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INTRODUCTION

During the past five years, numerous pioneering archival publications
have appeared that have presented computer solutions of the mass-weighted,
time-averaged Navier-Stokes equations (Farve, 1965) for transonic problems
pertinent to the aircraft industry. These solutions have been pathfinders
of developments that could evolve into a major new technological capability,
namely the computational Navier-Stokes technology, for the aircraft industry.
So far these simulations have demonstrated that computational techniques,
and computer capabilities have advanced to the point where it is possible to
solve forms of the Navier-Stokes equations for transonic research problems.
At present there are two major shortcomings of the technology: limited com-
puter speed and memory, and difficulties in turbulence modelling and in com-
putation of complex three-dimensional geometries. These limitations and
difficulties are the pacing items of the continuing developments, although
the one item that will most likely turn out to be the most crucial to the
progress of this technology is turbulence modelling. The objective of this
presentation is to discuss the state of the art of this technology and suggest
possible future areas of research.

At present, the viscous transonic flow research is conducted by either
a zonal viscous-inviscid interaction procedure or a global Navier-Stokes pro-
cedure. There is no formal presentation of the state of the art dealing with
viscous-inviscid interaction procedures at this Symposium. For this, one is
referred to the proceedings of an AGARD Symposium on "Computation of Viscous-
Inviscid Iterations” (1980). These procedures have achieved some success
but most either predict poorly or fail when faced with flow separation. The
procedure of Le Balleur (1980) for small separated regions is promising.
There does not appear to be a single one of these procedures which gives
acceptable results under a wide range of conditions. Of course, these pro-
cedures are being further developed, and in those cases where they can be
trusted, they should be computationally cheaper to use than a global Navier-
Stokes calculation. One expects that both the viscous-inviscid interaction
procedures and the global Navier-Stokes approach will contribute to the
understanding of various transonic flow phenomena and in providing insight
for developing efficient numerical methods.

We now discuss some of the flow conditions for which the Navier-Stokes
equations appear to be required. On an airfoil there are four different
types of interaction of a shock wave with a boundary layer: (a) shock-

! boundary-layer interaction with no separation, (b) shock-induced turbulent
separation with immediate reattachment (we refer to this as a shock-induced
separation bubble), (c) shock-induced turbulent separation without reattach-
ment, and (d) shock-induced separation bubble with trailing edge separation.
The shock-induced separation is caused by a strong shock wave. A proper
treatment of interaction of this shock with a boundary layer requires the
Navier-Stokes equations, at least locally (Melnik, 1980).

A A S S

P v,

Shock waves that terminate in the vicinity of boundary layers are seldom
steady, particularly on transonic wings and control surfaces. In some cases,
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the shock-boundary-layer interactions are observed to oscillate periodically
with relatively large amplitudes (Finke, 1975). These fluctuations can cause
stalling, buffeting, flutter, and control-surface buzz. The first two phenom
ena arise at large angles of attack when the upper-surface separation of the
boundary layer extends from the shock wave to the trailing edge and beyond.
The last two phenomena are manifested when the separated boundary layer
experiences lateral oscillations in the wake. A different type of transonic
flow problem is recently reported by McCroskey, et al. (1981). They report
transonic flow near the leading edge for free-stream Mach numbers as low as
0.2 on an oscillating airfoil. This flow is characterized by a small super-
sonic bubble with or without shock waves. At Mach numbers between 0.3 and
0.5, the airfoil may experience shock induced leading edge stall (McCroskey
et al., 1981).

There are at least two motivations for understanding separated flows:
(a) controlling and minimizing the effects of separation when it is an un-
desirable feature, and (b) organizing separation so that it constitutes a
natural way of improving aerodynamic performance. The latter occurs in
three dimensions where strakes are used to create streamwise vortices that
increase performance at cruise and climb conditions. It appears that air-
craft designers are not so much worried about incipient or microscopic
separation bubbles of small extent as they are about a boundary layer failing
to reattach before the trailing edge. If that happens, it may cause, depend-
ing on its severity, stall and buffet, pitchup motion, and possibly degrada-
tion of lateral stability.

When the boundary-layer assumptions are almost valid through a small
separated region which is not caused by a shock wave, it is possible to
determine, using the boundary-layer equations, the main effects of the sep-
aration with an integral method (Le Balleur, 1980), and the quantitative
structure of the separated region with a differential method. But when the
separation region is not small, this approach fails, and the Navier-Stokes
equations are required.

In computational aerodynamics, both the physics and numerics are equally
important. Physics is involved in selecting the appropriate governing equa-
tions and formulating suitable initial and boundary conditions. Numerics, on
the other hand, deals with generating a grid system, devising stable, accurate,
and efficient approximating schemes for solving the differential equations
along with the initial and boundary conditions, and actually carrying out the
solution procedure. All of the processes are important, and they all affect
the accuracy of the solution. For the purposes being discussed here, the
accuracy required of the solution is determined by the practical requirements
of. the aircraft industry. If this solution fulfills these requirements, then
it is accurate enough. The above processes dealing with physics and numerics
for the Navier-Stokes equations constitute the Navier-Stokes technology.

At present, computer simulations of transonic flow fields are usually
validated by comparison with experiments which are in themselves simulations.
This reliance on experiment results principally from the fact that the effects
of turbulence must be modelled and the models are essentially empirical. In
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addition, this reliance results when a numerical solution, for all practical
purposes, is not shown to be independent of the discretization errors. It is
usually not possible to show the extent to which a large scale, numerical
simulation is affected by discretization errors which is caused, at present,

by lack of computer speed and memory. On the other hand, the validity of an
experimental simulation is, more often than not, questionable. Generally, a
quantitative assessment of effects of any known deficiencies in the data is
lacking. Rarely are the initial and boundary conditions completely documented.
There is usually a minimum rather than a comprehensive set of data.

Keeping in mind the above general shortcomings of both numerical and
experimental simulations, we discuss the state of the art of predictive
Navier-Stokes technology dealing with the above processes and present some
computed simulations of transonic flows.

GOVERNING EQUATIONS

Navier-Stokes Equations

The continuum, compressible fluid mechanics is described by the class-
ical Navier-Stokes equations, properly modified to take into account varia-
tions in density and temperature, along with equations governing conservation
of mass and energy and an equation of state, taken from equilibrium thermo-
dynamics. This system is referred to here simply as the Navier-Stokes equa-
tions. We shall assume that solutions of this system, subject to appropriate
initial and boundary conditions, do exist and are unique. However, only local
existence theorems in two- and three-dimensional problems have been estab-
lished (Solonnikov and Kazhikhov, 1981); and the Cauchy problem for a perfect
polytropic gas in three-dimensions is solvable "in the large" provided the
initial data are close to constants (Matsumura and Nishida, 1980). In short,
the mathematical analysis of the above system is far from complete.

In the Navier-Stokes equations, the assumptions concerning the stress
tensor and the heat-flux vector exclude rarefaction shocks without specif-
ically assuming the second law of thermodynamics. Therefore, the entropy
condition (Lax, 1973) need not be satisfied by a numerical method for these
equations. The effect of viscosity and heat conductivity develops a con-
tinuous transition through a shock wave. In the transonic flow regime,
these equations are valid through this wave which is, however, quite thin
if its intensity is strong enough. For example, at a Mach number of 1.05
and Reynolds number of 107, the shock thickness in air is almost the same
as the thickness of the linear sublayer of a turbulent boundary layer on a
smooth flat plate. The latter thickness corresponds to about yt~ 5,
where yt is the Reynolds number based on the friction velocity and a
length scale of turbulence. At lower Mach numbers the shock is even thicker.
A shock wave with such a small thickness is not usually resolved in current
transonic simulations. (Likewise, the contact discontinuity is not resolved.)
Instead, it is considered to be a discontinuity, the location of which is
part of the solution procedure. However, its thickness may not be small when



it begins to interact with a viscous boundary layer and can even lose its
identity as it penetrates into the viscous region,

Reynolds-Averaged Navier-Stokes Equations
with Mass-Weighted Variables

In the study of turbulence by means of the Navier-Stokes equations, it
is usual to use some form of averaging. For example, Monin and Yaglom (1971)
present a general space-time averaging procedure for functions f(x,t) given
by the equation

o

<f(5,t)> =f/'f(£ - T,t - 1) g(C_,T)dEdT 1)

-0

Here, the overbar and the underscore indicate an instantaneous value and a
vector field, respectively. The non-negative weighting function, g, satisfies
the normalizing condition

=]

f/g(_;_,T) dgdt =1 (2)

-0

The choice of this weighting function determines the significance of the
averaged quantities. For example, if g 1s a constant over some time
interval T and zero outside of it, and the dependence on { is a Dirac
delta-function, <f(x,t)> 1is referred to a time-averaged quantity. In un-
steady flows, the interval T must be large compared to the periods char-
acteristic of time scales that cannot be resolved computationally, but small
compared to the period of resolvable flow motion.

The system of equations determined by applying the above time-averaging
procedure constrained with the Reynolds conditions (Monin and Yaglom, 1971)
gives rise to Reynolds-averaged Navier-Stokes equations. For compressible
fluids, these equations contain second-order moments, such as <p'u'>, and
a third-order moment <p'u'u'>, due to fluctuations in the fluid density
(Van Driest, 1951). Here, the prime denotes fluctuating quantity. Therefore,
for these fluids, instead of time-averaged flow quantities, mass—-weighted
time-averaged quantities are preferable. For example, the mass-weighted
velocity uy equals to <puy>/<p>. This averaging procedure eliminates the
above moments from the averaged Navier-Stokes equations but it does not
remove density fluctuations from turbulence. This procedure appears to be
first used in the study of atmospheric turbulence by Hesselberg (1926)
(Favre, 1969). A comprehensive discussion of this procedure for compressible
turbulent flows is presented by Favre (1969) and by Cebeci and Smith (1974).
Henceforth, the equations resulting from this type of averaging are simply
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called the Reynolds-averaged Navier-Stokes equations. These equations, with-
out external forces, may be written in dimensional form as

p+ (puy) 4, =0 (3)
(puy) + (pujui)’j =Pyt (poij)’j (4)
(ph) + (pujh) o =P+ up o+ 0055 Uy - (oqj)’j (3

Here, p and p are, respectively, time-averaged mass density and pressure;
uj and h are, respectively, mass-weighted mean velocity and enthalpy. The
Cartesian-tensor summation convection is used. The overdot indicates a
partial derivative with respect to time; and subscripts after commas denote
partial differentiation. Further, the symbols and a5 respectively,
represent the specific time-averaged total shear sgress and heat flux as
follows:

_ 1 -
Oij = 2\)(Sij 3 uk,k6ij) Rij (6)
<5u3h'>
v
== h  +——— 7
93 P, 3 p 7
L

where v 1is the kinematic viscosity. These include contributions of both
the molecular and turbulent transport. The mean strain-rate tensor S

ij
and the Reynolds stress tensor - pRij are given by
1
S,, == . 8
ij 2 ¢ i,j J,i) (8)
6%%>
R,, = ——————— 9
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The above equations are identical to the equations used to determine
laminar flows, except for the Reynolds stress tensor and turbulent heat
flux vector, equations (7) and (9). In addition, these equations essentially
exhibit a term by term correspondence with those for the incompressible
fluids. This correspondence permits extension of the large body of expe-
rience existing with modelling turbulence for constant-density flows to
transonic flows, provided turbulence structure in both these flows is
closely the same. Interpretation of Morkovin's hypothesis (Morkovin, 1964)
suggests that this is the case for boundary layers and wakes at free-stream
Mach numbers less than about 5 and of jets at Mach numbers less than about
1.5 (Bradshaw, 1977). This hypothesis states that the effects of density



p——

fluctuations on turbulence are small when the root-mean-square density fluc-
tuation is small compared with the absolute density. Transport-equation tur-
bulence models, which are discussed below in terms of mass-weighted, time-
averaged variables, contain additional terms due to compressibility effects.
These terms are negligible according to the above hypothesis in the transonic
regime.

