization of

any of the above systems

(1)

(2)

Probably similar to the staggered (cf.

transition from staggered to non-stag-

gered in Stokes)

In the 2D incompressible case:

Premultiply L by a projection operator

P, obtaining a Poisson equation for the

pressure. Solve pressure equation with

multigrid and the advection equation by

marching downstream.

Apply a prefactor P such that PL has

principally the above non-conservative

form. See, however, the difficulty

associated with FDA decomposability

(discussed in the chapter on non-

elliptic operators), which may arise

with such PL operators

TME demonstrated for 2D

incompressible Euler [RSS]
in the cases of channel

(with bump) and airfoil flows

Mentioned in [G, §3.4], but
not tested



Difficulty Possible Solutions Status

(_) Non-elliptic operators, or more pre-

cisely: small ellipticity measures at some

(e.g., large) scales. The main operators

of interest here are

(1) The advection operator (or, similarly,

the convection-diffusion operator at

large Reynolds numbers).

(2) The near-sonic full-potential opera-

tor or more generally the core opera-

tor Lc.

(See below a separate discussion of aniso-

tropics caused by the discretization)

• Grid aligned with the characteristics

• Distinguishing different regimes

(open vs. closed characteristics)

The DGS relaxation of the full flow

equations allows a specific individual

treatment for each of these cases,

taking into account its particular set

of characteristic

Block (e.g., line or plane) or ILU

relaxation schemes and/or semi-

coarsening, possibly in alternating

directions, guided by mode analyses

[B77], [Stages]

Running separately the relaxation subroutine of a

given non-elliptic factor can

(1) Separately check its convergence properties

(2) Produce a scalar cr _ 1 at regions of open charac-

teristics and cr << 1 on closed characteristics

(such as separated flow zones)

TME demonstrated in

many cases



Difficulty Possible Solutions Status

O

• Non-aligned grids, with open

characteristics (e.g., entering flow):

The main difficulty is the shorter

distance (along the characteristics)

for which a coarser grid still appro-

ximates some smooth solution compo-

nents (characteristic components

with intermediate cross-characteris-

tic smoothness)[NESP], [BY1]

Three possible approaches, all guided by half-space

two-level FMG mode analysis, using for simplicity

the first Differential Approximation (FDA) to the

discrete operator [NESP], [G, _7.5]:

(1) Downstream-ordered relaxation marching

[R88, §2.3]. (Suitable only for the advection

factor, sometimes still requires W cycles, and

not very good for massively parallel

processing). In the case of an O(hP) discretization

which is not purely upstreamed, relaxation

should involve a predictor-corrector downstream

marching. If the predictor order is q, the eorrector

should be applied at least p/q times.

(2) Semi-coarsening (especially for the near-sonic

full-potential operator). Better suits massive

parallel processing

(3) Cycle index = 2 p/m, where p is the order of

discretization and rn is the order of the differential

factor. (Suitable actually only for the advection

operator, for which rn = 1; especially attractive

p = 2 in 3D; not requiring ordered relaxation, but

still disadvantageous for massively parallel proce-

ssing because of the high cycle index)

(1) TME demonstrated in

[BY2], and in Ruge's

recent calculations,
both for the advection

operator by itself and as

part of the incompre-

ssible Euler system

(2) TME has been shown for

the sonic full-potential

operator [sonic]

(3) For p = 1, TME has

been shown on various

occasions. For p = 2,
should be tried



Difficulty Possible Solutions Status

The mixed convection-diffusion opera-

tor with order p approximation, having

natural viscosity t, and artificial visco-

sity cth p

Closed characteristics (recirculating

flows). Here 'uniformity of viscosity

(including numerical viscosity) is

important for accuracy. The size

of viscosity is less important here

(except at resolved boundary layers,

discussed below). In fact, a uniform

O(h) artificial viscosity can yield

higher order approximations. Full

convergence may also be less impor-

rant here (steady state may take

exceedingly long to be attained in

reality, if at all)