Turbulence Modelling

There are two approaches for turbulence modelling: the first-order
approach in which the Reynolds stress tensor is modelled, and the second-
order approach in which this tensor is determined from the Navier-Stokes
equations. In the former approach, one forms the equations for the first-
order quantities, such as mean velocities, and models the second-order quan-
tities that appear in them. See equations (4) and (10). In the latter
approach, equations are formed for the first- and second-order quantities
(ui and Rii)’ and the third-order terms are modelled. These equations may
be simplified to yield algebraic stress models, which still require differ-
ential equations, beth for the turbulent kinetic energy and energy dissipa-
tion (Rodi, 1980).

In transonic, turbulent-flow simulations, the first-order approach is
almost always used, and it forms the basis for the so-called zero-equation
(algebraic), one-equation, and two-equation models. In practice, the actual
form of these models and the manner of applying them generally differ in
detail from investigator to investigator. General definitions and character-
istics of these models are available from Cebeci and Smith (1974), Reynolds
(1976) , Reynolds and Cebeci (1976), Rubesin (1977), Launder (1980), and
Rodi (1981). (Simulation of transition 1s not considered in this state-of-
the-art review.)

Some zero-equation models are based on the Prandtl mixing length hypoth-
esis. But other first-order turbulence models are based on the '"Newtonian"
assumption, and they are, therefore, eddy-viscosity models. Boussinesq's
eddy viscosity concept (1877) is based on an analogy with the gradient-
diffusion mechanism of the kinetic theory of gases. Methods based on this
concept are also known as eddy-diffusivity or gradient-transport methods.
Corrsin (1974) has presented limitations of gradient-transport models. In
these methods, the eddy viscosity, v, is assumed to be a scalar and is
defined by a Newtonian constitutive equation of the form

_1 _ 1
Ryy = 3 V284 290855 7 3 Y1 844) (10)

Here, vZ = Ryij 1is the turbulent kinetic energy. The vZ  term may be
absorbed in p. This relation restricts Ryy and Sy to the same prin-
cipal axes, which is not true in general. Ig is possible to modify this
relation in order to remove this restriction (Saffman, 1974). Algebraic
models relate vr directly to Reynolds—averaged field quantities. Both
one- and two-equation models contain a partial differential equation

for turbulent kinetic energy, which defines a turbulence velocity scale, v.
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One-equation models use a prescribed, empirical length-scale distribution,
and two-equation models use an additional partial differential equation to
define a turbulence length scale, . A combination of the turbulence
velocity and length scale determines the value of the eddy viscosity

vy = cvi (11)

where c¢ 1is a constant. Methods using partial differential equations for
turbulent quantities are also called transport-equation methods.

In the eddy-conductivity concept, the transport of heat due to the
time-averaged product of fluctuating enthalpy and fluctuating velocity is
modelled. It is assumed that the turbulent heat flux follows a law similar
to Fourier's law. Further, it is generally assumed that dynamic eddy vis-
cosity, u.,, and turbulent thermal conductivity have the same functional
relationsgip with temperature. Although the turbulent Prandtl number varies
across the boundary layer, it is commonly considered to be a constant, and
it is usually taken to be 0.9 for air. Apparently, more complex modelling
of the turbulent heat flux than this has yet to be attempted in transonic
simulations.

There are many zero-equation models. As an example, a model used by
Baldwin and Lomax (1978) for attached, separated, and wake flows is briefly
outlined below. This model is patterned after that of Cebeci (1971). The
turbulent boundary layer is regarded as a composite layer consisting of
inner and outer regions. Tn each region, the distributions of v and 2
are prescribed by two different empirical expressions. For example, in the
log-law region, & 1is proportional to vy, the distance normal to the wall,
and in the outer layer, £ 1is proportional to the boundary-layer thickness.
The proportionality of & to y is extended into the viscous sublayer with
a damping function suggested by Van Driest (1956). In the outer region,
the vorticity is used to define the boundary-layer thickness.

Y < Yoo the expressions for v and £ are

IA

In the inner layer, O
()4 ner = 2|e| (12)

and

€9

inner a1y[l - exp (-y '|°12|w/26vw)] (13)

with ¢ = 1,0 in equation (11). Here, a; = 0.4, @ 1is the vorticity, and
subscript w indicates wall values.

In the outer region, y > Yo» the expressions for v and % used by
the Baldwin-Lomax (B-L) model are:
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(2)outer = ymax CBL OL2 (15)

with ¢ the Clauser constant equal to 0.0168 in equation (11). The quan-
tity U,. is the difference between maximum and minimum absolute velocity,
the value of Cp; 1is 1.6, and the Klebanoff intermittency factor, aj, is
given by

0.3916] -1
o, = |1+ 5.5(—'—1) (16)
max

The quantities vy and L are determined from
max max

L) = y[2][1 = exp (-y/To | /26v)] (17

The above exponential term is negligible in the outer part of the boundary
layer. 1In wakes, it is set to zero. The quantity Lmax 1s the maximum
value of L(y) that occurs in this equation, and Ymax 15 the value of vy
at which it occurs.

The region of validity of the inner and outer scales is determined by
Yo+ It is the smallest value of y at which values of inner and outer eddy
viscosity are the same. The value of @1 1in the inner region and of ¢ in
the outer region are assumed to be universal constants for Rg > 5000, where
Rg is based on the momentum thickness. At lower Reynolds numbers, they are
functions of Reynolds number.

As an example of a two-equation model, the Wilcox-Rubesin (W-R) model
(Wilcox and Rubesin, 1980) is presented below. This model is an extension
of the model developed by Wilcox and Traci (1976), which evolved from the
model formulated by Saffman and Wilcox (1974) and that by Saffman (1970).
In the earlier models, the term determining the rate of production of kinetic
energy was inconsistent with that in a stress—equation formulation. The
present model removes this inconsistency. In this model, the turbulent
kinetic energy and the specific energy dissipation are given by

*2 2 - - 2 2
(pve) + (pujv ),j 2p°1j“i,j Bpwve + [(u + Bsz)v,j]’j (18)
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+ [(u + stT)w,j] 3 (19)

where the length scale is defined by

(20)

)
i
£l<

The eddy viscosity is computed from equation (11) and the constitutive equa-
tion (10) is used to provide Rij- Wilcox and Rubesin (1980) recommend
following values of the constant in the above model:

Bl = 0.09, 82 = BS = 0.5, B, = 0.15, B, =+, B, = —

c=[1 - (1L - 82) exp (- ReT/Z)]/Z

B. = 8. [1- (L - Bé) exp (- Re_/4)]/e

3 7

The turbulence Reynolds number is calculated as

- Vi
ReT v
The Reynolds¥averaged Navier-Stokes equations along with turbulence-model
equations constitute the governing equations of the Navier-Stokes technology.

Conservation-Law Forms

The Reynolds-averaged Navier-Stokes equations, as presented in equations
(3) to (5), are not in a form generally suitable for simulations of flow fields
around aerodynamic shapes. For such shapes, surface-oriented coordinates are
preferred. Furthermore, the choice of dependent variables made for these
equations is not the only choice available.

For unsteady flows, Moretti (1979) recommends using the velocity com-
ponents, pressure (actually 1n p) and entropy for the dependent variables.
This is motivated by the fact that, in inviscid flows, there are two types
of surfaces across which flow quantities can be discontinuous; character-
istic surfaces and stream surfaces. Across the characteristic surfaces,
pressure and velocities are discontinuous, but not entropy. In contrast,
across stream surfaces, entropy is discontinuous, but not pressure. Any
other thermodynamic parameters, such as energy or density, are discontinuous
across both the surfaces. The above recommendation does not, however, lead
to the conservative-law form (Lax, 1957 and 1973, and Richtmyer and Morton,



1967) of the governing equations. If this is not crucial, then the above
variables may be appropriate. Another choice is to use density, energy, and
the contravariant components of the velocity vector. This leads to a non-
divergence form of the equations. It is possible to put these equations in
the divergence or conservative-law form (Vinokur, 1974, and Eiseman and
Stone, 1980). A third choice is to use the Cartesian components of velocity
and conservative variables. It is this third choice written in the
conservative-law form that is presented below.

The conservative-law form of the Navier-Stokes equations in conservative
variables facilitates capturing of discontinuities and maintenance of global
conservation of fluxes., The importance of these issues is decided by appli-
cations and acceptable error bounds, As indicated in our earlier discussion
of Navier-Stokes equations, shock waves and contact regions are treated as
physical discontinuities during flow simulations. The above conservative
form of these differential €quations avoids fictitious sources along these
discontinuities, Further, there is a weak solution of these equations, in
the absence of differentiability, across the discontinuities. In Principle,
these theoretical results facilitate capturing of discontinuitieg. Whether

in the next two main sections of this paper. Likewise, the issue of main-
taining global conservation of fluxes depends upon the numerical scheme.

fluxes, starting with the nonconservative form, However, Strictly speaking,
it is the discrete form that governs the conservation of fluxes and not the
differential form. Global conservation of fluxes does not automatically
assure that the discontinuities are captured correctly. Conservation errors
are analogous to truncation errors. As long as conservation errors remain
bounded and do not affect acceptable accuracy, it is immaterial whether or
not the governing equations are in the conservative-law form,

The above considerations concerning conservation of fluxes also apply
to transport equations for turbulence modelling. These equations are not
in the conservative-law form [e.g., equations (18) and (19) ], albeit the
Reynolds stressg equations are based on conservation laws, namely the Navier-
Stokes equations. If the transport models were formulated in the conservation-
law form, then similar numerical treatment is possible of all the governing
equations of Navier-Stokes technology.




derivatives with respect to the new independent variables are continuous.
This can be readily demonstrated following Lax (1954), but the derivation is
not given here. Further, it can be shown that the shock speed in the
Cartesian coordinates and the curvilinear coordinates differ by a factor
containing the metric coefficients.

Reynolds-Averaged Navier-Stokes Equations
in Curvilinear Coordinates

Below, the Reynolds-averaged Navier-Stokes equations in conservative
Cartesian variables are presented in arbitrary curvilinear coordinates

(£,7). In nondimensional form, these equations can be written
d 3C Y
aqQ i 1 i
S Y === ) — (21)
T
i=1 Ei Re i=1 gi
where d 1is the number of dimensions, and Q, C, and V are vectors
Q = D{p, PUI, wee y PUY, e]
Ci = Q‘J//i + p ®i
£,
v, =9 R, —
i , j 9 x,
=1 3%
| _ 3y . d 3&;
i T e T & Y5 ax,
j=1 3
d 9¢
_c i T
°, —9.2 T (0, 631, LI uJ]
=1 73]
d T
= +
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In the above expression, subscripts (i, i+l, i+2) and (j, j+l, i+2) vary

in a cyclic order, (1, 2, 3), (2, 3, 1) etc. The Stokes hypothesis,

(34 + 2u), of local thermodynamic equilibrium has been used, and total energy-
per-unit volume and the internal €nergy-per-unit mass are represented by e
and €y, respectively,

The second-order, thin-shear-layer approximation neglects in equation
(21) all streamwise- and cross-derivatives of the viscous as well as turbu-
lence stress terms. The moméntum equation in the direction away from the
surface (£p-direction) is retained. If this were also neglected, we have
the first order, thin-shear-layer approximation which is analogous to the
classical boundary-layer approximation. Investigators using the second-order
thin-shear-layer approximation justify it on the basis that the neglected
terms in the complete equations are not computed correctly with the available
grid resolution anyway, so why keep them. This approximation is, however,
valid only for "small" separation bubbles and for "weak" shock-boundary-layer
interactions. This approximation applied to equation (21) leads to the fol-

lowing equation

T
d ac d 3t 3R,
ﬂ?“rz:*i:@-ziﬁl (23)
T
T8 Re {4 X3 9%

with
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d 3&,. du 9&, du 9§, 3u,
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Instead of equation (23), some investigators (e.g., Steger, 1978, and
Pullium and Steger, 1980) use, for convenience, the following equation
d 3¢ d 14
s+ a&:i - % 2 P (QRE 8x2) (25)
i=1 i i=1 2 i

Boundary Conditions

Boundary conditions for the above governing equations are determined
by mathematics and physics. The mathematical character of these equations
dictates the number and type of these conditions that determine the well-
posedness of these equations. Further, this mathematical character is
determined by the theory of characteristics. Theoretical analyses of two
kinds are available: one based on the classical energy method (e.g., Elvius
and Sundstrom, 1973) which follows the earlier work of Serrin (1959), and the
other on the normal mode concept (Kreiss, 1970). Most of the work is done
for the compressible Eulerian and shallow-water equations. A few recent
studies deal with the compressible Navier-Stokes equations (e.g., Oliger and
Sundstrom, 1978, and Gustafsson and Sundstrdm, 1978). These studies consider
both number and a possible set of admissible forms of the boundary conditions.
At present, such studies serve as a guide rather than as a useful tool in
practical transonic simulations. A theoretical study of the well-posedness
of the governing equations of the Navier-Stokes technology has yet to be
done. The boundary conditions discussed below are based on both the math-
ematical character of the equations and physical considerations. They are
not based on the analytical procedures mentioned above.