• Full-potential operator (u_. Z) 2 - a2A,

Mo = lu__l/a< .7 (uniformly elliptic)

Treatment as elliptic operator on levels where

> (2P • 4 - 5)cthP and as the non-elliptic

advection operator otherwise

Using the above-mentioned scalar or, form a

c-dependent convergence test, to tell between

slowness of open and closed characteristics

(and possibly ignore the latter). Also based

on c, at recirculation regions use uniform

(explicit) O(h) numerical viscosity, with con-

tinuation from large to small viscosity integra-

ted into the FMG algorithm. The cycles can

employ one of the following 3 options.

(1) DCW method (using Defect Corrections

within W cycles), with suitable over-

weighting of residuals [BY3]. Suitable only

for O(h) discretizations.

(2) Effectively downstream relaxation ordering

(using alternate-direction sweeps) and

doubling of transferred residuals (for O(h)

discretization) [YVB].

(3) Semicoarsening, generally similar to [sonic]

Any classical algorithm is suitable, but the

algorithm of the next case is also adequate

Not precisely tried

TME cycles by methods

(1) and (2) were shown

in [BY3] and [YVB]

respectively. Method (3),
which should be best for

massive parallelization,

has not been implemented

TME well established



• /_:/" _ . 7 ¸

Difficulty

• Full potential .7 _< 1io < 1.4

• Full potential 1.4 _< M0

(uniformly hyperbolic, with the

stream as the time-like direction,

and with 0(1) "Courant number".)

Possible Solutions

Relaxation marching downstream (for

transition to the supersonic case below)

together with seniicoarsening in the

characteristic (cross-stream) direction

Marching in the stream direction, possibly

with a predictor-corrector procedure.

For full massive parallelization, however,

wave methods (extending standing wave

methods [Ira]) should be used

Status

TME shown for the

case 1_ = 1 [Sonic].
Other cases have not

yet been implemented

Not yet tried?



Difficulty Possible Solutions Status

• The "core operator"

Q0 0

Lc = 0 O_

--Op/Op --Op/Oc

_p2 A -

--pA

Q.+_

should be relaxed as part of relaxing

the compressible NS system, in the

case that pluI h £ max(X, #, _).

In the case of alignment between the

grid and the flow, with meshsize hi

and h2 in the stream and cross-

stream directions, respectively, and

h2 < hi (e.g., in boundary layers),

the case where Lc need be relaxed is

when plu[h_ < hi max(X, #, _).

In aerodynamics, X, # and _ are

comparable, so the case of interest is

[_/,[h22 < Phl, where zJ= #/p

Best relaxation scheme depends on the flow parameters.

For example:

(1) If e_ << Pl_lh, then Q_ _ Qo (in principal terms) and one
can use DGS with

M= 0 1 pA

0 0 Qo

resulting in the need to relax the first two equations

each on an advection operator (see methods above), and

the third equation on the operator QoQt_+-- 2 - p2a2A.

In the case of interest the principal part of the latter

is [(#+ X)Q0+ p2a2]ZX,so it can be relaxed
by the general method for relaxing a product opertor

(see L = L2L1 above).

(2) In the aerodynamics and aligned case of interest, the term

Ql*+_ in Lc is not principal. Therefore relaxation can easily

be conducted with the weighting (preconditioning) matrix

(10 )p = _p p2

0 0

and the distribution matrix

M = -Pp/Pe
0

yielding PLM whose principal part is its main diagonal, on

which separately appear the Laplace operator A, the

convection-diffusion operator Qg where g = ppp2/(2ppe)