The mathematical character of the system represented by the linearized
form of equation (21) is incompletely parabolic (Belov and Yanenko, 1971) or
parabolic-hyperbolic. Without the time derivative, it is elliptic-hyperbolic.
The system given by equation (23) or (25) is incompletely hyperbolic or
hyperbolic-parabolic. This system 1s parabolic only in (€2 - t) plane. The
global character of these systems remains the same even if the local character
may be, for instance, purely hyperbolic. Therefore, the boundary conditions
are determined by the global character of these systems.

First we discuss the boundary conditions for the system represented by

equation (21). Consider each equation of this system separately from the
others as an equation determining Qq; the other Q's in this equation are

13



assumed to be known quantities. Here Qi 1s a component of vector Q. The
mass conservation equation requires one boundary condition in each coordinate
direction for Q1. The second derivative of Q2 in Qg-equation requires
two boundary conditions in each coordinate direction. Likewise, two boundary
conditions are required for the remaining Q's. This means that if 3% is
the boundary of computational region & , then everywhere on o# conditions
specifying Qs «vv Qd+1 are required; and on a part of 04, a condition
specifying Q; 1is needed. These considerations determine the number of
boundary conditions on 9&. The type of the boundary condition for a Qi

in any direction is determined by the highest derivative of this Q; im

that direction. The boundary condition should be one order lower than the
highest derivative. This constraint yields boundary conditions which are
either Dirichlet, Neumann, or mixed type.

The above heuristic considerations help formulate boundary conditions
based on physics. A set of these conditions for equation (21) are presented
below. In such problems, two kinds of boundaries arise: rigid-wall bound-
aries, 3.4,, and open boundaries, &%B. The rigid wall constrains the flow
field along 3A, . This physical constraint is relatively easy to formulate
and convert into computational boundary conditions. Open boundaries do not
provide a material constraint, and hence appropriate conditions are not
obvious.

The rigid-wall boundary provides velocity and temperature conditions on
Ay . The behavior of a real gas at ordinary conditions (Knudsen numbers
less than 10'2) is accurately described by the no-slip and no-temperature
jump conditions. These are the only two physical conditions available. (In
contrast, for inviscid flows there is only one physical boundary condition,
namely, no flow normal to the rigid walls. Further, for an inviscid flow
past an airfoil, a Kutta condition must be imposed at the trailing edge of
the airfoil,) Considering the case of impermeable walls, the no-slip con-
dition translates into vanishing contravariant velocity components,“ﬁ& = 0.
Further, the temperature condition gives either a Dirichlet or a Neumann
condition for the total energy,

The mass conservation equation governs the material derivative of Qy-
Consequently, on 3R, Q1 changes if its previous history is known, otherwise,
a condition on Q, must be specified. This means that if fluid is on 3R
or inside A, Q1 "is determined by the mass conservation equation. But if
fluid enters & by crossing AR, Q) must be specified. Therefore, Q1
cannot be specified on 3%,,, and it must be calculated from its material
derivative. When this recourse leads to numerical difficulties, a new
governing equation is formulated by appropriately combining the momentum
equations to form the normal derivative of pressure. After expressing
pressure in terms of Q's (equation of state), we have
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The left-hand side of the above expression simplifies for orthogonal curvi-
linear coordinates. As equation (26) 1is derived from the momentum equations,
and as it replaces the mass conservation equation, it is not a boundary con-
dition on Q1. This equation is subjected to the no-slip condition, when

it is used. The above viscous terms vanish when the first-order thin-shear-
layer approximation is valid; and they can be neglected only when the second-
order thin-shear-layer approximation is valid.

These conditions are also valid for internal flow problems. However,
when simulations of the external flow problems include wind-tunnel wall
effects, one alternative is to use the no-slip condition. Another alternative
is not to compute the wall boundary layers. 1In this case, obviously walls
cannot be considered as open boundaries if they interfere with the flow field
around an aerodynamic body from that observed in free flight. This is the
situation of present transonic wind tunnels. An ideal situation is to
measure all required flow quantities just outside the wind-tunnel wall
boundary layers and use these values as boundary conditions. Probably the
next best avenue is to measure only pressure, again perhaps just outside the
wall boundary layers, and then consider the boundary formed by pressure
measurement locations as an open boundary. Another approach is to contour
the wind-tunnel walls, such that they coincide with streamlines in free~-flight
conditions. The slip boundary condition is enforced along these contoured
walls., This is restrictive, because in unsteady flows these free-flight
streamlines, at a short distance from the body, can be time dependent. In-
stead of these alternatives, the adaptive wind tunnels (see for instance,
Sears, 1981) could allow the use of the free flight boundary conditions.

The inflow, outflow, and tangent flow open boundaries require different
treatments. The above discussion dealing with material derivative of Q;
shows that on inflow boundary, Q; must be specified. On outflow, Qp 1is
determined from the mass conservation equation; and on tangentflow boundary
equation (26) is used.

For external flow problems, boundary conditions are available at infin-
ity, but not at finite distances. If the inflow boundary 1is at, say, about
ten times the characteristic length of an aerodynamic body, then the influence
of the body at that distance should be negligible, and therefore, it is
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hence not known a priori, However, we do know something about the outflow
boundary. There are no physical boundary layers, and flow field isg inviscid
for ali Practical Purposes. Thig suggests that the boundary conditions must
not introduce any boundary layer. This requirement is a]go valid for the
Oben tangentflow boundary, Further, on the Part of the outflow boundary

ces or "eddieg" through thig boundary, Pressure values on thig boundary vary.
The variation depends upon the Strength of thege Vortices., Ip addition,
€Xtrapolation along curvilinear coordinates, when the Reynolds—averaged
Navier-Stokes €quations are ip the conservation-lay form as inp €quation (21),
may introduce €rrors because of One or more of the relations between metric
coefficients are not satisfied, This situation is analogous to that between

Possible set of conditions on the open outflow and tangentflow boundaries,
Simply Stated, the Eyler €quations gre considered ag boundary conditions for
the Navier-Stokes €quations. In other words, the viscous and heat conduction
terms are neglected on the outflow and tangentflow boundaries, This approach
was applied to the incompressible Navier-Stoke equations by Mehtga and Lavan
(1975) and Mehta (1977). The above conditiong satisfy the type constraint on
the boundary conditions ag required by the mathematica] character of the sys-
tem represented by equation (21). When the wind-tunnel flows are simulated
with open boundaries, as discussed above, the outflow condition on Q1 nay
be replaced by the measured pressure values,

system, However, the oren boundaries for these equations require a different
treatment, 1Ip Ez—direction, the above considerations are valid. But inp
other coordinate directions, the system represented by thege equations isg
hyperbolic. Therefore, the direction of flow of information dictates the
boundary conditions. The local characteristics or eigenvalues determine the
number and the admissible formg of boundary conditions. For a hyperbolic
system, the eigenvalues are real. The number of negative eigenvaluesg with
distinct eigenvectors determines the number of boundary conditions, This
number is the Same as the number of inward characteristics into R. 1 other
words, if infloyw is supersonic in the "hyperbolic" directions, then all q's
must be specified, otherwise one less specification ig required. Qp outflow
boundarieg (in these directions), if the flow is Supersonic, then nothing can
be specified; and {f it is subsonic, one condition ig required.

As it is indicated in the section, Numerical Methods, in Practice mainly
nondissipative numerical methods require extraneous dissipation, which is
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resolved frequencies beyond the error bounds for these frequencies. One
point of view is that these terms do not change the mathematical character

of the original equation because they are a part of the truncation errors of

a numerical method. (See page 331 of Richtmyer and Morton, 1967.) These
terms disappear when A + 0. An alternative point of view is to consider
these terms as part of the original differential equations, since AE  is
never equal to zero. In this case, these terms do not change the character

of the original parabolic equations. Also, they do not change the global
character of the original hyperbolic equations, provided they do not intro-
duce any boundary layers at the boundaries. This is achieved by not adding
these terms either on the boundaries or next to the boundaries in £3—
direction. This avoids additional boundary conditions for both parabolic and
hyperbolic equations. These terms may form interior "boundary layers'" such as
captured (smeared) shocks. In this case, the "additional boundary conditions"
for these terms are automatically provided by the appropriate neighboring,
interior flow quantities.

Some numerical methods require extra boundary conditions (e.g., Mehta,
1977, and Yee, 1981). These conditions are called numerical boundary condi-
tions.

COMPUTATIONAL GRIDS

A computational grid system is a necessary part of any numerical solu-
tion based on a finite difference, a finite volume, or a finite element method.
The selection of a grid system is based primarily on the requirement for
accuracy in the final solution. Secondary considerations are the effect on
computational efficiency of the solution algorithm, and finally the ease of
grid generation using available computer architecture. These concepts are
discussed below.

Accuracy Requirements

Accuracy requirements are determined by the application of the numerical
solutions of governing equations along with initial and boundary conditions.
If the solutions serve the purpose for which they were intended, then the

. accuracy requirements are satisfied for that particular application. These
requirements vary with purposes of applications and frequently tend to be
subjective. Unlike the accuracy requirements, the discretization (truncation)
errors are independent of both purposes of applications and subjectiveness.
Therefore, in the discussion that follows, the accuracy constraints are not
quantified, and the emphasis is placed on the discretization errors.

Simulations of flow regions, throughout which the scales of motion are
essentially the same in all directions, are probably best carried out by
equi-spaced Cartesian meshes. In this case, the evaluation of mesh errors on
the solution is completely determined by the size of the single-space inter-
val. On the other hand, a flow field with a surface along which there is a
turbulent boundary layer, is generally computed using a highly "stretched"
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mesh "normal" to the surface. This mesh ig very fine near the surface and
usually is constructed to increase exponentially in the direction "normai" to
it. In this case, the errors of the solution are much more intimately tied
to the grid Structure, and the evaluation of errors is not simple. The situ~
ation is again not simple to evaluate when attempts are made to align and
cluster meshes with shock waves, the position of which are not known a priori,
The relationship between solution errorsg and grid choice is very important to
the evaluation of transonic viscoug flow simulations. It is still very much
in the stage of development and our comments here are based on limited

"outer edge" of the layer are required for even marginal resolution. This is
accomplished mogt conveniently by using a body-oriented System. This further
facilitateg application of surface-boundary conditions. 71t is reasonable to
€xpect that the accuracy is best when grid lines leaving the surface are
normal to it, although thisg does not appear to be crucial.

families should be made to lie along a shock, if thig is possible. This ig
often quite possible for bow shocks which interface with a completely known
free-stream flow field. For interior shocks, thig is much more difficult,

and turbulent, transonic Navier-Stokes simulations have been, so far, done
with shock capturing techniques rather than shock—fitting ones. This ig
Primarily due to the fact that the latter methods introduce algebraic ang
data management complexities inp the Viscous—interaction regions. Ip contrast,
the shock—capturing techniques do introduce errors, and these érrors depend

niques for Computing Shocks), When one of the coordinate families ig not
aligned with a shock, these techniques tend to thicken the shock-wave region.
This thickening may modify the shock—boundary layer interaction pPhenomena,
Therefore, one of the Principal weaknesses in evaluating the €rrors and reliji-

ability of the present Reynolds—averaged Navier-Stokesg codes ig estimating
the effect of the grid system on the shock strength, location, and thickness.

S involve the following geometrical quantities, depend-
ing upon the numerical methodology: ip case of finite—difference methods,
there are metrie coefficients and the Jacobian of topological transformatiuns;
when there are finite volume methods, we have lengths or surface areas, and
dareas or volumes; and the finite-element methods contain shape factors, All
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available, because computational resources do not permit it. A necessary but
far from sufficient condition is to make sure that a given grid, along with

a numerical scheme, maintains the free stream if the free-stream boundary
conditions are applied.

Methods For Generating Grid Systems

At the present time, the property of providing a body-fitted grid system
for external aerodynamic problems is automatically satisfied in two dimensions
by all currently popular curvilinear grid-generating schemes. But appropriate
interior grid systems for each class of topological geometries require trial-
and-error manipulations of different variables in these schemes. (See, for
instance, Sorenson, 1980.) Based on methodology, there are two types of grid
generating schemes, algebraic and differential. An algebraic grid-generation
scheme is a direct approach., It may be further classified into a conformal-
transformation procedure and a nonconformal-transformation procedure. A
description of conformal transformations for computational aerodynamics is
given, for example, by Sells (1968), Ives (1976), and Moretti (1980). (A con-
formal transformation may be defined either by an analytical function or by
two Laplace equations resulting from the fact that the real and imaginary
parts of an analytical function are harmonic. The procedure based on the
latter definition does not require a separate discussion.) Some of the non-
conformal procedures are the parametric multisurface transformations (Eiseman,
1978 and 1979), transfinite interpolations (Eriksson, 1980), and the iso-
parametric mappings (Forcey et al., 1980). (Note, Eiseman has not used the
adjective, 'parametric.") On the other hand, a differential grid-generation
scheme is an indirect approach. This again may be further categorized as
that based on a hyperbolic differential system and on an elliptic differential
system. A hyperbolic procedure was first presented by Barfield (1970); and
then it was extended and analyzed by Starius (1977). Recently, Steger and
Chaussee (1981) have modified Starius' procedure. Thompson, Thames, and
Mastin (1974) exposed the elliptic procedure to the computational aerodynamic
community by extending, in particular, the work of Barfield (1970), Godunov
and Prokopov (1972), and that of Amsden and Hirt (1973).

When a boundary of a flow field can be mapped with an analytical function,
when the resulting distribution of boundary grid points is nearly satisfactory,
and when the interior grid distribution is less of a concern, conformal trans-
formations are the best. They give rise to simple geometrical mapping quan-
tities, and it is easy to assemble a grid system with them. Furthermore,
they provide exact values of geometrical quantities. These transformations,
however, cannot be extended to three dimensions, but they can be used in two-
dimensional cross sections of a three-dimensional flow field.

The hyperbolic transformation procedures give, in two dimensions, orthog-
onal curvilinear grid systems. With these procedures, it is not automatically
possible to control either the location of the outer boundary or the distribu-
tion of points on it, Therefore, they cannot be used directly for internal
flow problems or for patching different grid systems. Further, their applica-
tion and usefulness in three dimensions remain to be demonstrated. On the
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other hand, the elliptic transformation procedures have been extended to
three dimensions (e.g., Mastin and Thompson, 1978, and Lee et al., 1980).
Under these conditions, the possibility and ease of a reasonable grid control
is still to be demonstrated. The elliptic procedures require more computa-
tional time than the other procedures. These procedures, generally, assemble
nonorthogonal grid systems. They allow some flexibility, and consequently
control, in the nature of grid system at the boundaries. But they do not
allow local grid control without affecting the entire grid system because of
the ellipticity of the grid-generating differential system. The solutions of
both hyperbolic and elliptic grid-generating differential procedures are con-
strained by the accuracy requirements just as the solutions of the flow
governing equations,

Unlike the elliptic procedures, the parametric multisurface transforma-
tion procedures allow local grid control. By the very nature of these pro-
cedures, they provide more flexibility, which results in precise grid control,
than the other procedures. However, they require a more complex specification
of generating variables than the others.

Sometimes it 4s possible to choose the type of grid pattern. For
instance, turbulent transonic and inviscid transonic (or transonic viscous-

respectively, with the 'C' and the 'o' grid. One may also use the 'H'
grid. This introduces a geometrical singularity, if the two halves of a
vertical line in the 'H,' one below and one above the horizontal line, meet
at an angle other than 180°, as in '>.' This requires a special treatment.
Use of the 'C' grid avoids the difficulty of the mesh singularity, However,
as it is usually programmed, it does not make efficient use of mesh points in
the region behind the trailing edge. This is also the case for the 'H' grid,
Most currently available Reynolds-averaged Navier-Stokes codes with 'C'

grids have been used with a number of grid points ranging from 45 to 85 on

the airfoil surface.! Of the three grids as they are usually programmed, the
'0' grid gives the best airfoil resolution for the same number of grid
points. However, its use can create numerical difficulties at a sharp trail-
ing edge,

An important problem that is beginning to emerge with the availability
of more powerful computers 1s the generation of a grid system around a com-
plete aircrafe. Recently, there have been some attempts at generating a grid
system around some parts of an aircraft. Lee and Rubbert (1980) and Lee et .
al. (1980) have explored the possibility and presented some ramifications of
constructing a grid system for three-dimensional configurations such as a
wing~body-nacelle shape. The computational domain is divided into a multiple
set of rectangular blocks., An elliptic grid-generating scheme is used within
each block, With this approach, there are two major shortcomings. It intro-
duces geometrical singularities in the transformed domain where there were
none to begin with and the grid control in the physical domain is poor,

11n contrast, current inviscid transonic simulations are generally conducted
with '0' grids that use about 150 grid points on the airfoil surface.
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particularly, across block boundaries and along the trailing edge of the wing.
The above investigators have also considered a single-block around a wing-
body configuration. In this case, geometrical singularities become regular

in the transformed domain. Eriksson (1980) has used an algebraic scheme for
the same configuration, The resulting 'C' grid pattern around both the
leading edge of the wing and the wing tip appears to be acceptable. Moretti
(1980) has shown how to assemble a grid system in cross—-sectional planes of

a fuselage-and-arrow-wing configuration using conformal transformations.
Complex three-dimensional geometries are first rendered quasi two-dimensional,
then two-dimensional grid-generating techniques are applied.

Methods for Improving Flow Simulation Accuracy

One requirement of accurate solutions is that they be, for all practical
purpose, independent of the grid system. So far, this has not been system-
atically demonstrated for turbulent, transonic simulations. The generally
accepted practice of indicating the order of truncation error of a numerical
method does not quantify the discretization errors. Although quantification
of these errors is difficult, it is possible to determine their effects
through grid-refinement studies. On the other hand, minimization of these
errors may be achieved by a proper choice of both the numerical method and the
grid system. Usually, there is more freedom in choosing the grid system than
in choosing the accuracy of the numerical method. Further, the choice of the
grid system is determined by a priori knowledge about the solution. Most of
this knowledge is available in terms of generalities rather than specifics.
For example, surface boundary layers are always resolved with the help of
some stretching function near the known surface. But without the specific
information, such as the magnitude and location of gradients in the flow
field, the grid system employed can often be wasteful and not satisfactorily
concentrated on those regions where a better resolution is desirable.

For a better utilization of grid-point resources, there is a growing
interest in solution-adaptive grid systems, In a moving finite-element
method, which allows both nodal amplitudes and nodal positions to move con-—
tinuously with time, nodes generally move automatically to those regions
where they are most needed (Gelinas et al., 1981). In finite~-difference
methods, there are currently two basic strategies. The first strategy
involves tracking a fluid property, such as the density gradient, and insert-
ing or regridding so that finely spaced grid-points are in the immediate
vicinity of that selected property (for instance Dwyer, 1980, and Kovenya and
Yanenko, 1980). The second strategy is to minimize the leading term or
terms of the modified equations that determine the order of the truncation
error of a numerical method (e.g., Pierson and Kutler, 1980, and Rai and
Anderson, 1980).

So far, the adaptive grid techniques have been primarily applied in one-
and two-dimensional Burgers' equation, and for a two-dimensional heat equa-
tion. Extension of these techniques to the Navier-Stokes equations for
turbulent, transonic simulations is a difficult undertaking. Questions, such
as what flow variables to monitor, which truncation errors to minimize,
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whether all flow variables and/or truncation errors should be considered
simultaneously, and which parts of the flow domain require special checking,
need to be resolved. Of course, how to best adapt the grid system is a major
research effort. These issues become much more involved when there are
unsteady shock~boundary layer interactions, The obvious payoff of solution-
adaptive grid systems is in terms of efficient use of computer resources.

Component Adaptive or Zonal Grid Systems

In the numerical simulation of three-dimensional flows, each component
of an aircraft has its own "natural" grid system, which is usually not
"natural" for the other components. Consequently, different grid systems,
each suitable for a particular compounent, are constructed. This leads to the
concept of component-adaptive grid Systems, also referred to as the zonal
grid approach. These different systems must, of course, interact. This is
accomplished by embedding one type of grid into another (e.g., Atta, 1980)
or by some other form of patching neighboring regions (Forcey et al., 1980,
Eiseman and Smith, 1980, and Lee and Rubbert, 1980). 1In any form of grid
patching, the region of interaction between the different grid systems
requires special consideration. For instance, maintenance of global con-
servation and consistent accuracies. Perhaps the most important problem in
the practical use of zonal grid systems is their effect on the numerical
stability of the solution process. This aspect is just beginning to receive
attention. The above research efforts and related issues are crucial for
rapid advances in computational aerodynamic technology.

The complexity of generating suitable three-dimensional grid systems is
somewhat analogous to problems in design and manufacturing., 1In these dis-
ciplines, computational geometry, that is the computer representation,
analysis, and synthesis of shape information (Forrest, 1971), has been
invaluable. It has given rise to the fields of computer-aided design (CAD)
and computer-aided manufacturing (CAM). 1In CAD and CAM, parametric trans-
formation procedures are used to describe a single surface (Faux and Pratt,
1979). In a grid system, multiple surfaces are defined, and the constraints
placed on these surfaces are much more severe than on a single surface. The
roots of parametric multi-surface transformation procedures appear to be in
computational geometry. 1In three dimensions, complexity of generating grid
systems, and difficulties in visualizing a grid system during and after it
has been generated, call for using interactive graphics, just as in CAD and
CAM.

Management of Grid Systems

The secondary criteria for selection of a grid system, mentioned in the
beginning of this section, deals with the care of the grid system and the
associated data base. Some aspects of this criteria have been dealt with
above. Implicit numerical algorithms for both finite difference and finite
volume methods are more efficient when based on grids with ordered discretiza-
tions (see the section, Effect of Grid Topologies on Computational Efficiency),
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and zonal methods and finite element methods do not necessarily produce well-
ordered data bases. The real importance of well-ordered data bases occurs in
studies involving three-dimensional spaces, and we have very little experience
in this area.

NUMERICAL METHODS

Two Crucial Nonlinear Convective Phenomena

In order to clarify the discussion presented below, it is useful to
develop a concept that can be used to relate physical and numerical phenomena.
We search for some form of scale in both time and space that is common to
both phenomena, and find an excellent candidate in the frequency content of a
harmonic analysis made of the physical variables with reference to either time
or space. The physical side of this concept can range from the very "natural'
(in experimental studies of isotropic turbulence) to the rather "contrived"
(in the harmonic analysis of a discontinuity). On the numerical side, these
frequencies form part of the exact solution to certain model linear problems
with periodic boundary conditions, but are only loosely related to the eigen-
system of most difference equations actually being solved. Nevertheless, the
association of frequency with scale is a very convenient concept when discuss-
ing some of the broader aspects of the numerical simulation of fluid flow.