= 1.25_ (for air), and a free function

Not tried

Not tried



Difficulty Possible Solutions Status

FDA factorizability question: The decom-

position of a system relaxation into its

scalar factors depends on the equality of
the different occurrences of the advection-

diffusion operator Q (or Q_+_) appearing

in PL, the prefactoring by P of a conser-

vative discretization L. However, in rela-

xing a non-elliptic discrete operator, impor-

tant is not only the differential operator it

approximates, but also its First Differential

Approximation (FDA) terms in non-charac-

teristic directions; e.g., the cross-stream

numerical viscosity of Q. This may not be

the same in the different occurenes of Q,

putting the factorization into question

• High order discretization (away from

shocks)

(1) Examining several examples of con-

servative discretiza.tion of transsonic

flows, the FDA terms in various

occurrences of Qtt+X turn out suffi-

ciently close to each other (e.g., only

(4% discrepancy) to allow full effi-

ciency of the proposed relaxation

schemes.

(2) Conservative schemes may be desig-
ned so that the various FDAs of

Qs+X are identical, or at least so
that the scheme is still factori-

zable.

(1) "Double discretization" schemes:

Use high-order only in calculating
residuals transferred to the coarse

grid, not in relaxation (unless the

high order scheme is preferable also

for h-f modes).

(2) However, in relaxing non-elliptic

factors (e.g., downstream relaxation

marching for convection operator)

the high order must be used (e.g., by

a predictor-corrector downstream

relaxation)

Further examination is needed

Some "genuinely multidimen-

sional upwind" schemes turn

out to yield factorizable

schemes, e.g., in the subsonic

case in the control-volume

structured-grid context [DS2].

Further studies are in progress

Introduced 1978 [BD]. Success-

fully implemented in various

elliptic cases (see description

and refs in [G, §10.2]). Methods

for non-elliptic have not been

tested beyond second order.

Comment: High order approxi-

mations on unstructured grids

are very expensive



(1) A set of N continuity equations, volume is large compared with max(h-2Di, h-lpilul), for a simple model

Dit_culty

(_) Shocks

Shock displacements associated

with corrections fl'om a coarse grid

that does not resolve the shock

• Poor h-ellipticity of high-resolution
schemes

• Relaxation near strong shocks

Possible Solutions

Obtained by a conservative fine-to-coarse

residual transfer plus local post-relaxation

passes near the shock

Construction of new, genuinely multidimen-

sional upwind schemes

Switching to general robust schemes (e.g.,

box Kacmarz), adding extra, local passes (c.f.

relaxation near boundaries)

Status

Full efficiency shown [DS]

Developed in the context

of unstructured triangular

grids [DS1]

Not tried?
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Difficulty Possible Solutions Status

• Relaxation at and near Boundaries:

Difficulties:

(1) There is no smoothing analysis in

case the boundaries are not aligned

with the grid.

(2) The fine-to-coarse residual weigh-

ting near boundaries is generally

very imprecise, hence the residuals

should be reduced there more than

in the interior.

(3) Larger residuals are created near

polations.

• Boundary layers (in the case that they

need be resolved). (See also grid

adaptation below.)

A generM-type robust relaxation scheme,

e.g., box Kacrnarz, throughout several-

meshsize-wide zone near the boundary.
Boxes size in each direction should be

several meshsizes and the boxes should

have substantial overlap. One can afford

several passes of such a relaxation per

each full interior sweep since the zone

width is O(hl-_), with 0 _< c < 1. In

particular, add near-boundary relaxation

passes after the FMG interpolation

(allowing the latter to be of lower order

near the boundary)

Resolved by boundary-fitted local grid

patches, with local semi refinements: finer

levels, in narrower layers near the boun-

dary, have smaller cross-layer meshsizes,

allowing the physical cross-stream visco-

sity to dominate over the numerical one.