The Euler equations model an unsteady flow that can contain a discon-
tinuous solution referred to as a shock wave, or simply as a shock. For the
Navier-Stokes equations, shock waves are not, strictly speaking, discontinuous,
their thickness being of the same order as the thickness of the linear sub-
layer in a turbulent boundary layer (see the section, Navier-Stokes Equations).
The spectral analysis of a variable having a discontinuity, or an abrupt jump
that is "nearly" discontinuous, is shown in figure 1. Notice that all, or
"nearly'" all, of the high-frequency terms have finite amplitude. In the
theme of the previous paragraph, all or nearly all scales are present. This
has an important influence on the construction of numerical methods used to
compute flows with embedded shocks.

In this paper, we are interested in flows that have significant regions
of turbulence and separation. Laminar flows and flows with attached turbu-
lent boundary layers can be computed using the methods we are discussing, but
they usually can also be calculated by simpler and less expensive methods.
Although the vorticity that is essential for the production of turbulence is
generated by the viscous properties of the fluid-surface interface and curved
shock wave, turbulence itself is generated away from the surface and caused
by the nonlinear interactions of the convection terms in the Euler equations,
the same terms responsible for the generation of shock waves. For the points
relative to this discussion, the most illuminating aspect of turbulent flow
lies in the spectral representation of its inertial range shown in figure 2.
This gives the amplitude of the kinetic energy associated with each harmonic
in a spectral analysis of a typical high Reynolds number turbulent flow,
Tennekes and Lumley (1972). Notice that the scales of both axes in the figure
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are logarithmic, that almost all of the energy is carried in the low wave
numbers, and that molecular dissipation is limited to the relatively high
wave numbers where the energy content is low. The flow represented by the
high energy, low-frequency region is referred to as large scale or large eddy
motion, and the flow represented by the opposite end as low scale or small
eddy motion. The results shown in figure 2, referred to as the energy cas-
cade, greatly influence models used to approximate the effects of turbulence.

Numerical Techniques for Computing Shocks

There are two common approaches used when devising numerical methods for
calculating flow fields with shock waves. They are referred to as shock
fitting and shock capturing. Shock-fitting methods employ some kind of test
for detecting the shock location, and then treat the shock as a local dis-
continuity across which the Rankine-Hugoniot relations must be satisfied.
Shock-fitting methods are probably to be preferred where they can be generated
by reliable and efficient codes. They eliminate the need for conservation-
law forms of the governing equations (which has certain simplifying attrac-
tions), and they produce sharp discontinuities at the jump location. They are
quite popular for computing many flows that can be modelled by the inviscid
Euler equations, especially where the flow field is supersonic, see, for
instance, Kutler (1974) and De Neef and Moretti (1980). However, the flows
of interest in this report can have strong shock boundary-layer interaction,
and the effect of viscosity must be included in this region. Further, we are
interested in the flows that contain three-dimensional and oblique shocks.
Shock fitting under these conditions can become extremely difficult, and our
remaining attention is limited to shock-capturing methods.

The point of a shock~capturing technique is that the shock forms and
moves about in a mesh, while some kind of ~analytic connection is maintained
between the flows on the two sides of the wave front. This does not mean
that the shock-capturing methods cannot have built-in logical tests that try
to isolate the shock location. Very often they do, and very often they make
use of the test results to make local adjustments to the differencing scheme
to improve its capturing capability. Still, by definition, a shock-capturing
numerical method connects the dependent variables on the two sides of the
wave.

An immediate consequence of shock capturing relates to the spectral
structure of a discontinous function shown in figure 1. Since the capturing
technique is based on some kind of numerical continuity across the shock, the
harmonic analysis can be used to represent the result. It is well known that
a finite grid can only support a finite number of frequencies in a discrete
Fourier series, For example, an equispaced grid of M points can accurately
accommodate k = M/2 harmonics of the form eikx, Frequencies higher than
k reappear as lower frequencies, a property referred to as aliasing. 1In an
unsteady flow with a moving shock, these higher frequencies are constantly
being generated by the nonlinear convective interaction. For example, the
product of the waves elkx eifx brought about by terms such as u Iy V,
produces two harmonics, one having a lower frequency proportional to k - g,
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and the other having a higher frequency proportional to k + &. This behav-
ior can be verified in numerical simulations by observing how a simulated
shock constantly tries to steepen. A linear discontinuity shows no such
tendency. The situation just described can be summarized as follows:

(1) Any discrete grid system can accurately support only a limited
number of low frequencies. If higher frequencies are placed on it, they
appear as amplitudes of low order terms.

(2) Convective nonlinear interactions are constantly cascading low
frequencies to higher ones.

The numerical difficulty brought about by this situation in the case of
shocks is illustrated in figure 3. The frequencies to the right of the mesh
cut-off line are referred to as subgrid frequencies. If their production is
permitted, they must alias back into the low-frequency range causing numerical
error. This error can be severe enough to cause numerical instability. The
standard way to cope with the subgrid scale generation is to include in the
computing process some form of numerical dissipation which removes the sub-
grid terms before any significant part of them cross the cut-off boundary.
Notice that this is an arbitrary, numerical, error-control procedure that has
nothing to do with any physical dissipation which occurs at much higher fre-
quencies,

The practical implementation of adding the numerical dissipation of the
subgrid terms takes many forms. The process can be '"hidden" in the differ-
encing scheme. Such is the case for the various Lax-Wendroff types where the
actual dissipative mechanism, which is provided by the fourth and higher
even-order derivatives, is uncovered by inspecting the modified partial dif-
ferential equation (e.g., Warming and Hyett, 1974, and Lerat, 1979). Upwind
space-differencing schemes have the same property, which is again revealed by
inspecting the modified partial-differential equation. Central differencing
schemes for the first derivative of a space term are well known to be non-
dissipative, so when these are used in shock-~capturing algorithms, higher
order dissipation terms are deliberately added to the computations (Von
Neumann and Richtmyer, 1950, MacCormack and Baldwin, 1975, Warming and Beam,
1976, Briley and McDonald, 1977, and Steger, 1978). From the arguments
presented here, they are no better or worse than the forms which have no
overt dissipation. All numerical schemes that capture shock waves with satis-
factory accuracy have some numerical error, and its quantification is
usually subjective and problem dependent, This situation can be attenuated
to a certain extent by mesh clustering, but is usually worse fur Navier-
Stokes codes than it is for potential codes, simply because the meshes for
Navier-Stokes computations are usually coarser.

The above discussion presents one valid point of view for assessing
shock—-capturing techniques. However, it is not the only one. An alternative
point of view is based on the theory of characteristics in supersonic flows.
For example, the usual justification of upwind differencing in locally
supersonic regions is not based on dissipation but on the fact that they can
be made to approximate a local method of characteristics. The Lax-Wendroff
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methods also tend to approximate a local method of characteristics. 1In both
cases, for all one~dimensional linear convective problems, a discontinuity
can be solved exactly at a Courant number of one. Model problems, however,
seldom occur in practical application. It is interesting to notice that
central differenced first-derivative terms with deliberately added dissipation
can be made to create a system that has the properties of upwind differencing.

A second consequence of using a shock-capturing method is to create the
problem of insuring the proper location and strength of the shock as it moves
about in the mesh. Lax (1954 and 1973) has shown that this can be suitably
approximated if the difference equations are locally conservative. The most
common way of enforcing this condition is to cast the governing partial dif-
ferential equations in conservation-law form, and then make sure the differ-
ence scheme maintains this property. When such a technique is employed, a
shock profile, represented, for example, by the pressure distribution, is
"smeared" over a few mesh points, but, for many practical applications, the
general position and strength are adequately represented. Many variations
of shock-capturing methods exist which attempt to make the wave structure
"crisper” and to eliminate overshooting of shock profiles. Our experience
with numerical calculations which include boundary layer indicates that the
details of shock smearing and overshoot are not of critical importance in
determining the flow behavior along body surfaces. From this point of view,
a wide variety of published methods are quite adequate for capturing shocks
in Navier-Stokes codes.

Numerical Techniques for Computing Turbulence Effects

The problem of computing turbulence 1s much more difficult than that of
capturing shocks. In fact, at the Reynolds numbers typical of transonic
aerodynamic flows, no attempt is made to compute turbulence; rather, we try
to approximate the effects of turbulence, The reason is, as in the case of
shock capturing, the incapability of numerically resolving the full range of
scale. However, in the case of turbulence, the problem is much more severe,
since the scale to be resolved extends in all three space directions as well
as in time.

A plot of the longitudinal turbulence energy spectra for eight differ-
ent types of flow is shown in figure 2. It is seen that energy-dissipating
eddies (large k) are apparently independent of both Reynolds number and
type of flow. Further, the form of the energy spectra in the inertial sub-
range at high Reynolds number conforms to the Kolmogoroff spectrum law
(k™ /3). This result is strictly experimental; no numerical simulation has
yet produced real evidence of an inertial subrange in three dimensions. In
order to accomplish this, one needs to provide a mesh that can support more
than two orders of magnitude of frequency variation in all the three space
dimensions. It 1s estimated that this will require a mesh with about (1024)3
grid points, For an incompressible flow that contains all of the modes, the
calculation would need a total storage of about 7 x 109 words using the most
sophisticated numerical techniques.
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The simple realities of computer resources force us to make one severe
approximation and to accept one severe constraint in formulating our gov-
erning equations before we even start to consider the numerical methods.

The approximation is the use of the Reynolds-averaged equations discussed
earlier. This eliminates the need to resolve the small eddy motion, but
introduces the problem of closure. The constraint is to permit extreme
coordinate distortion in only one direction. This permits us to approximate
viscous effects normal to very thin layers, but, at high Reynolds numbers,
in that direction only. Probably the most important result of all this is
that the computational processes that finally emerge have the capability

of qualitatively simulating flows with regions of separation and large-scale
unsteady behavior. The crucial question, of course, is their reliability.

We have yet to discuss the role numerics plays in computing turbulence
effects, Two quite different issues are involved. One, the manner in which
the subgrid scales are accounted for, and the other, the manner in which the
turbulence model is implemented. The subgrid scales are constantly being
generated by the large scale structure through the nonlinear wave interactions
in the convective terms. The numerical control of the subgrid energy produc-
tion is brought about by the addition of dissipation, either through the
space derivative approximation or deliberately by additional terms. In either
case the choice is arbitrary, except that it lie in the error band of the
large scale resolution, and that it prevent the accumulation of energy in the
highest frequencies supported by the mesh. The role of this form of dissipa-
tion is often not clearly understood. It has absolutely nothing to do with
physical viscosity at the scale that it is employed. 1Its detailed form is
largely arbitrary, yet a solution would be physically incorrect if it were
removed, since energy would then flow to subgrid levels and alias back into
large-scale terms where it has no physical meaning. 1t is essential to the
numerical simulation of the effects of turbulence, but it is not, in con-
ventional terminology, part of the turbulence model, see figure 4.

The second important role of numerics in Reynolds-averaged codes lies in
the detailed coding of the turbulence model. The analytic forms of several
models were given earlier in the section, Governing Equations. Unfortunately,
these are not sufficient to describe the effect of a turbulence model on an
actual calculation. The numerical effect of the complete model is the sum
of all its parts, and this includes the grid clustering, the metric evaluations
(see next section), the internal logic controlling the local evaluation of
parameters such as mixing length, and the choice of difference approximations.
The "accuracy" of all this is difficult to evaluate since the conglomerate is
the actual turbulence model and its fundamental basis is essentially empirical.
The final judgement of the method is usually based on a comparison with some
experiment, and the result may be good or bad depending on the choice of any
one of the method constituents,

Many variations of turbulence models have been tried on transonic flows

with turbulent boundary layers. How well these compare with transonic wind-
tunnel experiments is discussed in the next major section.
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Effect of Grid Choice on Numerical Stability

The basic reason for choosing a nonuniform grid is to improve the
accuracy of a numerical solution for a given number of mesh-points. There
are two ways in which this is usually accomplished. One is to align, as
closely as possible, a coordinate with a known or anticipated surface, such
as a shock wave or body surface, in order to fit them more "naturally" into
the mesh. The other is to cluster points in regions where there are rapid
changes of gradients in order to reduce local truncation errors. As a
corollary of the latter process, in order to conserve resources, points are
often spread apart in regions where the curvature is small., Finite differ-
ence, finite volume, and finite element methods all have these capabilities,

The form chosen for a grid can have a profound effect on the solution
process. By far the most important side effect of grid refinement on a
numerical algorithm is its influence on numerical stability. As is very well
known, the time step of explicit methods is mainly bounded by the size of the

space interval, and this holds for nonequispaced as well as equispaced meshes.

If a single time step is used for advancing the entire solution, an explicit
method is generally limited by the smallest space interval in the mesh. This
limitation can be seriously costly if the time step is forced to be very
small compared to the time scales of motion that are of interest. 1In such
cases, the algorithm is said to be stiff, and if the stiffness is caused by

the fineness of a space interval in the grid, the algorithm is said to be
mesh stiff,

Codes using explicit numerical methods for the solution of the Reynolds-
averaged Navier-Stokes equations can be extremely mesh stiff when they are
used to study flows with thin boundary layers, This occurs when the grid is
made to be very fine in the vicinity of the body in order to compute the
viscous effects there, For example, a typical grid spacing normal to an air-
foil surface can be in the order of 0.00001 chords for turbulent boundary-
layer simulations at Reynolds numbers above 106. Grid point clustering around
shocks and leading and trailing edges can also be the cause of mesh stiffness.

By far the most common way to avoid any form of stiffness is to use
implicit, rather than explicit, algorithms. Almost all codes being used to
analyze the compressible, Reynolds-averaged Navier-Stokes equations have some
parts that represent an implicit numerical technique. The use of such tech-
niques involves the solution of coupled sets of simultaneous equations. 1In
finite difference codes, these simultaneous equations can usually be expressed
as very sparse banded matrices that, in the great majority of cases, have
tridiagonal structures. In fact, the numerical efficiency realizable from
solving tridiagonal systems is so deeply embedded in finite difference methods
for the problems we are discussing that it has greatly influenced, and at
present even limits, the choice of grid topologies. This is discussed in the
section, Effect of Grid Topologies on Computational Efficiency.
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The Basic Difference Equations

The following is a brief evaluation of the finite-difference techniques
currently being used to solve the types of problems in which we are interested
-—completely aside from any consideration of the turbulence model. It does
not represent those formulations which compute the flow using different
equations in different regions, such as an inviscid outer flow coupled with
a boundary layer calculation.

The difference equations used to solve the compressible Reynolds-
averaged Navier-Stokes equations take many forms and vary in accuracy, effi-
ciency, and reliability. Throughout the 1970's, a variety of individual codes
were developed and used to solve specific problems. The particular choice of
problem was usually motivated by some experiment involving shock waves and
turbulent boundary layers with varying amounts of separation. In numerical
terminology, these codes represent methods that range from fully explicit
(e.g., MacCormack, 1969) to factored fully implicit (e.g., Briley and
McDonald, 1977, and Beam and Warming, 1978). The codes are usually written
in terms of numerical operators which are applied in series to prescribed
data bases. Thus, there may be a convection operator followed by a diffusion
operator, or the algorithm may be "space split'" so that a one-dimensional
X-operator is followed by a one-dimensional y—-operator to form the total
X,y solution of a two-dimensional flow. These techniques are also referred
to as factored forms. 1In some codes, certain of the factors represent explicit
methods and others implicit ones (MacCormack, 1978, and Shang, 1978).

From a general point of view, at the present time, all of the codes
used to solve the Reynolds-averaged Navier-Stokes equations, and the methods
they represent seem to have about the same potential for accuracy and effi-
ciency of running time, although these can vary according to the capabilities
of the individual coder. The numerical methods they represent appear to be
acceptable everywhere throughout the flow field except possibly at the
boundaries, a matter which is again an individual responsibility. The codes
are generally at least first-order accurate in time. For high Reynolds
numbers (>106), they require about 45 minutes of running time on a CDC 7600
to reach a steady state, if one exists. This estimate is for codes that are
at least partially implicit. It varies, of course, depending upon the number
of grid points, the Mach and Reynolds number, and the angle of attack., If
the codes are fully explicit the running times can be much longer.

Effect of Grid Topologies on Computational Efficiency

For the points to be made in this discussion our basic equation can be
expressed in the form

v

= Ay - T (27)

[aR N

t

where A is a very large and very sparse nonlinear matrix that represents
some combination of the flux Jacobian, the grid construction, and the space
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differencing. If the grid is chosen so that the physical space is mapped
into a computational space that forms the inside of a rectangular box, and
the boundary conditions are mapped onto the sides of the box, the matrix A
becomes banded for most common choices of finite difference schemes. The
typical form of A for second order finite-difference schemes is shown in

equation (28) for a three-dimensional problem that is formulated in a computa-

tional box.

f—— Y ———

A= \ (28)

In this schematic structure, all matrix entries are zero except those repre-
sented by the diagonal lines and each diagonal line represents a set of 5 x 5
block matrices each of which is composed of a local flux Jacobian. Suppose
the mesh coordinates are represented by x, y, and z and there are a total
of Mx, My, and Mz points in each coordinate direction. In the particular
case shown in equation (28), the data vector Q 1is so arranged that the x
data is closely packed, nearby y data skip blocks of x, and nearby =z

data skip blocks of y. Of course, this arrangement is arbitrary and, by
permuting the data base, the variables in any one direction can be closely
packed at the expense of the other two.
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One can view the steady state solution of equation (27) in two ways:
one as the solution of the nonlinear system Q = A-1lf, and the other as the
result of a converged time history of an unsteady process. The former
requires the solution of a set of simultaneous equations having the form
represented by A in equation (28)~-which would have to be iterated because
it is not linear. The latter would require the successive solution (with
each time step) of a similar set of equations if the time-marching method
were fully implicit.

Consider the prospect of carrying out either of these solution procedures.
Although the matrix A 1is sparse and banded, notice that the half-bandwidth
is 5 x Mx x My elements. A solution using simple Gaussian elimination would
require about (5 x Mx x My) (5 x Mx x My x Mz) temporary storage locations to
hold the information required to complete the backward sweep. This makes the
solution of such a matrix by direct methods quite impractical on present day
computers with even moderate mesh sizes.

A common finite-difference technique used in the unsteady approach that
overcomes the difficulty just discussed is to factor the time-march process
without changing the order of accuracy of the algorithm. There are several
ways for caryying this out, with differing accuracies and stabilities. They
all have one thing in common which is to greatly reduce the temporary storage
requirements for the implicit operation. Methods commonly referred to as
factored fully-implicit lead to a set of three matrices representing block-
tridiagonal equations that have to be solved in sequence., Each of the
matrices has the form shown in equation (29).

Ap = \% (29)
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Notice that this time the matrix is formed by large uncoupled diagonal blocks
each one of which is tridiagonal in sub-blocks of 5 x 5 matrices. In such
cases, each large diagonal block can be solved independently and requires a
temporary storage of only 5 x 5 x Mp words, where p represents x, y, or z.

The role of the topological-box computational space in all of this is to
provide the banded structure of the matrices in equations (28) and (29).
Zonal grids with inerfaces, overlapping meshes, and other forms of nonregular
grid structures lead to A matrices that are not banded and tend to deviate
from the tridiagonal structure. This can greatly increase the complexity of
the computational algorithm or drive it to explicit (or even numerically
unstable) forms. In either case, efficiency and code reliability can suffer.
Many forms of the finite element approach will lead to the same difficulties
for the same reason. The problem of generalizing mesh structures beyond com-
putational boxes and keeping the codes that use them computationally reliable
and efficient is one of the most pressing problems in finite difference
developments in the 1980's.

A COMPARISON BETWEEN EXPERIMENTS AND CALCULATIONS
OF TURBULENT TRANSONIC FLOWS

The following material draws from the relatively young and limited body
of computed results based on the Reynolds-averaged Navier-Stokes equations
for transonic flows with strong viscous-inviscid interactions. We have taken
this material from publications only from NASA Ames Research Center simply
because most of the published work in this area has been carried out at this
institution.

First of all, consider some typical computed boundary-layer profiles for
an attached flow. For example figure 5 shows a group of such profiles ahead
of a shock wave on an 18% thick circular-arc airfoil. These are compared
with the compressible form of the law of the wall. In the figure, ut repre-
sents u normalized with the friction velocity (Deiwert, 1975). A simple
mixing-length model, given by Launder and Spalding (1972), was used to
describe the turbulent transport. All computed profiles have one grid point
in the viscous sublayer. Notice that the log-law region is well represented
by the grid-point distribution. This is generally the case of presently
available Reynolds-averaged Navier-Stokes computations in attached boundary
layers. Computed velocity values at x/c = 0.675 differ from the empirical
log-law distribution because of flow separation just downstream of this
location.,

For many practical uses, the turbulence modelling of attached turbulent
boundary layers without shock-wave interaction is quite acceptable. The
following discusses the status of the Navier-Stokes technology for turbulent,
transonic simulations with emphasis on turbulence modelling for separated
flows and on flow problems which are not feasible to solve with current
simplified viscous-inviscid interaction approaches. This discussion deals
with representative simulations in which flow fields may be steady, unsteady,
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18% CIRCULAR-ARC AIRFOIL, Re = 2 x 106, M_=0.775a=0°
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Figure 5.- Velocity profiles ahead of a shock wave.
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attached, or separated, both in two and three dimensions. Special problems
such as "buffetting" flows, aileron buzz, and airfoil "stall" are considered.
In addition, two types of turbulence simulations are presented, one in which
turbulence models are used in a predictive mode and the other where these
models are used in a postdictive mode. This presentation is motivated in
order to stimulate systematic questioning of what research directions are
needed for accelerating advances in better predictions of separated turbulent
flows in aerodynamic applications.

Axisymmetric Steady Flows

A computation of normal shock-boundary layer interaction for an axisym-
metric flow was carried out by Viegas and Horstman (1979). The tunnel geom-
etry, experimental results, and several computations are shown in figure 6.
This represents an attempt to compare the merits of four different types of
turbulence models at Reynolds number (5.5 x 105) based on upstream boundary-
layer thickness and low supersonic Mach number (1.44). The results for pres-
sure distribution are essentially the same for all models. Differences are
evident in calculation of skin friction, which depends, of course, on the
slope of the boundary-layer profile at the surface. 1In fact, the particular
algebraic model used showed a region of flow separation which did not appear
in the other calculations. The above computors report that the most recent
evaluatior of the experiment indicates that flow does not separate. In light
of the results shown in figure 7, a tentative conclusion can be drawn:

This is probably representative of the accuracy one can expect from present
forms of turbulence modelling and numerics. With regard to the algebraic
model, the obvious question is: What details made the model used for Levy's
results shown in figure 7 so superior to that used for the results in

figure 67

As one looks into the details of more sensitive flow properties, one can
anticipate further discrepancies. For example, the W-R model [equations
(18) and (19) with B7 = 0.9] and the Jones-Launder (J-L) model (Jones and
Launder, 1972) were used to compute the turbulent kinetic energy, v2/2,
Measured and computed profiles of wv2/2 are shown in figure 8 at various
x-locations downstream of the shock wave located at x. The measured energy
was determined from a measurement of ué and with the assumption that
up @ ouj e uj = 4 : 2 : 3, This assumption was observed to be reasonable for

equilibrium boundary-layer flows at high subsonic Mach numbers (Acharaya, 1977).