Additional terms in the governing equa-

tions (NS instead of Euler, or turbulent

modelling, etc.) may be used in these

patches. Downstream marching relaxation

and cross-stream semi coarsening in the

multigrid cycles, employed in a "A-FMG"

kind of algorithm [G, §9.6], so that coarse

FMG stages already include local semi-

refinements at the boundary, thus effectively

incorporating continuation in Re into the

FMG stages

For uniformly elliptic equations it

has beenproved[RLMA],[RqMA]
and demonstrated computationally

(for cases of reentrant corners [Bai])

that the interior efficiency as predic-

ted by mode analysis (implying TME)

can always be obtained. TME demon-

strated (by Ruge & Brandt) for incom-

pressible Euler on staggered cartesian

cartesian grids

Description in [R88, §2.4]; not imple-
mented. The local refinement techni-

ques for Poisson equation, with TME,

are demonstrated in [Bai]



Difficulty Possible Solutions Status

Far-field artificial boundary

conditions: requiring in some

cases non-local absorbing

boundary conditions (ABC) for

some wave factor. [Has any

MPer had experience with this

difficulty?]

Small-scale singularities invisible

on the next coarser grid, such as

small "islands" or "holes" in the

domain (e.g., an airplane smaller

than the meshsize of some coarser

grid) or small BC features (e.g.,

small regions of Neumann BC in

otherwise Dirichlet BC)

Increasingly coarser grids covering increasingly

larger domains. The size of each domain is

based on accuracy-to-work. Optimization

criteria (similar to those in [B77, §8], [G, §9.5],

implying also a natural criterion for the largest

needed domain. On interior boundaries (boun-

daries of a grid residing in the interior of the

next coarser grid) the solution is interpolated

from the coarser grid. On such boundaries, if

ABC is at all needed, only high-frequency

components need be absorbed, for which the

ABC are local, and can be enforced as part of

the relaxation process (of the corresponding

wave factor)

Local relaxation passes around the singularities

after return from the next coarser grid, together

with either one of the following three devices:

(a) Enlarging the singularity on the coarser

grid.

(b) Modifying the interior coarse-grid equation

near the singularity.

(c) If the coarse grid equations are not modi-

fied, convergence is slow, but slow to con-

verge are just few very special components.

Hence slowness can be eliminated by recom-

bining iterants.

Details of the algorithm have been

worked out, and TME (or its equi-

valent accuracy-to-work relation)

has recently been demonstrated (by

Brandt & Danowitz) for the 2D

Poisson equation in the unbounded

plane. Techniques for non-elliptic
or indefinite cases have not been

systematically studied.

TME shown in elliptic cases [Rec]



Difficulty

(_) Grid-induced slow convergence

• Large aspect ratios

• Expanding gridsO

Possible Solutions

One can avoid many of the following maladies

by using suitable multi-grid structures (descri-

bed below under "grid adaptation")

Either one of the following:

(1) Block (part-line or part-plane) relaxation,

analyzed by mode analysis [B77].

(2) Semi coarsening [arl], [Stages, §3.2] (often

natural, since the large aspect ratio is in

the first place created by semi refinements)

with relaxation "semi smoothing" analysis

[Stages, §2.1], [G, §3.3].

(3) Combinations of block relaxation in some

directions and semi coarsening in others

Relaxation marching in the direction of increa-

sing meshsize; or distributive relaxation [Njm,

§6]

Status

TME has been shown in

a variety of elliptic cases



Difficulty Possible Solutions Status

• Grid adaptation

(_) Stagnation point (causing an

instability in the coarse-grid

corrections)

Use local multigrid levels in creating any

desired local refinement, aspect ratio,

boundary fitting or even flow fitting (see

[R88, §2.7]). Base refinement criteria on

the fine-to-coarse multigrid correction (r).

Adaptation can be integrated into the

A-FMG algorithm together with proper

(e.g., Reynolds-number) continuations

Coarse-grid numerical viscosity depending

on the average (e.g., "full-weighting")of

the fine-grid numerical viscosity (not on

its injected value) [BY3, §4.5]

Introduced in [B77] and [G], but

tried only for Poisson equation

near singularities [Bail

TME shown in an example [BY3]
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