Computed Mach contours and the extent of separation region about an
axisymmetric "bump" are shown in figure 9, along with an infinite-fringe
interferogram and an oil-film visualization. A zero-equation model and the
W-R model, respectively, predict shock locations 0.13 and 0.10 chord lengths
downstream of the experimental location, which is at x/c ~ 0.66. Johnson
and Horstman (1981) report that wall effects are negligible, and they believe
the computational grid is sufficiently refined. Figure 9 also shows a
surface oil-flow visualization indicating separation at x/c ~ 0.7, and the
experimental and computed locations of the u; = 0 line.
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1%

AXISYMMETRIC FLOW, Res =55 x 10°, M, = 1.44
(VIEGAS AND HORSTMAN, 1979)
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The amount of work expended on axisymmetric flows, both experimental and
computational, is quite small compared to two—dimensional studies. Neverthe-
less, the above results are representative of the state of the art of simu-
lating such flows.

Two-Dimensional Steady Flows

Effect of four different algebraic eddy-viscosity models on surface
pressure distribution over an 18% circular-arc airfoil is shown in figure 10.
These models range from an unmodified boundary-layer, mixing-length model to
a streamwise relaxation model with three magnitudes of the relaxation param-
eter A (Deiwert, 1976)., Figure 10 shows the effect of this parameter on
the extent of separation region for the high Mach-number casé. Except for the
highly relaxed study, * = 108, the results are all about the same and show an
agreement among themselves that can be expected of different forms of eddy
viscosity turbulence models for flow with mild trailing-edge separation.

The two cases shown in figure 10 have an interesting history that is

worth mentioning. Consider first the results for the lower Mach number, 0.743.
The experimental data came from a wind tunnel and the computations were made
for free air. At the time the computations were made, they were considered to
be acceptable because the upper and lower tunnel wall, which were at a distance
of about a chord length from the model, had been contoured to match an inviscid
free-air calculation for a Mach number equal to 0.775. The contoured walls
were diverged slightly to compensate for wall boundary-layer growth. The
agreement between tunnel experiment and calculation under these conditions is
shown in figure 11 (McDevitt, 1976). The effect of contouring for one Mach
aumber and running for another is indicated in figure 12 (Levy, 1978).

While it is not conclusive, it 1is reasonable to attribute most of the dis-
crepancy between experiment and computation (excluding A = 10§) in figure

10 to be due to an improper boundary condition on the upper surface of the
computational domain. The result for X = 106 1is assumed to represent a bad
model for the turbulent region.

The computed and experimental pressure distributions for M, = 0.788 in
figure 10 illustrate another possible source of trouble in making flow
simulations. This is a case representing fairly steady (see the mnext sub-
section) shock-induced separation, where the pressure plateau behind the
shock was very poorly estimated by all computations and the computed shock
wave was nearly normal, instead of oblique as in the experiment. The effect
of correcting the calculation by including the proper upper wall as 2 boundary
condition made very little difference (figure 13). An effort to tie the
discrepancies to the turbulence model was made by Coakley and Bergmann (1979).
The results of this study are shown in figure 7. No essential difference
in the result could be correlated with any of the forms of eddy viscosity
models and mesh refinements that were tried. In fact, the zero-equation model
result reported by Levy (1978) was the closest to experiment both in pressure
distribution and skin friction. However, we attach no significance to this
fact insofar as any model can be considered as superior to the others.
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18% CIRCULAR-ARC AIRFOIL, Re =2 x 106, M, =0.775
(McDEVITT et al., 1976)

NUMERICAL EXPERIMENT
— — INVISCID C AIRFOIL
-—— VISCOUS A\ UPPER WALL

D LOWER WALL

Figure 11.- Effects of viscosity at design conditions.
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18% CIRCULAR-ARC AIRFOIL, Re = 11 x 106, M_=0.720 a=0°
(LEVY, 1978)
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Figure 12.- Effect of tunnel-wall boundaries off-design conditions.
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18% CIRCULAR-ARC AIRFOIL, Re=11x 106, M_=0783, a=0°
(LEVY, 1978)
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Figure 13.- Effect of tunnel-wall boundaries near-design conditions.
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The wind-tunnel results shown in figures 10, 11, 12, 13, and 7 were
determined from measurements made in a channel flow. Computations of such
flows are known to be sensitive to inflow and outflow boundary conditions,
In order to check this aspect of the problem, Coakley (private communication
1981) made some calculations in which the outflow pressure distribution was
fixed at the experimental value. Some preliminary results are shown in
figure 14, The results are encouraging. The shock wave is now oblique
and the level of the trailing edge pressure plateau is matched quite closely,.
However, the shock position and skin friction are still parameter dependent
and the investigation is continuing.

We now turn to some results involving performance characteristics and
shock-boundary layer interactions, but no shock-induced separation.

The experimental and computed drag polars and 1lift curves for the GK I
supercritical 11.5% thick airfoil (Garabedian and Korn, 1971) are shown in
figure 15, The experimental data were taken with tunnel walls set a 6% and
20,5% porosity (Kacprzynski, et al., 1971). For 20.5% porosity, Melnik (1979)
shows two sets of experimental data on the lift curve, uncorrected and cor-
rected. According to him, the corrected data represent free-flight conditions
(see also Morky and Ohman, 1980). There are two sets of computed results.
Deiwert (private communication, 1977) has solved the Reynolds~-averaged Navier-
Stokes equations with free-flight boundary conditions and an algebraic model
without relaxation. Melnik (1979) has used the "full" viscous-inviscid inter-
action theory. He has matched the lift coefficient with the experiments and
applied a small Mach number shift of M = -0.005 to obtain agreement with
the experimental shock position. The lift curve shows that both the viscous
effects and the wind-tunnel interference effects are important. Drag values
of both computations differ from the measured values. These computations
again indicate that proper boundary conditions are required for taking into
account wind-tunnel wall-interference effects.

Two-Dimensional Unsteady Flows

An interesting set of experiments (McDevitt, 1976) and calculations
(Levy, 1978) have been carried out for an 18%-thick biconvex airfoil at zero-
degree incidence. Both experiments and calculations showed a region of
"buffetting" or self-excited, oscillating flow in the Mach number range
between 0.72 and 0.79 for a Reynolds number around 11 x 106,

The experiment was conducted using a wind tunnel in which the upper and
lower walls were contoured as mentioned in the preceding subsection. The
calculations used slip-flow boundary conditions along surfaces that matched
these contours. The effect of turbulence was approximated by an algebraic
eddy viscosity model similar to that used by Deiwert (1977). This zonal
model changed form in various regions bounded by the separation location, the
location of reattachment of the separated streamline to the surface stream-
line and the edge of the boundary layer. Unfortunately, the sensitivity of
the solution to the model is an unknown.
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LIFT COEFFICIENT

Re = 21.5 x 106
COMPUTATION
A NAVIER-STOKES, M_ ~ 0.756 (DEIWERT, PRIVATE COMMUNICATION, 1977)
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ITERATION THEORY M_ = 0.752, MELNIK, 1979
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Figure 15.-~ Lift coefficients and drag polar for GK I airfoil.
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Figures 16 to 19 show a comparison between the experiment and computed
results, Figure 16 identifies the experimental Reynolds number and Mach
number domains within which there are three distinctively different types of
flow. The three types were reproduced by computations made at Mach numbers
of 0.720, 0.754, and 0.783, and a chord Reynolds number of 11 x 106. At
M, = 0.720, the flow is steady and flow separation occurs near the trailing
edge of the airfoil. At Me = 0.754, there is unsteady periodic oscillation
in shock-wave location and intensity; and the flow alternates between trailing-
edge and shock-induced separation and 1s quite different on the upper and
lower surface at any given time., At M, = 0.783, a shock wave induces
boundary~-layer separation at its base and the flow is relatively steady,
except in the separated region.

Surface pressure comparison is demonstrated between computations and
experiments for the above three different conditions in figure 17. The
vertical bars on the experimental data represent maximum and minimum values
of fluctuations about mean. The range of computed fluctuations about the
mean computed values is denoted by the shaded area. The steady flow regions
at Me = 0.720 and 0,783 have been discussed in the previous subsection.

The unsteady flow at M, = 0.754 1is qualitatively very well predicted,
but quantitative comparison is poor, except for the mean values of pressure
over the forward half of the airfoil (figure 17). This is further supported
by figure 18 which shows surface-pressure time histories. Here, the instan-
taneous pressure oscillations are given about the mean pressure, normalized
by the wind-tunnel total pressure. The computed and measured, reduced fre-
quency of these oscillations are, respectively, 0.40 and 0.49. However, the
amplitude of oscillations is quite different. For this case, the shock-wave
shapes from shadowgraphs are compared with computed Mach number contours in
figure 19 where the phase has been arbitrarily adjusted (Marvin et al., 1980).
For another problem, namely, a 1l4%-thick biconvex airfoil at Re = 7 x 106
and M, = 0.83, the computed unsteady lift forces and pitching moments are

compared with those for M, = 0.85 in figure 20 (Levy, PR A LG ORRGR-GA Lo
1981).

It is not at all surprising that Reynolds-averaged Navier-Stokes equa-
tions are capable of simulating unsteady flows when the computational time-
step 1s small compared to the period of resolvable flow motion which is of
interest, but much larger than the high-frequency, small-scale fluctuations
which have been averaged out of these equations (see earlier section,
Governing Equations). The question of how high the resolvable frequency
could be relative to the mean frequency of turbulence eddies is addressed by
Chapman (1979).

Another unsteady phenomenon, this time associated with a moving boundary,
is represented by the performance characteristics of the aileron of a P-80
(1.e., F-80) aircraft. This flow has been simulated by Steger and Bailey
(1980) using the algebraic eddy viscosity model and the second-order thin-
shear-layer approximation described in the section, Governing Equations. The
turbulence model w.as applied from the leading-edge of the airfoil. The P-80
airfotl section is an NACA 65;-213 with a = 0.5. The aileron buzz is a

5
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Figure 16.- Experimental flow domains for 187 circular-arc airfoil,.
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18% CIRCULAR-ARC AIRFOIL, Re = 11x 106, M_=0.76, a=0°
(SEEGMILLER et al., 1978)
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Figure 18.- "Buffeting" flow, surface-pressure time histories,
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18% CIRCULAR-ARC AIRFOIL, Re = 11 x 106, M, =0.76
(MARVIN et al., 1980)
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Figure 19.- Comparison of shadowgraphs and
mach contours.
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PREDICTED, M_,=0.83
— — — EXPERIMENT, M__ = 0.856 (MABEY et al., 1980)

(b)

"0 8 16 24 32 40
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Figure 20.- Pitching moment and 1ift histories
147 biconvex airfoil, Re = 7 x 106, a = 0°

(Levy, peiwate—communication, 1981)
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one-degree-of-freedom flutter problem (Erikson and Stephenson, 1947). The
interrupted, inviscid shock-wave motion (e.g., Tijdeman, 1980) causes a phase
shift in the response of the hinge moment to the aileron movement. In the
experiment, at Mw = 0.82 and o« = -1°, the aileron, when freed at an angle
near zero, would buzz with amplitude and frequency as indicated in figure 21.
In the simulation, it would not buzz under these conditions. But if it was
initially deflected to 4°, it would, on being released, buzz as shown in the
figure, The computed and measured frequency are, respectively, 22.2 Hz and
21.2 Hz, Further, the computed and measurec deflection of the aileron are,
respectively, -1,1 # 11.1 and -3 * 9,2 deg. Similar calculations are made at
different airfoil angles of attack to predict the measured buzz boundary.

Figure 22 shows results for an unsteady transonic flow over an NACA
64A010 airfoil, which is oscillating about its one-quarter chord with a
reduced frequency of 0.2, based on one-half chord. Chyu et al. (1981)
obtained these results with the same CDC 7600 computer code used for the buzz
study discussed above. The computations were done in a coordinate system
fixed to and moving with the airfoil, but stationary at the open boundaries.
This involved generation of a grid system for each time step. The above
investigators report no flow separation. Computed and measured surface pres-
sure distributions are shown only for one-half cycle of an oscillation, as the
airfoil angle varies from 1 deg to -1 deg. Notice that the computed and mea-
sured results agree much better downstream from the shock wave than upstream
of the shock. Figure 23 shows computed and measured shock-wave locus on the
upper surface of the airfoil,

Recently, 'stall" boundary of the GK I airfoil has been predicted by Levy
and Bailey (1981). The Illiac IV computer code was the same as that used on
the buzz study just discussed. Figure 24 shows computed and measured unsteady
flow boundaries® and computed Mach contours. This figure shows much better
agreement between experiment and calculations at the high-Mach-number, low-
lift range than they do on the low-Mach-number, high-1lift side. The latter
represents a case where a turbulence model has been pushed far beyond its
limits. Notice the Mach contour plots in figure 24 at two different free-
stream Mach numbers. In the low-Mach-number case, there is shock-induced,
turbulent separation bubble. Whether in an experiment there is a transitional
bubble ahead of the shock wave or below it, remains to be determined. In the
high-Mach number case, there is again shock-induced separation which extends
beyond the trailing-edge of the airfoil.

Three-Dimensional Steady Flows

In their present forms, most Reynolds—averaged Navier-Stokes codes for
two~dimensional flows take rather lengthy, 0.75 to 3.5 hours on a CDC 7600,
run times for grids of 4 to 10 thousand points to reach a steady state or the
onset of a periodic flow, Three-dimensional flow simulations on such computers
are, therefore, not common. On the so-called class VI computers, such as the
ILLIAC IV, however, some three-dimensional studies with moderate resolution are
practical at a research level. We conclude with a brief discussion of two of
these investigations.

2Investigators of these boundaries have called them buffet boundaries, although
there was no aeroelastic response of the airfoil to aerodynamic excitation
arising from unsteady separated flow (Fung, 1955).
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Figure 21.- A performance characteristic of the control surface
of P80 aircraft.
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Figure 22.- Time histories of surface pressures.
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OSCILLATING NACA 64A010 AIRFOIL, Re= 1.2 x 107, M= 0.8, k=0.2
(CHYU et al., 1981)
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Figure 23.- Shock wave locus on upper surface.
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Surface pressure isobars for a subcritical unseparated flow over a 45°
swept, 10%-thick circular-arc airfoil at a zero incidence and spanning a
tunnel are shown in figure 25. The second-order thin-shear-layer approxima-
tion was used with the two-equation W-R turbulence model, and only the upper
half of the flow field was computed.

Notice that the computational and experimental Mach numbers are slightly
different. Bertelrud et al, (1980) have explained the difference between the
Mach numbers as follows: The reference Mach number and pressure values for
the experimental isobars were obtained at a location nearly one chord length
ahead of the wing leading edge at the left wall of the channel. The computa-
tional boundary was located at 3.5 chord lengths ahead of same leading edge
of the wing. Therefore, the computed state at the measuring location did not
correspond to the measured state at that location. Figure 25 shows a compari-
son of measured and computed pressure distributions at three spanwise loca-
tions on the wing surface, and it gives the Mach number sensitivity.

Simulations of three-dimensional boattail afterbody flow fields have
been obtained by Deiwert (1980) with the second-order thin-shear-layer approxi-
mation and the same algebraic turbulence model used in the buzz study dis-
cussed above. 1In figure 26, surface pressure distributions are shown for a
boattail model used by Shrewsbury (1968). The experimental data are shown in
the insert by the triangles, squares and circles corresponding to windward,
lateral, and leeward positions. The corresponding computed results are shown
by dashed, dotted, and solid lines. The junction of the forebody and after-
body of the above boattail model is sharp. Deiwert (1980) has reported some
sensitivity of the computed results to the grid spacing in the vicinity of this
junction (figure 27). Figure 28 shows computed results. The upper part is sur-
face pressure topology and the lower one is a limiting surface flow pattern
(surface shear directions) which approximates a surface oil-flow pattern.
The symbols S and R, respectively, stand for flow separation and flow
reattachment; and the subscripts S and N, respectively, denote a saddle-point
and a node-point. Downstream of the circumferential line Sg Sy, the flow is
separated. Downstream of the circumferential line Ry Rg Ry, the flow is
attached. The direction flow is from Sg to Sy and from Ry to Rg. Such
details are available from present Navier-Stokes technology, and they are of
considerable use towards a better understanding of complex flow fields and
towards providing internal consistency checks for simulations.

CONCLUDING REMARKS

The Navier-Stokes technology is currently under vigorous development.

It has opened new possibilities of simulating unsteady, separated, turbulent,
compressible flows that were not accessible five years ago. In this paper we
have presented the state of the art, as we envision it. The primary utility

of this technology is in applications where the present viscous-inviscid inter-
action computations fail, and this generally occurs in simulating separated
flows that are nominally two-dimensional and unsteady, or three-dimensional
steady or unsteady. There is little doubt that the Navier-Stokes technology
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10% CIRCULAR-ARC AIRFO!L SECTION, Re = 5.7 x 106, a=0°
(BERTELRUD et al., 1980)

O

—=—-= COMPUTATION, M__ = 0.760,
W-R MODEL (5 = 0.9)

T EXPERIMENT, M_, = 0.768

EXPERIMENT, M_,

—0 0.768
—0 0.748
-1.0 l— _
y/c =0.15 y/c = 0.50
-8+ -

0 2 4 6 8 10
{x - x ghe

Figure 25.- Surface-pressure distributions on a 45°
63

swept wing.



Re=29x 105, M_ =09, a=6°
(DEIWERT, 1980)
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Figurce 26.~ Comparison of surface-pressure distribution
on boattail afterbody.
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Re=26x 105 M_=09,a=6°
(DEIWERT, 1980)
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Figure 28.- Surface-pressure topology and flow patterns
on a boattail afterbody.
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can be of use to the aircraft designers and developers; the question is how
much and when,

Over the past 10 years substantial advances have been made in computer
speed and memory. Further, our ability to compute flows in rather complex
geometries has greatly improved., It is becoming increasingly clear that
turbulence modelling in the regions of separation, which are not "small," is
the weakest part of the Navier-Stokes technology. 1In fact, 1t is rapidly
becoming the primary pacing item for Reynolds-averaged Navier-Stokes,

In the 1970's most of the work was done to prove the capability of
simulating turbulent flows with mild separation. Many turbulence models
were made to work on isolated experiments. In fact this approach was used to
develop both the numerical techniques and a few empirical constants in the
models. However, very little has been done to establish the reliability of
a code, as distinct from a "model" when it is applied to a variety of experi-
ments. One must remember that the same turbulence "model" can give different
results when used in different codes with the same or different numerical
methods. This is due Principally to lack of grid-refinement studies.

Numerical simulations of the Reynolds-averaged Navier-Stokes equations
are, In general, predictive for attached boundary layers. Zero-equation
models have been very useful in engineering analysis of these flows, but they
must be interpreted with caution when used to approximate separated flows
and flows with strong curvature effects. Simplicity of zero-equation models
require more adjustment for separated flows; complex models, which contain
more empirical constants, need less adjustment, From the results available at
this time, however zero-equation models are judged, there is no clear evidence
to show that one- or two-equation, first-order models are much better.

One of the problems in constructing models for external separated flows
is due to the fact that very little is known of the behavior of turbulence in
such flows (Bradshaw, 1978, and Eaton and Johnston, 1980). We do know, for
instance, that in separated flows normal stresses are anisotropic and turbu-
lence structure is not in equilibrium, Relaxation procedures and transport
equations for turbulent scales can take into consideration some of the history
effects, namely, the nonequilibrium nature of turbulence; but the Reynolds
stress tensor is modelled to respond instantly to changes in mean strain
field [equation (10)]. The first-order (eddy-viscosity) models, therefore,
can be truly predictive only for flows in which turbulence is nearly in local-
equilibrium or for self-preserving flows. The second-order (stress-equation)
models are required for nonequilibrium flows. This is illustrated below.

Consider a distortion of a flow field of fully developed, homogeneous
turbulence by application of plane strain (figure 29). This experiment acts
as a test of turbulence models in separated flows when near-surface effects
are absent. The fluid is conditioned through screens, and it becomes parallel
when it reaches the station where the constant rate of strain is applied.

The subsequent straining of the fluid causes the initially nearly isotropic
turbulence to become anisotropic. A measure of anisotropy is plotted as the
ordinate, the lower portion of figure 29. At some distance downstream, the
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strain is removed and the fluid returns to parallel flow. The measurements
of Tucker and Reynolds (1968) are compared with computed results of Wilcox
and Rubesin (1980). The computation with a second-order (Reynolds stress)
model gives a better agreement with the measured values than that of the
first-order (W-R) model. Although Wilcox and Rubesin modified equation (10)
to remove the alignment of the Reynolds stress tensor and the mean rates of
strain for the W-R model, the predicted return to isotropy 1is abrupt when the
strain is removed. This kind of behavior is brought about by the shortcoming
of the first-order models as explained above.

The above example illustrates two points. First, eddy-viscosity models
can probably never be completely predictive for separated flows. Some details
of the structure will most certainly be lacking. More sophisticated models
will pick up more of the detaills, but for stringent requirements they, too,
may fail. The second point, and by far the most important one, is that it
is probably possible to predict the gross behavior of a flow even when certain
of the details are not well represented or even missing altogether. The most
meaningful test of whether or not these calculations have useful information
is whether or not they are used.

There are two schools of thought about modelling turbulence (Lumley,

1978). Some believe that under certain circumstances, rational second-order
(or invariant) modelling can be developed for general computation procedures.
They consider this approach may at least provide a guide for the construction
of the more empirical models. Others believe the structure of turbulence to
be so complex that a search for universal closures is probably in vain.
They believe that practical computations will require empirical techniques
developed for particular flow topology. As for the current efforts in com-
puting turbulence flows for industrial needs, Liepmann (1979) has presented
an adversely critical opinion.

There are probably five different parallel avenues of turbulent separated
flow research: (1) Different turbulence models are applied to the same
geometrical flow problem in order to determine which one is the best;

(2) the same model, without any change in its form or in its empirical con-
stants, is applied to different geometrical flow problems so that its breadth
of application can be determined; (3) for a given form of a model, a computer
optimization is carried out to obtain the best set of model parameters rela-
tive to an available set of experiments; (4) for a specific flow problem, a
determination of the range of flow parameters is carried out for which a
given model with its empirical constants is valid; (5) a model is developed
for a particular flow problem based on a detailed experimental characteriza-
tion of this flow. As demonstrated earlier, elements of avenues (1) and (2)
are already being pursued; remaining avenues need to be pursued.,

Computational aerodynamics is probably going to depend more on experi-
mental inputs and checks and less on the solutions of the Navier-Stokes
equations for developing turbulence models. Therefore, experimentalists
should be requested to document well the experiments they conduct during their
quest for understanding turbulence in separated flows. Through that under-
standing, better turbulence models may result at least for these flows, and
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this should increase the utility of the Navier-Stokes technology. Both
experimental and theoretical investigators need to work together to advance
the state of the art of turbulence models for separated flows. It is hoped
that efforts will be devoted to extensive testing of these models on a variety
of experiments without modifications to the basic coding. In addition,
repeated grid-refinement studies are required to demonstrate that a turbulent
numerical simulation tends to be independent of numerics.

In the 1980's, the complex three-dimensional geometries will require
component—-adaptive or zonal methods. These procedures, along with limited
availability of computer speed and memory, will guide the Navier-Stokes
technology towards a viscous-inviscid interaction approach, which probably
will consist of matching the Reynolds-averaged Navier-Stokes solutions next
to a body surface with either Euler or potential flow solutions away from
the surface.

If the above efforts prove to work then not only capability but reli-
ability would be established. At this point the Navier-Stokes technology
will come of age.

In summary, the state of the art of viscous transonic aerodynamics is
presented in a Venn diagram shown in figure 30. At present, transonic,
attached, two-dimensional, steady and fully turbulent flows can be routinely
predicted. Extensive efforts are being made to predict both steady and
unsteady, two-dimensional fully turbulent separated flows. Already promising
starts have been made to simulate steady three-dimensional flows, either
attached or separated. However, much remains to be done for laminar-
transitional-turbulent flows. Further, there is negligible progress in meet-
ing the final objective of predicting unsteady, three-dimensional, separated,
and laminar-transitional-turbulent flows.
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